
Job	Truss	Truss Type		Qty	Ply	GARY THOMPSON - OGBURN
3778272	EJ01	Jack-Closed		3	1	
Builders FirstSource, Lake	City El 32055 Kim Hollo	lwav				Job Reference (optional) 8 720 s Aug 20 2023 MiTek Industries Inc. Thu Dec. 7 10:11:04 2023. Page 1
Ballacio i liotocarco, Lanc	, Oity, 1 E 02000, 141111110110	···ay	ID:UKV	V_bDQCW/	P6TKMR	8.720 s Aug 20 2023 MiTek Industries, Inc. Thu Dec 7 10:11:04 2023 Page 1 tl07PQyBRoL-EEbYfA1CaDKgyxLEdL42rXKP?jTwk9661aePpNyBP5
			3-10-10	8-4-6	_	
			3-10-10	4-5-12	1	

LOADING (psf) TCLL 20.0	SPACING- 2-0-0 Plate Grip DOL 1.25	CSI. TC 0.27	DEFL. in (loc) I/defl L/d Vert(LL) 0.02 5-6 >999 240	PLATES GRIP MT20 244/190
TCDL 7.0	Lumber DOL 1.25	BC 0.20	Vert(CT) -0.02 5-6 >999 180	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.20	Horz(CT) -0.00 4 n/a n/a	
BCDL 10.0	Code FBC2023/TPI2014	Matrix-MS		Weight: 87 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 **WFBS**

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. WFBS

1 Row at midpt 3-5, 2-6

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

Scale = 1:68.2

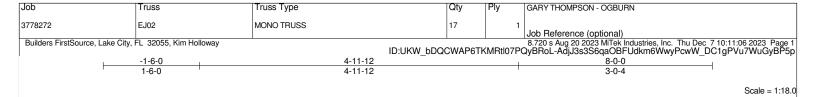
REACTIONS. (lb/size) 7=94/Mechanical, 4=107/Mechanical, 6=382/0-3-8

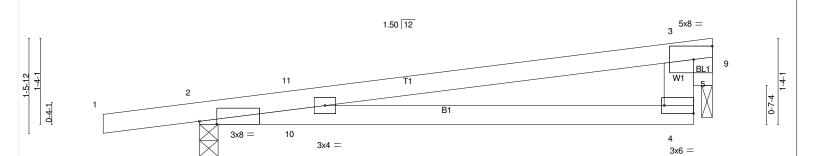
Max Horz 7=299(LC 12)

Max Uplift7=-129(LC 10), 4=-222(LC 12), 6=-401(LC 12) Max Grav 7=379(LC 12), 4=163(LC 19), 6=483(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-7=-527/246, 1-8=-300/150, 2-8=-283/170


BOT CHORD 6-7=-423/193


WEBS 1-6=-263/531, 2-6=-268/152

NOTES-

- 1) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C 7-11-2 to 7-11-2 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to
- the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

 5) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 129 lb uplift at joint 7, 222 lb uplift at joint 4 and 401 lb uplift at joint 6.

Plate Offsets (X,Y)	[2:0-3-4,Edge], [4:Edge,0-1-8]			
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.25	TC 0.88	Vert(LL) 0.34 4-8 >281 240	MT20 244/190
TCDL 7.0	Lumber DOL 1.25	BC 0.85	Vert(CT) 0.30 4-8 >316 180	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.33	Horz(CT) -0.01 2 n/a n/a	
BCDL 10.0	Code FBC2023/TPI2014	Matrix-MR		Weight: 28 lb FT = 20%

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x6 SP No.2 WFBS 2x4 SP No.3 OTHERS

BRACING-

TOP CHORD

Structural wood sheathing directly applied or 2-2-0 oc purlins, except end verticals

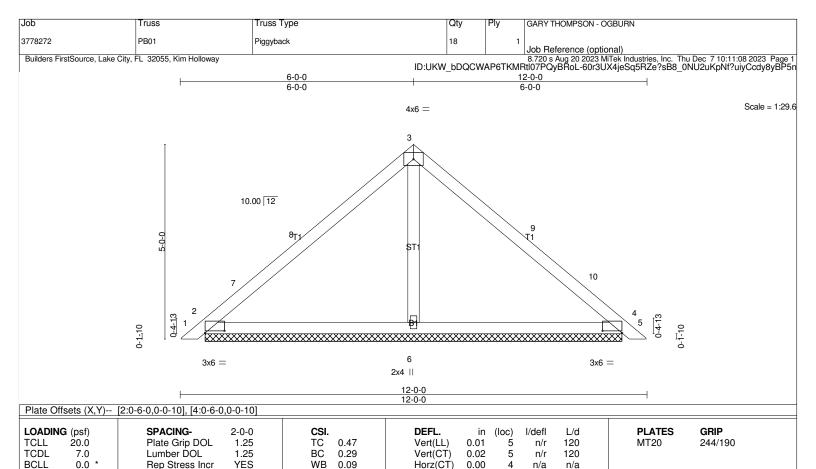
BOT CHORD Rigid ceiling directly applied or 2-10-12 oc bracing.

> MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 2=381/0-3-8, 9=254/0-2-0

Max Horz 2=59(LC 8)

Max Uplift2=-325(LC 8), 9=-203(LC 8)


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-11=-352/821, 2-3=-412/865, 4-5=-371/145, 3-5=-371/145

BOT CHORD 2-10=-833/339, 2-4=-896/400

3-9=-355/772 WFBS

- 1) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C 7-5-12 to 7-5-12 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

 5) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 6) Bearing at joint(s) 9 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 9.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 325 lb uplift at joint 2 and 203 lb uplift at joint 9

BCDL

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 OTHERS 2x4 SP No.3

BRACING-

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

Weight: 45 lb

FT = 20%

REACTIONS. (lb/size) 2=230/10-8-9, 4=230/10-8-9, 6=377/10-8-9

Max Horz 2=-153(LC 10)

Max Uplift2=-101(LC 12), 4=-120(LC 13), 6=-107(LC 12)

Code FBC2023/TPI2014


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vull=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C 10-2-15 to 11-9-2 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Matrix-S

- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 101 lb uplift at joint 2, 120 lb uplift at joint 4 and 107 lb uplift at joint 6.
- 9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

BCDL

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 OTHERS 2x4 SP No.3

10.0

BRACING-

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

Weight: 48 lb

FT = 20%

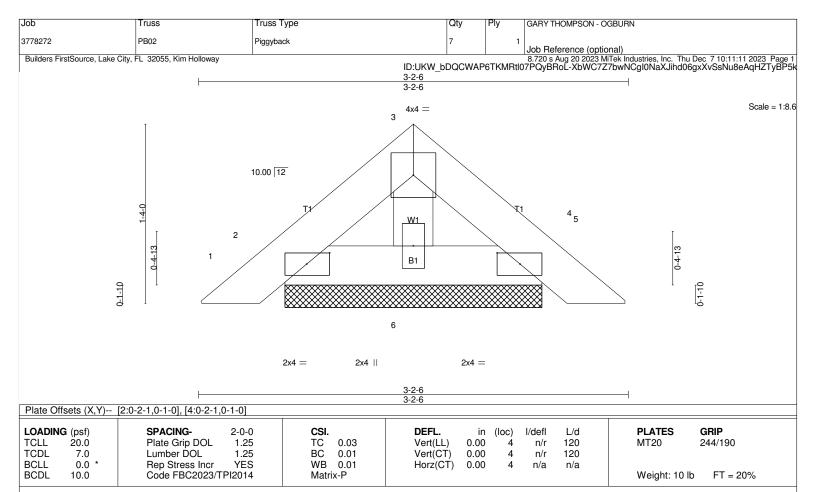
REACTIONS. All bearings 9-9-10.

(lb) - Max Horz 2=-141(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 2, 6 except 10=-217(LC 12), 8=-216(LC 13) Max Grav All reactions 250 lb or less at joint(s) 2, 6, 9 except 10=268(LC 19), 8=267(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Code FBC2023/TPI2014


WEBS 3-10=-222/320, 5-8=-222/321

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C 9-9-7 to 10-10-3 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

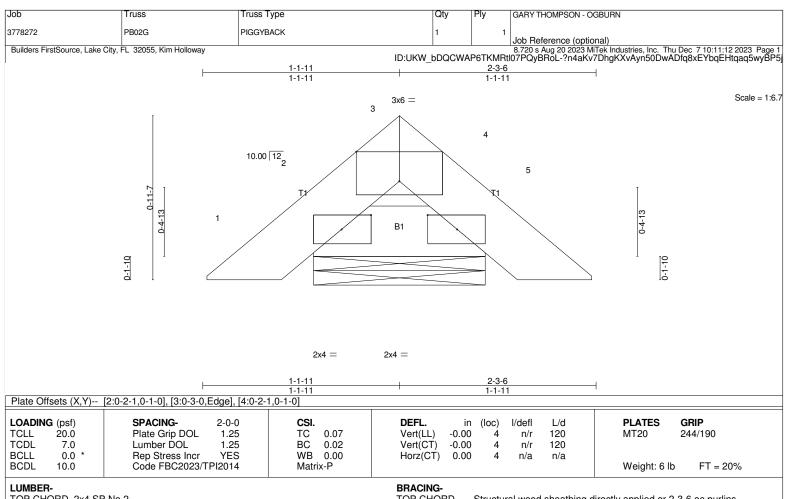
Matrix-S

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6 except (jt=lb) 10=217, 8=216.
- 11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 WFBS

BRACING-

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 3-2-6 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.


MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

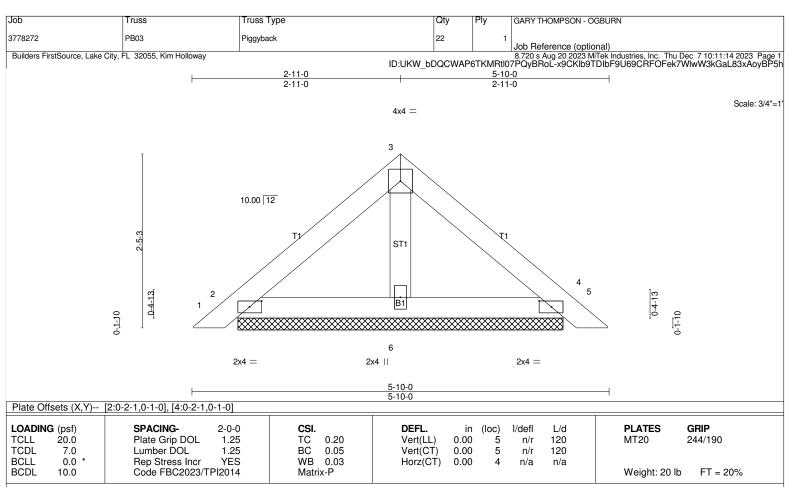
REACTIONS. (lb/size) 2=65/1-10-15, 4=65/1-10-15, 6=55/1-10-15

Max Horz 2=-36(LC 10) Max Uplift2=-37(LC 12), 4=-41(LC 13), 6=-5(LC 12) Max Grav 2=65(LC 1), 4=65(LC 1), 6=56(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4, 6.
- 9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 2-3-6 oc purlins. Rigid ceiling directly applied or 6-0-0 oc bracing.


MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 2=45/0-11-15, 4=45/0-11-15

Max Horz 2=-24(LC 10) Max Uplift2=-42(LC 12), 4=-42(LC 13) Max Grav 2=78(LC 25), 4=78(LC 26)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

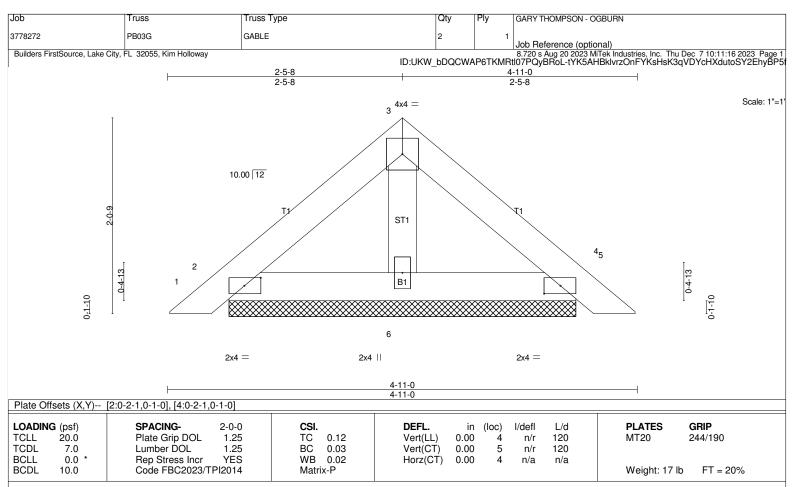
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- 9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 OTHERS 2x4 SP No.3 BRACING-

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 5-10-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 2=119/4-6-9, 4=119/4-6-9, 6=142/4-6-9


Max Horz 2=-71(LC 10)

Max Uplift2=-62(LC 12), 4=-71(LC 13), 6=-22(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vull=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4, 6.
- 9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 **OTHERS**

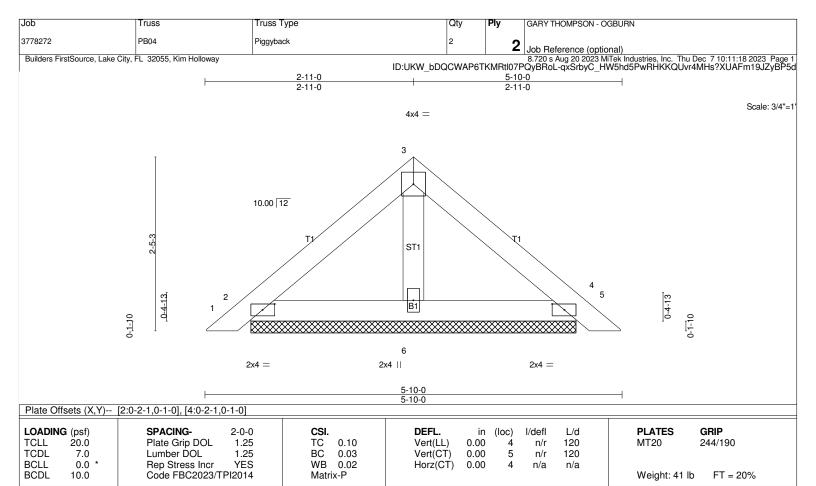
BRACING-

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 4-11-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 2=100/3-7-9, 4=100/3-7-9, 6=112/3-7-9

Max Horz 2=-59(LC 10)


Max Uplift2=-53(LC 12), 4=-61(LC 13), 6=-17(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

 9) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4, 6.
- 11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

BRACING-

TOP CHORD

BOT CHORD

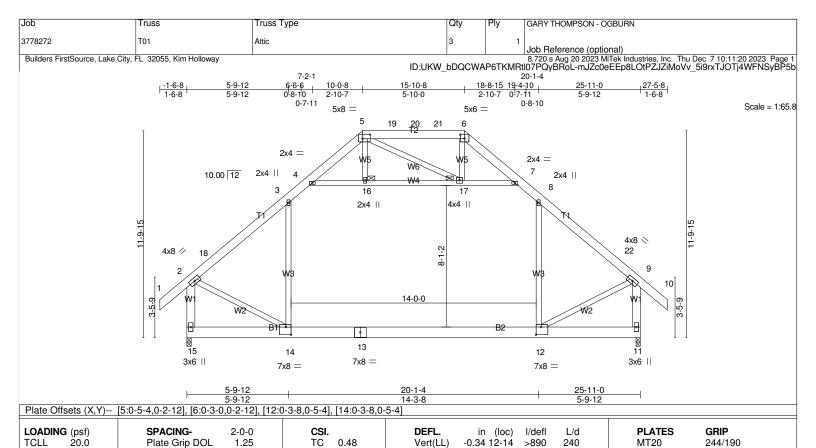
Structural wood sheathing directly applied or 5-10-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 **OTHERS**

REACTIONS. (lb/size) 2=119/4-6-9, 4=119/4-6-9, 6=142/4-6-9


Max Horz 2=-71(LC 10)

Max Uplift2=-62(LC 12), 4=-71(LC 13), 6=-22(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:
 - Top chords connected as follows: 2x4 1 row at 0-9-0 oc.
 - Bottom chords connected as follows: 2x4 1 row at 0-9-0 oc.
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 5) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 6) Gable requires continuous bottom chord bearing.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

 9) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4, 6.
- 11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building

TCDL

BCLL

BCDL

TOP CHORD 2x6 SP No.2 BOT CHORD 2x8 SP 2400F 2.0E 2x4 SP No.3 *Except* WFBS

7.0

0.0

W1: 2x6 SP No 2

BRACING-

Vert(CT)

Horz(CT)

Attic

TOP CHORD

-0.52 12-14

-0.30 12-14

11

0.01

Structural wood sheathing directly applied or 5-4-1 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 5-6. Rigid ceiling directly applied or 6-0-0 oc bracing.

BOT CHORD JOINTS

1 Brace at Jt(s): 16, 17

>584

n/a

564

180

n/a

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide

Weight: 250 lb

FT = 20%

REACTIONS. (lb/size) 15=1329/0-3-0, 11=1329/0-3-0

Max Horz 15=-452(LC 10)

Max Uplift15=-193(LC 12), 11=-193(LC 13)

Lumber DOL

Rep Stress Incr

Code FBC2023/TPI2014

Max Grav 15=1613(LC 2), 11=1613(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-18=-1591/136, 3-18=-1463/159, 3-4=-1102/252, 4-5=-482/203, 5-19=-312/232,

1.25

YES

19-20=-312/232, 20-21=-312/232, 6-21=-312/232, 6-7=-477/204, 7-8=-1102/252,

8-22=-1464/159, 9-22=-1590/136, 2-15=-1800/217, 9-11=-1799/217 14-15=-461/467, 13-14=-59/1214, 12-13=-59/1214

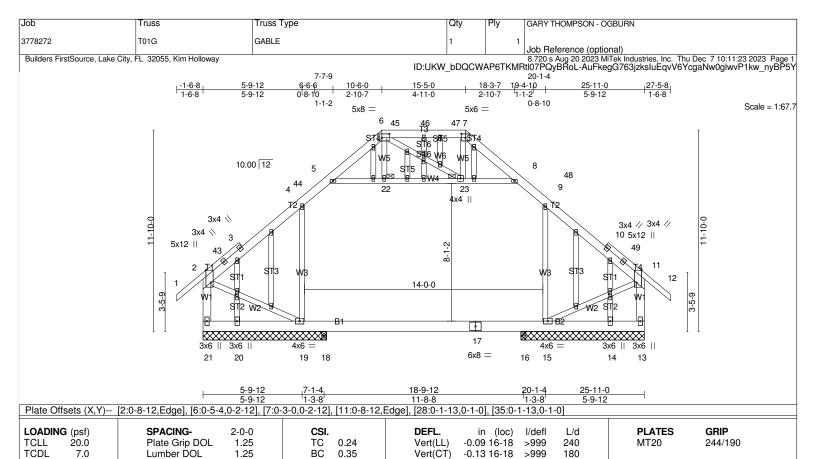
BOT CHORD WEBS 3-14=-12/723, 4-16=-1049/166, 16-17=-1046/167, 7-17=-1058/168, 8-12=-14/721,

2-14=-94/1377, 9-12=-96/1379

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C 25-8-4 to 25-8-4 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

BC


WB

0.56

0.57

Matrix-MS

- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Ceiling dead load (5.0 psf) on member(s). 3-4, 7-8, 4-16, 16-17, 7-17; Wall dead load (5.0 psf) on member(s).3-14, 8-12
- 8) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 12-14
- 9) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 15=193
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 12) NOTE: DUE TO THE OVERALL LENGTH TO DEPTH RATIO OF THE ROOM, THE FLOOR MAY EXHIBIT OBJECTIONABLE VIBRATION AND OR BOUNCE. BUILDING DESIGNER TO CONSIDER PROVIDING MEANS TO DAMPEN THESE EFFECTS. TRUSS DESIGN SHALL BE REVIEWED AND APPROVED PRIOR TO MANUFACTURING.
- 13) Attic room checked for L/360 deflection.

BCLL

BCDL

TOP CHORD 2x6 SP No.2 *Except*

0.0

T1: 2x4 SP No.2, T4: 2x4 SP No.1

BOT CHORD 2x8 SP 2400F 2.0E WEBS 2x4 SP No.3 *Except*

W1: 2x6 SP No.2
OTHERS 2x4 SP No.3

BRACING-

Horz(CT)

Attic

TOP CHORD BOT CHORD JOINTS

-0.00

-0.09 16-18

13

n/a

1561

2-0-0 oc purlins (6-0-0 max.), except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

1 Brace at Jt(s): 2, 6, 7, 11, 22, 23

n/a

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

Weight: 288 lb

FT = 20%

REACTIONS. All bearings 7-3-0 except (jt=length) 18=0-3-8, 16=0-3-8.

