RESIDENTIAL ENERGY CONSERVATION CODE DOCUMENTATION CHECKLIST #### Florida Department of Business and Professional Regulation Simulated Performance Alternative (Performance) Method Applications for compliance with the 2023 Florida Building Code, Energy Conservation via the Residential Simulated Performance Alternative shall include: | | This checklist | |----|--| | | Form R405-2023 report | | | Input summary checklist that can be used for field verification (usually four pages/may be greater) | | | Energy Performance Level (EPL) Display Card (one page) | | | HVAC system sizing and selection based on ACCA Manual S or per exceptions provided in Section R403.7 | | | Mandatory Requirements (five pages) | | Re | quired prior to CO: | | | Air Barrier and Insulation Inspection Component Criteria checklist (Table R402.4.1.1 - one page) | | | A completed 2023 Envelope Leakage Test Report (usually one page); exception in R402.4 allows dwelling units of R-2 Occupancies and multiple attached single family dwellings to comply with Section C402.5 | | | If Form R405 duct leakage type indicates anything other than "default leakage", then a completed 2023 Duct Leakage Test Report - Performance Method (usually one page) | #### FLORIDA ENERGY EFFICIENCY CODE FOR BUILDING CONSTRUCTION Florida Department of Business and Professional Regulation - Residential Performance Method | Project Name: Cypress - Parcel 5 - XXX State Road Street: XXX State Road 247 City, State, Zip: Lake City, FL, 32024 Owner: Design Location: FL, Gainesville | Builder Name: Permit Office: Lake City Permit Number: Jurisdiction: 221200 County: Columbia(Florida Climate Zone 2) | |---|--| | Conditioned floor area below grade (ft²) 7. Windows(190.0 sqft.) Description a. U-Factor: Dbl, U=0.34 190. SHGC: SHGC=0.21 b. U-Factor: N/A SHGC: c. U-Factor: N/A SHGC: Area Weighted Average Overhang Depth: 4.1 Area Weighted Average SHGC: 0 8. Skylights Description | a. Frame - Wood, Exterior R=13.0 1819.50 ft² b. Frame - Wood, Adjacent R=13.0 437.50 ft² c. N/A d. N/A Yes 11. Ceiling Types(1845.0 sqft.) Insulation Area a. Flat ceiling under att (Vented) R=30.0 1845.00 ft² b. N/A c. N/A Area 12. Roof(Comp. Shingles, Vented) Deck R=0.0 2402 ft² 13. Ducts, location & insulation level a. Sup: Attic, Ret: Attic, AH: Garage ft² b. c. ft² 14. Cooling Systems kBtu/hr Efficiency a. Central Unit 34.2 SEER2:14.30 Area 15. Heating Systems kBtu/hr Efficiency | | SHGC(AVG): N/A 9. Floor Types Insulation | Area 5.00 ft ² ft ² ft ² b. Conservation features 17. Credits 18. Electric Heat Pump 34.2 HSPF2:7.50 34.2 HSPF2:7.50 Cap: 50 gallons EF: 0.970 None Pstat | | Tot | ad Modified Loads: 47.56 al Baseline Loads: 50.03 eless than or equal to 95 percent of the annual total loads of the standard reference design in order to comply. | | I hereby certify that the plans and specifications covered this calculation are in compliance with the Florida Energy Code. PREPARED BY: | Review of the plans and specifications covered by this calculation indicates compliance with the Florida Energy Code. Before construction is completed this building will be inspected for compliance with Section 553.908 Florida Statutes. | - certified factory-sealed in accordance with R403.3.2.1. - Compliance with a proposed duct leakage Qn requires a PERFORMANCE Duct Leakage Test Report confirming duct leakage to outdoors, tested in accordance with ANSI/RESNET/ICC 380, is not greater than 0.030 Qn for whole house. - Compliance requires an Air Barrier and Insulation Inspection Checklist in accordance with R402.4.1.1 and this project requires a PERFORMANCE envelope leakage test report with envelope leakage no greater than 6.00 ACH50 (R402.4.1.2). | | | | | | PRO | JEC ⁻ | Г | | | | | | | |----------|---|--|---|---|---|---|---|-------------------------------|---|--|--|---|---| | E | Fitle: Building Type: Builder Home I Builder Name: Permit Office: Jurisdiction: Family Type: New/Existing: Year Construct | User Lake City 221200 Detached New (From Plans | 5 - XXX State Road | 247 Bedrooms Condition Total Stor Worst Ca Rotate Ar Cross Ve Whole Ho Terrain: Shielding | ed Area:
ries:
se:
ngle:
ntilation:
ouse Fan | 1
Yes
0
No
: No
Sul | | Lo
Blo
Pla
Str
Co | dress type: t #: t #: atBook: reet: bunty: ty, State, Zip |
XXX State
Columbia | | | | | | | | | | CLIN | IATE | | | | | | | | | / | Design
Location | | Tmy Site | | Des
97.5% | ign Ten | np
5% | | sign Temp
Summer | Heating
Degree Days | Desigr
Moisture | | ly temp
nge | | - | _ FL, Gainesv | ille | FL_GAINESVILLE | REGIONA | 32 | 9 | 2 | 70 | 75 | 1305.5 | 51 | Mediu | ım | | | | | | | BLO | CKS | | | | | | | | | \vee | Number | Name | Area | Vol | ume | | | | | | | | | | | _1 | Entire House | 1845 | 175 | 567 cu ft | | | | | | | | | | | | | | | SPA | CES | | E (\$1.00 m) == | | | | | | | \vee | Number | Name | Area | Volume | Kitchen | Ос | cupants | Ве | edrooms | Finished | Coo | led F | leated | | | _ 1
_ 2
_ 3
_ 4
_ 5
_ 6
_ 7
_ 8 | MWIC
Laundry
MBR
MT
MBA
BR3
BA2
BR2
Kit Liv Din | 88
43
225
13
137
146
56
146
895 | 792
430
2250
130
1370
1314
504
1314
8503 | No
No
No
No
No
No
No
Yes | | 0
0
2
0
0
1
0 | | 1 1 1 | Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes | Ye
Ye
Ye
Ye
Ye
Ye
Ye | es
es
es
es
es
es | Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes | | = | _ 10 | Butler Pantry | 96 | 960 | No | | Ō | | | Yes | Y | es | Yes | | | | | | | FLO | ORS | 3 | | (Total E | xposed Ar | ea = 18 | 845 sq | .ft.) | | \vee | # Floor | Туре | Space | Expo
Perir | | Area | | Value
m. Jois | U-Factor | Slab Insul.
Vert/Horiz | Tile | Wood | Carpet | | | 2 Slab-Or
3 Slab-Or
4 Slab-Or
5 Slab-Or
6 Slab-Or
7 Slab-Or
8 Slab-Or
9 Slab-Or | n-Grade Edge Ins
n-Grade Ins | MWIC Laundry MBR MT MBA BR3 BA2 BR2 Kit Liv Din Butler Pantry | 2
1
3
2
7 | 7 2 8 7 1 2 1 8 8 5 1 2 8 | 88 sqft
43 sqft
25 sqft
13 sqft
37 sqft
46 sqft
56 sqft
46 sqft
95 sqft | 0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0 | | 0.710
0.710
0.710
0.710
0.710
0.710
0.710
0.710
0.710 | 2 (ft)/0 (ft)
2 (ft) | 1.00
1.00
1.00
1.00
1.00
1.00
1.00 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | | | | | | | F | ROOF | | | | 74 | | | | | | |---
---|--|--|---|--|---|---|--|---|--
---|---|--|--|---| | /# | Тур | pe | Materials | | Gable
Area | Framing.
Fract. | Roof
Color | Rad
Barr | Sola
Abso | | | nitt En
Tes | | Deck
Insul. | Pitch
(deg) | | 1 | Gable | e or Shed | Composition shingles | 2402 ft² | 768 ft² | 0.11 | Medium | N | 0.85 | 5 No | 0 | .9 N | 0 | 0 | 39.81 | | | | Anna da estado en e | | | A | TTIC | | | | | | | | | | | /# | Тур | ре | Ventil | ation | Ve | ent Ratio (1 | in) Ar | ea | RI | BS | IR | СС | | | | | 1 | Full a | attic | Ven | ited | | 150 | 184 | 5 ft² | ı | N | 1 | N | | | | | | | | | | CE | EILING | | (T | otal | Expos | sed A | \rea = | 184 | 5 sq.: | ft.) | | /# | Ce | iling Type | | Space | | R-Value | Ins. Type | Area | | U-Factor | Fram | ning Frac | | Truss | Type | | 1 | Flat | ceiling under at | tic(Vented) | MWIC | | 30.0 | Batt | 88.0f | t ² | 0.063 | | 0.10 | | Wo | | | 2 | | ceiling under at | | Laundry | | 30.0 | Batt | 43.0f | | 0.063 | | 0.10 | | Wo | | | 3 | | ceiling under at | | MBR | | 30.0 | Batt | 225.0 | | 0.063 | | 0.10 | | Wo | | | _ 4 | | ceiling under at | | MT | | 30.0 | Batt | 13.0f | | 0.063 | | 0.10 | | Wo | | | _ 5 | | ceiling under at | The state of s | MBA | | 30.0 | Batt | 137.0
146.0 | | 0.063 | | 0.10 | | Wo
Wo | | | 6 | | ceiling under at | | BR3 | | 30.0
30.0 | Batt | 56.0f | | 0.063 | | 0.10 | | Wo | | | - / | | ceiling under at | | BA2
BR2 | | 30.0 | Batt
Batt | 146.0 | | 0.063 | | 0.10 | | Wo | | | _8 | | ceiling under at | | Kit Liv Din | | 30.0 | Batt | 895.0 | | 0.063 | | 0.10 | | Wo | | | $-\frac{9}{1}$ | | ceiling under at
ceiling under at | | Butler Pantr | | 30.0 | Batt | 96.0f | | 0.063 | | 0.10 | | Wo | | | | | | | | | | | / | | i | | A === | 205 | 7.50 | £ \ | | | | | | / | V | VALLS | | (1 | - | I Expo | sea A | | THE MENT | 7 sq. | 11.) | | - | | | | | | | 202042 2002 | | | | 10.0 | | FT | Calas | Da | | /# | Ornt | Adjacent
To | Wall Type | Space | | Cavity
R-Value | Width
Ft In | Heig
Ft | | Area
sq.ft. | U-
actor | Sheath
R-Value | | Solar
Absor | Be
. Gr | | /# | Ornt | | Wall Type | Space | | R-Value
13.0 | Ft In 8.0 0 | 9.0 | 0 | sq.ft. 1 | 0.094 | R-Value | 0.23 | Absor
0.45 | . Gi | | /#
1 | N | То | AND SHOW IN | MWIC | | 13.0
13.0 | 8.0 0
11.0 0 | 9.0
9.0 | 0
0 | 72.0
99.0 | 0.094
0.094 | R-Value
0
0 | 0.23
0.23 | 0.45
0.01 | . Gr
0 %
0 % | | 1 | N
W
S | To | Frame - Wood | MWIC
MWIC
MWIC | | 13.0
13.0
13.0
13.0 | 8.0 0
11.0 0
3.0 0 | 9.0
9.0
9.0 | 0
0
0
0 | 72.0
99.0
27.0 | 0.094
0.094
0.094 | 0
0
0
0 | 0.23
0.23
0.23 | 0.45
0.01
