

Project Information:

Truss Design Information:

Builder: Cash Account

Model: CUSTOM

Builders FirstSource Job #: 300221

Street: 162 NE Dew Drop Way

City: Lake City

County: Columbia
Building Code: FBC2007/TPI2002

Computer Program Used: MiTek 7.1.1

Gravity Loads

Roof: 32 psf Total

Floor: 55 psf Total

Wind Speed: 110 mph

Mean Roof Ht: 16 ft

Wind

Wind Standard: ASCE 7-05

Exposure: B

Builders FirstSource

Lake City, FL 32055

2525 E. Duval St.

COASTAL BAY BOYNTON BCH, FL. 33435 ELLECTRONICALLY SEAL

IN ACCORDANCE TO SS.668.001-668.006

design criteria, truss geometry, lumber, and plate information.

Design Professional Information: Design Professional Of Record: Jay W. Milton

Note: Refer to individual truss design drawings for special loading conditions,

Delegated Truss Engineer: Julius Lee

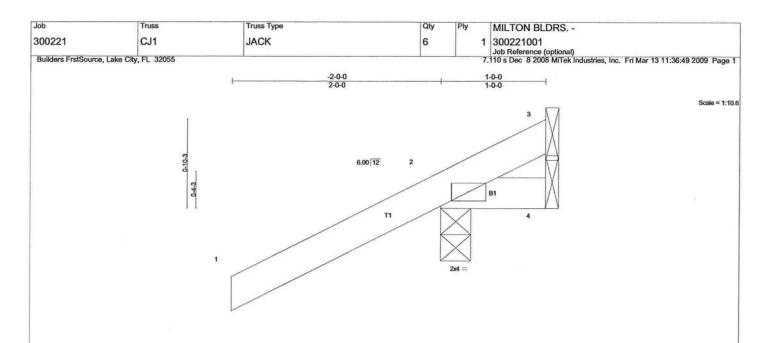
License #: CGC060912

License #: 34869

This truss specification package consists of this index sheet and 47 truss design drawings. This signed and sealed index sheet indicates acceptance of my professional engineering responsibility solely for listed truss design drawings. The suitability and use of each truss component for any particular building is the responsibility of the building designer per TPI.

Truss #	Truss Label	Drawing #	Seal Date	Truss #	Truss Label	Drawing #	Seal Date	Truss	Truss Label	Drawing #	Seal Date
1	CJ1	300221001	3/13/2009	31	T23	300221031	3/13/2009				2410
2	CJ3	300221002	3/13/2009	32	T24	300221032	3/13/2009				
3	CJ5	300221003	3/13/2009	33	T25	300221033	3/13/2009				
4	EJ7	300221004	3/13/2009	34	T26	300221034	3/13/2009				
5	EJ7A	300221005	3/13/2009	35	T27	300221035	3/13/2009				
6	EJ7B	300221006	3/13/2009	36	T28	300221036	3/13/2009				
7	HJ9	300221007	3/13/2009	37	T29	300221037	3/13/2009				
8	T01	300221008	3/13/2009	38	T30	300221038	3/13/2009				
9	T01G	300221009	3/13/2009	39	T31	300221039	3/13/2009				
10	T02	300221010	3/13/2009	40	T32	300221040	3/13/2009				
11	T03	300221011	3/13/2009	41	T33G	300221041	3/13/2009				
12	T04	300221012	3/13/2009	42	T34	300221042	3/13/2009				
13	T05	300221013	3/13/2009	43	T34G	300221043	3/13/2009				
14	T06	300221014	3/13/2009	44	T35	300221044	3/13/2009				
15	T07	300221015	3/13/2009	45	T36	300221045	3/13/2009				
16	T08	300221016	3/13/2009	46	T37	300221046	3/13/2009				
17	T09	300221017	3/13/2009	47	T38	300221047	3/13/2009				
18	T10	300221018	3/13/2009								
19	T11	300221019	3/13/2009								
20	T12	300221020	3/13/2009								
21	T13	300221021	3/13/2009								
22	T14	300221022	3/13/2009								
23	T15	300221023	3/13/2009								
24	T16	300221024	3/13/2009								
25	T17	300221025	3/13/2009								
26	T18	300221026	3/13/2009								
27	T19	300221027	3/13/2009								
28	T20	300221028	3/13/2009								
29	T21	300221029	3/13/2009								
30	T22	300221030	3/13/2009								
-											

ν	Á


To whom it may concern,

This letter is intended to address the issue of warning notes on 7' jack trusses. I have reviewed the jack truss and it passes without modification for any jack up to 7' with a total loading not to exceed 55# and a maximum overhang of 2'. Below is a copy of note you will see on the jack. This letter will act as an approval for the truss mentioned above.

Design Problems Review Required/ Max Deflection In Panel Exceeded: A-B

		x , \$\Delta \cdot \delta \cdot

LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defi	L/d	PLATES	GRIP	
TCLL	20.0	Plates Increase	1.25	TC	0.28	Vert(LL)	-0.00	2	>999	360	MT20	244/190	
TCDL	7.0	Lumber Increase	1.25	BC	0.01	Vert(TL)	-0.00	2	>999	240	30000 70000		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(TL)	0.00	3	n/a	n/a			
BCDL	5.0	Code FBC2007/TF	PI2002	(Matr	ix)	Wind(LL)	0.00	2	>999	240	Weight: 7 It	b	

TOP CHORD 2 X 4 SYP No.2 BOT CHORD 2 X 4 SYP No.2

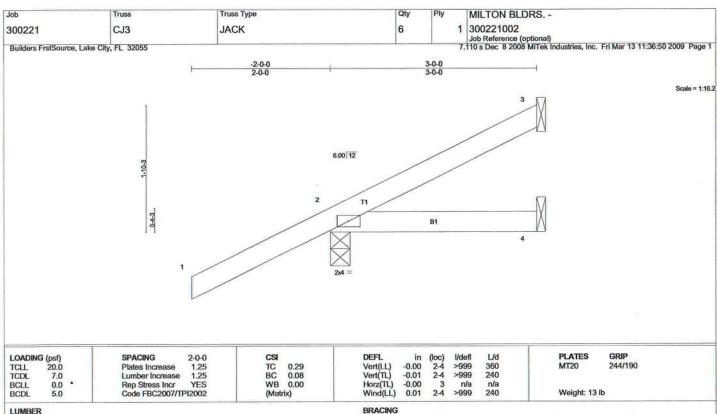
BRACING

Structural wood sheathing directly applied or 1-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing. TOP CHORD

BOT CHORD

REACTIONS (lb/size) 2=256/0-1-8 (input: 0-3-8), 4=5/Mechanical, 3=-90/Mechanical

Max Horz 2=87(LC 7)
Max Uplift2=286(LC 7), 4=9(LC 5), 3=90(LC 1)
Max Grav 2=256(LC 1), 4=14(LC 2), 3=127(LC 7)


FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1) Wind: ASCE 7-05; 110mph (3-second gust); TCDL=4.2psf; BCDL=3.0psf; h=16ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

4) retier to girder(s) for truss to tru

TOP CHORD 2 X 4 SYP No.2

BOT CHORD 2 X 4 SYP No.2

REACTIONS (lb/size) 3=31/Mechanical, 2=250/0-1-8 (input: 0-3-8), 4=14/Mechanical Max Horz 2=132(LC 7)

Max Uplift3=28(LC 8), 2=238(LC 7), 4=27(LC 5) Max Grav 3=31(LC 1), 2=250(LC 1), 4=42(LC 2)

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

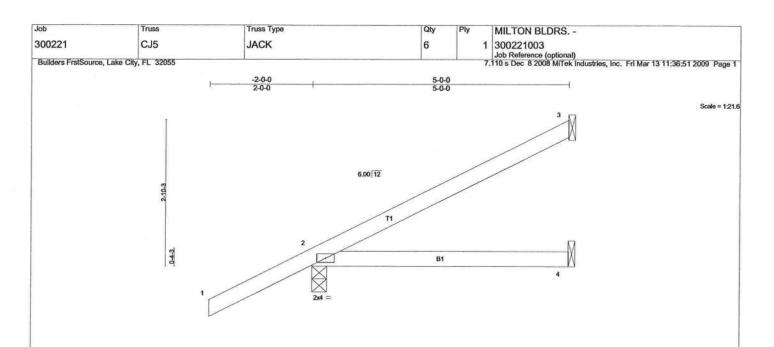
NOTES (7-5)

1) Wind: ASCE 7-05; 110mph (3-second gust); TCDL=4.2psf; BCDL=3.0psf; h=16ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss connections.


TOP CHORD BOT CHORD Structural wood sheathing directly applied or 3-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 28 lb uplift at joint 3, 238 lb uplift at joint 2 and 27 lb uplift at joint 4.

6) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

7) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

8) Truss Design Engineer: Julius Lee, PE: Florida P.E. License No. 34869: Address: 1109 Coastal Bay Blvd. Boynton Beach, FL 33435

LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.29	Vert(LL)	-0.03	2-4	>999	360	MT20	244/190
TCDL	7.0	Lumber Increase	1.25	BC	0.24	Vert(TL)	0.08	2-4	>733	240		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(TL)	-0.00	3	n/a	n/a		
BCDL	5.0	Code FBC2007/TPI	2002	(Matr	ix)	Wind(LL)	0.09	2-4	>663	240	Weight: 19 II	b

TOP CHORD 2 X 4 SYP No.2 BOT CHORD 2 X 4 SYP No.2 BRACING

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 5-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS (lb/size) 3=103/Mechanical, 2=295/0-1-8 (input: 0-3-8), 4=24/Mechanical Max Horz 2=178(LC 7)

Max Uplift3=87(LC 7), 2=-260(LC 7), 4=-46(LC 5)

Max Grav 3=103(LC 1), 2=295(LC 1), 4=72(LC 2)

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES (7-8)

1) Wind: ASCE 7-05; 110mph (3-second gust); TCDL=4.2psf; BCDL=3.0psf; h=16ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) *This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 87 lb uplift at joint 3, 260 lb uplift at joint 2 and 46 lb uplift at joint 4.

6) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

TPI 1 as referenced by the building code. TPI 1 as referenced by the building code.

8) Truss Design Engineer: Julius Lee, PE: Florida P.E. License No. 34869: Address: 1109 Coastal Bay Blvd. Boynton Beach, FL 33435

	MILTON BLDRS	Ply	Qty	Truss Type	Truss	lob
	300221004 Job Reference (optional) 10 s Dec 8 2008 MITek Industries, li	1	31	JACK	EJ7	00221
nc. Fri Mar 13 11:36:51 2009 Page	10 s Dec 8 2008 MiTek Industries, I	7.			Lake City, FL 32055	uilders FrstSource, L
			7-0-0 7-0-0	-2-0-0 2-0-0	F	
Scale = 1:2 Camber = 1/1	3					
		//	_	6.00 12		
			//		3-10-3	
	M		B1	2	D-4-3	
	4			3x4 =	1	

*** Design Problems *** **REVIEW REQUIRED**

Max Deflection In Panel Exceeded: 2-3, 2-4
Max Vertical Deflection Exceeded In Span: 2-4

LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.52	Vert(LL)	-0.09	2-4	>921	360	MT20	244/190
CDL	7.0	Lumber Increase	1.25	BC	0.48	Vert(TL)	0.31	2-4	>261	240	200,000000	
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(TL)	-0.00	3	n/a	n/a		
BCDL	5.0	Code FBC2007/TF	212002	(Matr	ix)	Wind(LL)	0.35	2-4	>236	240	Weight: 26	lb

TOP CHORD 2 X 4 SYP No.2 BOT CHORD 2 X 4 SYP No.2

BRACING

TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS (lb/size) 3=157/Mechanical, 2=352/0-1-8 (input: 0-3-8), 4=42/Mechanical

Max Horz 2=161(LC 7) Max Uplift3=94(LC 7), 2=224(LC 7), 4=65(LC 6) Max Grav 3=157(LC 1), 2=352(LC 1), 4=96(LC 2)

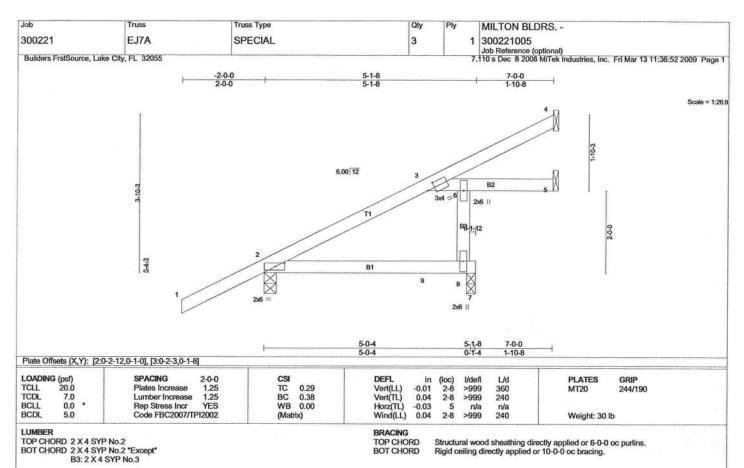
FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES (7-8)

1) Wind: ASCE 7-05; 110mph (3-second gust); TCDL=4.2psf; BCDL=3.0psf; h=16ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


4) Refer to girder(s) for truss to truss connections.
5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 94 lb uplift at joint 3, 224 lb uplift at joint 2 and 65 lb uplift at

s) Provide medianical connection (by orients) of truss to bearing place capacite of windstanding 94 to upin a form 3, 5 to upin at joint 4.

6) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

7) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

8) Truss Design Engineer: Julius Lee, PE: Florida P.E. License No. 34869: Address: 1109 Coastal Bay Blvd. Boynton Beach, FL 33435

REACTIONS

All bearings Mechanical except (jt=length) 2=0-3-8, 8=0-2-8.

(lb) - Max Horz 2=211(LC 7)

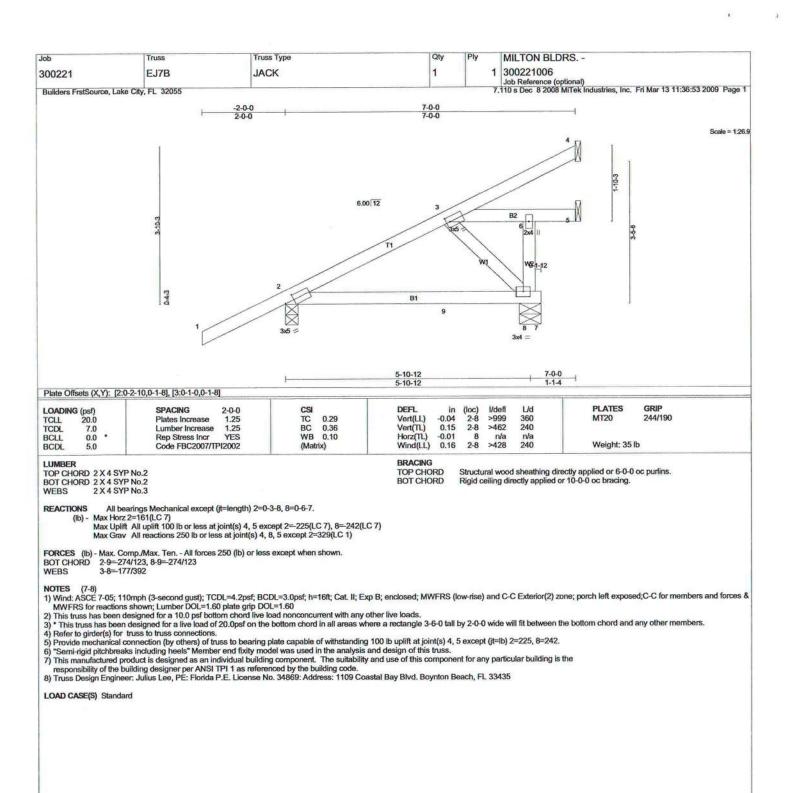
Max Uplift All uplift 100 lb or less at joint(s) 4, 5 except 2=-167(LC 7), 8=-208(LC 7)

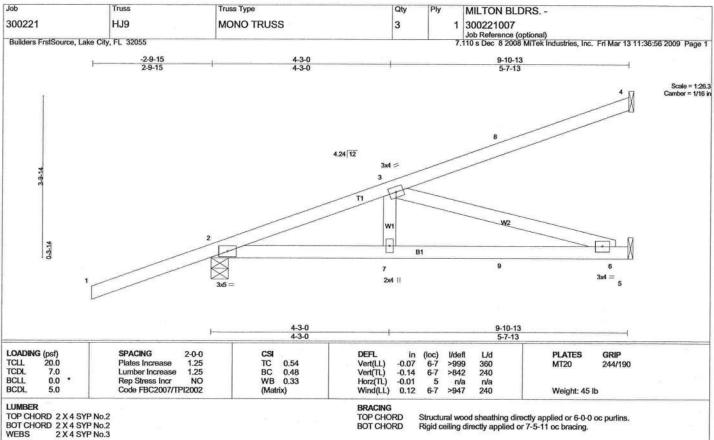
Max Grav All reactions 250 lb or less at joint(s) 4, 8, 5 except 2=282(LC 1)

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. BOT CHORD 6-8=-211/399

NOTES (8-9)

1) Wind: ASCE 7-05; 110mph (3-second gust); TCDL=4.2psf; BCDL=3.0psf; h=16ft; Cal. II; Exp B; enclosed; MWFRS (low-rise) and C-C Exterior(2) zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


3) *This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

Provide mechanical connection (by others) of truss to bearing plate at joint(s) 8.

5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 8.
6) Provide mechanical connection (by others) of truss to bearing plate acapable of withstanding 100 lb uplift at joint(s) 4, 5 except (jt=lb) 2=167, 8=208.
7) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.
8) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANIST ITP1 1 as referenced by the building code.
9) Truss Design Engineer: Julius Lee, PE: Florida P.E. License No. 34869: Address: 1109 Coastal Bay Blvd. Boynton Beach, FL 33435

REACTIONS (lb/size) 4=167/Mechanical, 2=513/0-1-8 (input: 0-4-15), 5=188/Mechanical

Max Horz 2=225(LC 3)
Max Uplift4=145(LC 3), 2=487(LC 3), 5=238(LC 6)
Max Grav 4=167(LC 1), 2=513(LC 1), 5=241(LC 2)

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD

2-3=-625/578 2-7=-630/550, 7-9=-630/550, 6-9=-630/550

WEBS 3-7=169/268, 3-6=-572/655

- NOTES (9-10)

 1) Wind: ASCE 7-05; 110mph (3-second gust); TCDL=4.2psf; BCDL=3.0psf; h=16ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) gable end zone; porch left and right exposed; Lumber DOL=1.60 plate grip
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

 4) Refer to girder(s) for truss to truss connections.

- 4) Refer to guirder(s) for truss to truss connections.

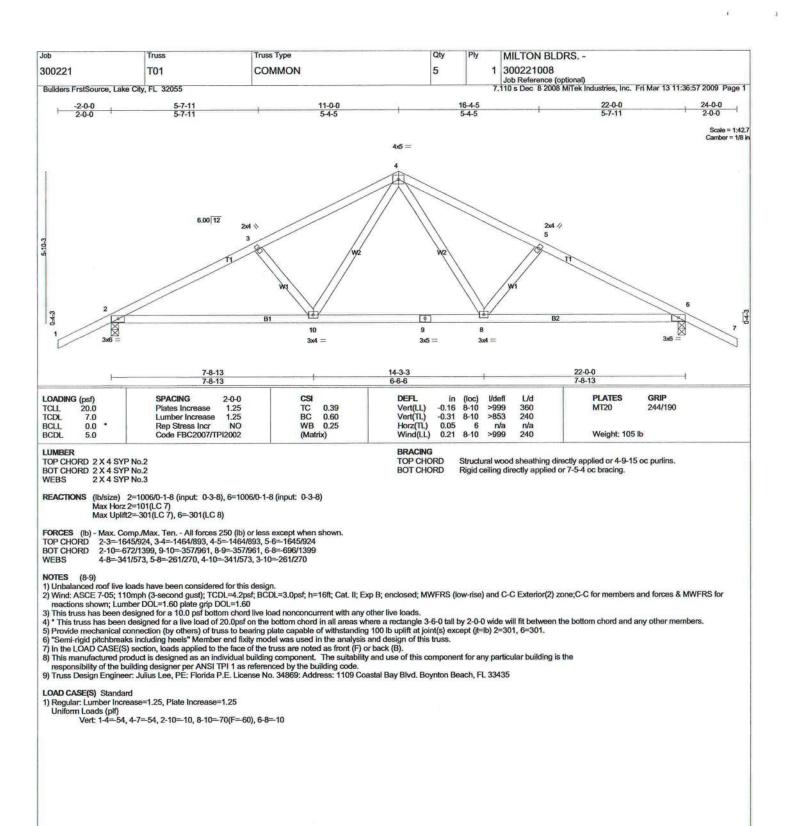
 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 4=145, 2=487, 5=238.

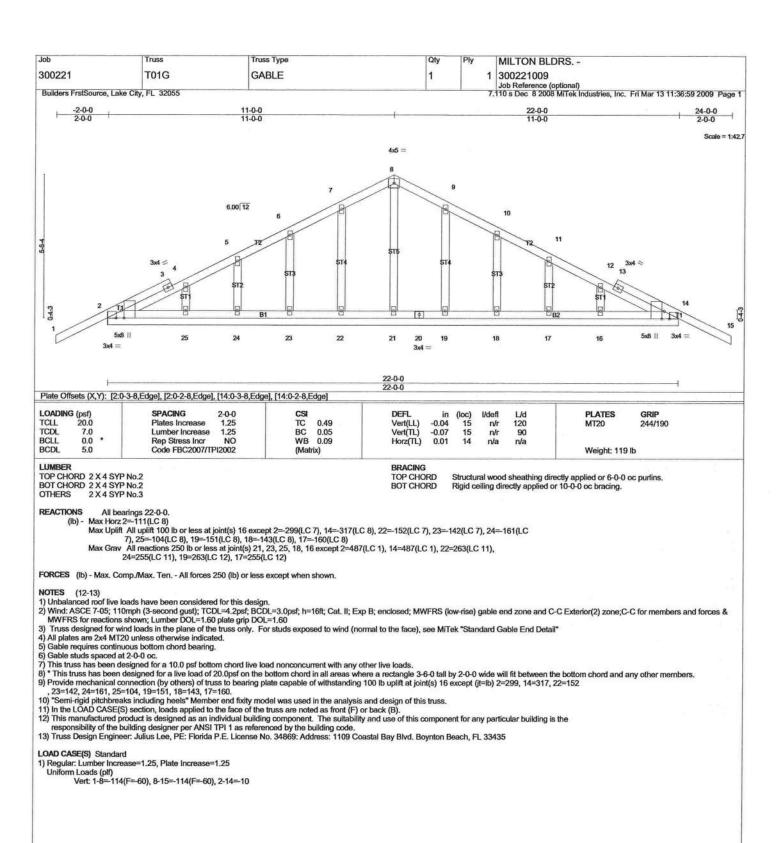
 6) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

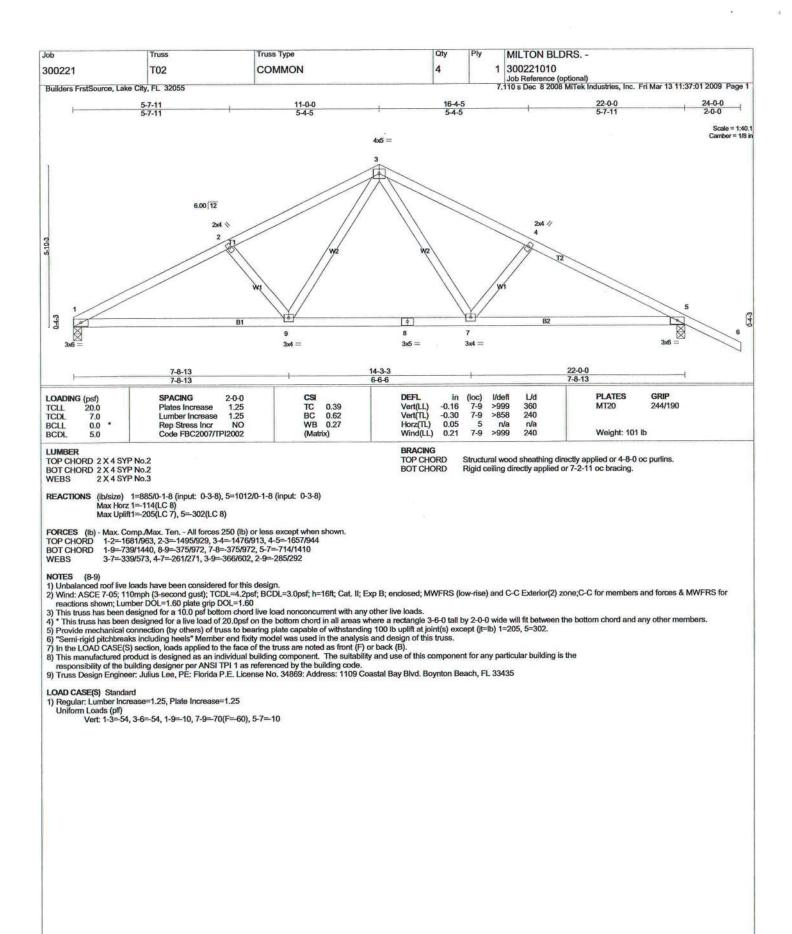
 7) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 10 lb down and 23 lb up at 4-1-14, 10 lb down and 23 lb up at 4-1-14, and 49 lb down and 75 lb up at 6-11-13, and 49 lb up at 4-1-14, and 42 lb down and 75 lb up at 6-11-13 on bottom chord. The design/selection of trub connection device(s) is the presentable in the support of the properties of the properties of the presentable in the
- and own and or in up at 6-11-14, and 42 to down and 27 is up at 6-11-15, and 42 is down and 27 is up at 6-11-13 on bottom chord. The design/selection such connection device(s) is the responsibility of others.

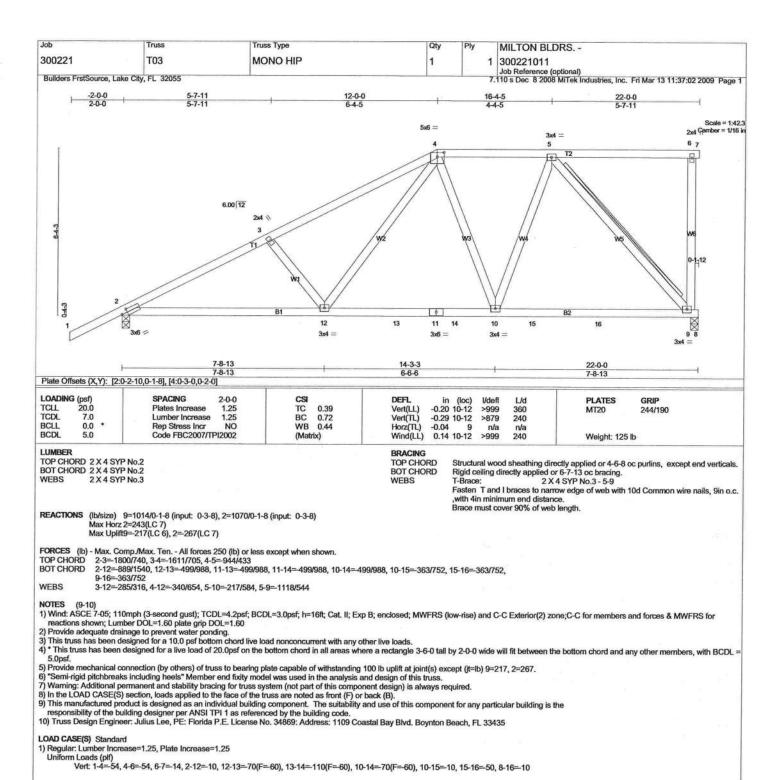
 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

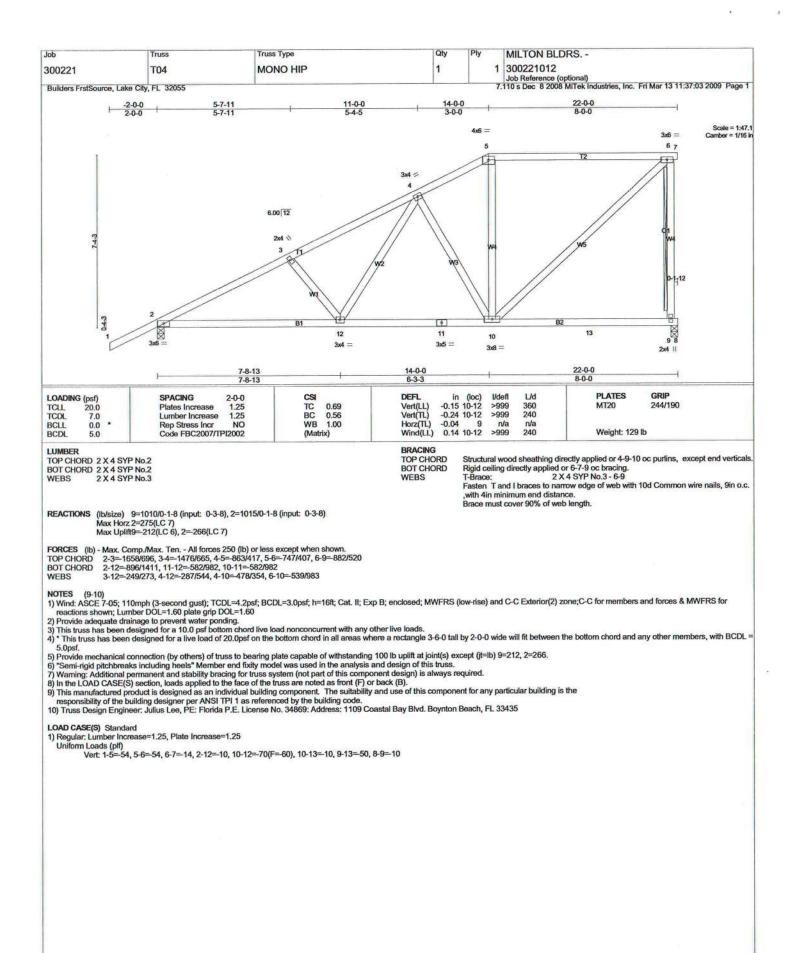
 9) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

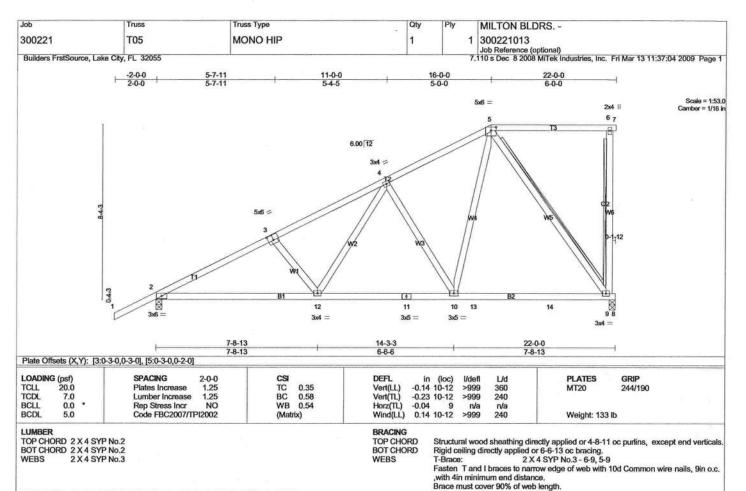

 10) Truss Design Engineer: Julius Lee, PE: Florida P.E. License No. 34869: Address: 1109 Coastal Bay Blvd. Boynton Beach, FL 33435


LOAD CASE(S) Standard


Regular: Lumber Increase=1.25, Plate Increase=1.25
 Uniform Loads (plf)


Vert: 1-4=-54, 2-5=-10


Vert: 3=46(F=23, B=23) 7=8(F=4, B=4) 8=99(F=49, B=49) 9=28(F=14, B=14)



REACTIONS (lb/size) 9=1004/0-1-8 (input: 0-3-8), 2=1038/0-1-8 (input: 0-3-8) Max Horz 2=307(LC 7) Max Uplift9=-209(LC 6), 2=-263(LC 7)

FORCES (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2.3=-1702/660, 3.4=-1524/632, 4.5=913/389

BOT CHORD 2.12=94/41/449, 11-12=613/1038, 10-11=613/1038, 10-13=-313/569, 13-14=-313/569, 9.14=-313/569

WEBS 3-12=-236/261, 4-12=-277/526, 4-10=-550/423, 5-10=-403/899, 5-9=-961/536

- NOTES (9-10)

 1) Wind: ASCE 7-05; 110mph (3-second gust); TCDL=4.2psf; BCDL=3.0psf; h=16ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 2) Provide adequate drainage to prevent water ponding.

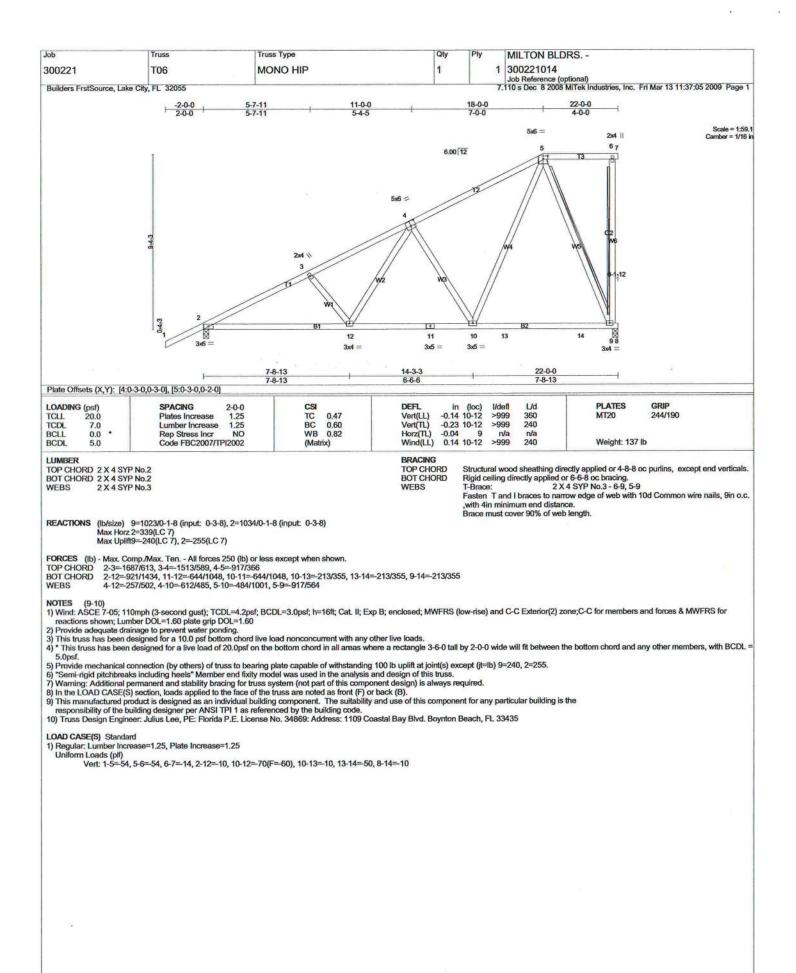
 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

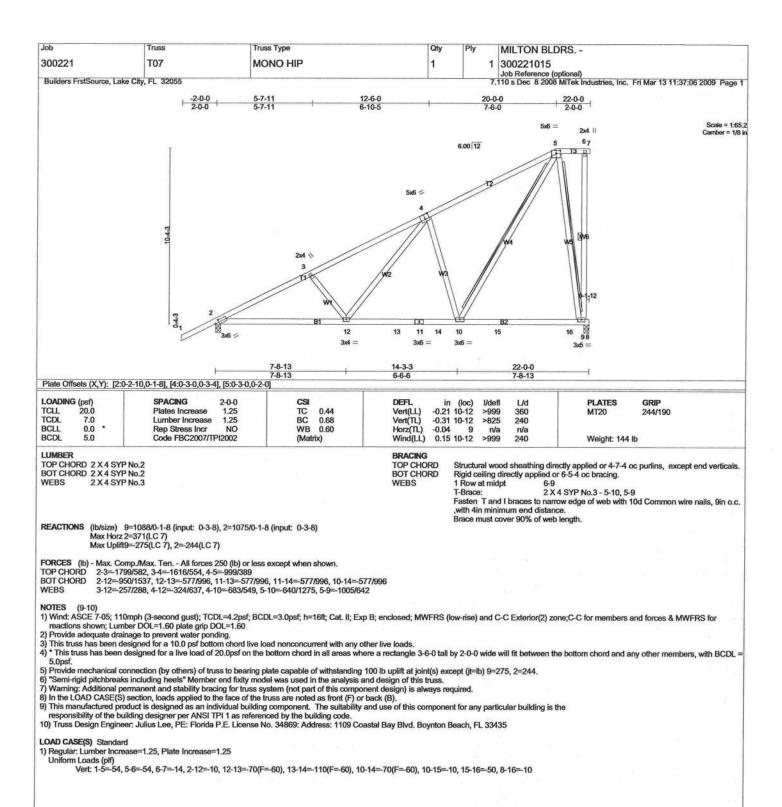
 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL =
- 5.0psf. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (it=lb) 9=209, 2=263.

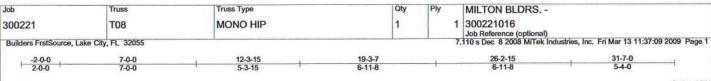
- 5) Provide mechanical connection (by others) of russ to bearing plate capable of withstanding 10d ib upint at joint(s) except (if=ib) 9=209, 2=263.

 6) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

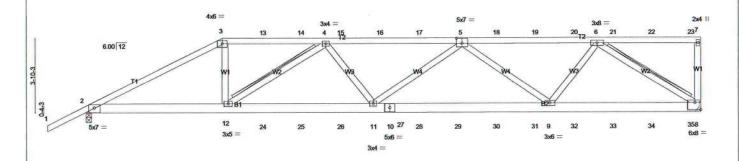
 7) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.


 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).


 9) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.


 10) Truss Design Engineer: Julius Lee, PE: Florida P.E. License No. 34869: Address: 1109 Coastal Bay Blvd. Boynton Beach, FL 33435

LOAD CASE(S) Standard
1) Regular: Lumber Increase=1.25, Plate Increase=1.25


Uniform Loads (plf)
Vert: 1-5=-54, 5-6=-54, 6-7=-14, 2-12=-10, 10-12=-70(F=-60), 10-13=-10, 13-14=-50, 8-14=-10

Scale = 1:57.3 Camber = 1/4 in

	7-0-0		14-8-13 7-8-13					7-8-14
Plate Offsets (X,Y): [2:0-3-8,0-2-13], [5:0-3-8,0-3-	0], [8:Edge,0-4-8	3					
LOADING (psf) TCLL 20.0 TCDL 7.0 BCLL 0.0	Plates Increase	2-0-0 1.25 1.25 NO	CSI TC 0.91 BC 0.55 WB 0.82	Vert(LL) Vert(TL) Horz(TL)	in (loc -0.25 9-1 -0.50 9-1 0.11	>999	L/d 360 240 n/a	PLATES GRIP MT20 244/190
BCDL 5.0	Code FBC2007/T	PI2002	(Matrix)	Wind(LL)	0.38 9-1	>981	240	Weight: 180 lb

LUMBER

TOP CHORD 2 X 4 SYP No.2 BOT CHORD 2 X 6 SYP No.1D WEBS 2 X 4 SYP No.3

BRACING

TOP CHORD BOT CHORD WEBS

Structural wood sheathing directly applied, except end verticals. Rigid ceiling directly applied or 4-10-7 oc bracing. T-Brace: 2 X 4 SYP No.3 - 4-12, 6-8

Fasten T and I braces to narrow edge of web with 10d Common wire nails, 9in o.c. with 4in minimum end distance. Brace must cover 90% of web length.

REACTIONS (lb/size) 8=2084/Mechanical, 2=1903/0-2-4 (input: 0-3-8) Max Horz 2=164(LC 5) Max Uplift8=1406(LC 4), 2=-1139(LC 5)

FORCES (ib) - Max. Comp./Max. Ten. - All forces 250 (ib) or less except when shown.

TOP CHORD

TOP

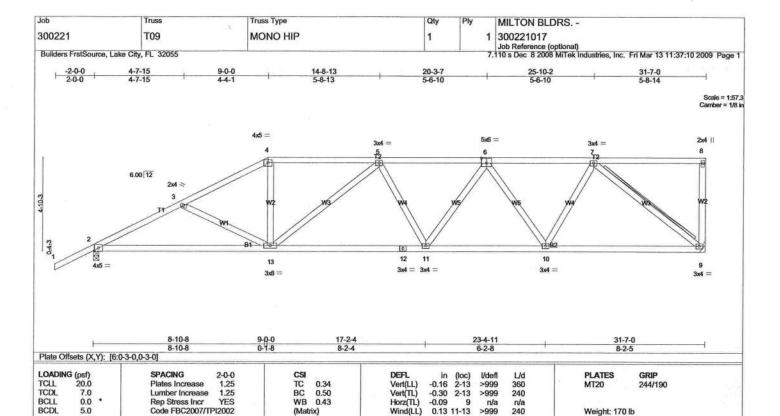
10-28-2917/4422, 28-29-2917/4422, 29-30-2917/4422, 30-31-2917/4422, 9-31-2917/4422, 9-32-1731/2623, 32-33-1731/2623, 33-34-1731/2623, 34-35-1731/2623, 8-35-1731/2623

WEBS 3-12-678/992, 4-12-1496/1039, 4-11-242/430, 5-11-152/310, 5-9-1352/828, 6-9-927/1271, 6-8-3113/2054

NOTES (11-13)
1) Wind: ASCE 7-05; 110mph (3-second gust); TCDL=4.2psf; BCDL=3.0psf; h=16ft; Cat. II; Exp B; enclosed; MWFRS (low-rise); Lumber DOL=1.60 plate grip DOL=1.60

- 2) Provide adequate drainage to prevent water ponding.

 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Refer to girder(s) for truss to truss connections.
6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8=1406, 2=1139.