Rep Stress Incr

Code FBC2023/TPI2014

(lb) - Max Horz 21=442(LC 11)

Max Uplift All uplift 100 lb or less at joint(s) except 21=-192(LC 8), 19=-935(LC 18), 15=-935(LC 18), 13=-177(LC

WB

Matrix-MS

0.20

9

Max Grav All reactions 250 lb or less at joint(s) 19, 15, 14, 20 except 21=643(LC 1), 13=642(LC 1), 18=1897(LC

18), 16=1897(LC 18)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-43=-474/173, 3-43=-404/173, 3-4=-401/197, 4-44=-529/208, 5-44=-511/219,

YES

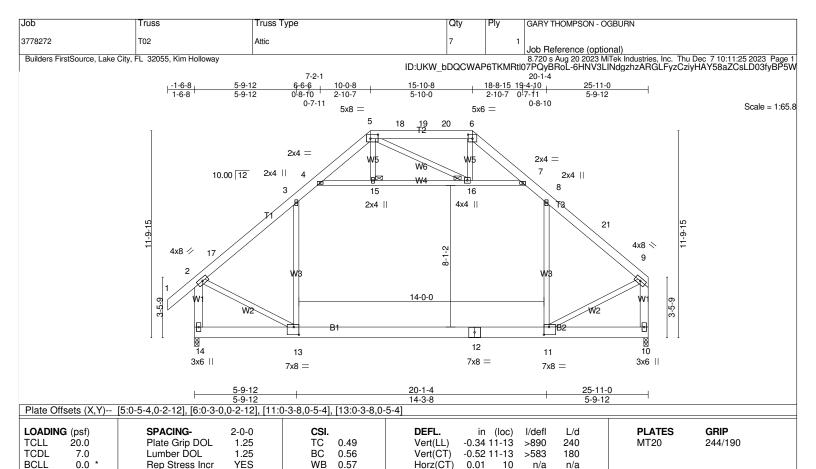
5-6=-480/174, 6-45=-349/196, 45-46=-349/196, 46-47=-349/196, 7-47=-349/196, 7-8=-479/173, 8-48=-511/216, 9-48=-529/205, 9-10=-401/184, 10-49=-404/162,

11-49=-474/161, 2-21=-627/198, 11-13=-627/191

BOT CHORD 20-21=-414/398, 19-20=-414/398, 18-19=-197/346, 17-18=-197/346, 16-17=-197/346,

15-16=-197/346

4-19=-497/366. 9-15=-489/366. 2-19=-182/369. 11-15=-176/369


WEBS NOTES

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C 25-8-4 to 25-9-0 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For stude exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) Provide adequate drainage to prevent water ponding.
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Ceiling dead load (5.0 psf) on member(s). 4-5, 8-9, 5-22, 22-23, 8-23; Wall dead load (5.0 psf) on member(s).4-19, 9-15
- 11) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 18-19, 16-18, 15-16
- 12) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.

Continued on page 2

lob	Truco	Truco Tuno	Oh	IDIV	TO A DAY THOU POON LOOP HON
Job	Truss	Truss Type	Qty	Ply	GARY THOMPSON - OGBURN
3778272 Builders FirstSource, Lake City,	T01G FI 32055 Kim Holloway	GABLE	'	1	Job Reference (optional) 8.720 s Aug 20 2023 MiTek Industries, Inc. Thu Dec 7 10:11:23 2023 Page Rtl07PQyBRoL-AuFkegG763jzksIuEqvV6YcgaNw0glwvP1kw_nyBP5
NOTES- 13) Provide mechanical of uplift at joint 13.	connection (by others) of tru		192 lb upl	lift at joint	21, 935 lb uplift at joint 19, 935 lb uplift at joint 15 and 177 lb
LOAD CASE(S) Standard	d				

BCDL

LUMBER-TOP CHORD 2x6 SP No.2 BOT CHORD 2x8 SP 2400F 2.0E 2x4 SP No.3 *Except* WFBS

0.0

W1: 2x6 SP No 2

BRACING-

Horz(CT)

Attic

TOP CHORD

Structural wood sheathing directly applied or 5-4-1 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 5-6.

Weight: 246 lb

FT = 20%

BOT CHORD JOINTS

Rigid ceiling directly applied or 6-0-0 oc bracing.

n/a

1 Brace at Jt(s): 15, 16

n/a

564

10

-0.30 11-13

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide

REACTIONS. (lb/size) 14=1332/0-3-0, 10=1230/0-3-0

Max Horz 14=436(LC 9)

Max Uplift14=-191(LC 12), 10=-136(LC 13)

Rep Stress Incr

Code FBC2023/TPI2014

Max Grav 14=1615(LC 2), 10=1532(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-17=-1597/130, 3-17=-1470/154, 3-4=-1105/247, 4-5=-478/204, 5-18=-306/229,

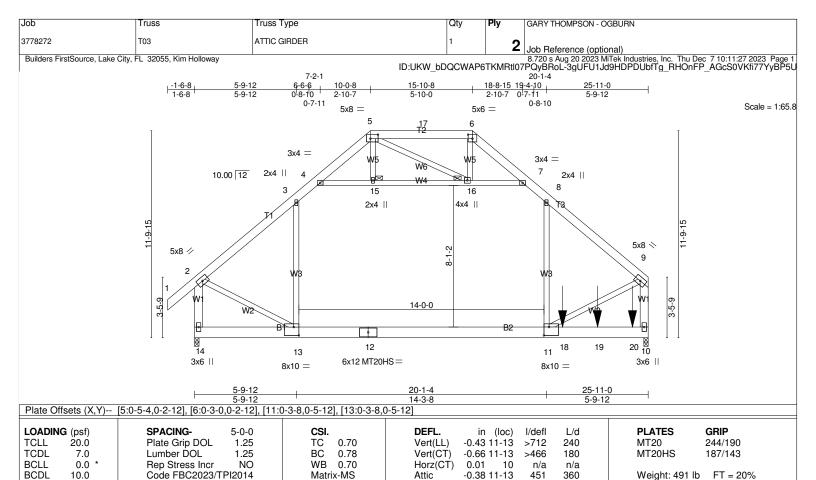
YES

18-19=-306/229, 19-20=-306/229, 6-20=-306/229, 6-7=-474/202, 7-8=-1107/250,

8-21=-1476/150, 9-21=-1594/132, 2-14=-1808/212, 9-10=-1740/133

BOT CHORD 13-14=-450/435, 12-13=-76/1198, 11-12=-76/1198

WEBS 3-13=-11/725, 4-15=-1059/162, 15-16=-1055/163, 7-16=-1067/167, 8-11=-27/712,


2-13=-91/1383, 9-11=-96/1365

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C 25-8-4 to 25-8-4 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Matrix-MS

- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Ceiling dead load (5.0 psf) on member(s). 3-4, 7-8, 4-15, 15-16, 7-16; Wall dead load (5.0 psf) on member(s).3-13, 8-11
- 8) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 11-13
- 9) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 191 lb uplift at joint 14 and 136 lb uplift at
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 12) NOTE: DUE TO THE OVERALL LENGTH TO DEPTH RATIO OF THE ROOM, THE FLOOR MAY EXHIBIT OBJECTIONABLE VIBRATION AND OR BOUNCE. BUILDING DESIGNER TO CONSIDER PROVIDING MEANS TO DAMPEN THESE EFFECTS. TRUSS DESIGN SHALL BE REVIEWED AND APPROVED PRIOR TO MANUFACTURING.
- 13) Attic room checked for L/360 deflection.

BRACING-

JOINTS

TOP CHORD

BOT CHORD

2-0-0 oc purlins (6-0-0 max.), except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.

1 Brace at Jt(s): 5, 6, 9, 2, 15, 16

LUMBER-

REACTIONS.

TOP CHORD 2x6 SP No.2 BOT CHORD 2x8 SP 2400F 2.0E 2x4 SP No.3 *Except* WFBS

W1: 2x6 SP No.2

(lb/size) 14=3354/0-3-0, 10=3270/0-3-0

Max Horz 14=1090(LC 5)

Max Uplift14=-552(LC 8), 10=-974(LC 9) Max Grav 14=4056(LC 2), 10=4006(LC 37)

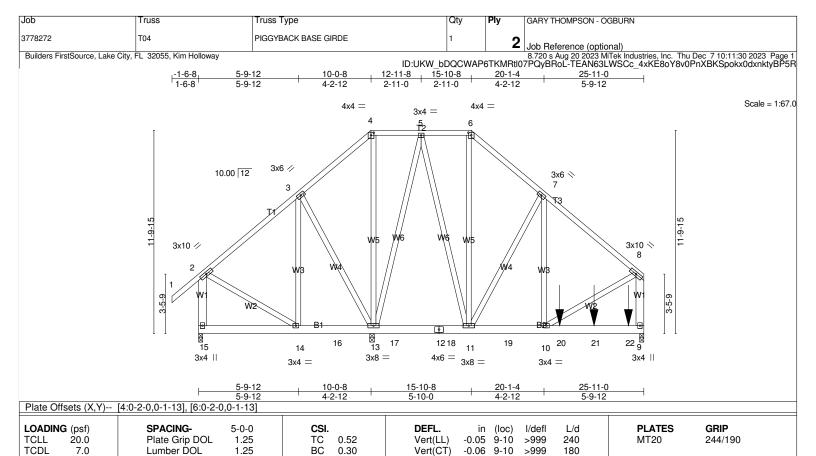
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-4062/528, 3-4=-2788/724, 4-5=-1189/520, 5-17=-766/577, 6-17=-766/577, 6-7=-1182/508, 7-8=-2785/706, 8-9=-4075/561, 2-14=-4592/525, 9-10=-4436/508 TOP CHORD

BOT CHORD 13-14=-1138/1113, 12-13=-311/3053, 11-12=-311/3053, 11-18=-297/147, 18-19=-297/147,

19-20=-297/147, 10-20=-297/147

WEBS 3-13=-10/1811, 4-15=-2729/572, 15-16=-2720/576, 7-16=-2723/533, 8-11=-115/1780,


 $2-13=-394/3540,\ 9-11=-305/3443,\ 6-16=-89/326,\ 5-16=-420/380$

NOTES-

- 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:
 - Top chords connected as follows: 2x6 2 rows staggered at 0-9-0 oc.
 - Bottom chords connected as follows: 2x8 2 rows staggered at 0-9-0 oc.
- Webs connected as follows: 2x4 1 row at 0-9-0 oc.
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) gable end zone; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 5) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 6) Provide adequate drainage to prevent water ponding.
- 7) All plates are MT20 plates unless otherwise indicated.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Ceiling dead load (5.0 psf) on member(s). 3-4, 7-8, 4-15, 15-16, 7-16; Wall dead load (5.0psf) on member(s).3-13, 8-11
- 11) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 11-13
- 12) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 552 lb uplift at joint 14 and 974 lb uplift at joint 10.