0.01 | 0 %
0 %
0 % | | 1
2
3 | N
W
S
S | Exterior
Garage
Garage
Garage | Frame - Wood
Frame - Wood
Frame - Wood
Frame - Wood | MWIC
MWIC
MWIC
Laundr | | 13.0
13.0
13.0
13.0 | 8.0 0
11.0 0
3.0 0
7.0 0 | 9.0
9.0
9.0
10.0 | 0
0
0
0 | 72.0
99.0
27.0
70.0 | 0.094
0.094
0.094
0.094 | 0
0
0
0 | 0.23
0.23
0.23
0.23
0.23 | 0.45
0.01
0.01
0.01 | 0 %
0 %
0 %
0 % | | 113345 | N
S
S
S
E | Exterior
Garage
Garage
Garage
Exterior | Frame - Wood
Frame - Wood
Frame - Wood
Frame - Wood
Frame - Wood | MWIC
MWIC
MWIC
Laundr
MBR | | R-Value
13.0
13.0
13.0
13.0
13.0 | 8.0 0
11.0 0
3.0 0
7.0 0
15.0 0 | 9.0
9.0
9.0
10.0
10.0 | 0
0
0
0
0 | 72.0
99.0
27.0
70.0
150.0 | 0.094
0.094
0.094
0.094
0.094 | 0
0
0
0
0 | 0.23
0.23
0.23
0.23
0.23
0.23 | 0.45
0.01
0.01
0.01
0.45 | 0 %
0 %
0 %
0 % | | 133 | N W S W E S | Exterior
Garage
Garage
Garage
Exterior
Exterior | Frame - Wood
Frame - Wood
Frame - Wood
Frame - Wood
Frame - Wood
Frame - Wood | MWIC
MWIC
MWIC
Laundr
MBR
MBR | | 13.0
13.0
13.0
13.0
13.0
13.0 | 8.0 0
11.0 0
3.0 0
7.0 0
15.0 0
12.0 0 | 9.0
9.0
9.0
10.0
10.0
10.0 | 0
0
0
0
0 | 72.0
99.0
27.0
70.0
150.0
120.0 | 0.094
0.094
0.094
0.094
0.094
0.094 | 0
0
0
0
0
0 | 0.23
0.23
0.23
0.23
0.23
0.23
0.23 | 0.45
0.01
0.01
0.01
0.45
0.45 | 0 %
0 %
0 %
0 %
0 % | | 133 | N W S W E S N | Exterior Garage Garage Garage Exterior Exterior Exterior | Frame - Wood
Frame - Wood
Frame - Wood
Frame - Wood
Frame - Wood
Frame - Wood | MWIC
MWIC
MWIC
Laundr
MBR
MBR
MT | | 13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0 | 8.0 0
11.0 0
3.0 0
7.0 0
15.0 0
12.0 0
3.0 0 | 9.0
9.0
9.0
10.0
10.0
10.0 | 0
0
0
0
0 | 72.0
99.0
27.0
70.0
150.0
120.0
30.0 | 0.094
0.094
0.094
0.094
0.094
0.094
0.094 | 0
0
0
0
0 | 0.23
0.23
0.23
0.23
0.23
0.23
0.23
0.23 | 0.45
0.01
0.01
0.01
0.45 | 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % | | 13456 | Z W S W E S Z E | Exterior Garage Garage Garage Exterior Exterior Exterior Exterior | Frame - Wood
Frame - Wood
Frame - Wood
Frame - Wood
Frame - Wood
Frame - Wood
Frame - Wood | MWIC
MWIC
MWIC
Laundr
MBR
MBR
MT | | R-Value
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0 | 8.0 0
11.0 0
3.0 0
7.0 0
15.0 0
12.0 0
3.0 0
5.0 0 | 9.0
9.0
9.0
10.0
10.0
10.0
10.0 | 0
0
0
0
0
0 | 72.0
99.0
27.0
70.0
150.0
120.0
30.0
50.0 | 0.094
0.094
0.094
0.094
0.094
0.094 | 0
0
0
0
0
0
0 | 0.23
0.23
0.23
0.23
0.23
0.23
0.23 | 0.45
0.01
0.01
0.01
0.45
0.45 | 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % | | 13345555 | Z W S W E S Z E Z | Exterior Garage Garage Garage Exterior Exterior Exterior Exterior Exterior | Frame - Wood
Frame Wood | MWIC
MWIC
MWIC
Laundr
MBR
MBR
MT
MT
MT | | R-Value
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0 | 8.0 0
11.0 0
3.0 0
7.0 0
15.0 0
12.0 0
3.0 0
5.0 0
12.0 0 | 9.0
9.0
9.0
10.0
10.0
10.0 | 0
0
0
0
0 | 72.0
99.0
27.0
70.0
150.0
120.0
30.0 | 0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094 | 0
0
0
0
0
0
0
0 | 0.23
0.23
0.23
0.23
0.23
0.23
0.23
0.23 | 0.45
0.01
0.01
0.01
0.45
0.45
0.45 | 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % | | 1 | N W S W E S N E N E | Exterior Garage Garage Garage Exterior Exterior Exterior Exterior Exterior Exterior Exterior | Frame - Wood | MWIC
MWIC
Laundr
MBR
MBR
MT
MT
MT
MBA | | R-Value
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0 | 8.0 0
11.0 0
3.0 0
7.0 0
15.0 0
12.0 0
3.0 0
5.0 0
12.0 0
5.0 0 | 9.0
9.0
9.0
10.0
10.0
10.0
10.0
10.0 | 0
0
0
0
0
0 | 72.0
99.0
27.0
70.0
150.0
120.0
30.0
50.0
120.0 | 0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094 | 0
0
0
0
0
0
0
0
0 | 0.23
0.23
0.23
0.23
0.23
0.23
0.23
0.23 | 0.45
0.01
0.01
0.01
0.45
0.45
0.45
0.45 | 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % | | 1 2 3 4 4 5 6 6 7 7 8 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | N W S W E S N E N E N E N E | Exterior Garage Garage Garage Exterior Exterior Exterior Exterior Exterior Exterior Exterior Exterior | Frame - Wood | MWIC
MWIC
Laundr
MBR
MBR
MT
MT
MBA
MBA
BR3 | | R-Value
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0 | 8.0 0
11.0 0
3.0 0
7.0 0
15.0 0
12.0 0
3.0 0
5.0 0
12.0 0
5.0 0 | 9.0
9.0
9.0
10.0
10.0
10.0
10.0
10.0
10. | 0
0
0
0
0
0 | 72.0
99.0
27.0
70.0
150.0
120.0
30.0
50.0
120.0
50.0 | 0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094 | 0
0
0
0
0
0
0
0
0 | 0.23
0.23
0.23
0.23
0.23
0.23
0.23
0.23 | 0.45
0.01
0.01
0.01
0.45
0.45
0.45
0.45
0.45
0.45 | 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % | | 1 2 3 4 4 5 6 6 7 7 8 8 9 1 1 1 1 1 1 | N W S W E S N E N E N E N E N E N E N E N E N E | Exterior Garage Garage Garage Exterior | Frame - Wood | MWIC
MWIC
Laundr
MBR
MBR
MT
MT
MBA
MBA
BR3
BR3 | | R-Value 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13. | 8.0 0
11.0 0
3.0 0
7.0 0
15.0 0
12.0 0
5.0 0
12.0 0
5.0 0
7.0 0 | 9.0
9.0
9.0
10.0
10.0
10.0
10.0
10.0
10. | 0 0 0 0 0 0 0 0 0 0 0 0 | 72.0
99.0
27.0
70.0
150.0
120.0
30.0
50.0
120.0
63.0 | 0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094 | R-Value
0
0
0
0
0
0
0
0
0
0 | 0.23
0.23
0.23
0.23
0.23
0.23
0.23
0.23 | 0.45
0.01
0.01
0.01
0.45
0.45
0.45
0.45
0.45
0.45
0.45 | 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % | | 1 2 2 3 3 4 4 5 6 6 6 7 7 7 8 8 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | N W S W E S N E N E N E N E N E N E N E N E N E | Exterior Garage Garage Garage Exterior Exterior
Exterior Exterior Exterior Exterior Exterior Exterior | Frame - Wood | MWIC
MWIC
Laundr
MBR
MBR
MT
MT
MBA
MBA
BR3 | | R-Value 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13. | 8.0 0
11.0 0
3.0 0
7.0 0
15.0 0
12.0 0
5.0 0
12.0 0
5.0 0
7.0 0
11.0 0 | 9.0
9.0
9.0
10.0
10.0
10.0
10.0
10.0
10. | 0 0 0 0 0 0 0 0 0 0 0 0 0 | 72.0
99.0
27.0
70.0
150.0
120.0
30.0
50.0
120.0
63.0
99.0
126.0
72.0 | 0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094 | R-Value
0
0
0
0
0
0
0
0
0
0
0
0 | 0.23
0.23
0.23
0.23
0.23
0.23
0.23
0.23 | 0.45
0.01
0.01
0.01
0.45
0.45
0.45
0.45
0.45
0.45
0.45
0.45 | 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % | | 1 2 2 3 3 4 4 5 6 6 6 7 7 7 7 8 8 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | N W S W E S N E N E N E S S S S S S S S S S S S | Exterior Garage Garage Garage Exterior | Frame - Wood | MWIC
MWIC
Laundr
MBR
MBR
MT
MT
MBA
MBA
BR3
BR3
BR3
BR3
BR3 | y
y | R-Value 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13. | 8.0 0
11.0 0
3.0 0
7.0 0
15.0 0
12.0 0
5.0 0
12.0 0
5.0 0
7.0 0
11.0 0 | 9.0
9.0
9.0
10.0
10.0
10.0
10.0
10.0
10. | 0 | 72.0
99.0
27.0
70.0
150.0
120.0
30.0
50.0
120.0
63.0
99.0
126.0
72.0 | 0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094 | R-Value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0.23
0.23
0.23
0.23
0.23
0.23
0.23
0.23 | 0.45
0.01
0.01
0.01
0.45
0.45
0.45
0.45
0.45
0.45
0.45
0.45 | . Gr | | 1 2 2 3 3 4 4 5 5 6 6 7 7 7 8 8 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | N W S W E S N E N E N E N E N E N E N E N E N E | Exterior Garage Garage Garage Exterior | Frame - Wood | MWIC
MWIC
Laundr
MBR
MBR
MT
MT
MBA
BR3
BR3
BR3
BR3
BR3 | ;
;
y | R-Value 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13. | 8.0 0
11.0 0
3.0 0
7.0 0
15.0 0
12.0 0
3.0 0
5.0 0
12.0 0
5.0 0
7.0 0
11.0 0
14.0 0
8.0 0
11.0 0 | 9.0
9.0
9.0
10.0
10.0
10.0
10.0
10.0
9.0
9.0
9.0
9.0
9.0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 72.0
99.0
27.0
70.0
150.0
120.0
30.0
50.0
63.0
99.0
126.0
72.0
126.0
99.0 | 0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094 | R-Value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0.23
0.23
0.23
0.23
0.23
0.23
0.23
0.23 | 0.45
0.01
0.01
0.01
0.45
0.45
0.45
0.45
0.45
0.45
0.45
0.45 | 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % | | 11 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | N W S W E S N E N E N E N E S W S W E S W E N E N E N E N E N E N E N E N E N E | Exterior Garage Garage Garage Exterior | Frame - Wood | MWIC
MWIC
Laundr
MBR
MBR
MT
MT
MBA
BR3
BR3
BR3
BR3
BR3
BR3 | y
Din | R-Value 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13. | 8.0 0
11.0 0
3.0 0
7.0 0
15.0 0
12.0 0
5.0 0
12.0 0
5.0 0
7.0 0
11.0 0
14.0 0
8.0 0
14.0 0
4.0 0 | 9.0
9.0
9.0
10.0
10.0
10.0
10.0
10.0
9.0
9.0
9.0
9.0
9.0
9.0 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 72.0
99.0
27.0
70.0
150.0
120.0
30.0
50.0
120.0
63.0
99.0
126.0
72.0
126.0
99.0
38.0 | 0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094 | R-Value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0.23
0.23
0.23
0.23
0.23
0.23
0.23
0.23 | 0.45
0.01
0.01
0.01
0.45
0.45
0.45
0.45
0.45
0.45
0.45
0.45 | . Gir | | 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | N W S W E S N E N E N E S S W N E S W E S W E S W E S W E S W N E S W N E | Exterior Garage Garage Garage Exterior | Frame - Wood | MWIC
MWIC
Laundr
MBR
MBR