LOAD CASE(S) Standard

1) Regular: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf) Vert: 1-3=54, 3-7=-54, 2-8=-10 Concentrated Loads (lb)

Trailed Loads (to)
Vert: 3—216(F) 5=-103(F) 12=-32(F) 13=-103(F) 14=-103(F) 15=-103(F) 16=-103(F) 17=-103(F) 18=-103(F) 19=-103(F) 20=-103(F) 21=-103(F)
22=-103(F) 23=-103(F) 24=-32(F) 25=-32(F) 26=-32(F) 27=-32(F) 28=-32(F) 29=-32(F) 30=-32(F) 31=-32(F) 32=-32(F) 33=-32(F) 34=-32(F)

TOP CHORD 2 X 4 SYP No.2

BOT CHORD 2 X 4 SYP No.2 WEBS 2 X 4 SYP No.3

BRACING TOP CHORD

BOT CHORD WEBS

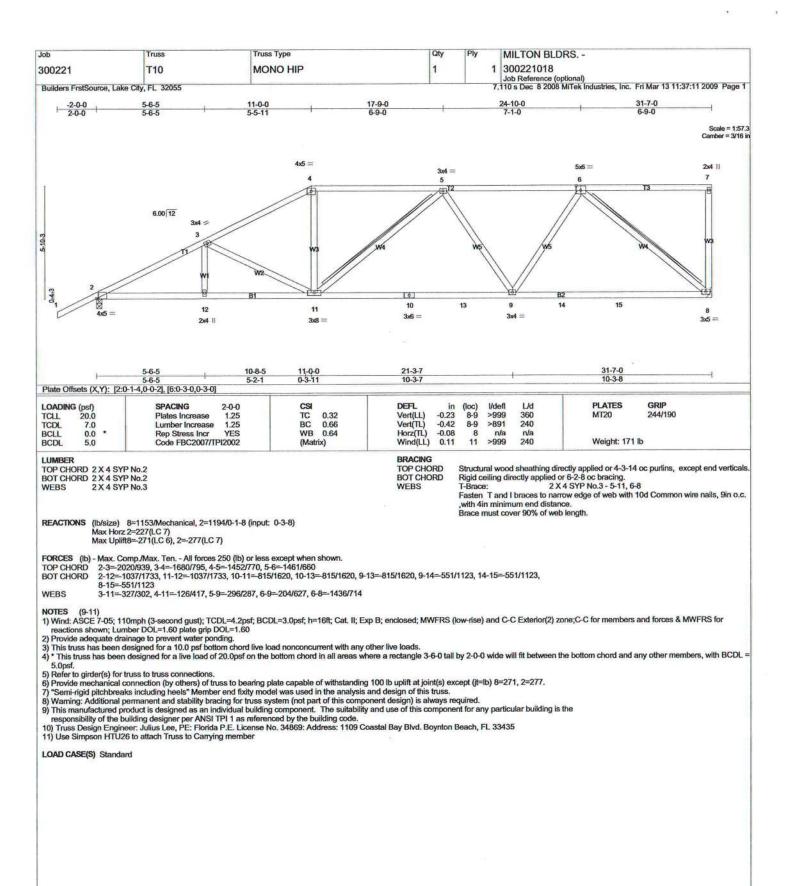
Structural wood sheathing directly applied or 4-6-15 oc purlins, except end verticals. Rigid ceiling directly applied or 6-2-14 oc bracing.
T-Brace:
2 X 4 SYP No.3 - 7-9
Fasten T and I braces to narrow edge of web with 10d Common wire nails, 9in o.c.

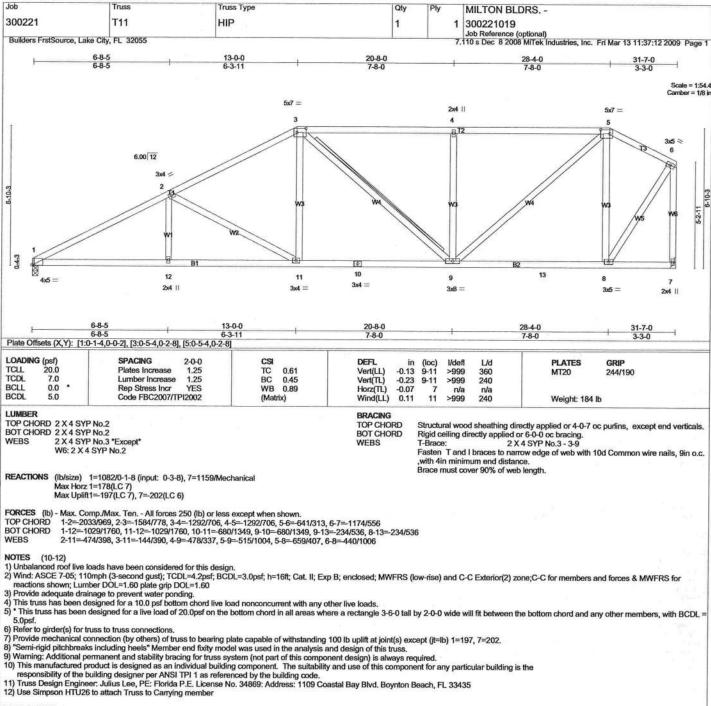
,with 4in minimum end distance. Brace must cover 90% of web length.

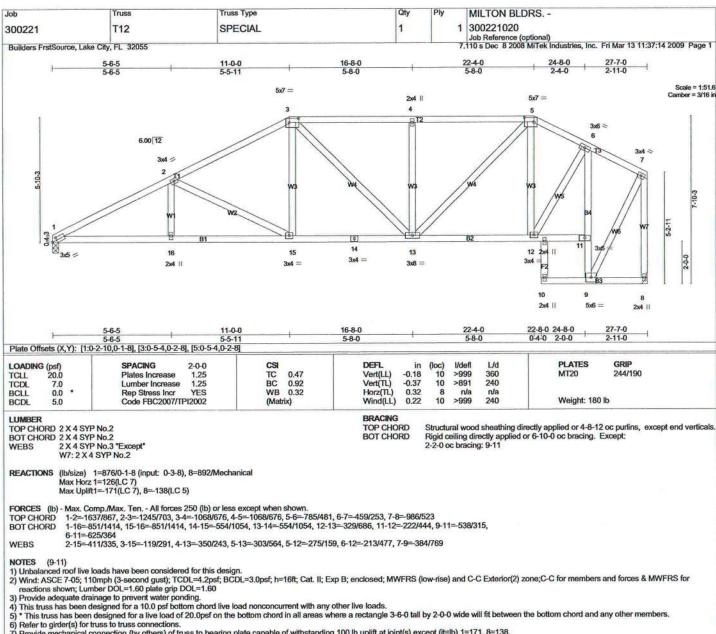
REACTIONS (lb/size) 9=997/Mechanical, 2=1121/0-1-8 (input: 0-3-8) Max Horz 2=195(LC 7) Max Uplift9=-272(LC 6), 2=-266(LC 7)

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1865/978, 3-4=-1625/847, 4-5=-1418/811, 5-6=-1686/917, 6-7=-1303/688


BOT CHORD 2-13=-1028/1600, 12-13=-971/1725, 11-12=-971/1725, 10-11=-872/1592, 9-10=-569/1034

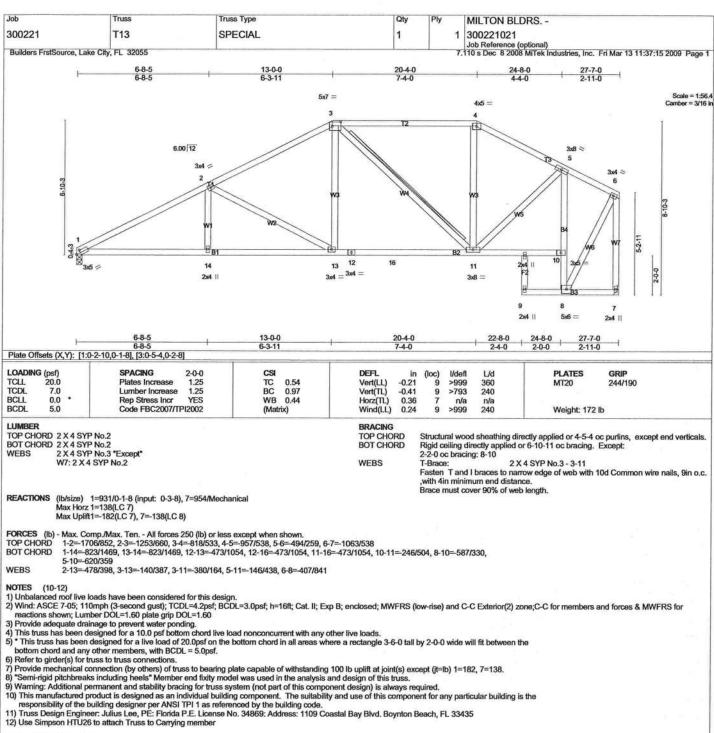

WEBS 4-13=-181/440, 5-13=-397/212, 6-10=-513/328, 7-10=251/568, 7-9=-1312/727

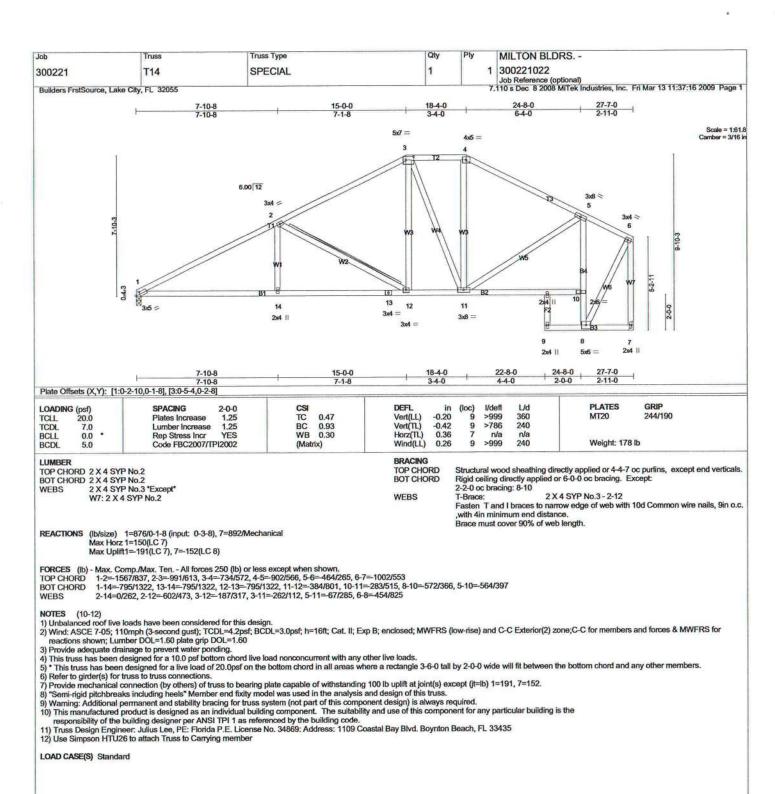

NOTES

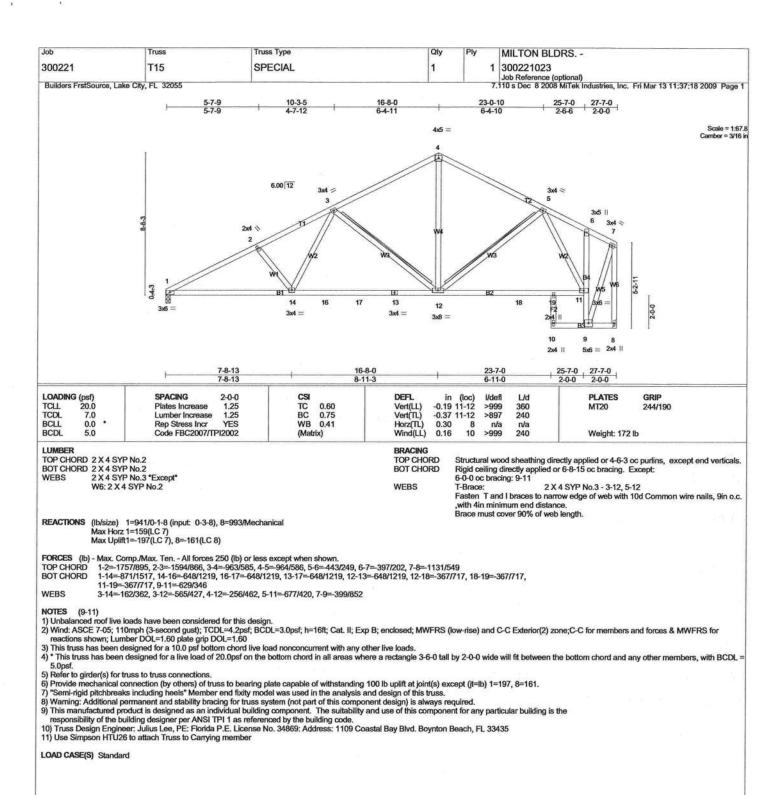
1) Wind: ASCE 7-05; 110mph (3-second gust); TCDL=4.2psf; BCDL=3.0psf; h=16ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for 1) Wind: ASCE 7-05; Trumpin (3-second gust); ToDL=3.0pst; n=10ii, Cat. iii, Exp. b, enclosed, MVFT/3 (low-lise) and 0-5 Extending, 2 into,0-5 for intentions and into a contract reactions shown; Lumber DOL=1.60 plate grip DOL=1

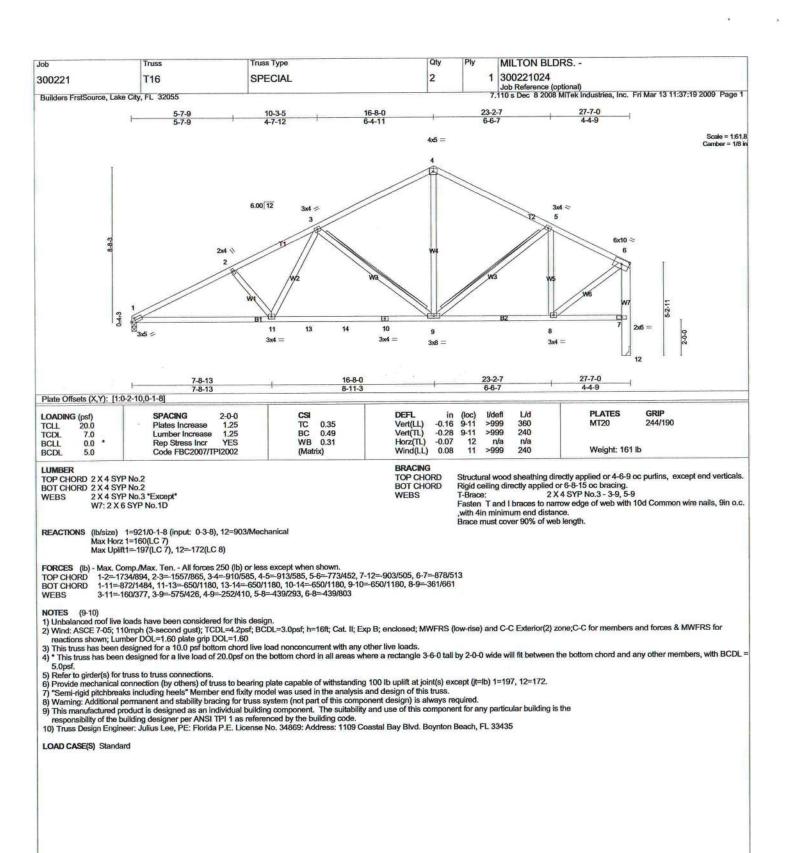
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the b 5) Refer to girder(s) for truss to truss connections.
 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (it=lb) 9=272, 2=266.
 7) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.
 8) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.
 9) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.
 10) Truss Design Engineer. Julius Lee, PE: Florida P.E. License No. 34869: Address: 1109 Coastal Bay Blvd. Boynton Beach, FL 33435
 11) Use Simpson HTU26 to attach Truss to Carrying member

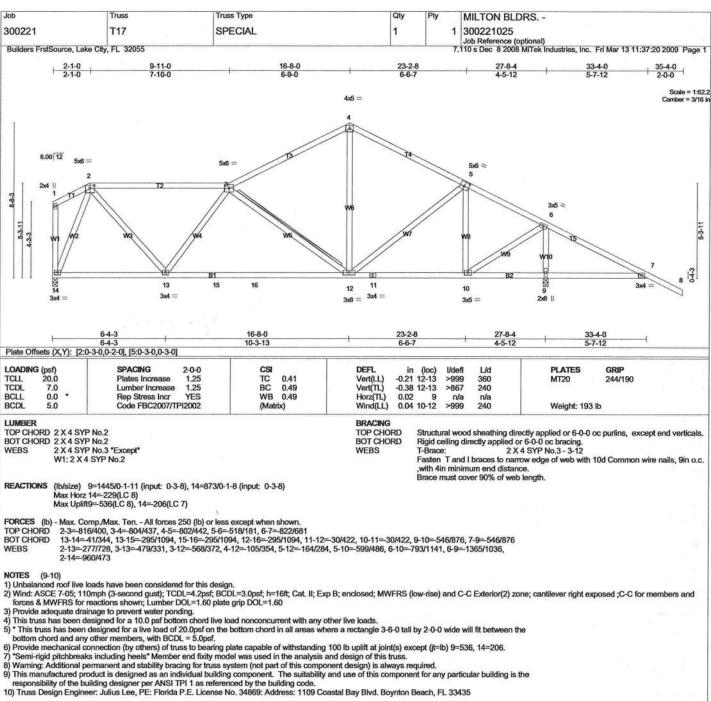
o) refer to growing for truss to truss comectoris.

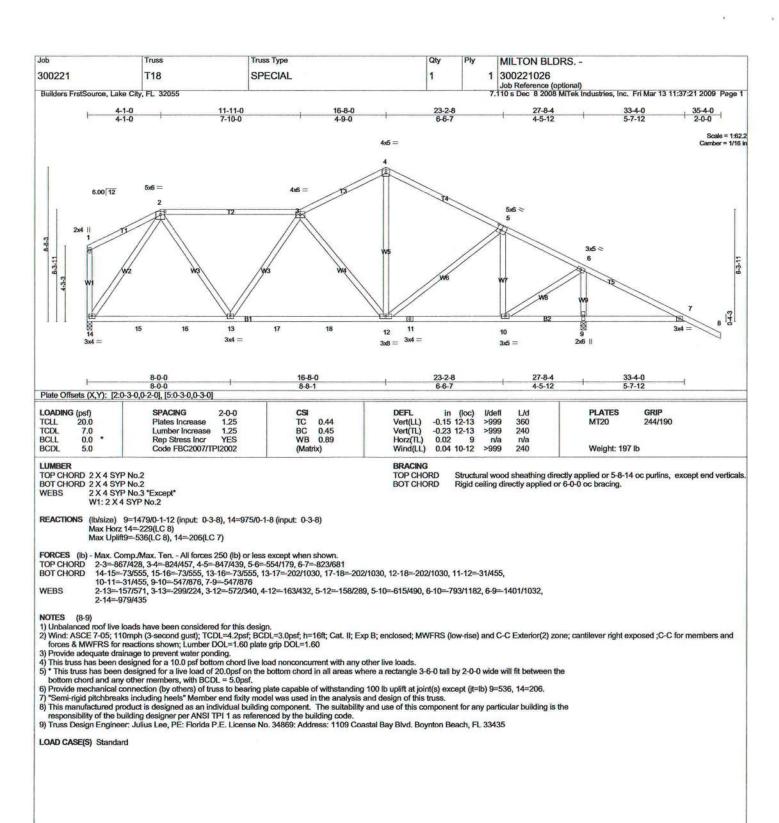

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=171, 8=138.

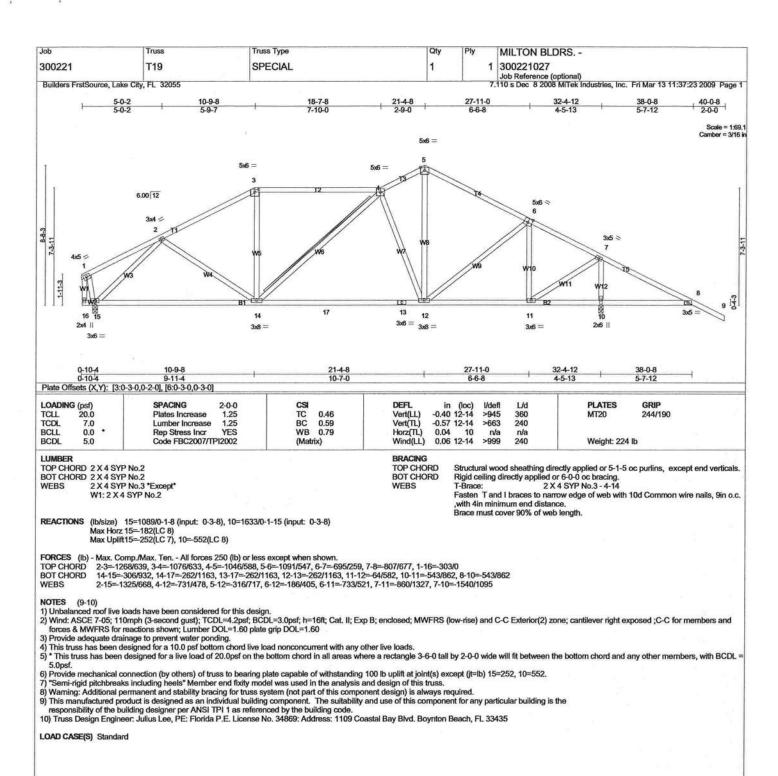

8) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

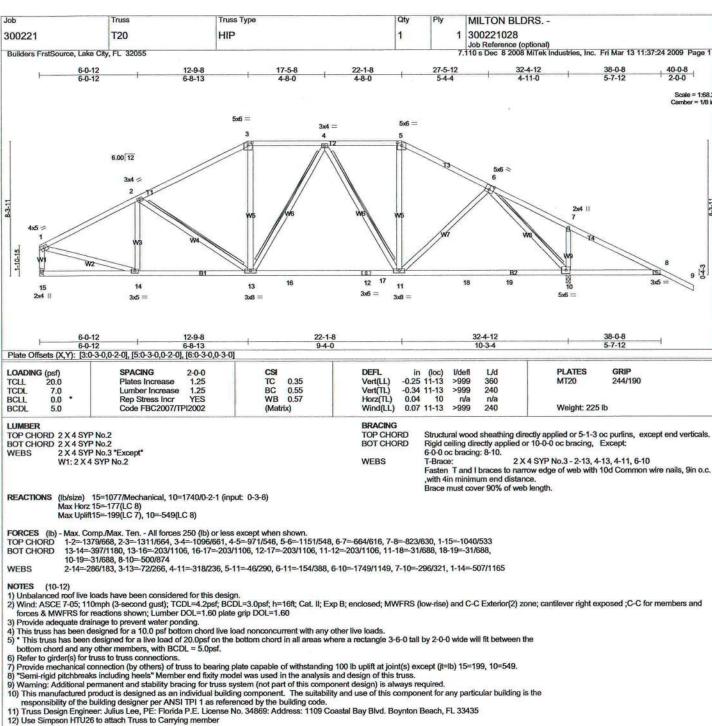

9) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

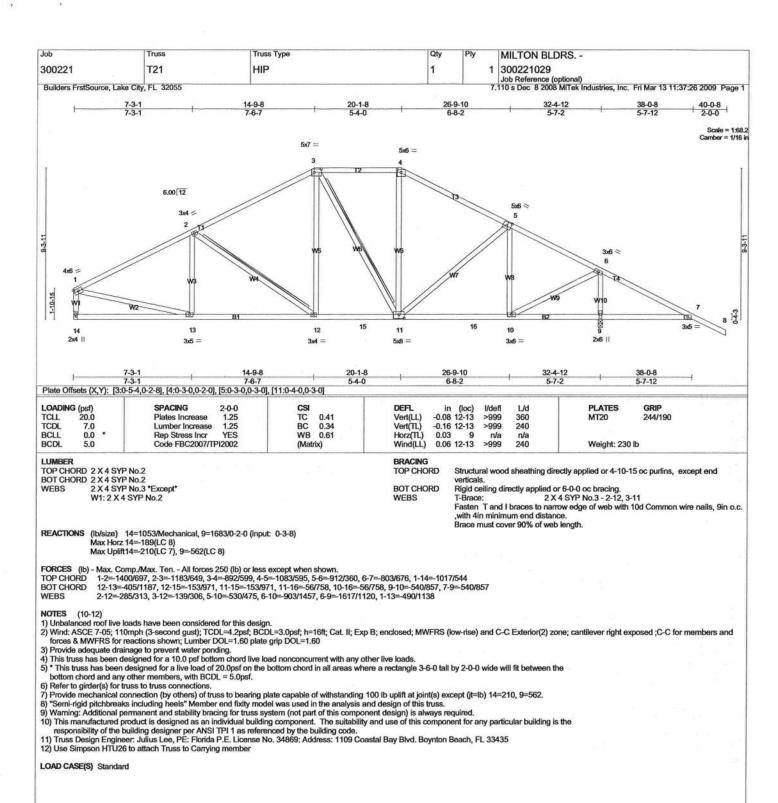

10) Truss Design Engineer: Julius Lee, PE: Florida P.E. License No. 34869; Address: 1109 Coastal Bay Blvd. Boynton Beach, FL 33435

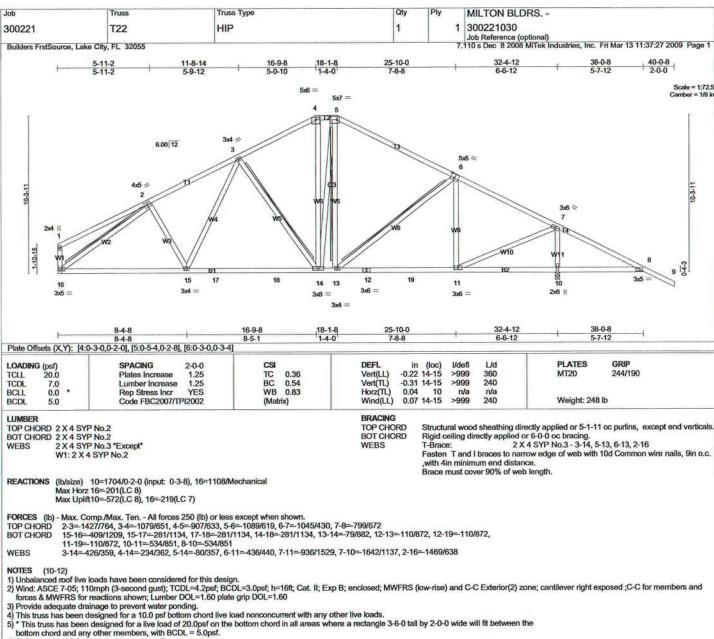

11) Use Simpson HTU26 to attach Truss to Carrying member











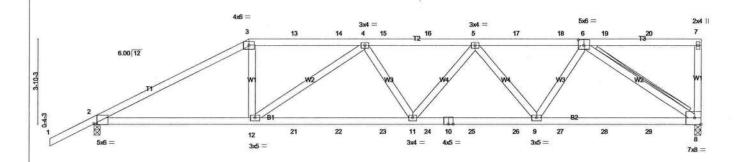
6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 10=572, 16=219.

7) Provide mechanical connection (by directly of trusts to bearing plate capacite of withstartuning from to plant at Joining's except (1=15) 10=219.

8) "Semi-rigid pitchbreaks including heels" Member end fixify model was used in the analysis and design of this truss.

9) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.


10) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

11) Truss Design Engineer: Julius Lee, PE: Florida P.E. License No. 34869: Address: 1109 Coastal Bay Blvd. Boynton Beach, FL 33435

12) Use Simpson HTU26 to attach Truss to Carrying member

Job	Truss	Truss Type	Qty	Ply	MILTON BLDRS		
300221	T23	MONO HIP	1	1	300221031 Job Reference (optional)		
Builders FrstSource, La	ke City, FL 32055			7.	110 s Dec 8 2008 MiTek Indi	ustries, Inc. Fri Mar 13 11:37:30 200	9 Page 1
-2-0-0	7-0-0	12-2-12	17-2-5	1	22-1-12	27-4-8	
2-0-0	7-0-0	5-2-12	4-11-9		4-11-8	5-2-12	

Scale = 1:50.1 Camber = 1/4 in

	7-0-0	14-4-12 7-4-12		19-11-13 5-7-1	27-4-8 7-4-11	4
Plate Offsets (X,Y): [2:0-	1-11,Edge], [6:0-3-0,0-3-0]					
LOADING (psf) TCLL 20.0 TCDL 7.0 BCLL 0.0 BCDL 5.0	SPACING 2-0-0 Plates Increase 1.25 Lumber Increase 1.25 Rep Stress Incr NO Code FBC2007/TPI2002	CSI TC 0.62 BC 0.96 WB 0.67 (Matrix)	DEFL in (lo Vert(LL) -0.20 11-' Vert(TL) -0.46 11-' Horz(TL) 0.13 Wind(LL) 0.40 11-'	12 >999 360 12 >711 240 8 n/a n/a	PLATES GRIP MT20 244/190 Weight: 138 lb	

LUMBER

TOP CHORD 2 X 4 SYP No.2 BOT CHORD 2 X 4 SYP No.2 2 X 4 SYP No.3 BRACING

TOP CHORD BOT CHORD

WEBS

verticals Rigid ceiling directly applied or 3-10-8 oc bracing.

T-Brace: 2 X 4 SYP No.3 - 6-8

Fasten T and I braces to narrow edge of web with 10d Common wire nails, 9in o.c. with 4in minimum end distance

Structural wood sheathing directly applied or 2-11-15 oc purlins, except end

Brace must cover 90% of web length.

REACTIONS (lb/size) 8=1867/0-2-3 (input: 0-3-8), 2=1763/0-2-1 (input: 0-3-8) Max Horz 2=163(LC 5)

Max Uplift8=1298(LC 4), 2=1148(LC 5)

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD: 2-3-3215/2220, 3-13-2812/2027, 13-14-2812/2027, 4-14-2811/2027, 4-15-3466/2435, 15-16-3466/2435, 5-16-3466/2450, 5-16-3466/2450, 5-16-366/2450, 5-16-366/2450, 5-16-366/2450, 5-16-366/2450, 5-16-366/2450, 5-16-366/2450, 5-1

BOT CHORD

5-17=2702/1876, 17-18=2702/1876, 6-18=2702/1876, 7-8=284/165 2-12=2000/2777, 12-21=2448/3510, 21-22=2448/3510, 22-23=2448/3510, 11-23=2448/3510, 11-24=2265/3281, 10-24=2265/3281, 10-25=2265/3281, 25-26=2265/3281, 9-26=2265/3281, 9-27=1459/2150, 27-28=1459/2150, 28-29=1459/2150, 8-29=1459/2150

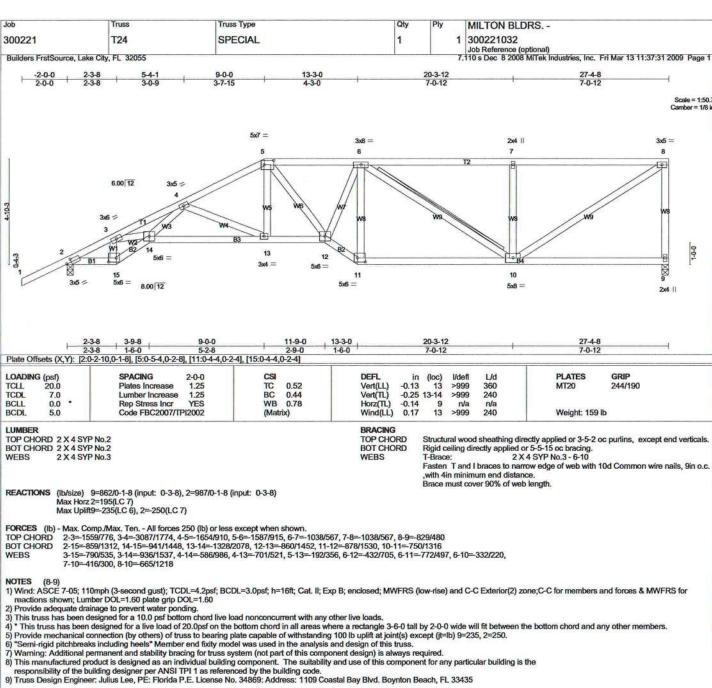
WEBS 3-12=-684/893, 4-12=-852/557, 5-11=-286/354, 5-9=-937/630, 6-9=-803/1062, 6-8=-2578/1746

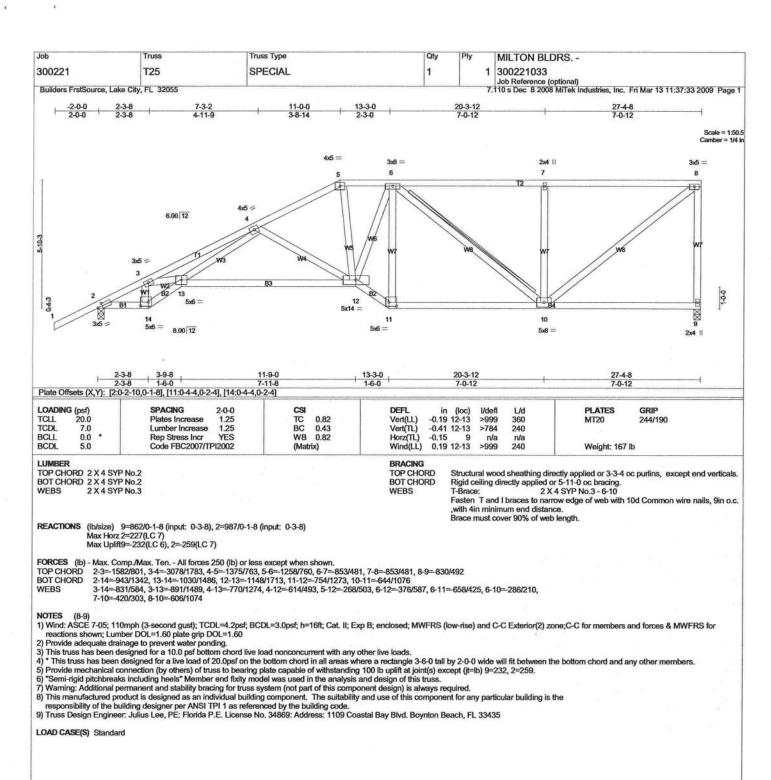
- NOTES (10-11)

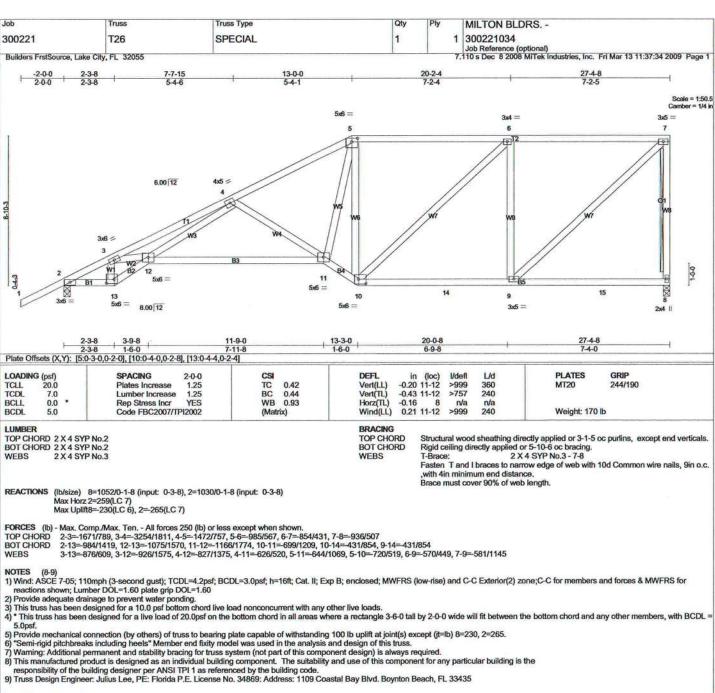
 1) Wind: ASCE 7-05; 110mph (3-second gust); TCDL=4.2psf; BCDL=3.0psf; h=16ft; Cat. II; Exp B; enclosed; MWFRS (low-rise); Lumber DOL=1.60 plate grip DOL=1.60
- Provide adequate drainage to prevent water ponding.
 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

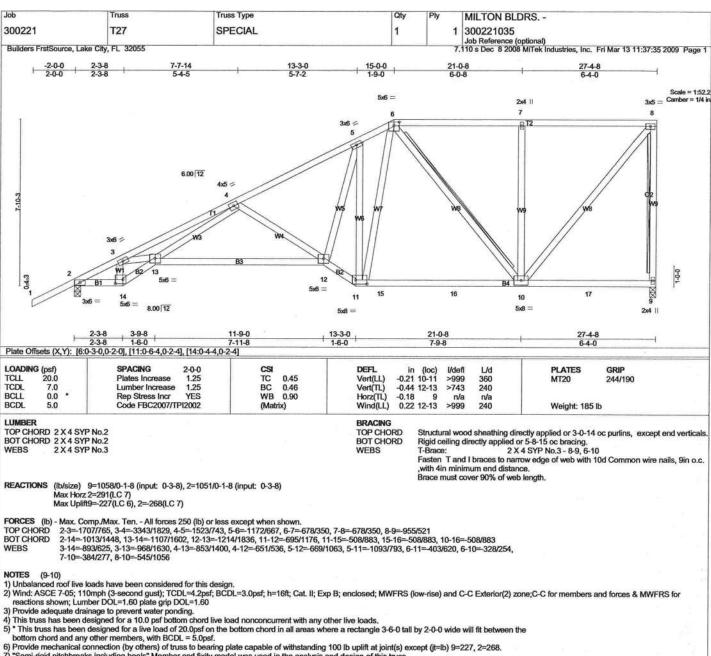
- 4) * This truss has been designed for a five load of 20.0ps found not not live load not concurrent with any other live loads.
 4) * This truss has been designed for a five load of 20.0ps fon the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (it=lb) 8=1298, 2=1148.
 6) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.
 7) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 216 lb down and 215 lb up at 7-0-0, 103 lb down and 82 lb up at 11-0-12, 103 lb down and 82 lb up at 13-0-12, 103 lb down and 82 lb up at 15-0-12, 103 lb down and 82 l 82 Ib up at 9-0-12, 103 ib down and 82 Ib up at 11-0-12, 103 ib down and 82 Ib up at 12-0-12, 103 ib down and 82 Ib up at 12-0-12, 103 ib down and 82 Ib up at 23-0-12, and 103 Ib down and 82 Ib up at 23-0-12, and 103 Ib down and 82 Ib up at 25-0-12, and 103 Ib down and 82 Ib up at 25-0-12, and 103 Ib down and 82 Ib up at 25-0-12, and 103 Ib down and 82 Ib up at 25-0-12, and 103 Ib down and 82 Ib up at 25-0-12, and 103 Ib down and 71 Ib up at 25-0-12, and 103 Ib down and 71 Ib up at 25-0-12, and 103 Ib down and 71 Ib up at 11-0-12, 66 Ib down and 71 Ib up at 11-0-1
- lb down and 71 lb up at 27-2-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

 8) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.
- b) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).
 This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.
 Truss Design Engineer: Julius Lee, PE: Florida P.E. License No. 34869: Address: 1109 Coastal Bay Blvd. Boynton Beach, FL 33435

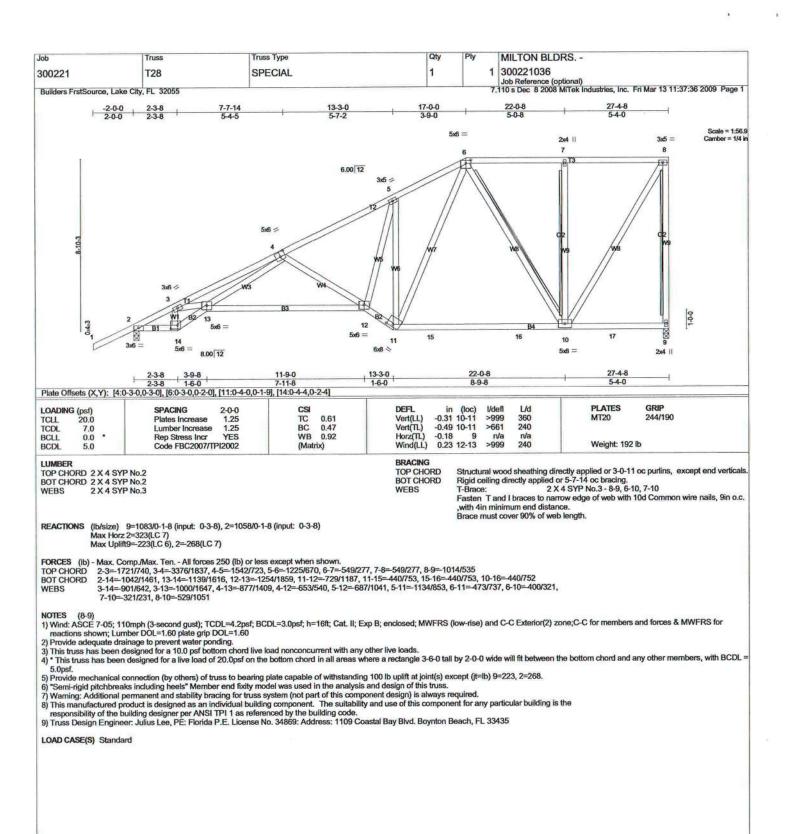

LOAD CASE(S) Standard

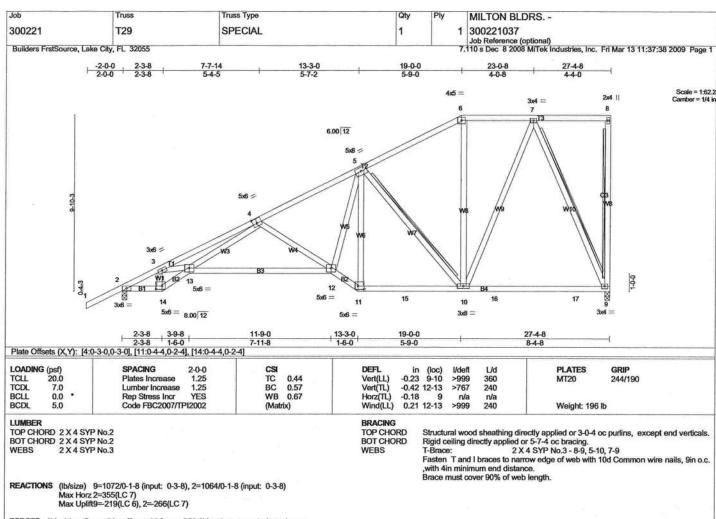

1) Regular: Lumber Increase=1.25, Plate Increase=1.25


Uniform Loads (plf) Vert: 1-3=-54, 3-7=-54, 2-8=-10


Concentrated Loads (lb)

Nert. 3—216(B) 7—103(B) 8—32(B) 12—213(B) 5—103(B) 13—103(B) 14—103(B) 15—103(B) 16—103(B) 17—103(B) 18—103(B) 19—103(B) 20—103(B) 21—32(B) 22—32(B) 23—32(B) 24—32(B) 25—32(B) 26—32(B) 27—32(B) 28—32(B) 29—32(B)




of Provide mechanical controlled by the building heels" Member end fixly model was used in the design of this truss.

8) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

9) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

10) Truss Design Engineer: Julius Lee, PE: Florida P.E. License No. 34869: Address: 1109 Coastal Bay Blvd, Boynton Beach, FL 33435

FORCES (ib) - Max. Comp./Max. Ten. - All forces 250 (ib) or less except when shown.