Continued on page 2

0770070	Truss	Truss Type	Qty	Ply	GARY THOMPSON - OGBURN
3778272	T03	ATTIC GIRDER	1	2	
Builders FirstSource, Lake City	, FL 32055, Kim Holloway	•	ID-I IKW PDOCWAI	DETKINDHO	8.720 s Aug 20 2023 MiTek Industries, Inc. Thu Dec 7 10:11:27 2023 Page 2 7PQyBRoL-3gUFU1Jd9HDPDUbfTg_RHOnFP_AGcS0VKfi77YyBP5U
23-0-4, and 121 lb do 15) NOTE: DUE TO THE	own and 240 lb up at a E OVERALL LENGTH NSIDER PROVIDING N	25-0-4 on bottom chord. The design/	oncentrated load(s) 1 selection of such con THE FLOOR MAY EX	19 lb dow nection de (HIBIT OB	n and 240 lb up at 21-0-4, and 119 lb down and 240 lb up at evice(s) is the responsibility of others. BJECTIONABLE VIBRATION AND OR BOUNCE. BUILDING BE REVIEWED AND APPROVED PRIOR TO
Uniform Loads (plf) Vert: 1-2=-135 Drag: 3-13=-2 Concentrated Loads (anced): Lumber Increa 5, 2-3=-135, 3-4=-160, 5, 8-11=-25	ase=1.25, Plate Increase=1.25 4-5=-135, 5-6=-135, 6-7=-135, 7-8=-	160, 8-9=-135, 13-14	=-50, 11-1	3=-100, 10-11=-50, 4-7=-25

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

0.01

n/a

n/a

(Switched from sheeted: Spacing > 2-0-0).

2-0-0 oc purlins (6-0-0 max.), except end verticals

Rigid ceiling directly applied or 10-0-0 oc bracing.

Weight: 518 lb

FT = 20%

LUMBER-

REACTIONS.

BCLL

BCDL

TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2 2x4 SP No.3 *Except* WFBS

0.0

W1: 2x6 SP No.2

(lb/size) 15=1202/0-3-0, 13=2338/0-3-8, 9=1628/0-3-0

Rep Stress Incr

Code FBC2023/TPI2014

Max Horz 15=-975(LC 6)

Max Uplift15=-288(LC 8), 13=-1210(LC 8), 9=-887(LC 9) Max Grav 15=1239(LC 2), 13=2754(LC 35), 9=2423(LC 36)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-733/336, 3-4=-303/477, 4-5=-70/450, 5-6=-674/757, 6-7=-1008/791, 7-8=-1551/635,

NO

2-15=-1061/313, 8-9=-1718/692

14-15=-873/894, 14-16=-483/759, 13-16=-483/759, 13-17=-255/589, 12-17=-255/589, 12-18=-255/589, 11-18=-255/589, 11-19=-192/1017, 10-19=-192/1017 **BOT CHORD**

WEBS 3-14=-154/454, 3-13=-1049/883, 4-13=-383/182, 5-13=-1367/757, 5-11=-548/1261,

7-11=-1209/949, 7-10=-157/683, 2-14=-275/574, 8-10=-172/1036

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

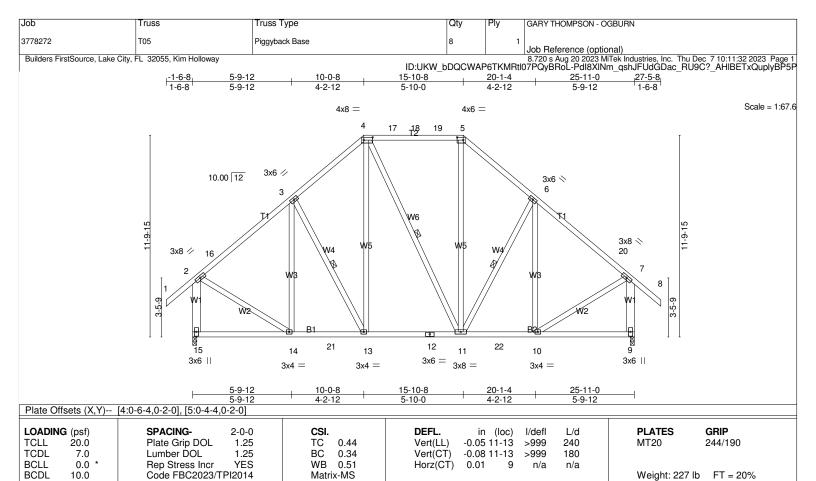
Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc, 2x6 - 2 rows staggered at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

WB

Matrix-MS


0.77

- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) gable end zone; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 5) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 6) Provide adequate drainage to prevent water ponding.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 9) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 288 lb uplift at joint 15, 1210 lb uplift at joint 13 and 887 lb uplift at joint 9.
- 11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 371 lb down and 150 lb up at 21-0-4, and 371 lb down and 150 lb up at 23-0-4, and 374 lb down and 150 lb up at 25-0-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

Continued on page 2

Uniform Loads (plf) Vert: 1-2=-135, Concentrated Loads (lb	d anced): Lumber Increase= , 2-4=-135, 4-6=-135, 6-8=		1 KW_bDQCWAF	2 PETKMRtio	Job Reference (optional) 8.720 s Aug 20 2023 MiTek Industries, Inc. Thu Dec 7 10:11:30 2023 PagrPQyBRoL-TEAN63LWSCc_4xKE8oY8v0PnXBKSpokx0dxnktyBP
LOAD CASE(S) Standard 1) Dead + Roof Live (bala Uniform Loads (plf) Vert: 1-2=-135, Concentrated Loads (lb	d anced): Lumber Increase= , 2-4=-135, 4-6=-135, 6-8= b)		U W_bDQCWAF	PGTKMRtIO	Joo Hererence (optional) 8.720 s Aug 20 2023 Mitels Industries, Inc. Thu Dec 7 10:11:30 2023 Page 7PQyBRoL-TEAN63LWSCc_4xKE8oY8v0PnXBKSpokx0dxnktyBP
LOAD CASE(S) Standard 1) Dead + Roof Live (bala Uniform Loads (plf) Vert: 1-2=-135, Concentrated Loads (lb	d anced): Lumber Increase= , 2-4=-135, 4-6=-135, 6-8= b)		KW_bDQCWAF	etkmrilo:	7PQyBRoL-TEAN63LWSCc_4xKE8oY8v0PnXBKSpokx0dxnktyВP

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WFBS

2x4 SP No.3 *Except*

W6: 2x4 SP No.2, W1: 2x6 SP No.2

BRACING-

TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 4-5. Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

be installed during truss erection, in accordance with Stabilizer

BOT CHORD

8-10-5 oc bracing: 14-15

WFBS 1 Row at midpt

Installation guide.

3-13, 4-11, 6-11 MiTek recommends that Stabilizers and required cross bracing

REACTIONS. (lb/size) 15=1038/0-3-0, 9=1038/0-3-0

Max Horz 15=-464(LC 10)

Max Uplift15=-398(LC 12), 9=-398(LC 13) Max Grav 15=1147(LC 2), 9=1143(LC 2)

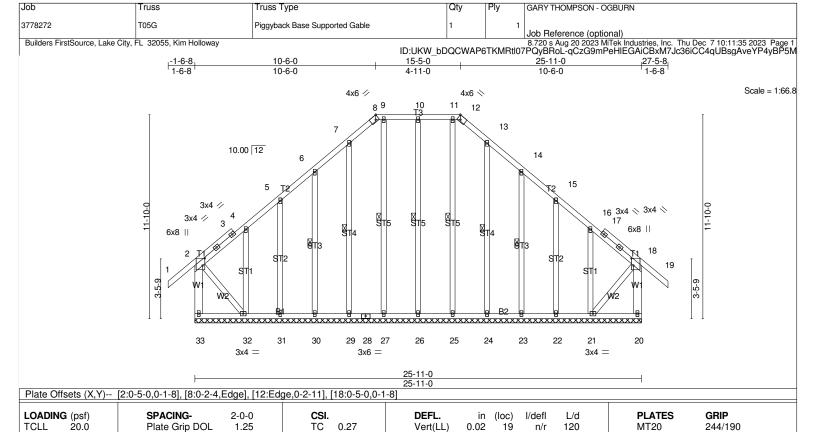
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-16=-873/314, 3-16=-790/341, 3-4=-818/443, 4-17=-576/407, 17-18=-576/407, 18-19=-576/407, 5-19=-576/407, 5-6=-813/443, 6-20=-786/341, 7-20=-869/314,

2-15=-1054/452, 7-9=-1050/452

BOT CHORD 14-15=-432/432, 14-21=-343/799, 13-21=-343/799, 12-13=-269/697, 11-12=-269/697,

11-22=-140/629, 10-22=-140/629


WEBS 3-13=-244/260, 4-13=-199/418, 5-11=-156/319, 6-11=-243/260, 2-14=-123/683,

7-10=-124/680

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C 25-8-4 to 25-8-4 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 7) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 398 lb uplift at joint 15 and 398 lb uplift at
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

TCDL

BCLL

BCDL

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

7.0

0.0

2x6 SP No.2 *Except* **WEBS** W2: 2x4 SP No.3 **OTHERS** 2x4 SP No.3

BRACING-

WEBS

Vert(CT)

Horz(CT)

TOP CHORD BOT CHORD

0.01

0.01

19

20

2-0-0 oc purlins (6-0-0 max.), except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

6-0-0 oc bracing: 32-33,20-21.

120

n/a

1 Row at midpt

n/r

n/a

10-26, 9-27, 7-29, 6-30, 11-25, 13-24, 14-23

Weight: 265 lb

FT = 20%

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 25-11-0.

(lb) - Max Horz 33=-455(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 26, 27, 25, 24 except 33=-269(LC 8),

20=-145(LC 9), 29=-101(LC 12), 30=-152(LC 12), 31=-141(LC 12), 32=-401(LC 12), 23=-152(LC 13), 22=-141(LC 13), 21=-388(LC 13)

BC

WB

Matrix-S

0.09

0.13

1.25

YES

Max Grav All reactions 250 lb or less at joint(s) 26, 27, 29, 30, 31, 25, 24, 23, 22 except 33=407(LC 20), 20=307(LC 19), 32=408(LC 10), 21=333(LC 11)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown TOP CHORD 2-33=-379/285, 6-7=-148/256, 7-8=-187/322, 8-9=-161/288, 9-10=-161.