MT
MT
MBA
BR3
BR3
BR3
BR2
BR2
BR2
Kit Liv L | Din
Din | R-Value 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13. | 8.0 0 11.0 0 3.0 0 7.0 0 15.0 0 12.0 0 5.0 0 12.0 0 7.0 0 11.0 0 14.0 0 14.0 0 11.0 0 4.0 0 30.0 0 | 9.0
9.0
9.0
10.0
10.0
10.0
10.0
10.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 72.0
99.0
27.0
70.0
150.0
120.0
30.0
50.0
120.0
50.0
126.0
99.0
126.0
99.0
38.0
285.0 | 0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094 | R-Value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0.23
0.23
0.23
0.23
0.23
0.23
0.23
0.23 | 0.45
0.01
0.01
0.01
0.45
0.45
0.45
0.45
0.45
0.45
0.45
0.45 | . Gir | | 11 22 33 44 45 55 56 56 57 77 88 59 50 11 11 11 11 11 11 11 11 11 11 11 11 11 | N W S W E S N E N E N E S S W N E S W I I I I I I I I I I I I I I I I I I | Exterior Garage Garage Garage Exterior | Frame - Wood | MWIC
MWIC
Laundr
MBR
MBR
MT
MT
MBA
BR3
BR3
BR3
BR2
BR2
BR2
Kit Liv L
Kit Liv L | Din
Din
Din | R-Value 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13. | 8.0 0
11.0 0
3.0 0
7.0 0
15.0 0
12.0 0
3.0 0
5.0 0
12.0 0
5.0 0
11.0 0
14.0 0
8.0 0
14.0 0
11.0 0
4.0 0
30.0 0
2.0 0 | 9.0
9.0
9.0
10.0
10.0
10.0
10.0
10.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 72.0
99.0
27.0
70.0
150.0
120.0
30.0
50.0
120.0
63.0
99.0
126.0
72.0
126.0
99.0
38.0
285.0 | 0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094 | R-Value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0.23
0.23
0.23
0.23
0.23
0.23
0.23
0.23 | 0.45
0.01
0.01
0.01
0.45
0.45
0.45
0.45
0.45
0.45
0.45
0.45 | . Gi | | 11 22 33 44 55 66 77 77 88 69 11 11 11 11 11 11 11 11 11 11 11 11 11 | N W S W E S N E N E N E S S W N E S W | Exterior Garage Garage Garage Exterior | Frame - Wood | MWIC MWIC Laundr MBR MBR MT MT MBA MBA BR3 BR3 BR3 BR2 BR2 Kit Liv L Kit Liv L Kit Liv L | Din
Din
Din
Din | R-Value 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13. | 8.0 0
11.0 0
3.0 0
7.0 0
15.0 0
12.0 0
3.0 0
5.0 0
12.0 0
5.0 0
11.0 0
14.0 0
14.0 0
14.0 0
14.0 0
14.0 0
14.0 0
19.0 0
19.0 0 | 9.0
9.0
9.0
10.0
10.0
10.0
10.0
10.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 72.0
99.0
27.0
70.0
150.0
120.0
50.0
120.0
50.0
63.0
99.0
126.0
72.0
126.0
99.0
38.0
285.0
19.0
180.5 | 0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094 | R-Value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0.23
0.23
0.23
0.23
0.23
0.23
0.23
0.23 | 0.45
0.01
0.01
0.01
0.45
0.45
0.45
0.45
0.45
0.45
0.45
0.45 | . Gi | | 11 22 33 44 55 66 77 77 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | N W S W E S N E N E N E S S W N E S W N E S W N E S W N E S W N E S W N E S W N E S W N E S W N E S W N |
Exterior Garage Garage Garage Exterior | Frame - Wood | MWIC MWIC Laundr MBR MBR MT MT MBA MBA BR3 BR3 BR3 BR2 BR2 BR2 Kit Liv L Kit Liv L Kit Liv L Kit Liv L | Din
Din
Din
Din
Din | R-Value 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13. | 8.0 0
11.0 0
3.0 0
7.0 0
15.0 0
12.0 0
5.0 0
12.0 0
5.0 0
12.0 0
14.0 0
11.0 0
11.0 0 | 9.0
9.0
9.0
10.0
10.0
10.0
10.0
10.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 72.0
99.0
27.0
70.0
150.0
120.0
50.0
120.0
50.0
63.0
99.0
126.0
72.0
126.0
99.0
38.0
285.0
19.0
180.5 | 0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094 | R-Value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0.23
0.23
0.23
0.23
0.23
0.23
0.23
0.23 | 0.45
0.01
0.01
0.01
0.45
0.45
0.45
0.45
0.45
0.45
0.45
0.45 | . Gi | | 1122333455555555555555555555555555555555 | N W S W E S N E N E N E N E N E N E N E N E N E | Exterior Garage Garage Garage Exterior | Frame - Wood | MWIC MWIC MWIC Laundr MBR MBR MT MT MBA MBA BR3 BR3 BR3 BR2 BR2 BR2 Kit Liv I | Din
Din
Din
Din
Din
Din | R-Value 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13. | 8.0 0
11.0 0
3.0 0
7.0 0
15.0 0
12.0 0
5.0 0
12.0 0
5.0 0
11.0 0
14.0 0
14.0 0
14.0 0
30.0 0
2.0 0
11.0 0 | 9.0
9.0
9.0
10.0
10.0
10.0
10.0
10.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 72.0
99.0
27.0
70.0
150.0
120.0
30.0
50.0
120.0
50.0
126.0
99.0
126.0
99.0
126.0
99.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126.0
126. | 0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094 | R-Value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0.23
0.23
0.23
0.23
0.23
0.23
0.23
0.23 | 0.45
0.01
0.01
0.01
0.45
0.45
0.45
0.45
0.45
0.45
0.45
0.45 | . Gri | | 11 22 33 44 45 55 55 55 55 55 55 55 55 55 55 55 | N W S W E S N E N E N E S S W N E S W N E S W N E S W N E S W N E S W N E S W N E S W N E S W N E S W N | Exterior Garage Garage Garage Exterior | Frame - Wood | MWIC MWIC Laundr MBR MBR MT MT MBA MBA BR3 BR3 BR3 BR2 BR2 BR2 Kit Liv L Kit Liv L Kit Liv L Kit Liv L | Din
Din
Din
Din
Din
Din
Din
Din | R-Value 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13. | 8.0 0
11.0 0
3.0 0
7.0 0
15.0 0
12.0 0
5.0 0
12.0 0
5.0 0
12.0 0
14.0 0
11.0 0
11.0 0 | 9.0
9.0
9.0
10.0
10.0
10.0
10.0
10.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 72.0
99.0
27.0
70.0
150.0
120.0
50.0
120.0
50.0
63.0
99.0
126.0
72.0
126.0
99.0
38.0
285.0
19.0
180.5 | 0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094
0.094 | R-Value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0.23
0.23
0.23
0.23
0.23
0.23
0.23
0.23 | 0.45
0.01
0.01
0.01
0.45
0.45
0.45
0.45
0.45
0.45
0.45
0.45 | | | | | | | | | | | DO | ORS | | | T) | otal E | xpos | ed A | rea = | 44 sq | .ft.) | |--|--|--|--|---|----------------------------
--|--|---------------|--|--|---------------------------------------|--|--|--|--|---------------------------------------|---|--| | /# | Ornt | | Adjacent | To Door Type | | Space | | | Storm | s | U- | -Value | | Vidth
Ft In | | Height
Ft In | A | rea | | 1 | E
W | | | Insulated
Insulated | | Kit Liv
Kit Liv | | | Nor
Nor | | | 0.60
0.60 | 3.0
3.0 | | 6.0
8.0 | | | .0ft²
.0ft² | | | | 2012 (1120) | | | | | V | /INI | oow | S | A A A A A A A A A A A A A A A A A A A | (To | tal Ex | pose | d Are | ea = 1 | 90 sq | .ft.) | | /# | Ornt | Wall
ID | Frame | Panes | NFRC | U-Factor | SHGC | lmp | Storm | Total
Area
(ft²) | Same
Units | Width
(ft) | Height
(ft) | Over
Depth
(ft) | rhang
Sep.
(ft) | Interio | or Shade | Scree | | 5
6
7 | N
E
W
E | 5
9
12
16
18
18
20
23 | Vinyl
Vinyl
Vinyl
Vinyl
Vinyl
Vinyl
Vinyl
Vinyl | Low-E Double | Y
Y
Y
Y
Y
Y | 0.34
0.34
0.34
0.34
0.34
0.34
0.34 | 0.21
0.21
0.21
0.21
0.21
0.21
0.21
0.21 | 2 2 2 2 2 2 2 | 222222 | 30.0
16.0
15.0
30.0
12.0
45.0
30.0
12.0 | 2
1
1
2
1
3
2
2 | 3.00
4.00
3.00
3.00
4.00
3.00
3.00
2.00 | 5.00
4.00
5.00
5.00
3.00
5.00
5.00
5.00 | 1.3
1.3
1.3
6.0
1.3
7.0
6.0
1.3 | 0.5
0.5
0.5
0.5
0.5
0.5
0.5 | N N N N N N N N N N N N N N N N N N N | one
lone
lone
lone
lone
lone
lone | None
None
None
None
None
None
None | | | | | | | | | INF | ILT | RATI | ON | | | | | | | | | | / # | Scope | е | Me | ethod | S | LA (| CFM50 | i | ELA | EqLA | ١ | ACH | ACH | 50 Spa | ice(s) | Infiltr | ation Te | st Volun | 1 | Wh | olehou | use Proj | posed ACH(50) | 0.0 | 0036 | 1757 | 9 | 6.38 | 180.9 | 3 0 | .1260 | 6.0 | , | All | 1756 | 7 cu ft | | | 1 | Wh | olehou | use Prop | posed ACH(50) | 0.0 | 0036 | | | 6.38
RAGE | DUNCASING | 3 0 | .1260 | 6.0 | , | All | 1756 | 37 cu ft | | | 1 | | olehou
or Area | | posed ACH(50) | | 0036
Roof Ar | | GAI | | | | | 6.0
nd. Avg | | | | 67 cu ft
ed Wall I | nsulatio | | | Flo | or Area | a Le | | th | | ea Ex | GAI | RAGE | | rea Undo | | | | | | | nsulatio | | \(\psi \)# | Flo | or Area | a Le | ength Wid | th | Roof Ar | ea Ex | GAI | RAGE
d Perime | | rea Undo | er Unco | | . Wall H | | | ed Wall I | nsulatio | | \(\psi \)# | Flo
579 | or Area | a Le | ength Wid | th
ft² | Roof Ar | ea Ex | GAI
pose | RAGE
d Perime
64 ft | ter Ar | rea Undo | er Unco | nd. Avg | . Wall H | | Expos | ed Wall I | nsulatio | | /# /# /# /# /# /# /# /# /# /# /# /# /# / | Ma Dec | or Area of ft² ss Typ fault(8 fault(8) fault(8) fault(8) fault(8) | a Le | ength Wid | th A | Roof Ar
579 ft | ea Ex | GAI
pose | RAGE
d Perime
64 ft
ASS | ter Ar | rea Undo | er Unco | nd. Avg | . Wall H | leight | Expose | ed Wall I | nsulatio | | /# /# /# /# /# /# /# /# /# /# /# /# /# / | Ma Dec | or Area of ft² ss Typ fault(8 fault(8) fault(8) fault(8) fault(8) | a Le
20
be
lbs/sq.ft.
lbs/sq.ft.
lbs/sq.ft.
lbs/sq.ft.
lbs/sq.ft.
lbs/sq.ft. | ength Wid | th A | Roof Ar 579 ft Area) ft² | ea Ex | M. | ASS hickness Oft Oft Oft Oft Oft Oft Oft Oft Oft Of | ter Ar | ea Undo | 9 ft 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0. | nd. Avg | . Wall H | Space MWIG Laund MBR MT MBA BR3 BA2 BR2 Kit Liv I | Expose | ed Wall I | nsulatio | | /# /# /# /# /# /# /# /# /# /# /# /# /# / | Ma Dee Dee Good G | or Area of ft² ss Typ fault(8 fault(8) fault(8) fault(8) fault(8) | a Le
20
be
lbs/sq.ft.
lbs/sq.ft.
lbs/sq.ft.
lbs/sq.ft.
lbs/sq.ft.
lbs/sq.ft.