TOP CHORD 2-3=1739/717, 3-4=3398/1835, 4-5=1562/700, 5-6=790/336, 6-7=639/354

BOT CHORD 2-14=1074/1478, 13-14=1174/1635, 12-13=1274/1862, 11-12=765/1235, 11-15=654/1040, 10-15=654/1039, 10-16=221/387,

16-17=-221/387, 9-17=-221/387

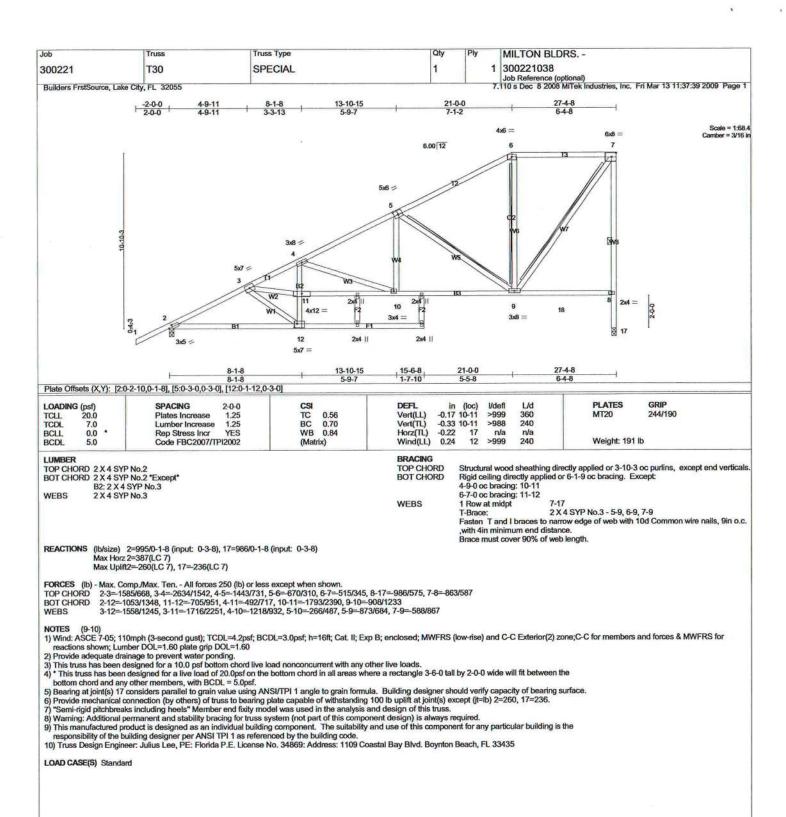
3-14-910/662, 3-13-1017/1648, 4-13-909/1425, 4-12-631/524, 5-12-694/1119, 5-11-590/419, 5-10-619/461, 7-10-354/668,

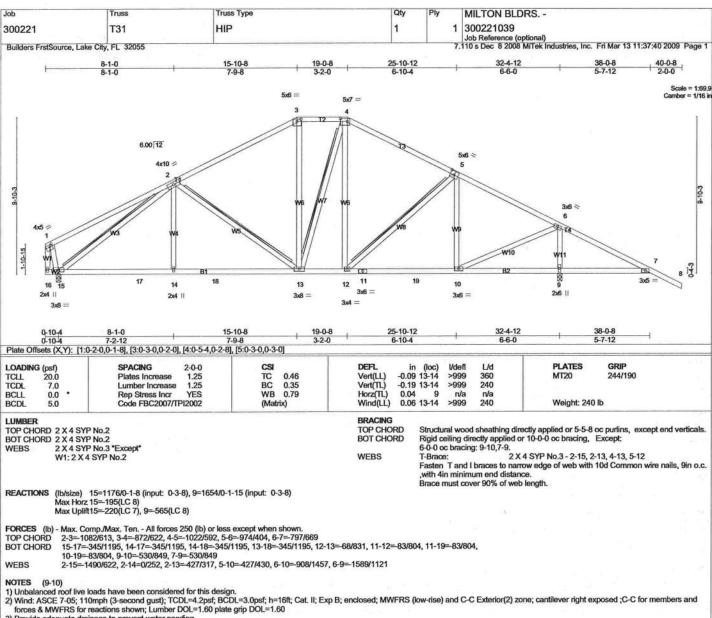
WEBS

NOTES (8-9)

1) Wind: ASCE 7-05; 110mph (3-second gust); TCDL=4.2psf; BCDL=3.0psf; h=16ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
2) Provide adequate drainage to prevent water ponding.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 5.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (it=lb) 9=219, 2=266.
 6) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.


7) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

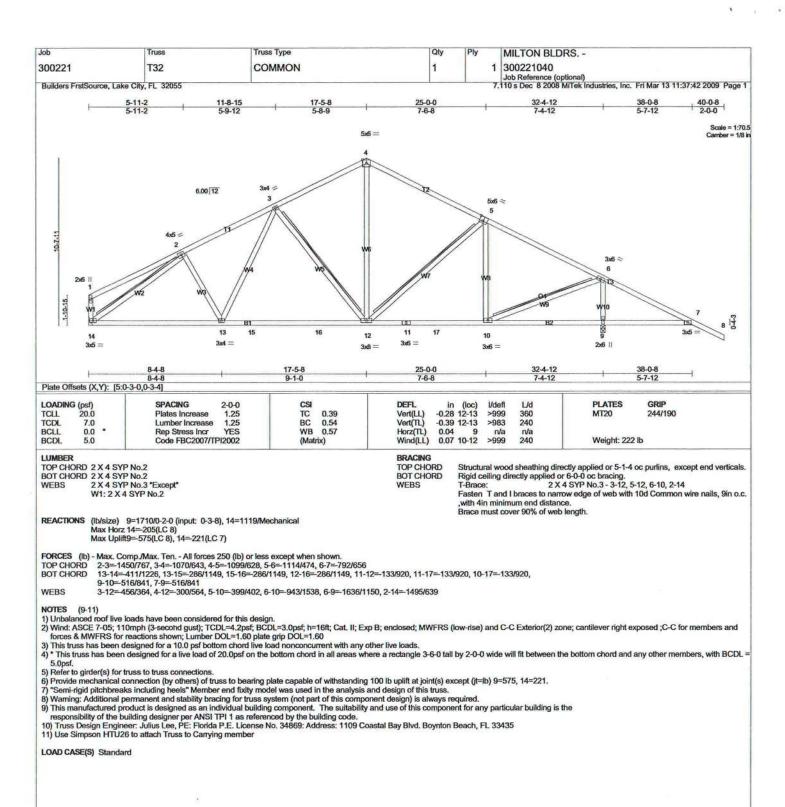
8) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the

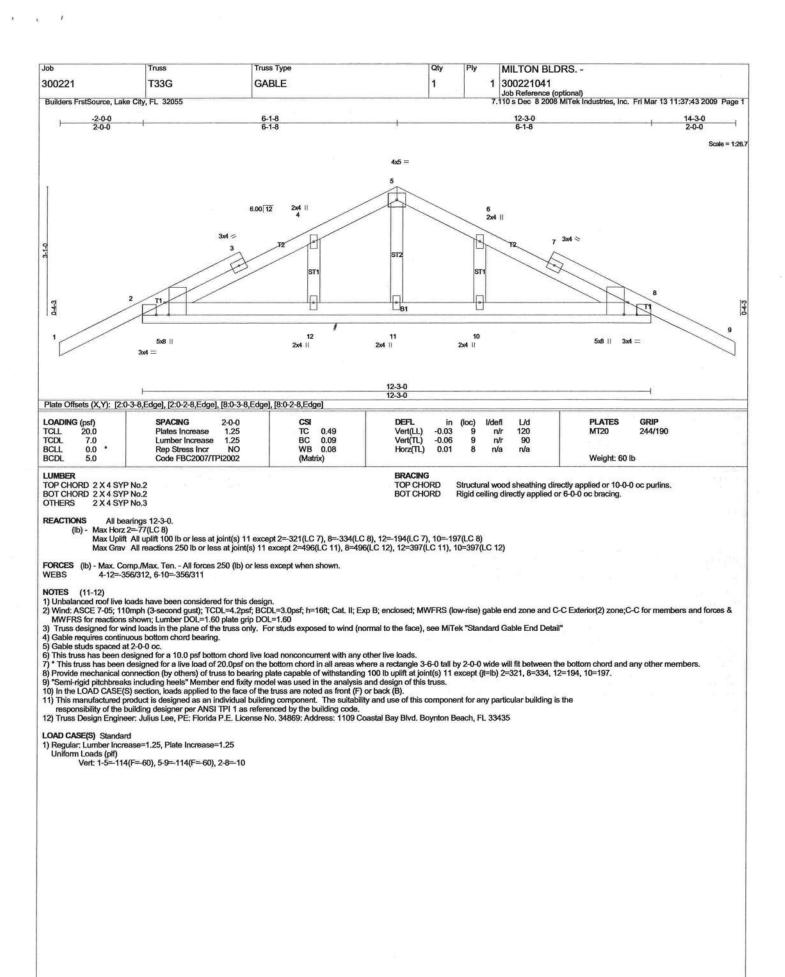
responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

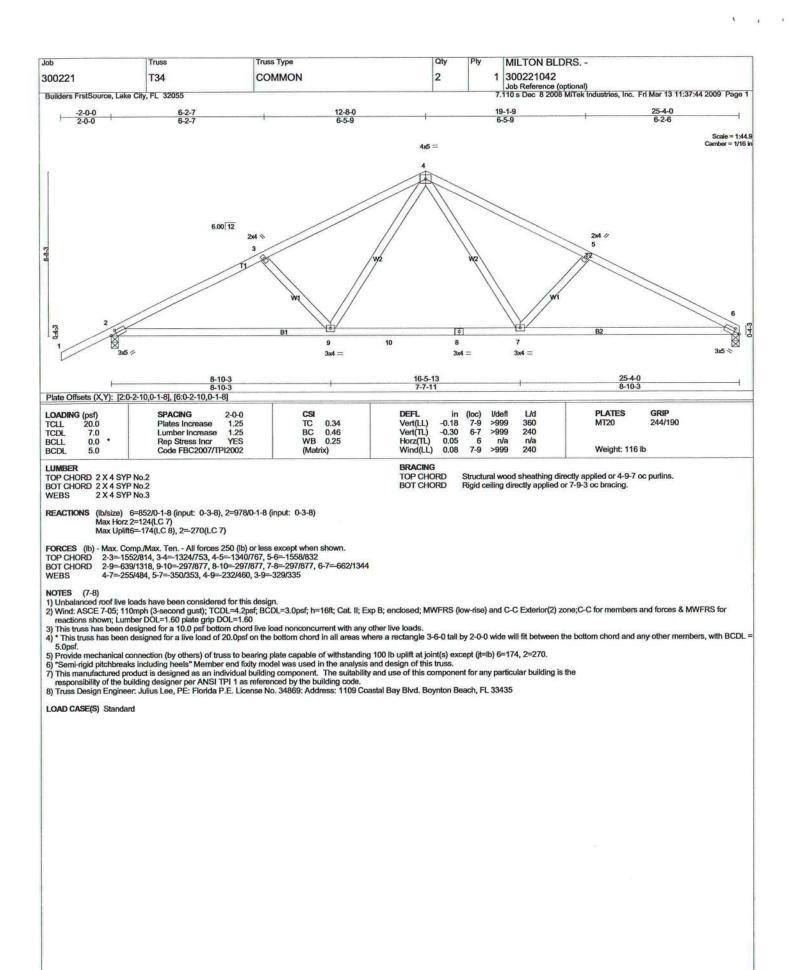
9) Truss Design Engineer: Julius Lee, PE: Florida P.E. License No. 34869: Address: 1109 Coastal Bay Blvd. Boynton Beach, FL 33435

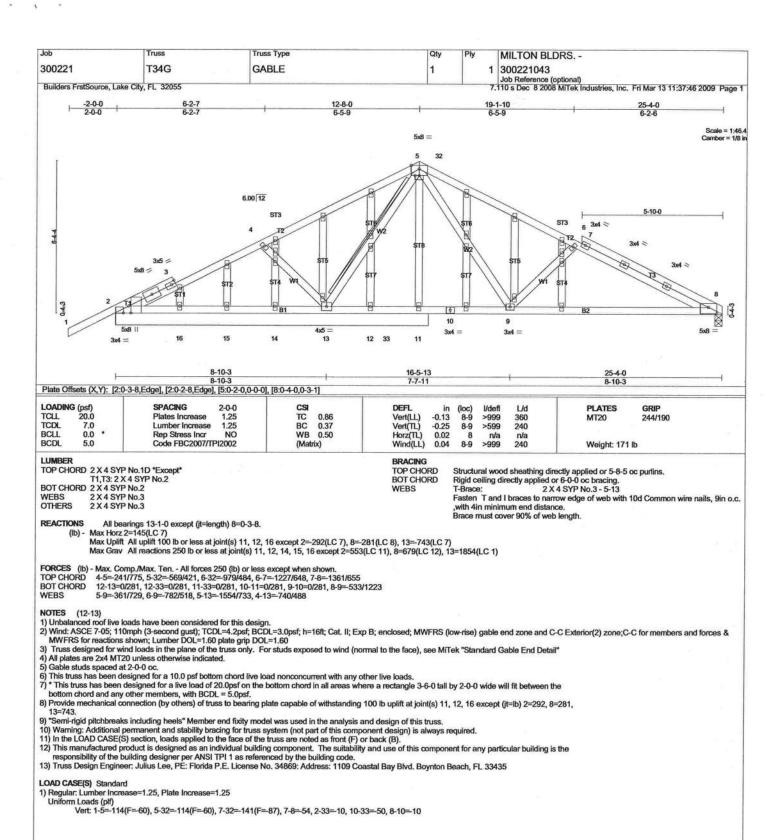
- 3) Provide adequate drainage to prevent water ponding.
 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 5.0psf.

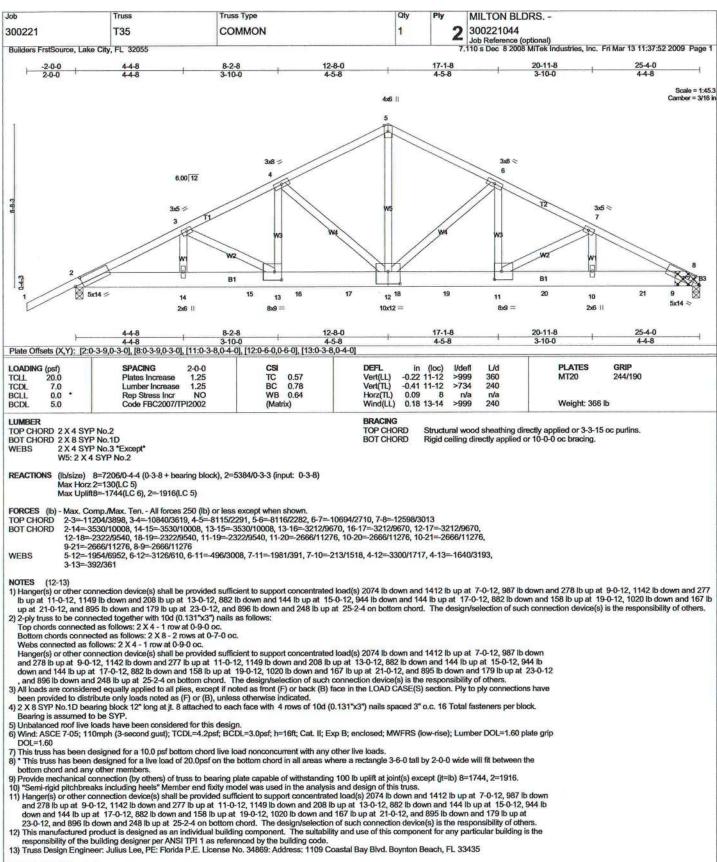
- bottom chord and any other members, with BCDL = 5.0pst.


 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 15=220, 9=565.

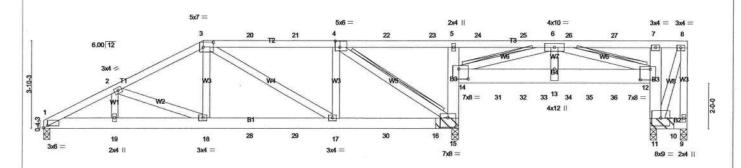

 7) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.


 8) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.


 9) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.


 10) Truss Design Engineer: Julius Lee, PE: Florida P.E. License No. 34869: Address: 1109 Coastal Bay Blvd. Boynton Beach, FL 33435

LOAD CASE(S) Standard


1) Regular. Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (ptf) Vert: 1-5=-54, 5-8=-54, 2-8=-10 Concentrated Loads (lb)

Vert. 8=896(B) 11=944(B) 10=1020(B) 15=2074(B) 16=987(B) 17=1142(B) 18=1149(B) 19=882(B) 20=882(B) 21=895(B)

Job	Truss	Truss Type	Qty	Ply	MILTON BLDR	S	
300221	T36	SPECIAL	1	1	300221045 Job Reference (option	onal)	
Builders FrstSource, Lake	City, FL 32055			7	7.110 s Dec 8 2008 Mi	Tek Industries, Inc. Fri M	lar 13 11:37:55 2009 Pag
3-1-8	7-0-0	12-10-0	18-2-8	1	22-5-0	26-7-8	28-2-8
3-1-8	3-10-8	5-10-0	5-4-8		4-2-8	4-2-8	1-7-0

Scale = 1:48.7 Camber = 1/16 in

3-1-8	7-0-0	12-10-0	18-2-8	22-5-0	26-7-8 , 28-2-8 ,
3-1-8	3-10-8	5-10-0	5-4-8	4-2-8	4-2-8 1-7-0
Plate Offsets (X,Y): [1	I:0-2-4,Edge], [3:0-5-4,0-2-8], [4:0-2-8	.0-3-4], [12:0-5-4,0-5-8], [14:0-5-	0,0-5-4], [15:0-4-0,0-4-12]		
LOADING (psf)	SPACING 2-0-0	CSI	DEFL in (loc	c) I/defl L/d	PLATES GRIP
TCLL 20.0	Plates Increase 1.25	TC 0.66	Vert(LL) -0.09 12-13		MT20 244/190
TCDL 7.0	Lumber Increase 1.25	BC 0.94	Vert(TL) -0.16 12-13	3 >662 240	
BCLL 0.0 *	Rep Stress Incr NO	WB 0.75	Horz(TL) 0.04 1	1 n/a n/a	
BCDL 5.0	Code FBC2007/TPI2002	(Matrix)	Wind(LL) 0.09 17-18	8 >999 240	Weight: 192 lb

LUMBER

TOP CHORD 2 X 4 SYP No.2

BOT CHORD 2 X 6 SYP No.1D *Except* B4: 2 X 8 SYP No.1D

WEBS 2 X 4 SYP No.3 BRACING TOP CHORD

BOT CHORD WEBS

Structural wood sheathing directly applied or 4-7-10 oc purlins, except end verticals. Rigid ceiling directly applied or 4-5-10 oc bracing.

T-Brace: 2 X 4 SYP No.3 - 4-15, 6-14, 6-12

Fasten T and I braces to narrow edge of web with 10d Common wire nails, 9in o.c. with 4in minimum end distance.

Brace must cover 90% of web length.

REACTIONS All bearings 0-3-8

(lb) - Max Horz 1=111(LC 5)

Max Uplift All uplift 100 lb or less at joint(s) except 1=-774(LC 5), 9=-705(LC 1), 15=-1537(LC 4), 11=-860(LC 3)
Max Grav All reactions 250 lb or less at joint(s) 9 except 1=940(LC 1), 15=3624(LC 1), 11=3473(LC 1)

FORCES (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD

1-2=1832/1511, 2-3=-1674/1450, 3-20=-1122/1027, 20-21=-1121/1027, 4-21=-1121/1027, 4-22=-94/345, 22-23=-94/345, 5-23=-94/345, 6-26=-334/75, 26-27=-334/75, 7-8=-55/252, 8-9=-157/717

BOT CHORD

1-19=-1429/1602, 18-19=-1429/1602, 18-28=-1346/1479, 28-29=-1346/1479, 17-30=-1027/1121, 16-30=-1027/1121, 15-16=-1027/121, 14-15=-2560/682, 5-14=-484/230, 14-31=-743/3644, 31-32=-743/3644, 13-33=-743/3644, 13-33=-743/3644, 13-34=-743/3644, 34-35=-743/3644, 12-36=-743/3644, 11-12=-2765/696, 7-12=-370/175

WEBS

1-2=1832/1511, 2-3=-1674/1450, 3-20=-1122/1027, 20-21=-1121/1027, 4-21=-1121/1027, 4-22=-94/345, 22-23=-94/345, 5-

NOTES (12-13)

1) 2 X 6 SYP No.1D bearing block 12" long at jt. 15 attached to front face with 3 rows of 10d (0.131"x3") nails spaced 3" o.c. 12 Total fasteners. Bearing is assumed to be SYP.

2) 2 X 6 SYP No.1D bearing block 12" long at jt. 11 attached to front face with 3 rows of 10d (0.131"x3") nails spaced 3" o.c. 12 Total fasteners. Bearing is assumed to be SYP.

3) Wind: ASCE 7-05; 110mph (3-second gust); TCDL=4.2psf; BCDL=3.0psf; h=16ft; Cat. II; Exp B; enclosed; MWFRS (low-rise); porch left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 plate g

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 774 lb uplift at joint 1, 705 lb uplift at joint 9, 1537 lb uplift at

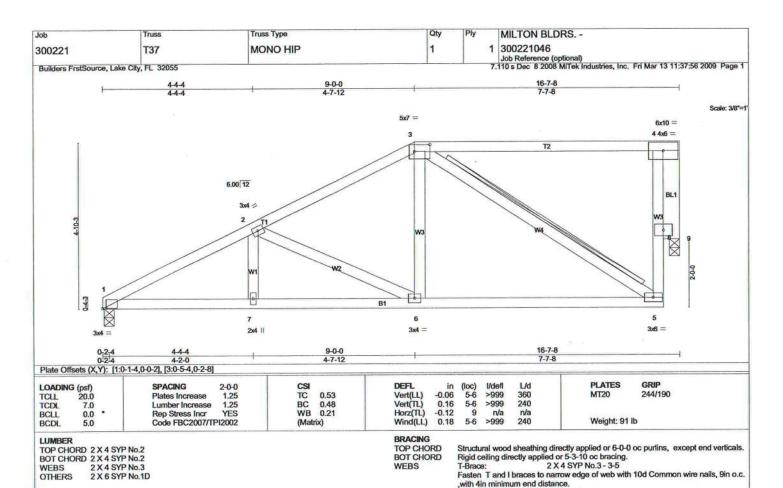
- joint 15 and 860 lb uplift at joint 11.
 "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.
- 9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 217 lb down and 215 lb up at 7-0-0, 103 lb down and 82 lb up at 9-0-12, 103 lb down and 82 lb up at 13-0-12, 103 lb down and 82 lb up at 15-0-12, 103 lb down and 82 l o2 ib up at 19-0-12, 103 ib down and 62 ib up at 19-0-12, 2 ib down and 22 ib up at 19-0-12, 103 ib down and 62 ib up at 19-0-12, 103 ib down and 62 ib up at 19-0-12, 2 ib down and 22 ib up at 23-0-12, and 2 ib up at 23-0-12, and 2 ib up at 25-0-12, and 103 ib down and 26 ib up at 19-0-12, 2 ib down and 277 ib down and 265 ib up at 7-0-0, 66 ib down and 46 ib up at 9-0-12, 66 ib down and 46 ib up at 11-0-12, 66 ib down and 46 ib up at 11-0-12, 1043 ib down and 265 ib up at 15-0-12, 66 ib down and 46 ib up at 11-0-12, 1043 ib down and 271 ib up at 23-0-12, 1098 ib down and 225 ib up at 23-0-12, 1043 ib down and 276 ib up at 23-0-12, 1098 ib down and 227 ib up at 23-0-12, 1043 ib down and 276 ib up at 23-0-12, 1043 ib down and 276 ib up at 23-0-12, 1043 ib down and 276 ib up at 23-0-12, 1043 ib down and 277 ib up at 23-0-12, 1043 ib down and 278 ib up at 23-0-12, 10 at 25-0-12, and 1109 lb down and 227 lb up at 25-1-12, and 66 lb down and 46 lb up at 26-10-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

 10) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

12) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

13) Truss Design Engineer: Julius Lee, PE: Florida P.E. License No. 34869: Address: 1109 Coastal Bay Blvd. Boynton Beach, FL 33435


LOAD CASE(S) Standard

Regular: Lumber Increase=1.25, Plate Increase=1.25
 Uniform Loads (plf)

Vert: 1-3=-54, 3-8=-54, 1-15=-10, 12-14=-10, 9-11=-10

Concentrated Loads (lb)

Vert: 3=217(B) 12=32(B) 7=103(B) 18=210(B) 17=32(B) 4=103(B) 16=32(B) 20=103(B) 21=103(B) 22=103(B) 23=103(B) 24=9(B) 25=2(B) 26=2(B) 27=2(B) 28=32(B) 29=32(B) 30=32(B) 31=1067(F) 32=7(B) 33=1043(F) 34=7(B) 35=1098(F) 36=1102(F=1109, B=7)

REACTIONS (lb/size) 1=522/0-1-8 (input: 0-3-8), 9=494/0-1-8 (input: 0-3-8) Max Horz 1=146(LC 7) Max Uplift1=309(LC 7), 9=-323(LC 6)

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=915/1247, 2-3=602/828, 5-8=616/301, 4-8=616/301 BOT CHORD 1-7=1284/779, 6-7=1284/779, 5-6=810/496 WEBS 2-6=319/542, 3-6=575/284, 3-5=484/817, 4-9=511/776

NOTES (9-10)

1) Wind: ASCE 7-05; 110mph (3-second gust); TCDL=4.2psf; BCDL=3.0psf; h=16ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

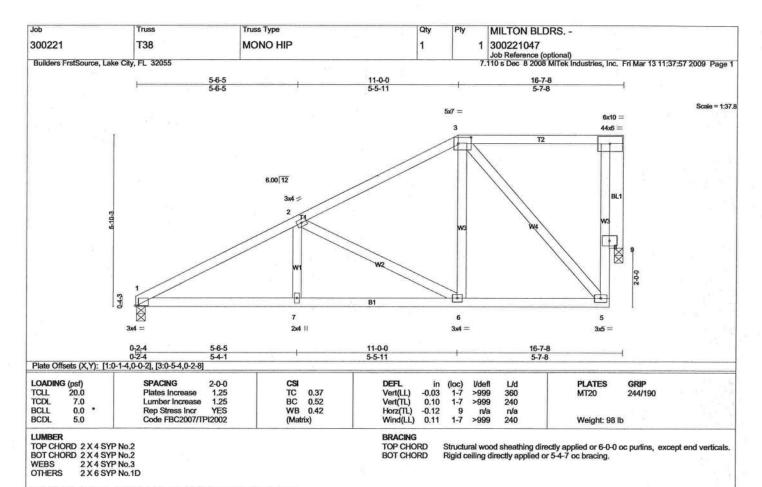
2) Provide adequate drainage to prevent water ponding.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Bearing at joint(s) 9 considers parallel to grain value using ANSI/TP! 1 angle to grain formula. Building designer should verify capacity of bearing surface.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 309 lb uplift at joint 1 and 323 lb uplift at joint 9.


7) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

8) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

9) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

10) Truss Design Engineer: Julius Lee, PE: Florida P.E. License No. 34869: Address: 1109 Coastal Bay Blvd. Boynton Beach, FL 33435

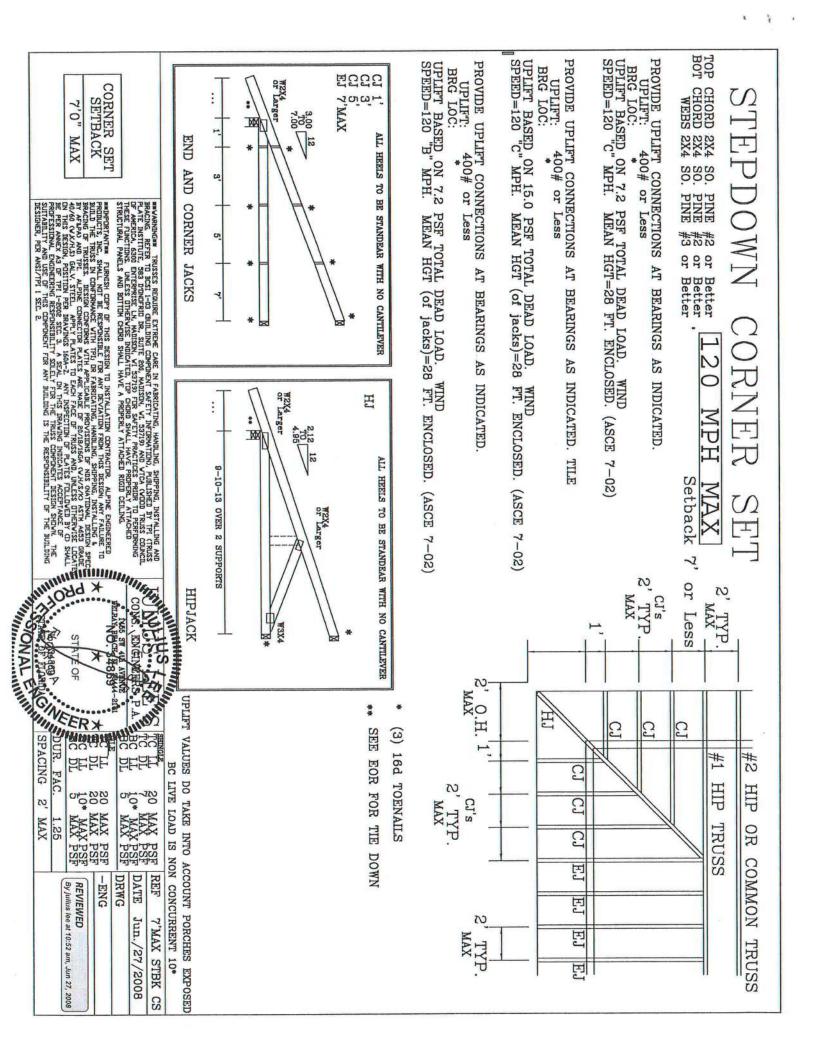
Brace must cover 90% of web length.

REACTIONS (lb/size) 1=522/0-1-8 (input: 0-3-8), 9=494/0-1-8 (input: 0-3-8) Max Horz 1=178(LC 7) Max Uplift1=-308(LC 7), 9=-320(LC 6)

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1-2=877/1156, 2-3=468/587, 5-8=683/361, 4-8=683/361 1-7=1243/741, 6-7=1243/741, 5-6=595/359

TOP CHORD BOT CHORD


WEBS 2-7=326/181, 2-6=434/742, 3-6=616/293, 3-5=-448/761, 4-9=500/786

NOTES (8-9)

1) Wind: ASCE 7-05; 110mph (3-second gust); TCDL=4.2psf; BCDL=3.0psf; h=16ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Provide adequate drainage to prevent water ponding.
 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

This truss has been designed for a 10.0 pst bottom chord live load nonconcurrent with any other live loads.
 This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
 Bearing at joint(s) 9 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 308 lb uplift at joint 1 and 320 lb uplift at joint 9.
 "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.
 This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.
 Truss Design Engineer. Julius Lee, PE: Florida P.E. License No. 34869: Address: 1109 Coastal Bay Blvd. Boynton Beach, FL 33435

CEMOLITICAL RED.

COLO.

CEMOLITICAL RED.

CEMOLITICAL RED.

COLO.

COLO.

CEMOLITICAL RED.

COLO.

COLO.

CEMOLITICAL RED.

COLO.

COLO.

COLO.

COLO.

CEMOLITICAL RED.

COLO.

COL DIAGONAL BRACE OPTION:
VERTICAL LENGTH MAX BE
DOUBLED WEIN DIAGONAL
BRACE IS USED, CONNECT
BLACE LINE, LIX WEB
AT EACH EVEN, MAX WEB
TOTAL LENGTH IS 14.* MAX GABLE VERTICAL LENGTH SPACING SPECIES O.C. 16 O.C. O.C. GABLE VERTICAL SPF SPF DFL SPF DFL SP SP SP H 国 ASCE STUD STANDARD #12 #12 STANDARD GRADE STANDARD STANDARD STANDARD STANDARD STUD STUD STUD 古古 BRACE 7-02: GABLE TRUSS BRACES 130 GROUP A (1) 1X4 °L" BRACE * MPH GROUP B WIND 0 0 0 0 0 0 GROUP A (1) 2X4 "L" BRACE * (2) 2X4 "L" BRACE ** SPEED GROUP B 15 THE PARTY GROUP A 10 MEAN EX4 #EN OR BETTER GROUP B HEIGHT, FOR SMENSE CONS. GROUP A (1) 2X8 "L" BRACE * (2) ZXB "L" BRACE ** 12 6 12 5 DELEVA BEYCH, LC 22444-5161 MAX GABLE VERTICAL LENGTH 2 2 0 2 12 Z B, 10 STATE OF FLORIDA IUS LEI Ð ENCLOSED, GROUP B GROUP A 12' 4" F.A.S 12 NAX. MAX. GROUP B II 13' 11' 8' 14, 0° 13' 7 Ф TOT. 1.00, SPACING E ATIACH EACH 'L' BRACE WITH 104 NAIS.

\$ FOR (1) 'L' BRACE, SPACE WAILS AF 2" O.C.

\$ FOR (2) 'L' BRACES, AND 4" O.C. HETMEN ZONES.

\$ FOR (2) 'L' BRACES; SPACE WAILS AT 3" O.C.

IN 18" END ZONES AND 6" O.C. BETMENEN ZONES. CABLE END SUPPORTS LOAD FROM 4' 0" PROVIDE UPLIT CONNECTIONS FOR 136 FLF OVER CONTINUOUS BEARING (6 PSF TC DEAD LOAD). LIVE LOAD DEPLECTION CHITERIA IS L/240. T." BRACING MUST BE A MINIMUM OF BOX OF WEB MINISTER LENGTH. DOUGLAS FIR-LARCH
40
STUD
STANDARD \$1 / 42 STANDARD PLYWOOD OVERHAMG. BRACING GROUP SPECIES EXPOSURE VERTICAL LENGTH

LESS THAN 4' 0' BUT

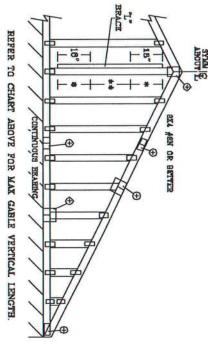
LESS THAN 11' B' SOUTHERN PINE CAHLE 60 PEAK, SPLICE, AND HEEL FLATES. 24.0 CABLE VERTICAL PSF TRUSS DATE REF -ENG DRWG MITER SID GABLE 15 E HI GROUP GROUP HEM-PIR H & BIR DETAIL 0 PLATE SIZES 11/26/03 8 SUUT NETHTOOS ASCET-02-CAB13015 A: NO SPLICE AND 2.5X4 NOTES 772 STANDARD GRADES:

ASCE 7-02: 130 MPH WIND SPEED, 30 MEAN HEIGHT, ENCLOSED, 11 1.00, EXPOSURE 0

		1	M.	A	X		G	A	I	31	J	3	1	V	E	R	Τ	I	C	A	L		L	E	N	C	17	Ή	
		1	S	>>	(0	.(7.			1	6	93	(0	.(7.			2	4	23		0	.(ζ.	8	SPACING	2
	t	J F.		C)	TIL	L L	UTI	בבה	1	- F		S C		TTT.		ひて	בודה	t	J F			1	111	5	ひて	בודה	SPACING SPECIES	2X4
	STANDARD	CUIS	€ŧ	2#	1.4	STANDARD	STUD	Ü	2# / 時	STANDARD	CUIS	£4	22#	1.4	STANDARD	CUIS	B	2# / 14	STANDARD	STUD	£4	2#	11	STANDARD	STUD	#8	打 / #3	CRADE	BRACE
	4' 0"	4.	4 2		4' 5"		3' 11"	3' 11"	4' 0"	3' 8"	3, 8,	3. 8.	3' 11"		3' 7"	3' 7"	3' 7"	3. 8.	3' 0"						3' 1"	3' 1"		BRACES	5
	5. 6,	6' 4"	8' 6"	8' 11"	B' 11°		6' 3"	6, 3,	6' 11"	4' 9"		5. 7.	8' 4"		4. 8.	5' 6"		6' 4"	3' 10"	2.572	4. 6.	5' 6"	5, 8,	3' 9"	4' 6"	4' 5"		GROUP A	(1) 1X4 "L"
	5, 8,	8' 4"	6, 2,	7' 6"	7' 6"	5' 4"	6' 3"	B' 3*	7' 2"	4' 9"	5' 8"	6. 7.	8' 10"	B' 10*	4' B"	6' 5"	5, 5,	8' 8"	3' 10"	4' 6"	4' 6"	5' 11"	5' 11"	3′ 9"	4' 5"	4' 50	6' 8"	GROUP	* BRACE +
	7' 3"	8' 3"	8' 3"	B' 3"	8 3"	7' 1"	8° 3"	8' 3"	6' 3"	6' 3"	7' 3"	7. 4"	7' 8"	7' 6"	6' 2"	7. 2.	7. 2"	7' 8"	5' 1"	5' 11"	6, 0,	6' 6"	e' e"	6' 0"	5' 10"	6, 10,	8' 8"	H GROUP A	(1) 2X4 "L"
200	7' 3"	8' 6"	B' 6*	8' 11"	B' 11°	7, 1,		8' 3*	8' 6'	6' 3"	7' 3°	7' 4"	8' 1"		Ø. 8°	7' 2"	7' 20	7' 8"	5' 1"	5' 11"	6' 0"	7' 0"	7' 00	5' 0"	6' 10°	5' 10"	6, 8,	A GROUP B	BRACE .
	8.8	8' 10"	9' 10"		8, 10,	8, e _{ii}		8, 10,,		8º 5"		8' 11"	8' 11"		8' 3"		8' 11"	8. 11.	8' 11"	7' 10"	7' 10"	7' 10"	7' 10"	17	7' 10"	7' 10"	7' 10"	GROUP A	(2) 2X4 "L"
	8, 8,	10' 4"	10' 4"	10' 7"				8' 10"	10, 1,		8, 9,		8, Ju	B, 2,	e' 3"	8' 11"	8' 11"	8, 5,	6' 11"	8'0"		8' 5"	8, 2,	6, 9,	7' 10"	7' 10"	8, 0,	GROUP B	BRACE **
	11' 4"	12' 11"	12' 11"	12' 11'	12' 11"	11' 1"		12' 11"	12' 11"	8, 8,	11' 4"	11' 5"		11, 8,	8' 7"	11" 1"	11' 2"	11' 9"	B' 0*	8, 3,	9. 4.	10' 3"	10' 3"	-	9' 1"	9' 1°	10' 3"	GROUP A	(1) 2X8 'L'
	11' 4"	13' 1'	18' 3"	13' 11"		11' 1"	12' 10"	12' 11"	13' 4"	_		11' 6"	12' 8"			11, 1,	11' 2"		8′0"	8, 3,		11' 1"	11' 1"	7' 10"	S' 1"	9' 1"	10' 7"	GROUP	BRACE .
	14' 0"	14' 0"	14' 0"	14' 0"	14 0	14' 0"	14' 0"	14' 0"	14' 0"	13' 9"	14' 0"	14' 0"	14' 0"	14' 0"	18, 11,	14' 0"	14' 0"	14' O"	10' 10"		12' 3'	12' 8"	12' 9°	10' 7"	12' 8"	12' 3"	12, 3,	B GROUP A GROUP	(2) ZXB "L"
	14' 0"	14' 0"	14' 0"	14' 0"	14 0	14' 0"	14' 0"	14 0	14' 0"	13' 3"	14' 0"	14. 0	14' 0°	14' D"	12' 11'	14' 0"	14' 0"	14' 0"	10' 10"	12' 6"		19' 2"	13' 2"		12' 3"	12' 3"		GROUP B	HRACE **

DOUGLAS FIR-LARCH
43
STUD
STANDARD

SOUTHERN PORE STANDARD


M & BIR GROUP B: \$1 / #2 STANDARD

HEM-FOR
AZ STUD
43 STANDARD

BRACING GROUP SPECIES AND GRADES:

GROUP

A:

DIAGONAL BEACE OFTON:
VERTICAL LENGTH MAY BE
DOUBLED WICHN DIAGONAL
HEACE IS USED. CONNECT
HEACE IS USED.

GABLE THUSS

TOTAL LENGTH IS 14".

VERTICAL LENGTH SHOWN

ZX4 SP OR
DIT-L #2 OH
HETTER DIAGONAL
BRACE, SINGLE

OR DOUBLE
CUT (AS SHOWN)
AT UPPER END

LIVE LOAD DEPLECTION CHATERIA IS L/240. CABLE TRUSS DETAIL NOTES:

CABLI END SUPPORTS LOAD FROM 4' 0" PROVIDE UPLIET CONNECTIONS FUR 180 FLF OVER CONTENUOUS BEABENG (6 PSF FC DEAD LOAD). PLYWOOD OVERMANG.

ATTACE EACH 'L' BRACE WITH 104 NAIES AT 2" O.C.

\$ FOR (1) "L' BRACE; SPACE NAIES AT 2" O.C.

N 18" END ZONES AND 4" O.C. BETTEN ZONES.

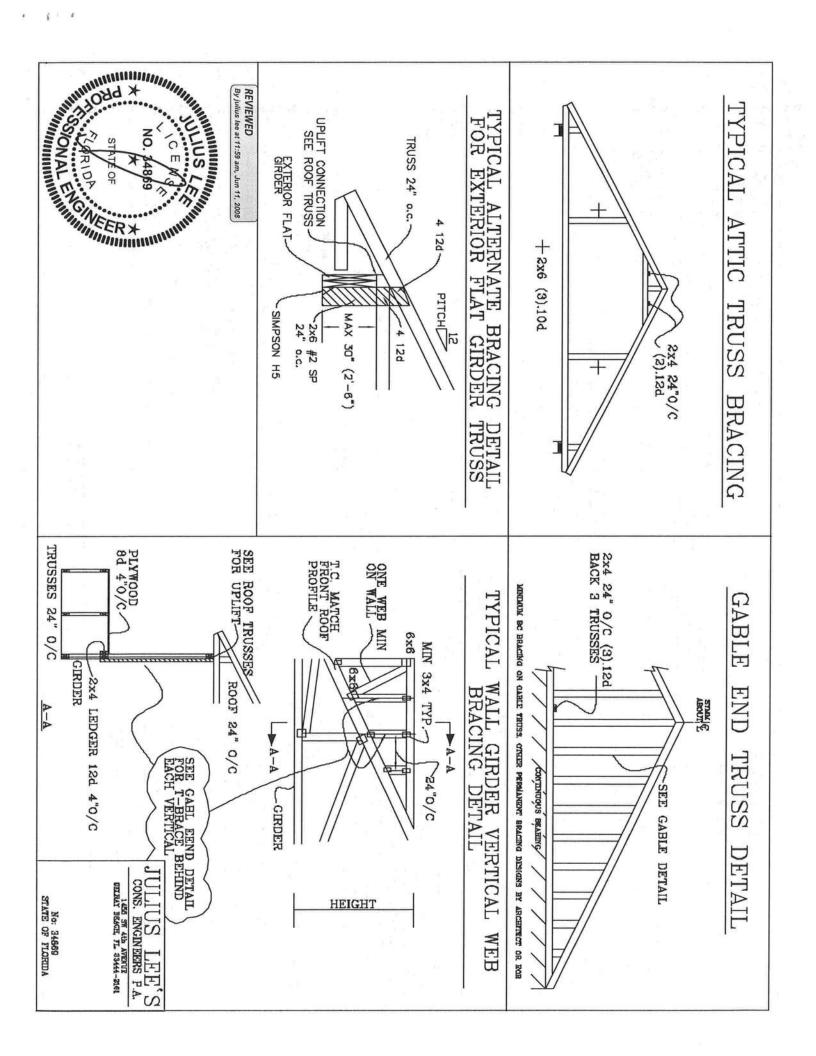
\$ FOR (2) "L' BRACES; SPACE NAIES AT 3" O.C.

