
DIAMETER BOLT SPACING FOR LOAD APPLIED PARALLEL TO GRAIN

GRADE AND SPECIES AS SPECIFIED ON THE ALPINE DESIGN

BOLT HOLES SHALL BE A MINIMUM OF 1/32" TO A MAXIMUM OF 1/16" LARGER THAN BOLT DIAMETER.

TYPICAL LOCATION OF 1/2" DIAMETER THRU BOLTS. QUANTITIES AS NOTED ON SEALED DESIGN MUST BE IN ONE OF THE PATTERNS SHOWN BELOW.

WASHERS REQUIRED UNDER BOLT HEAD AND NUT

C

DELRAY BEACH, FL 33444-2161

BC DL BC LL

> DATE DRWG

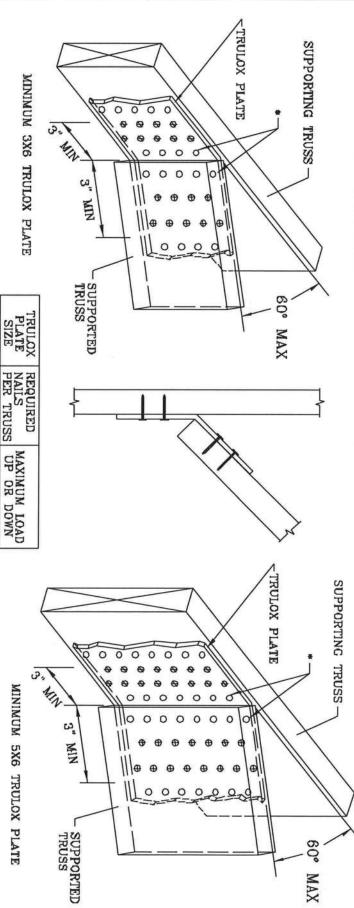
11/26/03 CNBOLTSP1103

PSF PSF PSF PSF

No: 34869 STATE OF FLORIDA

SPACING DUR. FAC. TOT. LD.

TRULOX CONNECTION


11 GAUGE (0.120" X 1.375") NAILS REQUIRED FOR TRULOX PLATE ATTACHMENT. FILL ROWS COMPLETELY WHERE SHOWN (4).

NAILS MAY BE OMITTED FROM THESE ROWS

THIS DETAIL MAY BE USED WITH SO. PINE. DOUGLAS-FIR OR HEM-FIR CHORDS WITH A MINIMUM 1.00 DURATION OF LOAD OR SPRUCE-PINE-FIR CHORDS WITH A MINIMUM 1.15 DURATION OF LOAD. CHORD SIZE OF BOTH TRUSSES MUST EXCEED THE TRULOX PLATE WIDTH.

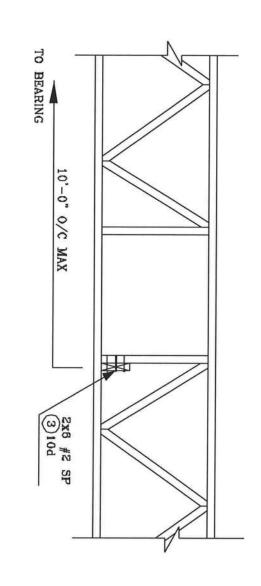
TRULOX PLATE IS CENTERED ON THE CHORDS AND BENT BETWEEN NAIL ROWS.

REFER TO ENGINEER'S SEALED DESIGN REFERENCING THIS DETAIL FOR LUMBER, PLATES, AND OTHER INFORMATION NOT SHOWN.

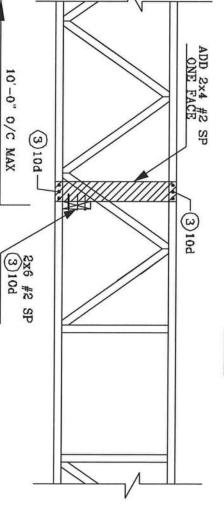
THIS DRAWING REPLACES DRAWINGS 1,158,989 1,158,989/R 1,154,944 1,152,217 1,152,017 1,159,154 & 1,151,524

3X6

MAXIMUM LOAD UP OR DOWN


MINIMUM 5X6 TRULOX PLATE

15 9


990# 350#

RUSSES REQUIRE EXTREME CARE IN FABRICATING, HANDLING, SHOPPING, INSTA TER TO BEST 1-00 (BULLING CID-PONCHT SAFTEY FOR HANDLING, PUBLISHED BY "UTL, SOAD D'HOMFREID GR, SUTTE ERD, HANDLEN, VL. 337199 AND VECA HOUZID TR, SOAD ENTERPRISE UN, HANDLIN, VL. 337199 FOR SAFTEY PRACTICES PRIDE TO PE SOAD ENTERPRISE UN, HANDLING TO CHORD SHALL HAVE RODUERLY ATTA BULL SAND BOTTON CHORD SHALL HAVE A PROPERLY ATTACHED RIGID CEIL(ING JULIUS LEE'S DELRAY BEACH, FL 33444-2381 No: 34869 STATE OF FLORIDA DRWG DATE REF CNTRULOX1103 11/26/03 TRULOX

STRONG BACK DETAIL SYSTEM-42 OR FLAT TRUSS

ALTERNATE DETAIL FOR STRONG BACK WITH VERTICAL NOT LINING UP

JULIUS LEE'S CONS. ENGINEERS P.A.

1455 SW 4th AVENUE
1555 SW 4th AVEN

TO BEARING

No: 34869 STATE OF FLORIDA

Project Information for:

L263148F

Builder:

Hugo Escalante

Lot:

4 and 5

Subdivision:

3 Rivers Estates

County:

Columbia

Truss Count:

24

Design Program: MiTek 20/20 6.3 Building Code: FBC2004/TPI2002 Truss Design Load Information:

Gravity:

Wind:

Roof (psf): N/A

Wind Standard: N/A

Wind Exposure: N/A

Floor (psf): 55.0

Wind Speed (mph): N/A

Note: See the individual truss drawings for special loading conditions.

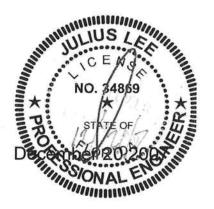
Contractor of Record, responsible for structural engineering:

Hugo Escalante Florida License No. CRC1326967

Address: P.O. Box 280 Fort White, Florida 32038

Truss Design Engineer: Julius Lee, PE Florida P.E. License No. 34869

Address: 1109 Coastal Bay Blvd. Boynton Beach, FL 33435

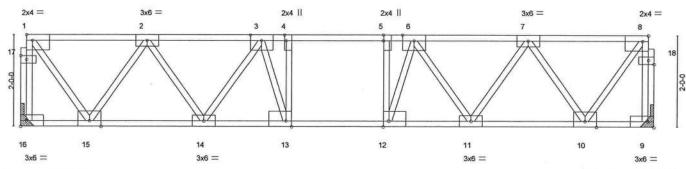

Notes

 Determination as to the suitability of these truss components for the structure is the responsibility of the building designer/engineer of record, as defined in ANSI/TPI 1-2002 Section 2.2

2. The seal date shown on the individual truss component drawings must match the seal date on this index sheet.

3. The Truss Design Engineer's responsibility relative to this structure consists solely of the design of the individual truss components and does not include the design of any additional structural elements including but not limited to continuous lateral bracing elements in the web and chord planes. See Florida Administrative Code 61G15-31.003 sections 3 c) & 5 and Chapter 2 of the National Design Standard for Metal Plate Connected Wood Truss Construction ANSI/TPI 1-2002 for additional information on the responsibilities of the delegated "Truss Design Engineer". Builders FirstSource and Julius Lee, PE do not accept any additional delegations beyond the scope of work described in the referenced documents above.

No.	Drwg. #	Truss ID	Date
1	J1919416	F01	12/20/07
2	J1919417	F02	12/20/07
3	J1919418	F03	12/20/07
4	J1919419	F04	12/20/07
5	J1919420	F05	12/20/07
6	J1919421	F06	12/20/07
7	J1919422	F07	12/20/07
8	J1919423	F08	12/20/07
9	J1919424	F09	12/20/07
10	J1919425	F10	12/20/07
11	J1919426	F11	12/20/07
12	J1919427	F12	12/20/07
13	J191942&	F13	12/20/07
14	J1919429	F14	12/20/07
15	J1919430	F15	12/20/07
16	J1919431	F16	12/20/07
17	J1919432	F17	12/20/07
18	J1919433	F18	12/20/07
19	J1919434	F19	12/20/07
20	J1919435	F20	12/20/07
21	J1919436	F21	12/20/07
22	J1919437	F22	12/20/07
23	J1919438	F23	12/20/07
24	J1919439	F24	12/20/07


Job ,	Truss	Truss Type	Qty	Ply		00000000000000000000000000000000000000
L263148F	F01	FLOOR	11	1		J1919416
		, 200,,	K.K.		Job Reference (optional)	

6.300 s Feb 15 2006 MiTek Industries, Inc. Tue Dec 18 12:18:46 2007 Page 1

0-6-8

0₁1₈ Scale = 1:23

Simpson HHUS48 into Beam by Others.

Simpson HHUS48

1	1-6-0	4-0-0	5-9-8	5-11-0 6-11-0	7-11-0 8 ₁ 0 ₁ 8	9-10-0	12-4-0	13-10-0
,	1-6-0	2-6-0	1-9-8	0-1-8 1-0-0	1-0-0 0-1-8	1-9-8	2-6-0	1-6-0

Plate Offsets (X,Y): [1:Edge,0-1-8], [4:0-1-8,Edge], [5:0-1-8,0-0-0], [8:0-1-8,Edge], [12:0-1-8,Edge], [13:0-1-8,Edge], [17:0-1-8, 0-1-0], [18:0-1-8,0-1-0]

LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	40.0	Plates Increase	1.00	TC	0.45	Vert(LL)	-0.06	13-14	>999	360	MT20	244/190
TCDL	10.0	Lumber Increase	1.00	BC	0.41	Vert(TL)	-0.08	13-14	>999	240	THE SHAPE OF THE S	
BCLL	0.0	Rep Stress Incr	YES	WB	0.31	Horz(TL)	0.02	9	n/a	n/a		
BCDL	5.0	Code FBC2004/TI	PI2002	(Mat	rix)						Weight: 87 lb	

LUMBER

TOP CHORD 4 X 2 SYP No.2 BOT CHORD 4 X 2 SYP No.2 WEBS 4 X 2 SYP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

Recommended hanger connection based on manufacturer tested capacities and nail calculations. Conditions may exist that require different connections than indicated. Refer to manufacturer publication for additional information. Hanger connection to be reviewed and approved by the Architect/Engineer of Record.

FORCES (lb) - Maximum Compression/Maximum Tension

REACTIONS (lb/size) 16=741/Mechanical, 9=741/Mechanical

TOP CHORD

16-17=-736/0, 1-17=-736/0, 9-18=-736/0, 8-18=-736/0, 1-2=-469/0, 2-3=-1090/0,

3-4=-1334/0, 4-5=-1334/0, 5-6=-1334/0, 6-7=-1090/0, 7-8=-469/0

BOT CHORD

15-16=0/25, 14-15=0/878, 13-14=0/1287, 12-13=0/1334, 11-12=0/1287,

10-11=0/878, 9-10=0/25

WEBS

4-13=-325/41, 5-12=-325/41, 1-15=0/775, 2-15=-738/0, 2-14=0/382, 3-14=-354/0,

3-13=-90/427, 8-10=0/775, 7-10=-738/0, 7-11=0/382, 6-11=-354/0, 6-12=-90/427

JOINT STRESS INDEX

1 = 0.59, 2 = 0.54, 3 = 0.47, 4 = 0.20, 5 = 0.20, 6 = 0.47, 7 = 0.54, 8 = 0.59, 9 = 0.56, 10 = 0.59, 11 = 0.54, 12 = 0.47, 13 = 0.47, 14 = 0.54, 15 = 0.59, 16 = 0.56, 17 = 0.00, 17 = 0.00, 18 = 0.00 and 18 = 0.00

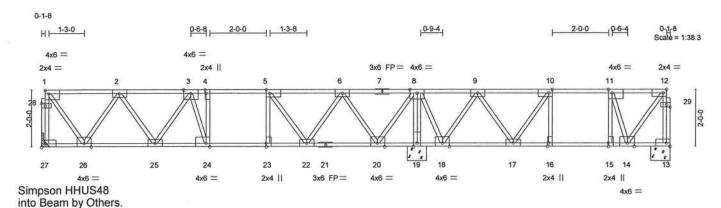
NOTES

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are 4x6 MT20 unless otherwise indicated.
- Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-16d nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

Julius Lere Truse Cesian Engineer Flonda FE No. 34869 1109 Ceastal Bay Blyd Boynton Beach, FL 93439

December 20,2007

LOAD CASE(S) Standard


Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building ode. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job 4	Truss	Truss Type	Qty	Ply	11010117
L263148F	F02	FLOOR	3	1	J1919417
	1.0700		D-2505		Job Reference (optional)

6.300 s Feb 15 2006 MiTek Industries, Inc. Tue Dec 18 12:18:47 2007 Page 1

6-11-0 7-11-0 17-11-12 18-11-12 5-9-8 5-11-0 9-4-0 11-10-0 13-2-8 14-1-4 16-7-4 20-7-8 22-1-8 4-0-0 1-6-0 1-6-0 2-6-0 1-9-8 0-1-8 1-0-0 1-5-0 2-6-0 1-4-8 0-10-12 2-6-0 1-4-8 1-0-0 1-0-0 0-7-12 1-6-0 1-0-0

Plate Offsets (X,Y): [1:Edge,0-1-8], [4:0-1-8,Edge], [5:0-1-8,Edge], [10:0-1-8,Edge], [11:0-1-8,Edge], [12:0-1-8,Edge], [15:0-1-8, 0-0-0], [16:0-1-8,Edge], [23:0-1-8,0-0-0], [24:0-1-8,Edge], [28:0-1-8,0-1-0], [29:0-1-8,0-1-0]

LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	40.0	Plates Increase	1.00	TC	0.48	Vert(LL)	-0.09	24-25	>999	360	MT20	244/19
TCDL	10.0	Lumber Increase	1.00	BC	0.61	Vert(TL)	-0.12	24-25	>999	240		9
BCLL	0.0	Rep Stress Incr	YES	WB	0.33	Horz(TL)	0.02	13	n/a	n/a		
BCDL	5.0	Code FBC2004/TF	212002	(Mat	rix)						Weight: 138 lb	

BRACING

TOP CHORD

BOT CHORD

LUMBER

TOP CHORD 4 X 2 SYP No.2

BOT CHORD 4 X 2 SYP No.2

WEBS 4 X 2 SYP No.3

Recommended hanger connection based on manufacturer tested capacities and nail calculations. Conditions may exist that require different connections than indicated. Refer to manufacturer publication for additional information. Hanger connection to be reviewed and approved by the Architect/Engineer of Record.

REACTIONS (lb/size) 27=632/Mechanical, 13=356/0-8-0, 19=1406/0-8-0

Max Grav 27=676(load case 2), 13=401(load case 4), 19=1410(load case 6)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 27-28=-670/0, 1-28=-670/0, 13-29=-391/0, 12-29=-390/0, 1-2=-420/0, 2-3=-960/0,

3-4=-1100/0, 4-5=-1100/0, 5-6=-850/37, 6-7=-219/282, 7-8=-219/282, 8-9=0/412,

9-10=-301/17, 10-11=-381/0, 11-12=-246/0

BOT CHORD 26-27=0/22, 25-26=0/788, 24-25=0/1103, 23-24=0/1100, 22-23=0/1100,

21-22=-150/622, 20-21=-150/622, 19-20=-650/0, 18-19=-653/0, 17-18=-86/178,

16-17=0/381, 15-16=0/381, 14-15=0/381, 13-14=0/13

WEBS 4-24=-106/139, 5-23=0/173, 10-16=-77/35, 11-15=-19/168, 8-19=-1377/0,

1-26=0/694, 2-26=-663/0, 2-25=0/309, 3-25=-258/24, 3-24=-266/121, 8-20=0/821,

6-20=-776/0, 6-22=0/487, 5-22=-539/0, 10-17=-289/0, 9-17=0/321, 9-18=-603/0,

8-18=0/557, 12-14=0/406, 11-14=-453/0

Truss Design Engineer Florida FE No. 34869 1100 Caastal Bay Blvd Boynton Beach, FL 33435

Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals.

bracing.

Rigid ceiling directly applied or 6-0-0 oc

JOINT STRESS INDEX

1 = 0.53, 2 = 0.66, 3 = 0.48, 4 = 0.47, 5 = 0.64, 6 = 0.69, 7 = 0.13, 8 = 0.84, 9 = 0.66, 10 = 0.65, 11 = 0.49, 12 = 0.65, 13 = 0.64, 14 = 0.49, 15 = 0.47, 16 = 0.47, 17 = 0.66, 18 = 0.53, 19 = 0.58, 20 = 0.63, 21 = 0.20, 22 = 0.69, 23 = 0.47, 24 = 0.48, 25 = 0.66, 26 = 0.53, 27 = 0.64, 28 = 0.00, 28 = 0.47, 29 = 0.00 and 29 = 0.47

Continued on page 2

December 20,2007

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job ,	Truss	Truss Type	Qty	Ply		
L263148F	F02	FLOOR	3	1		J1919417
					Job Reference (optional)	

6.300 s Feb 15 2006 MiTek Industries, Inc. Tue Dec 18 12:18:47 2007 Page 2

NOTES

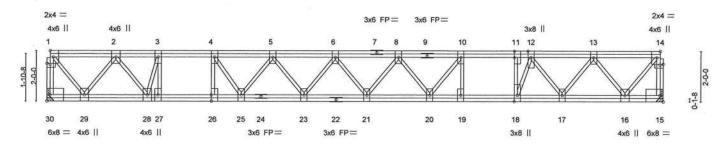
- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are 3x6 MT20 unless otherwise indicated.
- 3) The following joint(s) require plate inspection per the Tooth Count Method when this truss is chosen for quality assurance inspection: 21 and 7.
- 4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-16d nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 5) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

Julius Lee Truse Design Engineer Flonda PE No. 34869 1100 Coasial Bay Blvd Boyston Basen, Fl. 23435

Job ,	Truss	Truss Type	Qty	Ply		10200000
L263148F	F03	FLOOR	8	1		J1919418
					Job Reference (optional)	

6.300 s Feb 15 2006 MiTek Industries, Inc. Tue Dec 18 12:18:48 2007 Page 1


0-1-8

HI 1-3-0

Q-5-Q 2-0-0 1-0-12

2-0-0 0-6-8

0-1-8 Scale = 1:43.3

Simpson HHUS48 into Beam by Others. Simpson HHUS48

								10-0-	12		
1-6-0	4-0-0	4-6-8 5-6-8 6-6-8 7-8-12	10-2-12	12-8-12	15-2-12	16-7-4	17-7-4	18-7-4	20-6-4	23-0-4	24-6-4
1-6-0	2-6-0	0-6-8 1-0-0 1-0-0 1-2-4	2-6-0	2-6-0	2-6-0	1-4-8	1-0-0	1-0-0	1-9-8	2-6-0	1-6-0
								0-1-	В		

LOADIN	IG (psf)	SPACING	1-4-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	40.0	Plates Increase	1.00	TC	0.70	Vert(LL)	-0.29 2	21-23	>995	360	MT20	244/190
TCDL	10.0	Lumber Increase	1.00	BC	0.83	Vert(TL)	-0.46 2	21-23	>637	240		
BCLL	0.0	Rep Stress Incr	YES	WB	0.49	Horz(TL)	0.04	15	n/a	n/a		
BCDL	5.0	Code FBC2004/TF	PI2002	(Mat	rix)						Weight: 211 lb	

LUMBER

TOP CHORD 4 X 2 SYP No.2

BOT CHORD 4 X 2 SYP No.1D *Except*

15-22 4 X 2 SYP No.2, 15-24 4 X 2 SYP No.2

WEBS

WEBS

4 X 2 SYP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

Recommended hanger connection based on manufacturer tested capacities and nail calculations. Conditions may exist that require different connections than indicated. Refer to manufacturer publication for additional information. Hanger connection to be reviewed and approved by the Architect/Engineer of Record.