lbs/sq.ft. | ength Wid | th A | Roof Ar
579 ft
Area
() ft ²
() ²
(| ea Ex | M. T | ASS hickness Oft Oft Oft Oft Oft Oft Oft Oft Oft Of | ter Ar | ea Undo | 9 ft 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0. | nd. Avg | . Wall H | Space MWIG Laund MBR MT MBA BR3 BA2 BR2 Kit Liv I | Expose
Cry
Din
antry | ed Wall I | nsulatio | FORM R405-2023 | | | | | | CO | OLI | NG SYS | TEM | | | | | | | |--|--|---|--|---
--|---|---|---|--|-----------------------------|-----------------------------|-------------------------------|------------------------------------|------------------------------| | /# sy | ystem Type | | Sub | otype/Spee | d , | AHRI # | Effici | ency | Capacity
kBtu/hr | 1,75,575 | Flow
fm | SHR | Duct | Block | | 1 Ce | entral Unit | | | Split/Single | Э | | SEER | 2:14.3 3 | 34.2 | | 0 | 0.75 | sys#1 | 1 | | | | | | | нот | WA [*] | TER SY | STEM | | | | | | | | /# Sy | ystem Type | Subtype | | Location | | EF(UE | F) Cap | Use | SetPnt | Fixt. Flo | ow T | rap Pi | pe Ins. | Pipe lengt | | 1 El | lectric | None | | Garage | | 0.97 (0. | 94) 50.0 ga | ıl 60 gal | 120 deg | Standa | rd Y | 'es I | None | 99 | | | ecirculation
System | | Control
ype | | Loop
length | Branc | | | R Facilitie
Connect | | | VHR
Eff | Other C | redits | | 1 | No | | | | NA | NA | NA | No | NA | NA | | NA | Nor | ie | | | | | | | | D | UCTS | | | | | | | | | /Duct | St | ipply | | Reti | ırn | | | | AHU | CFM 25 | QN | AHU | | HVAC # | | / # | Location F | 6.0 285 | rea Loc | | R-Value | Area
53 ft² | Leakage
Prop. Leal | | ocation Garage | TOT OUT | OUT
0.030 | SEALED | 0.50 | Heat Co | | | Location F | R-Value A | rea Loc | ation I | R-Value
6.0 | 53 ft² | 112000000000000000000000000000000000000 | k Free | | 14 14 14 14 14 14 14 | | | | Heat Co | | 1 Attic | Location F nable Thermo [] Jan [X] Jan | 6.0 285 | rea Loc | ation I | R-Value
6.0
TE | 53 ft ² EMPE Ceiling Flay lay | Prop. Leal | k Free | | 14 14 14 14 14 14 14 | | Yes | | | | Program
Cooling
Heating
Venting | Location F anable Thermo [] Jan [X] Jan | 6.0 285 for stat: Y [] Feb [X] Feb [] Feb | ft² [] Mar [X] Mar [X] Mar | Attic [] Apr [] Apr [] Apr [X] Apr | 6.0
TE | 53 ft ² EMPE Ceiling Flay lay | Prop. Leal ERATUI Fans: N [X] Jun [] Jun | RES [X] Jul [] Jul [] Jul | Garage [X] Aug [] Aug |
[X] Sep
[] Sep | 0.030 | Yes | 0.50
] Nov
() Nov | 1 1 | | Program
Cooling
Heating
Venting Therm
Sched | nable Thermo [] Jan [X] Jan [] Jan nostat Sched | 6.0 285 for stat: Y [] Feb [X] Feb [] Feb | [] Mar [X] Mar [X] Mar [X] Mar | Attic [] Apr [] Apr [X] Apr ence | 6.0
TE | EMPE
Ceiling F
day
day
day | Prop. Leal ERATUI Fans: N [X] Jun [] Jun [] Jun | k Free RES [X] Jul [] Jul [] Jul | Garage [X] Aug [] Aug [] Aug | [X] Sep
[] Sep
[] Sep | 0.030
[] O
[X] C | Yes | 0.50] Nov () Nov () Nov | 1 1 [] Dec [X] Dec [] Dec | | Program Cooling Heating Venting Therm Sched | nable Thermo [] Jan [X] Jan [] Jan [] Jan dule Type | 6.0 285 f | [] Mar
[X] Mar
[X] Mar
[X] Mar | ation I Attic [] Apr [] Apr [X] Apr ence 2 | 6.0 TE | EMPE
Ceiling F
flay
flay
flay | Prop. Leal ERATUI Fans: N [X] Jun [] Jun [] Jun | K Free RES [X] Jul [] Jul [] Jul Ho 6 | [X] Aug
[] Aug
[] Aug
ours | [X] Sep
[] Sep
[] Sep | 0.030
[] O
[X] C | Yes oct [2 oct [2 oct [2 | O.50] Nov (J Nov (J Nov | 1 1 [] Dec [X] Dec [] Dec | | Program Cooling Heating Venting Therm Sched Coolin Coolin | nable Thermo [] Jan [X] Jan [] Jan onostat Schedidule Type | 6.0 285 f | [] Mar [X] Mar [X] Mar [X] Mar 2006 Refere | Attic [] Apr [] Apr [X] Apr ence 2 78 80 | 6.0
TE () () () () () () () () () () () () () | EMPE Ceilling F flay flay flay 4 78 78 | Prop. Leal ERATUI Fans: N [X] Jun [] Jun [] Jun 5 | k Free RES [X] Jul [] Jul [] Jul 6 | [X] Aug
[] Aug
[] Aug
ours
7 | [X] Sep
[] Sep
[] Sep | 0.030
[] O
[X] O
9 | Yes oct [7 oct [7 oct 7 7 10 | 0.50] Nov {] Nov {] Nov [] Nov 11 | 1 1 [] Dec [X] Dec [] Dec 12 | # ENERGY PERFORMANCE LEVEL (EPL) DISPLAY CARD ESTIMATED ENERGY PERFORMANCE INDEX* = 95 The lower the EnergyPerformance Index, the more efficient the home. XXX State Road 247, Lake City, FL, 32024 | 1. | New construction or exi | sting | New (Fi | rom Plans) | | Wall Types(2257.0 sqft.) | Insulation | | |----|--|---|---------|---|-----|--|-------------------|--| | 2. | Single family or multiple | family | | Detached | | Frame - Wood, Exterior | R=13.0
R=13.0 | 1819.50 ft ²
437.50 ft ² | | 3. | Number of units, if multi | ple family | | 1 | | Frame - Wood, Adjacent
N/A | K=13.0 | 437.50 10 | | 4. | Number of Bedrooms | | | 3 | | N/A | | | | 5. | Is this a worst case? | | | Yes | | Ceiling Types(1845.0 sqft.) | Insulation | | | 6. | Conditioned floor area a | Anna Salaman and a salaman and delicate a salaman | | 1845
0 | b. | Flat ceiling under att (Vented) N/A N/A | R=30.0 | 1845.00 ft ² | | а | Windows** . U-Factor: SHGC: . U-Factor: SHGC: | Description
Dbl, U=0.34
SHGC=0.21
N/A | | Area
190.00 ft ²
ft ² | 13. | Roof(Comp. Shingles, Vented)
Ducts, location & insulation level
Sup: Attic, Ret: Attic, AH: Garage | | 2402 ft ²
R ft ²
6 285 | | Α | . U-Factor:
SHGC:
urea Weighted Average (
urea Weighted Average | | th: | ft ² 4.149 ft 0.210 | 14. | Cooling Systems
Central Unit | kBtu/hr
34.2 S | Efficiency
SEER2:14.30 | | | Skylights
U-Factor:(AVG)
SHGC(AVG): | Description
N/A
N/A | | Area
N/A ft ² | | Heating Systems
Electric Heat Pump | kBtu/hr
34.2 | Efficiency
HSPF2:7.50 | | a | Floor Types . Slab-On-Grade Edge . N/A . N/A | | | Area
1845.00 ft ²
ft ²
ft ² | a | Hot Water Systems Electric Conservation features | Са | p: 50 gallons
EF: 0.970
None | | | | | | | 17. | Credits | | Pstat | I certify that this home has complied with the Florida Energy Efficiency Code for Building Construction through the above energy saving features which will be installed (or exceeded) in this home before final inspection. Otherwise, a new EPL Display Card will be completed based on installed Code compliant features. | Builder Signature: | Date: | |---|---------------------------------| | Address of New Home: XXX State Road 247 | City/FL Zip: Lake City,FL,32024 | *Note: This is not a Building Energy Rating. If your Index is below 70, your home may qualify for energy efficient mortgage (EEM) incentives if you obtain a Florida Energy Rating. For information about the Florida Building Code, Energy Conservation, contact the Florida Building Commission's support staff. **Label required by Section R303.1.3 of the Florida Building Code, Energy Conservation, if not DEFAULT. ## Florida Building Code, Energy Conservation, 8th Edition (2023) Mandatory Requirements for Residential Performance, Prescriptive and ERI Methods | | | | _ | |----------|---------------------|----------------|---| | ADDRESS: | XXX State Road 247 | Permit Number: | | | | Lake City, FL 32024 | | | MANDATORY REQUIREMENTS - See individual code sections for full details. | SECTION R401 GENERAL | |--| | R401.3 Energy Performance Level (EPL) display card - (Mandatory). The building official shall require that an energy performance level (EPL) display card be completed and certified by the builder to be accurate and correct before final approval of the building for occupancy. Florida law (Section 553.9085, Florida Statutes) requires the EPL display card to be included as an addendum to each sales contract for both presold and nonpresold residential buildings. The EPL display card contains information indicating the energy performance level and efficiencies of components installed in a dwelling unit. The building official shall verify that the EPL display card completed and signed by the builder accurately reflects the plans and specifications submitted to demonstrate code compliance for the building. A copy of the EPL display card can be found in Appendix RD. | | SECTION R402 BUILDING THERMAL ENVELOPE | | R402.2.10.1 Slab-on-grade floor insulation installation (Mandatory). Where installed, the insulation shall extend downward from the top of the slab on the outside or inside of the foundation wall. Insulation located below grade shall be extended the distance provided in Table R402.1.2, or the distance of the proposed design as applicable, by any combination of vertical insulation, insulation extending under the slab or insulation extending out from the building. Insulation extending away from the building shall be protected by pavement or by not less than 10 inches (254 mm) of soil. The top edge of the insulation installed between the exterior wall and the edge of the interior slab shall be permitted to be cut at a 45-degree (0.79 rad) angle away from the exterior wall. | | R402.2.11.1 Crawl space walls insulation installation (Mandatory). Where crawl space wall insulation is
installed, it shall be permanently fastened to the wall and extend downward from the floor to the finished grade level and then vertically and/or horizontally for at least an additional 24 inches (610 mm). Exposed earth in unvented crawl space foundations shall be covered with a continuous Class I vapor retarder in accordance with the Florida Building Code, Building, or Florida Building Code, Residential, as applicable. All joints of the vapor retarder shall overlap by 6 inches (153 mm) and be sealed or taped. The edges of the vapor retarder shall extend not less than 6 inches (153 mm) up the stem wall and shall be attached to the stem wall. | | R402.4 Air leakage (Mandatory). The building thermal envelope shall be constructed to limit air leakage in accordance with the requirements of Sections R402.4.1 through R402.4.5. | | Exception: Dwelling units of R-2 Occupancies and multiple attached single family dwellings shall be permitted to comply with Section C402.5. | | R402.4.1 Building thermal envelope. The building thermal envelope shall comply with Sections R402.4.1.1 and R402.4.1.2. The sealing methods between dissimilar materials shall allow for differential expansion and contraction. | | R402.4.1.1 Installation. The components of the building thermal envelope as listed in Table R402.4.1.1 shall be installed in accordance with the manufacturer's instructions and the criteria listed in Table R402.4.1.1, as applicable to the method of construction. Where required by the code official, an approved third party shall inspect all components and verify compliance. | | R402.4.1.2 Testing. The building or dwelling unit shall be tested and verified as having an air leakage rate not exceeding seven air changes per hour in Climate Zones 1 and 2, and three air changes per hour in Climate Zones 3 through 8. Dwelling units with an air leakage rate less than three air changes per hour shall be provided with whole-house mechanical ventilation in accordance with Section R403.6.1 of this code and Section M1507.3 of the Florida Building Code, Residential. Testing shall be conducted in | changes per hour in Climate Zones 1 and 2, and three air changes per hour in Climate Zones 3 through 8. Dwelling units with an air leakage rate less than three air changes per hour shall be provided with whole-house mechanical ventilation in accordance with Section R403.6.1 of this code and Section M1507.3 of the Florida Building Code, Residential. Testing shall be conducted in accordance with ANSI/RESNET/ICC 380 and reported at a pressure of 0.2 inch w.g. (50 pascals). Testing shall be conducted by either individuals as defined in Section 553.993(5) or (7), Florida Statutes, or individuals licensed as set forth in Section 489.105(3)(f), (g) or (i) or an approved third party. A written report of the results of the test shall be signed by the party conducting the test and provided to the code official. Testing shall be performed at any time after creation of all penetrations of the building thermal envelope. **Exception:** Testing is not required for additions, alterations, renovations, or repairs, of the building thermal envelope of existing buildings in which the new construction is less than 85 percent of the building thermal envelope. #### During testing: - 1. Exterior windows and doors, fireplace and stove doors shall be closed, but not sealed, beyond the intended weatherstripping or other infiltration control measures. - 2. Dampers including exhaust, intake, makeup air, backdraft and flue dampers shall be closed, but not sealed beyond intended infiltration control measures. - 3. Interior doors, if installed at the time of the test, shall be open. - 4. Exterior doors for continuous ventilation systems and heat recovery ventilators shall be closed and sealed. - 5. Heating and cooling systems, if installed at the time of the test, shall be turned off. - 6. Supply and return registers, if installed at the time of the test, shall be fully open. - 7. If an attic is both air sealed and insulated at the roof deck, interior access doors and hatches between the conditioned space volume and the attic shall be opened during the test and the volume of the attic shall be added to the conditioned space volume for purposes of reporting an infiltration volume and calculating the air leakage of the home. | ric | orida building Code, Energy Conservation, Mandatory Requirements (2023 Continued) | |-----|---| | | R402.4.2 Fireplaces. New wood-burning fireplaces shall have tight-fitting flue dampers or doors, and outdoor combustion air. Where using tight-fitting doors on factory-built fireplaces listed and labeled in accordance with UL 127, the doors shall be tested and listed for the fireplace. Where using tight-fitting doors on masonry fireplaces, the doors shall be listed and labeled in accordance with UL 907. | | | R402.4.3 Fenestration air leakage. Windows, skylights and sliding glass doors shall have an air infiltration rate of no more than 0.3 cfm per square foot (1.5 L/s/m2), and swinging doors no more than 0.5 cfm per square foot (2.6 L/s/m2), when tested according to NFRC 400 or AAMA/ WDMA/CSA 101/I.S.2/A440 by an accredited, independent laboratory and listed and labeled by the manufacturer. | | | Exception: Site-built windows, skylights and doors. | | | R402.4.4 Rooms containing fuel - burning appliances. In Climate Zones 3 through 8, where open combustion air ducts provide combustion air to open combustion fuel burning appliances, the appliances and combustion air opening shall be located outside the building thermal envelope or enclosed in a room, isolated from inside the thermal envelope. Such rooms shall be sealed and insulated in accordance with the envelope requirements of Table R402.1.2, where the walls, floors and ceilings shall meet not less than the basement wall R-value requirement. The door into the room shall be fully gasketed and any water lines and ducts in the room insulated in accordance with Section R403. The combustion air duct shall be insulated where it passes through conditioned space to a minimum of R-8. | | | Exceptions: | | | Direct vent appliances with both intake and exhaust pipes installed continuous to the outside. Fireplaces and stoves complying with Section R402.4.2 and Section R1006 of the Florida Building Code, Residential. R402.4.5 Recessed lighting. Recessed luminaires installed in the building thermal envelope shall be sealed to limit air leakage between conditioned and unconditioned spaces. All recessed luminaires shall be IC-rated and labeled as having an air leakage rate not more than 2.0 cfm (0.944 L/s) when tested in accordance with ASTM E283 at a 1.57 psf (75 Pa) pressure differential. All recessed luminaires shall be sealed with a gasket or caulk between the housing and the interior wall or ceiling covering. | | | R402.4.6 Air-sealed electrical and communication boxes. Air-sealed electrical and communication boxes that penetrate the air barrier of the building thermal envelope shall be caulked, taped, gasketed, or otherwise sealed to the air barrier element being penetrated. Air-sealed boxes shall be buried in or surrounded by insulation. Air-sealed boxes shall be marked in accordance with NEMA OS 4. Air-sealed boxes shall be installed in accordance with the manufacturer's instructions. | | | SECTION R403 SYSTEMS | | | R403.1 Controls R403.1.1 Thermostat provision (Mandatory). At least one thermostat shall be provided for each separate heating and cooling system | | | R403.1.3 Heat pump supplementary heat (Mandatory). Heat pumps with supplementary electric-resistance heaters shall have controls that limit supplemental heat operation to only those times when one of the following applies: 1. The vapor compression cycle cannot provide the necessary heating energy to satisfy the thermostat setting. 