2-33=-379/285, 6-7=-148/256, 7-8=-187/322, 8-9=-161/288, 9-10=-161/288,

10-11=-161/288, 11-12=-161/288, 12-13=-187/322, 13-14=-148/256, 18-20=-280/153 BOT CHORD 32-33=-427/399, 31-32=-222/356, 30-31=-222/356, 29-30=-222/356, 28-29=-222/356,

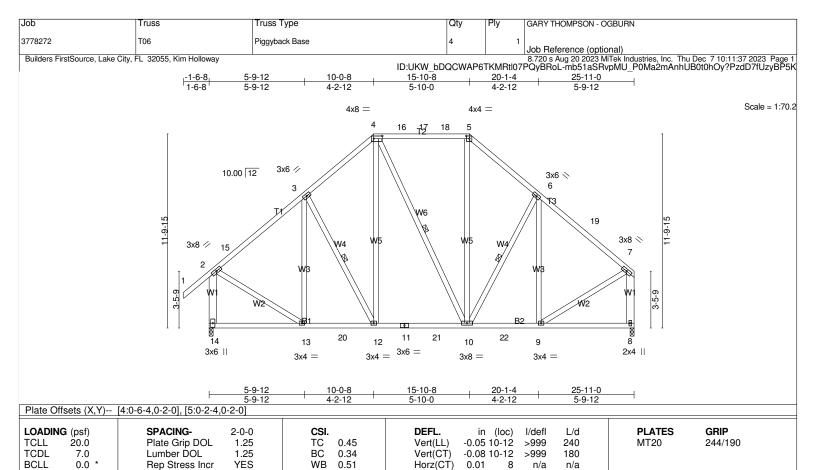
27-28=-222/356, 26-27=-222/356, 25-26=-222/356, 24-25=-222/356, 23-24=-222/356,

22-23=-222/356, 21-22=-222/356

Lumber DOL

Rep Stress Incr

Code FBC2023/TPI2014


WEBS 2-32=-359/448, 18-21=-258/390

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) Provide adequate drainage to prevent water ponding.
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- 7) Gable requires continuous bottom chord bearing.
- 8) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 9) Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 12) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.

Continued on page 2

ob	Truss	Truss Type	Qty	Ply	GARY THOMPSON - OGBURN
778272	T05G	Piggyback Base Supported Gable	1		1
Builders FirstSource, Lake City		<u> </u>			Job Reference (optional) 8.720 s Aug 20 2023 MiTek Industries, Inc. Thu Dec 7 10:11:35 2023 Pag 07PQyBRoL-qCzG9mPeHIEGAiCBxM7Jc36iCC4qUBsgAveYP4yBF
30=152, 31=141, 32	=401, 23=152, 22=141, 21	russ to bearing plate capable of withstand	ling 100 lb upli	ft at join	t(s) 26, 27, 25, 24 except (jt=lb) 33=269, 20=145, 29=101,
LOAD CASE(S) Standar	rd .				

BCDL

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 *I

2x4 SP No.3 *Except*

W6: 2x4 SP No.2, W1: 2x6 SP No.2

Code FBC2023/TPI2014

BRACING-

WFBS

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 5-10-15 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 4-5. Rigid ceiling directly applied or 9-0-4 oc bracing.

1 Row at midpt

3-12, 4-10, 6-10

Weight: 224 lb

FT = 20%

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 14=1041/0-3-0, 8=939/0-3-0

Max Horz 14=448(LC 9)

Max Uplift14=-396(LC 12), 8=-342(LC 13) Max Grav 14=1149(LC 2), 8=1061(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-15=-874/312, 3-15=-792/339, 3-4=-820/440, 4-16=-579/401, 16-17=-579/401,

17-18=-579/401, 5-18=-579/401, 5-6=-819/440, 6-19=-787/325, 7-19=-871/309,

2-14=-1056/449, 7-8=-969/363

BOT CHORD 13-14=-419/401, 13-20=-361/778, 12-20=-361/778, 11-12=-287/676, 11-21=-287/676,

10-21=-287/676, 10-22=-227/617, 9-22=-227/617

WEBS 3-12=-243/260, 4-12=-199/417, 5-10=-157/325, 6-10=-248/257, 2-13=-121/683,

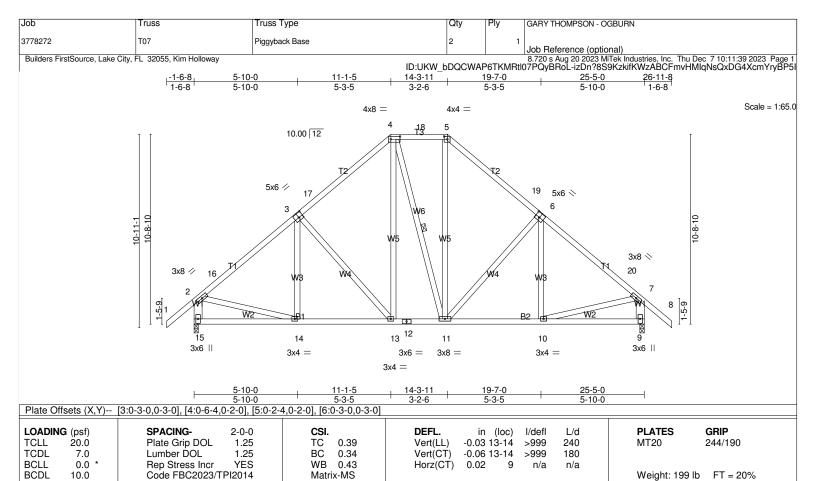
/-9=-1/1/6/1

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C 25-8-4 to 25-8-4 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Matrix-MS


3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

4) Provide adequate drainage to prevent water ponding.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.

- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 14=396, 8=342.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WEBS

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

2x4 SP No.3 *Except*

W1: 2x6 SP No.2

BRACING-

WFBS

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 5-8-9 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 4-5.

Rigid ceiling directly applied or 9-8-7 oc bracing.

1 Row at midpt

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 15=1019/0-3-0, 9=1019/0-3-0

Max Horz 15=-399(LC 10)

Max Uplift15=-391(LC 12), 9=-391(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-16=-994/335, 3-16=-820/362, 3-17=-809/395, 4-17=-706/420, 4-18=-544/400, TOP CHORD

5-18=-544/400, 5-19=-707/421, 6-19=-810/395, 6-20=-820/362, 7-20=-994/335,

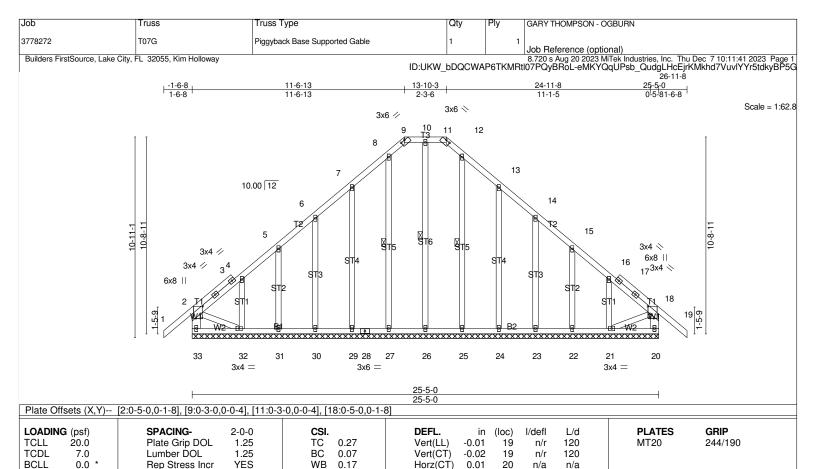
2-15=-967/443. 7-9=-966/434

BOT CHORD 14-15=-372/434, 13-14=-288/801, 12-13=-176/591, 11-12=-176/591, 10-11=-133/689 **WEBS**

3-13=-318/311, 4-13=-204/309, 5-11=-187/279, 6-11=-316/310, 2-14=-114/638,

7-10=-116/637

NOTES-


1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C 25-2-4 to 25-2-4 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to
- the use of this truss component.

4) Provide adequate drainage to prevent water ponding.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (it=lb) 15=391,
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

BCLL

BCDL

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

0.0

10.0

2x6 SP No.2 *Except* **WEBS** W2: 2x4 SP No.3

OTHERS 2x4 SP No.3 BRACING-

WEBS

Horz(CT)

TOP CHORD BOT CHORD

0.01

20

2-0-0 oc purlins (6-0-0 max.), except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

6-0-0 oc bracing: 32-33,20-21.

n/a

10-26, 8-27, 12-25 1 Row at midpt

n/a

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer

Weight: 218 lb

FT = 20%

REACTIONS. All bearings 25-5-0.

(lb) - Max Horz 33=-390(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 20, 26, 27, 25 except 33=-157(LC 8),

29=-159(LC 12), 30=-137(LC 12), 31=-142(LC 12), 32=-261(LC 12), 24=-162(LC 13), 23=-136(LC 13), 22=-143(LC 13), 21=-247(LC 13)

Matrix-S

YES

Max Grav All reactions 250 lb or less at joint(s) 26, 27, 29, 30, 31, 32, 25, 24, 23,

22, 21 except 33=296(LC 20), 20=256(LC 22)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown

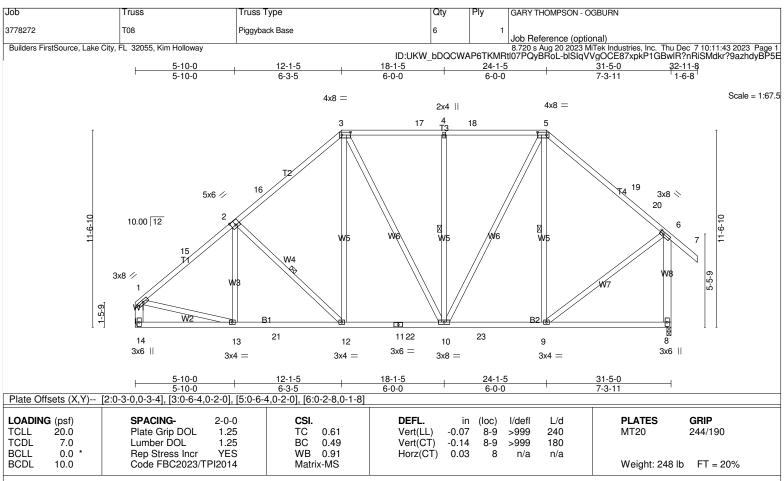
TOP CHORD 2-33=-270/160, 2-3=-317/226, 3-4=-308/238, 16-17=-265/145, 17-18=-274/125 **BOT CHORD**

 $32 - 33 = -339/339, \ 31 - 32 = -180/325, \ 30 - 31 = -180/325, \ 29 - 30 = -180/325, \ 28 - 29 = -180/325, \ 20 - 31 = -180/325,$ 27-28=-180/325, 26-27=-180/325, 25-26=-180/325, 24-25=-180/325, 23-24=-180/325,

22-23=-180/325, 21-22=-180/325

WEBS 2-32=-217/323, 18-21=-163/298

NOTES-


1) Unbalanced roof live loads have been considered for this design.