FORCES (lb) - Maximum Compression/Maximum Tension

REACTIONS (lb/size) 30=890/Mechanical, 15=890/Mechanical

TOP CHORD 1-30=-886/0, 14-15=-896/0, 1-2=-632/0, 2-3=-1736/0, 3-4=-2140/0, 4-5=-2625/0,

5-6=-2987/0, 6-7=-3071/0, 7-8=-3071/0, 8-9=-2871/0, 9-10=-2871/0, 10-11=-2488/0,

11-12=-2488/0, 12-13=-1617/0, 13-14=-654/0

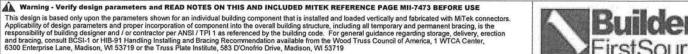
29-30=-0/0, 28-29=0/1188, 27-28=0/2140, 26-27=0/2140, 25-26=0/2140, **BOT CHORD**

24-25=0/2912, 23-24=0/2912, 22-23=0/3067, 21-22=0/3067, 20-21=0/3075,

19-20=0/2488, 18-19=0/2488, 17-18=0/2125, 16-17=0/1208, 15-16=0/0

10-19=-416/0, 11-18=-783/0, 3-27=0/1081, 4-26=-646/0, 1-29=0/1014, 2-29=-958/0,

2-28=0/943, 3-28=-1562/0, 10-20=0/716, 8-20=-403/0, 8-21=-30/32, 6-21=-36/33,


6-23=-162/0, 5-23=0/152, 5-25=-523/0, 4-25=0/944, 14-16=0/1050, 13-16=-953/0,

13-17=0/703, 12-17=-874/0, 12-18=0/1219

JOINT STRESS INDEX

1 = 0.63, 1 = 0.47, 2 = 0.70, 3 = 0.65, 4 = 0.85, 5 = 0.49, 6 = 0.49, 7 = 0.19, 8 = 0.49, 9 = 0.18, 10 = 0.72, 11 = 0.33, 12 = 0.6413 = 0.72, 14 = 0.66, 14 = 0.47, 15 = 0.34, 16 = 0.78, 17 = 0.72, 18 = 0.63, 19 = 0.32, 20 = 0.73, 21 = 0.49, 22 = 0.51, 23 = 0.49, 23 = 0.400.49, 24 = 0.46, 25 = 0.87, 26 = 0.32, 27 = 0.65, 28 = 0.70, 29 = 0.76 and 30 = 0.34

Continued on page 2

Job ,	Truss	Truss Type	Qty	Ply		202000
L263148F	F03	FLOOR	8	1		J1919418
					Job Reference (optional)	

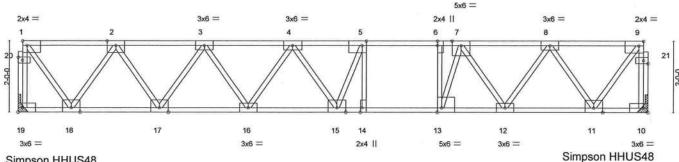
6.300 s Feb 15 2006 MiTek Industries, Inc. Tue Dec 18 12:18:48 2007 Page 2

NOTES

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are 3x6 MT20 unless otherwise indicated.
- 3) The following joint(s) require plate inspection per the Tooth Count Method when this truss is chosen for quality assurance inspection: 22, 24, 7 and 9.
- 4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-16d nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

Job.	Truss	Truss Type	Qty	Ply		14040440
L263148F	F04	FLOOR	7	1		J1919419
HE 10 10 10 10 10 10 10 1		771 590 - 602 7000 41-007			Job Reference (optional)	


6.300 s Feb 15 2006 MiTek Industries, Inc. Tue Dec 18 12:18:48 2007 Page 1

0-1-8

H 1-3-0

0-8-8 2-0-0 0-6-8

0-1-8 Scale = 1:30.6

Simpson HHUS48 into Beam by Others.

11-11-8 1-6-0 4-0-0 6-6-0 9-0-0 9-10-0 10-10-0 11-10-0 13-9-0 16-3-0 17-9-0 1-6-0 2-6-0 2-6-0 2-6-0 0-10-0 1-0-0 1-0-0 0-1-8 1-9-8 2-6-0

Plate Offsets (X,Y): [1:Edge,0-1-8], [5:0-1-8,Edge], [6:0-1-8,0-0-0], [9:0-1-8,Edge], [13:0-1-8,Edge], [14:0-1-8,Edge], [20:0-1-8,0-1-0], [21:0-1-8,0-1-0]

LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	40.0	Plates Increase	1.00	TC	0.96	Vert(LL)	-0.18	14-15	>999	360	MT20	244/190
TCDL	10.0	Lumber Increase	1.00	BC	0.95	Vert(TL)	-0.27	14-15	>764	240	The state of the s	
BCLL	0.0	Rep Stress Incr	YES	WB	0.42	Horz(TL)	0.04	10	n/a	n/a		
BCDL 5.0		Code FBC2004/TPI2002		(Matrix)		, ,					Weight: 108 lb	

LUMBER

TOP CHORD 4 X 2 SYP No.2 BOT CHORD 4 X 2 SYP No.1D WEBS 4 X 2 SYP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or 2-2-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing, Except:

2-2-0 oc bracing: 14-15,13-14.

REACTIONS (lb/size) 19=956/Mechanical, 10=956/Mechanical

Recommended hanger connection based on manufacturer tested capacities and nail calculations. Conditions may exist that require different connections than indicated. Refer to manufacturer publication for additional information. Hanger connection to be reviewed and approved by the Architect/Engineer of Record.

FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 19-20=-951/0, 1-20=-950/0, 10-21=-957/0,

19-20=-951/0, 1-20=-950/0, 10-21=-957/0, 9-21=-957/0, 1-2=-626/0, 2-3=-1538/0, 3-4=-2065/0, 4-5=-2220/0, 5-6=-2116/0, 6-7=-2116/0, 7-8=-1519/0, 8-9=-632/0

BOT CHORD 18-19=0/32, 17-18=0/1178, 16-17=0/1879, 15-16=0/2242, 14-15=0/2116,

13-14=0/2116, 12-13=0/1905, 11-12=0/1176, 10-11=0/32

5-14=-403/12, 6-13=-582/0, 1-18=0/1036, 2-18=-996/0, 2-17=0/648, 3-17=-614/0,

3-16=0/337, 4-16=-318/0, 4-15=-150/197, 5-15=-157/447, 9-11=0/1046,

8-11=-982/0, 8-12=0/618, 7-12=-695/0, 7-13=0/897

Julius Les Truss Design Engineer Florida FE No. 34865 1100 Casstal Bay Blvd Bovnton Besch, FL 33435

JOINT STRESS INDEX

1 = 0.79, 2 = 0.50, 3 = 0.66, 4 = 0.66, 5 = 0.44, 6 = 0.47, 7 = 0.64, 8 = 0.88, 9 = 0.80, 10 = 0.73, 11 = 0.80, 12 = 0.88, 13 = 0.64, 14 = 0.47, 15 = 0.44, 16 = 0.66, 17 = 0.50, 18 = 0.79, 19 = 0.73, 20 = 0.00, 20 = 0.47, 21 = 0.00 and 21 = 0.47

NOTES

WEBS

- 1) Unbalanced floor live loads have been considered for this design.
- All plates are 4x6 MT20 unless otherwise indicated.

Continued on page 2

December 20,2007

Marning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

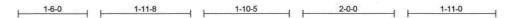
This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MTek connectors Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 553 D'Onofrio Drive, Madison, WI 53719

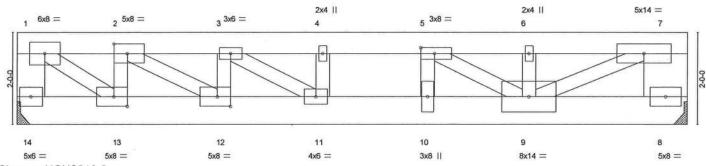
Job.	Truss	Truss Type	Qty	Ply		
L263148F	F04	FLOOR	7	1		J1919419
					Job Reference (optional)	

6.300 s Feb 15 2006 MiTek Industries, Inc. Tue Dec 18 12:18:48 2007 Page 2

NOTES


3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-16d nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard



Job	Truss	Truss Type	Qty	Ply		
1,0004405	F0F	FLOOR	l,			J1919420
L263148F	F05	FLOOR	1,	2	Job Reference (optional)	

6.300 s Apr 19 2006 MiTek Industries, Inc. Thu Dec 20 15:39:04 2007 Page 1

Scale = 1:23.6

Simpson HGUS210-2 into Beam by Others.

Simpson HGUS210-2

		6-9-8				1-0-0 1-0	-0			5-9-8	8	
Plate Of	fsets (X,Y):	[2:0-3-8,0-2-8], [5:0-	-3-8,0-1-8]	, [12:0-3-	8,0-2-8],	[13:0-3-8,0-2-	8]					
LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	40.0	Plates Increase	1.00	TC	0.65	Vert(LL)	-0.13	11	>999	360	MT20	244/190
TCDL	10.0	Lumber Increase	1.00	BC	0.58	Vert(TL)	-0.24	10-11	>678	240	10000000000	
BCLL	0.0	Rep Stress Incr	NO	WB	0.87	Horz(TL)	0.04	8	n/a	n/a		
BCDL	5.0	Code FBC2004/TF	212002	(Mat	rix)						Weight: 218 lb	

LUMBER

TOP CHORD 2 X 6 SYP No.1D BOT CHORD 2 X 8 SYP 2400F 2.0E WEBS 2 X 4 SYP No.3 *Except*

1-14 2 X 8 SYP 2400F 2.0E, 7-8 2 X 12 SYP No.2 7-9 2 X 4 SYP No.2, 5-9 2 X 4 SYP No.2 1-13 2 X 4 SYP No.2, 2-12 2 X 4 SYP No.2

6-9-8

BRACING

TOP CHORD Structural wood sheathing directly applied or 4-3-5

14-7-0

oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

Recommended hanger connection based on manufacturer tested capacities and nail calculations. Conditions may exist that require different connections than indicated. Refer to manufacturer publication for additional information. Hanger connection to be reviewed and approved by the Architect/Engineer of Record.

REACTIONS (lb/size) 14=6485/Mechanical, 8=6485/Mechanical

Max Uplift 14=-221(load case 4), 8=-221(load case 4)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-14=-5099/193, 7-8=-4583/189, 1-2=-7028/240, 2-3=-12270/418, 3-4=-13996/477,

4-5=-13996/477, 5-6=-9176/311, 6-7=-9176/311

BOT CHORD 13-14=-59/1672, 12-13=-240/7028, 11-12=-418/12270, 10-11=-477/13996,

9-10=-477/13996, 8-9=-84/2406

WEBS 4-11=-681/73, 5-10=-13/1865, 7-9=-253/7554, 5-9=-5789/200, 6-9=-426/399,

2-13=-3751/176, 3-12=-2331/129, 1-13=-227/6710, 2-12=-213/6262, 3-11=-71/2248

JOINT STRESS INDEX

1 = 0.91, 2 = 0.88, 3 = 0.81, 4 = 0.16, 5 = 0.69, 6 = 0.18, 7 = 0.86, 8 = 0.83, 9 = 0.72, 10 = 0.30, 11 = 0.57, 12 = 0.88, 13 = 0.99 and 14 = 0.96

Julius Lee Truse Design Engineer Flonda PE No. 34868 1 100 Geastal Bay Blyd Boynton Beach, FL 33436

December 20,2007

Continued on page 2

Marming - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connector. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply		14040400
L263148F	F05	FLOOR	1	2		J1919420
				_	Job Reference (optional)	

6.300 s Apr 19 2006 MiTek Industries, Inc. Thu Dec 20 15:39:04 2007 Page 2

NOTES

2-ply truss to be connected together with 10d (0.131"x3") nails as follows:
 Top chords connected as follows: 2 X 8 - 2 rows at 0-9-0 oc, 2 X 12 - 2 rows at 0-9-0 oc, 2 X 6 - 2 rows at 0-9-0 oc.
 Bottom chords connected as follows: 2 X 8 - 2 rows at 0-7-0 oc.
 Webs connected as follows: 2 X 4 - 1 row at 0-9-0 oc.

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced floor live loads have been considered for this design.
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 221 lb uplift at joint 14 and 221 lb uplift at joint 8.
- 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-16d nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

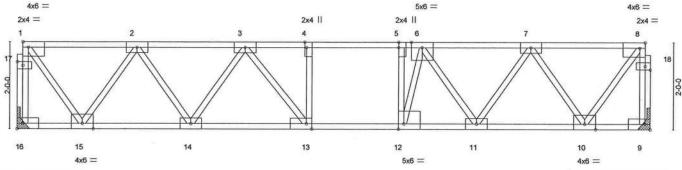
Loading has been calculated by the truss manufacturer. It is the responsibility of the Architect/Engineer of Record to verify and approve the loading.

LOAD CASE(S) Standard Except:

Floor: Lumber Increase=1.00, Plate Increase=1.00
 Uniform Loads (plf)

Vert: 8-14=-483(F=-473), 1-7=-456

 User defined: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 8-14=-6(F), 1-7=38(F)


> Julius Lee Truse Design Engineer Florida PE No. 24868 1199 Coasial Bay Blyd Boynton Beach, FL 23425

Job,	Truss	Truss Type	Qty	Ply	LANCOUR AT
L263148F	F06	FLOOR	6	1	J191942
	100000000000000000000000000000000000000				Job Reference (optional)
Builders FirstSo	urce Lake City FL	32055 6.3	00 e Feb 15 2006 M	ITek In	dustries Inc. Tue Dec 18 12:18:50 2007 Page 1

io sireb 15 2006 Miller Industries, Inc. Tue Dec 18 12:18:50 2007 Page 1

Simpson HHUS48 into Beam by Others.

1-6-0	4-0-0	6-8-0	8-9-7 8 ₁ 9 ₆ 3	8-9-8 8-11-0	10-7-0	13-1-0	14-7-0
1-6-0	2-6-0	2-8-0	0-1-8 1-0-0	1-0-0 0-1-8	1-8-0	2-6-0	1-6-0

[1:Edge,0-1-8], [4:0-1-8,Edge], [5:0-1-8,0-0-0], [8:0-1-8,Edge], [12:0-1-8,Edge], [13:0-1-8,Edge], [17:0-1-8 .0-1-0], [18:0-1-8.0-1-0]

LOADIN	IG (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	40.0	Plates Increase	1.00	TC	0.64	Vert(LL)	-0.10	13-14	>999	360	MT20	244/190
TCDL	10.0	Lumber Increase	1.00	BC	0.57	Vert(TL)	-0.14	13-14	>999	240	SIRSTEN ADMINISTRA	
BCLL	0.0	Rep Stress Incr	YES	WB	0.33	Horz(TL)	0.02	9	n/a	n/a		
BCDL	5.0	Code FBC2004/TF	PI2002	(Mat	rix)						Weight: 90 lb	

LUMBER

TOP CHORD 4 X 2 SYP No.2 BOT CHORD 4 X 2 SYP No.2 4 X 2 SYP No.3 **WEBS**

BRACING

TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

Simpson HHUS48

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc

bracing.

Recommended hanger connection based on manufacturer tested capacities and nail calculations. Conditions may exist that require different connections than indicated. Refer to manufacturer publication for additional information. Hanger connection to be reviewed and approved by the Architect/Engineer of Record.

REACTIONS (lb/size) 16=782/Mechanical, 9=782/Mechanical

TOP CHORD

16-17=-776/0, 1-17=-775/0, 9-18=-779/0, 8-18=-778/0, 1-2=-498/0, 2-3=-1180/0,

3-4=-1484/0, 4-5=-1484/0, 5-6=-1484/0, 6-7=-1172/0, 7-8=-500/0

BOT CHORD

15-16=0/26, 14-15=0/937, 13-14=0/1397, 12-13=0/1484, 11-12=0/1408,

10-11=0/935, 9-10=0/26

FORCES (lb) - Maximum Compression/Maximum Tension

WEBS

4-13=-205/0, 5-12=-467/17, 1-15=0/823, 2-15=-792/0, 2-14=0/439, 3-14=-390/0, 3-13=-42/345, 8-10=0/827, 7-10=-784/0, 7-11=0/428, 6-11=-425/0, 6-12=-52/605

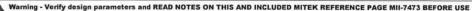
JOINT STRESS INDEX

1 = 0.63, 2 = 0.62, 3 = 0.45, 4 = 0.13, 5 = 0.29, 6 = 0.48, 7 = 0.61, 8 = 0.63, 9 = 0.59, 10 = 0.63, 11 = 0.61, 12 = 0.47, 13 = 0.47, 0.45, 14 = 0.62, 15 = 0.63, 16 = 0.59, 17 = 0.00, 17 = 0.00, 18 = 0.00 and 18 = 0.00

NOTES

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are 3x6 MT20 unless otherwise indicated.
- 3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-16d nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

December 20,2007


LOAD CASE(S) Standard

Marning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

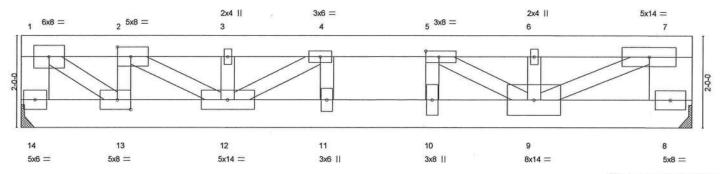
This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors, Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erect and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

December 20,2007

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors.

Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building ode. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719



Job ,	Truss	Truss Type	Qty	Ply		14040422
L263148F	F07	FLOOR	1	2	1	J1919422
					Job Reference (optional)	

6.300 s Apr 19 2006 MiTek Industries, Inc. Thu Dec 20 15:41:14 2007 Page 1

2-0-0 1-5-14 1-11-9 1-10-5 1-11-0

Scale = 1:23.6

Simpson HGUS210-2

Simpson HGUS210-2 into Beam by Others.

		7-9-8 8-	9-8	14-7-0							
				1-0-0 1-	1-0-0	5-9-8					
Plate Offsets (X,Y): [2:0-3-8,0-2-8], [5:0-3-8,0-1-8], [13:0-3-8,0-2-8											
LOADING (psf)	SPACING Plates Increase	2-0-0	CSI	0.65	DEFL Vert(LL)	in -0.13	(loc)	l/defl	L/d 360	PLATES MT20	GRIP

LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	40.0	Plates Increase	1.00	TC	0.65	Vert(LL)	-0.13	11	>999	360	MT20	244/190
TCDL	10.0	Lumber Increase	1.00	BC	0.60	Vert(TL)	-0.24	11	>679	240		
BCLL	0.0	Rep Stress Incr	NO	WB	0.88	Horz(TL)	0.04	8	n/a	n/a		
BCDL	BCDL 5.0 Code FBC2004/TPI2002		(Mati	rix)						Weight: 218 lb		

LUMBER

TOP CHORD 2 X 6 SYP No.1D BOT CHORD 2 X 8 SYP 2400F 2.0E **WEBS** 2 X 4 SYP No.3 *Except*

1-14 2 X 8 SYP 2400F 2.0E, 7-8 2 X 12 SYP No.2

7-9 2 X 4 SYP No.2, 1-13 2 X 4 SYP No.2

2-12 2 X 4 SYP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 4-3-8

oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

Recommended hanger connection based on manufacturer tested capacities and nail calculations. Conditions may exist that require different connections than indicated. Refer to manufacturer publication for additional information. Hanger connection to be reviewed and approved by the Architect/Engineer of Record.