2. The heat pump is operating in defrost mode. 3. The vapor compression cycle malfunctions. 4. The thermostat malfunctions | | | R403.3.2 Sealing (Mandatory). All ducts, air handlers, filter boxes and building cavities that form the primary air containment passageways for air distribution systems shall be considered ducts or plenum chambers, shall be constructed and sealed in accordance with Section C403.2.9.2 of the Commercial Provisions of this code and shall be shown to meet duct tightness criteria below. | | | Duct tightness shall be verified by testing in accordance with ANSI/RESNET/ICC 380 by either individuals as defined in Section 553.993(5) or (7), Florida Statutes, or individuals licensed as set forth in Section 489.105(3)(f), (g) or (i), Florida Statutes, to be "substantially leak
free" in accordance with Section R403.3.3. | | | R403.3.2.1 Sealed air handler. Air handlers shall have a manufacturer's designation for an air leakage of no more than 2 percent of the design airflow rate when tested in accordance with ASHRAE 193. | | | R403.3.3 Duct testing (Mandatory). Ducts shall be pressure tested to determine air leakage by one of the following methods: Rough-in test: Total leakage shall be measured with a pressure differential of 0.1 inch w.g. (25 Pa) across the system, including the manufacturer's air handler enclosure if installed at the time of the test. All registers shall be taped or otherwise sealed during the test. Postconstruction test: Total leakage shall be measured with a pressure differential of 0.1 inch w.g. (25 Pa) across the entire system, including the manufacturer's air handler enclosure. Registers shall be taped or otherwise sealed during the test. Exceptions; A duct air leakage test shall not be required where the ducts and air handlers are located entirely within the building thermal envelope. Duct testing is not mandatory for buildings complying by Section 405 of this code. Duct leakage testing is required for Section R405 compliance where credit is taken for leakage, and a duct air leakage Qn to the outside of less than 0.080 (where Qn = duct leakage to the outside in cfm per 100 square feet of conditioned floor area tested at 25 Pascals) is indicated in the compliance report for the proposed design. | | | A written report of the results of the test shall be signed by the party conducting the test and provided to the code official | #### Florida Building Code, Energy Conservation, Mandatory Requirements (2023 Continued) R403.3.5 Building cavities (Mandatory). Building framing cavities shall not be used as ducts or plenums R403.4 Mechanical system piping insulation (Mandatory). Mechanical system piping capable of carrying fluids above 105°F (41°C) or below 55°F (13°C) shall be insulated to a minimum of R-3. R403.4.1 Protection of piping insulation. Piping insulation exposed to weather shall be protected from damage, including that caused by sunlight, moisture, equipment maintenance and wind, and shall provide shielding from solar radiation that can cause degradation of the material. Adhesive tape shall not be permitted. R403.5.1 Heated water circulation and temperature maintenance systems (Mandatory). If heated water circulation systems are installed, they shall be in accordance with Section R403.5.1.1. Heat trace temperature maintenance systems shall be in accordance with Section R403.5.1.2. Automatic controls, temperature sensors and pumps shall be accessible. Manual controls shall be readily accessible. R403.5.1.1 Circulation systems. Heated water circulation systems shall be provided with a circulation pump. The system return pipe shall be a dedicated return pipe or a cold water supply pipe. Gravity and thermosiphon circulation systems shall be prohibited. Controls for circulating hot water system pumps shall start the pump based on the identification of a demand for hot water within the occupancy. The controls shall automatically turn off the pump when the water in the circulation loop is at the desired temperature and when there is no demand for hot water. R403.5.1.2 Heat trace systems. Electric heat trace systems shall comply with IEEE 515.1 or UL 515. Controls for such systems shall automatically adjust the energy input to the heat tracing to maintain the desired water temperature in the piping in accordance with the times when heated water is used in the occupancy. R403.5.2 Demand recirculation water systems (Mandatory). Where installed, demand recirculation water systems shall have controls that comply with both of the following: 1. The control shall start the pump upon receiving a signal from the action of a user of a fixture or appliance, sensing the presence of a user of a fixture or sensing the flow of hot or tempered water to a fixture fitting or appliance. 2. The control shall limit the temperature of the water entering the cold water piping to 104°F (40°C). R403.5.5 Heat traps (Mandatory). Storage water heaters not equipped with integral heat traps and having vertical pipe risers shall have heat traps installed on both the inlets and outlets. External heat traps shall consist of either a commercially available heat trap or a downward and upward bend of at least 3 1/2 inches (89 mm) in the hot water distribution line and cold water line located as close as possible to the storage tank. R403.5.6 Water heater efficiencies (Mandatory). R403.5.6.1.1 Automatic controls. Service water-heating systems shall be equipped with automatic temperature controls capable of adjustment from the lowest to the highest acceptable temperature settings for the intended use. The minimum temperature setting range shall be from 100°F to 140°F (38°C to 60°C). R403.5.6.1.2 Shut down. A separate switch or a clearly marked circuit breaker shall be provided to permit the power supplied to electric service systems to be turned off. A separate valve shall be provided to permit the energy supplied to the main burner(s) of combustion types of service water-heating systems to be turned off. R403.5.6.2 Water-heating equipment. Water-heating equipment installed in residential units shall meet the minimum efficiencies of Table C404.2 in Chapter 4 of the Florida Building Code, Energy Conservation, Commercial Provisions, for the type of equipment installed. Equipment used to provide heating functions as part of a combination system shall satisfy all stated requirements for the appropriate water-heating category. Solar water heaters shall meet the criteria of Section R403.5.6.2.1. R403.5.6.2.1 Solar water-heating systems. Solar systems for domestic hot water production are rated by the annual solar energy factor of the system. The solar energy factor of a system shall be determined from the Florida Solar Energy Center Directory of Certified Solar Systems. Solar collectors shall be tested in accordance with ISO Standard 9806, Test Methods for Solar Collectors, and SRCC Standard TM-1, Solar Domestic Hot Water System and Component Test Protocol. Collectors in installed solar water-heating systems should meet the following criteria: 1. Be installed with a tilt angle between 10 degrees and 40 degrees of the horizontal; and 2. Be installed at an orientation within 45 degrees of true south. R403.6 Mechanical ventilation (Mandatory). The building shall be provided with ventilation that meets the requirements of the Florida Building Code, Residential, or Florida Building Code, Mechanical, as applicable, or with other approved means of ventilation including: Natural, Infiltration or Mechanical means. Outdoor air intakes and exhausts shall have automatic or gravity dampers that close when the ventilation system is not operating. #### Florida Building Code, Energy Conservation, Mandatory Requirements (2023 Continued) R403.6.1 Whole-house mechanical ventilation system fan efficacy. When installed to function as a whole-house mechanical ventilation system, fans shall meet the efficacy requirements of Table R403.6.1. **Exception:** Where an air handler that is integral to tested and listed HVAC equipment is used to provide whole-house mechanical ventilation, the air handler shall be powered by an electronically commutated motor. ## TABLE R403.6.1 WHOLE-HOUSE MECHANICAL VENTILATION SYSTEM FAN EFFICACY | FAN LOCATION | AIRFLOW RATE MINIMUM
(CFM) | MINIMUM EFFICACY [®]
(CFM/WATT) | AIRFLOW RATE MAXIMUM
(CFM) | |------------------------|-------------------------------|---|-------------------------------| | HRV or ERV | Any | 1.2 cfm/watt | Any | | Range hoods | Any | 2.8 cfm/watt | Any | | In-line fan | Any | 3.8 cfm/watt | Any | | Bathroom, utility room | 10 | 2.8 cfm/watt | <90 | | Bathroom, utility room | 90 | 3.5 cfm/watt | Any | For SI: 1 cfm = 28.3 L/min. - a. When tested in accordance with HVI Standard 916 - R403.6.2 Ventilation Air. Residential buildings designed to be operated at a positive indoor pressure or for mechanical ventilation shall meet the following criteria: - 1. The design air change per hour minimums for residential buildings in ASHRAE 62.2, Ventilation for Acceptable Indoor Air Quality, shall be the maximum rates allowed for residential applications. - 2. No ventilation or air-conditioning system make-up air shall be provided to conditioned space from attics, crawlspaces, attached enclosed garages or outdoor spaces adjacent to swimming pools or spas. - 3. If ventilation air is drawn from enclosed space(s), then the walls of the space(s) from which air is drawn shall be insulated to a minimum of R-11 and the ceiling shall be insulated to a minimum of R-19, space permitting, or R-10 otherwise. #### R403.7 Heating and cooling equipment. R403.7.1 Equipment sizing (Mandatory). Heating and cooling equipment shall be sized in accordance with ACCA Manual S based on the equipment loads calculated in accordance with ACCA Manual J or other approved heating and cooling calculation methodologies, based on building loads for the directional orientation of the building. The manufacturer and model number of the outdoor and indoor units (if split system) shall be submitted along with the sensible and total cooling capacities at the design conditions described in Section R302.1. This Code does not allow designer safety factors, provisions for future expansion or other factors that affect equipment sizing. System sizing calculations shall not include loads created by local intermittent mechanical ventilation such as standard kitchen and bathroom exhaust systems. New or replacement heating and cooling equipment shall have an efficiency rating equal to or greater than the minimum required by federal law for the geographic location where the equipment is installed. #### Florida
Building Code, Energy Conservation, Mandatory Requirements (2023 Continued) | | R403.7.1.1 Cooling equipment capacity. Cooling only equipment shall be selected so that its total capacity is not less than the calculated total load but not more than 1.15 times greater than the total load calculated according to the procedure selected in Section R403.7, or the closest available size provided by the manufacturer's product lines. The corresponding latent capacity of the equipment shall not be less than the calculated latent load. The published value for AHRI total capacity is a nominal, rating-test value and shall not be used for equipment sizing. Manufacturer's expanded performance data shall be used to select cooling-only equipment. This selection shall be based on the outdoor design dry-bulb temperature for the load calculation (or entering water temperature for water-source equipment), the blower CFM provided by the expanded performance data, the design value for entering wet-bulb temperature and the design value for entering dry-bulb temperature. Design values for entering wet-bulb and dry-bulb temperatures shall be for the indoor dry bulb and relative humidity used for the load | |-------|---| | | calculation and shall be adjusted for return side gains if the return duct(s) is installed in an unconditioned space. Exceptions: | | | Attached single- and multiple-family residential equipment sizing may be selected so that its cooling capacity is less than the calculated total sensible load but not less than 80 percent of that load. | | | When signed and sealed by a Florida-registered engineer, in attached single- and multiple-family units,