Rep Stress Incr

Code FBC2023/TPI2014

- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) Provide adequate drainage to prevent water ponding.
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- 7) Gable requires continuous bottom chord bearing.
- 8) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 9) Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 12) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 20, 26, 27, 25 except (it=lb) 33=157, 29=159, 30=137, 31=142, 32=261, 24=162, 23=136, 22=143, 21=247. Continued on page 2

Job	Truss	Truss Type	Qty	Ply	GARY THOMPSON - OGBURN
3778272		Piggyback Base Supported Gable	1	1	
Builders FirstSource, Lake City,		1 aggreen base supported dable	'		Job Reference (optional) 8.720 s Aug 20 2023 MiTek Industries, Inc. Thu Dec 7 10:11:41 2023 Page 2 tl07PQyBRoL-eMKYQqUPsb_QudgLHcEjrKMkhd7VuvIYYr5tdkyBP5G
NOTES-	sentation does not depict th	ID:UKW			

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 *Except* WFBS

W6: 2x4 SP No.2, W1, W8: 2x6 SP No.2

BRACING-

TOP CHORD

Structural wood sheathing directly applied or 4-8-6 oc purlins, except end verticals, and 2-0-0 oc purlins (5-10-10 max.): 3-5.

BOT CHORD WFBS

Rigid ceiling directly applied or 8-0-15 oc bracing.

2-12, 4-10, 5-9 1 Row at midpt

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 14=1143/Mechanical, 8=1244/0-3-0

Max Horz 14=445(LC 11)

Max Uplift14=-448(LC 12), 8=-476(LC 13)

Max Grav 14=1296(LC 2), 8=1376(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1-15=-1437/490, 2-15=-1295/508, 2-16=-1236/528, 3-16=-1138/558, 3-17=-905/492, TOP CHORD

4-17=-905/492, 4-18=-905/492, 5-18=-905/492, 5-19=-863/437, 19-20=-899/413,

6-20=-974/403, 1-14=-1209/461, 6-8=-1262/521

BOT CHORD $13-14 = -426/408, \ 13-21 = -539/1215, \ 12-21 = -539/1215, \ 11-12 = -425/933, \ 11-22 = -425/933, \ 11$

10-22=-425/933, 10-23=-261/659, 9-23=-261/659

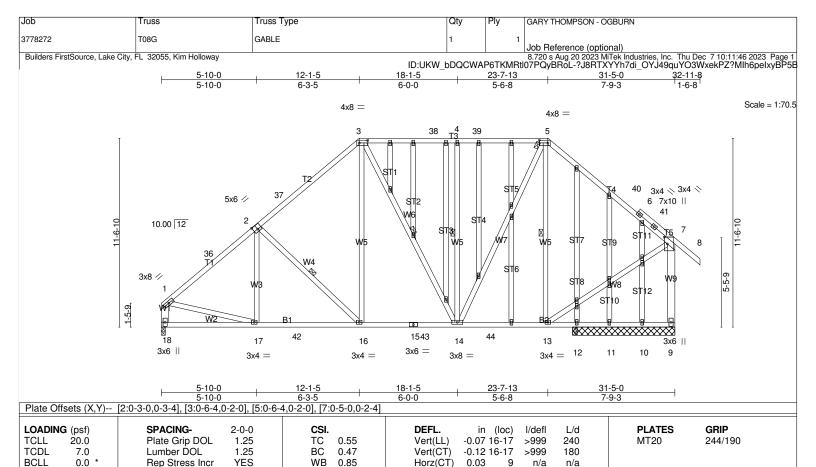
WEBS 2-12=-394/330, 3-12=-187/533, 4-10=-367/291, 5-10=-321/559, 1-13=-228/995,

6-9=-286/770

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C 31-2-4 to 31-2-4 zone; end vertical right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to
- the use of this truss component.

4) Provide adequate drainage to prevent water ponding.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- All bearings are assumed to be SP No.2 crushing capacity of 565 psi.

8) Refer to girder(s) for truss to truss connections.

- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 14=448,
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

BCDL

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 *Except* **WEBS**

W6,W7: 2x4 SP No.2, W1,W9: 2x6 SP No.2

Code FBC2023/TPI2014

OTHERS 2x4 SP No.3 **BRACING-**

TOP CHORD BOT CHORD WFBS

2-0-0 oc purlins (4-9-3 max.), except end verticals. Rigid ceiling directly applied or 8-1-7 oc bracing. 1 Row at midpt 2-16, 3-14, 4-14, 5-13

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

Weight: 343 lb

FT = 20%

REACTIONS. All bearings 6-3-0 except (jt=length) 18=0-3-0.

Max Horz 18=440(LC 11) Max Uplift All uplift 100 lb or less at joint(s) 11, 12 except 18=-444(LC 12), 9=-507(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 10, 11, 12, 12 except 18=1262(LC 2), 9=1183(LC 2)

Matrix-MS

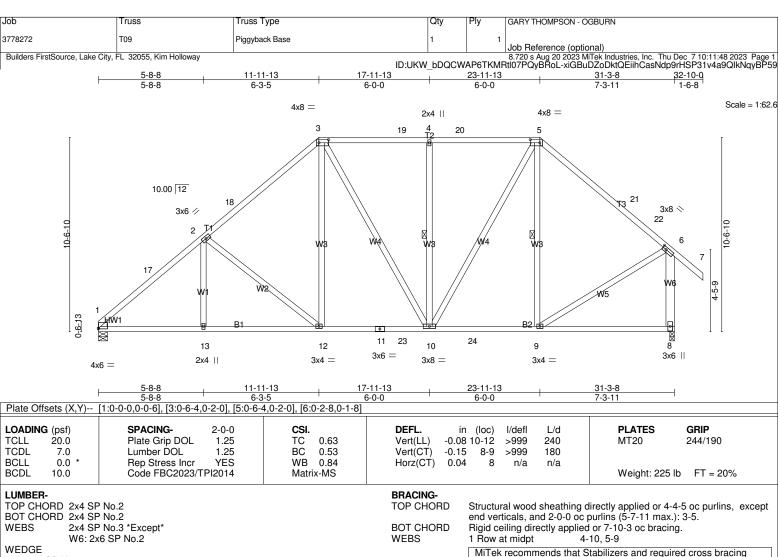
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-36=-1396/485, 2-36=-1255/502, 2-37=-1189/522, 3-37=-1092/552, 3-38=-852/485,

4-38=-852/485, 4-39=-852/485, 5-39=-852/485, 5-40=-796/431, 6-40=-827/407,

6-41=-869/391, 7-41=-905/388, 1-18=-1176/457, 7-9=-1139/506

BOT CHORD $17 - 18 = -421/404, \ 17 - 42 = -533/1186, \ 16 - 42 = -533/1186, \ 15 - 16 = -420/900, \ 15 - 43 = -420/900, \ 16 - 42 = -420/900, \ 16 - 42 = -420/900, \ 17 - 42 = -420/900, \ 18 - 42 = -420/900$


14-43=-420/900, 14-44=-265/606, 13-44=-265/606

WEBS 2-16=-399/331, 3-16=-187/532, 4-14=-350/280, 5-14=-311/593, 5-13=-299/196,

1-17=-224/964, 7-13=-283/655

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C 31-2-4 to 31-2-4 zone; end vertical right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) Provide adequate drainage to prevent water ponding.
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 10) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11, 12 except (jt=lb) 18=444, 9=507
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

be installed during truss erection, in accordance with Stabilizer

Installation guide.

WEDGE

Left: 2x4 SP No.3

REACTIONS. (lb/size) 1=1147/0-6-0, 8=1248/0-3-0

Max Horz 1=412(LC 11)

Max Uplift1=-456(LC 12), 8=-476(LC 13)

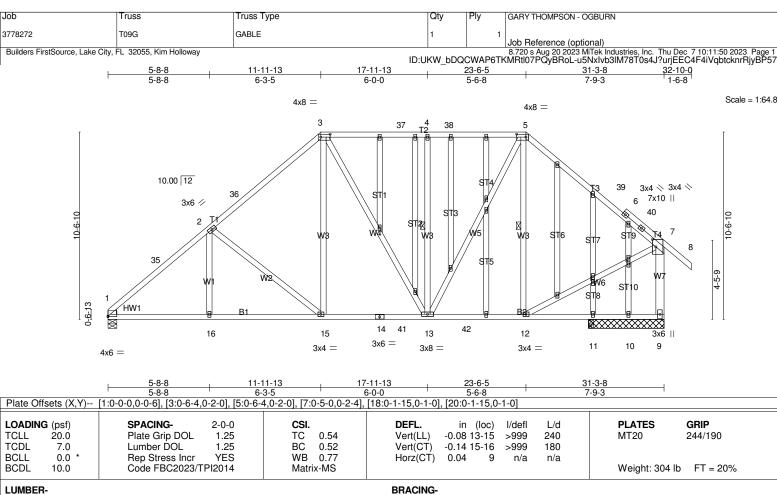
Max Grav 1=1270(LC 2), 8=1369(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1-17=-1690/588, 2-17=-1548/605, 2-18=-1331/544, 3-18=-1237/575, 3-19=-985/504, TOP CHORD

4-19=-985/504, 4-20=-985/504, 5-20=-985/504, 5-21=-940/430, 21-22=-976/406,

6-22=-1051/396, 6-8=-1255/516


BOT CHORD 1-13=-565/1382, 12-13=-565/1382, 11-12=-424/989, 11-23=-424/989, 10-23=-424/989,

10-24=-257/718, 9-24=-257/718

WEBS 2-12=-508/380, 3-12=-193/574, 4-10=-366/291, 5-10=-315/565, 6-9=-282/779

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C 31-0-12 to 31-0-12 zone; end vertical right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=456,
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 *Except* **WEBS**

W7: 2x6 SP No.2 OTHERS 2x4 SP No.3

WEDGE

Left: 2x4 SP No.3

TOP CHORD BOT CHORD WFBS

2-0-0 oc purlins (4-4-14 max.), except end verticals. Rigid ceiling directly applied or 7-10-9 oc bracing.

1 Row at midpt 4-13. 5-12

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 4-3-0 except (jt=length) 1=0-6-0.