REACTIONS (lb/size) 14=6513/Mechanical, 8=6513/Mechanical

Max Uplift 14=-221(load case 4), 8=-221(load case 4)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-14=-5135/194, 7-8=-4622/190, 1-2=-7047/240, 2-3=-12157/410, 3-4=-12157/410,

4-5=-14114/480, 5-6=-9271/313, 6-7=-9271/313

BOT CHORD 13-14=-59/1676, 12-13=-240/7047, 11-12=-480/14114, 10-11=-480/14114,

9-10=-480/14114, 8-9=-84/2404

4-11=0/988, 5-10=-15/1886, 7-9=-255/7662, 5-9=-5816/202, 2-13=-3662/171,

3-12=-1091/85, 1-13=-227/6739, 2-12=-202/6098, 4-12=-2409/86, 6-9=-444/385

JOINT STRESS INDEX

WEBS

1 = 0.91, 2 = 0.86, 3 = 0.25, 4 = 0.43, 5 = 0.69, 6 = 0.18, 7 = 0.88, 8 = 0.83, 9 = 0.73, 10 = 0.31, 11 = 0.20, 12 = 0.95, 13 = 1.00 and 14 = 0.97

s Las 9 Design Engineer da PE No. 34866 1 Coestal Bay Blvd 1 Coestal By Blvd

December 20,2007

Continued on page 2

Job _,	Truss	Truss Type	Qty	Ply		14040400
L263148F	F07	FLOOR	1	2		J1919422
					Job Reference (optional)	

6.300 s Apr 19 2006 MiTek Industries, Inc. Thu Dec 20 15:41:14 2007 Page 2

NOTES

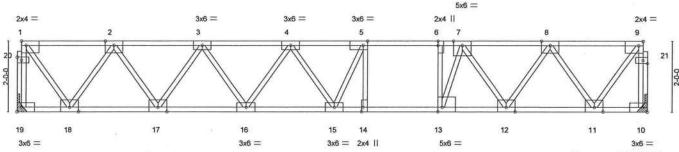
- 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:
 Top chords connected as follows: 2 X 8 2 rows at 0-9-0 oc, 2 X 12 2 rows at 0-9-0 oc, 2 X 6 2 rows at 0-9-0 oc.
 Bottom chords connected as follows: 2 X 8 2 rows at 0-7-0 oc.
 Webs connected as follows: 2 X 4 1 row at 0-9-0 oc.
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced floor live loads have been considered for this design.
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 221 lb uplift at joint 14 and 221 lb uplift at joint 8.
- 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-16d nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

Loading has been calculated by the truss manufacturer. It is the responsibility of the Architect/Engineer of Record to verify and approve the loading.

LOAD CASE(S) Standard Except:

- Floor: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
 - Vert: 8-14=-487(F=-477), 1-7=-456
- 4) User defined: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 8-14=-6(F), 1-7=38(F)

Julius Lee Truse Design Engineer Florida PE No. 34868 1100 Ceastal Bay filvid Boynton Beach, Ft. 33435



Job.	Truss	Truss Type	Qty	Ply	
L263148F	F08	FLOOR	7	1	J191
	17.04.44.0		OF 1 1 20		Job Reference (optional)

6.300 s Feb 15 2006 MiTek Industries, Inc. Tue Dec 18 12:18:51 2007 Page 1

0-1-8 H 1-3-0

0-9-12 2-0-0 0-6-12

Simpson HHUS48

Simpson HHUS48 into Beam by Others.

			12-0-12						
1-6-0	4-0-0	6-6-0	9-0-0	9-11-4	10-11-4	11-11-4	13-10-8	16-4-8	17-10-8
1-6-0	2-6-0	2-6-0	2-6-0	0-11-4	1-0-0	1-0-0 0-1-8	1-9-12	2-6-0	1-6-0

[1:Edge,0-1-8], [5:0-1-8,Edge], [6:0-1-8,0-0-0], [9:0-1-8,Edge], [13:0-1-8,Edge], [14:0-1-8,Edge], [20:0-1-8 Plate Offsets (X,Y): ,0-1-0], [21:0-1-8,0-1-0]

LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	40.0	Plates Increase	1.00	TC	0.98	Vert(LL)	-0.19	14-15	>999	360	MT20	244/190
TCDL	10.0	Lumber Increase	1.00	BC	0.96	Vert(TL)	-0.29	14-15	>738	240	A A A A A A A A A A A A A A A A A A A	
BCLL	0.0	Rep Stress Incr	YES	WB	0.42	Horz(TL)	0.04	10	n/a	n/a		
BCDL	5.0	Code FBC2004/TI	PI2002	(Mat	rix)						Weight: 109 lb	

LUMBER

TOP CHORD 4 X 2 SYP No.2 BOT CHORD 4 X 2 SYP No.1D 4 X 2 SYP No.3 **WEBS**

BRACING

TOP CHORD Structural wood sheathing directly applied,

except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing, Except:

2-2-0 oc bracing: 14-15,13-14. Recommended hanger connection based on manufacturer tested capacities and nail calculations. Conditions may exist that require

different connections than indicated. Refer to manufacturer publication

REACTIONS (lb/size) 19=963/Mechanical, 10=963/Mechanical

FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD

for additional information. Hanger connection to be reviewed and approved by the Architect/Engineer of Record. 19-20=-958/0, 1-20=-957/0, 10-21=-964/0, 9-21=-964/0, 1-2=-631/0, 2-3=-1552/0,

3-4=-2089/0, 4-5=-2253/0, 5-6=-2144/0, 6-7=-2144/0, 7-8=-1533/0, 8-9=-637/0 **BOT CHORD** 18-19=0/32, 17-18=0/1188, 16-17=0/1897, 15-16=0/2272, 14-15=0/2144,

13-14=0/2144, 12-13=0/1923, 11-12=0/1186, 10-11=0/32

5-14=-380/11, 6-13=-582/0, 1-18=0/1044, 2-18=-1005/0, 2-17=0/656, 3-17=-622/0,

3-16=0/346, 4-16=-330/0, 4-15=-143/196, 5-15=-159/424, 9-11=0/1055,

8-11=-989/0, 8-12=0/625, 7-12=-705/0, 7-13=0/904

ulius Lee nuss Design Engineer londa PE No. 34888 100 Ceastal Ray Blvd oynton Beach, Ft. 30435

JOINT STRESS INDEX

1 = 0.79, 2 = 0.50, 3 = 0.66, 4 = 0.66, 5 = 0.81, 6 = 0.47, 7 = 0.64, 8 = 0.48, 9 = 0.80, 10 = 0.74, 11 = 0.81, 12 = 0.48, 13 = 0.48, 14 = 0.48, 14 = 0.48, 14 = 0.48, 14 = 0.48, 14 = 0.48, 14 = 0.48, 14 = 0.48, 14 = 0.48, 14 = 0.48, 14 = 0.48, 14 = 0.48, 14 = 0.48, 14 = 0.48, 14 = 0.48, 14 = 0.48, 0.64, 14 = 0.47, 15 = 0.81, 16 = 0.66, 17 = 0.50, 18 = 0.80, 19 = 0.73, 20 = 0.00, 20 = 0.47, 21 = 0.00 and 21 = 0.47

NOTES

WEBS

- 1) Unbalanced floor live loads have been considered for this design.
- All plates are 4x6 MT20 unless otherwise indicated.

Continued on page 2

December 20,2007

▲ Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erect and bracing, consult BCSI-1 or HIB-91 Handling installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

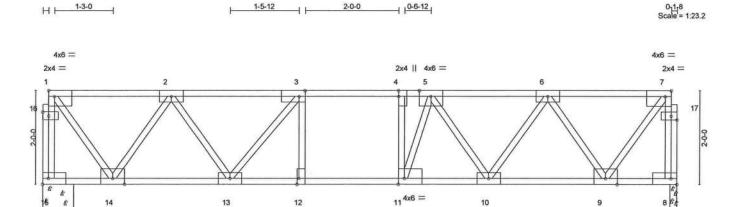
Job,	Truss	Truss Type	Qty	Ply		DESCRIPTION OF THE PARTY.
L263148F	F08	FLOOR	7	1		J1919423
					Job Reference (optional)	

6.300 s Feb 15 2006 MiTek Industries, Inc. Tue Dec 18 12:18:51 2007 Page 2

NOTES

3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-16d nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard



Job	Truss	Truss Type	Qty	Ply	53725
L263148F	F09	FLOOR	1	1	J191942
G1994/2012	1	100000000000000000000000000000000000000			Job Reference (optional)

14 4x6 =

0-1-8

6.300 s Feb 15 2006 MiTek Industries, Inc. Tue Dec 18 12:18:52 2007 Page 1

1-6-0	4-0-0	5-7-4	6-7-4	7-7-4 7-8-12	9-6-8	12-0-8	13-6-8
1-6-0	2-6-0	1-7-4	1-0-0	1-0-0 0-1-8	1-9-12	2-6-0	1-6-0

Plate Offsets (X,Y): [1:Edge,0-1-8], [3:0-1-8,Edge], [4:0-1-8,0-0-0], [7:0-1-8,Edge], [11:0-1-8,Edge], [12:0-1-8,Edge], [16:0-1-8 ,0-1-0], [17:0-1-8,0-1-0]

12

2x4 ||

LOADIN	IG (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	40.0	Plates Increase	1.00	TC	0.41	Vert(LL)	-0.08	10-11	>999	360	MT20	244/19
TCDL	10.0	Lumber Increase	1.00	BC	0.49	Vert(TL)	-0.10	10-11	>999	240	I I I I I I I I I I I I I I I I I I I	
BCLL	0.0	Rep Stress Incr	YES	WB	0.30	Horz(TL)	0.02	8	n/a	n/a		
BCDL	5.0	Code FBC2004/TF	212002	(Mat	rix)						Weight: 84 lb	

-	v.						
T	0	0	CI	10	DI	7	

LUMBER

TOP CHORD 4 X 2 SYP No.2 BOT CHORD 4 X 2 SYP No.2 4 X 2 SYP No.3 WEBS

BRACING

TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

4x6 =

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc

bracing.

10

REACTIONS (lb/size) 15=725/0-8-0, 8=725/0-1-12

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 15-16=-720/0, 1-16=-720/0, 8-17=-720/0, 7-17=-720/0, 1-2=-458/0, 2-3=-1054/0,

3-4=-1280/0, 4-5=-1280/0, 5-6=-1057/0, 6-7=-457/0

13

BOT CHORD 14-15=0/24, 13-14=0/858, 12-13=0/1280, 11-12=0/1280, 10-11=0/1243, 9-10=0/856

WEBS 3-12=-70/115, 4-11=-279/43, 1-14=0/758, 2-14=-720/0, 2-13=0/360, 3-13=-427/0,

7-9=0/756, 6-9=-718/0, 6-10=0/363, 5-10=-335/0, 5-11=-118/397

JOINT STRESS INDEX

1 = 0.58, 2 = 0.51, 3 = 0.27, 4 = 0.18, 5 = 0.43, 6 = 0.51, 7 = 0.57, 8 = 0.55, 9 = 0.58, 10 = 0.51, 11 = 0.43, 12 = 0.14, 13 = 0.58, 10 = 0.51, 11 = 0.43, 12 = 0.14, 13 = 0.58, 10 = 0.51, 11 = 0.43, 12 = 0.14, 13 = 0.58, 10 = 0.51, 11 = 0.43, 12 = 0.14, 13 = 0.58, 10 = 0.51, 11 = 0.43, 12 = 0.14, 13 = 0.58, 10 = 0.51, 11 = 0.43, 12 = 0.51, 12 = 0.51, 13 = 0.0.51, 14 = 0.58, 15 = 0.55, 16 = 0.00, 16 = 0.00, 17 = 0.00 and 17 = 0.00

NOTES

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are 3x6 MT20 unless otherwise indicated.
- 3) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 8.
- 4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with

Continued also paste on the continued of the continued of

December 20,2007

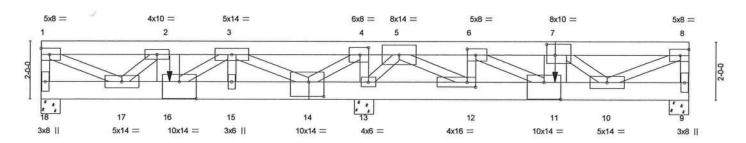
Marning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building occ. For general guidance regarding storage, delivery, erect and bracing, consult BCSI-1 or HIB-91 Handling installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job,	Truss	Truss Type	Qty	Ply		VILLOR TOP BUT SAY IN THE PRINTE
L263148F	F09	FLOOR	1	1		J1919424
					Job Reference (optional)	


6.300 s Feb 15 2006 MiTek Industries, Inc. Tue Dec 18 12:18:52 2007 Page 2

LOAD CASE(S) Standard


Job	Truss	Truss Type	Qty	Ply		
L263148F	F10	FLOOR	1	2		J1919425
					Job Reference (optional)	

6.300 s Apr 19 2006 MiTek Industries, Inc. Thu Dec 20 15:47:34 2007 Page 1

Scale = 1:37.5

WARNING: This truss is not symmetrical and must be installed as shown.

	4-9	-4 0-8-0 1-0)-0	4-8-12	1		6	-7-0			4-7-0	
Plate Of	fsets (X,Y):	[4:0-3-8,0-3-0], [6:0-	-3-8,0-2-8]	, [7:0-3-8	,0-4-8], [11:0-7-0,0-7-0]	[12:0-3	3-8,0-2-	0], [14:0-	6-4,0-6-0]	, [16:0-7-0,0-7-0]	
LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	40.0	Plates Increase	1.00	TC	0.87	Vert(LL)	-0.09	11	>999	360	MT20	244/190
TCDL	10.0	Lumber Increase	1.00	BC	0.60	Vert(TL)	-0.13	11-12	>999	240	120000000000000000000000000000000000000	
BCLL	0.0	Rep Stress Incr	NO	WB	0.94	Horz(TL)	0.01	9	n/a	n/a		
BCDL	5.0	Code FBC2004/TF	PI2002	(Mat	rix)	0.0000000000000000000000000000000000000					Weight: 335 lb	

LUMBER

TOP CHORD 2 X 6 SYP No.1D

BOT CHORD 2 X 8 SYP 2400F 2.0E

2 X 4 SYP No.3 *Except* WEBS

> 1-18 2 X 4 SYP No.2, 8-9 2 X 4 SYP No.2 2-16 2 X 10 SYP No.2, 7-11 2 X 10 SYP No.2 1-17 2 X 4 SYP No.2, 3-14 2 X 4 SYP No.2 4-14 2 X 4 SYP No.2, 6-11 2 X 4 SYP No.1D 5-12 2 X 4 SYP No.1D, 8-10 2 X 4 SYP No.2

5-5-4 6-5-4

BRACING

TOP CHORD **BOT CHORD** 17-9-0

Structural wood sheathing directly applied or 5-1-1

oc purlins, except end verticals.

Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS (lb/size) 18=4052/0-8-0, 9=3906/0-8-0, 13=12637/0-8-0

Max Grav 18=4434(load case 2), 9=4268(load case 3), 13=12637(load case 1)

11-2-0

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-18=-3935/0, 8-9=-3821/0, 1-2=-6896/0, 2-3=-10532/0, 3-4=0/2882, 4-5=0/7965,

5-6=-5347/25, 6-7=-10527/0, 7-8=-6691/0

BOT CHORD 17-18=0/625, 16-17=0/10532, 15-16=0/7203, 14-15=0/7203, 13-14=-7965/0, 12-13=-4198/0

, 11-12=-25/5347, 10-11=0/10527, 9-10=0/606

2-16=0/3471, 3-15=0/1438, 4-13=-5139/0, 7-11=0/3151, 1-17=0/7173, 2-17=-4945/0,

3-14=-8975/0, 4-14=0/7136, 6-11=0/6616, 5-12=0/9021, 5-13=-5961/0, 8-10=0/6960,

7-10=-4960/0, 3-16=0/4699, 6-12=-3233/0

JOINT STRESS INDEX

WEBS

1 = 0.91, 2 = 0.68, 3 = 0.78, 4 = 0.85, 5 = 0.91, 6 = 0.92, 7 = 0.91, 8 = 0.88, 9 = 0.67, 10 = 0.78, 11 = 0.76, 12 = 0.89, 13 = 0.87, 14 = 0.89, 12 = 0.89, 13 = 0.89, 14 = 0.0.99, 15 = 0.29, 16 = 0.79, 17 = 0.80 and 18 = 0.70

December 20,2007

Continued on page 2

🛕 Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TP1 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply		
L263148F	F10	FLOOR	1	2		J1919425
		100			Job Reference (optional)	

6.300 s Apr 19 2006 MiTek Industries, Inc. Thu Dec 20 15:47:34 2007 Page 2

NOTES

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2 X 4 - 1 row at 0-9-0 oc, 2 X 6 - 2 rows at 0-9-0 oc. Bottom chords connected as follows: 2 X 8 - 2 rows at 0-2-0 oc.

Webs connected as follows: 2 X 10 - 4 rows at 0-2-0 oc, 2 X 4 - 1 row at 0-9-0 oc.

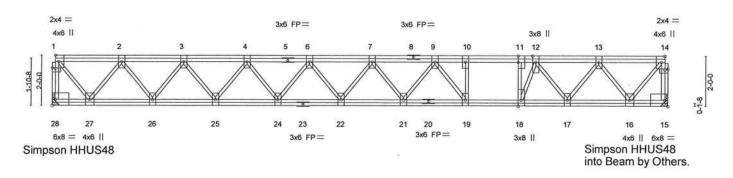
2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Unbalanced floor live loads have been considered for this design.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-16d nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard Except:

1) Floor: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)


Vert: 16-18=-10, 11-16=-397(F=-387), 9-11=-10, 1-8=-100

Concentrated Loads (lb)

Vert: 16=-6485(F) 11=-6513(F)

Job	Truss	Truss Type	Qty	Ply		14040400
L263148F	F11	FLOOR	7	1	Job Reference (optional)	J1919426
Builders FirstSc	ource, Lake City, FI	32055 6.3	300 s Feb 15 2006	MiTek In	dustries, Inc. Tue Dec 18 12:18:53	2007 Page 1
0-1-8						
HI 1-3-0				1-2-8	2-0-0 0-6-12	0-1-8 Scale = 1:43.3

							17-7				
1-6-0	4-0-0	6-6-0	9-0-0	11-6-0	14-0-0	16-5-8	16,7-0	18-7-0	20-6-4	23-0-4	24-6-4
1-6-0	2-6-0	2-6-0	2-6-0	2-6-0	2-6-0	2-5-8	0-1-8	1-0-0	1-9-12	2-6-0	1-6-0
							1-0-	0 0-1-8	3		

Plate Of	fsets (X,Y): [1:0-1-8,0-0-8], [1:	1:0-3-0,0-0)-0], [14	:0-1-8,0-	0-8], [14:0-3-0	0,Edge]					
LOADIN	IG (psf)	SPACING	1-4-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	40.0	Plates Increase	1.00	TC	0.74	Vert(LL)	-0.23	19-21	>999	360	MT20	244/190
TCDL	10.0	Lumber Increase	1.00	BC	0.71	Vert(TL)	-0.36	19-21	>803	240	01100000	
BCLL	0.0	Rep Stress Incr	YES	WB	0.49	Horz(TL)	0.04	15	n/a	n/a		
BCDL	5.0	Code FBC2004/TF	PI2002	(Mat	rix)						Weight: 210 lb	

BRACING TOP CHORD

BOT CHORD

LUIVIDER	
TOP CHORD	4 X 2 SYP No.2
BOT CHORD	4 X 2 SYP No.2

LUMBED

WEBS 4 X 2 SYP No.3

REACTIONS (lb/size) 28=890/Mechanical, 15=890/Mechanical

FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD

1-28=-885/0, 14-15=-894/0, 1-2=-644/0, 2-3=-1648/0, 3-4=-2376/0, 4-5=-2852/0,

5-6=-2852/0, 6-7=-3052/0, 7-8=-3039/0, 8-9=-3039/0, 9-10=-2488/0, 10-11=-2488/0,

11-12=-2488/0, 12-13=-1619/0, 13-14=-653/0

BOT CHORD 27-28=0/0, 26-27=0/1213, 25-26=0/2069, 24-25=0/2674, 23-24=0/3013,

22-23=0/3013, 21-22=0/3098, 20-21=0/2895, 19-20=0/2895, 18-19=0/2488,

17-18=0/2114, 16-17=0/1209, 15-16=0/0

WEBS 10-19=0/379, 11-18=-838/0, 1-27=0/1034, 2-27=-980/0, 2-26=0/747, 3-26=-725/0,

3-25=0/529, 4-25=-512/0, 4-24=0/306, 6-24=-277/0, 6-22=0/110, 7-22=-98/0, 7-21=-142/61, 9-21=-10/299, 9-19=-770/0, 14-16=0/1049, 13-16=-957/0,

13-17=0/705, 12-17=-852/0, 12-18=0/1218

Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals.

Recommended hanger connection based on manufacturer tested capacities and nail calculations. Conditions may exist that require

different connections than indicated. Refer to manufacturer publication for additional information. Hanger connection to be reviewed and

bracing.

approved by the Architect/Engineer of Record.