the capacity of equipment may be sized in accordance with good design practice. | | R403. | 7.1.2 Heating equipment capacity. | | | R403.7.1.2.1 Heat pumps. Heat pump sizing shall be based on the cooling requirements as calculated according to Section R403.7.1.1, and the heat pump total cooling capacity shall not be more than 1.15 times greater than the design cooling load even if the design heating load is 1.15 times greater than the design cooling load. | | | R403.7.1.2.2 Electric resistance furnaces. Electric resistance furnaces shall be sized within 4 kW of the design requirements calculated according to the procedure selected in Section R403.7.1. | | | R403.7.1.2.3 Fossil fuel heating equipment. The capacity of fossil fuel heating equipment with natural draft atmospheric burners shall not be less than the design load calculated in accordance with Section R403.7.1. | | | R403.7.1.3 Extra capacity required for special occasions. Residences requiring excess cooling or heating equipment capacity on an intermittent basis, such as anticipated additional loads caused by major entertainment events, shall have equipment sized or controlled to prevent continuous space cooling or heating within that space by one or more of the following options: 1. A separate cooling or heating system is utilized to provide cooling or heating to the major entertainment areas. 2. A variable capacity system sized for optimum performance during base load periods is utilized. | | | R403.8 Systems serving multiple dwelling units (Mandatory). Systems serving multiple dwelling units shall comply with Sections C403 and C404 of the Florida Building Code, Energy Conservation—Commercial Provisions in lieu of Section R403. | | | R403.9 Snow melt and ice system controls (Mandatory). Snow- and ice-melting systems, supplied through energy service to the building, shall include automatic controls capable of shutting off the system when the pavement temperature is above 50°F (10°C), and no precipitation is falling and an automatic or manual control that will allow shutoff when the outdoor temperature is above 40°F (4.8°C). | | | 403.10 Pools and permanent spa energy consumption (Mandatory). The energy consumption of pools and permanent spas shall be in accordance with Sections R403.10.1 through R403.10.5. | | | R403.10.1 Heaters. The electric power to heaters shall be controlled by a readily accessible on-off switch that is an integral part of the heater mounted on the exterior of the heater, or external to and within 3 feet (914 mm) of the heater. Operation of such switch shall not change the setting of the heater thermostat. Such switches shall be in addition to a circuit breaker for the power to the heater. Gas-fired heaters shall not be equipped with continuously burning ignition pilots. | | | R403.10.2 Time switches. Time switches or other control methods that can automatically turn off and on according to a preset schedule shall be installed for heaters and pump motors. Heaters and pump motors that have built-in | time switches shall be in compliance with this section. - Where public health standards require 24-hour pump operation. Pumps that operate solar- and waste-heat-recovery pool heating systems - 3. Where pumps are powered exclusively from on-site renewable generation. #### R403.10.3 Covers. Outdoor heated swimming pools and outdoor permanent spas shall be equipped with a vapor-retardant cover on or at the water surface or a liquid cover or other means proven to reduce heat loss. Exception: Where more than 70 percent of the energy for heating, computed over an operation season, is from site-recovered energy, such as from a heat pump or solar energy source, covers or other vapor-retardant means shall not be required R403.10.4 Gas- and oil-fired pool and spa heaters. All gas- and oil-fired pool and spa heaters shall have a minimum thermal efficiency of 82 percent for heaters manufactured on or after April 16, 2013, when tested in accordance with ANSI Z 21.56. Pool heaters fired by natural or LP gas shall not have continuously burning pilot lights. R403.10.5 Heat pump pool heaters. Heat pump pool heaters shall have a minimum COP of 4.0 when tested in accordance with AHRI 1160, Table 2, Standard Rating Conditions-Low Air Temperature. A test report from an independent laboratory is required to verify procedure compliance. Geothermal swimming pool heat pumps are not required to meet this standard. R403.11 Portable spas (Mandatory). The energy consumption of electric-powered portable spas shall be controlled by the requirements of APSP-14 R403.13 Dehumidifiers (Mandatory). If installed, a dehumidifier shall conform to the following requirements: 1. The minimum rated efficiency of the dehumidifier shall be greater than 1.7 liters/ kWh if the total dehumidifier capacity for the house is less than 75 pints/day and greater than 2.38 liters/kWh if the total dehumidifier capacity for the house is greater than or equal to 75 pints/day. 2. The dehumidifier shall be controlled by a sensor that is installed in a location where it is exposed to mixed house air. 3. Any dehumidifier unit located in unconditioned space that treats air from conditioned space shall be insulated to a minimum of R-2. 4. Condensate disposal shall be in accordance with Section M1411.3.1 of the Florida Building Code, Residential. R403.13.1 Ducted dehumidifiers. Ducted dehumidifiers shall, in addition to conforming to the requirements of Section R403.13, conform to the following requirements: 1. If a ducted dehumidifier is configured with return and supply ducts both connected into the supply side of the cooling system, a backdraft damper shall be installed in the supply air duct between the dehumidifier inlet and outlet duct. 2. If a ducted dehumidifier is configured with only its supply duct connected into the supply side of the central heating and cooling system, a backdraft damper shall be installed in the dehumidifier supply duct between the dehumidifier and central supply duct. 3. A ducted dehumidifier shall not be ducted to or from a central ducted cooling system on the return duct side upstream from the central cooling evaporator coil. 4. Ductwork associated with a dehumidifier located in unconditioned space shall be insulated to a minimum of R-6. **SECTION R404** ELECTRICAL POWER AND LIGHTING SYSTEMS R404.1 Lighting equipment (Mandatory). All permanently installed luminaires, excluding those in kitchen appliances, shall have an efficacy of at least 45 lumens-per-watt or shall utilize lamps with an efficacy of not less than 65 lumens-per-watt. Florida Building Code, Energy Conservation, Mandatory Requirements (2023 Continued) R404.1.1 Lighting equipment (Mandatory). Fuel gas lighting systems shall not have continuously burning pilot lights. #### Florida Building Code, Energy Conservation, Mandatory Requirements (2023 Continued) #### SECTION R405 SIMULATED PERFORMANCE ALTERNATIVE (PERFORMANCE) | R405.2 Mandatory requirements. Compliance with this section requires that the mandatory provisions identified in Section R401.2 be met. All supply and return ducts not completely inside the building
thermal envelope shall be insulated to a minimum of R-6, except site-wrapped supply ducts not completely inside the building thermal envelope shall be insulated to a minimum of R-8. | |---| | R405.2.1 Ceiling insulation. Ceilings shall have an insulation level of at least R-19, space permitting. For the purposes of this code, types of ceiling construction that are considered to have inadequate space to install R-19 include single assembly ceilings of the exposed deck and beam type and concrete deck roofs. Such ceiling assemblies shall be insulated to at least a level of R-10. | | R405.2.2 Building air leakage testing. Building or dwelling air leakage testing shall be in accordance with Sections R402.4 through R402.4.1.2. If an air leakage rate below seven air changes per hour at a pressure of 0.2 inch w.g. (50 pascals) is specified for the proposed design, testing shall verify the air leakage rate does not exceed the air leakage rate of the proposed design instead of seven air changes per hour. | | R405.2.3 Duct air leakage testing. In cases where duct air leakage lower than the default Qn to outside of 0.080 (where Qn = duct leakage to the outside in cfm per 100 square feet of conditioned floor area tested at 25 Pascals) is specified for the proposed design, testing in accordance with Section R403.3.2 shall verify a duct air leakage rate not exceeding the leakage rate of the proposed design. Otherwise, in accordance with Section R403.3.3, duct testing is not mandatory for buildings complying by Section R405. | | SECTION R406 | | ENERGY RATING INDEX | | COMPLIANCE ALTERNATIVE | | R406.2 Mandatory requirements. Compliance with this section requires that the provisions identified in Sections R401 through R404 labeled as "mandatory" and Section R403.5.3 of the 2015 International Energy Conservation Code be met. For buildings that do not utilize on-site renewable power production for compliance with this section, the building thermal envelope shall be greater than or equal to levels of efficiency and Solar Heat Gain Coefficient in Table 402.1.1 or 402.1.3 of the 2009 International Energy Conservation Code. For buildings that utilize on-site renewable power production for compliance with this section, the building thermal envelope shall be greater than or equal to levels of efficiency and Solar Heat Gain Coefficient in Table R402.1.2 or Table R402.1.4 of the 2015 International Energy Conservation Code. | | Exception: Supply and return ducts not completely inside the building thermal envelope shall be insulated to a minimum of R-6. | | R406.2.1 Site-wrapped supply ducts. Site-wrapped supply ducts not completely inside the building thermal envelope shall be insulated to a minimum of R-8. | | | #### 2023 - AIR BARRIER AND INSULATION INSPECTION COMPONENT CRITERIA-TABLE 402.4.1.18 Project Name: Cypress - Parcel 5 - XXX State Road 247 Street: XXX State Road 247 FL, Gainesville City, State, Zip: Owner: Design Location: Lake City, FL, 32024 Builder Name: Permit Office: Lake City Permit Number: Jurisdiction: 221200 County: Columbia(Florida Climate Zone 2) | Design Location: | FL, Gainesville Coun | y. Columbia(Florida Cilmate Zorie 2) | | |--|--|---|---| | COMPONENT | AIR BARRIER CRITERIA | INSULATION INSTALLATION CRITERIA | Ë | | General requirements | A continuous air barrier shall be installed in the building envelope. The exterior thermal envelope contains a continuous air barrier. Breaks or joints in the air barrier shall be sealed. | e. Air-permeable insulation shall not be used as a sealing material. | Ö | | Ceiling/attic | The air barrier in any dropped ceiling/soffit shall be aligned with the insulation and any gaps in the air barrier shall be sealed. Access openings, drop down stairs or knee wall doors to unconditioned attic spaces shall be sealed. | The insulation in any dropped ceiling/soffit shall be aligned with the air barrier. | | | Walls | The junction of the foundation and sill plate shall be sealed. The junction of the top plate and the top of exterior walls shall be sealed. Knee walls shall be sealed. | Cavities within corners and headers of frame walls shall be insulated by completely filling the cavity with a material having a thermal resistance of R-3 per inch minimum Exterior thermal envelope insulation for framed walls shall be installed in substantial contact and continuous alignment with the air barrier. | | | Windows, skylights and doors | The space between window/door jambs and framing, and skylights and framing shall be sealed. | | | | Rim joists | Rim joists shall include the air barrier. | Rim joists shall be insulated. | | | Floors
(including
above-garage
and cantilevered
floors) | The air barrier shall be installed at any exposed edge of insulation. | Floor framing cavity insulation shall be installed to maintain permanent contact with the underside of subfloor decking, or floor framing cavity insulation shall be permitted to be in contact with the top side of sheathing, or continuous insulation installed on the underside of floor framing and extends from the bottom to the top of all perimeter floor framing members. | | | Crawl space walls | Exposed earth in unvented crawl spaces shall be covered with a Class I vapor retarder with overlapping joints taped. | Where provided instead of floor insulation, insulation shall be permanently attached to the crawlspace walls. | | | Shafts, penetrations | Duct shafts, utility penetrations, and flue shafts opening to exterior or unconditioned space shall be sealed. | | | | Narrow cavities | | Batts in narrow cavities shall be cut to fit, or narrow cavities shall be filled by insulation that on installation readily conforms to the available cavity spaces. | | | Garage separation | Air sealing shall be provided between the garage and conditioned spaces. | | | | Recessed lighting | Recessed light fixtures installed in the building thermal envelope shall be sealed to the finished surface. | Recessed light fixtures installed in the building thermal envelope shall be air tight and IC rated. | | | Plumbing and wiring | | Batt insulation shall be cut neatly to fit around wiring and plumbing in exterior walls, or insulation that on installation readily conforms to available space shall extend behind piping and wiring. | | | Shower/tub
on exterior wall | The air barrier installed at exterior walls adjacent to showers and tubs shall separate them from the showers and tubs. | Exterior walls adjacent to showers and tubs shall be insulated. | | | Electrical,
communication, and
other equipment
boxes, housings,
and enclosures | Boxes, housings, and enclosures that penetrate the air barrier shall be caulked, taped, gasketed, or otherwise sealed to the air barrier element being penetrated. All concealed openings into the box, housing, or enclosure shall be sealed. The continuity of the air barrier shall be maintained around boxes, housings, and enclosures that penetrate the air barrier. Alternatively, air-sealed boxes shall be installed in accordance with R402.4.6 | Boxes, housings, and enclosures shall be buried in or surrounded by tightly fitted insulation. | | | HVAC register boots | HVAC supply and return register boots that penetrate building thermal envelope shall be sealed to the sub-floor, wall covering or ceiling penetrated by the boot. | | | | Concealed sprinklers | When required to be sealed, concealed fire sprinklers shall only be sealed in a manner that is recommended by the manufacture Caulking or other adhesive sealants shall not be used to fill void voids between fire sprinkler cover plates and walls or ceilings. | r.