IN 18" END ZONES AND 6" O.C. BETTEN ZONES. MEMBER LENGTH. T" BRACING MUST BE A MINIMUM OF BOX OF WEB

PLATES.	PEAK, SPLICE, AND HEEL I
2.5X4	GREATER THAN 11' 6"
2014	GREATER THAN 4' D', BUT
1X4 DR BX3	IPSS THAY 4' 0"
NO SPILOR	ARRIACYT CENCLE
LATE SIZES	GABLE VERTICAL PLAT

No: 34868 STATE OF ILUMDA		The state of the s	DELEVAL BEYCH &FT 32444-5101	CONS. ENGINEERS P.A.	
NAX.	MAX.				
MAX. SPACING 24.0"	MAX. TOT. LD. 60 PSF				
ING	Ë				
24.	1 09				
O ₁	SF				
		-ENG	DWG 1	DATE	REF
			DWG MITER STD GABLE 50' E HI	11/26/03	ASCE7-02-GAB13030

NO. 44859


STANE OF S

By julius lee at 12:00 pm, Jun 11, 2008

REVIEWED

MARONCHM TRUSSES REGURE EXTREME CHAE IN MARONCHIMO, MANDLON, SUDPING, INSTALLING AND MARONCHIMO TRUSSES THE SEXT 1-43 GROUNDING COMPORENT SAFETY (BROWNING), PUBLISHED BY TPI CHAUSS ITE INSTITUTE, SEX 20 MARONCA, BOUNDINGS COUNCIL MEDICAL SEX PROPERTY BY ANGION, VI SATIPI) FOR SAFETY PRACTICES PROPERTY ATTRACTORS INDICATORS AND SETTING PROPERTY ATTRACTORS AND SETTING SEX PROPERTY ATTRACTORS AND SEX PROPERTY ATTRACTORS AND SETTING SEX PROPERTY ATTRACTORS AND SEX PROPERTY ATTRACTORS AND SETTING S

CONS.

BOT CHORD 284 444 品品品 BETTER BETTER

PIGGYBACK DETAIL

TYPE

SPANS

뒫

5

30

34

æ

52

REFER TO SEALED DESIGN FOR DASHED PLATES

SPACE PIGGYBACK VERTICALS AT 4' OC MAX.

TOP AND BOTTOM CHORD SPLICES MUST BE STAGGERED SO THAT ONE SPLICE IS NOT DIRECTLY OVER ANOTHER.

PIGGYBACK BOTTOM CHORD MAY BE OMITTED. TRUSS TOP CHORD WITH 1.5X3 PLATE. ATTACH VERTICAL WEBS TO

ATTACH PURLINS TO TOP OF FLAT TOP CHORD. IF PIGCYBACK IS SOLID LUMBER OR THE BOTTOM CHORD IS OMITTED, PURLINS MAY BE APPLIED BRNEATH THE TOP CHORD OF SUPPORTING TRUSS REFER TO ENGINEER'S SEALED DESIGN FOR REQUIRED PURLIN SPACING

THIS DETAIL IS APPLICABLE FOR THE FOLLOWING WIND CONDITIONS:

110 MPH WIND, 30' MEAN HGT, ASCE 7-02, CLOSED BIDG, LOCATED ANYWHERE IN ROOF, 1 MI FROM COAST CAT I, EXP C, WIND TO DI=5 PSF, WIND BC DI=5 PSF 110 MPH WIND, 50' MEAN HGT, FEC ENCLOSED BLDG, LOCATED ANYWHERE IN ROOF WIND TO DL-5 PSF, WIND BC DL-5 PSF

130 MFH WIND, 30' MEAN HGT, ASCE 7-03, BLDG, LOCATED ANYWHERE IN ROOF, CAT II, WIND TO DL=6 PSF WIND BC DL=6 PSF

FRONT FACE (E,*) PLATES MAY BE OFFSET FROM BACK FACE PLATES AS LONG AS BOTH FACES ARE SPACED 4' OC MAX. LOCATION IS ACCEPTABLE XXX V 20' FLAT TOP CHORD MAX SPAN m TYP W HAX SIZE OF ZXIZ ш J-TYP. D-SPIJCE NA STATE OF THE PROPERTY OF TH

HOTATED VEHICALLY	ATTACH TRULOX PLATES WITH (6) 0.120" X 1.375" NAIL	EQUAL, PER FACE PER PLY. (4) NAILS IN EACH MEMB	BE CONNECTED. REFER TO DRAWING 160 TL FOR TRULO	ATTACH EQUAL BE COD	M	AXB OR SX6 TRULOX AT HOTATED VERTICALL	Y DC,
-------------------	--	---	---	---------------------------	---	--	-------

3°

AX B 584 SXS.

H C

9XB

9

н

488

5X8

6X6

BX6

1,5X4

1.6X4

1.5X4 BX6

>

284

2.5X4

2.6X4

336

NO BRACLING 1x4 "T" BRACE. SAME GRADE, SPECIES AS 1 MEMBER. OR HETTER, AND 80% LENGTH OF MEMBER. ATTACH WITH 8d NAILS AT 4" OC.	BO% LENGTH OF WEB	BRACE, SAME GRAI OR BETTER, AND & ATTACH WITH 16d	MEMBER.	10' TO 14'	10,
O 79 NO BRACING	SPECIES A	CE. SAME O BETTER, AN TIACH WITH	1x4 "T" MEMBER. MEMBER.	7'9" TO 10'	7,8
ממונים ליונים		NG	NO BRAC	TO 7'9"	0
LENGTH REQUIRED BRACING	RACING	REQUIRED B		LENGTH	HE'H

* PIGGYBACK SPECIAL PLATE

ATTACH TEETH TO THE PIGGYBACK AT THE TIME OF FABRICATION. ATTACH TO SUPPORTING TRUSS WILL (4) 0.120° X 1.375° NAILS PER FACE PER PLY. APPLY PIGGYBACK SPECIAL PLATE TO EACH TRUSS FACE AND SPACE 4° OC OR LESS.

8 1/4" 20

THIS DRAWING REPLACES DRAWINGS 634,016 634,017 & 847,045

DIAMAY BEAGE, IL. 33444 -2161 JUS LEE'S 55 PSF AT 1.33 DUR. FAC .25 DUR. MAX LOADING 50 PSF FAC REF DRWG MITEK STD -ENG DATE I 09/12/07 PIGGYBACK PIGGY

CONS.

1.15 DUR. 47 PSF FAC

NO. 24869

STATE OF

REVIEWED

STATE OF

REVIEWED

By julius lee at 11:59 am, Jun 11, 2008

REVIEWED

By julius lee at 11:59 am, Jun 11, 2008

No: 34869

SPACING

24.0

VALLEYTRUSS DETAIL

HOP CHORD HORD 2X4 SP #2 OR SPF #1/#2 OR BETTER. HORD 2X3(*) OR 2X4 SP #2N OR SPF #1/#2 OR BETTER. WEBS 2X4 SP #3 OR BETTER.

- ZX3 MAY BE RIPPED FROM A ZX6 (PITCHED OR SQUARE).
- * ATTACH EACH VALLEY TO EVERY SUPPORTING TRUSS WITH: FBC 2004 110 MPH, ASCE 7-02 110 MPH WIND OR (3) 16d ASCE 7-02 130 MPH WIND. 15' MEAN HEICHT, ENCLOSED BUILDING, EXP. C. RESIDENTIAL, WIND TC DL=5 PSF. (2) 18d BOX (0.135" X 3.5") NAILS TOE-NAILED FOR FOR

UNLESS SPECIFIED ON ENGINEER'S SEALED DESIGN, APPLY 1X4 "T"-BRACE, 80% LENGTH OF WEH, VALLEY WEH, SAME SPECIES AND GRADE OR BETTER, ATTACHED WITH 8d BOX (0.113" X 2.5") NAILS AT 6" OC, OR CONTINUOUS LATERAL BRACING, EQUALLY SPACED, FOR VERTICAL VALLEY WEBS GREATER THAN 7'9".

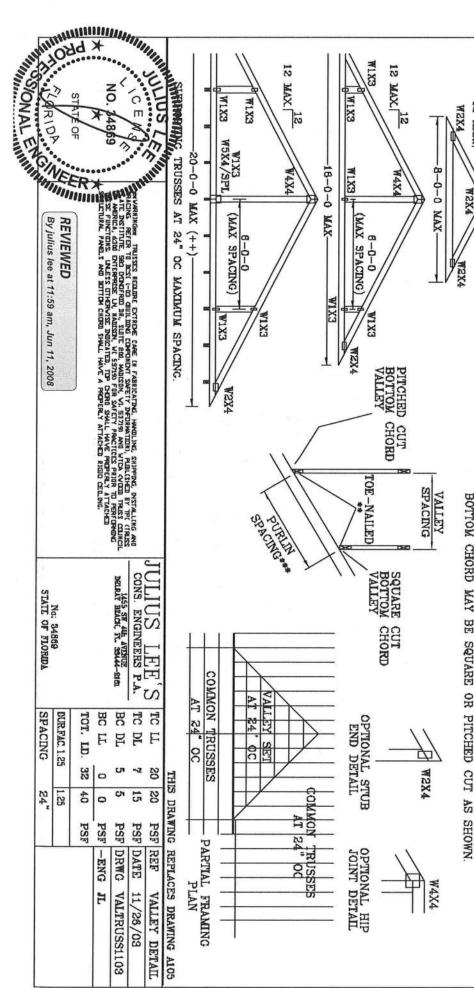
MAXIMUM VALLEY VERTICAL HEIGHT MAY NOT EXCEED 12'0"

TOP CHORD OF TRUSS BENEATH VALLEY SET MUST BE BRACED WITH: PROPERLY ATTACHED, RATED SHEATHING APPLIED PRIOR TO VALLEY TRUSS INSTALLATION

BY VALLEY TRUSSES USED IN LIEU OF PURLIN SPACING AS SPECIFIED ON PURLINS AT 24" OC OR AS OTHERWISE SPECIFIED ON ENGINEERS' SEALED DESIGN

ENGINEERS' SEALED DESIGN.

*** NOTE THAT THE PURLIN SPACING FOR BRACING THE TOP CHORD OF THE TRUSS HENEATH THE VALLEY IS MEASURED ALONG THE SLOPE OF THE TOP CHORD. ++ LARGER SPANS MAY BE BUILT AS LONG AS THE VERTICAL HEIGHT DOES


CUT FROM 2X6 OR LARGER AS REQ'D

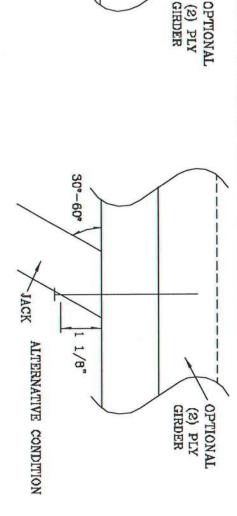
4-0-0 MAX

12 MAX.

NOT EXCEED 12'0"

TOE-NAIL DETAIL

TOE-NAILS TO BE DRIVEN AT AN ANGLE OF APPROXIMATELY THIRTY DEGREES WITH THE PIECE AND STARTED APPROXIMATELY ONE-THIRD THE LENGTH OF THE NAIL FROM THE END OF THE MEMBER.


PER ANSI/AF&PA NDS-2001 SECTION 12.4.1 — EDGE DISTANCE, END DISTANCE, SPACING: "EDGE DISTANCES, END DISTANCES AND SPACINGS FOR NAILS AND SPIKES SHALL BE SUFFICIENT TO PREVENT SPLITTING OF THE WOOD."

THE NUMBER OF TOE-NAILS TO BE USED IN A SPECIFIC APPLICATION IS DEPENDENT UPON PROPERTIES FOR THE CHORD SIZE, LUMBER SPECIES, AND NAIL TYPE. PROPER CONSTRUCTION PRACTICES AS WELL AS GOOD JUDGEMENT SHOULD DETERMINE THE NUMBER OF NAILS TO BE USED.

THIS DETAIL DISPLAYS A OR DOUBLE PLY SUPPORTING GIRDER.

MAXIMUM VERTICAL RESISTANCE OF 16d (0.162"X3.5") COMMON TOE-NAILS

THE WALL OF THE PROPERTY OF TH	5 493#	4 394#	3 296#	2 197#	TOE-NAILS 1 PLY	
The second secon	639#	511#	383#	256#	2 PLIES	SOUTHERN PINE
	452#	361#	271#	181#	1 PLY	DOUGLAS
The state of the s	585#	468#	351#	234#	2 PLIES	DOUGLAS FIR-LARCH
200	390#	312#	234#	156#	1 PLY	12.774
1	507#	406#	304#	203#	2 PLIES	HEM-FIR
CHAI	384#	307#	230#	154#	1 PLY	SPRUCE
	496#	397#	298#	188#	2 PLIES	SPRUCE PINE FIR

1/8"

JACK

300

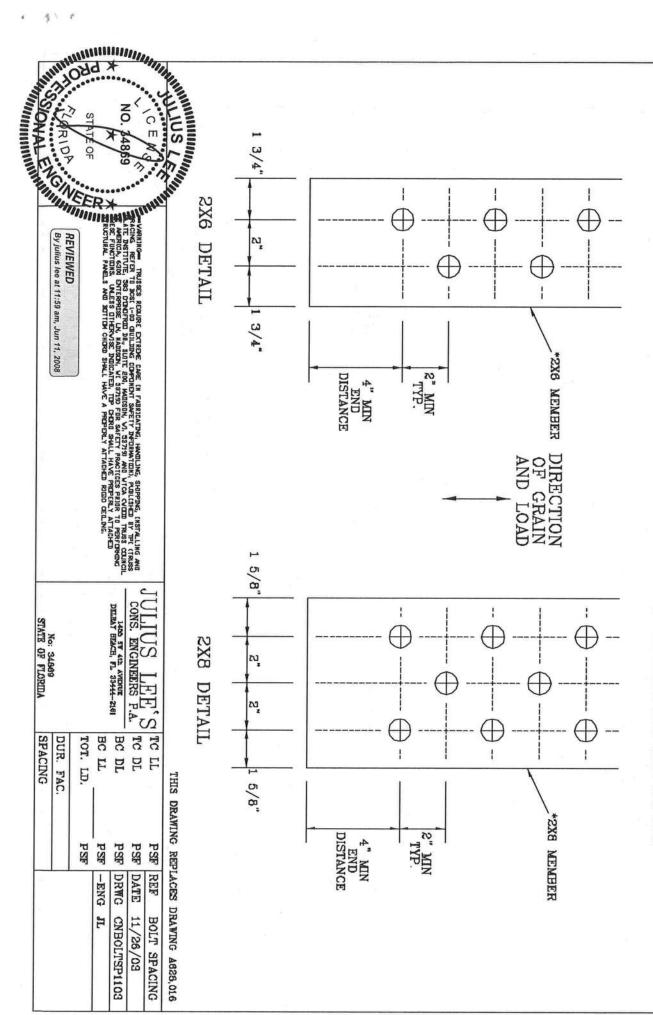
THIS DRAWING REPLACES DRAWING 784040

	By Julius lee at 11:59 an, Jun 11, 2008		INDITIONS, UNLESS OTHERWISE INDICATED, TOP CHORD SHALL HAVE PROPERLY ATTACHED COLUMN CHORD SHALL HAVE A PROPERLY ATTACHED ROOD COLUMN	RACING, REDER TO BEST 1-93 COMMUNIC COMPUNENT SAFETY (REDEATAILMS), PUBLICADED ST TYS CHANGE ARTE INSTITUTE, 393 D'OND'ROID DR., SUITE 200, NADISON, MC 33719) AND TYCK (COLD TRUSS COLOUR ANDROICA, 6300 ENTERPRISE LM, MARISON, MT 33719) FOR SAFETY PRACTICES PRIDE TO PERFORMING	WARRING TRUSSES RESURE EXTREME CARE IN FARRICATING, HANDLING, SHIPPING, INSTALLING AND	
STATE OF FLORIDA	No. 34880			DELICAY BEACH, FL S3444-2161	CONS. ENGINEERS P.A.	S, HH. I. SIII.IIII.
SPACING	DUR. FAC.	TOT. LD.	BC II	BC DL	TC DL	TC LL
	1.00	PSF	PSF	PSF	PSF	PSF
			-ENG JL	DRWG	DATE	REF
			IL	CNTONAIL1103	09/12/07	TOE-NAIL

NO. 34869

STATE OF

STATE


DIAMETER BOLT SPACING FOR LOAD APPLIED PARALLEL TO GRAIN

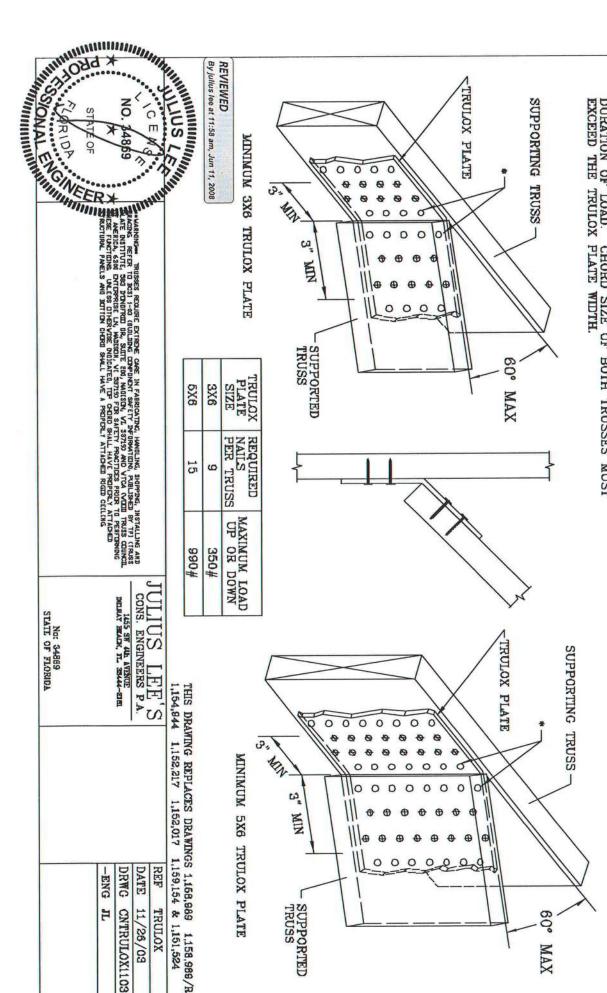
* GRADE AND SPECIES AS SPECIFIED ON THE ALPINE DESIGN

BOLT HOLES SHALL BE A MINIMUM OF 1/32" TO A MAXIMUM OF 1/16" LARGER THAN BOLT DIAMETER.

TYPICAL LOCATION OF 1/2" DIAMETER THRU BOLTS. BOLT QUANTITIES AS NOTED ON SEALED DESIGN MUST BE APPLIED IN ONE OF THE PATTERNS SHOWN BELOW.

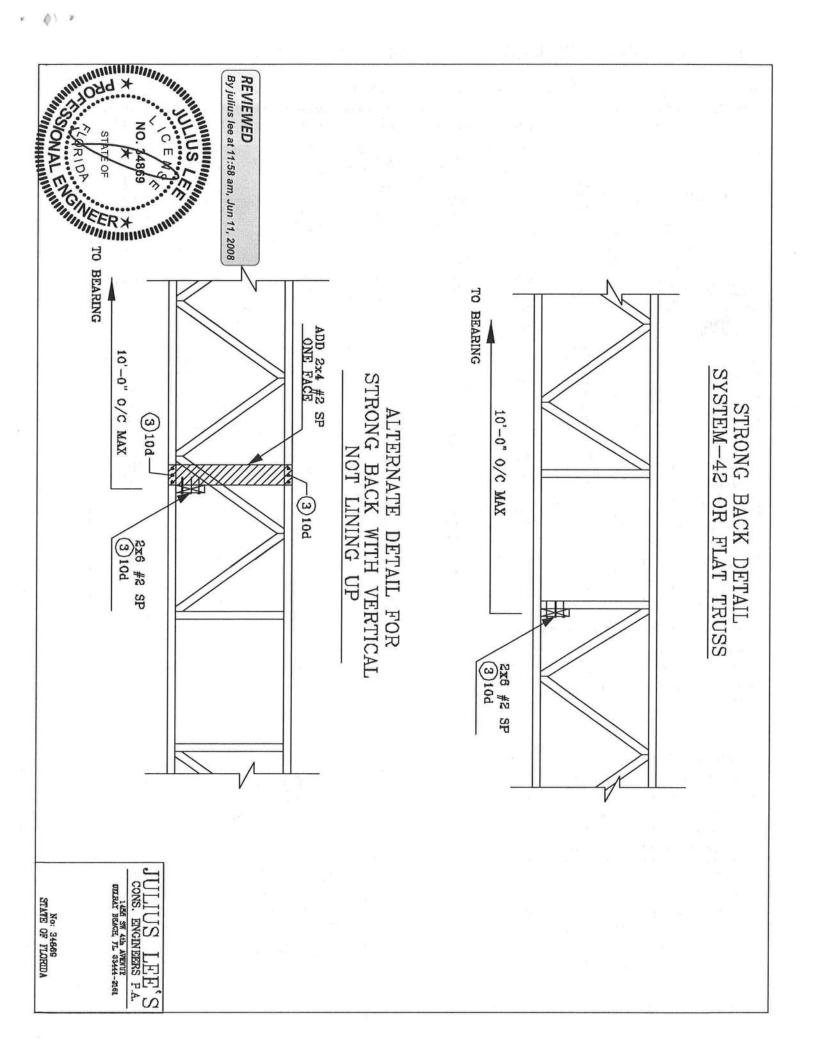
WASHERS REQUIRED UNDER BOLT HEAD AND NUT

TRULOX CONNECTION


11 GAUGE (0.120" X 1.375") NAILS REQUIRED FOR TRULOX PLATE ATTACHMENT. FILL ROWS COMPLETELY WHERE SHOWN (+).

NAILS MAY BE OMITTED FROM THESE ROWS

THIS DETAIL MAY BE USED WITH SO, PINE, DOUGLAS-FIR OR HEM-FIR CHORDS WITH A MINIMUM 1.00 DURATION OF LOAD OR SPRUCE-PINE-FIR CHORDS WITH A MINIMUM 1.15 DURATION OF LOAD. CHORD SIZE OF BOTH TRUSSES MUST EXCEED THE TRULOX PLATE WIDTH.


TRULOX PLATE IS CENTERED ON THE CHORDS AND BENT BETWEEN NAIL ROWS.

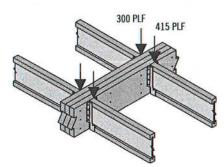
REFER TO ENGINEER'S SEALED DESIGN REFERENCING THIS DETAIL FOR LUMBER, PLATES, AND OTHER INFORMATION NOT SHOWN.

NO: 34869 STATE OF FLORIDA

T

MULTIPLE-MEMBER CONNECTIONS FOR SIDE-LOADED BEAMS

Maximum Uniform Load Applied to Either Outside Member (PLF)


					Co	onnector Pattern		AT THE COURT
Connector Type	Number of Rows	Connector On-Center Spacing	Assembly A	Assembly B	Assembly C	Assembly D	Assembly E 1 2" 1 2" 33½"	Assembly F
			3½" 2-ply	51/4" 3-ply	51/4" 2-ply	7" 3-ply	7" 2-ply	7" 4-ply
10d (0.128" x 3")	2	12"	370	280	280	245		
Nail ⁽¹⁾	3	12"	555	415	415	370		
	DESTRUCTION OF THE PARTY OF THE	24"	505	380	520	465	860	340
1/2" A307 Through Bolts(2)(4)	2	19.2"	635	475	655	580	1,075	425
I III dugii buits		16"	760	570	785	695	1,290	505
Mary Manager	S SULLANDED	24"	680	510	510	455		
SDS 1/4" x 31/2"(4)	2	19.2"	850	640	640	565		
		16"	1,020	765	765	680		
	自身主題	24"				455	465	455
SDS 1/4" x 6"(3)(4)	2	19.2"	TO THE OWNER OF			565	580	565
		16"				680	695	680
		24"	480	360	360	320		
USP WS35 (4)	2	19.2"	600	450	450	400		
		16"	715	540	540	480		
		24"				350	525	350
USP WS6 (3)(4)	2	19.2"			10	440	660	440
		16"				525	790	525
33/8"		24"	635	475	475	425		
TrussLok(4)	2	19.2"	795	595	595	530		
THE SECOND SECON		16"	955	715	715	635		
5"		24"		500	500	445	480	445
TrussLok(4)	2	19.2"		625	625	555	600	555
		16"		750	750	665	725	665
63/4"	and the same	24"	K Ingalitzani			445	620	445
TrussLok(4)	2	19.2"				555	770	555
		16"	The second second			665	925	665

Nailed connection values may be doubled for 6" on-center or tripled for 4" on-center nail spacing.

General Notes

- Connections are based on NDS® 2005 or manufacturer's code report.
- Use specific gravity of 0.5 when designing lateral connections.
- Values listed are for 100% stress level. Increase 15% for snow-loaded roof conditions or 25% for non-snow roof conditions, where code allows.
- Bold Italic cells indicate Connector Pattern must be installed on both sides.
 Stagger fasteners on opposite side of beam by ½ the required Connector Spacing.
- Verify adequacy of beam in allowable load tables on pages 16-33.
- 7" wide beams should be side-loaded only when loads are applied to both sides
 of the members (to minimize rotation).
- Minimum end distance for bolts and screws is 6".
- Beams wider than 7" require special consideration by the design professional.

Uniform Load Design Example

First, check the allowable load tables on pages 16–33 to verify that three pieces can carry the total load of 715 plf with proper live load deflection criteria. Maximum load applied to either outside member is 415 plf. For a 3-ply $134^{\prime\prime}$ assembly, two rows of 10d (0.128" x 3") nails at 12" on-center is good for only 280 plf. Therefore, use three rows of 10d (0.128" x 3") nails at 12" on-center (good for 415 plf).

Alternates

Two rows of 1/2" bolts or SDS 1/4" x 31/2" screws at 19.2" on-center.

⁽²⁾ Washers required. Bolt holes to be 1/16" maximum.

^{(3) 6&}quot; SDS or WS screws can be used with Parallam® PSL and Microllam® LYL, but are not recommended for TimberStrand® LSL.

^{(4) 24*} on-center bolted and screwed connection values may be doubled for 12* on-center spacing.

MULTIPLE-MEMBER CONNECTIONS FOR SIDE-LOADED BEAMS

Point Load—Maximum Point Load Applied to Either Outside Member (lbs)

	FOR MARKET			Co	nnector Pattern		
Connector Type	Number of Connectors	Assembly A 1 2* 1 34*	Assembly B	Assembly C	Assembly D	Assembly E 2* 1 2" 3½"	Assembly F
		3½" 2-ply	51/4" 3-ply	51/4" 2-ply	7" 3-ply	7" 2-ply	7" 4-ply
	6	1,110	835	835	740		
10d (0.128" x 3")	12	2,225	1,670	1,670	1,485		
Nail	18	3,335	2,505	2,505	2,225		
	24	4,450	3,335	3,335	2,965		
SDS Screws	4	1,915	1,435(4)	1,435	1,275	1,860(2)	1,405(2)
1/4" x 31/2" or WS35	6	2,870	2,150 (4)	2,150	1,915	2,785(2)	2,110(2)
1/4" x 6" or WS6(1)	8	3,825	2,870 (4)	2,870	2,550	3,715(2)	2,810(2)
01/8 F8	4	2,545	1,910 (4)	1,910	1,695	1,925(3)	1,775(3)
33/8" or 5" TrussLok™	6	3,815	2,860 (4)	2,860	2,545	2,890(3)	2,665(3)
HUSSEUR	8	5,090	3,815 (4)	3,815	3,390	3,855(3)	3,550(3)

(1) 6" SDS or WS screws can be used with Parallam® PSL and Microllam® LVL, but are not recommended for TimberStrand® LSL.

See General Notes on page 38

- (2) 6" long screws required.
- (3) 5" long screws required.
- (4) 31/2" and 35/8" long screws must be installed on both sides.

Connections

4 or 6 or Screw Connection SDS or TrussLok™ screw, typical 2*, typical top and bottom ½ beam depth

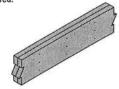
8 Screw Connection SDS or TrussLok™ screw, typical 2" Equal spacing

Nail Connection 10d (0.128" x 3") nails, typical. Stagger to prevent splitting. 8"-10" 2" spacing, typical 2" minimum spacing, typical There must be an equal number of

There must be an equal number of nails on each side of the connection

Point Load Design Example

First, verify that a 3-ply 1¾" x 14" beam is capable of supporting the 3,000 lb point load as well as all other loads applied. The 3,000 lb point load is being transferred to the beam with a face mount hanger. For a 3-ply 1¾" assembly, eight 3¾" TrussLok™ screws are good for 3,815 lbs with a face mount hanger.


MULTIPLE-MEMBER CONNECTIONS FOR TOP-LOADED BEAMS

13/4" Wide Pieces

- Minimum of three rows of 10d (0.128" x 3") nails at 12" on-center.
- Minimum of four rows of 10d (0.128" x 3") nails at 12" on-center for 14" or deeper.
- If using 12d-16d (0.148"-0.162" diameter) nails, the number of nailing rows may be reduced by one.
- Minimum of two rows of SDS, WS, or TrussLok™ screws at 16" on-center. Use 3¾" minimum length with two or three plies; 5" minimum for 4-ply members. 6" SDS and WS screws are not recommended for use with TimberStrand® LSL. For 3- or 4-ply members, connectors must be installed
- on both sides. Stagger fasteners on opposite side of beam by ½ of the required connector spacing.
- Load must be applied evenly across entire beam width. Otherwise, use connections for side-loaded beams.

31/2" Wide Pieces

- Minimum of two rows of SDS, WS, or TrussLok™ screws, 5" minimum length, at 16" on-center. 6" SDS and WS screws are not recommended for use with TimberStrand® LSL. Connectors must be installed on both sides. Stagger fasteners on opposite side of beam by ½ of the required connector spacing.
- Load must be applied evenly across entire beam width. Otherwise, use connections for side-loaded beams.
- Minimum of two rows of ½" bolts at 24" on-center staggered.

Multiple pieces can be nailed or bolted together to form a header or beam of the required size, up to a maximum width of 7"

iLevel Trus Joist* Beam, Header, and Column Specifier's Guide TJ-9000

4 0 "

.

Julius Lee Engineering

RE: 300221 - MILTON BLDRS. -

1109 Coastal Bay Blvd. Boynton Beach, FL 33435

Site Information:

Project Customer: MILTON BLDRS. Project Name: 300221 Model: CUSTOM

_ot/Block: Subdivision:

Address: 162 NE DEW DROP WAY

City: COLUMBIA CTY State: FL

Name Address and License # of Structural Engineer of Record, If there is one, for the building.

Name: JAY W. MILTON License #: CGC060912

Address: 1296 SW RIDGE ST

City: LAKE CITY,

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

State: FL

Design Code: FBC2007/TPI2002 Design Program: MiTek 20/20 7.1

Wind Code: ASCE 7-05 Wind Speed: 110 mph Floor Load: N/A psf

Roof Load: 32.0 psf

This package includes 47 individual, dated Truss Design Drawings and 0 Additional Drawings. With my seal affixed to this sheet, I hereby certify that I am the Truss Design Engineer and this index sheet conforms to 61G15-31.003, section 5 of the Florida Board of Professional Engineers Rules. This document processed per section 16G15-23.003 of the Florida Board of Professionals Rules

In the event of changes from Builder or E.O.R. additional coversheets and drawings may accompany this coversheet. The latest approval dates supersede and replace the previous drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	14033415	CJ1	6/8/09	18	14033432	T11	6/8/09
2	14033416	CJ3	6/8/09	19	14033433	T12	6/8/09
3	14033417	CJ5	6/8/09	20	14033434	T13	6/8/09
4	14033418	EJ7	6/8/09	21	14033435	T14	6/8/09
5	14033419	FG1	6/8/09	22	14033436	T15	6/8/09
6	14033420	HJ9	6/8/09	23	14033437	T16	6/8/09
7	14033421	T01	6/8/09	24	14033438	T17	6/8/09
8	14033422	T01G	6/8/09	25	14033439	T18	6/8/09
9	14033423	T02	6/8/09	26	14033440	T19	6/8/09
10	14033424	T03	6/8/09	27	14033441	T20	6/8/09
11	14033425	T04	6/8/09	28	14033442	T21	6/8/09
12	14033426	T05	6/8/09	29	14033443	T22	6/8/09
13	14033427	T06	6/8/09	30	14033444	T23	6/8/09
14	14033428	T07	6/8/09	31	14033445	T24	6/8/09
15	14033429	T08	6/8/09	32	14033446	T25	6/8/09
16	14033430	T09	6/8/09	33	14033447	T26	6/8/09
17	14033431	T10	6/8/09	34	14033448	T27	6/8/09

The truss drawing(s) referenced above have been prepared by MiTek Industries, Inc. under my direct supervision based on the parameters provided by Builders FirstSource (Lake City).

Truss Design Engineer's Name: Julius Lee

My license renewal date for the state of Florida is

NOTE: The seal on these drawings indicate acceptance of professional engineering responsibility solely for the truss components shown. The suitability and use of this component for any particular building is the responsibility of the building designer, per ANSI/TPI-1 Chapter 2.

RE: 300221 - MILTON BLDRS. -

Site Information:

Project Customer: MILTON BLDRS. Project Name: 300221 Model: CUSTOM Lot/Block: Subdivision:

Lot/Block: Address: 162 NE DEW DROP WAY

City: COLUMBIA CTY State: FL

No.	Seal#	Truss Name	Date
35	14033449	T28	6/8/09
36	14033450	T29	6/8/09
37	14033451	T30	6/8/09
38	14033452	T31	6/8/09
39	14033453	T32	6/8/09
40	14033454	T33G	6/8/09
41	14033455	T34	6/8/09
42	14033456	T34G	6/8/09
43	14033457	T35	6/8/09
44	14033458	T36	6/8/09
45	14033459	T37	6/8/09
46	14033460	T38	6/8/09
47	14033461	T39	6/8/09

Job Truss Truss Type MILTON BLDRS. -14033415 300221 CJ1 JACK 300221001 Job Reference (aptional) Builders FrstSource, Lake City, FL 32055 7.130 s Apr 28 2009 MiTek In dustries, Inc. Mon Jun 08 07:54:36 2009 Page 1 8-1-2 8-1-2 2-0-0 1-0-0 6.00 12 0-10-3 2 0-4-3 B1 T1 4

LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.28	Vert(LL)	-0.00	2	>999	360	MT20	244/190
TCDL	7.0	Lumber Increase	1.25	BC	0.01	Vert(TL)	-0.00	2	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(TL)	0.00	3	n/a	n/a		
BCDL	5.0	Code FBC2007/TF	12002	(Matr	ix)	Wind(LL)	0.00	2	>999	240	Weight: 7 lb	

LUMBER

TOP CHORD 2 X 4 SYP No.2 BOT CHORD 2 X 4 SYP No.2 BRACING

TOP CHORD

Structural wood sheathing directly applied or 1-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS (Ib/size) 2=256/0-1-8 (input: 0-3-8), 4=5/Mechanical, 3=90/Mechanical Max Horz 2=87(LC 7)

Max Uplift 2=-286(LC 7), 4=-9(LC 5), 3=-90(LC 1) Max Grav 2=256(LC 1), 4=14(LC 2), 3=127(LC 7)

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES (8-9)

- Wind: ASCE 7-05; 110mph (3-second gust); TCDL=4.2psf; BCDL=3.0psf; h=16ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be SYP No.2.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 286 lb uplift at joint 2, 9 lb uplift at joint 4 and 90 lb uplift at joint 3
- 7) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.
- 8) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.
- 9) Truss Design Engineer: Julius Lee, PE: Florida P.E. License No. 34869: Address: 1109 Coastal Bay Blvd. Boynton Beach, FL 33435

LOAD CASE(S) Standard

Aticular No 34869

No 34869

STATE OF S

June 8,2009

MILTON BLDRS -Truss Type Qty Job Truss 14033416 300221002 Job Reference (optional) CJ3 300221 7.130 s Apr 28 2009 MiTek lgdgstytes, Inc. Mon Jun 08 07:54:36 2009 Page 1 Builders FrstSource, Lake City, FL 32055 8-1-2 8-1-2 -2-0-0 2-0-0 Scale = 1:14.7 6.00 12 T1 0-4-3 B1 PLATES GRIP DEFL (loc) SPACING 2-0-0 CSI

LOADING (psf) Vert(LL) -0.00 2-4 >999 360 MT20 244/190 1.25 TC 0.29 TCLL 20 0 Plates Increase -0.01 2-4 >999 240 1.25 BC 0.08 Vert(TL) Lumber Increase TCDL 7.0 WB 0.00 Horz(TL) -0.00 3 n/a n/a BCLL 0.0 Rep Stress Incr YES Code FBC2007/TPI2002 Wind(LL) 0.01 2-4 >999 240 Weight: 13 lb (Matrix) BCDL 5.0

LUMBER

TOP CHORD 2 X 4 SYP No.2 BOT CHORD 2 X 4 SYP No.2 BRACING TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 3-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS (lb/size) 3=31/Mechanical, 2=250/0-1-8 (input: 0-3-8), 4=14/Mechanical

Max Horz 2=132(LC 7)

Max Uplift 3=-28(LC 8), 2=-238(LC 7), 4=-27(LC 5)

Max Grav 3=31(LC 1), 2=250(LC 1), 4=42(LC 2)

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES

1) Wind: ASCE 7-05; 110mph (3-second gust); TCDL=4.2psf; BCDL=3.0psf; h=16ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) All bearings are assumed to be SYP No.2.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 28 lb uplift at joint 3, 238 lb uplift at joint 2 and 27 lb uplift at joint 4.

7) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

8) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

9) Truss Design Engineer: Julius Lee, PE: Florida P.E. License No. 34869: Address: 1109 Coastal Bay Blvd. Boynton Beach, FL 33435

LOAD CASE(S) Standard

No 34859

ROSTATE OF

FLORIDA

ONAL

June 8,2009

Job Truss Truss Type Qty MILTON BLDRS. -14033417 CJ5 300221 300221003 Job Reference (optional) JACK Builders FrstSource, Lake City, FL 32055 7.130 s Apr 28 2009 MiTek Industries Inc. Mon Jun 08 07:54:37 2009 Page 1 8-1-2 -2-0-0 2-0-0 Scale = 1:19.7 6.00 12 0-4-3 **B**1 2x4 LOADING (psf) SPACING 2-0-0 CSI DEFL in (loc) **Vdefl** L/d **PLATES** GRIP TCLL 20.0 Plates Increase 1.25 TC 0.29 Vert(LL) -0.03 >999 360 MT20 244/190 2-4 1.25 TCDL 7.0 0.24 Lumber Increase BC Vert(TL) 0.08 2-4 >733 240 BCLL 0.0 Rep Stress Incr YES WB 0.00 Horz(TL) -0.00 n/a n/a BCDL 5.0 Code FBC2007/TPI2002 (Matrix) Wind(LL) 0.09 2-4 >663 240 Weight: 19 lb LUMBER BRACING

TOP CHORD

BOT CHORD

REACTIONS (lb/size) 3=103/Mechanical, 2=295/0-1-8 (input: 0-3-8), 4=24/Mechanical

Max Horz 2=178(LC 7)

TOP CHORD 2 X 4 SYP No.2

BOT CHORD 2 X 4 SYP No.2

Max Uplift3=-87(LC 7), 2=-260(LC 7), 4=-46(LC 5)

Max Grav 3=103(LC 1), 2=295(LC 1), 4=72(LC 2)

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES (8-9)

 Wind: ASCE 7-05; 110mph (3-second gust); TCDL=4.2psf; BCDL=3.0psf; h=16ff; Cat. II; Exp B; enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) All bearings are assumed to be SYP No.2.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 87 lb uplift at joint 3, 260 lb uplift at joint 2 and 46 lb uplift at joint 4.

7) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

b) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

9) Truss Design Engineer: Julius Lee, PE: Florida P.E. License No. 34869: Address: 1109 Coastal Bay Blvd. Boynton Beach, FL 33435

LOAD CASE(S) Standard

No 34869

No 34869

STATE OF

FLORIDA

ONAL

MINO 8 300

Structural wood sheathing directly applied or 5-0-0 oc purlins.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer

Rigid ceiling directly applied or 10-0-0 oc bracing.

Installation guide.

June 8,2009

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.

Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component.

Applicability of design parameters and proper incorporation of component is responsibility of building designer - not trus designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult — ANSI/ITI Quality Criteria, DSB-B9 and BCS11 Building Component Satety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Julius Lee Engineering 1109 Coastal Bay Blvd. Boynton, FL 33435 Job Truss Type Qty MILTON BLDRS. -Truss 300221004 Job Reference (optional) 300221 EJ7 JACK 33 7.110 s Dec 8 2008 MiTek Industries, Inc. Mon Jun 08 11:51:50 2009 Page 1 Builders FrstSource, Lake City, FL 32055 -2-0-0 7-0-0 2-0-0 7-0-0 Scale: 1/2"=1" 6.00 12 0-4-3

LOADING	(not)		SPACING	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
			1 1 TO 1 1 TO 1 TO 1 TO 1 TO 1 TO 1 TO		10000	1/41	Company of the Compan			2000	1.10	Charles and the second	
TCLL	20.0		Plates Increase	1.25	TC	0.52	Vert(LL)	-0.09	2-4	>921	360	MT20	244/190
TCDL	7.0		Lumber Increase	1.25	BC	0.48	Vert(TL)	0.31	2-4	>261	240		
BCLL	0.0	*	Rep Stress Incr	YES	WB	0.00	Horz(TL)	-0.00	3	n/a	n/a		
BCDL	5.0	- 1	Code FBC2007/TF	212002	(Matr	rix)	Wind(LL)	0.35	2-4	>236	240	Weight: 26 lb	

LUMBER

TOP CHORD 2 X 4 SYP No.2 BOT CHORD 2 X 4 SYP No.2

BRACING

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide

REACTIONS (lb/size) 3=157/Mechanical, 2=352/0-1-8 (input: 0-3-8), 4=42/Mechanical

Max Horz 2=161(LC 7)

Max Uplift 3=-94(LC 7), 2=-224(LC 7), 4=-65(LC 6)

Max Grav 3=157(LC 1), 2=352(LC 1), 4=96(LC 2)

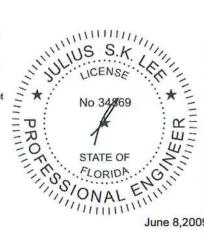
FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1) Wind: ASCE 7-05; 110mph (3-second gust); TCDL=4.2psf; BCDL=3.0psf; h=16ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) and C-C Exterior(2) zone; porch left and right exposed; C-C fcr members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

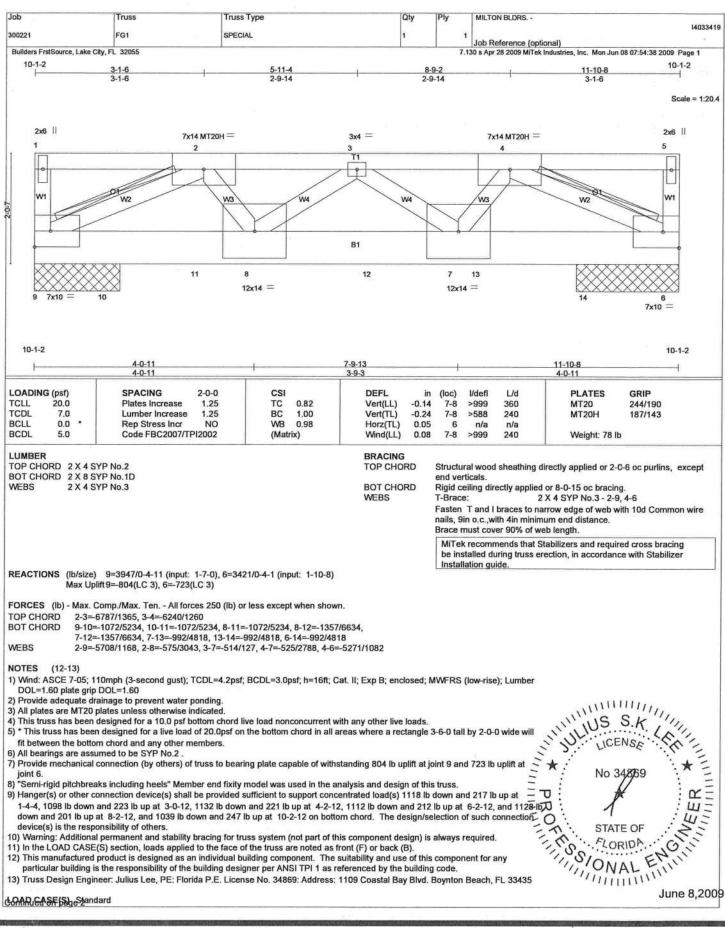
4) Refer to girder(s) for truss to truss connections


5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 94 lb uplift at joint 3, 224 lb uplift at joint 2 and 65 lb uplift at joint 4.

"Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

7) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

8) Truss Design Engineer: Julius Lee, PE: Florida P.E. License No. 34869: Address: 1109 Coastal Bay Blvd. Boynton Beach, FL 33435


LOAD CASE(S) Standard

June 8,2009

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE Design valid for use only with Mifek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for talerated support of individual building component is responsibility of building designer - not truss designer. Bracing shown is for talerated support of individual building consons. Additional temporary bracing to taxiner stability during construction is the responsibility of the erector. Additional permanent bracing of the overall shucture is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult. AMS/ITH Quality Criteria, DSB-89 and BCSI1 Building Component Safety Information available from Truss Plate Institute. S83 D'Onofrio Drive, Madison. WI 53719.

Julius Lee Engineering 1109 Coastal Bay Blvd. Boynton, FL 33435

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.

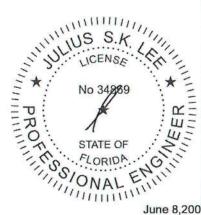
Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component.

Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding flabrication, quality control, storage, delivery, erection and bracing, consult. AMSI/TIQuality Criteria, DS8-89 and BCSII Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

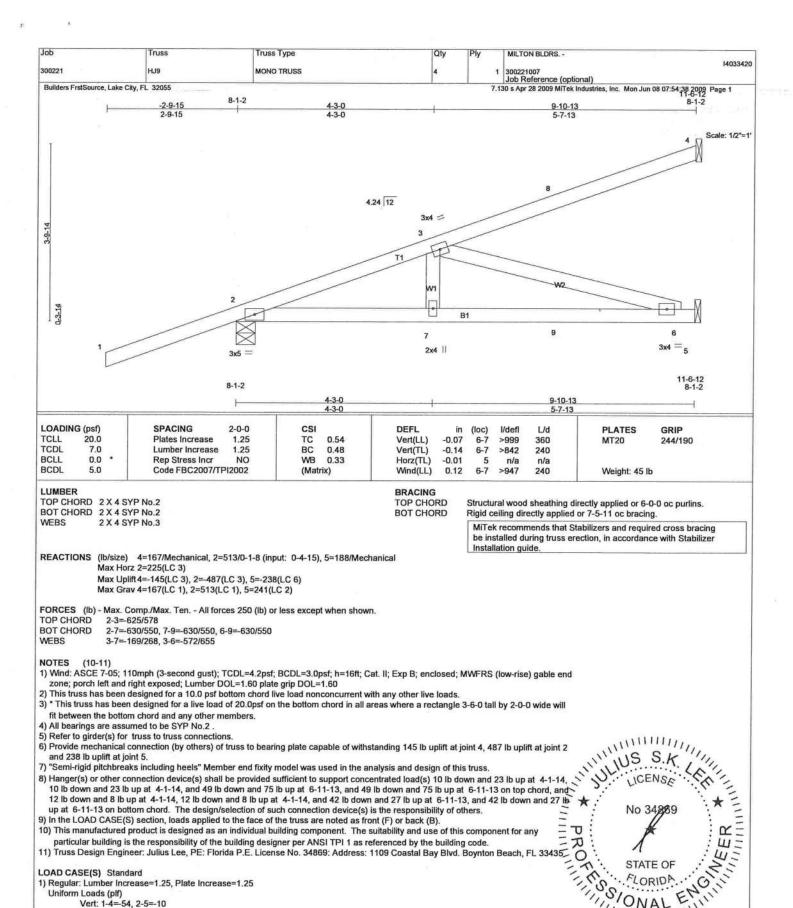
Julius Lee Engineering 1109 Coastal Bay Blvd. Boynton, FL 33435

Job	Truss	Truss Type	Qty	Ply	MILTON BLDRS	1403341
300221	FG1	SPECIAL	1	1	Job Reference (optional)	14055411

Builders FrstSource, Lake City, FL 32055


7.130 s Apr 28 2009 MiTek Industries, Inc. Mon Jun 08 07:54:38 2009 Page 2

LOAD CASE(S) Standard


1) Regular: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf) Vert: 1-5=-54, 6-9=-10

Concentrated Loads (lb)

Vert: 8=-1132(B) 10=-1118(B) 11=-1098(B) 12=-1112(B) 13=-1128(B) 14=-1039(B)

June 8,2009

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.

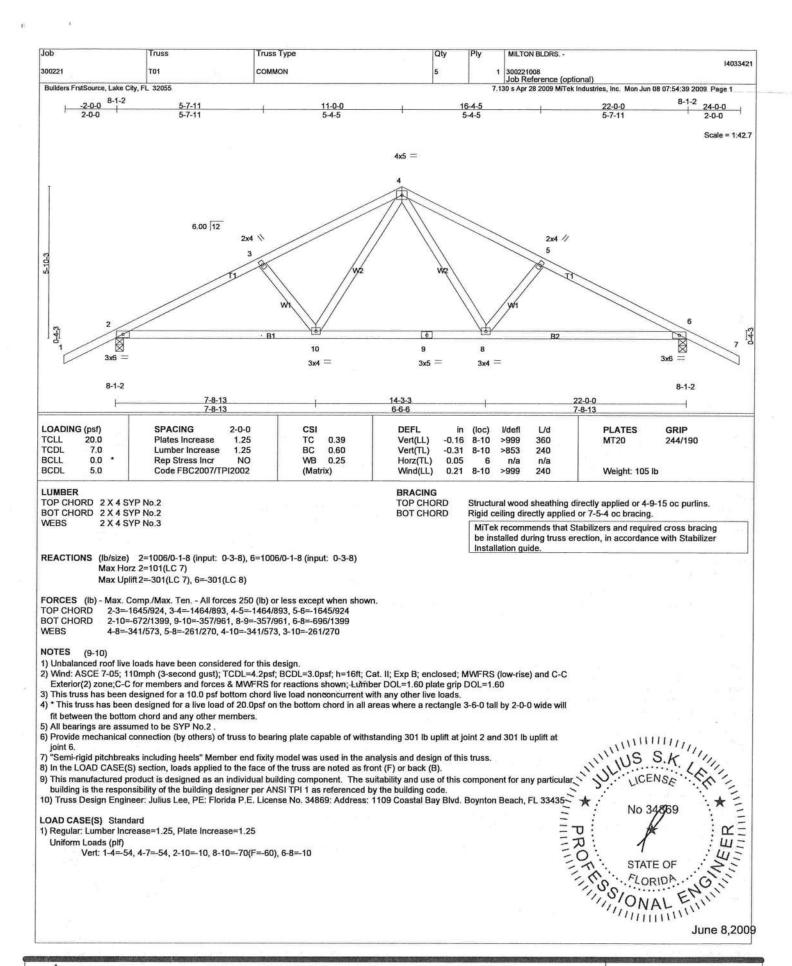
Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component.
Applicability of design parameters and proper incorporation of component is responsibility of building designer - not fruss designer.
Forcing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector.
Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding labrication, quality control, storage, delivery, erection and bracing, consult.

ANSI/THI Quality Criteria, DSB-89 and BCSII Building Component
Safety Information available from Truss Plate Institute, 583 D'Onotrio Drive, Madison, WI 53719.

Continued on page 2

Julius Lee Engineering 1109 Coastal Bay Blvd. Boynton, FL 33435

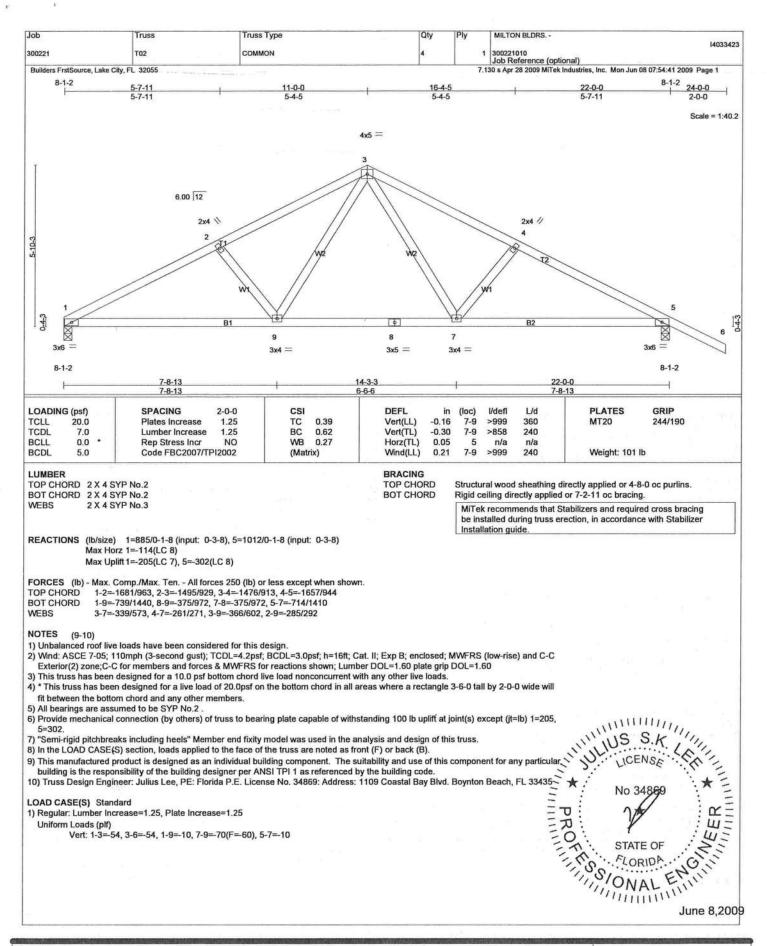
Job	Truss	Truss Type	Qty	Ply	MILTON BLDRS	2420
300221	HJ9	MONO TRUSS	4	1	300221007 Job Reference (optional)	3420


Builders FrstSource, Lake City, FL 32055

7.130 s Apr 28 2009 MiTek Industries, Inc. Mon Jun 08 07:54:38 2009 Page 2

LOAD CASE(S) Standard

Concentrated Loads (lb) Vert: 3=46(F=23, B=23) 7=-8(F=-4, B=-4) 8=-99(F=-49, B=-49) 9=-28(F=-14, B=-14)



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.
Design valid for use only with Milek connectors. This design is based only upon parameters shown, and is for an individual building component.
Applicability of design parameters and proper incorporation of component is responsibility of building designer - not frust designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult. AMS/TP11 Quality Criteria, DSB-89 and BCS11 Building Component Satety Information available from Truss Plate Institute, SS3 D'Onotrio Drive, Madison, WI 53719.

Job Truss Truss Type Qty MILTON BLDRS. -14033422 300221009 Job Reference (optional) 300221 T01G GABLE Builders FrstSource, Lake City, FL 32055 7.130 s Apr 28 2009 MiTek Industries, Inc. Mon Jun 08 07:54:40 2009 Page 1 8-1-2 -2-0-0 22-0-0 2-0-0 2-0-0 11-0-0 Scale = 1:42.7 4x5 = 9 7 6.00 12 10 6 11 3v4 = 3x4 12 0-4-3 15 0 5x8 || 3x4 = 25 24 23 22 21 20 18 17 16 19 3x4 = 3x4 = 8-1-2 Plate Offsets (X,Y): [2:0-3-8,Edge], [2:0-2-8,Edge], [14:0-3-8,Edge], [14:0-2-8,Edge] LOADING (psf) SPACING CSI DEFL l/defl L/d PLATES (loc) TCLL 20.0 Plates Increase 1.25 TC 0.49 Vert(LL) -0.0415 n/r 120 MT20 244/190 TCDL 7.0 Lumber Increase 1.25 0.05 Vert(TL) -0.07 n/ı 90 BCLL 0.0 WB 0.09 0.01 Rep Stress Incr NO Horz(TL) 14 n/a n/a BCDL 5.0 Code FBC2007/TPI2002 (Matrix) Weight: 119 lb LUMBER BRACING TOP CHORD 2 X 4 SYP No.2 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD 2 X 4 SYP No.2 **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing. OTHERS 2 X 4 SYP No.3 MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide REACTIONS All bearings 22-0-0. (lb) - Max Horz 2=-111(LC 8) Max Uplift All uplift 100 lb or less at joint(s) 16 except 2=-299(LC 7), 14=-317(LC 8), 22=-152(LC 7), 23=-142(LC 7), 24=-161(LC 7), 25=-104(LC 8), 19=-151(LC 8), 18=-143(LC 8), 17=-160(LC 8)

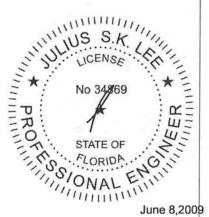

Max Grav All reactions 250 lb or less at joint(s) 21, 23, 25, 18, 16 except 2=487(LC 1), 14=487(LC 1), 22=263(LC 11), 24=255(LC 11), 19=263(LC 12), 17=255(LC 12) FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES (13-14)1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 110mph (3-second gust); TCDL=4.2psf; BCDL=3.0psf; h=16ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 will will LICE. 3) Truss designed for wind loads in the plane of the truss only. For stude exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1-2002. 4) All plates are 2x4 MT20 unless otherwise indicated. 5) Gable requires continuous bottom chord bearing. 6) Gable studs spaced at 2-0-0 oc. 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 9) All bearings are assumed to be SYP No.2 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 16 except (it=lb) No 3486 2=299, 14=317, 22=152, 23=142, 24=161, 25=104, 19=151, 18=143, 17=160. 11) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss. U 12) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). 13) This manufactured product is designed as an individual building component. The suitability and use of this component for any ZOFE D particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code. 5-1700/ONAL NOIN 14) Truss Design Engineer: Julius Lee, PE: Florida P.E. License No. 34869: Address: 1109 Coastal Bay Blvd. Boynton Beach, FL 33435 LOAD CASE(S) Standard 1) Regular: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf) Vert: 1-8=-114(F=-60), 8-15=-114(F=-60), 2-14=-10 June 8,2009

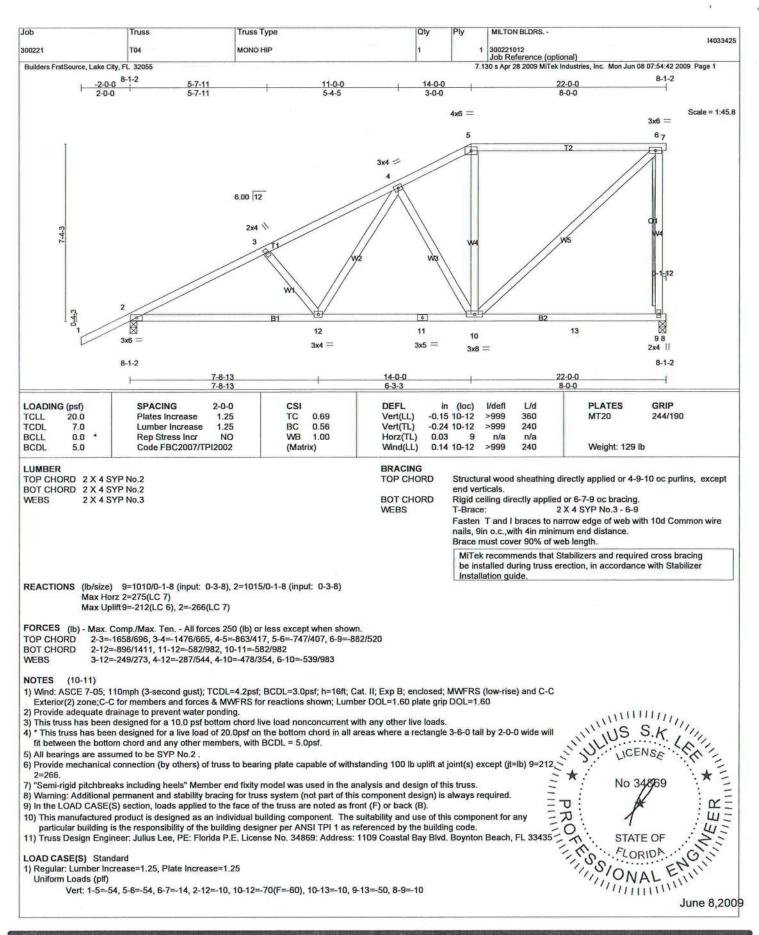
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.
Design valid for use only with MiTek connectors, This design is based only upon parameters shown, and is for an individual building component.
Applicability of design paramenters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding labrication, quality control, storage, delivery, erection and bracing, consult. ANSI/TI Quality Criteria, DSB-89 and BCS11 Building Component Safety Information.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.

Design valid for use only with Milek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not fruss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult. ANSIPTI Quality Criteria, DSB-89 and BCS11 Building Component Safety Information available from Truss Plate Institute, S83 D'Onofrio Drive, Madison, WI 53719.

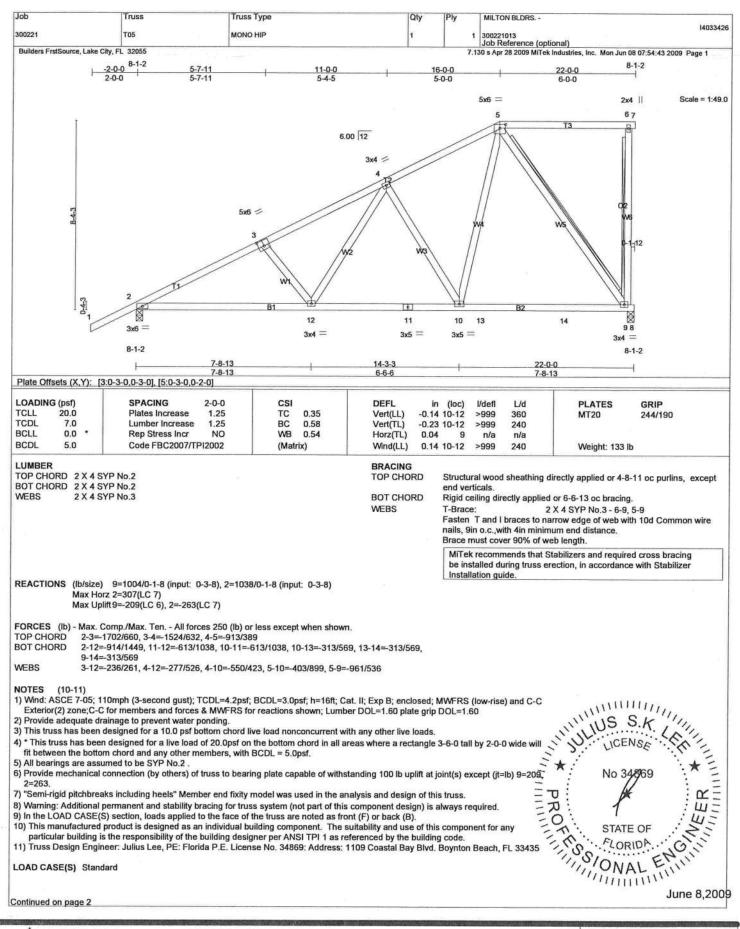
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.
Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult. AMSI/TP1 Quality Criteria, DSS-89 and BCS11 Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.


Job	Truss	Truss Type	Qty	Ply	MILTON BLDRS	-
300221	Т03	MONO HIP	1	1	300221011 Job Reference (optional)	14033424
Duildage EgglCourse Lake City E	22055			7 45	to a Apr 28 2000 Million Individual Inc. Mar. Lan 08 07-54-40 0000 D	


LOAD CASE(S) Standard

1) Regular: Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)


Vert: 1-4-54, 4-6-54, 6-7-14, 2-12-10, 12-13-70(F=-60), 13-14-110(F=-60), 10-14-70(F=-60), 10-15-10, 15-16-50, 8-16-10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.

Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not trust designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector, Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/T11 Quality Criteria, DSB-89 and BCS11 Building Component Salety Information available from Truss Plate Institute, S83 D'Onofrio Drive, Madison, WI 53719.

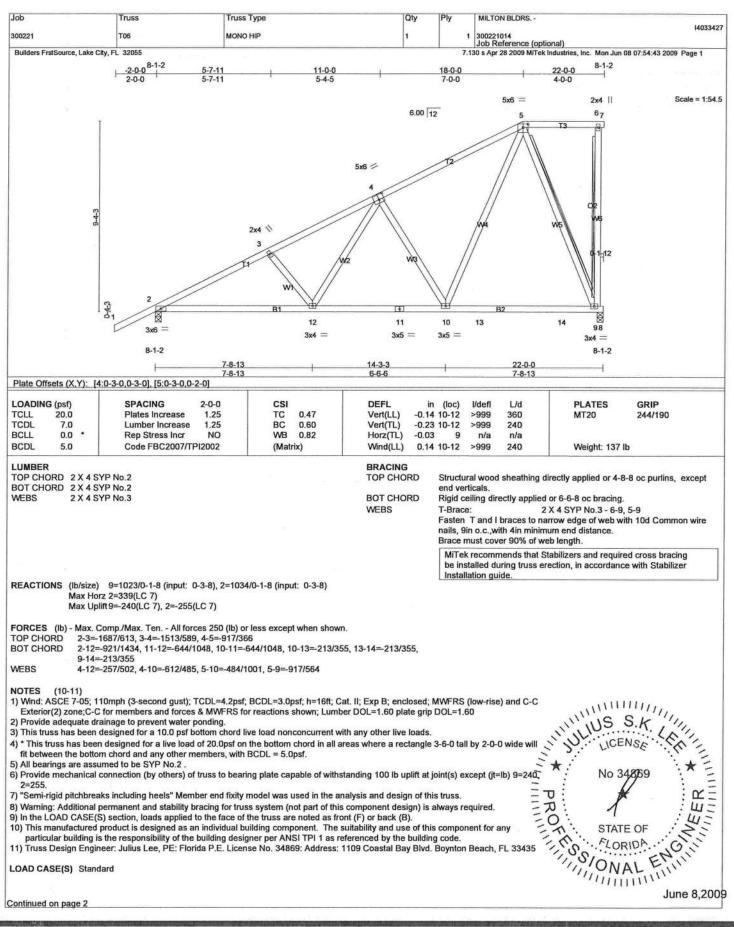
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.

Design valid for use only with Milek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult. AMSI/TU Quality Criteria, DSB-89 and BCSI1 Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	MILTON BLDRS	14033426
300221	T05	MONO HIP	1	1	300221013 Job Reference (optional)	 14033420

Builders FrstSource, Lake City, FL 32055


7.130 s Apr 28 2009 MiTek Industries, Inc. Mon Jun 08 07:54:43 2009 Page 2


LOAD CASE(S) Standard

1) Regular: Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

Vert: 1-5=-54, 5-6=-54, 6-7=-14, 2-12=-10, 10-12=-70(F=-60), 10-13=-10, 13-14=-50, 8-14=-10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MIT-7473 BEFORE USE.

Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component.

Applicability of design paramenters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, qualify control, storage, delivery, erection and bracing, consult. AMS/TP1 Quality Criteria, DSB-89 and BCS11 Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	MILTON BLDRS	14022407
300221	T06	MONO HIP	1	1	300221014 Job Reference (optional)	14033427

Builders FrstSource, Lake City, FL 32055

7.130 s Apr 28 2009 MiTek Industries, Inc. Mon Jun 08 07:54:43 2009 Page 2

LOAD CASE(S) Standard

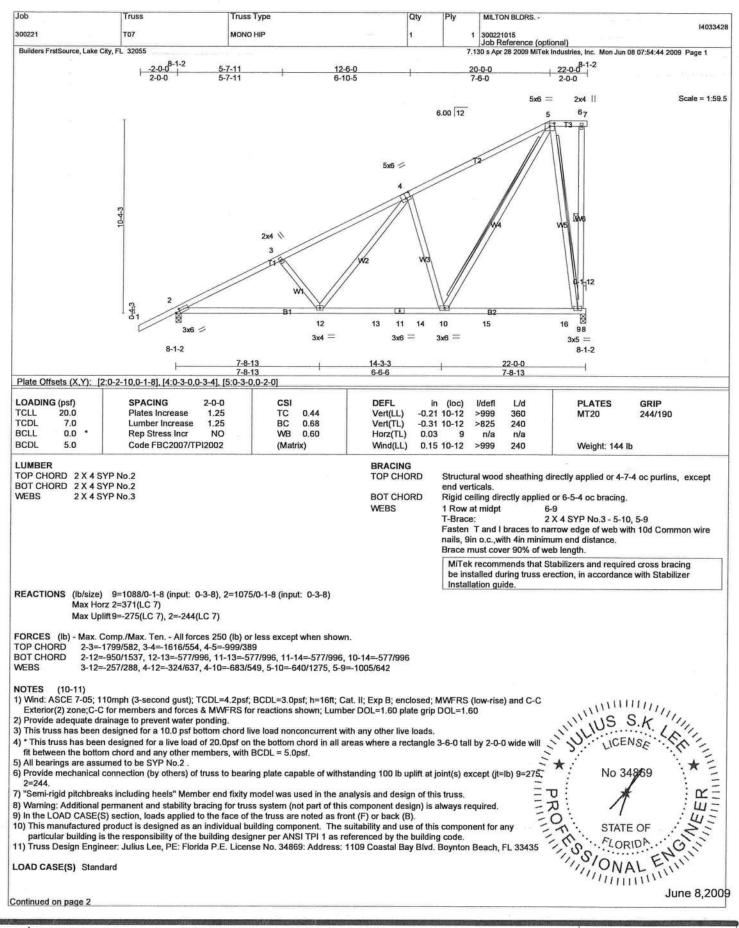
1) Regular: Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

Vert: 1-5=-54, 5-6=-54, 6-7=-14, 2-12=-10, 10-12=-70(F=-60), 10-13=-10, 13-14=-50, 8-14=-10

No 34869

No 34869


STATE OF

FLORIDA

ONAL

INTERIOR ON AL

I AND THE REAL PROPERTY.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MIL-1473 BEFORE USE.

Design valid for use only with Milek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult.

ARSI/TPI Quality Criteria, DSB-89 and BCS11 Building Component Safety Information.

Job	Truss	Truss Type	Qty	Ply	MILTON BLDRS	14033428
300221	Т07	MONO HIP	1	1	300221015 Job Reference (optional)	11000120

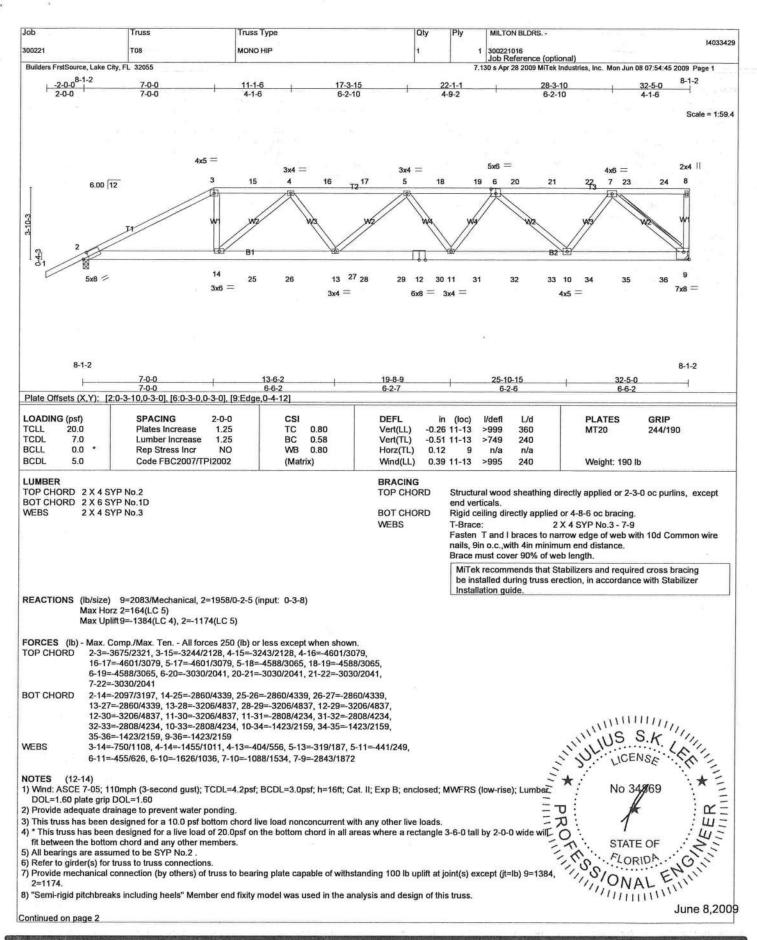
Builders FrstSource, Lake City, FL 32055

7.130 s Apr 28 2009 MiTek Industries, Inc. Mon Jun 08 07:54:44 2009 Page 2

LOAD CASE(S) Standard

1) Regular: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf) Vert: 1-5=-54, 5-6=-54, 6-7=-14, 2-12=-10, 12-13=-70(F=-60), 13-14=-110(F=-60), 10-14=-70(F=-60), 10-15=-10, 15-16=-50, 8-16=-10

No 34869


No 34869

STATE OF

FLORIDA

ON AL

INTERIOR OF

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.

Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, defivery, erection and bracing, consult. AMSI/TI Quality Criteria, DSB-89 and BCSI1 Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	MILTON BLDRS	14033430
300221	T08	MONO HIP	1	1	300221016 Job Reference (optional)	14033428

Builders FrstSource, Lake City, FL 32055

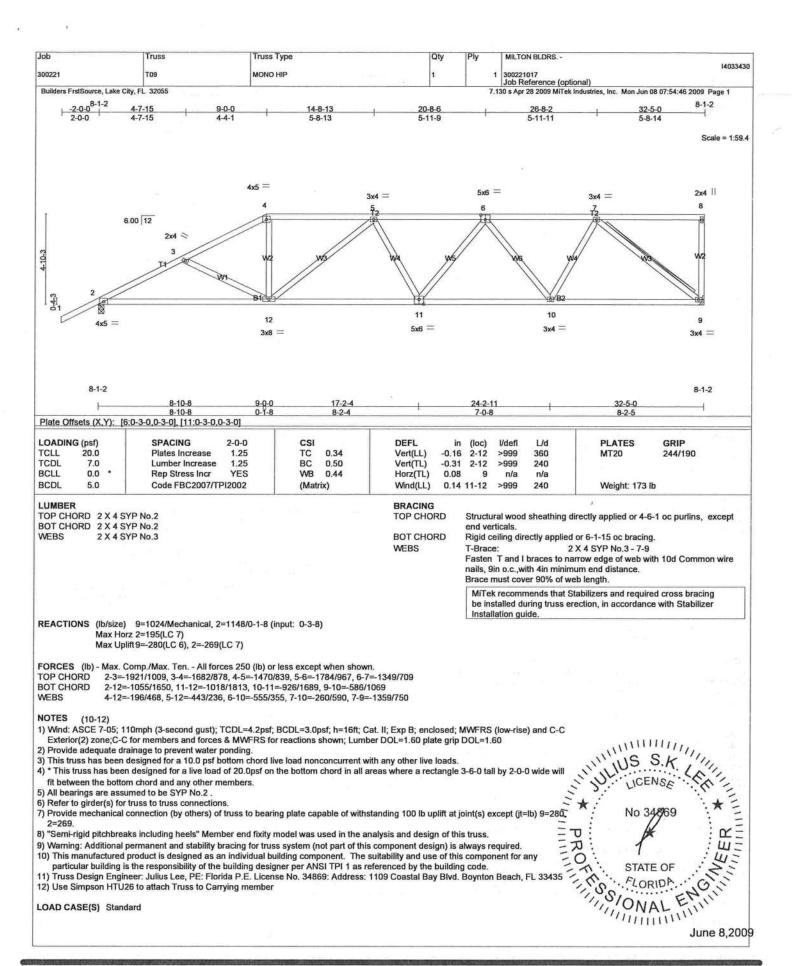
7.130 s Apr 28 2009 MiTek Industries, Inc. Mon Jun 08 07:54:45 2009 Page 2

NOTES (12-14)

- 9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 216 lb down and 215 lb up at 7-0-0, 103 lb down and 82 lb up at 9-0-12, 103 lb down and 82 lb up at 11-0-12, 103 lb down and 82 lb up at 13-0-12, 103 lb down and 82 lb up at 15-0-12, 103 lb down and 82 lb up at 17-0-12, 103 lb down and 82 lb up at 18-0-12 lb up 19-0-12, 103 lb down and 82 lb up at 21-0-12, 103 lb down and 82 lb up at 23-0-12, 103 lb down and 82 lb up at 25-0-12, 103 lb down and 82 lb up at 27-0-12, and 103 lb down and 82 lb up at 29-0-12, and 103 lb down and 82 lb up at 31-0-12 on top chord, and 66 lb down and 71 lb up at 7-0-12, 66 lb down and 71 lb up at 13-0-12, 66 lb down and 71 lb up at 11-0-12, 66 lb down and 71 lb up at 13-0-12, 66 lb down and 71 lb up at 13-0-12, 66 lb down and 71 lb up at 12-0-12, 66 lb down and 71 lb up at 13-0-12, 66 lb down and 71 lb up at 21-0-12, 66 lb down and 71 lb up at 21-0-12, 66 lb down and 71 lb up at 23-0-12, 66 lb down and 71 lb up at 23-0-12, 66 lb down and 71 lb up at 23-0-12, and 66 29-0-12, and 66 lb down and 71 lb up at 31-0-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 10) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

 12) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.
- 13) Truss Design Engineer: Julius Lee, PE: Florida P.E. License No. 34869: Address: 1109 Coastal Bay Blvd. Boynton Beach, FL 33435
- 14) Use Simpson HTU26 to attach Truss to Carrying member

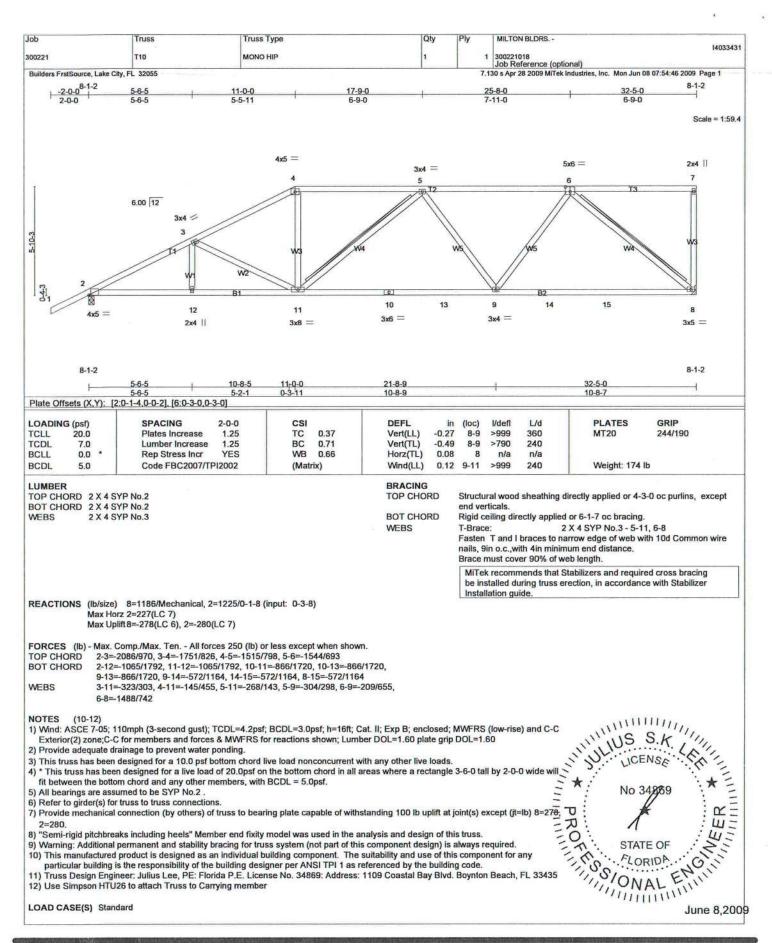
LOAD CASE(S) Standard


1) Regular: Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf) Vert: 1-3=-54, 3-8=-54, 2-9=-10

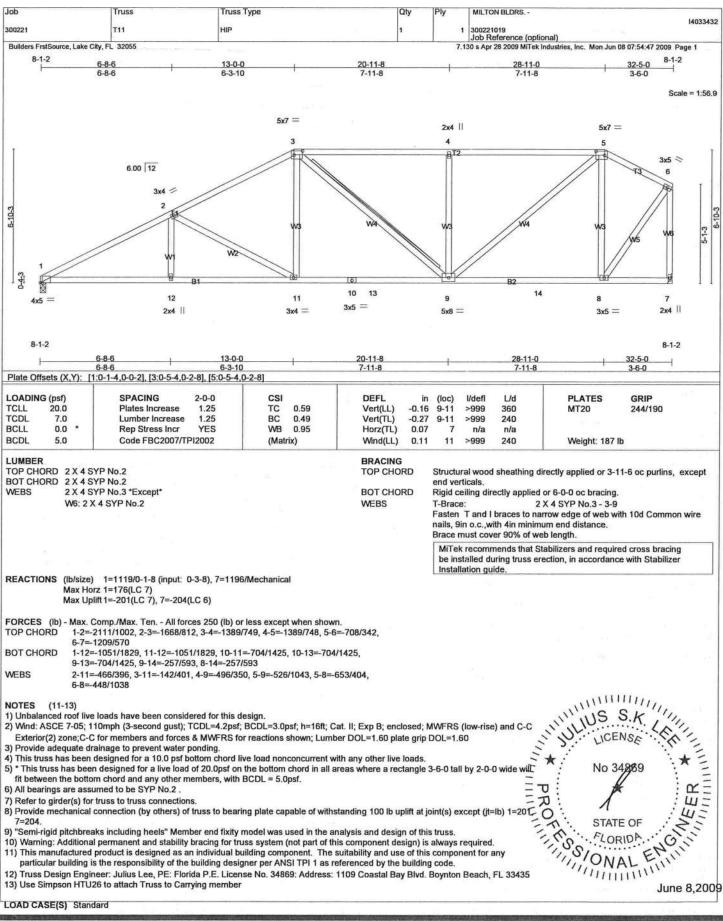
Concentrated Loads (lb)

Vert: 3=-216(F) 14=-32(F) 4=-103(F) 5=-103(F) 15=-103(F) 16=-103(F) 17=-103(F) 18=-103(F) 19=-103(F) 20=-103(F) 21=-103(F) 22=-103(F) 23=-103(F) 24=-103(F) 25-32(F) 26-32(F) 27-32(F) 28-32(F) 29-32(F) 30-32(F) 31-32(F) 32-32(F) 33-32(F) 34-32(F) 35-32(F) 36-32(F)


> No 34869
>
> No 34869
>
> STATE OF
>
> FLORIDA HOW

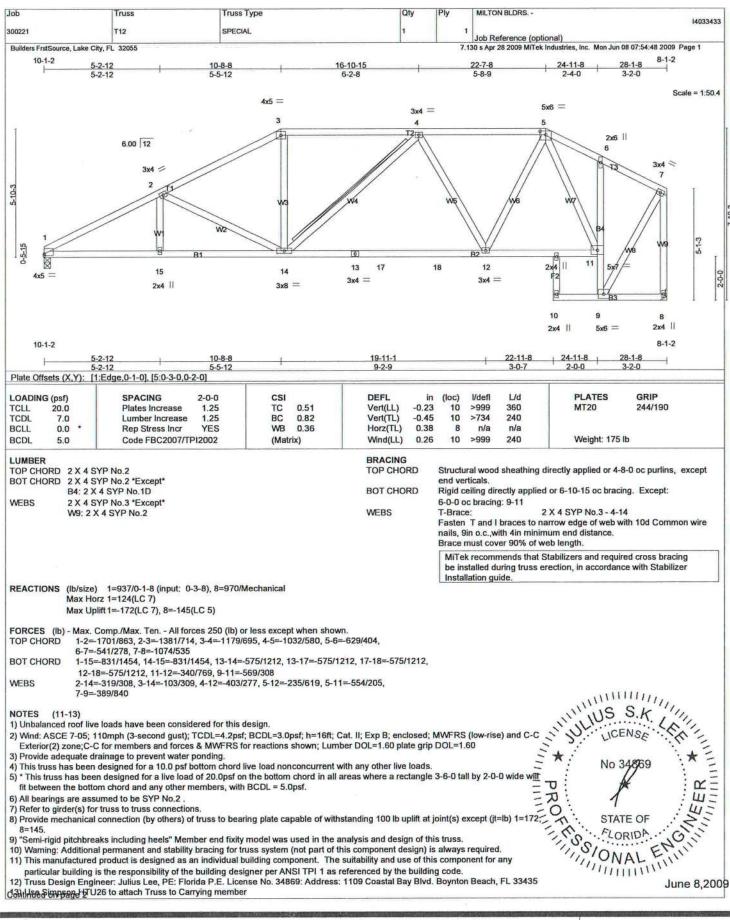
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.

Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component.


Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracking shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult. AMSI/TP1 Quality Criteria, DSB-89 and BCS11 Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MIT-7473 BEFORE USE.

Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component.

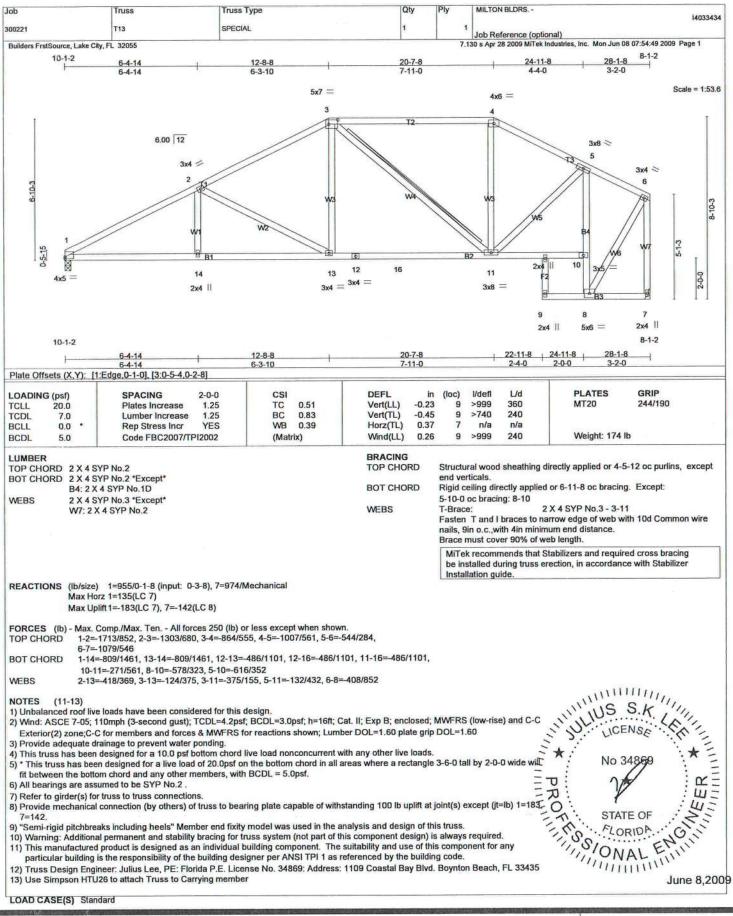

Applicability of design paramenters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult. AMS/IT1 Quality Criteria, DSB-89 and BCS11 Building Component Safety Information available from Truss Plate Institute, S83 D'Onofrio Drive, Madison, WI 53719.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.