Rigid ceiling directly applied or 10-0-0 oc

JOINT STRESS INDEX

1 = 0.65, 1 = 0.47, 2 = 0.77, 3 = 0.54, 4 = 0.49, 5 = 0.18, 6 = 0.49, 7 = 0.49, 8 = 0.19, 9 = 0.49, 10 = 0.32, 11 = 0.35, 12 = 0.6613 = 0.72, 14 = 0.65, 14 = 0.47, 15 = 0.34, 16 = 0.78, 17 = 0.72, 18 = 0.64, 19 = 0.48, 20 = 0.46, 21 = 0.49, 22 = 0.49, 230.48, 24 = 0.49, 25 = 0.54, 26 = 0.77, 27 = 0.77 and 28 = 0.34

Continued on page 2

Job	Truss	Truss Type	Qty	Ply		
L263148F	F11	FLOOR	7	1	0	J1919426
					Job Reference (optional)	

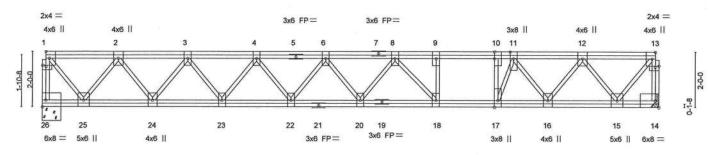
6.300 s Feb 15 2006 MiTek Industries, Inc. Tue Dec 18 12:18:53 2007 Page 2

NOTES

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are 3x6 MT20 unless otherwise indicated.
- 3) The following joint(s) require plate inspection per the Tooth Count Method when this truss is chosen for quality assurance inspection: 20, 23, 5 and 8.
- 4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-16d nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

Julius Les Truss Design Engineer Flonda PE No. 34888 1 100 Geestal Bay Blvd Bovoton Basco Et 28488


Job	Truss	Truss Type	Qty	Ply		descent them are poor
L263148F	F12	FLOOR	3	1		J1919427
		1			Job Reference (optional)	

6.300 s Feb 15 2006 MiTek Industries, Inc. Tue Dec 18 12:18:54 2007 Page 1

0-1-8 H 1-3-0

1-5-12 2-0-0 0-6-12

0-1-8 Scale = 1:39.3

Simpson HHUS48 into Beam by Others.

						15-4	-4 16-5-1			
1-6-0	4-0-0	6-6-0	9-0-0	11-6-0	14-2-12	14,4-4	16-4-4	18-3-8	20-9-8	22-3-8
1-6-0	2-6-0	2-6-0	2-6-0	2-6-0	2-8-12	0-1-8	1-0-0	1-9-12	2-6-0	1-6-0
						1-0-	0 0-1-8	ľ		

LOADIN	IG (nsf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	40.0	Plates Increase	1.00	TC	0.94	Vert(LL)	1000	18-20	>988	360	MT20	244/190
TCDL	10.0	Lumber Increase	1.00	BC	0.89	Vert(TL)		18-20	>630	240		2111100
BCLL	0.0	Rep Stress Incr	YES	WB	0.62	Horz(TL)	0.05	14	n/a	n/a		
BCDL	5.0	Code FBC2004/TF	PI2002	(Mat	rix)						Weight: 191 lb	

п	RЛ	В	_	D
u	IVI	В	_	ĸ

TOP CHORD 4 X 2 SYP No.2 BOT CHORD 4 X 2 SYP No.2 4 X 2 SYP No.3 WEBS

BRACING

TOP CHORD Structural wood sheathing directly applied or 2-2-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (lb/size) 26=1212/0-8-0, 14=1212/Mechanical

Recommended hanger connection based on manufacturer tested capacities and nail calculations. Conditions may exist that require different connections than indicated. Refer to manufacturer publication for additional information. Hanger connection to be reviewed and approved by the Architect/Engineer of Record.

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD

1-26=-1206/0, 13-14=-1217/0, 1-2=-870/0, 2-3=-2199/0, 3-4=-3122/0, 4-5=-3644/0,

5-6=-3644/0, 6-7=-3832/0, 7-8=-3832/0, 8-9=-3259/0, 9-10=-3259/0, 10-11=-3259/0,

11-12=-2165/0, 12-13=-881/0

BOT CHORD

25-26=-0/0, 24-25=0/1636, 23-24=0/2745, 22-23=0/3476, 21-22=0/3818, 20-21=0/3818, 19-20=0/3747, 18-19=0/3747, 17-18=0/3259, 16-17=0/2799,

15-16=0/1632, 14-15=0/0

WEBS

9-18=-31/366, 10-17=-1064/0, 1-25=0/1397, 2-25=-1319/0, 2-24=0/969,

3-24=-939/0, 3-23=0/649, 4-23=-608/0, 4-22=0/289, 6-22=-300/0, 6-20=-41/151,

8-20=-88/230, 8-18=-868/0, 13-15=0/1415, 12-15=-1292/0, 12-16=0/917,

11-16=-1091/0, 11-17=0/1542

Chaineer 6. 34869 I Bay Blvd ch, ft 33466

JOINT STRESS INDEX

1 = 0.87, 1 = 0.47, 2 = 0.72, 3 = 0.67, 4 = 0.49, 5 = 0.23, 6 = 0.49, 7 = 0.24, 8 = 0.55, 9 = 0.32, 10 = 0.45, 11 = 0.83, 12 = 0.6813 = 0.88, 13 = 0.47, 14 = 0.46, 15 = 0.88, 16 = 0.68, 17 = 0.82, 18 = 0.54, 19 = 0.59, 20 = 0.49, 21 = 0.60, 22 = 0.49, 23 = 0.49, 23 = 0.49, 24 = 0.490.67, 24 = 0.72, 25 = 0.87 and 26 = 0.46

Continued on page 2

Job.	Truss	Truss Type	Qty	Ply		
L263148F	F12	FLOOR	3	1		J1919427
					Job Reference (optional)	

6.300 s Feb 15 2006 MiTek Industries, Inc. Tue Dec 18 12:18:55 2007 Page 2

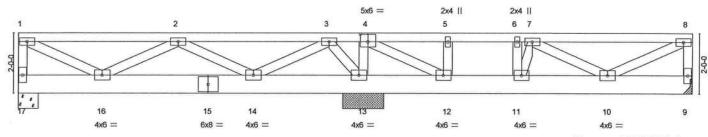
NOTES

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are 3x6 MT20 unless otherwise indicated.
- 3) The following joint(s) require plate inspection per the Tooth Count Method when this truss is chosen for quality assurance inspection: 19, 21, 5 and 7.
- 4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-16d nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply		0.0000000000000000000000000000000000000
L263148F	F13	FLOOR	1			J1919428
				3	Job Reference (optional)	

6.300 s Apr 19 2006 MiTek Industries, Inc. Thu Dec 20 16:02:46 2007 Page 1


2-6-0

0-11-12

2-0-0 0-4-4

Scale = 1:36.0

WARNING: This truss is not symmetrical and must be installed as shown.

Simpson HGUS210-3 into Beam by Others.

1	11-5-0	14-4-4	15-4-4	16-4-4	22-3-8	i
	11-5-0	2-11-4	1-0-0	1-0-0	5-11-4	

Plate Of	fsets (X,Y):	[4:0-3-0,0-3-0]										
LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	40.0	Plates Increase	1.00	TC	0.66	Vert(LL)	-0.04	14-16	>999	360	MT20	244/190
TCDL	10.0	Lumber Increase	1.00	BC	0.34	Vert(TL)	-0.06	14-16	>999	240	Vi	
BCLL	0.0	Rep Stress Incr	NO	WB	0.55	Horz(TL)	0.00	13	n/a	n/a		
BCDL	5.0	Code FBC2004/TF	212002	(Mat	rix)						Weight: 427 lb	

LUMBER

TOP CHORD 2 X 4 SYP No.1D BOT CHORD 2 X 8 SYP No.1D

WEBS 2 X 4 SYP No.3 BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0

oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.

Recommended hanger connection based on manufacturer tested capacities and nail calculations. Conditions may exist that require different connections than indicated. Refer to manufacturer publication for additional information. Hanger connection to be reviewed and

REACTIONS

(lb/size) 17=2646/0-8-0, 9=906/Mechanical, 13=5229/1-4 approved by the Architect/Engineer of Record.

Max Uplift 9=-193(load case 2) Max Grav 17=2723(load case 2), 9=906(load case 1), 13=5229(load case 1)

TOP CHORD

FORCES (lb) - Maximum Compression/Maximum Tension 1-17=-2123/0, 8-9=-820/162, 1-2=-3459/0, 2-3=-3331/0, 3-4=0/2355, 4-5=-69/1288,

5-6=-69/1288, 6-7=-69/1288, 7-8=-765/345

BOT CHORD

16-17=0/295, 15-16=0/3795, 14-15=0/3795, 13-14=-537/0, 12-13=-2200/0, 11-12=-1288/69,

10-11=-1052/673, 9-10=0/402

WEBS

4-13=-1657/0, 5-12=-767/0, 6-11=0/935, 1-16=0/3668, 2-16=-396/58, 2-14=-698/0,

3-14=0/4112, 3-13=-3175/0, 4-12=0/2631, 8-10=-414/420, 7-10=0/833, 7-11=-1971/0

JOINT STRESS INDEX

1 = 0.87, 2 = 0.35, 3 = 0.98, 4 = 0.43, 5 = 0.34, 6 = 0.34, 7 = 0.50, 8 = 0.93, 9 = 0.28, 10 = 0.25, 11 = 0.35, 12 = 0.44, 13 = 0.30, 14 = 0.0.69, 15 = 0.36, 16 = 0.62 and 17 = 0.34

NOTES

1) 3-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2 X 4 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2 X 8 - 2 rows at 0-7-0 oc.

Webs connected as follows: 2 X 4 - 1 row at 0-9-0 oc.

December 20,2007

Continued on page 2

Marning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply		14040400
L263148F	F13	FLOOR	1	3		J1919428
		Ω		3	Job Reference (optional)	

6.300 s Apr 19 2006 MiTek Industries, Inc. Thu Dec 20 16:02:46 2007 Page 2

NOTES

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced floor live loads have been considered for this design.
- 4) All plates are 3x6 MT20 unless otherwise indicated.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 193 lb uplift at joint 9.
- 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-16d nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

Loading has been calculated by the truss manufacturer. It is the responsibility of the Architect/Engineer of Record to verify and approve the loading.

LOAD CASE(S) Standard Except:

1) Floor: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)

Vert: 13-17=-443(F=-433), 9-13=-10, 1-4=-100, 4-8=-240

Julius Lee Truse Design Engineer Florida PE No. 34868 1199 Creasial Ray Blvd Bovoton Beach, Et. 23435

Job Truss Truss Type Qty Ply J1919429 L263148F F14 **FLOOR** Job Reference (optional) Builders FirstSource, Lake City, FI 32055 6.300 s Apr 19 2006 MiTek Industries, Inc. Thu Dec 20 15:37:32 2007 Page 1 1-6-6 1-8-6 1-8-6 2-0-0 Scale = 1:17.3 3x6 =2x4 || 5x8 = 4 3x6 = 5x8 = 2 3 5 Ų. 12 10 7 Á* Ĉ٠ 5x14 = 3x8 II 3x8 II 5x14 = 5x6 II 5x6 || 2-1-10 10-6-8 2-1-10 2-1-10 1-0-0 1-0-0 2-1-10 2-1-10 LOADING (psf) SPACING 2-0-0 CSI DEFL I/defl L/d **PLATES GRIP** in (loc) 40.0 1.00 TC TCLL Plates Increase 0.41 Vert(LL) -0.059-10 >999 360 MT20 244/190 TCDL 10.0 Lumber Increase 1.00 BC 0.36 Vert(TL) -0.08 9-10 >999 240 0.95 BCLL 0.0 Rep Stress Incr NO WB Horz(TL) 0.02 7 n/a n/a BCDL 5.0 Code FBC2004/TPI2002 (Matrix) Weight: 234 lb LUMBER BRACING TOP CHORD 2 X 6 SYP No.1D TOP CHORD Structural wood sheathing directly applied or 6-0-0 BOT CHORD 2 X 8 SYP 2400F 2.0E oc purlins, except end verticals. 2 X 4 SYP No.3 *Except* **BOT CHORD** WEBS Rigid ceiling directly applied or 10-0-0 oc bracing. 1-12 2 X 6 SYP No.1D, 6-7 2 X 6 SYP No.1D

REACTIONS (lb/size) 12=7285/0-8-0, 7=7285/0-8-0

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-12=-5076/0, 6-7=-5076/0, 1-2=-7087/0, 2-3=-7087/0, 3-4=-11242/0, 4-5=-7087/0,

5-6=-7087/0

BOT CHORD 11-12=0/1486, 10-11=0/11242, 9-10=0/11242, 8-9=0/11242, 7-8=0/1486

WEBS 3-10=0/2876, 4-9=0/2876, 2-11=0/656, 1-11=0/7070, 3-11=-5170/0, 5-8=0/656, 4-8=-5170/0

, 6-8=0/7070

JOINT STRESS INDEX

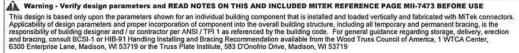
1 = 0.76, 2 = 0.20, 3 = 0.78, 4 = 0.78, 5 = 0.20, 6 = 0.76, 7 = 0.67, 8 = 0.82, 9 = 0.31, 10 = 0.31, 11 = 0.82 and 12 = 0.67

NOTES

1) 3-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2 X 6 - 2 rows at 0-9-0 oc.

Bottom chords connected as follows: 2 X 8 - 3 rows at 0-4-0 oc.


Webs connected as follows: 2 X 4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or a load of the loads of

3) Unbalanced floor live loads have been considered for this design.

December 20,2007

Continued on page 2

Jop	Truss	Truss Type	Qty	Ply		
L263148F	F14	FLOOR	1	2	· ·	J1919429
				3	Job Reference (optional)	

6.300 s Apr 19 2006 MiTek Industries, Inc. Thu Dec 20 15:37:32 2007 Page 2

NOTES

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-16d nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

 Floor: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 7-12=-1345(F=-1335), 1-6=-100

> Julius Les Truss Design Engineer Flonds PE No. 3-1866 1109 Coastal Bay Blyd

Job Truss Truss Type Qty Ply J1919430 L263148F F15 **FLOOR** 1 Job Reference (optional) Builders FirstSource, Lake City, FI 32055 6.300 s Feb 15 2006 MiTek Industries, Inc. Tue Dec 18 12:18:56 2007 Page 1 0-1-8 1-0-6-4 1-0-0 0-5-4 2-0-0 2x4 = 5x6 = 2x4 | I2x4 II 4x6 = 3 5 7 14 10 8 5x6 = Simpson SUR/L410 Simpson HHUS48 into Beam by Others. 1-6-0 3-3-12 4-3-12 5-3-12 5-8-4 6-11-8 9-5-8 10-11-8 1-6-0 0-1-8 1-0-0 1-0-0 0-4-8 1-3-4 2-6-0 Plate Offsets (X,Y): [3:0-1-8,Edge], [4:0-1-8,0-0-0], [7:0-1-8,Edge], [11:0-1-8,Edge], [12:0-1-8,Edge], [15:0-1-8,0-1-0], [16:0-1-8 [0-1-0]SPACING LOADING (psf) 2-0-0 CSI DEFL in (loc) I/defl L/d **PLATES** GRIP TCLL 40.0 Plates Increase 1.00 TC 0.65 Vert(LL) -0.07 10-11 >999 360 MT20 244/190 TCDL 10.0 Lumber Increase 1.00 BC 0.50 Vert(TL) -0.11 10-11 >999 240 BCLL 0.0 Rep Stress Incr YES WB 0.25 Horz(TL) 0.01 n/a n/a **BCDL** 5.0 Code FBC2004/TPI2002 (Matrix) Weight: 72 lb LUMBER BRACING TOP CHORD 4 X 2 SYP No.2 TOP CHORD Structural wood sheathing directly applied or BOT CHORD 4 X 2 SYP No.2 6-0-0 oc purlins, except end verticals. **WEBS** 4 X 2 SYP No.3 **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing. Recommended hanger connection based on manufacturer tested capacities and nail calculations. Conditions may exist that require REACTIONS (lb/size) 14=583/Mechanical, 8=583/Mechanical different connections than indicated. Refer to manufacturer publication for additional information. Hanger connection to be reviewed and approved by the Architect/Engineer of Record. FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 14-15=-566/0, 1-15=-566/0, 8-16=-576/0, 7-16=-575/0, 1-2=-342/0, 2-3=-783/0, 3-4=-783/0, 4-5=-783/0, 5-6=-774/0, 6-7=-350/0 **BOT CHORD** 13-14=0/19, 12-13=0/673, 11-12=0/783, 10-11=0/831, 9-10=0/656, 8-9=0/19 **WEBS** 3-12=-466/0, 4-11=-130/143, 1-13=0/564, 2-13=-596/0, 2-12=0/622, 7-9=0/577, 6-9=-552/0, 6-10=0/213, 5-10=-147/0, 5-11=-256/139

JOINT STRESS INDEX

1 = 0.79, 2 = 0.48, 3 = 0.29, 4 = 0.18, 5 = 0.16, 6 = 0.39, 7 = 0.81, 8 = 0.44, 9 = 0.82, 10 = 0.30, 11 = 0.16, 12 = 0.48, 13 = 0.80, 14 = 0.43, 15 = 0.00, 15 = 0.00, 16 = 0.00 and 16 = 0.00

NOTES

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are 3x6 MT20 unless otherwise indicated.
- Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-16d nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

Julius Lee Truse Design Engineer Flonds PE No. 24868 1100 Ceastel Bay Blvd Boynton Besch, Ft. 33435

LOAD CASE(S) Standard

December 20,2007

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE
This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MTek connectors.
Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the
responsibility of building designer and / or contractor per ANSI / TP1 1 as referenced by the building code. For general guidance regarding storage, delivery, crection
and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center,
6300 Enterprise Lane, Madison, WI 53719 or the Truss Pital Institute, 583 D'Onfrio Drive, Madison, WI 53719.

December 20,2007

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE
This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors.
Applicability of design parameters and proper incorporation of component into the overall buildings structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

ob	Truss	Truss Type		Qty	Ply			14040404
263148F	F16	FLOOR		1	1	Job Reference (options	aD	J1919431
Builders FirstSou	urce, Lake City, FI 3	2055	6.300 s Fel	15 2006 1	MiTek In	dustries, Inc. Tue Dec 1	8 12:18:57 200)7 Page 1
0-1-8								
H 1-3-0		1-2-4	2-0-0	1 0-6-	1-0-0	0		0 ₁ 1 ₁ 8 Scale = 1:22.
4x6 =								4x6 =
2x4 =	2	3		2x4	4x6 =	6		2x4 =
16 200								17
15	14	13 12		11 ^{4x6} =		10	9	8
Simpson SUR/	4x6 = /L410	2x4	* II				4x6 = Simpson H into Beam	HUS48 by Others.
1-6-0	4-0-0	5-3-12	6-3-12 7-3	12 7-8-4	8-11-8	11-5-8	12-11	-8
1-6-0	2-6-0	1-3-12	1-0-0 1-0	0-4-8	1-3-4	2-6-0	1-6-0	0

Plate Offsets (X,Y): [1:Edge,0-1-8], [3:0-1-8,Edge], [4:0-1-8,0-0-0], [7:0-1-8,Edge], [11:0-1-8,Edge], [12:0-1-8,Edge], [16:0-1-8 ,0-1-0], [17:0-1-8,0-1-0]

LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	40.0	Plates Increase	1.00	TC	0.37	Vert(LL)	-0.07	10-11	>999	360	MT20	244/190
TCDL	10.0	Lumber Increase	1.00	BC	0.48	Vert(TL)	-0.08	10-11	>999	240		
BCLL	0.0	Rep Stress Incr	YES	WB	0.29	Horz(TL)	0.02	8	n/a	n/a		
BCDL	5.0	Code FBC2004/TF	PI2002	(Mat	rix)	, ,					Weight: 81 lb	

LUMBER

TOP CHORD 4 X 2 SYP No.2 BOT CHORD 4 X 2 SYP No.2 WEBS 4 X 2 SYP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals. **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc

bracing.

Recommended hanger connection based on manufacturer tested capacities and nail calculations. Conditions may exist that require different connections than indicated. Refer to manufacturer publication for additional information. Hanger connection to be reviewed and approved by the Architect/Engineer of Record.