s | | | | Total Deliffort in Copinition Coron plates and Walls of Collings. | | - | # Envelope Leakage Test Report (Blower Door Test) Residential Prescriptive, Performance or ERI Method Compliance 2023 Florida Building Code, Energy Conservation, 8th Edition | Jurisdiction: 2212 | 00 | Permit #: | |
--|--|--|--| | Job Information | | | 2010年10日1日 | | Builder: | Community: | Lot: | NA | | Address: XXX State Road | 247 | | | | City: Lake City | State | : FL Zip: 3 | 2024 | | Air Leakage Test Res | ults Passing results must meet | either the Performance, Prescriptive | , or ERI Method | | | | | rate of not exceeding 7 air | | the selected ACH(50) value, as s | hown on Form R405-2023 (Performance |) or R406-2023 (ERI), section labeled as | leakage rate of not exceeding infiltration, sub-section ACH50. | | When ACH(50) is leading per hour in Climate Zones 1 and 2 than three air changes per hour seand Section M1507.3 if the Floridare ported at a pressure of 0.2 inches Florida Statues, or individuals licer results of the test shall be signed after creation of all penetrations of During testing: 1. Exterior windows and doors, fir control measures. 2. Dampers including exhaust, into measures. 3. Interior doors, if installed at the 4. Exterior doors for continuous with the state of | ess than 3, Mechanical Ventilation in building department. or dwelling unit shall be tested and verification in building department. or dwelling unit shall be tested and verification in comparison of the provided with whole-house mechanism abuilding Code, Residential. Testing shall be concided as set forth in Section 489.105(3)(f) by the party conducting the test and provided the building thermal envelope. The building thermal envelope. The place and stove doors shall be closed, the comparison of the test, shall be designed at the time of the test, shall be fustalled at the time of the test, shall be fustalled at the roof deck, interior access of the stand the volume of the attic shall be designed as the stand the volume of the attic shall be designed. | Retrieved from Code softwar Stallation Field measured as having an air leakage rate not except at Expense 3 through 8. Dwelling units with anical ventilation in accordance with Sect all be conducted in accordance with ANSI lucted by either individuals as defined in (g), or (i) or an approved third party. A vided to the code official. Testing shall be count not sealed, beyond the intended weath apers shall be closed, but not sealed beyond the intended weath apers shall be closed and sealed. It is turned off. | om architectural plans re calculated red and calculated redding seven air changes h an air leakage rate less ion R403.6.1 of this code //RESNET/ICC 380 and Section 553.993(5) or (7), written report of the performed at any time therstripping or other infiltration and intended infiltration control red space volume and the | | Testing Company | ress: XXX State Road 247 Lake City State: FL Zip: 32024 Leakage Test Results Passing results must meet either the Performance, Prescriptive, or ERI Method PRESCRIPTIVE METHOD-The building or dwelling unit shall be tested and verified as having an air leakage rate of not exceeding 7 air changes per hour at a pressure of 0.2 inch w.g. (50 Pascals) in Climate Zones 1 and 2. PERFORMANCE or ERI METHOD-The building or dwelling unit shall be tested and verified as having an air leakage rate of not exceeding 7 air changes per hour as a pressure of 0.2 inch w.g. (50 Pascals) in Climate Zones 1 and 2. PERFORMANCE or ERI METHOD-The building or dwelling unit shall be tested and verified as having an air leakage rate of not exceeding selected ACH(50) value, as shown on Form R405-2023 (ERI) as ection labeled as infiltration, sub-section ACH50. ACH(50) specified on Form R405-2023-Energy Calc (Performance) or R406-2023 (ERI); 6.000 PASS ACH(50) Building Volume ACH(50) Building Volume ACH(50) is less than 3, Mechanical Ventilation installation Field measured and calculated PASS When ACH(50) is less than 3, Mechanical Ventilation installation Field measured and calculated Calculated Field measured and calculated Calculated Calculated Calculated Calculated Field measured and calculated Calculated Field measured and calculated Calculated as having an air leakage rate not exceeding seven air changes hour in Climate Zones 1 and 2, and three air changes per hour in Climate Zones 1 and 2, and three air changes per hour in Climate Zones 1 and 2, and three air changes per hour in Climate Zones 1 and 2, and three air changes per hour in Climate Zones 1 and 2, and three air changes per hour in Climate Zones 1 and 2, and three air changes per hour shall be provided with whole-house methanical ventilation in accordance with Section R403 of this code Section M1507.3 if the Florida Building Code, Residentinal. Testing shall be conducted by elime individuals as defined in Section 53.993(5) or (7), rids States.or individu | | | | Company Name: I hereby verify that the above Air requirements according to the co | Leakage results are in accordance with ompliance method selected above. | Phone:the 2023 8th Edition Florida Building Coo | le Energy Conservation | | Signature of Tester: | | Date of Test: | | | Printed Name of Tester: | | | | | License/Certification #: | | Issuing Authority: | - | ## **Duct Leakage Test Report** # Residential
Prescriptive, Performance or ERI Method Compliance 2023 Florida Building Code, Energy Conservation, 8th Edition | Jurisdiction: | 221200 | | Permit #: | | |---|---|---|---|---| | Job Information | | | | | | Builder: | | Community: | | Lot: NA | | Address: XXX State | Road 247 | 3 | | | | City: Lake City | | State: | FL | Zip: 32024 | | Duct Leakage Te | st Results | | | | | System 1 | cfm25 | ○ Prescriptiv | e Method cfm25 (To | otal) | | System 2 | cfm25 | To qualify as ' | 'substantially leak free" | Qn Total must be less than or alled. If air handler unit is not | | System 3 | cfm25 | installed, Qn 7 | Total must be less than | or equal to 0.03. This testing cordance with Section R403.3.3. | | Sum of others | cfm25 | | | testing? YES (=.04) NO (=.03) | | Total of all | cfm25 | Performan | ce/ERI Method cfm | n25 (Out or Total) | | Total of all systems ÷ 1845 Total Condit Square Foo | | proposed duc | t leakage Qn specified o | t not be greater than the
on Form R405-2023 or R406-2023.
Qn specified on Form R405-2023
(EnergyCalc) or R406-2023 | | PASS | FAIL | Proposed L | eak Free | 0.030 | | Duct tightness shall be 553.993(5) or (7), Florid | verified by testing in acc
da Statutes, or individua | cordance with ANSI/F
als licensed as set for | RESNET/ICC380 by either th in Section 489.105(3)(f), | individuals as defined in Section
, (g) or (i), Florida Statutes. | | Company Name: | | | Phone: | | | | | | ccordance with the Florida
Method or Performance M | Building Code requirements with the ethod. | | Signature of Tester | : | | Date of Test | 1 | | Printed Name of Te | ester: | | | | | License/Certificatio | n #: | | Issuing Auth | ority: | #### **Manual S Compliance Report** Entire House E-Calcs Plus, Inc Job: Cypress - Parcel 5 - XXX... Date: Jul 24, 2024 E-Calcs Plus, Inc Serving all of Florida Phone: 833.322.5271 Email: eric@ecalcsplus.com Web: www.ecalcsplus.com License: HERS Rater ID# 0757810 #### **Project Information** For: Cypress - Parcel 5 - XXX State Road 247, Happy Home Construction XXX State Road 247, Lake City, FL 32024 #### **Cooling Equipment** #### **Design Conditions** | Outdoor design DB: | 92.8°F | Sensible gain: | 27295 | Btuh | Entering coil DB: | |--------------------|--------|--------------------|-------|------|-------------------| | Outdoor design WB: | | Latent gain: | 4348 | Btuh | Entering coil WB: | | Indoor design DB: | 75.0°F | Total gain: | 31643 | Btuh | | | Indoor RH: | 50% | Estimated airflow: | 1060 | cfm | | #### Manufacturer's Performance Data at Actual Design Conditions Equipment type: Split ASHP Manufacturer: Carrier Model: GH5SAN43600AA0+FJ4DNXB36L Actual airflow: Sensible capacity: 1060 27756 cfm Btuh 102% of load Latent capacity: 5666 Btuh 130% of load 106% of load SHR: 83% 33422 Btuh Total capacity: #### **Heating Equipment** #### **Design Conditions** Outdoor design DB: Indoor design DB: 31.8°F 70.0°F Heat loss: 31353 Btuh Entering coil DB: 70.0°F 77.4°F 63.8°F #### Manufacturer's Performance Data at Actual Design Conditions Equipment type: Split ASHP Manufacturer: Carrier cfm Model: GH5SAN43600AA0+FJ4DNXB36L Actual airflow: Output capacity: 0 28357 Btuh 90% of load 2996 Btuh Supplemental heat required: Capacity balance: Economic balance: -47 °F 31 °F Backup equipment type: Manufacturer: Carrier Elec strip Model: AFUE 100 Actual airflow: 0 cfm Output capacity: 5.0 kW 54% of load Temp. rise: 16 °F Meets all requirements of ACCA Manual S. ## Project Summary Entire House E-Calcs Plus, Inc Job: Cypress - Parcel 5 - XXX... Date: Jul 24, 2024 By: E-Calcs Plus, Inc Serving all of Florida Phone: 833.322.5271 Email: eric@ecalcsplus.com Web: www.ecalcsplus.com License: HERS Rater ID# 0757810 #### **Project Information** For: Cypress - Parcel 5 - XXX State Road 247, Happy Home Construction XXX State Road 247, Lake City, FL 32024 Notes: #### **Design Information** Weather: Jacksonville, FL, US #### Winter Design Conditions #### **Summer Design Conditions** | Outside db
Inside db | | řF
řF | Outside db
Inside db | 93
75 | °F
°F | |-------------------------|------------------|----------|---------------------------------------|----------|------------| | Design TD | | 'F | Design TD
Daily range | 18
M | °F | | Ventilation Method | ASHRAE 62.2-2010 | | Relative humidity Moisture difference | 50
52 | %
gr/lb | #### **Heating Summary** #### Sensible Cooling Equipment Load Sizing | Structure
Ducts (R-6.0)
Central vent (0 cfm) | 27209
4145
0 | Btuh
Btuh
Btuh | Structure
Ducts (R-6.0)
Central vent (0 cfm) | 19339
7956
0 | Btuh
Btuh
Btuh | |--|--------------------|----------------------|--|--------------------|----------------------| | Humidification | 0 | Btuh
Btuh | Blower | 0 | Btuh | | Piping
Equipment load | 31353 | | Use manufacturer's data | 1.00 | 1 | | Infiltrati | ion | | Rate/swing multiplier Equipment sensible load | 27295 | Btuh | | Method | Simplified | Latent Cooling Eq | uipment Load Sizing | |----------------------|------------|-------------------|---------------------| | Construction quality | Semi-tight | Structure | 2233 Btuh | | Fireplaces | 0 | Ducts | 2115 Btuh | | Поршооз | | | Ducts
Central vent (0 cfm) | 2115
0 | Btuh
Btuh | |--|---------------------------------|--------------------------|---|--------------|--------------| | Area (ft²) | Heating
1816
17291 | Cooling
1816
17291 | Equipment latent load | 4348 | Btuh | | Volume (fl³)
Air changes/hour
Equiv. AVF (cfm) | 0.26
75 | 0.14
40 | Equipment Total Load (Sen+Lat)
Req. total capacity at 0.75 SHR | 31643
3.0 | Btuh
ton | #### **Heating Equipment Summary** #### **Cooling Equipment Summary** | Make
Trade
Model
AHRI ref | Carrier
15 SEER2 HP
GH5SAN43600AA0
210998688 | | | Make
Trade
Cond
Coil
AHRI ref | Carrier
15 SEER2 HP
GH5SAN43600AA0
FJ4DNXB36L
210998688 | | | |--|---|---------------------------------------|--|--|---|---|-----------------------------| | Efficiency Heating inpute Heating out Temperatur Actual air flu Air flow fact Static press Space therr Capacity ba | put