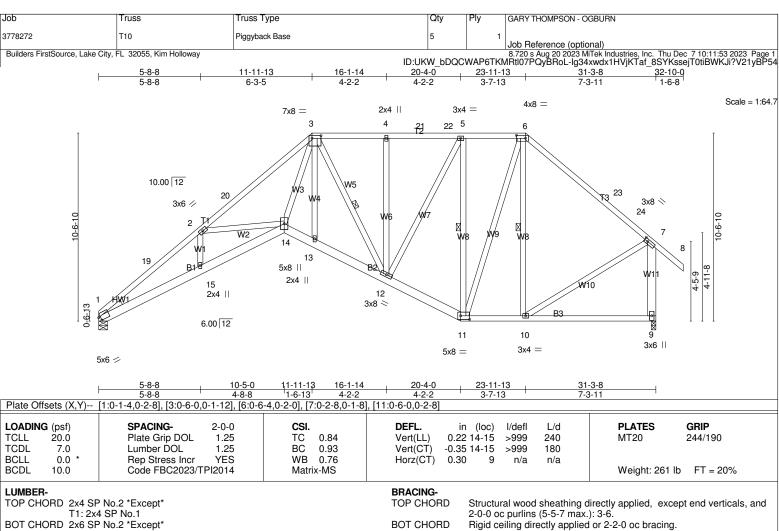
(lb) - Max Horz 1=407(LC 11)

Max Uplift All uplift 100 lb or less at joint(s) 10, 11 except 1=-457(LC 12), 9=-530(LC 13) Max Grav All reactions 250 lb or less at joint(s) 10, 11, 11 except 1=1252(LC 2), 9=1235(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-35=-1663/590, 2-35=-1521/607, 2-36=-1303/547, 3-36=-1208/577, 3-37=-953/506,

4-37=-953/506, 4-38=-953/506, 5-38=-953/506, 5-39=-913/445, 6-39=-946/421,

6-40=-988/405, 7-40=-1024/402, 7-9=-1182/521


BOT CHORD 1-16=-560/1362, 15-16=-560/1362, 14-15=-420/967, 14-41=-420/967, 13-41=-420/967,

13-42=-265/697, 12-42=-265/697

2-15=-510/380, 3-15=-193/571, 4-13=-349/279, 5-13=-301/577, 7-12=-286/695

WEBS NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C 31-0-12 to 31-0-12 zone; end vertical right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) Provide adequate drainage to prevent water ponding.
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10, 11 except (jt=lb)
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WFBS

1 Row at midpt

Installation guide.

3-12, 5-11, 6-10

MiTek recommends that Stabilizers and required cross bracing

be installed during truss erection, in accordance with Stabilizer

B3: 2x4 SP No.2 **WEBS** 2x4 SP No.3 *Except*

W11: 2x6 SP No.2

WEDGE

Left: 2x4 SP No.3

REACTIONS. (lb/size) 1=1147/0-6-0, 9=1248/0-3-0

Max Horz 1=412(LC 11)

Max Uplift1=-455(LC 12), 9=-476(LC 13)

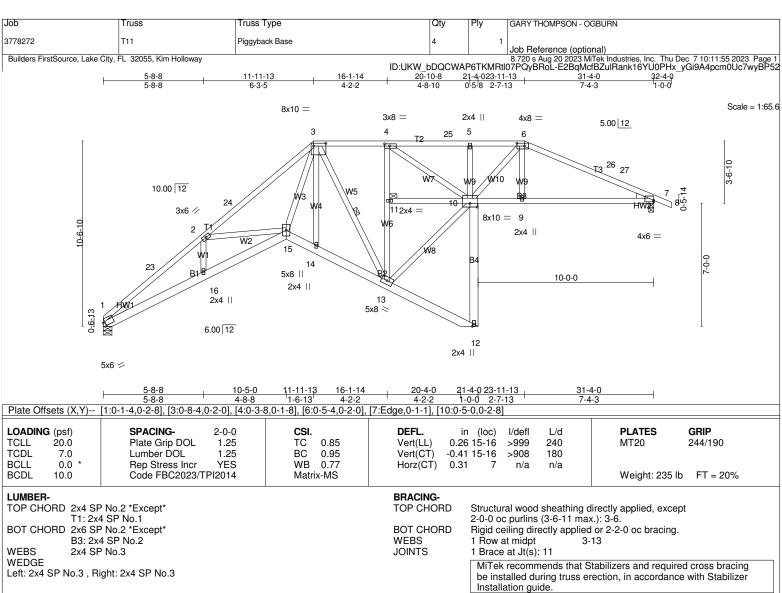
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-19=-3085/1360, 2-19=-2915/1386, 2-20=-2736/1117, 3-20=-2624/1141, 3-4=-1110/586,

4-21=-1110/586, 21-22=-1110/586, 5-22=-1110/586, 5-6=-788/466, 6-23=-819/429,

23-24=-864/405, 7-24=-956/395, 7-9=-1179/517

BOT CHORD 1-15=-1320/2535, 14-15=-1352/2599, 13-14=-815/1585, 12-13=-837/1629, 11-12=-411/893,

10-11=-257/624


2-14=-431/478, 3-14=-979/1997, 3-12=-843/428, 4-12=-253/204, 5-12=-379/707,

5-11=-837/519, 6-11=-339/544, 7-10=-278/669

NOTES-

WEBS

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C 31-0-12 to 31-0-12 zone; end vertical right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 8) Bearing at joint(s) 1 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=455, 9 = 476
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

REACTIONS. (lb/size) 1=1158/0-6-0, 7=1214/0-3-8

Max Horz 1=404(LC 12)

Max Uplift1=-366(LC 12), 7=-472(LC 9)

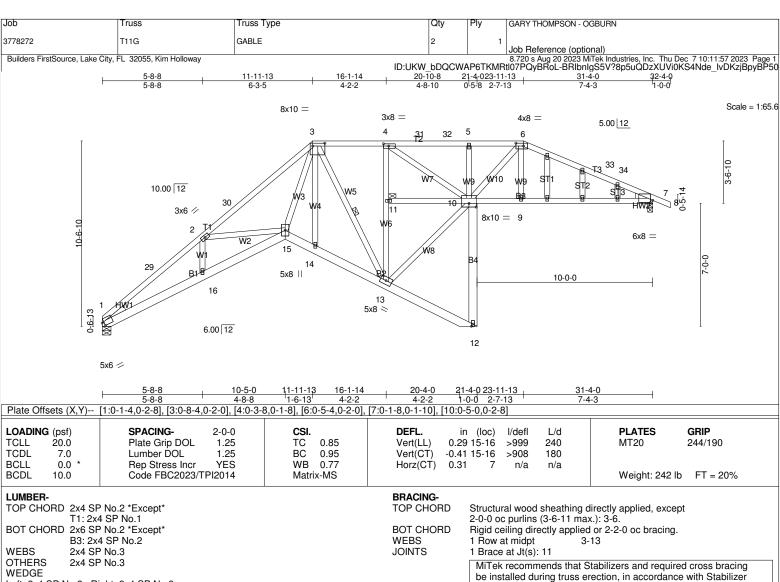
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-23=-3121/1491, 2-23=-2951/1507, 2-24=-2778/1313, 3-24=-2666/1337, 3-4=-1143/665,

4-25=-2443/1212, 5-25=-2443/1212, 5-6=-2430/1202, 6-26=-2207/1033, 26-27=-2236/1019,

7-27=-2291/1013

BOT CHORD 1-16=-1523/2547, 15-16=-1555/2626, 14-15=-742/1612, 13-14=-759/1645, 9-10=-829/2043,


7-9=-829/2036

WEBS 2-15=-440/474, 3-15=-1022/2031, 3-13=-755/465, 11-13=-1112/518, 4-11=-1109/517,

10-13=-673/1571, 6-10=-312/697, 6-9=-5/263, 4-10=-652/1550

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C 28-5-0 to 32-4-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- s) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 8) Bearing at joint(s) 1 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=366, 7=472
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Installation guide.

WEDGE

Left: 2x4 SP No.3, Right: 2x4 SP No.3

REACTIONS. (lb/size) 1=1158/0-6-0, 7=1214/0-3-8

Max Horz 1=404(LC 12)

Max Uplift1=-434(LC 12), 7=-480(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-29=-3121/1610, 2-29=-2951/1637, 2-30=-2778/1374, 3-30=-2666/1398, 3-4=-1143/608,

4-31=-2443/1091, 31-32=-2443/1091, 5-32=-2443/1091, 5-6=-2430/1082, 6-33=-2207/928,

33-34=-2236/914, 7-34=-2291/908

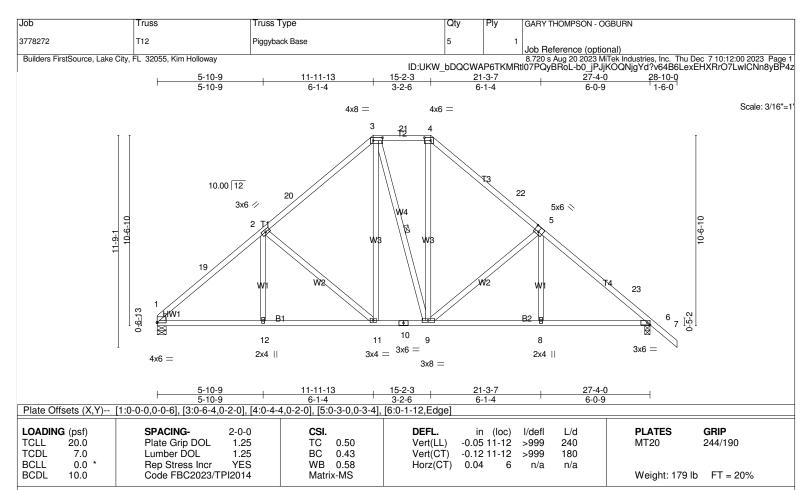
BOT CHORD 1-16=-1692/2547, 15-16=-1730/2626, 14-15=-825/1612, 13-14=-843/1645, 9-10=-751/2043,

7-9=-751/2036

2-15=-440/448, 3-15=-1161/2031, 3-13=-755/511, 11-13=-1112/518, 4-11=-1109/517,

10-13=-707/1571, 6-10=-348/697, 6-9=0/263, 4-10=-586/1550

NOTES-


WEBS

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C 28-5-0 to 32-4-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) Provide adequate drainage to prevent water ponding.
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 11) Bearing at joint(s) 1 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=434, 7=480.

Continued on page 2

Clob	Truco	Trues Tune	Otto	Div	OADVITIONDOON CODUCY
		Truss Type		Ply	GARY THOMPSON - OGBURN
		GABLE	2	1	Job Reference (optional)
Builders FirstSource, Lake City, F	FL 32055, Kim Holloway	ID:UK\	W_bDQCW	AP6TKM	Job Reference (optional) 8.720 s Aug 20 2023 MiTek Industries, Inc. Thu Dec 7 10:11:58 2023 Page 2 Rtl07PQyBRoL-fdsz_eh4sp7?RFTcnh2j1wZVCUjsNRY3S_jGjFyBP5?
NOTES-	sentation does not denict th	ne size or the orientation of the purlin along t			
		ie size of the orientation of the parish along t	ne top and	a/or botte	on onord.
LOAD CASE(S) Standard					

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 WFBS WEDGE

Left: 2x4 SP No.3

BRACING-

WFBS

TOP CHORD

Structural wood sheathing directly applied or 4-10-14 oc purlins, except 2-0-0 oc purlins (6-0-0 max.): 3-4.