REACTIONS (lb/size) 15=693/Mechanical, 8=693/Mechanical

FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 15-16=-689/0, 1-16=-688/0, 8-17=-688/0, 7-17=-688/0, 1-2=-433/0, 2-3=-993/0,

3-4=-1167/0, 4-5=-1167/0, 5-6=-994/0, 6-7=-433/0

14-15=0/23, 13-14=0/809, 12-13=0/1167, 11-12=0/1167, 10-11=0/1129, 9-10=0/809

WEBS 3-12=-70/121, 4-11=-279/17, 1-14=0/715, 2-14=-677/0, 2-13=0/349, 3-13=-396/0,

7-9=0/715, 6-9=-678/0, 6-10=0/334, 5-10=-293/0, 5-11=-97/389

JOINT STRESS INDEX

BOT CHORD

1 = 0.54, 2 = 0.50, 3 = 0.29, 4 = 0.18, 5 = 0.44, 6 = 0.48, 7 = 0.54, 8 = 0.53, 9 = 0.55, 10 = 0.47, 11 = 0.43, 12 = 0.15, 13 = 0.15, 0.50, 14 = 0.55, 15 = 0.53, 16 = 0.00, 16 = 0.00, 17 = 0.00 and 17 = 0.00

NOTES

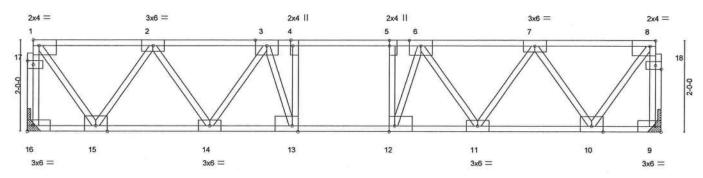
- 1) Unbalanced floor live loads have been considered for this design.
- All plates are 3x6 MT20 unless otherwise indicated.
- 3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-16d nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

December 20,2007

LOAD CASE(S) Standard

Marning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building ode. For general guidance regarding storage, delivery, erection and bracing, consult BCS-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719



Job	Truss	Truss Type	Qty	Ply		
L263148F	F17	FLOOR	9	1	J19194	132
					Job Reference (optional)	
Builders FiretSo	urce Lake City El	32055 6.3	200 c Feb 15 2006 N	AiTak In	dustries Inc. Tue Dec 19 12:19:57 2007 Dege 1	1

5.300 s Feb 15 2006 Millek Industries, Inc. Tue Dec 18 12:18:57 2007 Page 1

0-1-8 1-3-0

0-6-12 0-6-12 2-0-0

Simpson HHUS48

Simpson HHUS48 into Beam by Others.

1	1-6-0	4-0-0	5-9-12	5-11-4 6-11-4	7-11-4 8-0-12	9-10-8	12-4-8	13-10-8
	1-6-0	2-6-0	1-9-12	0-1-8 1-0-0	1-0-0 0-1-8	1-9-12	2-6-0	1-6-0

Plate Offsets (X,Y): [1:Edge,0-1-8], [4:0-1-8,Edge], [5:0-1-8,0-0-0], [8:0-1-8,Edge], [12:0-1-8,Edge], [13:0-1-8,Edge], [17:0-1-8 ,0-1-0], [18:0-1-8,0-1-0]

LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	40.0	Plates Increase	1.00	TC	0.45	Vert(LL)	-0.06	13-14	>999	360	MT20	244/190
TCDL	10.0	Lumber Increase	1.00	BC	0.41	Vert(TL)	-0.08	13-14	>999	240	540350003004	
BCLL	0.0	Rep Stress Incr	YES	WB	0.31	Horz(TL)	0.02	9	n/a	n/a		
BCDL	5.0	Code FBC2004/TF	PI2002	(Mat	rix)						Weight: 87 lb	

LUMBER

TOP CHORD 4 X 2 SYP No.2 BOT CHORD 4 X 2 SYP No.2 **WEBS** 4 X 2 SYP No.3

BRACING

TOP CHORD

Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc

bracing.
Recommended hanger connection based on manufacturer tested capacities and nail calculations. Conditions may exist that require different connections than indicated. Refer to manufacturer publication for additional information. Hanger connection to be reviewed and approved by the Architect/Engineer of Record.

REACTIONS (lb/size) 16=743/Mechanical, 9=743/Mechanical FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD

16-17=-739/0, 1-17=-738/0, 9-18=-739/0, 8-18=-738/0, 1-2=-471/0, 2-3=-1095/0,

3-4=-1343/0, 4-5=-1343/0, 5-6=-1343/0, 6-7=-1095/0, 7-8=-471/0

BOT CHORD

15-16=0/25, 14-15=0/882, 13-14=0/1293, 12-13=0/1343, 11-12=0/1293,

10-11=0/882, 9-10=0/25

WEBS

4-13=-321/37, 5-12=-321/37, 1-15=0/778, 2-15=-740/0, 2-14=0/384, 3-14=-357/0,

3-13=-85/425, 8-10=0/778, 7-10=-740/0, 7-11=0/384, 6-11=-357/0, 6-12=-85/425

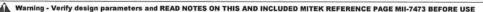
JOINT STRESS INDEX

1 = 0.59, 2 = 0.54, 3 = 0.46, 4 = 0.20, 5 = 0.20, 6 = 0.46, 7 = 0.54, 8 = 0.59, 9 = 0.56, 10 = 0.60, 11 = 0.54, 12 = 0.46, 13 = 0.460.46, 14 = 0.54, 15 = 0.60, 16 = 0.56, 17 = 0.00, 17 = 0.00, 18 = 0.00 and 18 = 0.00

NOTES

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are 4x6 MT20 unless otherwise indicated.
- 3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-16d nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

December 20,2007


LOAD CASE(S) Standard

🛕 Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connector Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI/TPI 1 as referenced by the building oed. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

December 20,2007

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors.
Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building cose. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job Truss Truss Type Ply Qty J1919433 L263148F F18 **FLOOR** Job Reference (optional) Builders FirstSource, Lake City, FI 32055 6.300 s Apr 19 2006 MiTek Industries, Inc. Thu Dec 20 16:47:06 2007 Page 1 1-11-8 1-7-4 1-9-0 2-6-4 2-7-10 0-10-10 2-6-0 + Apply (5) Simpson 0.25"x4.5" SDS screws to each side of the hanger Scale = 1:31.5 at joint 10. In addition, apply (2) Simpson 0.25"x4.5" SDS screws to the vertical above joint 10. Refer to Simpson Strong-Tie product information for additional SDS screw installation requirements. 5x6 10x16 MT|20H= 4x10 = 10x14 = 8x14 = 4 5 6 13 12 10 4x10 II 5x8 = 10x16 MT20H= 3x8 || 5x8 = 3x6 [] 10x14 = 6x12 MT20H = 6x8 = WARNING: This truss is not symmetrical and must be installed as shown. 7-2-8 8-2-8 6-5-8 14-4-0 4-4-0 19-0-8 0-9-0 1-0-0 [1:Edge,0-2-4], [2:0-3-8,0-2-8], [3:0-7-4,0-5-8], [4:0-3-12,0-1-8], [5:0-4-8,0-2-0], [6:0-5-12,0-6-12], [9:0-3-12,0-3-0], [10:0-5-4,0-7-0], [11:0-3-12,0-1-8], [12:0-3-8,0-2-8], [13:0-4-8,0-1-8], [14:0-3-8,0-7-0], [15:0-3-8,0-2-8] LOADING (psf) SPACING 2-0-0 CSI DEFL I/defl L/d **PLATES** in (loc) GRIP 40.0 1.00 TCLL Plates Increase TC 0.77 Vert(LL) -0.1911 >918 360 MT20 244/190 TCDL 10.0 1.00 Lumber Increase BC 0.95 Vert(TL) -0.35 10-11 >494 240 MT20H 187/143 BCLL 0.0 Rep Stress Incr 0.96 NO WB Horz(TL) 0.05 8 n/a n/a BCDL Code FBC2004/TPI2002 5.0 (Matrix) Weight: 465 lb LUMBER BRACING TOP CHORD 2 X 8 SYP 2400F 2.0E TOP CHORD Structural wood sheathing directly applied or 6-0-0 BOT CHORD 2 X 8 SYP 2400F 2.0E oc purlins, except end verticals. **WEBS** 2 X 4 SYP No.3 *Except* **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing, 1-16 2 X 4 SYP No.2, 7-8 2 X 12 SYP No.2 Except: 3-13 2 X 8 SYP No.1D, 6-10 2 X 10 SYP No.2 6-0-0 oc bracing: 15-16,14-15. 3-14 2 X 6 SYP No.1D, 5-12 2 X 4 SYP No.1D 7-9 2 X 4 SYP No.1D

REACTIONS (lb/size) 16=-2374/1-4-0, 8=12278/1-0-8, 14=30804/1-4-0

> Max Uplift 16=-4443(load case 3), 8=-820(load case 6), 14=-8938(load case 6) Max Grav 16=1252(load case 2), 8=12278(load case 1), 14=30804(load case 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-16=-793/4526, 7-8=-9498/677, 1-18=-2000/7545, 18-19=-2000/7545, 2-19=-2000/7545,

2-3=-3088/13528, 3-4=-12731/3524, 4-5=-12731/3524, 5-6=-27517/2115, 6-7=-19954/1398

BOT CHORD 16-17=-696/191, 15-17=-696/191, 14-15=-13528/3088, 13-14=-3524/12731,

12-13=-3524/12731, 11-12=-3069/26380, 10-11=-3069/26380, 9-10=-2115/27517,

8-9=-356/5498

2-14=-9508/2871, 3-13=0/4339, 4-12=0/3250, 6-10=-601/8201, 1-15=-9028/2329,

2-15=-1306/7180, 3-14=-31759/7996, 5-12=-15237/0, 5-10=-513/1886, 7-9=-1151/15975,

6-9=-11234/1066, 5-11=0/2743

JOINT STRESS INDEX

1 = 0.89, 2 = 0.67, 3 = 0.74, 4 = 0.44, 5 = 0.98, 6 = 0.44, 7 = 0.83, 8 = 0.86, 9 = 1.00, 10 = 0.95, 11 = 0.37, 12 = 0.99, 13 = 0.47, 14 = 0.47, 14 = 0.48, 12 = 0.48, 13 = 0.48, 14 = 0.0.99, 15 = 0.96 and 16 = 0.65December 20,2007

Continued on page 2

WEBS

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erect and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

us Las es Design Engineer nda PE No. 34889 OG Cassial Bay Blvd OG Cassial Bay Blvd

Jop	Truss	Truss Type	Qty	Ply		
L263148F	F18	FLOOR	1	2		J1919433
				3	Job Reference (optional)	

6.300 s Apr 19 2006 MiTek Industries, Inc. Thu Dec 20 16:47:06 2007 Page 2

NOTES

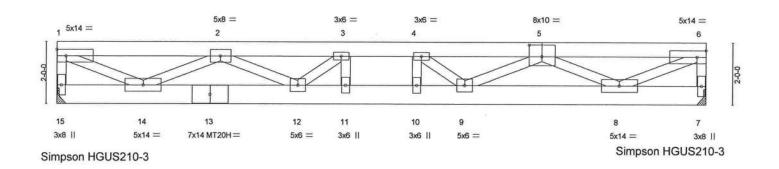
- 1) Distribute loads equally between all plies. Additional screws (+) are required to distribute the load equally among all plies.
- 2) 3-ply truss to be connected together with 10d (0.131"x3") nails as follows:
 - Top chords connected as follows: 2 X 4 1 row at 0-9-0 oc, 2 X 12 2 rows at 0-9-0 oc, 2 X 8 3 rows at 0-4-0 oc. Bottom chords connected as follows: 2 X 8 4 rows at 0-4-0 oc.
- Webs connected as follows: 2 X 4 1 row at 0-9-0 oc, 2 X 8 2 rows at 0-9-0 oc, 2 X 10 5 rows at 0-4-0 oc, 2 X 6 2 rows at 0-9-0 oc.
- 3) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 4) Unbalanced floor live loads have been considered for this design.
- 5) All plates are MT20 plates unless otherwise indicated.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 4443 lb uplift at joint 16, 820 lb uplift at joint 8 and 8938 lb uplift at joint 14.
- 7) Uplift for first LC exceeds limits
- 8) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-16d nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

Loading has been calculated by the truss manufacturer. It is the responsibility of the Architect/Engineer of Record to verify and approve the loading.

LOAD CASE(S) Standard Except:

- 1) Floor: Lumber Increase=1.00, Plate Increase=1.00
 - Uniform Loads (plf)
 - Vert: 16-17=-10, 8-17=-381(F=-371), 1-18=-100, 3-18=-240, 3-7=-582
 - Concentrated Loads (lb)
 - Vert: 2=-2325 3=-9989 10=-8204(F) 18=-2328 19=-2328
- 3) 2nd unbalanced Floor: Lumber Increase=1.00, Plate Increase=1.00
 - Uniform Loads (plf)
 - Vert: 16-17=-10, 8-17=-381(F=-371), 1-2=-20, 2-3=-100, 3-7=-442
 - Concentrated Loads (lb)
 - Vert: 2=-634 3=-9989 10=-3924(F) 6=-2854(F) 18=-635 19=-635
- 5) 2nd chase Floor: Lumber Increase=1.00, Plate Increase=1.00
- Uniform Loads (plf)
 - Vert: 16-17=-10, 8-17=-381(F=-371), 1-2=-100, 2-3=-20, 3-7=-442
- Concentrated Loads (lb)
 - Vert: 2=-2325 3=-2724 10=-3924(F) 6=-2854(F) 18=-2328 19=-2328
- 6) User defined: Lumber Increase=1.00, Plate Increase=1.00
- Uniform Loads (plf)
 - Vert: 8-15=-6(F), 1-3=-12(F), 3-7=59(F=-12)
- Concentrated Loads (lb)
 - Vert: 1=744 2=744 3=6389 19=744

Julius Lee Truse Design Engineer Florida PE No. 24889 1 109 Coastal Bay Blvd Bovnton Basson El 22436



Jop	Truss	Truss Type	Qty	Ply		
L263148F	F19	FLOOR	1	2		J1919434
				3	Job Reference (optional)	

6.300 s Apr 19 2006 MiTek Industries, Inc. Thu Dec 20 16:05:36 2007 Page 1

2-6-0 1-4-12 2-0-0 1-4-12

Scale = 1:35.1

9-5-12	10-5-12 11-5-12	20-11-8	
9-5-12	1-0-0 1-0-0	9-5-12	- 1
9-5-12	1-0-0 1-0-0	9-5-12	

Plate Of	fsets (X,Y):	[5:0-5-0,0-4-8]										
LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plates Increase	1.00	TC	0.81	Vert(LL)	-0.28	10-11	>872	360	MT20	244/190
TCDL	10.0	Lumber Increase	1.00	BC	0.65	Vert(TL)	-0.57	10-11	>436	240	MT20H	187/143
BCLL	0.0	Rep Stress Incr	NO	WB	0.97	Horz(TL)	0.08	7	n/a	n/a		
BCDL	5.0	Code FBC2004/TF	PI2002	(Mat	rix)					3,110	Weight: 444 lb	

LUMBER

TOP CHORD 2 X 6 SYP No.1D BOT CHORD 2 X 8 SYP 2400F 2.0E

WEBS 2 X 4 SYP No.2 *Except*

3-11 2 X 4 SYP No.3, 4-10 2 X 4 SYP No.3 3-12 2 X 4 SYP No.3, 4-9 2 X 4 SYP No.3

BRACING

BOT CHORD

TOP CHORD Structural wood sheathing directly applied or 5-4-10

oc purlins, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS (lb/size) 15=8204/Mechanical, 7=8204/Mechanical

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-15=-7128/0, 6-7=-7128/0, 1-2=-12140/0, 2-3=-25679/0, 3-4=-27254/0, 4-5=-25679/0,

5-6=-12140/0

BOT CHORD 14-15=0/1136, 13-14=0/20236, 12-13=0/20236, 11-12=0/27254, 10-11=0/27254,

9-10=0/27254, 8-9=0/20236, 7-8=0/1136

WEBS 3-11=0/768, 4-10=0/768, 1-14=0/12586, 2-14=-9390/0, 2-12=0/6312, 3-12=-2176/0,

6-8=0/12586, 5-8=-9389/0, 5-9=0/6312, 4-9=-2176/0

JOINT STRESS INDEX

1 = 0.85, 2 = 0.98, 3 = 0.35, 4 = 0.35, 5 = 0.86, 6 = 0.85, 7 = 0.83, 8 = 0.94, 9 = 0.85, 10 = 0.16, 11 = 0.16, 12 = 0.85, 13 = 0.84, 14 = 0.85, 12 = 0.85, 13 = 0.84, 14 = 0.85, 12 = 0.85, 13 = 0.84, 14 = 0.85, 12 = 0.85, 13 = 0.84, 14 = 0.85, 12 = 0.85, 13 = 0.84, 14 = 0.85, 12 = 0.85, 13 = 0.84, 14 = 0.85, 12 = 0.85, 13 = 0.84, 14 = 0.85, 12 = 0.85, 12 = 0.85, 13 = 0.84, 14 = 0.85, 12 = 0.85, 12 = 0.85, 12 = 0.85, 13 = 0.84, 14 = 0.85, 12 = 0.85, 12 = 0.85, 13 = 0.84, 14 = 0.85, 12 = 0.85, 12 = 0.85, 12 = 0.85, 13 = 0.84, 14 = 0.85, 12 = 0.0.94 and 15 = 0.83

NOTES

1) 3-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2 X 4 - 1 row at 0-9-0 oc, 2 X 6 - 2 rows at 0-9-0 oc. Bottom chords connected as follows: 2 X 8 - 2 rows at 0-7-0 oc. Webs connected as follows: 2 X 4 - 1 row at 0-9-0 oc.

December 20,2007

Continued on page 2

🛕 Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connec Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI /TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erecti and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Jop	Truss	Truss Type	Qty	Ply		
L263148F	F19	FLOOR	1	2		J1919434
		10.00.00.00		3	Job Reference (optional)	

6.300 s Apr 19 2006 MiTek Industries, Inc. Thu Dec 20 16:05:36 2007 Page 2

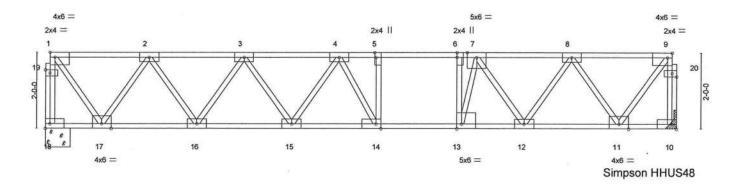
NOTES

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced floor live loads have been considered for this design.
- 4) All plates are MT20 plates unless otherwise indicated.
- 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-16d nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

Loading has been calculated by the truss manufacturer. It is the responsibility of the Architect/Engineer of Record to verify and approve the loading.

LOAD CASE(S) Standard Except:

1) Floor: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)


Vert: 7-15=-452(F=-442), 1-6=-342(F=-102)

Job	Truss	Truss Type	Qty	Ply	040000000000000000000000000000000000000
L263148F	F20	FLOOR	6	1	J1919435
					Job Reference (optional)
Builders FirstSc	ource, Lake City, FI	32055 6.3	00 s Feb 15 2006 I	MiTek In	dustries, Inc. Tue Dec 18 12:18:59 2007 Page 1

0-11-12 2-0-0

				9-10-4	10-11-12			
1-6-0	4-0-0	6-6-0	8-8-12	8-10-4	10-10-4	12-7-8	15-1-8	16-7-8
1-6-0	2-6-0	2-6-0	2-2-12	0-1-8 1-0-0	1-0-0 0-1-8	1-7-12	2-6-0	1-6-0

Plate Offsets (X,Y): [1:Edge,0-1-8], [5:0-1-8,Edge], [6:0-1-8,0-0-0], [9:0-1-8,Edge], [13:0-1-8,Edge], [14:0-1-8,Edge], [19:0-1-8 ,0-1-0], [20:0-1-8,0-1-0]

LOADING		SPACING	2-0-0	CSI	1 2000000	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	40.0	Plates Increase	1.00	TC	0.96	Vert(LL)	-0.17	14-15	>999	360	MT20	244/190
TCDL	10.0	Lumber Increase	1.00	BC	0.85	Vert(TL)	-0.25	14-15	>794	240	5 p. 2 r. 3 r	
BCLL	0.0	Rep Stress Incr	YES	WB	0.39	Horz(TL)	0.03	10	n/a	n/a		
BCDL	5.0	Code FBC2004/TF	PI2002	(Mat	rix)						Weight: 102 lb	

LUMBER

TOP CHORD 4 X 2 SYP No.2 BOT CHORD 4 X 2 SYP No.2 4 X 2 SYP No.3 **WEBS**

BRACING

TOP CHORD

Structural wood sheathing directly applied,

except end verticals.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (lb/size) 18=894/0-8-0, 10=894/Mechanical

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD

18-19=-891/0, 1-19=-890/0, 10-20=-893/0, 9-20=-893/0, 1-2=-581/0, 2-3=-1408/0,

3-4=-1863/0, 4-5=-1882/0, 5-6=-1882/0, 6-7=-1882/0, 7-8=-1398/0, 8-9=-584/0

BOT CHORD

17-18=0/30, 16-17=0/1090, 15-16=0/1716, 14-15=0/1965, 13-14=0/1882,

12-13=0/1731, 11-12=0/1090, 10-11=0/30

5-14=-155/167, 6-13=-692/0, 1-17=0/962, 2-17=-918/0, 2-16=0/573, 3-16=-555/0,

3-15=0/266, 4-15=-225/0, 4-14=-336/214, 9-11=0/967, 8-11=-912/0, 8-12=0/554,

7-12=-600/0, 7-13=0/906

JOINT STRESS INDEX

1 = 0.73, 2 = 0.81, 3 = 0.66, 4 = 0.74, 5 = 0.47, 6 = 0.47, 7 = 0.73, 8 = 0.79, 9 = 0.74, 10 = 0.68, 11 = 0.74, 12 = 0.79, 13 = 0.79, 0.72, 14 = 0.74, 15 = 0.66, 16 = 0.81, 17 = 0.74, 18 = 0.68, 19 = 0.00, 19 = 0.47, 20 = 0.00 and 20 = 0.47

NOTES

WEBS

- 1) Unbalanced floor live loads have been considered for this design.
- All plates are 3x6 MT20 unless otherwise indicated.
- 3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with Contined all spastrongbacks to be attached to walls at their outer ends or restrained by other means.