Design valid for use only with Milek connectors. This design is based only upon parameters shown, and is for an individual building component.

Applicability of design paramenters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult. ANSI/TI Quality Criteria, DSB-89 and BCSII Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

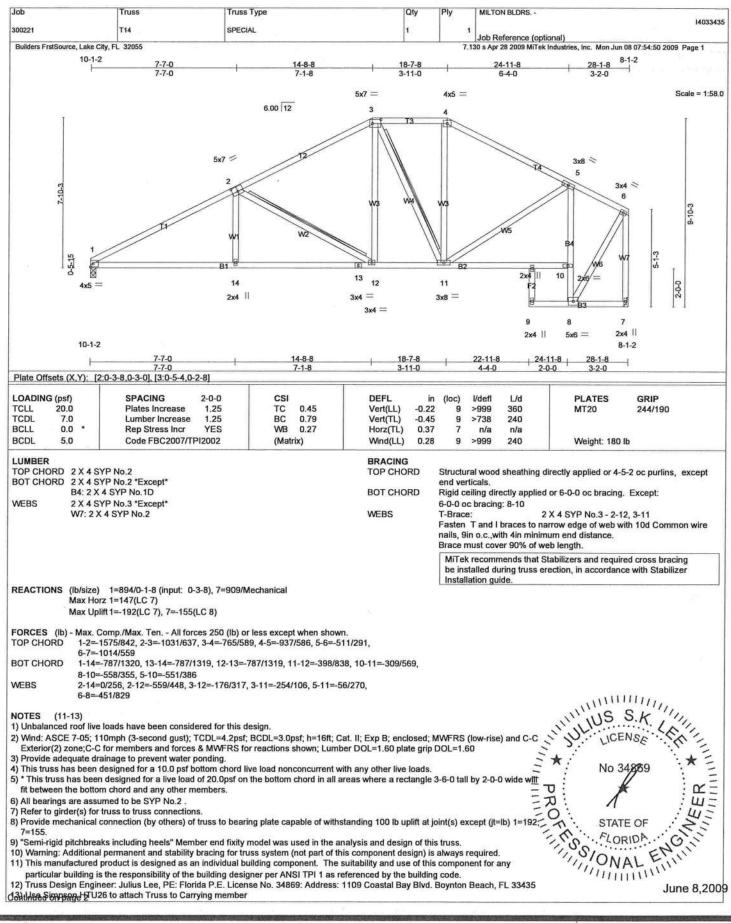
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.


Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component.

Applicability of design paramenters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult. ANSI/TI Quality Criteria, DSB-89 and BCSI1 Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss		Truss Type		Qty	Ply	MILTON BLDRS, -	
300221	T12		SPECIAL		1	1	Joh Deference (antiquel)	14033433
Builders FrstSource, Lake Ci	ty, FL 3205	5				7.	Job Reference (optional) 130 s Apr 28 2009 MiTek Industries, Inc. Mon Jun 08 07:54:4	8 2009 Page 2
LOAD CASE(S) Stand	dard							
								11
								7 .
								2
								1
				yes	×.			
							111111111111111111111111111111111111111	111.
							11,102 3.4	12/1/2
							1. 3. LICENSE.	14
							= ★: No 348960	*=
							No 34869 R STATE OF FLORIDA	1 = =
							= 7:	: [2]
							=0:	: Ш =
							SIAIE OF	125
							TI SI CONTO	Hall
							MAL	1111
							.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.


Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer, bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult. ANSI/TI Quality Criteria, DSB-89 and BCS11 Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.

Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design paramenters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult

ANSI/TPI Quality Criteria, DSB-89 and BCS11 Building Component Safety Information available from Truss Plate Institute, SSB D'Onofrio Drive, Madison, WI 53719.

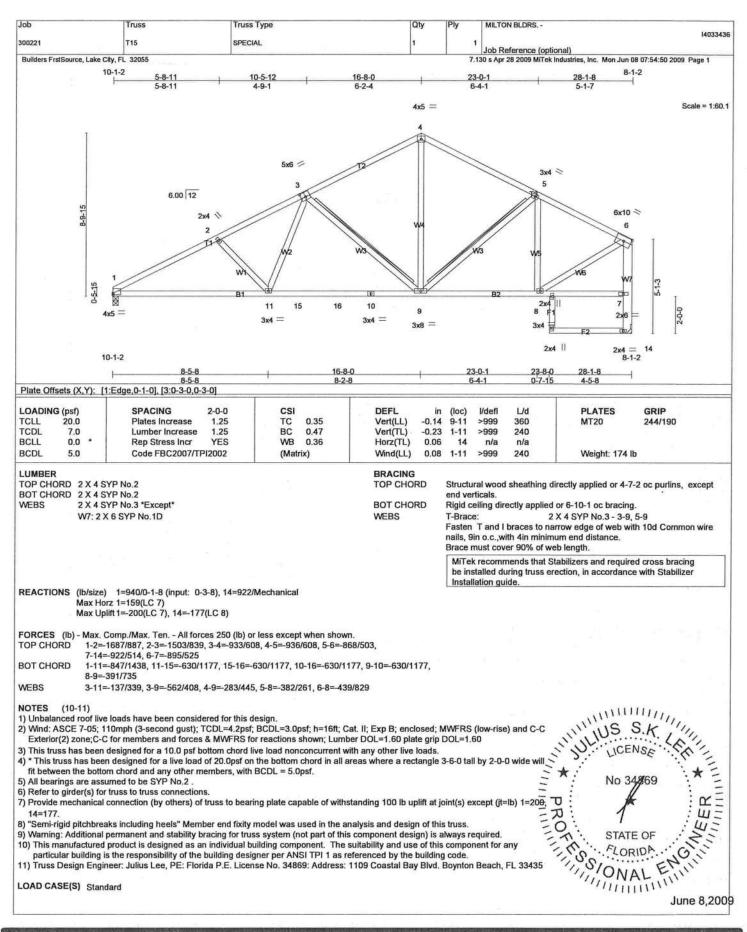
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MIL-7473 BEFORE USE.

Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design paramenters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult. ANSI/PII Quality Criteria, DSB-89 and BCSII Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	MILTON BLDRS
300221	T14 -	SPECIAL	1		1 Job Reference (optional)
Builders FrstSource, Lake City, F	L 32055			7.	.130 s Apr 28 2009 MiTek Industries, Inc. Mon Jun 08 07:54:50 2009 Page 2

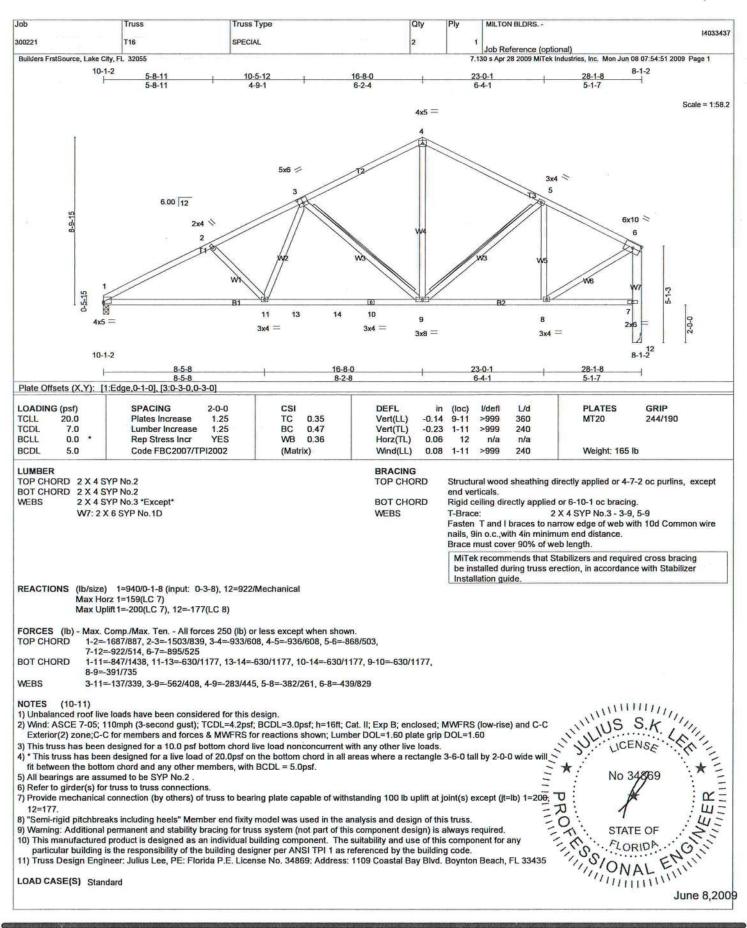
LOAD CASE(S) Standard

No 34869


No 34869

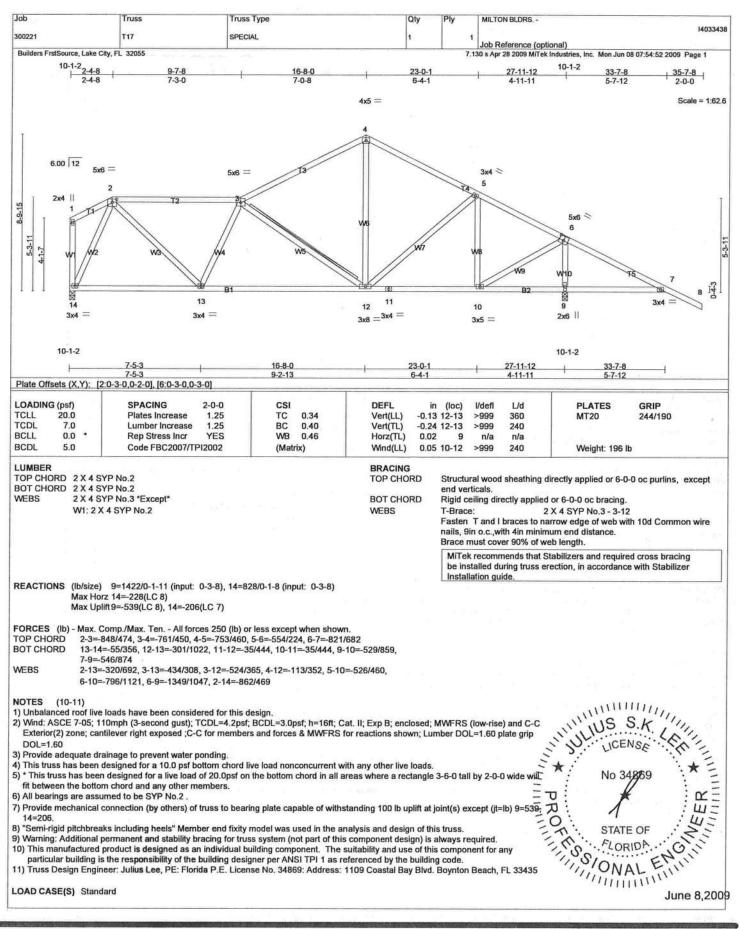
STATE OF

FLORIDA


ON AL

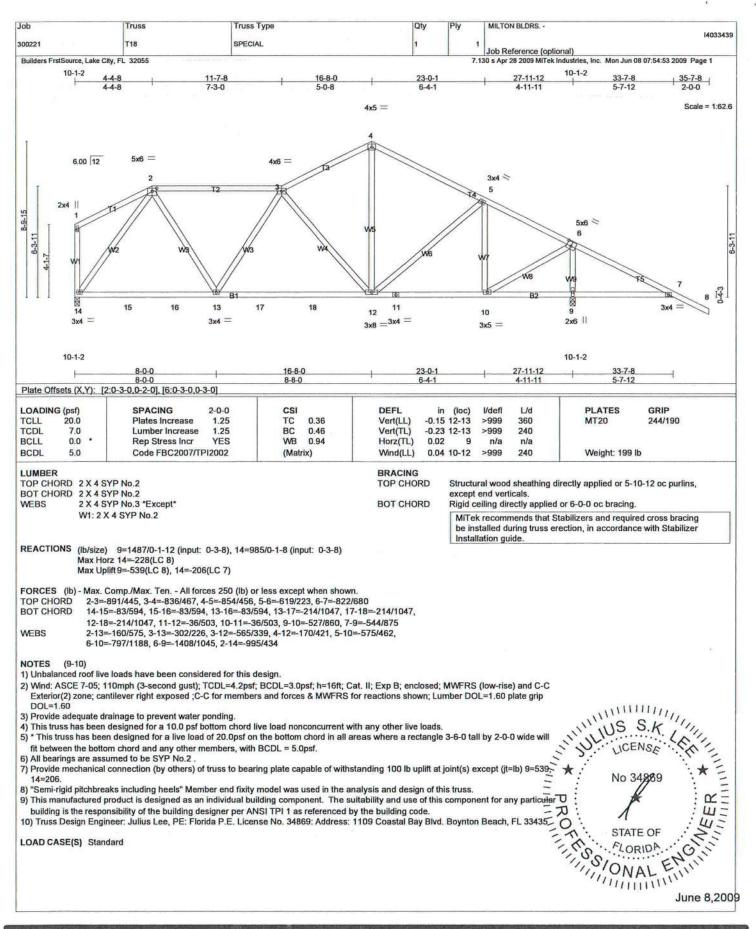
June 8,200

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIT-7473 BEFORE USE.


Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not trus designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult. ANSUFI1 Quality Criteria, DSB-89 and BCS11 Building Component Safety Information available from Truss Plate Institute, S83 D'Onofrio Drive, Madison, WI 53719.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MIL-7473 BEFORE USE.

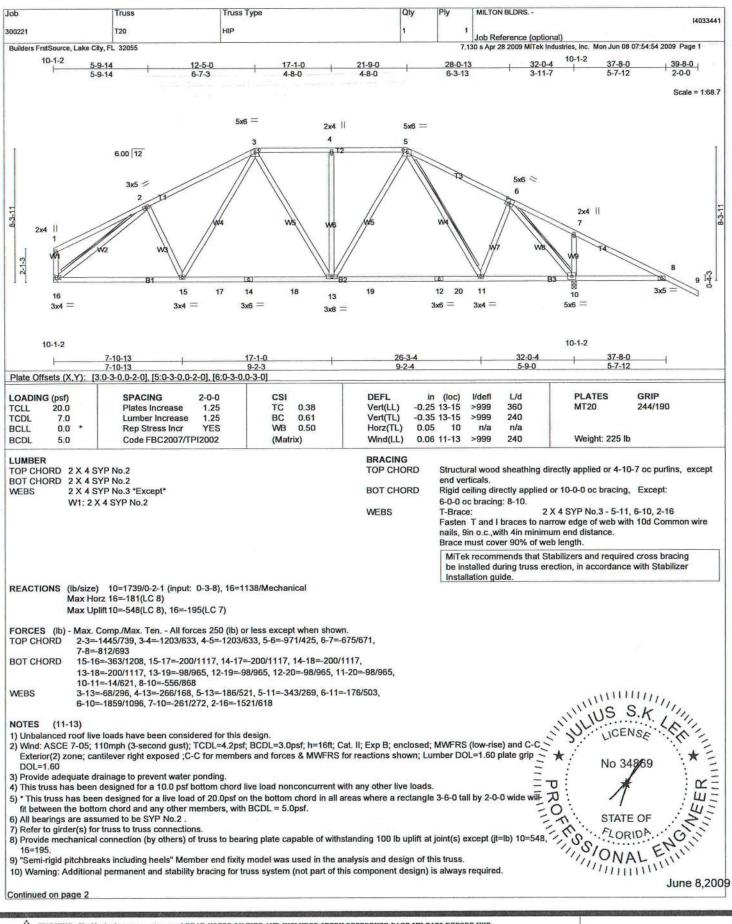
Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component.


Applicability of design paramenters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult. AMSI/TPI Quality Criteria, DSB-89 and BCSI1 Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.

Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component.


Applicability of design paramenters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult. ANSI/T1 Quality Criteria, DSB-89 and BCS11 Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.

Design volid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component.

Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding flobrication, quality control, storage, delivery, erection and bracing, consult. ANSI/TI Quality Criteria, DSB-89 and BCS11 Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

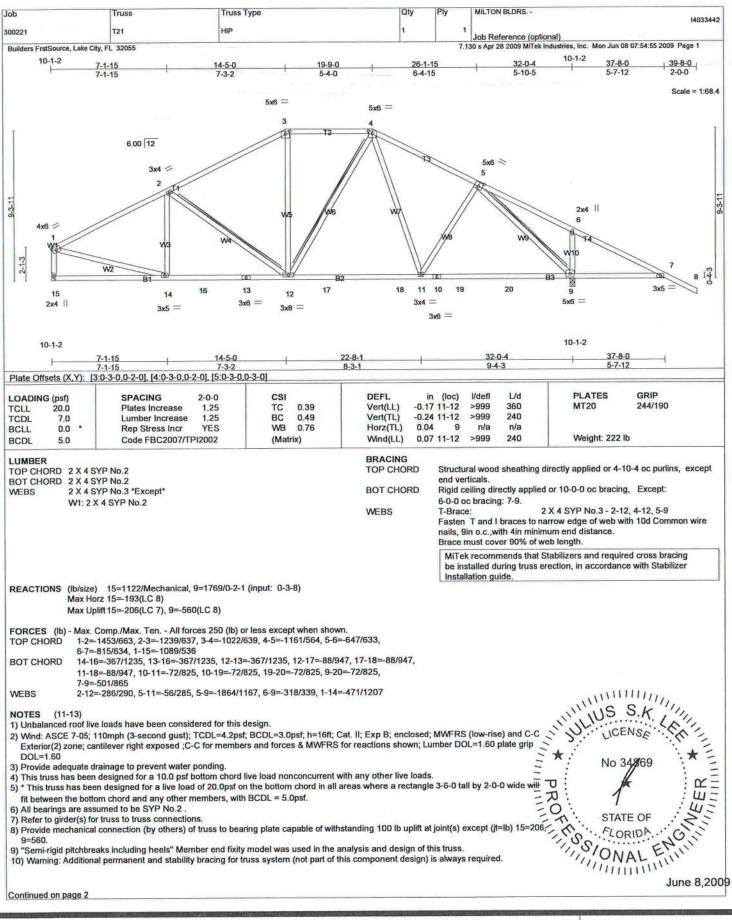
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.
Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component.
Applicability of design paramenters and proper incarparation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult. AMSI/TII Quality Criteria, DSB-89 and BCSI1 Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.

Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component.
Applicability of design parameters and proper incorporation of component is responsibility of building designer - not flux designer.
Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding flabrication, quality control, storage, delivery, erection and bracing, consult.
ANSI/TPII Quality Criteria, DSB-89 and BCS11 Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	MILTON BLDRS	Vaccounts.
300221	T20	HIP	1	1		14033441
					Job Reference (optional)	
Builders ErstSource I	ake City El 32055			7.13	30 s Apr 28 2009 MiTek Industries Inc. Mon lun	08 07:54:55 2009 Page 2

This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.
 Truss Design Engineer: Julius Lee, PE: Florida P.E. License No. 34869: Address: 1109 Coastal Bay Blvd. Boynton Beach, FL 33435
 Use Simpson HTU26 to attach Truss to Carrying member


LOAD CASE(S) Standard

No 34869

No 34869

STATE OF

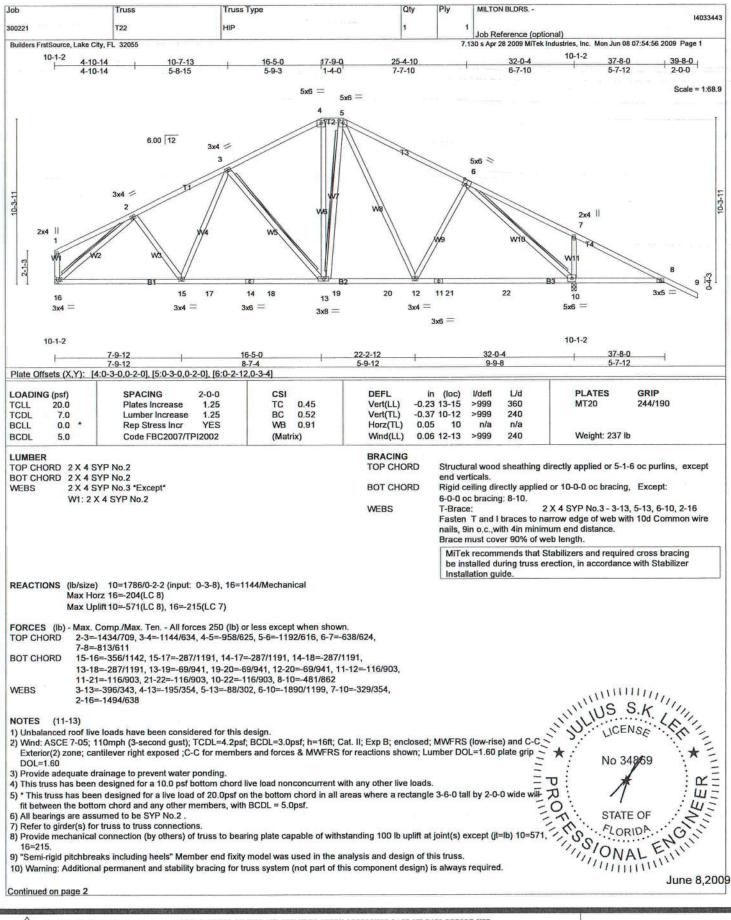
FLORIDA. IN WEER

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.

Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design paramenters and proper incorporation of component is responsibility of building designer - not trust designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult. AMSI/THI Quality Criteria, DSB-89 and BCS11 Building Component Safety Information available from Truss Plate Institute, S83 D'Onofrio Drive, Madison, WI S3719.

Job	Truss	Truss Type	Qty	Ply	MILTON BLDRS	
300221	T21	HIP	1	1		14033442
Builders EndEaures Lake City E	22055			7.45	Job Reference (optional)	0.07-54-55 2000 Dags 2

11) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.
 12) Truss Design Engineer: Julius Lee, PE: Florida P.E. License No. 34869: Address: 1109 Coastal Bay Blvd. Boynton Beach, FL 33435


13) Use Simpson HTU26 to attach Truss to Carrying member

LOAD CASE(S) Standard

No 34869

PR
STATE OF
FLORIDA

ON AL INONEER

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.

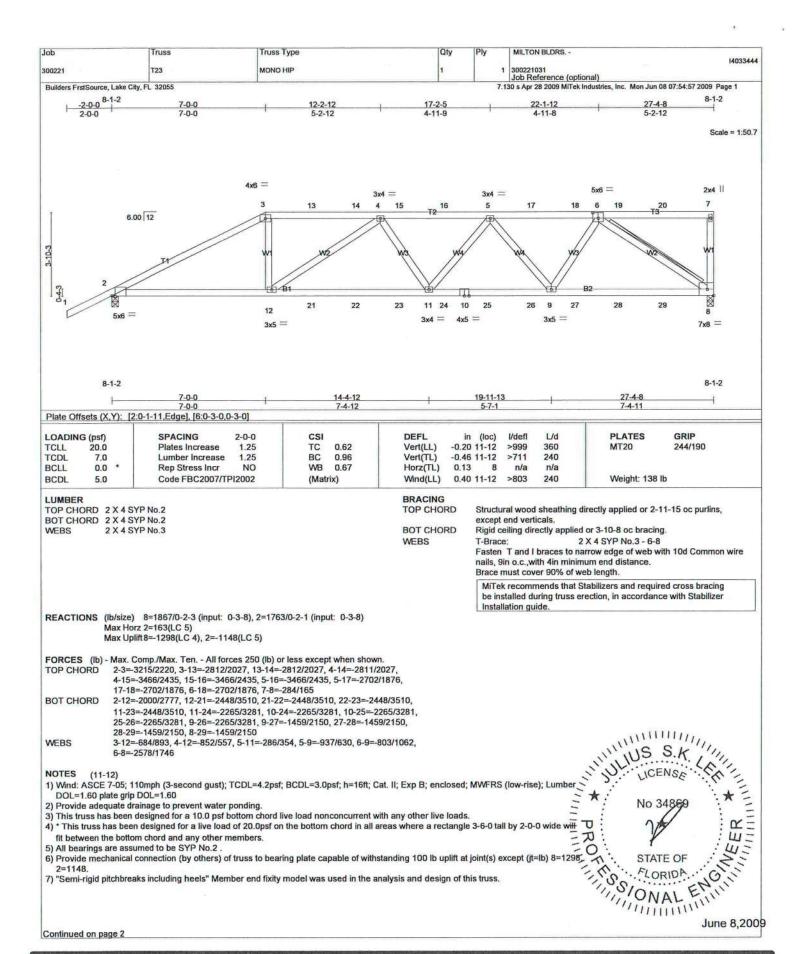
Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component, Applicability of design parameters are proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult. ANSI/TI Quality Criteria, DSB-89 and BCS11 Building Component Sately Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	MILTON BLDRS
300221	T22	HIP	1	1	Job Reference (optional)
Builders FrstSource, Lake City, F	L 32055		-	7.13	0 s Apr 28 2009 MiTek Industries, Inc. Mon Jun 08 07:54:56 2009 Page 2

11) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

12) Truss Design Engineer: Julius Lee, PE: Florida P.E. License No. 34869: Address: 1109 Coastal Bay Blvd. Boynton Beach, FL 33435

13) Use Simpson HTU26 to attach Truss to Carrying member


LOAD CASE(S) Standard

No 34869

No 34869

STATE OF

FLORIDA I'M ONEER

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MIL-7473 BEFORE USE.

Design valid for use only with Milek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design paramenters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure slability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult. AMS/TP11 Quality Criteria, DSB-89 and BCS11 Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	MILTON BLDRS	
200074	700	MONO LIID				4033444
300221	123	MONO HIP	1	1	300221031 Job Reference (optional)	

Builders FrstSource, Lake City, FL 32055

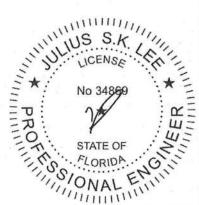
7.130 s Apr 28 2009 MiTek Industries, Inc. Mon Jun 08 07:54:57 2009 Page 2

(11-12)

- 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 216 lb down and 215 lb up at 7-0-0, 103 lb down and 82 lb up at 9-0-12, 103 lb down and 82 lb up at 11-0-12, 103 lb down and 82 lb up at 15-0-12, 103 lb down and 82 lb up at 17-0-12, 103 lb down and 82 lb up at 19-0-12, 103 lb down and 82 lb up at 21-0-12, 103 lb down and 82 l chord, and 279 lb down and 317 lb up at 7-0-0, 66 lb down and 71 lb up at 9-0-12, 66 lb down and 71 lb up at 13-0-12, 66 lb down and 71 lb up at 15-0-12, 66 lb down and 71 lb down and 71 lb up at 25-0-12, and 66 lb down and 71 lb up at 27-2-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 9) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.
- 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

 11) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.
- 12) Truss Design Engineer: Julius Lee, PE: Florida P.E. License No. 34869: Address: 1109 Coastal Bay Blvd. Boynton Beach, FL 33435

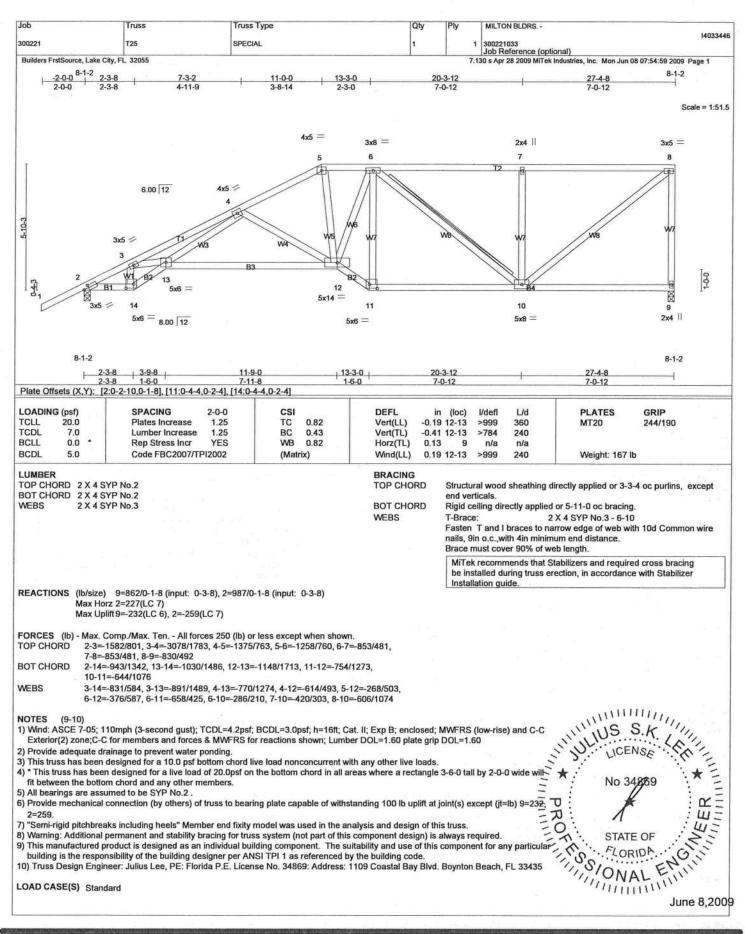
LOAD CASE(S) Standard

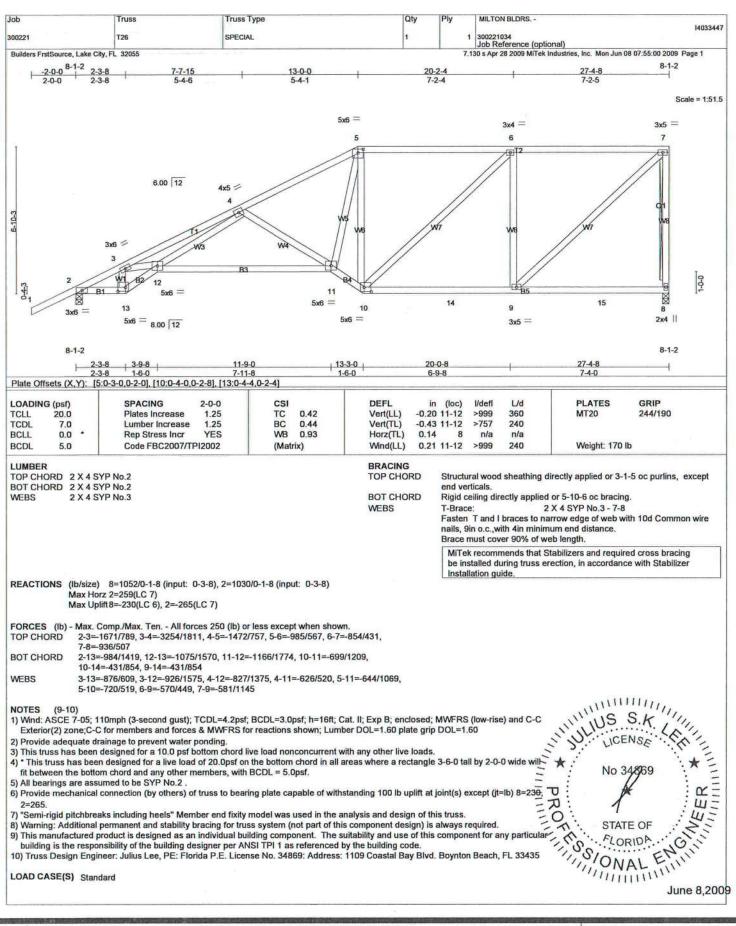

1) Regular: Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

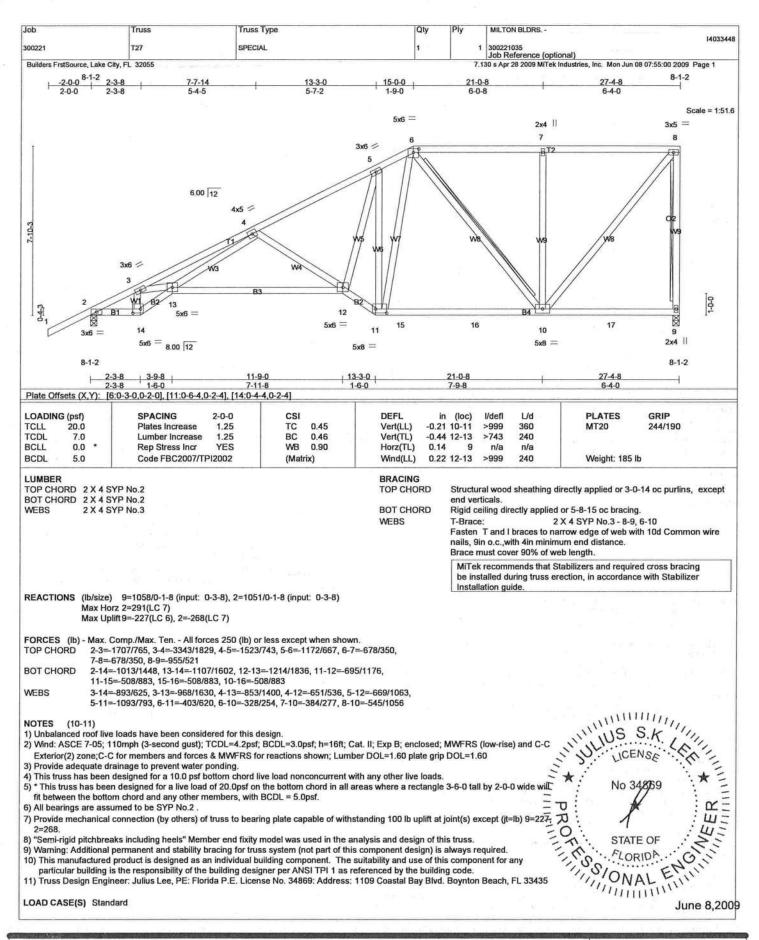
Vert: 1-3=54, 3-7=-54, 2-8=-10

Concentrated Loads (lb)


Vert: 3=-216(B) 7=-103(B) 8=-32(B) 12=-213(B) 5=-103(B) 13=-103(B) 14=-103(B) 15=-103(B) 15=-103(B) 17=-103(B) 18=-103(B) 19=-103(B) 20=-103(B) 21=-32(B) 22=32(B) 23=-32(B) 24=-32(B) 25=-32(B) 26=-32(B) 27=-32(B) 28=-32(B) 29=-32(B)


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.

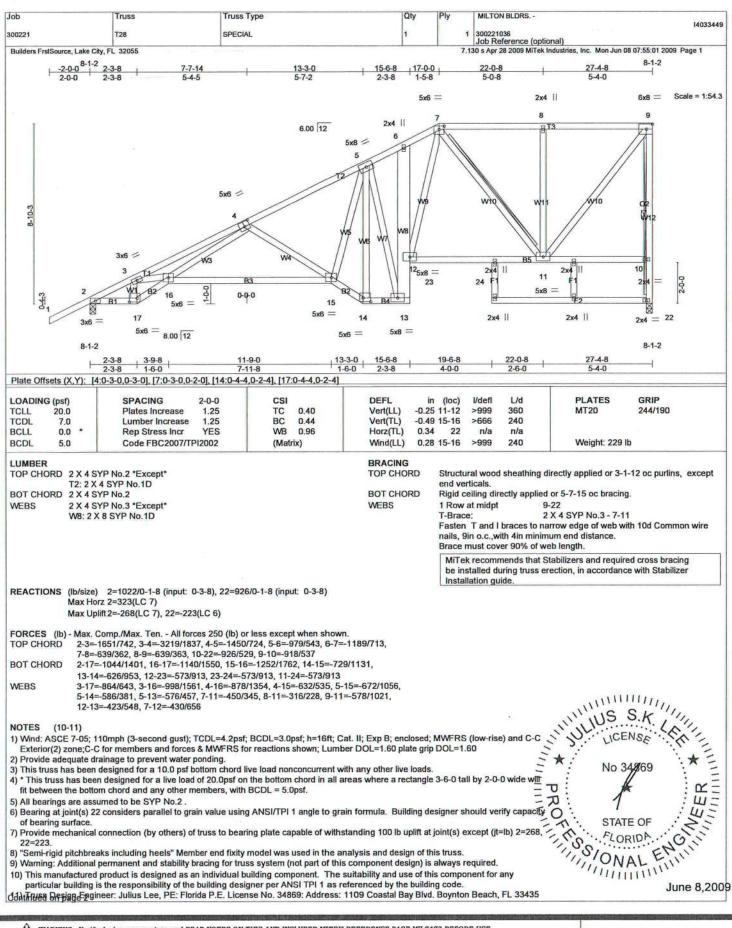
Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult. ANSI/TP1 Quality Criteria, DS8-89 and BCS11 Building Component Safety Intornation available from Truss Plate Institute, 583 D'Onotrio Drive, Madison, WI 53719.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.

Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designers fixed in some is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding labrication, quality control, storage, delivery, erection and bracing, consult ANSI/ITI Quality Criteria, DSB-89 and BCS11 Building Component Safely Information available from Truss Plate Institute, S83 D'Onofrio Drive, Madison, WI 53719.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.

Design valid for use only with Milek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult. AMSI/TP1 Quality Criteria, DSB-89 and BCS11 Building Component Safety Information.

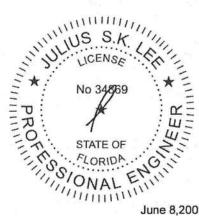


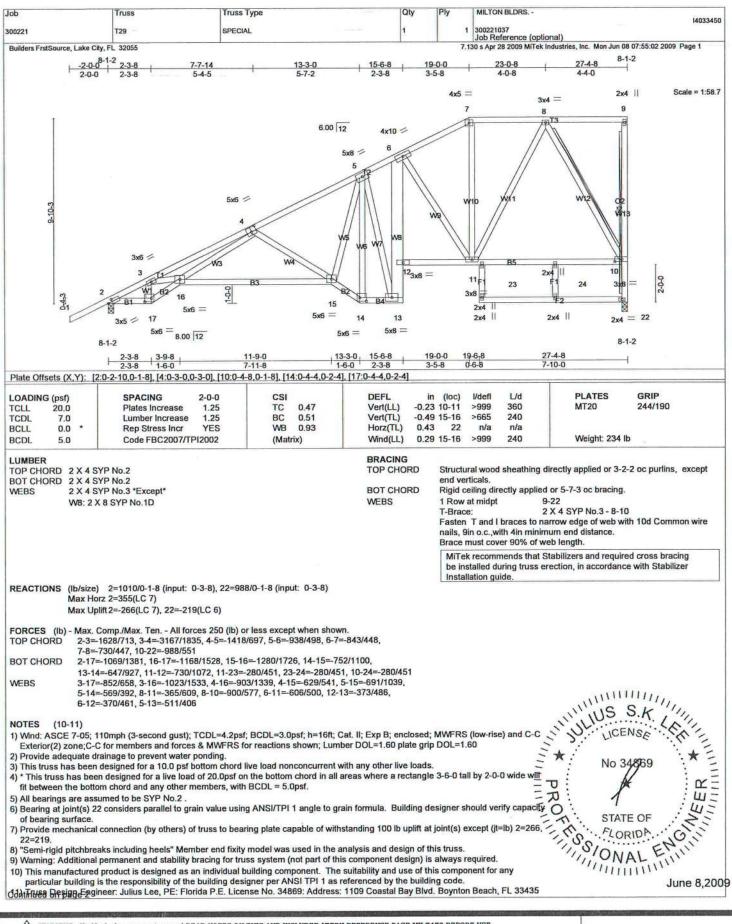
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MIJ-7473 BEFORE USE.

Design valid for use only with Mifek connectors. This design is based only upon parameters shown, and is for an individual building component.

Applicability of design parameters and proper incorporation of component is responsibility of building designer - not fluss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult.

ANSI/TEM Quality Criteria, DSB-89 and BCS11 Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

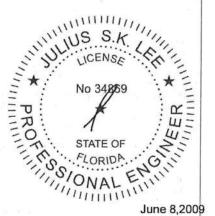

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MIT-7473 BEFORE USE.

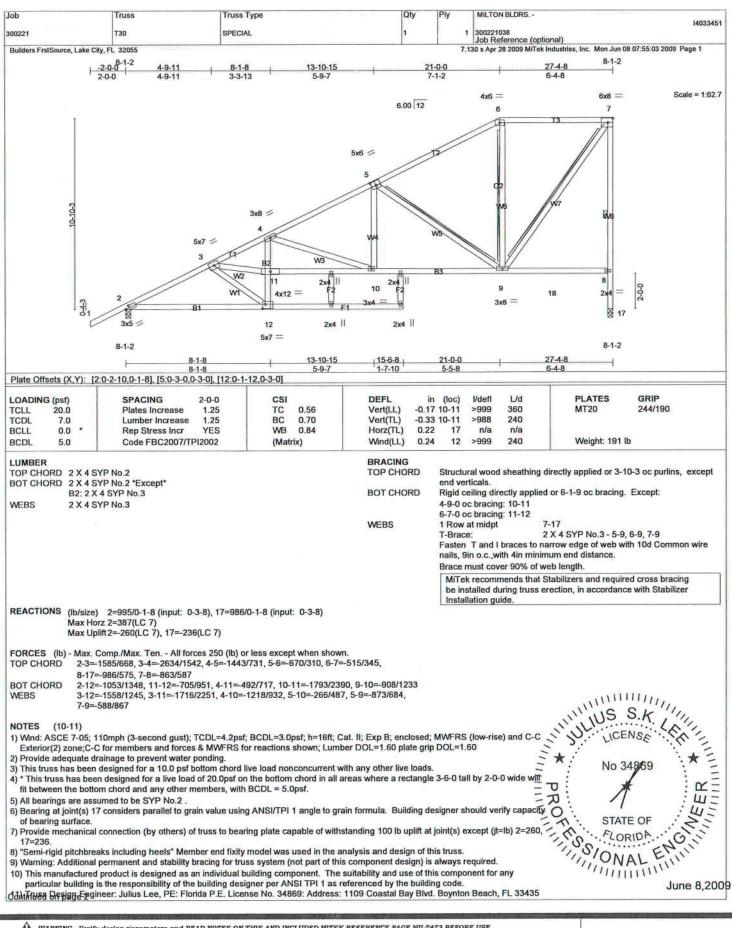

Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component.

Applicability of design paramenters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult. ANSI/ITI Quality Criteria, DSB-89 and BCS11 Building Component Safety Information.