BOT CHORD

Rigid ceiling directly applied or 8-9-13 oc bracing. 3-9

1 Row at midpt

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

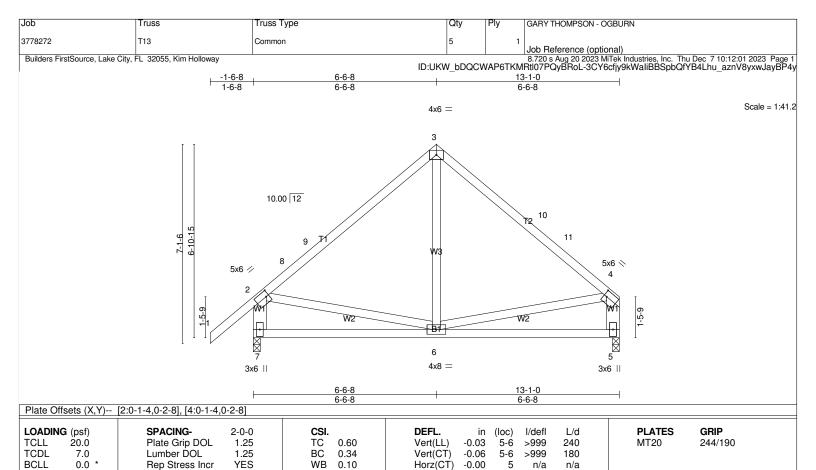
REACTIONS. (lb/size) 1=1009/0-6-0, 6=1095/0-3-8

Max Horz 1=-350(LC 8)

Max Uplift1=-367(LC 12), 6=-423(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-19=-1335/453, 2-19=-1156/471, 2-20=-990/432, 3-20=-872/462, 3-21=-673/440,


4-21=-673/440. 4-22=-873/462. 5-22=-992/433. 5-23=-1169/468. 6-23=-1350/443 **BOT CHORD** 1-12=-424/1039, 11-12=-424/1039, 10-11=-160/696, 9-10=-160/696, 8-9=-232/967,

6-8=-231/968

2-12=0/250, 2-11=-451/386, 3-11=-211/369, 4-9=-210/364, 5-9=-467/386, 5-8=0/265

WEBS NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C 19-5-2 to 28-10-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=367,
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

BCDL

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WFBS

2x4 SP No.3 *Except*

W1: 2x6 SP No.2

BRACING-

TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except

Weight: 81 lb

FT = 20%

end verticals

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 7=569/0-3-0, 5=460/0-3-0

Max Horz 7=260(LC 9)

Max Uplift7=-219(LC 12), 5=-157(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-8=-440/247, 8-9=-368/255, 3-9=-343/278, 3-10=-335/278, 10-11=-336/259,

4-11=-431/255, 2-7=-513/469, 4-5=-404/328

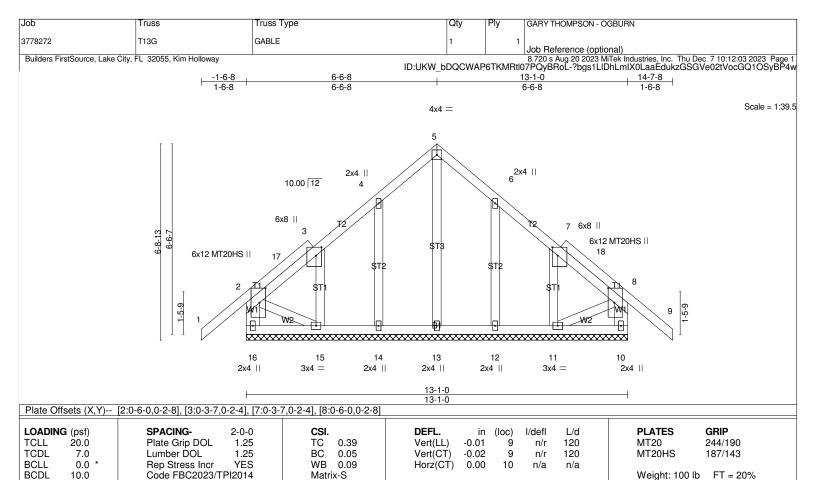
Code FBC2023/TPI2014

BOT CHORD 6-7=-330/351 **WEBS** 2-6=-134/258

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C 12-10-4 to 12-10-4 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


Matrix-MS

3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
6) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 7=219, 5=157.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

2x6 SP No.2 *Except* **WEBS** W2: 2x4 SP No.3 **OTHERS** 2x4 SP No.3

BRACING-

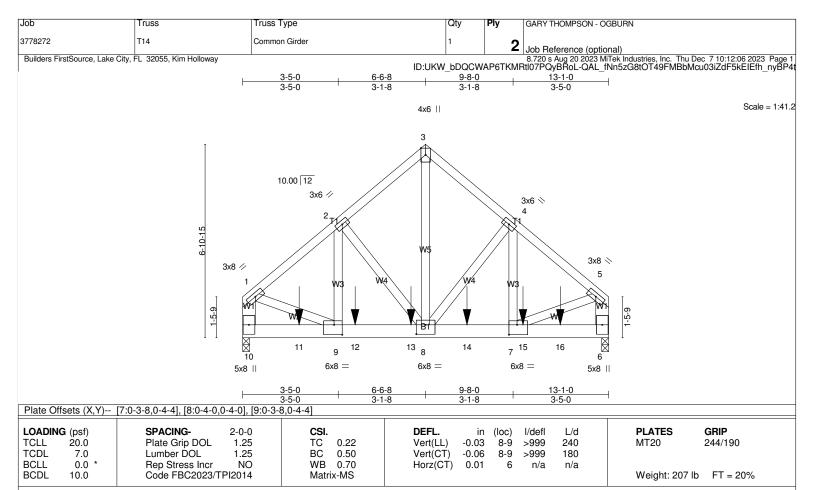
TOP CHORD BOT CHORD 2-0-0 oc purlins (6-0-0 max.), except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 13-1-0.

(lb) - Max Horz 16=-255(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 16, 10 except 14=-142(LC 12), 15=-207(LC 12), 12=-143(LC 13),


11=-199(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 16, 10, 13, 14, 15, 12, 11

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C 12-10-4 to 12-10-4 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) All plates are MT20 plates unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 8) Gable studs spaced at 2-0-0 oc.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 11) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 16, 10 except (jt=lb) 14=142, 15=207, 12=143, 11=199.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

BRACING-

TOP CHORD

BOT CHORD

end verticals

Structural wood sheathing directly applied or 6-0-0 oc purlins, except

Rigid ceiling directly applied or 10-0-0 oc bracing.

LUMBER-

REACTIONS.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2

2x4 SP No.3 *Except* WFBS

W1: 2x6 SP No.2

(lb/size) 10=3639/0-3-0, 6=4032/0-3-0

Max Horz 10=225(LC 5)

Max Uplift10=-1440(LC 8), 6=-1598(LC 9) Max Grav 10=4008(LC 2), 6=4455(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-3776/1384, 2-3=-3020/1191, 3-4=-3019/1191, 4-5=-3992/1461, 1-10=-3462/1263,

5-6=-3631/1322

10-11=-308/407, 9-11=-308/407, 9-12=-1073/2855, 12-13=-1073/2855, 8-13=-1073/2855, 8-14=-1054/3021, 7-14=-1054/3021, 7-15=-163/385, 15-16=-163/385, 6-16=-163/385 **BOT CHORD**

WEBS 3-8=-1400/3655, 4-8=-1158/552, 4-7=-530/1430, 2-8=-894/458, 2-9=-402/1084,

1-9=-955/2744, 5-7=-986/2827

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc, 2x6 - 2 rows staggered at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

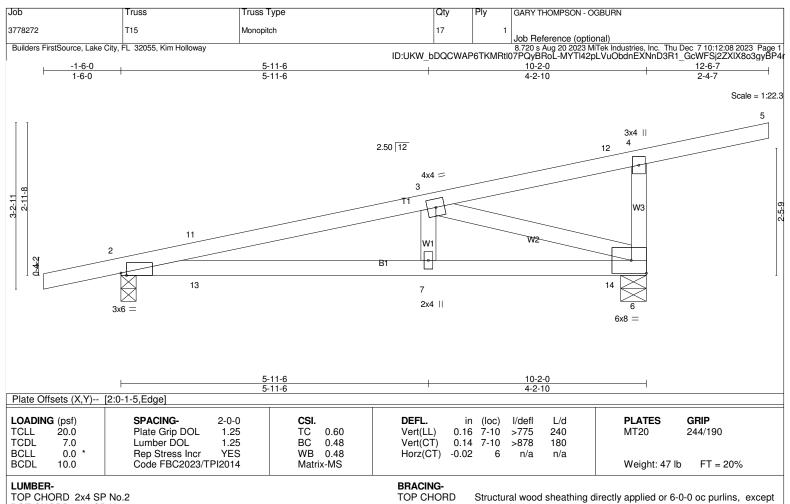
2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Unbalanced roof live loads have been considered for this design.

- 4) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) gable end zone; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 5) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


8) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.

- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 10=1440 6 = 1598.
- 10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1276 lb down and 468 lb up at 2-0-4, 1276 lb down and 468 lb up at 4-0-4, 1276 lb down and 468 lb up at 6-0-4, 1276 lb down and 468 lb up at 8-0-4, and 1276 lb down and 468 lb up at 10-0-4, and 1276 lb down and 468 lb up at 11-4-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

Continued on page 2

ob	Truss	Truss Type	C	ity Pi	у	GARY THOMPSON - OGBURN
778272	T14	Common Girder	1		2	Job Reference (ontional)
Builders FirstSource,	, Lake City, FL 32055, Kim Holloway	1	וויחו ויעו		ETKMP	Job Reference (optional) 8.720 s Aug 20 2023 MTek Industries, Inc. Thu Dec 7 10:12:06 2023 Page ttl07PQyBRoL-QAL_fNn5zG8tOT49FMBbMcu03iZdF5kEIEfh_nyBP-
Uniform Loads Vert: 1 Concentrated	Live (balanced): Lumber Incre s (plf) 1-3=-54, 3-5=-54, 6-10=-20 Loads (lb)	ease=1.25, Plate Increase=1.25 1123(F) 14=-1123(F) 15=-1123(F)				,

BOT CHORD 2x4 SP No.2 WFBS 2x4 SP No.3

end verticals Rigid ceiling directly applied or 4-0-5 oc bracing.

Installation guide.

BOT CHORD

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer

REACTIONS. (lb/size) 6=518/0-6-0, 2=441/0-3-8

Max Horz 2=147(LC 8)

Max Uplift6=-403(LC 8), 2=-362(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-11=-755/1391, 3-11=-753/1399, 4-6=-256/427

2-13=-1513/722, 7-13=-1513/722, 7-14=-1513/722, 6-14=-1513/722 BOT CHORD

WFBS 3-7=-509/220, 3-6=-780/1625

- 1) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C 10-0-4 to 10-0-4 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

 5) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=403, 2 = 362.