December 20,2007

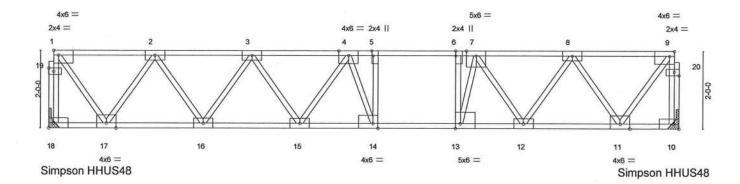
🛕 Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply		
L263148F	F20	FLOOR	6	1	J19194	35
		1.200.1			Job Reference (optional)	

6.300 s Feb 15 2006 MiTek Industries, Inc. Tue Dec 18 12:18:59 2007 Page 2

LOAD CASE(S) Standard



Jab	Truss	Truss Type	Qty	Ply	
L263148F	F21	FLOOR	4	1	J19194
1 - Control - Co	100.0000				Job Reference (optional)

6.300 s Feb 15 2006 MiTek Industries, Inc. Tue Dec 18 12:19:00 2007 Page 1

0-1-8 1-3-0 HH

0-7-12 2-0-0

10-7-12 8-6-4 9-6-4 10-6-4 14-9-8 16-3-8 1-6-0 2-6-0 0-1-8 1-0-0 1-0-0 0-1-8 2-6-0 1-10-12 1-6-0

Plate Offsets (X,Y): [1:Edge,0-1-8], [5:0-1-8,Edge], [6:0-1-8,Edge], [9:0-1-8,Edge], [13:0-1-8,Edge], [14:0-1-8,Edge], [19:0-1-8 ,0-1-0], [20:0-1-8,0-1-0]

LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	40.0	Plates Increase	1.00	TC	0.89	Vert(LL)	-0.14	14-15	>999	360	MT20	244/190
TCDL	10.0	Lumber Increase	1.00	BC	0.79	Vert(TL)	-0.21	14-15	>898	240	CONTRACTOR	
BCLL	0.0	Rep Stress Incr	YES	WB	0.38	Horz(TL)	0.03	10	n/a	n/a		
BCDL	5.0	Code FBC2004/TF	PI2002	(Mat	rix)	Particular Vota Traco					Weight: 101 lb	

LUMBER

TOP CHORD 4 X 2 SYP No.2 BOT CHORD 4 X 2 SYP No.2 4 X 2 SYP No.3 **WEBS**

BRACING TOP CHORD

Structural wood sheathing directly applied or 2-2-0 oc purlins, except end verticals.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (lb/size) 18=876/Mechanical, 10=876/Mechanical

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD

18-19=-872/0, 1-19=-872/0, 10-20=-875/0, 9-20=-874/0, 1-2=-567/0, 2-3=-1371/0,

3-4=-1799/0, 4-5=-1814/0, 5-6=-1814/0, 6-7=-1814/0, 7-8=-1361/0, 8-9=-571/0 **BOT CHORD** 17-18=0/29, 16-17=0/1065, 15-16=0/1665, 14-15=0/1887, 13-14=0/1814,

12-13=0/1677, 11-12=0/1065, 10-11=0/29

5-14=-181/242, 6-13=-648/0, 1-17=0/939, 2-17=-897/0, 2-16=0/552, 3-16=-531/0,

3-15=0/247, 4-15=-228/0, 4-14=-393/230, 9-11=0/944, 8-11=-892/0, 8-12=0/534,

7-12=-570/0, 7-13=0/845

JOINT STRESS INDEX

1 = 0.71, 2 = 0.78, 3 = 0.66, 4 = 0.45, 5 = 0.47, 6 = 0.47, 7 = 0.68, 8 = 0.76, 9 = 0.72, 10 = 0.67, 11 = 0.72, 12 = 0.76, 13 = 0.760.68, 14 = 0.45, 15 = 0.66, 16 = 0.78, 17 = 0.72, 18 = 0.67, 19 = 0.00, 19 = 0.47, 20 = 0.00 and 20 = 0.47

NOTES

WEBS

- 1) Unbalanced floor live loads have been considered for this design.
- All plates are 3x6 MT20 unless otherwise indicated.
- 3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with Contined a strong backs to be attached to walls at their outer ends or restrained by other means.

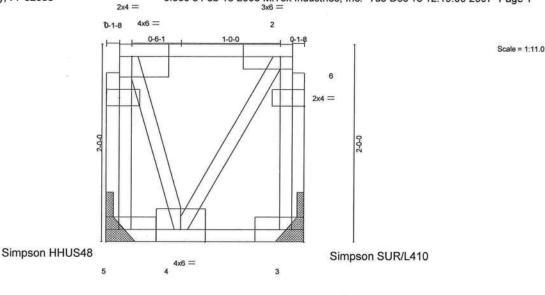
December 20,2007

Marning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI /TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply		
L263148F	F21	FLOOR	4	1		J1919436
				_ ^	Job Reference (optional)	

6.300 s Feb 15 2006 MiTek Industries, Inc. Tue Dec 18 12:19:00 2007 Page 2


LOAD CASE(S) Standard

Job Truss Truss Type Qty Ply J1919437 L263148F F22 **FLOOR** 1 Job Reference (optional)

Builders FirstSource, Lake City, FI 32055

6.300 s Feb 15 2006 MiTek Industries, Inc. Tue Dec 18 12:19:00 2007 Page 1

3x6 = 1

Plate Of	fsets (X,Y)	: [1:Edge,0-1-8], [1:	0-1-8,0-1-	0], [2:0-	1-8,Edge	e], [6:0-1-8,0-	1-0]					
LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	40.0	Plates Increase	1.00	TC	0.17	Vert(LL)	-0.00	4	>999	360	MT20	244/190
TCDL	10.0	Lumber Increase	1.00	BC	0.01	Vert(TL)	-0.00	4	>999	240	Decital servers	
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(TL)	0.00	3	n/a	n/a		
BCDL	5.0	Code FBC2004/TF	PI2002	(Mat	rix)	, ,					Weight: 21 lb	

0-9-1

L	H	M	B	F	R
_	u		_	_	

TOP CHORD 4 X 2 SYP No.2 BOT CHORD 4 X 2 SYP No.2

WEBS 4 X 2 SYP No.3

BRACING

TOP CHORD **BOT CHORD**

1-3-0

Structural wood sheathing directly applied or 2-0-1 oc purlins, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (lb/size) 5=96/Mechanical, 3=90/Mechanical

FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-5=-94/0, 3-6=-85/0, 2-6=-85/0, 1-2=-3/0

BOT CHORD

4-5=0/0, 3-4=0/3

WEBS

2-4=0/1, 1-4=0/10

JOINT STRESS INDEX

1 = 0.04, 1 = 0.00, 2 = 0.06, 3 = 0.07, 4 = 0.01, 5 = 0.07, 6 = 0.00 and 6 = 0.00

NOTES

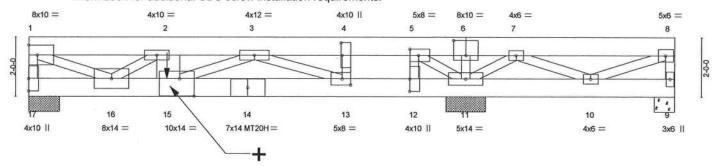
1) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-16d nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

December 20,2007

🛕 Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719



Job	Truss	Truss Type	Qty	Ply	VOIPELA-1972 1950
L263148F	F23	FLOOR	1	_	J1919438
100000000000000000000000000000000000000	10.0000		R.	3	Job Reference (optional)

6.300 s Apr 19 2006 MiTek Industries, Inc. Thu Dec 20 16:59:56 2007 Page 1

+ Apply (5) Simpson 0.25"x4.5" SDS screws to each side of the hanger at joint 15. In addition, apply (2) Simpson 0.25"x4.5" SDS screws to the vertical above joint 15. Refer to Simpson Strong-Tie product information for additional SDS screw installation requirements.

WARNING: This truss is not symmetrical and must be installed as shown.

11 10 0 12 10 0

-	4-1	3-8	1	0-10-0		11-10-0 12-10-	0, 14-8	3-8		2	1-8-8	
	4-8	3-8		6-1-8		1-0-0 1-0-0	1-10	-8		7	7-0-0	
Plate Of	fsets (X,Y):	[4:0-5-0,0-0-8], [5:0-	-3-8,0-2-8]	[6:0-5-0	,0-6-0], [1	2:0-5-0,0-0-0]	, [13:0-3	3-8,0-2-	8], [15:0-	5-12,0-7-	0]	
LOADIN	IG (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	40.0	Plates Increase	1.00	TC	0.99	Vert(LL)	-0.20	13-15	>892	360	MT20	244/190
TCDL	10.0	Lumber Increase	1.00	BC	0.66	Vert(TL)	-0.32	13-15	>553	240	MT20H	187/143
BCLL	0.0	Rep Stress Incr	NO	WB	0.97	Horz(TL)	0.04	11	n/a	n/a		
BCDL	5.0	Code FBC2004/TF	PI2002	(Mat	rix)	**************************************					Weight: 511	lb
LUMBE	R					BRACING	<u> </u>				1	

TOP CHORD 2 X 8 SYP No.1D BOT CHORD 2 X 8 SYP 2400F 2.0E

WEBS 2 X 4 SYP No.3 *Except*

1-17 2 X 4 SYP No.1D, 8-9 2 X 4 SYP No.1D 2-15 2 X 10 SYP No.2, 1-16 2 X 4 SYP No.1D 3-15 2 X 4 SYP No.1D, 8-10 2 X 4 SYP No.1D

7-10 2 X 4 SYP No.1D

TOP CHORD **BOT CHORD**

Structural wood sheathing directly applied or 6-0-0

oc purlins, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing,

Except:

6-0-0 oc bracing: 10-11,9-10.

REACTIONS (lb/size) 17=10087/1-0-8, 9=-206/0-8-0, 11=10705/1-4-0

Max Uplift 17=-148(load case 6), 9=-426(load case 2)

Max Grav 17=10087(load case 1), 9=663(load case 3), 11=10705(load case 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-17=-8689/145, 8-9=-170/862, 1-2=-14401/70, 2-3=-23673/105, 3-4=-5246/0, 4-5=-5246/0,

5-6=0/6180, 6-7=0/6180, 7-8=-27/1738

BOT CHORD 16-17=-42/1826, 15-16=-105/23673, 14-15=0/16832, 13-14=0/16832, 12-13=0/5246,

3-15=-173/7600, 3-13=-12710/1, 5-11=-14685/0, 8-10=-1870/16, 7-10=0/3562,

7-11=-1921/0

JOINT STRESS INDEX

WEBS

1 = 0.84, 2 = 0.88, 3 = 0.89, 4 = 0.34, 5 = 0.83, 6 = 0.56, 7 = 0.59, 8 = 0.21, 9 = 0.15, 10 = 0.59, 11 = 0.81, 12 = 0.34, 13 = 0.84, 14 = 0.0.86, 15 = 0.95, 16 = 1.00 and 17 = 0.71

December 20,2007

Scale = 1:36.5

Continued on page 2

🛕 Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

Awaring - Verify design parameters and NEAD NOTES OR THIS ARD HIGH SHEET HER SHEET HE SHEET HER SHEET HE SHEET HER SHEET HE SHEET HER SHEET HE SHEET HER SHEET HER SHEET HER SHEET HER SHEET HER SHEET HER SHEET HE S

Job	Truss	Truss Type	Qty	Ply		
L263148F	F23	FLOOR	1			J1919438
		TEOOK		3	Job Reference (optional)	

6.300 s Apr 19 2006 MiTek Industries, Inc. Thu Dec 20 16:59:56 2007 Page 2

NOTES

1) Distribute loads equally between all plies. Additional screws (+) are required to distribute the load equally among all plies.

2) 3-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2 X 4 - 1 row at 0-9-0 oc, 2 X 8 - 2 rows at 0-9-0 oc.

Bottom chords connected as follows: 2 X 8 - 4 rows at 0-4-0 oc.

Webs connected as follows: 2 X 10 - 5 rows at 0-4-0 oc, 2 X 4 - 1 row at 0-9-0 oc.

- 3) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 4) Unbalanced floor live loads have been considered for this design.

All plates are MT20 plates unless otherwise indicated.

- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 148 lb uplift at joint 17 and 426 lb uplift at joint 9.
- 7) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-16d nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

Loading has been calculated by the truss manufacturer. It is the responsibility of the Architect/Engineer of Record to verify and approve the loading.

LOAD CASE(S) Standard Except:

1) Floor: Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf)

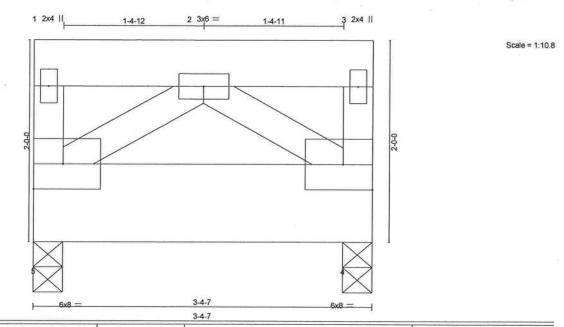
Vert: 9-17=-375(F=-366), 1-2=-582, 2-8=-100

Concentrated Loads (lb)

Vert: 15=-8204(F)

6) User defined: Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf)


Vert: 9-17=-6, 1-2=59(F=71), 2-8=-12

Julius Lee Truse Design Engineer Honda Plii No. 34869 I 100 Coastal Bay Blvd.

Job	Truss	Truss Type	Qty	Ply		
L263148F	F24	FLOOR	1	2	J'	1919439
				3	Job Reference (optional)	

6.300 s Apr 19 2006 MiTek Industries, Inc. Thu Dec 20 15:58:44 2007 Page 1

LOADIN	G (psf)	SPACING	1-4-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	40.0	Plates Increase	1.00	TC	0.10	Vert(LL)	-0.00	4-5	>999	360	MT20	244/190
TCDL	10.0	Lumber Increase	1.00	BC	0.14	Vert(TL)	-0.00	4-5	>999	240		
BCLL	0.0	Rep Stress Incr	NO	WB	0.12	Horz(TL)	0.00	4	n/a	n/a		
BCDL	5.0	Code FBC2004/TF	PI2002	(Mat	rix)	14004.000.00\$ 10.40.00					Weight: 84 lb	

LUMBER

TOP CHORD 2 X 6 SYP No.1D BOT CHORD 2 X 10 SYP No.2

WEBS

2 X 4 SYP No.3

BRACING TOP CHORD

Structural wood sheathing directly applied or 3-4-7

oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS (lb/size) 5=2725/0-3-8, 4=2725/0-3-8

Max Uplift 5=-552(load case 2), 4=-552(load case 2)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD

1-5=-936/248, 3-4=-930/246, 1-2=0/0, 2-3=0/0

BOT CHORD

4-5=-346/1305

WEBS

2-5=-1754/465, 2-4=-1758/466

JOINT STRESS INDEX

1 = 0.15, 2 = 0.21, 3 = 0.15, 4 = 0.12 and 5 = 0.12

NOTES

- 3-ply truss to be connected together with 10d (0.131"x3") nails as follows:
 Top chords connected as follows: 2 X 4 1 row at 0-9-0 oc, 2 X 6 2 rows at 0-7-0 oc.
 Bottom chords connected as follows: 2 X 10 2 rows at 0-7-0 oc.
 Webs connected as follows: 2 X 4 1 row at 0-9-0 oc.
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 552 lb uplift at joint 4.

December 20,2007

Continued on page 2

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE
This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors.
Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719 or

Jóp	Truss	Truss Type	Qty	Ply		Salater Series valery vis-
L263148F	F24	FLOOR	1			J1919439
				3	Job Reference (optional)	

6.300 s Apr 19 2006 MiTek Industries, Inc. Thu Dec 20 15:58:44 2007 Page 2

NOTES

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-16d nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

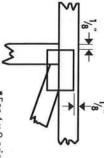
Loading has been calculated by the truss manufacturer. It is the responsibility of the Architect/Engineer of Record to verify and approve the loading.

LOAD CASE(S)

- 1) Floor: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 4-5=-401(F=-395), 1-3=-1371
- User defined: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)

Vert: 4-5=-4, 1-3=363(F=371)

Julius Lee Truse Design Engineer Flonda PE No. 34869 1 109 Grasial Bay Blvd



Symbols

PLATE LOCATION AND ORIENTATION

*Center plate on joint unless dimensions indicate otherwise. Dimensions are in inches. Apply plates to both sides of truss and securely seat.

*For 4 x 2 orientation, locate plates 1/8" from outside edge of truss and vertical web.

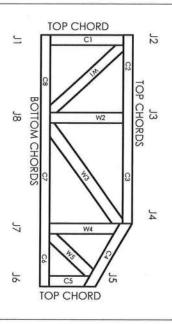
*This symbol indicates the required direction of slots in connector plates.

PLATE SIZE

4 × 4

The first dimension is the width perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING


Indicates location of required continuous lateral bracing.

BEARING

Indicates location of joints at which bearings (supports) occur.

Numbering System

JOINTS AND CHORDS ARE NUMBERED CLOCKWISE AROUND THE TRUSS STARTING AT THE LOWEST JOINT FARTHEST TO THE LEFT.

WEBS ARE NUMBERED FROM LEFT TO RIGHT

CONNECTOR PLATE CODE APPROVALS

96-31, 96-67

ICBO

SBCCI

9667, 9432A

3907, 4922

i i

WISC/DILHR 960022-W, 970036-N

NER

561

MiTek Engineering Reference Sheet: MII-7473

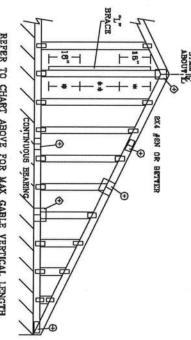
stem 🛕 General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other.
- Place plates on each face of truss at each joint and embed fully. Avoid knots and wane at joint locations.
- Unless otherwise noted, locate chord splices at 1/4 panel length (± 6" from adjacent joint.)
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant or preservative treated lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection
- Plate type, size and location dimensions shown indicate minimum plating requirements
- Lumber shall be of the species and size, and in all respects, equal to or better than the grade specified.
- Top chords must be sheathed or purlins provided at spacing shown on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- Anchorage and / or load transferring connections to trusses are the responsibility of others unless shown.
- Do not overload roof or floor trusses with stacks of construction materials.
- 14. Do not cut or alter truss member or plate without prior approval of a professional engineer.
- Care should be exercised in handling, erection and installation of trusses.
- © 1993 MiTek® Holdings, Inc.