e rise
ow
or
ure | 7.5 H
34000
0
0
0
0.50 | HSPF2 Btuh @ 47°F °F cfm cfm/Btuh in H2O | Efficiency Sensible co Latent cooli Total coolin Actual air fl Air flow fac Static press | 12.0 EER2,14
poling
ing
ig
ow
tor | 25650
8550
34200
1060
0.039 | Btuh
Btuh
Btuh
cfm | Backup: Carrier AFUE 100 Input = 5 kW, Output = 17061 Btuh, 100 AFUE Calculations approved by ACCA to meet all requirements of Manual J 8th Ed. #### **Load Short Form Entire House** E-Calcs Plus, Inc Job: Cypress - Parcel 5 - XXX... Date: Jul 24, 2024 E-Calcs Plus, Inc Serving all of Florida Phone: 833.322.5271 Email: eric@ecalcsplus.com Web: www.ecalcsplus.com License; HERS Rater ID# 0757810 #### **Project Information** For: Cypress - Parcel 5 - XXX State Road 247, Happy Home Construction XXX State Road 247, Lake City, FL 32024 | Design Information | | | | | | | |--------------------|-----------------------------|-----|-----|----------------------|--------------|------------| | | | Htg | Clg | | Infiltration | | | | Outside db (°F) | 32 | 93 | Method | | Simplified | | | Inside db (°F) | 70 | 75 | Construction quality | | Semi-tight | | | Design TD (°F) | 38 | 18 | Fireplaces | | 0 | | | Daily range | - | M | | | | | | Inside humidity (%) | 50 | 50 | | | | | | Moisture difference (gr/lb) | 34 | 52 | | | | #### **HEATING EQUIPMENT** #### **COOLING EQUIPMENT** | Make | Carrier | | | Make | Carrier | | | |--------------|----------------|-----------|-------------|--------------|----------------|---------|----------| | Trade | 15 SEER2 HP | | | Trade | 15 SEER2 HP | | | | Model | GH5SAN43600AA0 | | | Cond | GH5SAN43600AA0 | | | | AHRI ref | 210998688 | | | Coil | FJ4DNXB36L | | | | | | | | AHRI ref | 210998688 | | | | Efficiency | | 7.5 HSPF2 | | Efficiency | 12.0 EER2,14 | .3 SEER | 2 | | Heating inp | out | | | Sensible co | ooling | 25650 | Btuh | | Heating ou | tput | 34000 | Btuh @ 47°F | Latent cool | ing | 8550 | Btuh | | Temperatu | re rise | 0 | °F | Total coolir | ng | 34200 | Btuh | | Actual air f | low | 0 | cfm | Actual air f | low | 1060 | cfm | | Air flow fac | tor | 0 | cfm/Btuh | Air flow fac | tor | 0.039 | cfm/Btuh | | Static pres | sure | 0.50 | in H2O | Static press | sure | 0.50 | in H2O | | Space ther | mostat | | | Load sensi | ble heat ratio | 0.86 | | Capacity balance point = 31 °F Backup: Carrier AFUE 100 Input = 5 kW Output = 17061 Btub 100 AFUE | ROOM NAME | Area
(ft²) | Htg load
(Btuh) | Clg load
(Btuh) | Htg AVF (cfm) | Clg AVF
(cfm) | |---------------|---------------|--------------------|--------------------|---------------|------------------| | MWIC | 88 | 2203 | 730 | 0 | 28 | | Laundry | 43 | 705 | 938 | 0 | 36 | | MBR | 225 | 3668 | 4473 | 0 | 174 | | MT | 13 | 914 | 336 | 0 | 13 | | MBA | 137 | 2271 | 1230 | 0 | 48 | | BR3 | 146 | 3760 | 2899 | 0 | 113 | | BA2 | 56 | 926 |
408 | 0 | 16 | | BR2 | 146 | 3182 | 2347 | 0 | 91 | | Kit Liv Din | 866 | 11132 | 11907 | 0 | 462 | | Butler Pantry | 96 | 2593 | 2027 | 0 | 79 | Calculations approved by ACCA to meet all requirements of Manual J 8th Ed. 2024-Jul-26 12:52:39 | Entire House p Other equip loads Equip. @ 1.00 RSM Latent cooling | 1816 | 31353
0 | 27295
0
27295
4348 | 0 | 1060 | |---|------|------------|-----------------------------|---|------| | TOTALS | 1816 | 31353 | 31643 | 0 | 1060 | Calculations approved by ACCA to meet all requirements of Manual J 8th Ed. ## wrightsoft Building Analysis Entire House E-Calcs Plus, Inc Job: Cypress - Parcel 5 - XXX... Date: Jul 24, 2024 By: E-Calcs Plus, Inc Serving all of Florida Phone: 833.322.5271 Email: eric@ecalcsplus.com Web: www.ecalcsplus.com License: HERS Rater ID# 0757810 #### **Project Information** For: Cypress - Parcel 5 - XXX State Road 247, Happy Home Construction XXX State Road 247, Lake City, FL 32024 | Design Conditions | | | | | | | | | | | |---|-----------------|-----------------------------|--|-------------------------------|------------------------|--|--|--|--|--| | Location: Jacksonville, FL, US Elevation: 30 ft Latitude: 31°N Outdoor: | Heating | Cooling | Indoor: Indoor temperature (°F) Design TD (°F) Relative humidity (%) Moisture difference (gr/lb) | 70
38
50
33.8 | 75
18
50
52.3 | | | | | | | Drybulb (°F) Daily range (°F) Wet bulb (°F) Wind speed (mph) | 32
-
15.0 | 93
18 (M)
77
7.5 | Infiltration: Method Construction quality Fireplaces | Simplified
Semi-tight
0 | | | | | | | #### Heating | Component | Btuh/ft² | Btuh | % of load | |----------------|----------|-------|-----------| | Walls | 3.6 | 7177 | 22.9 | | Glazing | 13.0 | 2468 | 7.9 | | Doors | 22.9 | 1471 | 4.7 | | Ceilings | 1.2 | 2220 | 7.1 | | Floors | 5.9 | 10728 | 34.2 | | Infiltration | 1.7 | 3145 | 10.0 | | Ducts | | 4145 | 13.2 | | Piping | | 0 | 0 | | Humidification | | 0 | 0 | | Ventilation | | 0 | 0 | | Adjustments | | 0 | | | Total | | 31353 | 100.0 | #### Cooling | Component | Btuh/ft² | Btuh | % of load | |----------------|----------|-------|-----------| | Walls | 2.1 | 4253 | 15.6 | | Glazing | 27.0 | 5127 | 18.8 | | Doors | 16.1 | 1032 | 3.8 | | Ceilings | 1.7 | 3118 | 11.4 | | Floors | 0 | 0 | 0 | | Infiltration | 0.4 | 789 | 2.9 | | Ducts | | 7956 | 29.1 | | Ventilation | | 0 | 0 | | Internal gains | | 5020 | 18.4 | | Blower | | 0 | 0 | | Adjustments | | 0 | | | Total | | 27295 | 100.0 | Internal Gains Gazina Dats Doors Cailings Infiltration Latent Cooling Load = 4348 Btuh Overall U-value = 0.107 Btuh/ft²-°F, Window / Floor Area = 10.5 % Data entries checked. #### Job #: Cypress - Parcel 5 - XXX State Roa.. Performed by E-Calcs Plus, Inc for: Cypress - Parcel 5 - XXX State Road 247 XXX State Road 247 Lake City, FL 32024 #### E-Calcs Plus, Inc Serving all of Florida Phone: 833.322.5271 License: HERS Rater ID# 0757810 www.ecalcsplus.com eric@ecalcsplus.com Scale: 1:110 Page 1 Right-Suite® Universal 2024 24.0.01 RSU63879 2024-Jul-26 12:52:48 ...XXX State Road 247 7.26.2024.rup #### **Duct System Summary Entire House** E-Calcs Plus, Inc Job: Cypress - Parcel 5 - XXX... Date: Jul 24, 2024 E-Calcs Plus, Inc Serving all of Florida Phone: 833.322.5271 Email: eric@ecalcsplus.com Web: www.ecalcsplus.com License: HERS Rater ID# 0757810 #### **Project Information** For: Cypress - Parcel 5 - XXX State Road 247, Happy Home Construction XXX State Road 247, Lake City, FL 32024 External static pressure Pressure losses Available static pressure Supply / return available pressure Lowest friction rate Actual air flow Total effective length (TEL) Heating 0.50 in H2O 0.16 in H2O 0.34 in H2O 0.194 / 0.146 in H2O 0.102 in/100ft 0 cfm 0.50 in H2O 0.16 in H2O 0.34 in H2O 0.194 / 0.146 in H2O 0.102 in/100ft 1060 cfm Cooling 333 ft #### **Supply Branch Detail Table** | Name | | Design
(Btuh) | Htg
(cfm) | Clg
(cfm) | Design
FR | Diam
(in) | H x W
(in) | Duct
Matl | Actual
Ln (ft) | Ftg.Eqv
Ln (ft) | Trunk | |---------------|---|------------------|--------------|--------------|--------------|--------------|---------------|--------------|-------------------|--------------------|-------| | BA2 | С | 408 | 0 | 16 | 0.107 | 4.0 | 0x0 | VIFx | 51.1 | 130.0 | st1 | | BR2 | C | 2347 | 0 | 91 | 0.102 | 7.0 | 0×0 | VIFx | 59.9 | 130.0 | st1 | | BR3 | С | 2899 | 0 | 113 | 0.111 | 7.0 | 0x 0 | VIFx | 49.1 | 125.0 | st1 | | Butler Pantry | C | 2027 | 0 | 79 | 0.120 | 6.0 | 0x 0 | VIFx | 36.6 | 125.0 | st3 | | Kit Liv Din | C | 3970 | 0 | 154 | 0.125 | 8.0 | 0x0 | VIFx | 35.4 | 120.0 | st3 | | Kit Liv Din-A | C | 3969 | 0 | 154 | 0.118 | 8.0 | 0x 0 | VIFx | 39.9 | 125.0 | st3 | | Kit Liv Din-B | C | 3969 | 0 | 154 | 0.117 | 8.0 | 0x0 | VIFx | 41.2 | 125.0 | st3 | | Laundry | C | 938 | 0 | 36 | 0.139 | 5.0 | 0x0 | VIFx | 15.0 | 125.0 | st2 | | MBA | С | 1230 | 0 | 48 | 0.137 | 5.0 | 0x 0 | VIFx | 16.0 | 125.0 | st2 | | MBR | C | 4473 | 0 | 174 | 0.145 | 8.0 | 0x 0 | VIFx | 14.1 | 120.0 | st2 | | MT | C | 336 | 0 | 13 | 0.128 | 4.0 | 0x 0 | VIFx | 26.5 | 125.0 | st2 | | MWIC | C | 730 | 0 | 28 | 0.144 | 4.0 | 0x 0 | VIFx | 14.7 | 120.0 | st2 | ## **Supply Trunk Detail Table** | Name | Trunk
Type | Htg
(cfm) | Clg
(cfm) | Design
FR | Veloc
(fpm) | Diam
(in) | H x W
(in) | Duct
Material | Trunk | |------|---------------|--------------|--------------|--------------|----------------|--------------|---------------|------------------|-------| | st1 | Peak AVF | 0 | 220 | 0.102 | 497 | 9.0 | 0 x 0 | VinlFlx | | | st3 | Peak AVF | 0 | 541 | 0.117 | 689 | 12.0 | 0 x 0 | VinIFlx | | | st2 | Peak AVF | 0 | 299 | 0.128 | 549 | 10.0 | 0 x 0 | VinIFlx | | ## Return Branch Detail Table | Name | Grille
Size (in) | Htg
(cfm) | Clg
(cfm) | TEL
(ft) | Design
FR | Veloc
(fpm) | Diam
(in) | H x V
(in) | ٧ | Stud/Joist
Opening (in) | Duct
Matl | Trunk | |------|---------------------|--------------|--------------|-------------|--------------|----------------|--------------|---------------|---|----------------------------|--------------|-------| | rb3 | 0x 0 | 0 | 113 | 143.1 | 0.102 | 421 | 7.0 | Оx | 0 | | VIFx | rt1 | | rb4 | 0x 0 | 0 | 91 | 137.3 | 0.106 | 341 | 7.0 | 0x | 0 | | VIFx | rt1 | | rb2 | 0x 0 | 0 | 263 | 77.2 | 0.189 | 595 | 9.0 | 0x | 0 | The state of the state of | VIFx | | | rb1 | 0x 0 | 0 | 593 | 71.8 | 0.203 | 555 | 14.0 | 0x | 0 | | VIFx | | ## Return Trunk Detail Table | Name | Trunk
Type | Htg
(cfm) | Clg
(cfm) | Design
FR | Veloc
(fpm) | Diam
(in) | H x W
(in) | Duct
Material | Trunk | |------|---------------|--------------|--------------|--------------|----------------|--------------|---------------|------------------|-------| | rt1 | Peak AVF | 0 | 204 | 0.102 | 461 | 9.0 | 0 x 0 | VinlFlx | | ## **Static Pressure and Friction Rate Entire House** E-Calcs Plus, Inc Job: Cypress - Parcel 5 - XXX... Date: Jul 24, 2024 E-Calcs Plus, Inc Serving all of Florida Phone: 833,322,5271 Email: eric@ecalcsplus.com Web: www.ecalcsplus.com License: HERS Rater ID# 0757810 #### **Project Information** For: Cypress - Parcel 5 - XXX State Road 247, Happy Home Construction XXX State Road 247, Lake City, FL 32024 | | Available Static Pressure | | |---------------------------|----------------------------|---------------------| | | Heating
(in H2O) | Cooling
(in H2O) | | External static pressure | 0.50 | 0.50 | | Pressure losses | | | | Coil | 0 | 0 | | Heat exchanger | 0 | 0 | | Supply diffusers | 0.03 | 0.03 | | Return grilles | 0.03 | 0.03 | | Filter | 0.10 | 0.10 | | Humidifier | 0 | 0 | | Balancing damper | 0 | 0 | | Other device | 0 | 0 | | Available static pressure | 0.34 | 0.34 | | | Total Ellective Leligili | | |-------------------------------|--------------------------|--------| | | Supply | Return | | | (ft) | (ft) | | Measured length of run-out | 14 | 11 | | Measured length of trunk | 46 | 42 | | Equivalent length of fittings | 130 | 90 | | Total length | 190 | 143 | | Total effective length | | 333 | | CONTRACTOR AND ADDRESS OF THE PARTY P | Friction | Rate | | |
--|-----------------------|------|-----------------------|----| | | Heating
(in/100ft) | | Cooling
(in/100ft) | | | Supply Ducts | 0.102 | OK | 0.102 | OK | | Return Ducts | 0.102 | OK | 0.102 | OK | ## **Fitting Equivalent Length Details** 11A=20, 4AD=60, 11G=5, 1A=35, 11G=5, 11G=5: TotalEL=130 Supply 11M=20, 6M=20, 11G=5, 5D=40, 11G=5: TotalEL=90 Return