*	DIAGONAL BRACE OPTION: UENTICAL LENGTH MAY BE DOUBLED WHEN DIAGONAL BRACE IS USED, CONNECT MACONAL BRACE FOR BAG J AT EACH END. MAX WEB TOTAL LENGTH IS 14". VERTICAL LENGTH SH IN TABLE ABOVE. CONNECT DIAGONA MIDPOINT OF VER.	MAX GABLE VERTICAL LENGTH	
	DIAGONAL BRACE VERTICAL LENGTH DOUBLED WEEN D BRACE ES VEED, MACONAL BRACE AT BACH END. M TOTAL LENGTH IS	12" O.C. 16" O.C. 24" O.C.	
	BEACE OFTION: ENGITH MAY BE FIED DIAGONAL USED, CONNECT BEACE FOR 840 g WID. MAY WEB CITH IS 14". CONNECT DIAGONAL AT MEDIDINT OF VERTICAL	D S HS D S HS D S HS S S	
	GONAL A CONTINUA BEST CONTINUA	SP S	ASCE
NTT PRE			7-
ARNING.	GABLE		-02:
***WARRING** TRUSSES REDUIRE EXTREME CARE IN FABRICATING, HARICLING, SUPPING, INSTALLING AND BRACING, REFER TO \$523) 1-02 (BULLING COMPONENT SAF (TY INFORMATION) PUBLISHED BY TO! (TRUSS PARE INSTITUTE, 583 DOUGHED OR, SUITE SED, MOISON, VI. 537798 AND VITA MOTOD TRUSS CONCELL OF MOREILA, 620 ENTERPRISE, LAN MOISON, VI. 53779 AND VITA MOTOD TRUSS CONCELL TRUSS CONCELL MARCHING. UNICES OF PROPERTY ATTACHED TO PROPERTY ATTACHED TO PROPERTY ATTACHED RIGID CELLING. STRUCTURAL PARELS AND EDITION CHORD SMALL HAVE A PROPERTY ATTACHED RIGID CELLING.	GABLE TRUSS		130
S REQUIRE CS3 1-93 DOMO ROI CERRISE L LESS DTH NO BOTTO	S S S S S S S S S S S S S S S S S S S		
EXTREME OF THE PROPERTY OF THE	ZX4 BP #ZN, DF-L ZX4 BP) O C	MPH
CARE IN CONFORM IN CON	N, DF-L \$2, OR SETTER BRACE, DOUBLE, DOUBLE, DOUBLE, BRND, AT BND,	GROUP B 6: 10 6: 10 6: 11 7: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2:	WIND
FABRICAT 11 SAFTICAT ADISCON, W 1199 FOR 1 TOP CHOR FE A PROI			
ING, HANG T. INFORMA T. SZ7195 SAFETY P D SHALL PCRLY ATT	BRACE H		SPEED.
AJNG, SHI	ABOUT LES TO		. 15
GID CELL) PERLY AT PERLY AT			
A LEGEL	BEA THE		MEAN
Mg Name	EXA #EN OR BETTER ** ** ** ** ** ** ** ** **		HEIGHT.
ULI CONS.		(1) 2% CROUP 10 10 10 10 10 10 10 10 10 10 10 10 10	TH
JLIUS CONS. ENGI: DELPAY BEXCH, 19 STATE OF	WEAK CYBITE		EN
LEE'S INEERS P.A. P. 3344-2161 4869 FLORIDA	VERTIC	BRACE • BRACE • 11. 2. 110 1. 11. 8. 10. 11. 8. 10. 11. 8. 10. 11. 11. 8. 10. 11. 11. 8. 10. 11. 11. 8. 10. 11. 11. 8. 10. 11. 11. 8. 10. 11. 11. 11. 11. 11. 11. 11. 11. 11	CLOSED
F.A.	VERTICAL LENGTH		
MAX.	· \ \ \ \ /		⊣ Ⅱ
	1 4/⊕		100
LD.	HE TO THE STATE OF	BBS CONTROL OF THE STATE OF THE	
60 PSF	DUTLIDORER WITH E OF OVERHANG, OR 12" PLYWOOD OVERHANG. # FOR [1] "L" BRACE: SPACE NITH 104 NAILS. # FOR [2] "L" BRACE: SPACE NAILS AT 2" IN 18" END ZONES AND 4" O.C. BETWEEN IN 18" IN 14" OR EVIN IN 15" END ZONES AND 4" O.C. BETWEEN IN 11" B" ZONES THAN 11" B" ZONES AND 1	BRACING GROUP SPECIES AND GRADE GROUP A: SPRUCE-PINE-MR 41 / 42 STANDARD FINE DOUGLAS FIR-LARCH STUD GROUP B: HEM-FIR HARD GROUP B: HEM-FIR HARD GROUP B: HARD GROUP B: HEM-FIR HARD GROUP B: HARD GROUP B: HARD GROUP B	EXPOSIDE
REF DATE DRWG -ENG	WOOD OVERHANG, OR 12 WOOD OVERHANG. RE EACH L' BRACE WITH 104 MILS. RR (1) T' BRACE SADE MAILS AT 2' 18' END ZONES AND 4' O.C. BETWEEN LE' END ZONES AND 4' O.C. BETWEEN ALCING MUST BE A MINIMUM OF 80% OF THE LENGTH. GABLE VERTICAL LENGTH. GABLE VERTICAL LENGTH. GREATER THAN 4' O' BUT ZMA OR ZMA	GROUP GROUP GROUP STUD STUD STUD GRE TRUCK	RITA
	S: SPACE S: SPACE S: SPACE S: SPACE AND 4° A MINIM CCAL PL CCAL PL CCIH CCIH CCIH CCIH CCIH CCIH CCIH CCI	PSPECIES GROUP A: FIRE FIRE FIRE FIRE FIRE FIRE FIRE FIRE	
11/26/03 11/26/03	T ZXA OR 12. NALLS AF E* (O.C. BETWEEN O.C. BETWEEN O.C. BETWEEN OF STREET	ES AND GRADI A: A: HEM-FIR #2 STUD #3 STUD #3 STUD STANDARD SOUTHERN PINE #3 STUD STANDARD TAIL NOTES IT OF 120 PLF of SP PC BULL LAN #5 PC BLF of SP	
ASCEY-02-GAB13015 11/26/03 MITEX STD GABLE 15 E HT	DUTLIDORES BYTH E OF OVERHANG, OR 12" PLYWOOD OVERHANG. ATIACH EACH "L" BRACE STACE NILS AT 8" O.C. IN 18" END ZONES AND 4" O.C. BETWEN ZONES. # FOR (2) "L" BRACES: STACE NILS AT 3" O.C. IN 18" END ZONES AND 4" O.C. BETWEN ZONES. # FOR (3) "L" BRACES: STACE NILS AT 3" O.C. IN 18" END ZONES AND 4" O.C. BETWEN ZONES. "L" BRACING MUST BE A MINIMUM OF 80% OF WEB MEMBER LENGTH. CABLE VERTICAL LENGTH NO STACE VERTICAL LENGTH NO STACE GREATER THAN 4 0". BUT ZMA LESS THAN 4 0". BUT ZMA LESS THAN 11" 8" GREATER TYAN 11" 6" 2.5M4 + REFER TO COMMON TRUSS DESIGN TOR PEAK, SPLICE, AND HEEL PLATES.	BRACING GROUP SPECIES AND GRADES: GROUP A: SPRUCE-PINE-PIR 41	
E HT	ONES.	. 32	

ASCE 7-02: 130 MPH WIND SPEED, 30' MEAN HEIGHT, ENCLOSED, I II 1.00, EXPOSURE a

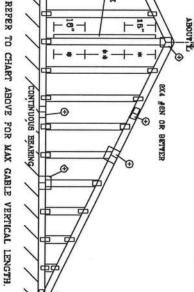

			M	A	X	((3	4]	3	L	E		V	E	R	r	ľ	C	A	L		L	E	N	1(уг	ГΗ	
		1	2	91		0	.(C	•		1	6	91		0	.(3	•))		2	4	91		0	1.0	С		SPACING	GARL
		LFL	1	V.	j	TIT	I	J. IO	CDT			1 1 1	7.	2	TII	H H H	OI I	TODE	-		1	7.)	TII	H	OFT	TICD	SPACING SPECIES GRADE	CABLE VERTICAL
	STANDARD	STUD	*3	#2	# 1	STANDARD	STUD	#3	\$1 / #B	STANDARD	STUD	# 3	#2	\$ 2	STANDARD	STUD	#3	\$1 / #2	STANDARD	STUD	#3	#22	#1	STANDARD	CUTS	\$ 3	\$1 / #2	GRADE	BRACE
	4. 0.	.4. U	4. 2.	4. 4.	4. 5.	3' 11"	3' 11"	3 11		3' 8	3.8	3.	3' 11"	4. 0.	1 '	- 7	3' 7"	1 .	3, 0,		3. 3.	3' 6"	3' 6"	1.00	3' 1"	3' 1"	ω _. လ့	BRACES	Š
	5. 6,	6' 4"	6' 6"	6' 11"	6 11"	5' 4"	6.		6 11"	4' 9"	5. 6.	5. 3.	8' 4"	6 4"		5' 6"	U!	6. 4.	3' 10"	4' 8"	4 6	5' 6"	5' 6"	3. 8,	4' 6"	4. 5		GROUP A	(1) 1X4 °L" BRACE
	5' 6"	6' 4"	6' 5"	7' 6"	7' 6"	5' 4"		6 3		1 -	5' 6"	6. 4.	8' 10"	B' 10"		6' 5"	5. 5.		3' 10"	4' 6"	4' 6"	5' 11"		3′ 9-	. 37	4' 5"	6' 8"	GROUP B	BRACE .
	7' 3"	8. 3.	8' 3"	8' 3"	8 3	7' 1"		8 3		6' 3"	7' 3"	7' 4"	7' 8"	7' 6"	6' 2"	7. 2.	7 2		6' 1"	5' 11"	6. 0.	6, 9,	8' B"	6. 0.			6' 6"	GROUP A	(1) 2X4 "
No.	7' 3"	8 5	8, 6,	8' 11"	B' 11.	7' 1"	100	e 3		6' 3"	7' 3"		8' 1"			7' 2"	7' 2"		5. 1.	5' 11"	6. 0.	-	7' 0"	5. 0.	5' 10"	5' 10"	6 9"	GROUP B	"L" BRACE .
	8.8	9' 10"	9' 10"		8, 10,	-		9, 10,		8' 5"		8' 11"	8' 11"		8' 3"	8' 11"	8' 11"		8' 11"	7' 10"	7' 10"	7' 10"	- 1	6. 9.	7' 10"	7 10	7 10	GROUP A	(2) 2X4 "L"
	8, 8,	10' 4'	10′ 4″	10' 7"	10, 3,	9, 6,	9' 10"	9' 10"	10, 1,	B' 5°			9, 7,	8' 7"	8' 3'	8' 11"	8' 11"	9 2"		8'0"	-1	- 1	٠,	8. B.	7' 10"	7' 10"	8.0.	GROUP	BRACE **
	11' 4"	12' 11"	12' 11"	12. 11.	12' 11"	11' 1"	12, 10.	12' 11"		9, 8,	11, 4,			11' 9"	9. 7.	11, 1,,	11' 2"	11. 9.	B, 0,	8 3		10′ 3″	10' 3"	7' 10"	9' 1"	9' 1"	10' 3"	B GROUP A	(1) 2X6 T
	11. 4.	13' 1"	18' 3"	13' 11°	13' 11"	11' 1"	12' 10"	12, 11,	13' 4"	9, 8,,	11' 4"	11' 6'	12' 8"	12' 8"	8. 4.		11' 2"	12' 1"	8.0.	9 3	9. 4.	11, 1,,		7' 10"	9, 1,	9. 1.	10' 7'	GROUP B	BRACE *
	14' 0"	14. 0"	14' 0"	14' 0"	14 0	14' 0"	14' 0"	14' 0"	14. 0.	- 1	14 0	14. 0.		14 0	12. 11.	14' 0"	14' 0"		10, 10,	12 3	12. 3.	12' 3"	12' 3"	10' 7"	12' 3"	12' 3"	12. 3.	B GROUP A GROUP	(2) ZXB 'L' BRACE
	14' 0"	14. 0	14' 0"	14' 0"	14.0	14' 0"	14' 0"	14 0	14 0	13' 3"	14 0	14. 0.	14' 0"	14' D"	12. 11.		14' 0"	14' 0'			12' 8'	13′ 2°	- 1	10' 7'	12' 3"	12' 3"	12. 7.	GROUP B	BRACE **
CABLE BUD BUTTOKIS LOAD FROM	CONTINUED BEARING TO FUE IN	PROVIDE UPLANT CONNECTIONS FOR	THE PERSON NAMED AND POST OFFICE AND PASS OF THE PERSON OF	אומשתישם אחושים ומסח חאסו מעדו	CABLE IKUSS DETAIL	ממומד הוותר			122	ш	SDUTHERN PINE DOUGLA		#1 & BIR	HEM-PIR	GROUP B:			STATUARD	STUD	*5	DOUGLAS FIR-LARCH SOUT	20 20 20 20 20 20 20 20 20 20 20 20 20 2	4/2 SIANDAKD]	GROUP A:		BRACING GROUP SPECIES A		

> SOUTHERN PINE #3 STANDARD

STANDARD

AND GRADES:

HEM-PIR STUD


DIAGONAL BRACE OPTION:
VERTICAL LENGTH MAY BE
DOUBLED WIFUN DIAGONAL
BRACE IS USED. CONNECT
INACONAL BRACE TOR SEG
AT EACH YED. MAY WEB
TOTAL LENGTH IS 14°.

GABLE TRUSS

VERTICAL LENGTH SHOWN IN TABLE ABOVE.

ZX4 SP OR
DT-L #2 OR
BETTER DIAGONAL
BRACE, SINGLE
OR DOUBLE
CUT (AS SHOWN)
AT UPPER END

MIDPOINT OF VERTICAL WEB.

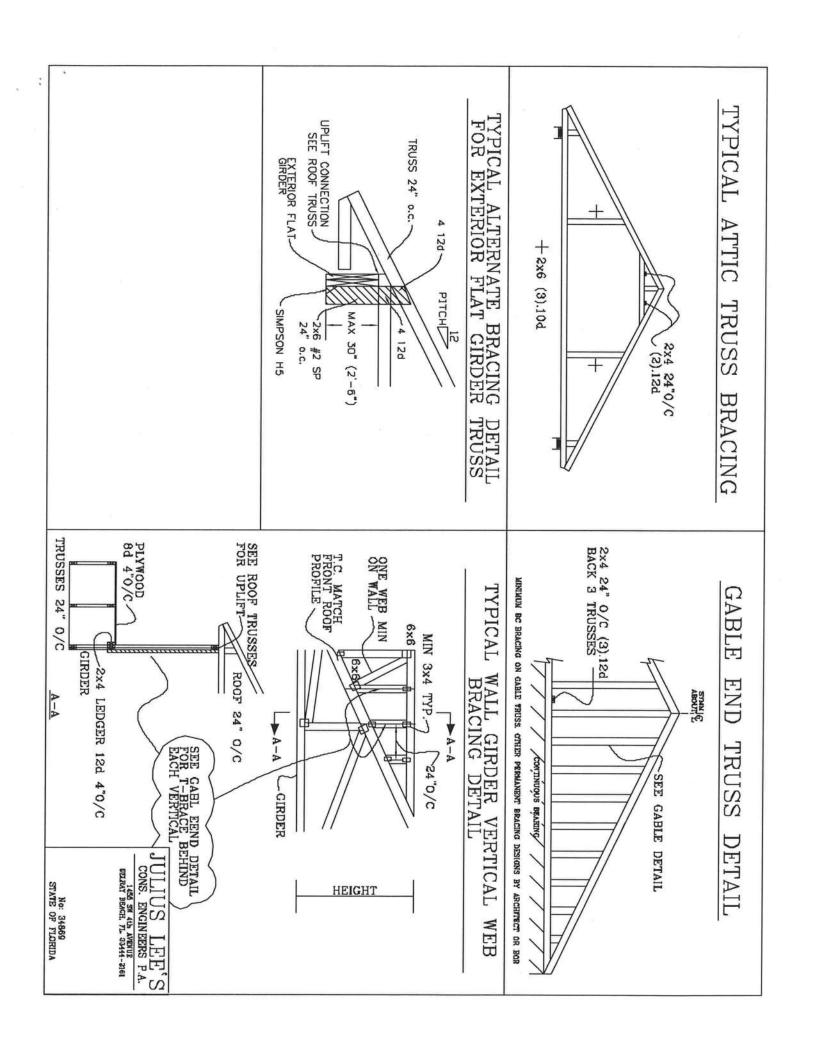
E
TRUSS
DETAIL
NOTES:

DOUGLAS PIR-LARCH

ABLE END SUPPORTS LOAD FROM 4' 0" DVERHANG, DR 12" PLYWOOD OVERHANG. vide uplift connections for 180 fli over dividing bearing (5 psp vc dead load). LOAD DEPLECTION CHITERIA IS L/240.

ATTACH EACH 'L' BRACE WITH 104 NAILS.

FOR (1) 'L' BRACE: SPACE NAILS AT E' O.C.


FOR (2) 'L' BRACES: SPACE NAILS AT 3' O.C.

FOR (2) 'L' BRACES: SPACE NAILS AT 3' O.C.

IN 18' EYD ZONES AND 6' O.C. BETWEEN ZONES. MEMBER LENGTH. T' BRACING MUST BE A MINIMUM OF BOX OF WEB

	ATES.	BEL PL	PEAK, SPLICE, AND H
TOR	DESIGN	RUSS	REFER TO COMMON T
	2.5X4	_	RATER THAN 11' 6"
	200	TUB	EATER THAN 4 D',
EX3	K4 DR	U	S THAN 4' O"
S	NO SPL		VERTICAL LENGTH
"	LATE SIZES	PLATE	GABLE VERTICAL

STATE OF FLORIDA	No. 34880		CLS AND BOTTOM CHORD SHALL HAVE A PROPERLY ATTACHED RIGHT	THESE FUNCTIONS. UNITES DINGROUPE, SUITE 500, MODISMY, ME 537193 AND VIEW WHO THESE FOLKER DISCOVERY OF SUITE 500, MODISMY, ME 537193 AND VIEW WHOLE FOR TO PERFORM DILLARY BENCH, PL 35444-2161 THESE FUNCTIONS. UNITES CONCRETE, MICHAEL THE SUITE S	HANDLING, SHIPPING, INSTALLING AND CONS. ENGINEERS P. A.	LEE'I SUITIUI
MAX. SPACING 24.0"		MAX. TOT. LD. 60 PSF				
		E.	-ENG	DWG MITEK STD GABLE SO' E HT	DATE 11/26/03	REF ASCET-02-GAB13030

BOT CHORD 2X4 2X4 2X4 #2 OR BETTER #2 OR BETTER #3 OR BETTER

PIGGYBACK DETAIL

TYPE

SPANS

P.

30,

34

88 ಕ

52

REFER TO SEALED DESIGN FOR DASHED PLATES

SPACE PIGGYBACK VERTICALS AT 4' OC MAX.

TOP AND BOTTOM CHORD SPLICES MUST BE STAGGERED SO THAT ONE SPLICE IS NOT DIRECTLY OVER ANOTHER.

PIGGYBACK BOTTOM CHORD MAY BE OMITTED. ATTACH VERTICAL WEBS TO TRUSS TOP CHORD WITH 1.5X3 PLATE.

ATTACH PURLINS TO TOP OF FLAT TOP CHORD. IF PIGGYBACK IS SOLID LUMBER OR THE BOTTOM CHORD IS OMITTED, PURLINS MAY BE APPLIED BENEATH THE TOP CHORD OF SUPPORTING TRUSS.

REFER TO ENCINEER'S SEALED DESIGN FOR REQUIRED PURLIN SPACING.

THIS DETAIL IS APPLICABLE FOR THE FOLLOWING WIND CONDITIONS:

110 MPH WIND, 30' MEAN HGT, ASCE 7-02, CLOSED BILDG, LOCATED ANYWHERE IN ROOF, 1 MI FROM COAST CAT I, EXP C, WIND TC DL=5 PSF, WIND BC DL=5 PSF L10 MPH WIND, 30' MEAN HGT, FBC ENCLOSED BLDG, LOCATED ANYWHERE IN ROOF WIND TC DL-5 PSF, WIND BC DL-5 PSF

130 MPH WIND, 30' MEAN HCT, ASCE 7-02, CLOSED BLDG, LOCATED ANYWHERE IN ROOF, CAT II, EXP. C, WIND TC DL=6 PSF, WIND HC DL=6 PSF

FRONT FACE (E,*) PLATES MAY BE OFFSET FROM BACK FACE PLATES AS LONG AS BOTH FACES ARE SPACED 4' OC MAX. LOCATION IS
ACCEPTABLE 20' FLAT TOP CHORD WAX SPAN Ϋ́ Ħ #2 OR BETTER D-SPLICE

ON ACH
PER NECTION
FACE
PER I
354
H (8) DRAW
NAILS NAILS
160 IN
TEA.
35.2
NAILS, OMEMBER TRULOX
TOR TOR

ZESA

M Ħ

AXS OR 3XS TRULOX AT 4' OC, HOTATED VEHTICALLY

0 H >

1.5X3

1.5X4

1.5X4

1.5X4

4XB 284

5X8

5X8

5X6 3%5

2.5X4

2.6X4

5X4

6X6

5X5

5X6

WEB LENGTH
o' TO 7'9"
7'9" TO 10'
10' TO 14'

ATTACH TEETH TO THE PIGGYBACK AT THE TIME OF PABRICATION. ATTACH TO SUPPORTING TRUSS WITH (4) 0.120° X 1.375° NAILS PER FACE PER PLY. APPLY PIGGYBACK SPECIAL PLATE TO EACH TRUSS FACE AND OC OR LESS * PIGGYBACK SPECIAL PLATE N,

8 1/4"

12 7 7

C-TYP.

		xxVARHINGox BACING 88 BACING, THESE FRANCIA, THESE STRUCTURAL.	TATTACH PIGGEBACK WITH 3X6 TRULDX OR ALPINE PIGGEBACK SPECIAL PLATE.		
WAVARRINGAM TRUSKES REQUIRE EXTREME CARE IN FABRICATING, HANDLING, SHIPPING, INSTALLING AND ANDLING REFER TO 25% I 1-20 GRILLING COMPOUNT SAFETY INSTRUCTION, PAIR INCHED BY THE CREUKS COMPOUNT SAFETY INSTRUCTION, PAIR INCHED IN THE CREUKS COMPOUNT SAFETY AND ANDLINGS COLUMNIA CREUKS FIRE SAFETY AND ANDLINGS COLUMNIA CREUKS FIRE SAFETY AND ANDLINGS COLUMNIA CREUKS FIRE SAFETY AND					
STATE OF FLORIDA		JULIUS LEE'S CONS. ENGINEERS P.A.	THIS DRAW		
SPACING 24.0"	47 PSF AT 1.15 DUR. FAC.	MAX LOADING 55 PSF AT 1.33 DUR. FAC. 50 PSF AT 1.25 DUR. FAC.	DRAWING REPLACES DRAWINGS 634,016 634,017 & 847,045		
		DATE 09/12/07 DRWG MITEK STD PIGG' -ENG JL	634,016 634,017 & 847,04		

VALLEY TRUSS DETAIL

TOP CHORD 2X4 SP #2 OR SPF #1/#2 OR BETTER.
BOT CHORD 2X3(*) OR 2X4 SP #2N OR SPF #1/#2 OR BETTER.
WEBS 2X4 SP #3 OR BETTER.

- * 2X3 MAY BE RIPPED FROM A 2X6 (PITCHED OR SQUARE).
- ** ATTACH EACH VALLEY TO EVERY SUPPORTING TRUSS WITH:

 (2) 16d BOX (0.135" X 3.5") NAILS TOE—NAILED FOR

 FBC 2004 110 MPH, ASCE 7—02 110 MPH WIND OR (3) 16d FOR

 ASCE 7—02 130 MPH WIND. 15' MEAN HEIGHT, ENCLOSED

 BUILDING, EXP. C. RESIDENTIAL, WIND TC DL=5 PSF.

UNLESS SPECIFIED ON ENGINEER'S SEALED DESIGN, APPLY 1X4 "T"-BRACE, 80% LENGTH OF WEB, VALLEY WEB, SAME SPECIES AND GRADE OR BETTER, ATTACHED WITH 8d BOX (0.113" X 2.5") NAILS AT 6" OC, OR CONTINUOUS LATERAL BRACING, EQUALLY SPACED, FOR VERTICAL VALLEY WEBS GREATER THAN 7'9".

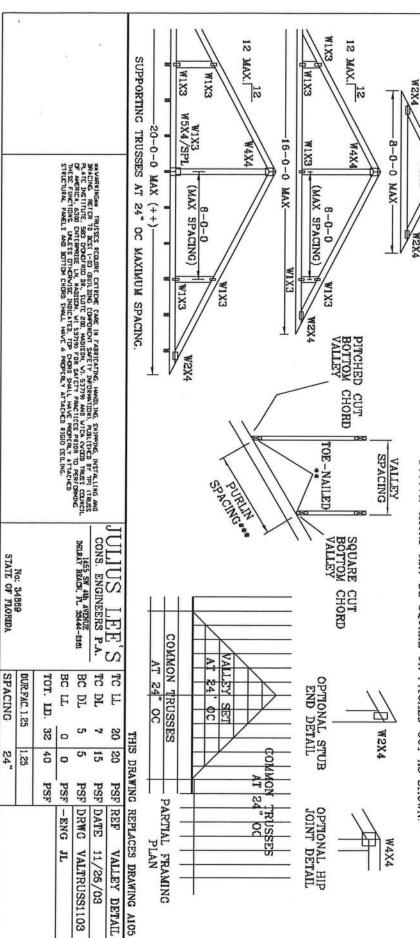
MAXIMUM VALLEY VERTICAL HEIGHT MAY NOT EXCEED 12'0".

TOP CHORD OF TRUSS BENEATH VALLEY SET MUST BE BRACED WITH: PROPERLY ATTACHED, RATED SHEATHING APPLIED PRIOR TO VALLEY TRUSS INSTALLATION

PURLINS AT 24" OC OR AS OTHERWISE SPECIFIED ON ENGINEERS' SEALED DESIGN OR BY VALLEY TRUSSES USED IN LIEU OF PURLIN SPACING AS SPECIFIED ON ENGINEERS' SEALED DESIGN.

*** NOTE THAT THE PURLIN SPACING FOR BRACING THE TOP CHORD OF THE TRUSS BENEATH THE VALLEY IS MEASURED ALONG THE SLOPE OF THE TOP CHORD.

CUT FROM 2X6 OR LARGER AS REQ'D


4-0-0 MAX

12 MAX.

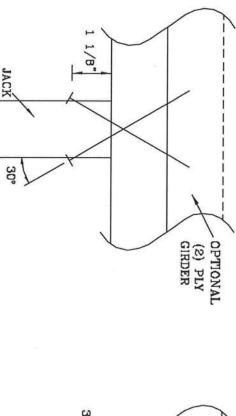
W2X4

++ LARGER SPANS MAY BE BUILT AS LONG AS THE VERTICAL HEIGHT DOES NOT EXCEED 12'0".

BOTTOM CHORD MAY BE SQUARE OR PITCHED CUT AS SHOWN.

TOE-NAIL DETAIL

TOE-NAILS TO BE DRIVEN AT AN ANGLE OF APPROXIMATELY THIRTY DEGREES WITH THE PIECE AND STARTED APPROXIMATELY ONE-THIRD THE LENGTH OF THE NAIL FROM THE END OF THE MEMBER.


PER ANSI/AF&PA NDS-2001 SECTION 12.4.1 - EDGE DISTANCE. END DISTANCE. SPACING: "EDGE DISTANCES, END DISTANCES AND SPACINGS FOR NAILS AND SPIKES SHALL BE SUFFICIENT TO PREVENT SPLITTING OF THE WOOD."

THE NUMBER OF TOE-NAILS TO BE USED IN A SPECIFIC APPLICATION IS DEPENDENT UPON PROPERTIES FOR THE CHORD SIZE, LUMBER SPECIES, AND NAIL TYPE. PROPER CONSTRUCTION PRACTICES AS WELL AS GOOD JUDGEMENT SHOULD DETERMINE THE NUMBER OF NAILS TO BE USED.

THIS DETAIL DISPLAYS A TOE-NAILED CONNECTION FOR JACK FRAMING INTO A SINGLE OR DOUBLE PLY SUPPORTING GIRDER.

MAXIMUM VERTICAL RESISTANCE OF 16d (0.162"X3.5") COMMON TOE-NAILS

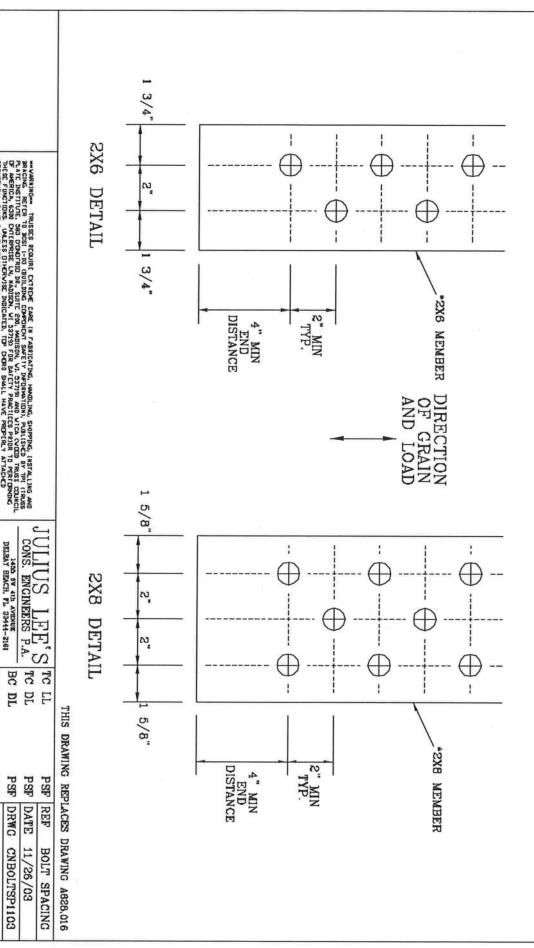
NUMBER OF	SOUTHE	SOUTHERN PINE	DOUGLAS	DOUGLAS FIR-LARCH		HEM-FIR	SPRUCE PINE FIR	PINE F
TOE-NAILS	1 PLY	2 PLIES	1 PLY	2 PLIES	1 PLY	2 PLIES	1 PLY	2 PLIES
ผ	187#	256#	181#	234#	156#	203#	154#	189#
သ	296#	383#	271#	351#	234#	304#	230#	298#
4,	394#	511#	361#	468#	312#	406#	307#	397#
თ	493#	639#	452#	585#	390#	507#	384#	496#
ALL VALUE	ES MAY B	ALL VALUES MAY BE MULTIPLIED BY APPROPRIATE DURATION OF LOAD FACTOR	TO BY APP	ROPRIATE	NOTTARUCI	A LVOI HO	ACTOR	

\	30°-60°		
JACK ALTERNATIVE CONDITION	1 1/8"	OP' (2) GIR	
CONDITION		OPTIONAL (2) PLY GIRDER	

THIS DRAWING REPLACES DRAWING 784040

	WARRONG TRUSSES REDURE EXTREME CARE IN FARRICATING, HANDLING, SUPPING, INSTALLING AND BRACING. REFER TO BEST 1-03 CHULING COPPIDENT SAFETY (METOMALING, SUPPING, INSTALLING AND COPPIDENT SAFETY RANGEON, 1983 PROPERTY OF TRUSSES CHARGE OF AMERICA, 5800 ENTERPRISE CH., MAGISON, VI 337/9) FOR SAFETY RACTICES PROPERTY OF REPORTING TO PERFORMING THESE CHARGES CHARGES UNICLES UNICLES UNICLES UNICLES UNICLES CHARGES							
STATE OF FLORIDA	No: 34869			DELRAY BEACH, FL SO444-2161	CONS. ENGINEERS P.A.	JULIUS LEE'S		
SPACING	DUR. FAC.	TOT. LD.	BC LL	BC DL	TC DL	TC LL		
	1.00	PSF	PSF	PSF	PSF	PSF REF		
8			PSF -ENG JL	DRWG	DATE	REF		
			IL	DRWG CNTONAIL1103	09/12/07	TOE-NAIL		

2


DIAMETER BOLT SPACING FOR LOAD APPLIED PARALLEL T0GRAIN

* GRADE AND SPECIES AS SPECIFIED ON THE ALPINE DESIGN

BOLT HOLES SHALL BE A MINIMUN OF 1/32" TO A MAXIMUM OF 1/16" LARGER THAN BOLT DIAMETER.

TYPICAL LOCATION OF 1/2" DIAMETER THRU BOLTS. BOLT QUANTITIES AS NOTED ON SEALED DESIGN MUST BE APPLIED IN ONE OF THE PATTERNS SHOWN BELOW.

WASHERS REQUIRED UNDER BOLT HEAD AND NUT

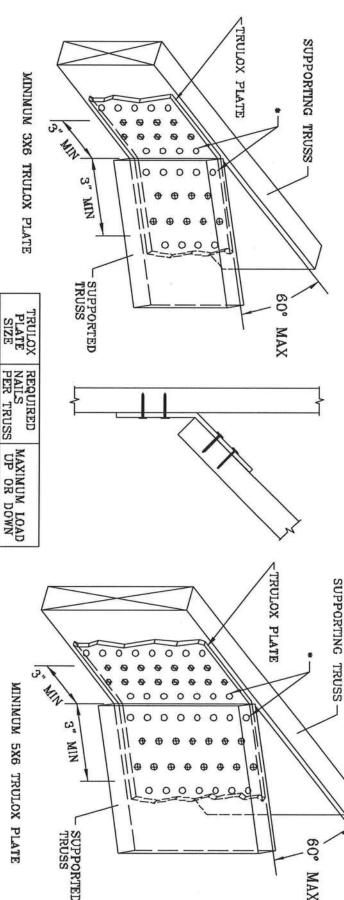
No: 34869 STATE OF FLORIDA

SPACING

BC LL TOT. LD.

PSF

PSF


TRULOX CONNECTION DETA

11 GAUGE (0.120" X 1.375") NAILS REQUIRED FOR TRULOX PLATE ATTACHMENT. FILL ROWS COMPLETELY WHERE SHOWN (\(\phi \)).

NAILS MAY BE OMITTED FROM THESE ROWS THIS DETAIL MAY BE USED WITH SO. PINE. DOUGLAS-FIR OR HEM-FIR CHORDS WITH A MINIMUM 1.00 DURATION OF LOAD OR SPRUCE-PINE-FIR CHORDS WITH A MINIMUM 1.15 DURATION OF LOAD. CHORD SIZE OF BOTH TRUSSES MUST EXCEED THE TRULOX PLATE WIDTH

TRULOX PLATE IS CENTERED ON THE CHORDS AND BENT BETWEEN NAIL ROWS.

REFER TO ENGINEER'S SEALED DESIGN REFERENCING INFORMATION NOT SHOWN. THIS DETAIL FOR LUMBER, PLATES, AND OTHER

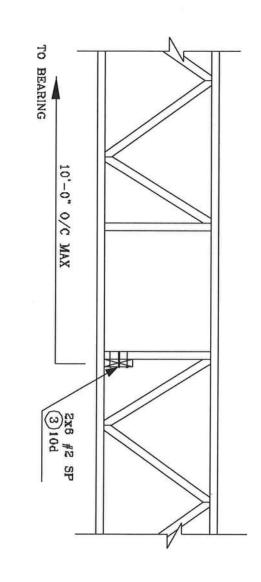
J. MIN. MINIMUM 5X6 TRULOX PLATE TRUSS

THIS DRAWING REPLACES DRAWINGS 1,158,989 1,158,989/R 1,154,944 1,152,217 1,152,017 1,159,154 & 1,151,524

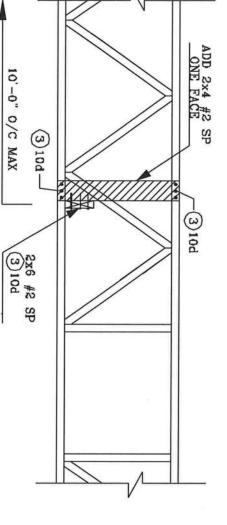
WARRING TRUSSES REQUIRE EXTREME CARE IN FABRICATING, HANDLING, BACING REFER TO DEST 1-00 EUULING EXPENCIN SAFETY INFORMATION, PLATE INSTITUTE, 580 ENDORFORD DR. SUITE ROY, MINISTON, V. 139789 AND DE FAMELICA, 6300 ENTERPRISE LW, MADISTON, VE 39789 FOR SAFETY PACKET INFORMATION, UALESS DIFFERVISE BUBLICATER, 100 D-0400 SWALL HAVE STRUCTURAL PARELS AND BOTTON CHORD SWALL HAVE A PROPERLY ATTACHED

MINIMUM 3X6 TRULOX PLATE

3X6


MAXIMUM LOAD
UP OR DOWN

15 9


990# 350#

	ED RIGID CELLING	TICES PRIDE TO PERFORMING	G, SHIPPING, INSTALLING AND	
No: 34869 STATE OF FLORIDA		DELEAY BEACH, IL 38444-2161	CONS. ENGINEERS P.A.	JULIUS LEE'S
	-EN	DRWG	DATE	REF
	-ENG JL	G CNTRULOX1103	11/26/03	TRULOX

STRONG BACK DETAIL SYSTEM-42 OR FLAT TRUSS

ALTERNATE DETAIL FOR STRONG BACK WITH VERTICAL NOT LINING UP

JULIUS LEE'S CONS. ENGINEERS P.A.

1455 SW 4th AVEUE

PELRY BEACH, 7L 33444-2361

TO BEARING

No: 34869 STATE OF FLORIDA

OCCUPANCY

COLUMBIA COUNTY, FLORIDA

epartment of Building and Zoning

and premises at the below named location, and certifies that the work has been completed in accordance with the Columbia County Building Code. This Certificate of Occupancy is issued to the below named permit holder for the building

Parcel Number 26-6S-15-00641-003

Building permit No. 000026668

Use Classification SFD/UTILITY

Fire: 77.00

Waste: 201.00

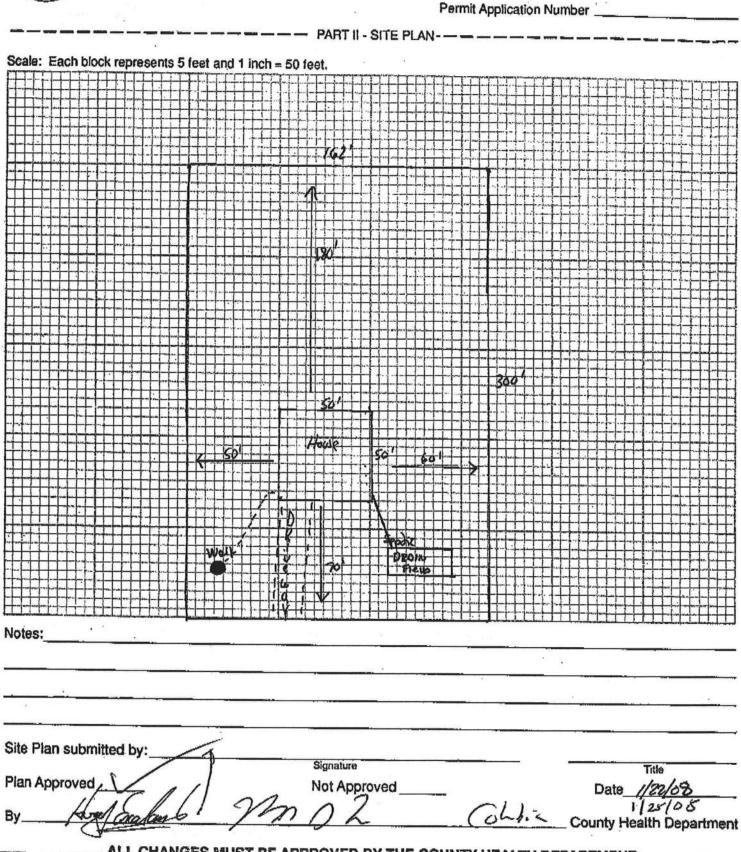
Owner of Building JACKIE MOORE

Permit Holder HUGO ESCALANTE

Total: 278.00

Location: 1374 SW SANTA FE DRIVE., FT. WHITE, FL

Date: 10/29/2008


Building Inspector

POST IN A CONSPICUOUS PLACE (Business Places Only)

STATE OF FLORIDA DEPARTMENT OF HEALTH

68-0088 E

APPLICATION FOR ONSITE SEWAGE DISPOSAL SYSTEM CONSTRUCTION PERMIT