Job	Truss	Truss Type	Qty	Ply	MILTON BLDRS	
300221	T28	SPECIAL	1	1	300221036 Job Reference (optional)	1403344
Builders FrstSource, Lake City,	FL 32055			7.1	30 s Apr 28 2009 MiTek Industries, Inc. Mon Jun 08 07:55	5:01 2009 Page 2

LOAD CASE(S) Standard

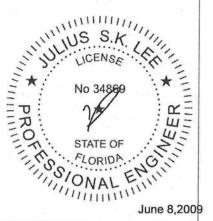


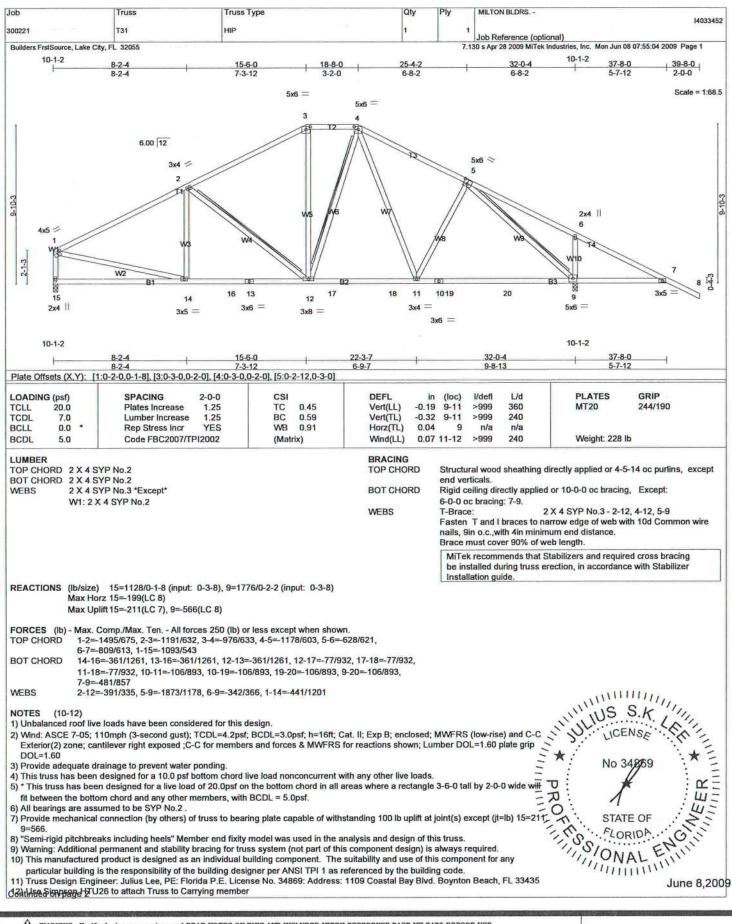

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.

Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of building designer in only have been been some only. Additional temporary bracing to insure stability alting construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult. AMSI/TH Quality Criteria, DSB-89 and BCSI1 Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	MILTON BLDRS	
300221	T29	SPECIAL	1	1	300221037 Job Reference (optional)	14033450
Builders FrstSource, Lake City, F	L 32055				30 s Apr 28 2009 MiTek Industries, Inc. Mon Jun 08 0	7:55:02 2009 Page 2

LOAD CASE(S) Standard



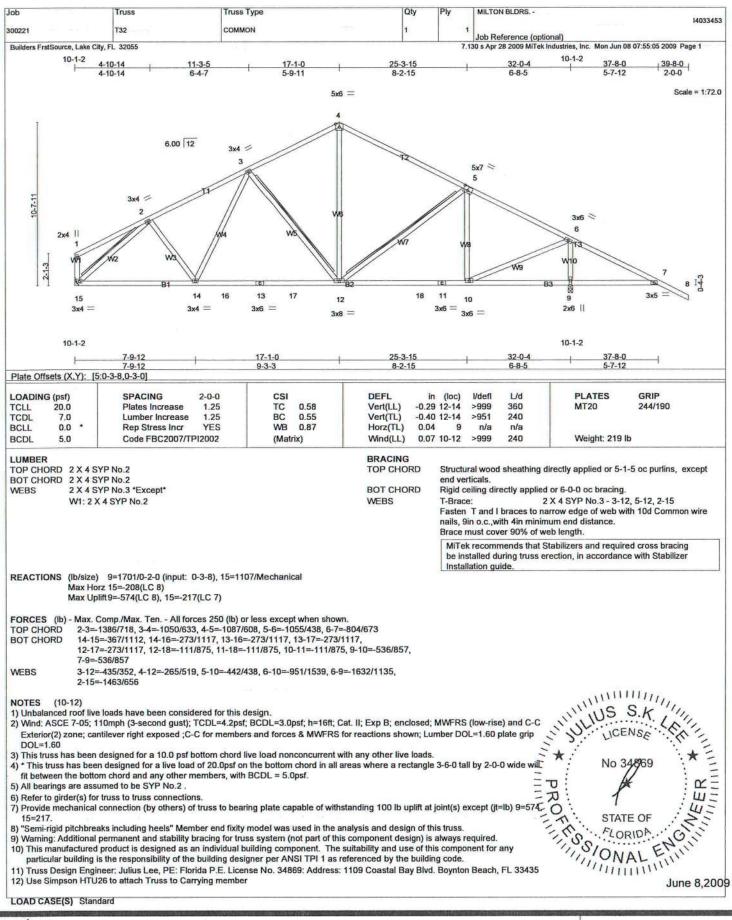

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.

Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design paramenters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult. ANSI/PII Quality Criteria, DSB-89 and BCSII Building Component Safely Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	MILTON BLDRS, -	
300221	T30	SPECIAL	1	1	Job Reference (optional)	33451
Builders FrstSource, Lake City, F	L 32055	2-0-3-6-2		7.1	30 s Apr 28 2009 MiTek Industries, Inc. Mon Jun 08 07:55:03 2009 Page 2	7/8

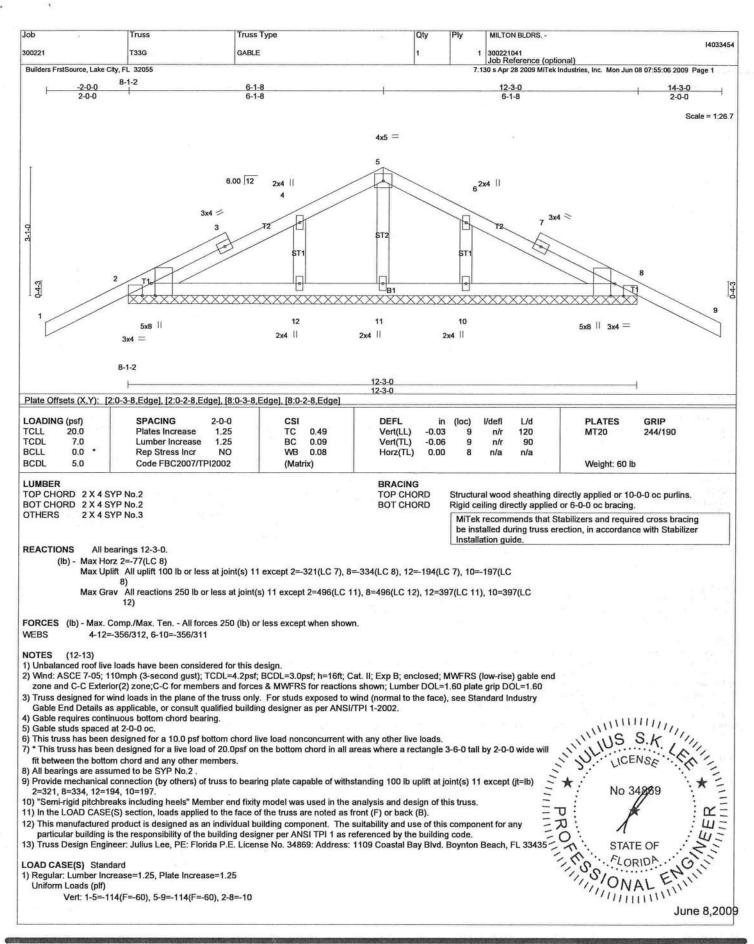
LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.

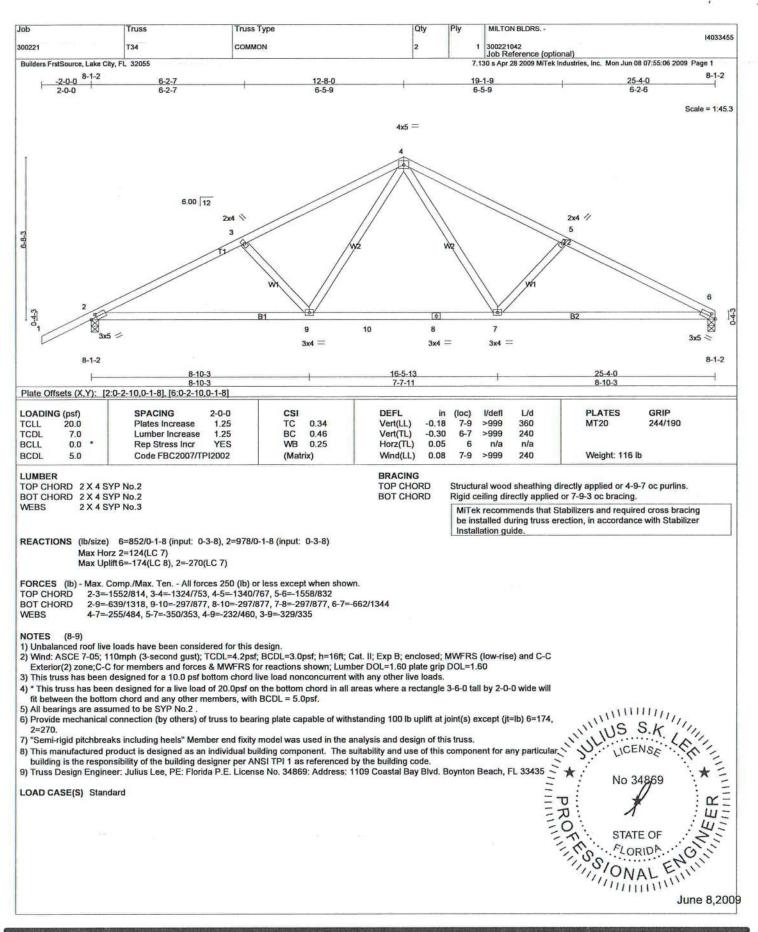

Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component.

Applicability of design paramenters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult. ANSI/TII Quality Criteria, DSS-89 and BCSII Building Component Sately Information available from Truss Plate Institute, 583 D'Onotrio Drive, Madison, WI 53719.

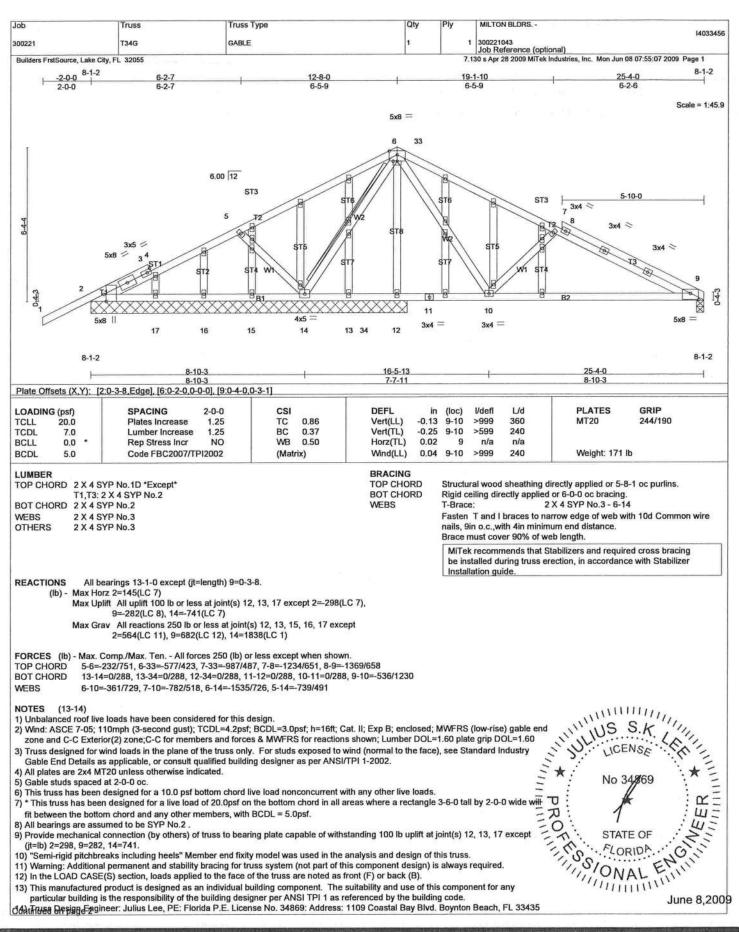
Job	Truss	Truss Type	Qty	Ply	MILTON BLDRS	
300221	Т31	HIP	1	1	Job Reference (optional)	14033452
Builders FrstSource, L	ake City, FL 32055			7.	130 s Apr 28 2009 MiTek Industries, Inc. Mon Jun 0	8 07:55:04 2009 Page 2


LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.
Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component.
Applicability of design paramenters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult.


ANSI/THE Quality Criteria, DSB-89 and BCS11 Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIT-7473 BEFORE USE.


Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component.

Applicability of design paramenters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding flobrication, quality control, storage, delivery, erection and bracing, consult. ANS/IPI1 Quality Criteria, DSB-89 and BCS11 Building Component Salely Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.

Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of building design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer, For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult. ANSI/TH Quality Criteria, DSB-89 and BCSII Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.

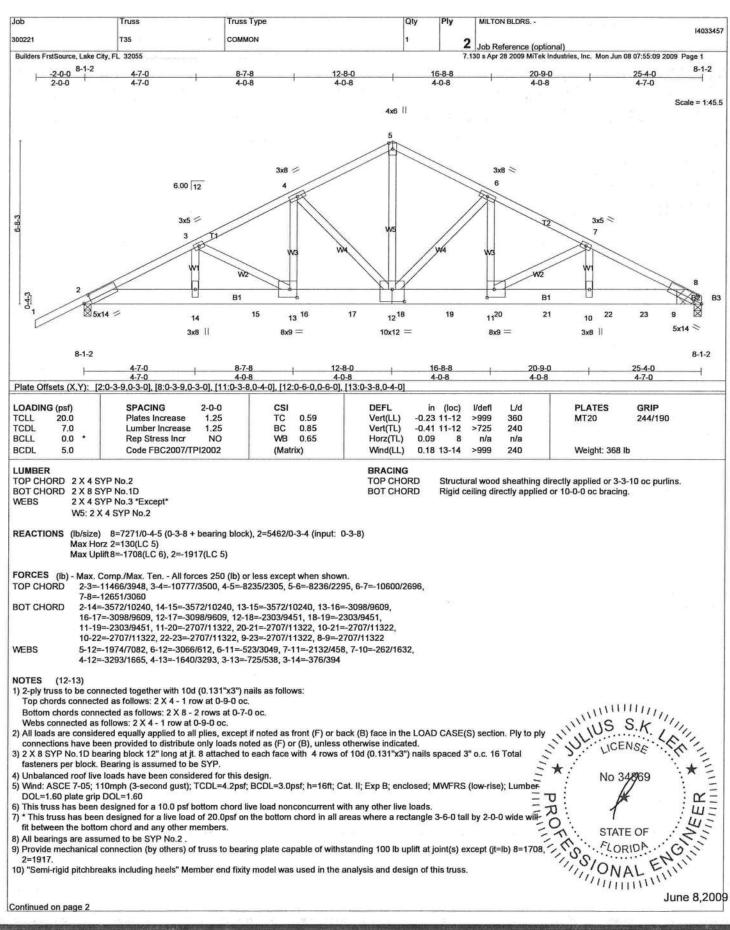
Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not trust designes, Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult. AMSI/T11 Quality Criteria, DSB-89 and BCS11 Building Component Safety Information available from Truss Plate Institute, S83 D'Onofito Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	MILTON BLDRS	1400045
300221	T34G	GABLE	1		1 300221043 Job Reference (optional)	14033456
Builders FrstSource, Lake City, F	L 32055				7.130 s Apr 28 2009 MiTek Industries, Inc. Mon Jun 08 07:55:07 2	009 Page 2

LOAD CASE(S) Standard

1) Regular: Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)


Vert: 1-3=-114(F=-60), 4-6=-114(F=-60), 6-33=-114(F=-60), 8-33=-141(F=-87), 8-9=-54, 2-34=-10, 11-34=-50, 9-11=-10

No 34869

No 34869

No STATE OF

FLORIDA. BER THINKE

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.

Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design paramenters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult. AMSLIT Quality Criteria, DSB-89 and BCSII Building Component Safety Information available from Truss Plate Institute, 583 D'Onotrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	MILTON BLDRS	14033457
300221	T35	соммон	1	2	Job Reference (optional)	14033457
Builders FrstSource Lake	City, FL 32055			7.1	30 s Apr 28 2009 MiTek Industries, Inc. Mon Jun	08 07:55:09 2009 Page 2

Builders FrstSource, Lake City, FL 32055 NOTES (12-13)

- 11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 2073 lb down and 1390 lb up at 7-0-12, 1014 lb down and 286 lb up at 9-0-12, 1175 lb down and 284 lb up at 11-0-12, 1186 lb down and 210 lb up at 13-0-12, 960 lb down and 151 lb up at 15-0-12, 964 lb down and 148 lb up at 17-0-12, 899 lb down and 161 lb up at 19-0-12, 920 lb down and 183 lb up at 21-0-12, and 912 lb down and 183 lb up at 25-2-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 12) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.
- 13) Truss Design Engineer: Julius Lee, PE: Florida P.E. License No. 34869: Address: 1109 Coastal Bay Blvd. Boynton Beach, FL 33435

LOAD CASE(S) Standard
1) Regular: Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

Vert: 1-5=-54, 5-8=-54, 2-8=-10

Concentrated Loads (lb)

Vert: 8=-912(B) 15=-2073(B) 16=-1014(B) 17=-1175(B) 18=-1186(B) 19=-960(B) 20=-964(B) 21=-899(B) 22=-920(B) 23=-912(B)

No 34869

No 34869

STATE OF

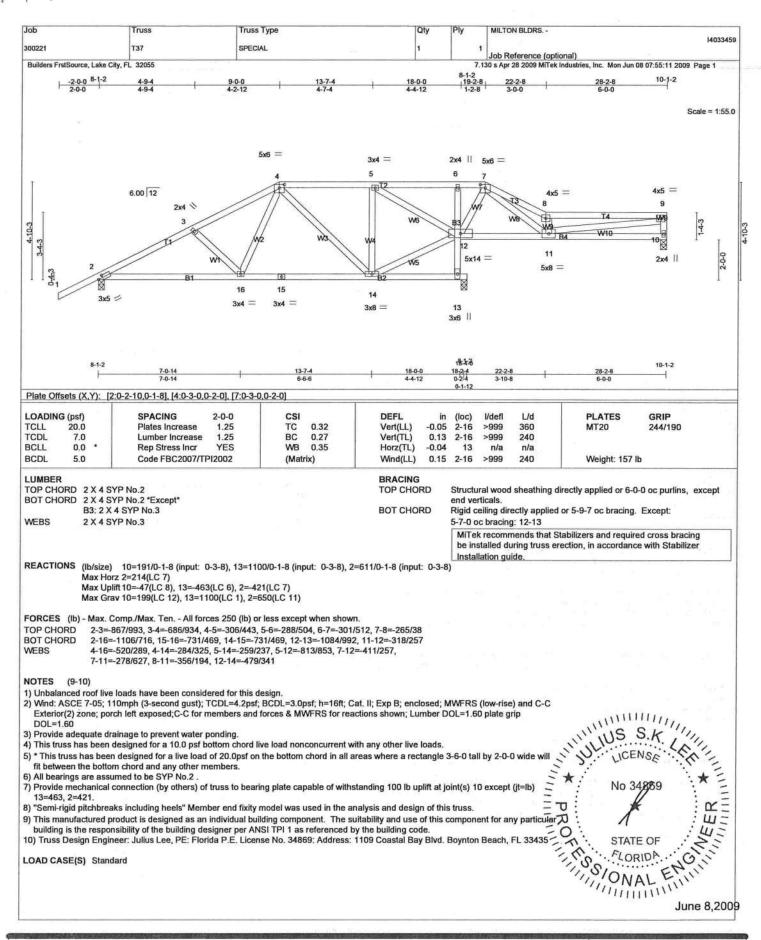
FLORIDA

Job Truss Truss Type MILTON BLDRS. -14033458 30022 Job Reference (optional) Builders FrstSource, Lake City, FL 32055 7.130 s Apr 28 2009 MiTek Industries, Inc. Mon Jun 08 07:55:10 2009 Page 1 -2-0-0 8-1-2 2-0-0 4-8-13 4-8-13 7-0-0 4x6 = 4x6 = 3x4 = 3x4 = 3 12 13 4 16 5 18 15 6.00 12 143 149 10 22 9 19 23 24 11 5x8 = 5x6 3x4 3x5 = 3x5 = 8-1-2 8-1-2 7-0-0 14-1-4 21-2-8 28-2-8 7-0-0 7-0-0 Plate Offsets (X,Y): [2:0-1-11,Edge], [7:0-1-11,Edge] LOADING (psf) SPACING CSI DEFL (loc) I/defl L/d **PLATES** GRIP TCLL 20.0 Plates Increase 1.25 TC 0.83 Vert(LL) -0.20 10 >999 360 MT20 244/190 TCDL 70 Lumber Increase 1 25 BC 0.51 Vert(TL) -0.38 10-11 >872 240 BCLL 0.0 Rep Stress Incr NO WB 0.71 Horz(TL) 0.10 n/a n/a BCDL 5.0 Code FBC2007/TPI2002 (Matrix) Wind(LL) 0.34 8-10 >989 240 Weight: 151 lb LUMBER BRACING Structural wood sheathing directly applied or 1-7-8 oc purlins. TOP CHORD 2 X 4 SYP No.2 TOP CHORD BOT CHORD 2 X 6 SYP No.1D BOT CHORD Rigid ceiling directly applied or 4-8-0 oc bracing. 2 X 4 SYP No.3 WEBS MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide. REACTIONS (lb/size) 7=1788/0-2-2 (input: 0-3-8), 2=1913/0-2-4 (input: 0-3-8) Max Horz 2=94(LC 5) Max Unlift 7=-1425(LC 6) 2=-1521(LC 5) FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-3581/2857, 3-12=-3158/2628, 12-13=-3157/2628, 4-13=-3157/2627, 4-14=-4137/3373, 14-15=-4137/3373, 15-16=-4137/3373, 5-16=-4137/3373, 5-17=-3181/2660, 17-18=-3182/2660, 6-18=-3182/2661, 6-7=-3601/2888 2-11=-2533/3115, 11-19=-3215/4059, 19-20=-3215/4059, 20-21=-3215/4059, **BOT CHORD** 10-21=-3215/4059, 10-22=-3199/4064, 9-22=-3199/4064, 9-23=-3199/4064, 23-24=-3199/4064, 8-24=-3199/4064, 7-8=-2510/3140 WEBS 3-11=-969/1043, 4-11=-1209/870, 4-10=-234/319, 5-10=-229/316, 5-8=-1198/859, 6-8=973/1038 STATISTICS S.K. (11-12)1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 110mph (3-second gust); TCDL=4.2psf; BCDL=3.0psf; h=16ft; Cat. II; Exp B; enclosed; MWFRS (low-rise); porch left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 6) All bearings are assumed to be SYP No.2. * No 34869 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 7=1425, 8) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss. NAMER 9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 217 lb down and 215 lb up at 7-0-0,70 103 lb down and 82 lb up at 9-0-12, 103 lb down and 82 lb up at 11-0-12, 103 lb down and 82 lb up at 13-0-12, 103 lb down and 82 lb 0 up at 14-1-4, 103 lb down and 82 lb up at 15-1-12, 103 lb down and 82 lb up at 17-1-12, and 103 lb down and 82 lb up at 19-1-12, and STATE OF THOS TONAL is 217 lb down and 215 lb up at 21-2-8 on top chord, and 277 lb down and 265 lb up at 7-0-0, 66 lb down and 46 lb up at 9-0-12, 66 lb down and 46 lb up at 11-0-12, 66 lb down and 46 lb up at 13-0-12, 66 lb down and 46 lb up at 14-1-4, 66 lb down and 46 lb up at 15-1-12, 66 lb down and 46 lb up at 17-1-12, and 66 lb down and 46 lb up at 19-1-12, and 277 lb down and 265 lb up at 21-1-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others. 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). June 8,2009 Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.

Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component.

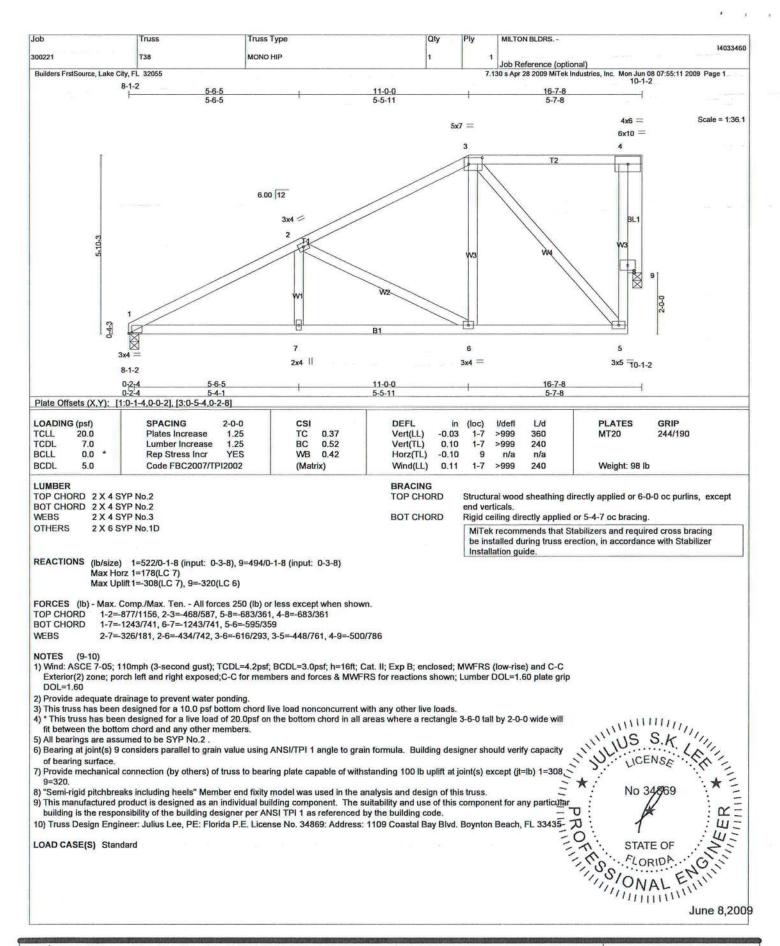
Applicability of design paramenters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult. ANSI/ITI Quality Criteria, DSB-89 and BCSI1 Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.


Job	Truss	Truss Type	Qty	Ply	MILTON BLDRS	1403345
300221	T36	HIP	1		Job Reference (optional)	1403040
	tured product is designed		suitability and use of		7.130 s Apr 28 2009 MiTek Industries, Inc. Mon Jun 08 onent for any particular building is the respo	
12) Truss Design	Engineer: Julius Lee, PE:	erenced by the building code. Florida P.E. License No. 34869: Address:	1109 Coastal Bay Blv	vd. Boynto	on Beach, FL 33435	
1) Regular: Lumb	er Increase=1.25, Plate In	crease=1.25				

Uniform Loads (plf)

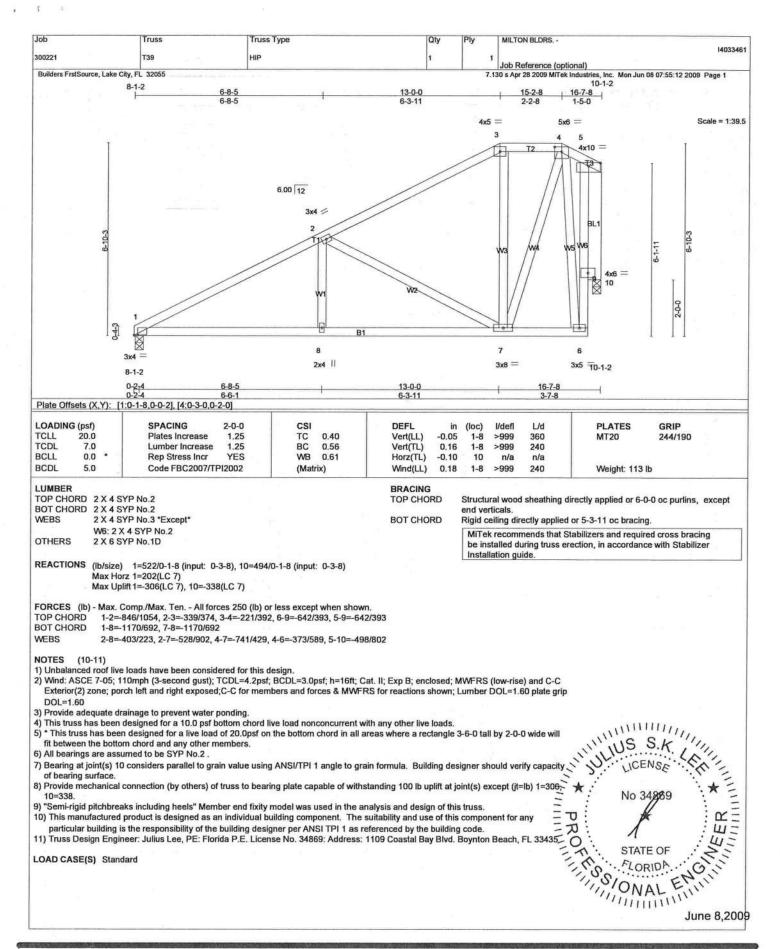
Vert: 1-3=54, 3-6=54, 6-7=-54, 2-7=-10

Concentrated Loads (lb)
Vert: 3=-217(B) 6=-217(B) 11=-210(B) 10=-32(B) 8=-210(B) 12=-103(B) 13=-103(B) 14=-103(B) 15=-103(B) 15=-103(B) 17=-103(B) 18=-103(B) 19=-32(B) 21=-32(B) 22=-32(B) 23=-32(B) 24=-32(B)



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED WITEK REFERENCE PAGE MII-7473 BEFORE USE.

Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component.


Applicability of design paramenters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding tabrication, quality control, storage, delivery, erection and bracing, consult

ANSI/TPII Quality Criteria, DSB-89 and BCS11 Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, W 153719.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MII-7473 BEFORE USE.

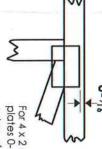
Design valid for use only with Milek connectors. This design is based only upon parameters shown; and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer to not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult. ANSI/TI1 Quality Criteria, DSB-89 and BCSI1 Building Component Safety Information available from Truss Plate Institute. S83 D'Onofrio Drive, Madison, WI S3719.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.

Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component.

Applicability of design paramenters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult. ANSI/TP1 Quality Criteria, DSB-89 and BCS11 Building Component Safety Information available from Truss Plate Institute, 583 D'Onotrio Drive, Madison, WI 53719.

Symbols


PLATE LOCATION AND ORIENTATION

Center plate on joint unless x, y offsets are indicated.

Dimensions are in frin-sixteenths.

Apply plates to both sides of truss and fully embed teeth.

For 4×2 orientation, locate plates $0^{-1}h_6$ " from outside edge of truss.

This symbol indicates the required direction of slots in connector plates.

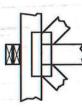
00

0

5

*Plate location details available in MiTek 20/20 software or upon request.

PLATE SIZE


The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

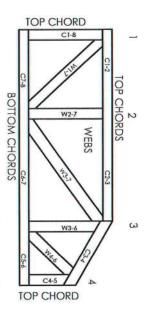
LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T, I or Eliminator bracing if indicated.

BEARING

Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number where bearings occur.

Industry Standards: ANSI/TPII: Nationa



Building Component Safety Information, Building Component Safety Information, Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses.

DSB-89 BCSI1:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

PRODUCT CODE APPROVALS

CC-ES Reports:

ESR-1311, ESR-1352, ER-5243, 9604B, 9730, 95-43, 96-31, 9667A
NER-487, NER-561
95110, 84-32, 96-67, ER-3907, 9432A

2006 MiTek® All Rights Reserved

Julius Lee Engineering 1109 Coastal Bay Blvd. Boynton, FL 33435

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSII.
- Truss bracing must be designed by an engineer. For wide ituss spacing, individual lateral braces themselves may require bracing, or alternative T, I, or Eliminator bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, properly owner and all other interested parties.
- Cut members to bear tightly against each other
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANS/JPI 1.

7.

- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- 14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
 16. Do not cut or after truss member or plate without prior
- 16. Do not cut or alter truss member or plate without prior approval of an engineer.
- Install and load vertically unless indicated otherwise.
- 18. Use of green or freated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.

Job	Truss	Truss Type	Qty	Ply	MILTON BLDRS, -	
300221	T05	MONO HIP	1	1	300221013 Job Reference (optional)	14033426

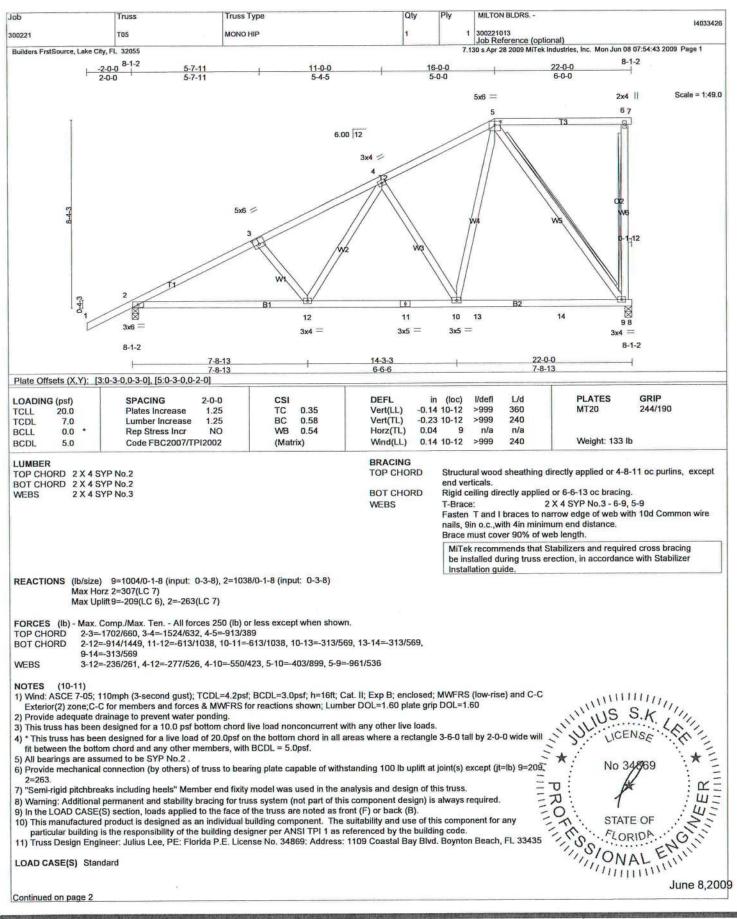
Builders FrstSource, Lake City, FL 32055

7.130 s Apr 28 2009 MiTek Industries, Inc. Mon Jun 08 07:54:43 2009 Page 2

LOAD CASE(S) Standard

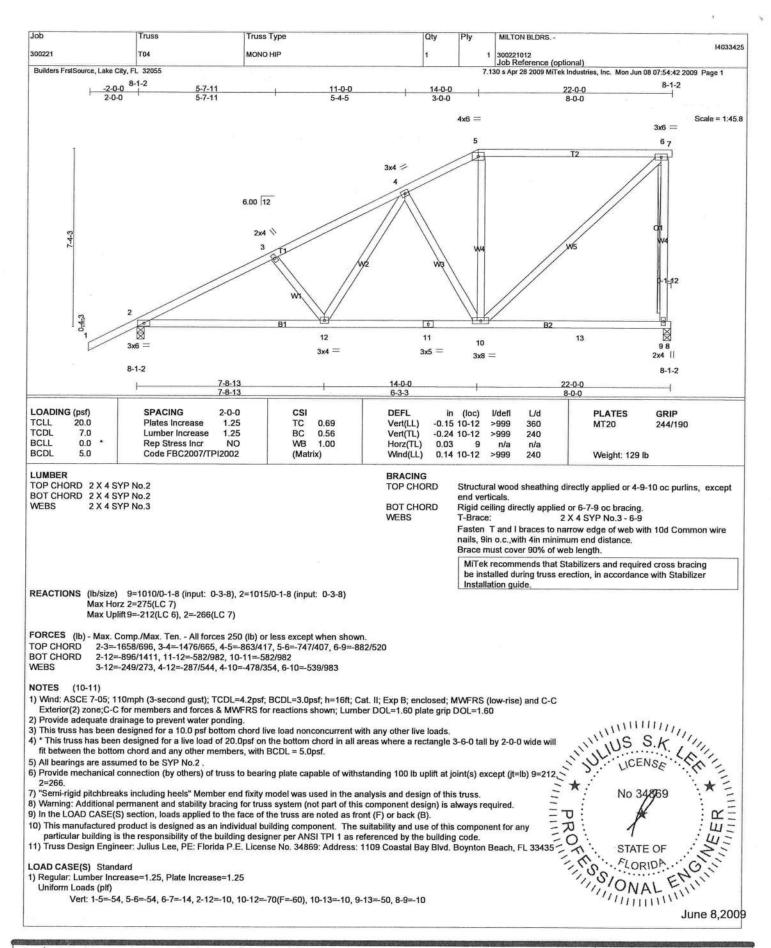
Regular: Lumber Increase=1.25, Plate Increase=1.25
 Uniform Loads (plf)

Vert: 1-5=-54, 5-6=-54, 6-7=-14, 2-12=-10, 10-12=-70(F=-60), 10-13=-10, 13-14=-50, 8-14=-10


No 34869

No 34869

STATE OF


FLORIDA

JULIUS S. K.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.

Design valid for use only with Milek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design paramenters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult. AMSI/TP1 Quality Criteria, DSB-89 and BCS11 Building Component Safety Information available from Truss Plate Institute. S83 D'Onofrio Drive, Madison, WI 53719.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.

Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for on individual building component.

Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding flabrication, quality control, storage, delivery, erection and bracing, consult ANSI/ITI Quality Criteria, DSB-89 and BCSI1 Building Component Safety Information available from Truss Plate Institute, S83 D'Onofrio Drive, Madison, WI S3719.

Job	Truss	Truss Type	Qty	Ply	MILTON BLDRS	14033424
300221	T03	MONO HIP	1	1	300221011 Job Reference (optional)	113733763
Duildon Fert Source Lake City I	32055			7.13	30 s Apr 28 2009 MiTek Industries, Inc. Mon Jun (08 07:54:42 2009 Page 2

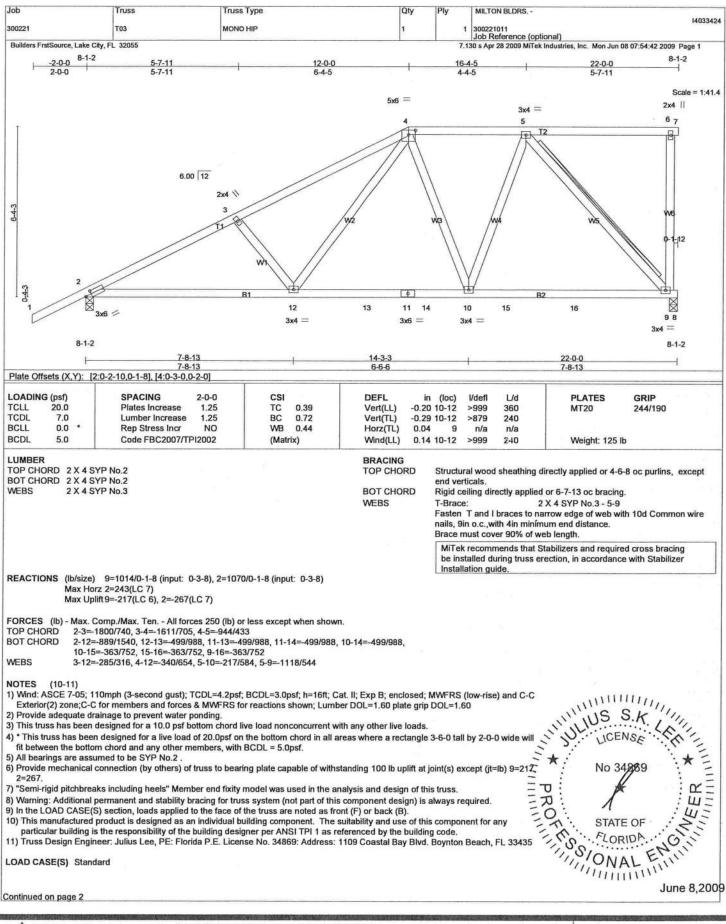
LOAD CASE(S) Standard

1) Regular: Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

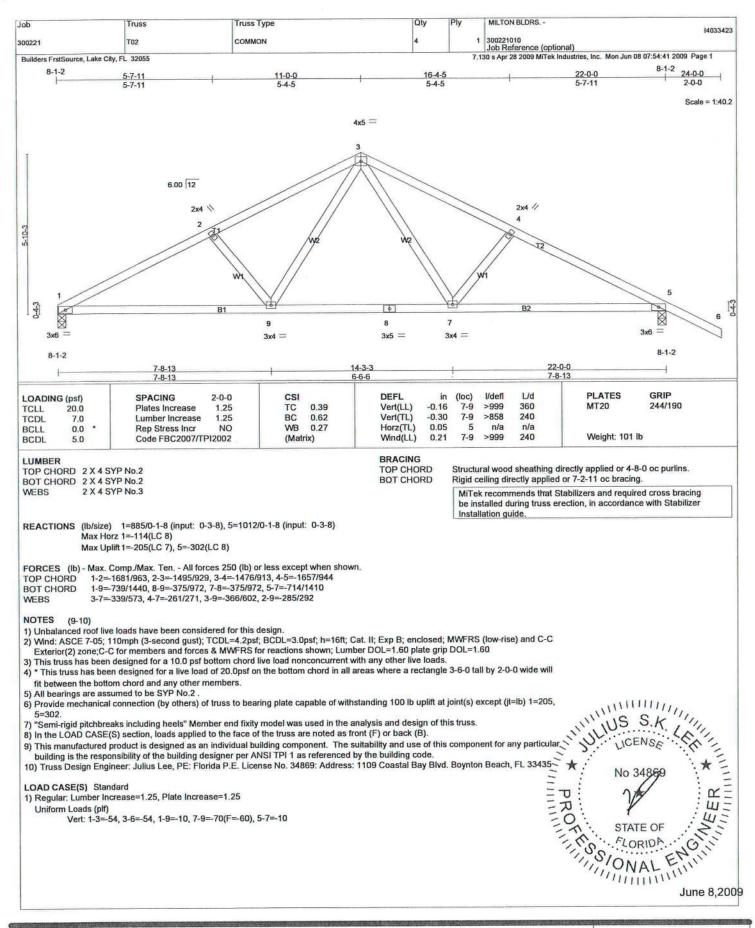
Vert: 1-4=-54, 4-6=-54, 6-7=-14, 2-12=-10, 12-13=-70(F=-60), 13-14=-110(F=-60), 10-14=-70(F=-60), 10-15=-10, 15-16=-50, 8-16=-10

No 34869


No 34869

STATE OF

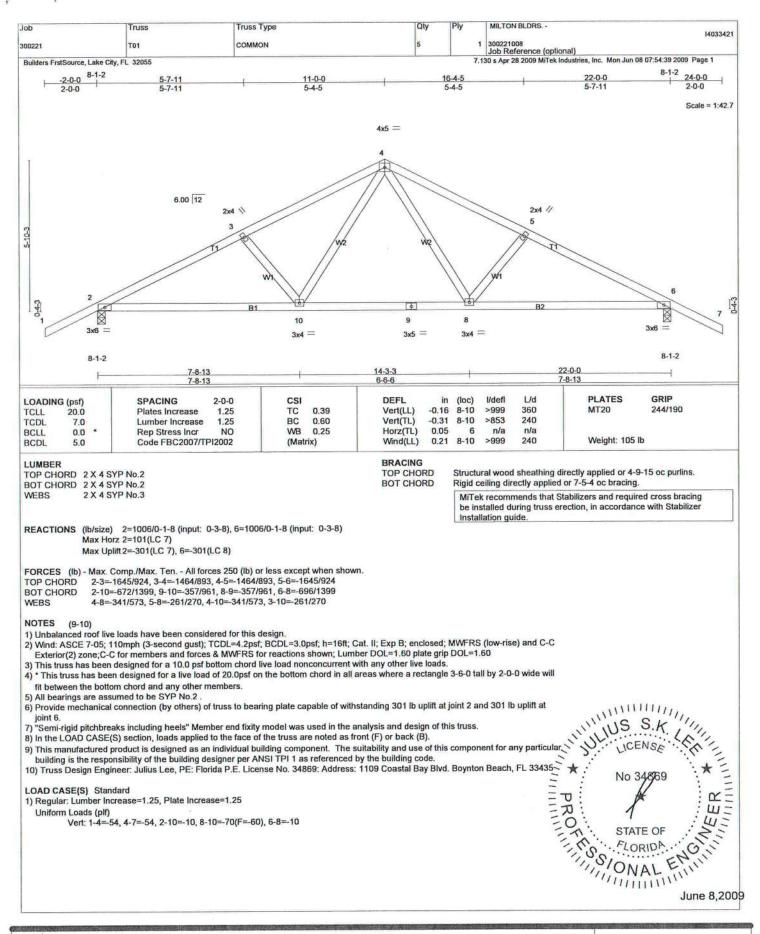
FLORIDA


ON AL

June 8,200

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.

Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design paramenters and proper incorporation of component is responsibility of building designer - not fruss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer, For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult. ANSI/TI Quality Criteria, DSB-89 and BCSII Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MII-7473 BEFORE USE.

Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component.
Applicability of design paramenters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding tabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TP1 Quality Criteria, DSB-89 and BCS11 Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

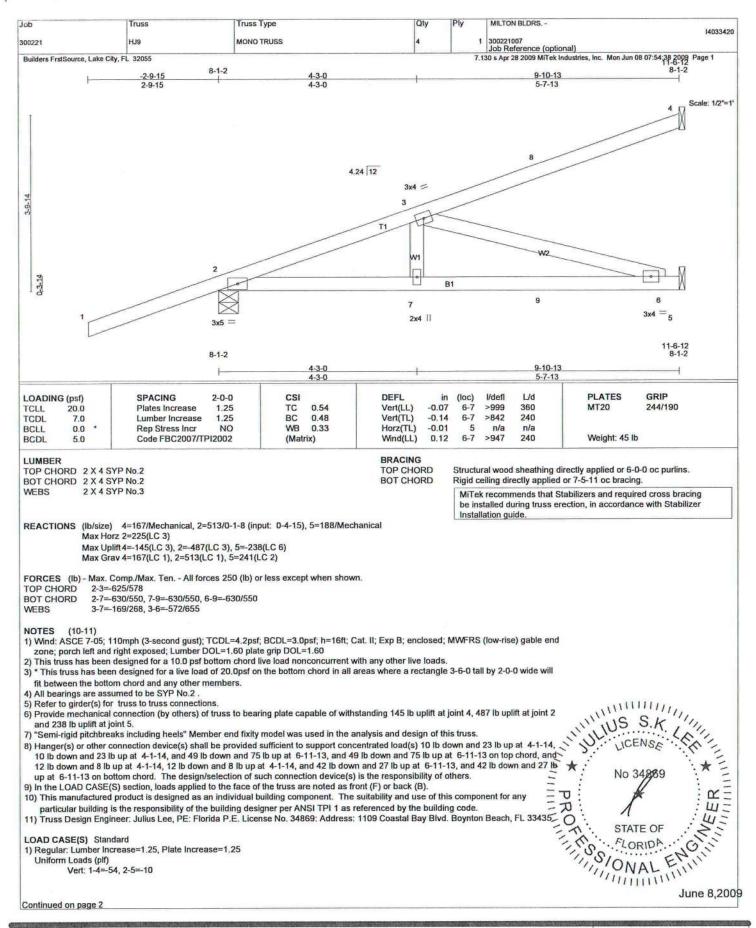
Qty Ply Job Truss Truss Type MILTON BLDRS -14033422 300221 TOIG GARLE 300221009 Job Reference (optional) Builders FrstSource, Lake City, FL 32055 7.130 s Apr 28 2009 MiTek Industries, Inc. Mon Jun 08 07:54:40 2009 Page 1 -2-0-0 11-0-0 11-0-0 2-0-0 Scale = 1:42.7 4x5 = 9 6.00 12 11 3x4 > 12 13 0-4-3 15 6 5x8 || 25 24 23 22 21 20 19 17 3x4 = 3x4 = 8-1-2 22-0-0 Plate Offsets (X,Y): [2:0-3-8,Edge], [2:0-2-8,Edge], [14:0-3-8,Edge], [14:0-2-8,Edge] LOADING (psf) SPACING 2-0-0 CSI DEFL (loc) l/defl 1./d PLATES GRIP 20.0 TCLL Plates Increase 1.25 TC 0.49 Vert(LL) -0.04 244/190 15 n/r 120 MT20 TCDL 7.0 Lumber Increase 1.25 BC 0.05 -0.07 Vert(TL) 15 90 n/r BCLL 0.0 Rep Stress Incr NO WB 0.09 0.01 Horz(TL) 14 n/a n/a Code FBC2007/TPI2002 BCDL 5.0 (Matrix) Weight: 119 lb LUMBER BRACING TOP CHORD 2 X 4 SYP No.2 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD 2 X 4 SYP No.2 **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing. 2 X 4 SYP No.3 **OTHERS** MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide. REACTIONS All bearings 22-0-0. (lb) - Max Horz 2=-111(LC 8) Max Uplift All uplift 100 lb or less at joint(s) 16 except 2=-299(LC 7), 14=-317(LC 8), 22=-152(LC 7), 23=-142(LC 7), 24=-161(LC 7), 25=-104(LC 8), 19=-151(LC 8), 18=-143(LC 8), 17=-160(LC 8) Max Grav All reactions 250 lb or less at joint(s) 21, 23, 25, 18, 16 except 2=487(LC 1), 14=487(LC 1), 22=263(LC 11), 24=255(LC 11), 19=263(LC 12), 17=255(LC 12) FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 110mph (3-second gust); TCDL=4.2psf; BCDL=3.0psf; h=16ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry will JULIUS S.L. Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1-2002. 4) All plates are 2x4 MT20 unless otherwise indicated. 5) Gable requires continuous bottom chord bearing. 6) Gable studs spaced at 2-0-0 oc. 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 9) All bearings are assumed to be SYP No.2 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 16 except (jt=lb) 2=299, 14=317, 22=152, 23=142, 24=161, 25=104, 19=151, 18=143, 17=160. 11) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss. U 12) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). 13) This manufactured product is designed as an individual building component. The suitability and use of this component for any NINEF N particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code. 14) Truss Design Engineer: Julius Lee, PE: Florida P.E. License No. 34869: Address: 1109 Coastal Bay Blvd. Boynton Beach, FL 33435 LOAD CASE(S) Standard 1) Regular: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf) Vert: 1-8=-114(F=-60), 8-15=-114(F=-60), 2-14=-10 June 8,2009

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.

Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not frus designers. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality controls, storage, delivery, erection and bracing, consult. AMSI/TIQ Quality Criteria, DSB-89 and BCSII Building Component Satety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.

Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component.


Applicability of design paramenters and proper incorporation of component is responsibility of building designer - not hruss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult. ANSI/TP1 Quality Criteria, DSB-89 and BCS11 Building Component Safety Information.

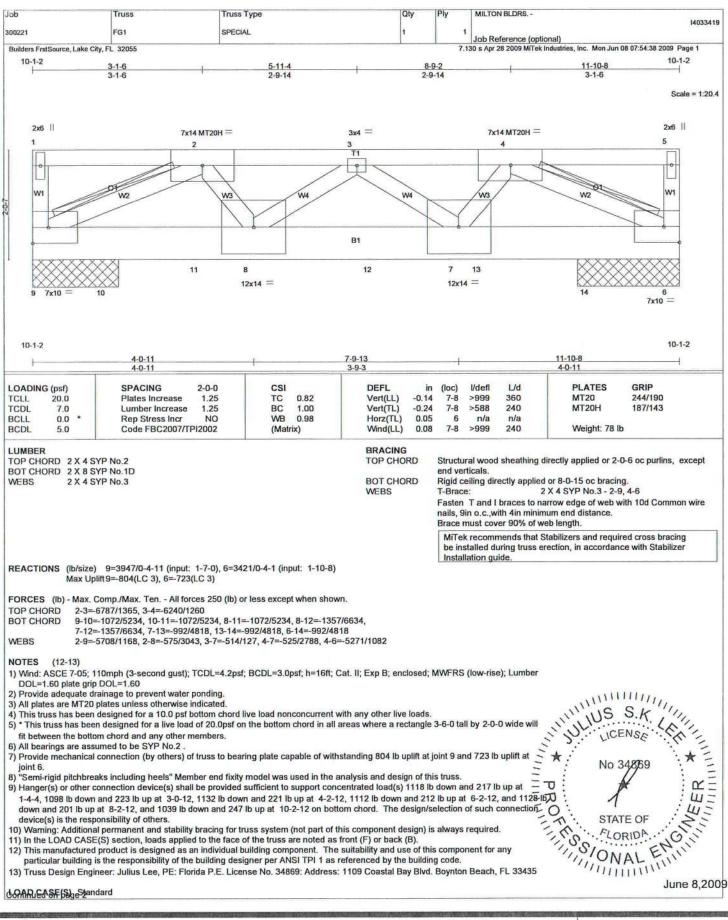
Job	Truss	Truss Type	Qty	Ply	MILTON BLDRS	
300221	нла	MONO TRUSS	4	1	300221007	14033420
		Stocked Stock Contract Contract Co	1"		Job Reference (optional)	

LOAD CASE(S) Standard Concentrated Loads (lb)

Vert: 3=46(F=23, B=23) 7=-8(F=-4, B=-4) 8=-99(F=-49, B=-49) 9=-28(F=-14, B=-14)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.
Design valid for use only with Milek connectors. This design is based only upon parameters shown, and is for an individual building component.
Applicability of design paramenters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding tabrication, quality control, storage, delivery, erection and bracing, consult. AMS/IT! Quality Criteria, DSB-89 and BCSI1 Building Component Safety Information available from Truss Plate Institute, S83 D'Onotrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	MILTON BLDRS	
300221	FG1	SPECIAL	1	1		14033419
					Job Reference (optional)	
Builders ErstSource Lake City F	1 32055			7.13	30 s Apr 28 2009 MiTek Industries Inc. Man Jun 08 07:54:38 2009 Pag	ne 2


LOAD CASE(S) Standard

Regular: Lumber Increase=1.25, Plate Increase=1.25
 Uniform Loads (plf)

Vert: 1-5=-54, 6-9=-10 Concentrated Loads (lb)

Vert: 8=-1132(B) 10=-1118(B) 11=-1098(B) 12=-1112(B) 13=-1128(B) 14=-1039(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MIL-7473 BEFORE USE.

Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design paramenters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult. ANSI/TI Quality Criteria, DSB-89 and BCSII Building Component Safety Information available from Truss Plate Institute, 583 D'Onotrio Drive, Madison, WI 53719.

Qty Job Truss Truss Type MILTON BLDRS. -EJ7 JACK 33 300221 300221004 Job Reference (optional) Builders FrstSource, Lake City, FL 32055 7.110 s Dec 8 2008 MiTek Industries, Inc. Mon Jun 08 11:51:50 2009 Page 1 -2-0-0 7-0-0 2-0-0 7-0-0 Scale: 1/2"=1 6.00 12 0-4-3 3x4 =

Plate Off	sets (X,	Y): [2:0-1-12,0-1-8]											
LOADIN	G (psf)		SPACING	2-0-0	CSI		DEFL	in	(loc)	l/defi	L/d	PLATES	GRIP	
TCLL	20.0		Plates Increase	1.25	TC	0.52	Vert(LL)	-0.09	2-4	>921	360	MT20	244/190	
TCDL	7.0		Lumber Increase	1.25	BC	0.48	Vert(TL)	0.31	2-4	>261	240	0000000		
BCLL	0.0	*	Rep Stress Incr	YES	WB	0.00	Horz(TL)	-0.00	3	n/a	n/a			
BCDL	5.0	- 1	Code FBC2007/TF	212002	(Matr	ix)	Wind(LL)	0.35	2-4	>236	240	Weight: 26 lb		

LUMBER

TOP CHORD 2 X 4 SYP No.2 BOT CHORD 2 X 4 SYP No.2 BRACING

TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

(lb/size) 3=157/Mechanical, 2=352/0-1-8 (input: 0-3-8), 4=42/Mechanical REACTIONS

Max Horz 2=161(LC 7)

Max Uplift 3=-94(LC 7), 2=-224(LC 7), 4=-65(LC 6)

Max Grav 3=157(LC 1), 2=352(LC 1), 4=96(LC 2)

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES

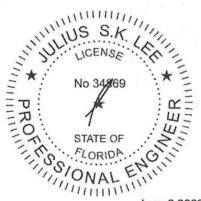
NOTES (7-8)

1) Wind: ASCE 7-05; 110mph (3-second gust); TCDL=4.2psf; BCDL=3.0psf; h=16ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.


5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 94 lb uplift at joint 3, 224 lb uplift at joint 2 and 65 lb uplift at joint 4.

6) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.
 Truss Design Engineer: Julius Lee, PE: Florida P.E. License No. 34869: Address: 1109 Coastal Bay Blvd. Boynton Beach, FL

33435

LOAD CASE(S) Standard

June 8,2009

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE. Design valid for use only with Milek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insert stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding flobrication, quality control, storage, delivery, erection and bracing, consult. ANSI/TRI Quality Control, Storage. delivery, erection and bracing, consult. ANSI/TRI Quality Control, storage. delivery, erection and bracing, consult. ANSI/TRI Quality Criteria, DSB-89 and BCSII Building Component Safety Information. available from Truss Plate Institute, 583 D'Onofilo Drive, Madison, WI 53719.

MILTON BLDRS. Truss Type Qty Job Truss 14033417 300221003 Job Reference (optional) 300221 C.15 JACK 7.130 s Apr 28 2009 MiTek Industries Inc. Mon Jun 08 07:54:37 2009 Page 1 Builders FrstSource, Lake City, FL 32055 8-1-2 8-1-2 -2-0-0 5-0-0 2-0-0 Scale = 1:19.7 6.00 12 0-4-3 **B**1 **PLATES** GRIP LOADING (psf) SPACING 2-0-0 CSI DEFL in (loc) I/defl L/d 244/190 -0.03 >999 360 MT20 TCLL 20.0 Plates Increase 1 25 TC 0.29 Vert(LL) 2-4 >733 240 1.25 BC 0.24 Vert(TL) 0.08 2-4 TCDL 70 Lumber Increase Rep Stress Incr YES WB 0.00 Horz(TL) -0.00 n/a n/a BCLL 0.0 Weight: 19 lb Code FBC2007/TPI2002 (Matrix) Wind(LL) 0.09 >663 240 BCDL 5.0

BRACING

TOP CHORD **BOT CHORD**

REACTIONS (lb/size) 3=103/Mechanical, 2=295/0-1-8 (input: 0-3-8), 4=24/Mechanical

Max Horz 2=178(LC 7)

Max Uplift 3=-87(LC 7), 2=-260(LC 7), 4=-46(LC 5)

Max Grav 3=103(LC 1), 2=295(LC 1), 4=72(LC 2)

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES

LUMBER

TOP CHORD 2 X 4 SYP No.2 BOT CHORD 2 X 4 SYP No.2

1) Wind: ASCE 7-05; 110mph (3-second gust); TCDL=4.2psf; BCDL=3.0psf; h=16ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) All bearings are assumed to be SYP No.2.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 87 lb uplift at joint 3, 260 lb uplift at joint 2 and 46 lb uplift at joint 4.

7) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

8) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

9) Truss Design Engineer: Julius Lee, PE: Florida P.E. License No. 34869: Address: 1109 Coastal Bay Blvd. Boynton Beach, FL 33435

LOAD CASE(S) Standard

cular LICENSE

No 34869

R STATE OF FLORIDA

Structural wood sheathing directly applied or 5-0-0 oc purlins.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer

Rigid ceiling directly applied or 10-0-0 oc bracing.

Installation guide.

	Truss	Truss Type	Qty	Ply	MILTON BLDRS	32
21	CJ3	JACK	8		1 300221002 Job Reference (optional)	1403341
ders FrstSource, La	ake City, FL 32055				7.130 s Apr 28 2009 MiTek Indestres, Inc. Mon Jun 08	3 07:54:36 2009 Page 1
		-2-0-0 8-1-2		3-0-0	8-1-2	
	ŀ	2-0-0		3-0-0		
						Scale = 1:14
					з Д	0000
					N N	
					\mathcal{M}	
		6.00	12		/ /	
	9		18 10 17 LP			
	1-10-3					
95		2	/ /			
	اسا	-/	T1		V	
	0-4-3			B1	I/V	
	19		<u>л</u>	9900	Y Y	
		/ / 2			4	
	1	/ / 2	<u> </u>			
	ſ		• –			
	P	sect				

LOADIN	G (psf)		SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP	
TCLL	20.0		Plates Increase	1.25	TC	0.29	Vert(LL)	-0.00	2-4	>999	360	MT20	244/190	
TCDL	7.0		Lumber Increase	1.25	BC	0.08	Vert(TL)	-0.01	2-4	>999	240			
BCLL	0.0		Rep Stress Incr	YES	WB	0.00	Horz(TL)	-0.00	3	n/a	n/a			
BCDL	5.0	- 1	Code FBC2007/TF	212002	(Matr	rix)	Wind(LL)	0.01	2-4	>999	240	Weight: 13 lb		

LUMBER

TOP CHORD 2 X 4 SYP No.2 BOT CHORD 2 X 4 SYP No.2 BRACING

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 3-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS (lb/size) 3=31/Mechanical, 2=250/0-1-8 (input: 0-3-8), 4=14/Mechanical

Max Horz 2=132(LC 7)

Max Uplift 3=-28(LC 8), 2=-238(LC 7), 4=-27(LC 5) Max Grav 3=31(LC 1), 2=250(LC 1), 4=42(LC 2)

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES (8-9)

- Wind: ASCE 7-05; 110mph (3-second gust); TCDL=4.2psf; BCDL=3.0psf; h=16ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be SYP No.2.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 28 lb uplift at joint 3, 238 lb uplift at joint 2 and 27 lb uplift at joint 4.
- 7) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.
- 8) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.
- 9) Truss Design Engineer: Julius Lee, PE: Florida P.E. License No. 34869: Address: 1109 Coastal Bay Blvd. Boynton Beach, FL 33435

LOAD CASE(S) Standard

MILTON BLDRS -Job Truss Truss Type Qty 14033415 300221001 Job Reference (aptional) CJ1 JACK 7,130 s Apr 28 2009 MiTek Industries, Inc. Mon Jun 08 07;54:36 2009 Page 1 Builders FrstSource, Lake City, FL 32055 8-1-2 2-0-0 2-0-0 Scale = 1:9.6 6.00 12 0-10-3 0-4-3 **B**1 T1

LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.28	Vert(LL)	-0.00	2	>999	360	MT20	244/190
TCDL	7.0	Lumber Increase	1.25	BC	0.01	Vert(TL)	-0.00	2	>999	240		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(TL)	0.00	3	n/a	n/a		
BCDL	5.0	Code FBC2007/TF	212002	(Matr	ix)	Wind(LL)	0.00	2	>999	240	Weight: 7 lb	

LUMBER

TOP CHORD 2 X 4 SYP No.2 BOT CHORD 2 X 4 SYP No.2

BRACING

TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 1-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide

REACTIONS (lb/size) 2=256/0-1-8 (input: 0-3-8), 4=5/Mechanical, 3=-90/Mechanical Max Horz 2=87(LC 7)

Max Uplift 2=-286(LC 7), 4=-9(LC 5), 3=-90(LC 1) Max Grav 2=256(LC 1), 4=14(LC 2), 3=127(LC 7)

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES

- 1) Wind: ASCE 7-05; 110mph (3-second gust); TCDL=4.2psf; BCDL=3.0psf; h=16ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be SYP No.2
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 286 lb uplift at joint 2, 9 lb uplift at joint 4 and 90 lb uplift at joint 3.
- 7) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.
- 8) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.
- 9) Truss Design Engineer: Julius Lee, PE: Florida P.E. License No. 34869: Address: 1109 Coastal Bay Blvd. Boynton Beach, FL 33435

LOAD CASE(S) Standard

No 34869

THE STATE OF LORIDA.

RE: 300221 - MILTON BLDRS. -

Site Information:

Project Customer: MILTON BLDRS. Project Name: 300221 Model: CUSTOM Lot/Block: Subdivision:

Lot/Block: Address: 162 NE DEW DROP WAY

City: COLUMBIA CTY State: FL

No.	Seal#	Truss Name	Date
35	14033449	T28	6/8/09
36	14033450	T29	6/8/09
37	14033451	T30	6/8/09
38	14033452	T31	6/8/09
39	14033453	T32	6/8/09
40	14033454	T33G	6/8/09
41	14033455	T34	6/8/09
42	14033456	T34G	6/8/09
43	14033457	T35	6/8/09
44	14033458	T36	6/8/09
45	14033459	T37	6/8/09
46	14033460	T38	6/8/09
47	14033461	T39	6/8/09

Julius Lee Engineering

RE: 300221 - MILTON BLDRS. -

1109 Coastal Bay Blvd. Boynton Beach, FL 33435

Site Information:

Project Customer: MILTON BLDRS. Project Name: 300221 Model: CUSTOM

Lot/Block:

Address: 162 NE DEW DROP WAY

City: COLUMBIA CTY

State: FL

Name Address and License # of Structural Engineer of Record, If there is one, for the building.

Subdivision:

Name: JAY W. MILTON

License #: ĆGC060912

Address: 1296 SW RIDGE ST

City: LAKE CITY,

State: FL

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: FBC2007/TPI2002

Design Program: MiTek 20/20 7.1

Wind Code: ASCE 7-05 Wind Speed: 110 mph

Floor Load: N/A psf

Roof Load: 32.0 psf

This package includes 47 individual, dated Truss Design Drawings and 0 Additional Drawings. With my seal affixed to this sheet, I hereby certify that I am the Truss Design Engineer and this index sheet conforms to 61G15-31.003, section 5 of the Florida Board of Professional Engineers Rules. This document processed per section 16G15-23.003 of the Florida Board of Professionals Rules

In the event of changes from Builder or E.O.R. additional coversheets and drawings may accompany this coversheet. The latest approval dates supersede and replace the previous drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	14033415	CJ1	6/8/09	18	14033432	T11	6/8/09
2	14033416	CJ3	6/8/09	19	14033433	T12	6/8/09
3	14033417	CJ5	6/8/09	20	14033434	T13	6/8/09
4	14033418	EJ7	6/8/09	21	14033435	T14	6/8/09
5	14033419	FG1	6/8/09	22	14033436	T15	6/8/09
6	14033420	HJ9	6/8/09	23	14033437	T16	6/8/09
7	14033421	T01	6/8/09	24	14033438	T17	6/8/09
8	14033422	T01G	6/8/09	25	14033439	T18	6/8/09
9	14033423	T02	6/8/09	26	14033440	T19	6/8/09
10	14033424	T03	6/8/09	27	14033441	T20	6/8/09
11	14033425	T04	6/8/09	28	14033442	T21	6/8/09
12	14033426	T05	6/8/09	29	14033443	T22	6/8/09
13	14033427	T06	6/8/09	30	14033444	T23	6/8/09
14	14033428	T07	6/8/09	31	14033445	T24	6/8/09
15	14033429	T08	6/8/09	32	14033446	T25	6/8/09
16	14033430	T09	6/8/09	33	14033447	T26	6/8/09
17	14033431	T10	6/8/09	34	14033448	T27	6/8/09

The truss drawing(s) referenced above have been prepared by MiTek Industries, Inc. under my direct supervision based on the parameters provided by Builders FirstSource (Lake City).

Truss Design Engineer's Name: Julius Lee

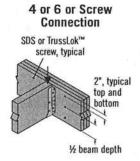
My license renewal date for the state of Florida is

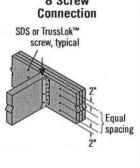
NOTE: The seal on these drawings indicate acceptance of professional engineering responsibility solely for the truss components shown. The suitability and use of this component for any particular building is the responsibility of the building designer, per ANSI/TPI-1 Chapter 2.

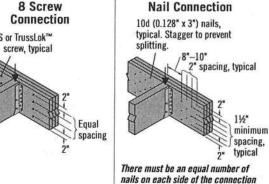
1 of 4

MULTIPLE-MEMBER CONNECTIONS FOR SIDE-LOADED BEAMS

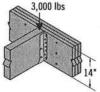
Point Load—Maximum Point Load Applied to Either Outside Member (lbs)


		Michigan Company		Co	nnector Pattern		
Connector Type	Number of Connectors	Assembly A	Assembly B	Assembly C	Assembly D	Assembly E	Assembly F
		1¾" 3½" 2-ply	1¾" 5¼" 3-ply	1¾" 3½" 5¼" 2-ply	1%" 3½" 1¾" 7" 3-ply	3½" 7" 2-ply	134" 7" 4-ply
	6	1,110	835	835	740		
10d (0.128" x 3")	12	2,225	1,670	1,670	1,485	XI SEE SEE SEE	
Nail	18	3,335	2,505	2,505	2,225		
	24	4,450	3,335	3,335	2,965		
SDS Screws	4	1,915	1,435(4)	1,435	1,275	1,860(2)	1,405(2)
1/4" x 31/2" or WS35	6	2,870	2,150 (4)	2,150	1,915	2,785(2)	2,110(2)
1/4" x 6" or WS6(1)	8	3,825	2,870 (4)	2,870	2,550	3,715(2)	2,810(2)
22/8 58	4	2,545	1,910 (4)	1,910	1,695	1,925(3)	1,775(3)
33/8" or 5" TrussLok™	6	3,815	2,860 (4)	2,860	2,545	2,890(3)	2,665(3)
Husseun	8	5,090	3,815 (4)	3,815	3,390	3,855(3)	3,550(3)


(1) 6" SDS or WS screws can be used with Parallam® PSL and Microllam® LVL, but are not recommended for TimberStrand® LSL.


See General Notes on page 38

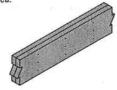
- (2) 6" long screws required.
- (3) 5" long screws required.
- (4) 31/2" and 35/4" long screws must be installed on both sides.


Connections

3.000 lbs

Point Load Design Example

First, verify that a 3-ply 13/" x 14" beam is capable of supporting the 3,000 lb point load as well as all other loads applied. The 3,000 lb point load is being transferred to the beam with a face mount hanger. For a 3-ply 1¾" assembly, eight 33/8" TrussLok™ screws are good for 3,815 lbs with a face mount hanger.


MULTIPLE-MEMBER CONNECTIONS FOR TOP-LOADED BEAMS

13/4" Wide Pieces

- Minimum of three rows of 10d (0.128" x 3") nails at 12" on-center.
- Minimum of four rows of 10d (0.128" x 3") nails at 12" on-center for 14" or deeper.
- If using 12d-16d (0.148"-0.162" diameter) nails, the number of nailing rows may be reduced by one.
- Minimum of two rows of SDS, WS, or TrussLok™ screws at 16" on-center. Use 33/8" minimum length with two or three plies; 5" minimum for 4-ply members. 6" SDS and WS screws are not recommended for use with TimberStrand® LSL. For 3- or 4-ply members, connectors must be installed
- on both sides. Stagger fasteners on opposite side of beam by 1/2 of the required connector spacing.
- Load must be applied evenly across entire beam width. Otherwise, use connections for side-loaded beams.

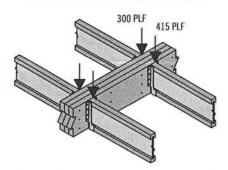
31/2" Wide Pieces

- Minimum of two rows of SDS, WS, or TrussLok™ screws, 5" minimum length, at 16" on-center. 6" SDS and WS screws are not recommended for use with TimberStrand® LSL. Connectors must be installed on both sides. Stagger fasteners on opposite side of beam by 1/2 of the required connector spacing.
- Load must be applied evenly across entire beam width. Otherwise, use connections for side-loaded
- Minimum of two rows of 1/2" bolts at 24" on-center staggered.

Multiple pieces can be nailed or bolted together to form a header or beam of the required size, up to a maximum width of 7"

MULTIPLE-MEMBER CONNECTIONS FOR SIDE-LOADED BEAMS

Maximum Uniform Load Applied to Either Outside Member (PLF)


100					Co	onnector Pattern		
Connector Type	Number of Rows	Connector On-Center Spacing	Assembly A	Assembly B	Assembly C	Assembly D	Assembly E	Assembly F
			3½" 2-ply	134" 51/4" 3-ply	1¾" 3½" 5¼" 2-ply	1¾" 3½" 1¾" 7" 3-ply	3½" 7" 2-ply	1¾" 7" 4-ply
10d (0.128" x 3")	2	12"	370	280	280	245		
Nail ⁽¹⁾	3	12"	555	415	415	370		
1/2" A307	MARKET PROPERTY.	24"	505	380	520	465	860	340
Through Bolts(2)(4)	2	19.2"	635	475	655	580	1,075	425
riii ougii boita		16"	760	570	785	695	1,290	505
		24"	680	510	510	455		
SDS 1/4" x 31/2"(4)	2	19.2"	850	640	640	565		
		16"	1,020	765	765	680		
	OF COLUMN	24"				455	465	455
SDS 1/4" x 6"(3)(4)	2	19.2"				565	580	565
		16"				680	695	680
		24"	480	360	360	320		
USP WS35 (4)	2	19.2"	600	450	450	400		
		16"	715	540	540	480		
	THE PARTY OF THE	24"				350	525	350
USP WS6 (3)(4)	2	19.2"				440	660	440
and the same of the		16"				525	790	525
33/8"	深层设施	24"	635	475	475	425		
TrussLok(4)	2	19.2"	795	595	595	530		
	Taken and the same	16"	955	715	715	635		
5"		24"		500	500	445	480	445
TrussLok(4)	2	19.2"		625	625	555	600	555
	BARBER SERVICE	16"		75 0	750	665	725	665
63/4"		24"	S Harris Tolland			445	620	445
TrussLok(4)	2	19.2"				555	770	555
		16"				665	925	665

Nailed connection values may be doubled for 6" on-center or tripled for 4" on-center nail spacing.

General Notes

- Connections are based on NDS® 2005 or manufacturer's code report.
- Use specific gravity of 0.5 when designing lateral connections.
- Values listed are for 100% stress level. Increase 15% for snow-loaded roof conditions or 25% for non-snow roof conditions, where code allows.
- Bold Italic cells indicate Connector Pattern must be installed on both sides.
 Stagger fasteners on opposite side of beam by ½ the required Connector Spacing.
- Verify adequacy of beam in allowable load tables on pages 16-33.
- 7" wide beams should be side-loaded only when loads are applied to both sides
 of the members (to minimize rotation).
- Minimum end distance for bolts and screws is 6".
- Beams wider than 7" require special consideration by the design professional.

Uniform Load Design Example

First, check the allowable load tables on pages 16–33 to verify that three pieces can carry the total load of 715 plf with proper live load deflection criteria. Maximum load applied to either outside member is 415 plf. For a 3-ply 1¾" assembly, two rows of 10d (0.128" x 3") nails at 12" on-center is good for only 280 plf. Therefore, use three rows of 10d (0.128" x 3") nails at 12" on-center (good for 415 plf).

Alternates:

Two rows of 1/2" bolts or SDS 1/4" x 31/2" screws at 19.2" on-center.

⁽²⁾ Washers required. Bolt holes to be 916" maximum.

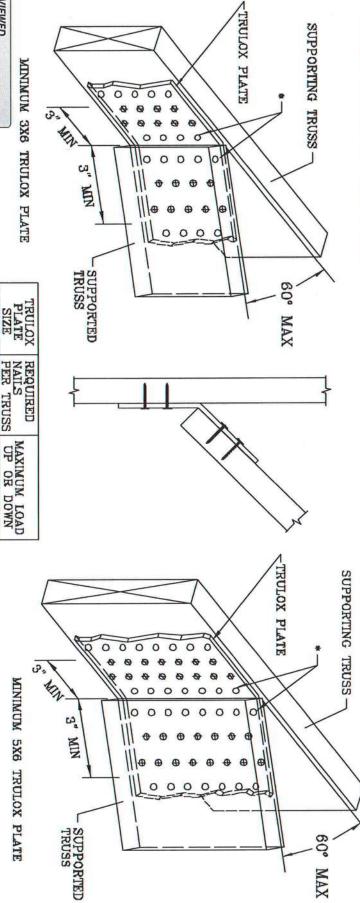
^{(3) 6&}quot; SDS or WS screws can be used with Parallam® PSL and Microllam® LVL, but are not recommended for TimberStrand® LSL.

^{(4) 24&}quot; on-center bolted and screwed connection values may be doubled for 12" on-center spacing.

NO. ALENGE STATE OF THE STATE O By julius lee at 11:58 am, Jun 11, 2008 REVIEWED TO BEARING TO BEARING ADD 2x4 #2 SP ONE FACE 10'-0" 0/C MAX SYSTEM-42 ALTERNATE DETAIL FOR STRONG BACK WITH VERTICAL STRONG (3)10d-10'-0" 0/C MAX NOT LINING UP BACK DETAIL OR FLAT TRUSS (3)10d 2x6 #2 SP 2x6 #2 SP ULIUS LEE'S cons. ENGINEERS P.A. DETECTION OF THE SPECIAL APPLIES No: 34869 STATE OF FLORIDA

TRULOX CONNECTION

SHOWN (+). 11 GAUGE (0.120" X 1.375") NAILS REQUIRED FOR TRULOX PLATE ATTACHMENT. FILL ROWS COMPLETELY WHERE


NAILS MAY BE OMITTED FROM THESE ROWS

THIS DETAIL MAY BE USED WITH SO. PINE, DOUGLAS-FIR OR HEM-FIR CHORDS WITH A MINIMUM 1.00 DURATION OF LOAD OR SPRUCE-PINE-FIR CHORDS WITH A MINIMUM 1.15 DURATION OF LOAD. CHORD SIZE OF BOTH TRUSSES MUST EXCEED THE TRULOX PLATE WIDTH.

TRULOX PLATE IS CENTERED ON THE CHORDS AND BENT BETWEEN NAIL ROWS.

REFER TO ENGINEER'S SEALED DESIGN REFERENCING INFORMATION NOT SHOWN THIS DETAIL FOR LUMBER, PLATES, AND OTHER

MAX

NO. 44869

NO- TRUSSES ROCURE EXTROME CARE IN FABRUCATING, HAVILLING, SHOPPING, INSTALLING AND
REFER TO SESSI-GO (BUILLING CAPAINENT SAFETY MERIBAATION, PUBLICASED BY THS (TRUSS
USTITUTE, SES DYUGHERM IDS, SUTIE BOY, AMOSION, VE. 38759 AND VYCA VOLUM TRUSS COUNTING,
BAG DYTERPRISE LM, HAMSON, VE. 38759 FOR SAFETY PRACTICES PAICE TO PRACTICES PAICE TO PETENTING
RALE SAND BOTTON CHECK SHALL HAVE A PROPERLY ATTACHED RICED CELLING.

6X6 3X6

15 9

#088 350#

JULIUS LEE'S DETRYL BEYCH, 11' 30744-2161

1,154,844

THIS DRAWING REPLACES DRAWINGS 1,158,989

1,158,989/R

MINIMUM 5X6 TRULOX PLATE

1,152,217 1,152,017 1,159,154 & 1,151,524

REF

TRULOX

DRWG -ENG

CNTRULOX1103

H

DATE

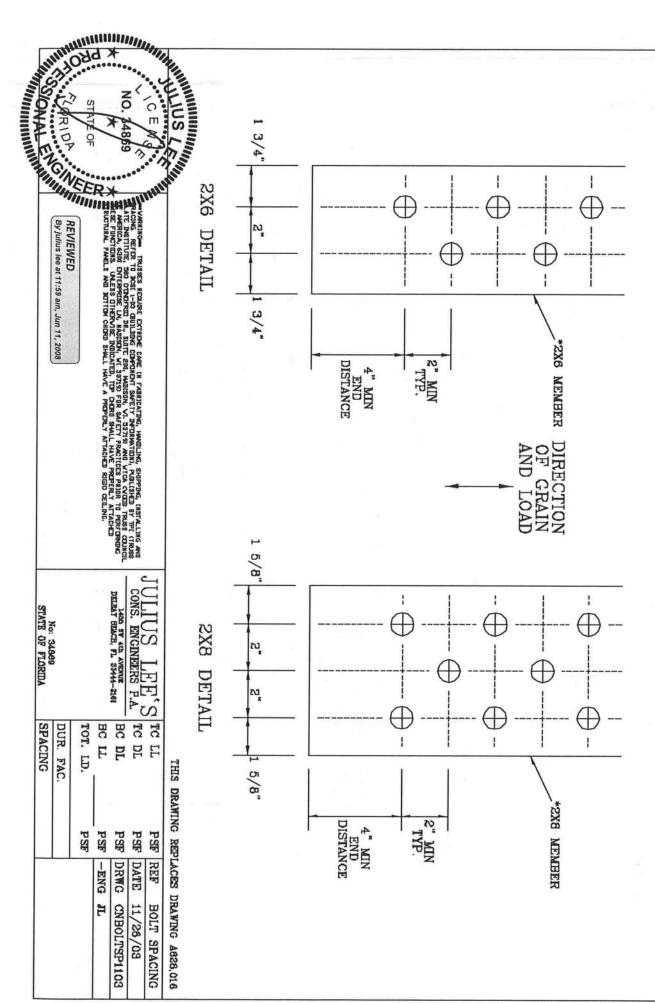
11/26/09

NO: 34869 STATE OF FLORIDA

PER TRUSS NAILS

MAXIMUM LOAD UP OR DOWN

REVIEWED


BOLT SPACING FOR LOAD APPLIED PARALLEL TO GRAIN.

* GRADE AND SPECIES AS SPECIFIED ON THE ALPINE DESIGN

BOLT HOLES SHALL BE A MINIMUM OF 1/32" TO A MAXIMUM OF 1/16" LARGER THAN BOLT DIAMETER.

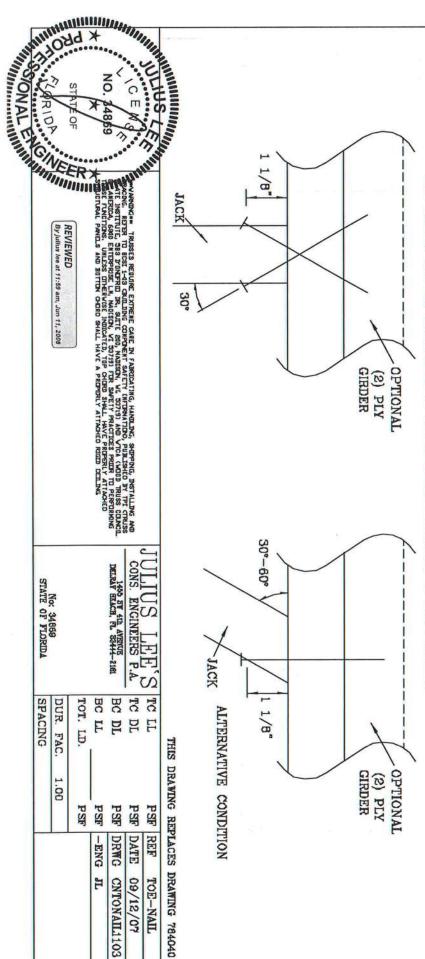
TYPICAL LOCATION OF 1/2" DIAMETER THRU BOLTS. QUANTITIES AS NOTED ON SEALED DESIGN MUST BE IN ONE OF THE PATTERNS SHOWN BELOW.

WASHERS REQUIRED UNDER BOLT HEAD AND NUT

SPACING

TOE-NAIL DETAIL

TOE-NAILS TO BE DRIVEN AT AN ANGLE OF APPROXIMATELY THIRTY DEGREES WITH THE PIECE AND STARTED APPROXIMATELY ONE-THIRD THE LENGTH OF THE NAIL FROM THE END OF THE MEMBER.


PER ANSI/AF&PA NDS-2001 SECTION 12.4.1 - EDGE DISTANCE, END DISTANCE, SPACING: "EDGE DISTANCES, END DISTANCES AND SPACINGS FOR NAILS AND SPIKES SHALL BE SUFFICIENT TO PREVENT SPLITTING OF THE WOOD."

THE NUMBER OF TOE-NAILS TO BE USED IN A SPECIFIC APPLICATION IS DEPENDENT UPON PROPERTIES FOR THE CHORD SIZE, LUMBER SPECIES, AND NAIL TYPE. PROPER CONSTRUCTION PRACTICES AS WELL AS GOOD JUDGEMENT SHOULD DETERMINE THE NUMBER OF NAILS TO BE USED.

THIS DETAIL DISPLAYS A TOE-NAILED CONNECTION FOR JACK FRAMING INTO A SINGLE OR DOUBLE PLY SUPPORTING GIRDER.

MAXIMUM VERTICAL RESISTANCE OF 18d (0.162"X3.5") COMMON TOE-NAILS

NUMBER OF		SOUTHERN PINE	DOUGLAS	DOUGLAS FIR-LARCH		HEM-FIR	SPRUCE	SPRUCE PINE FIR
TOE-NAILS	1 PLY	2 PLIES	1 PLY	2 PLIES	1 PLY	2 PLIES	1 PLY	2 PLIES
พ	197#	256#	181#	234#	156#	203#	154#	188#
ဒ	296#	383#	271#	351#	234#	304#	230#	298#
4	394#	511#	361#	468#	312#	406#	307#	397#
cn	493#	639#	452#	585#	390#	507#	384#	496#
ALL VALUE	FIS WAY	ALL VALUES WAY HE MULTIPLIED BY APPROPRIATE DURATION	HA API	ROPRIATE	DURATION	OF LOAD FACTOR	ACTOR	

COM TRUSSES REQUIRE EXTREME CARE IN FARRIZATING, HANDLING, SUPPONG, INSTALLING AND RETER TO BESS 1-43 CUILLING COMPORENT SAFETY (METWANTION), PUBLISHED BY TPI CIRKUSS STITUTE, SHE STONDERHE IN, SAITE 280), NADISSAN, VE 53719 AND VICA KINDE THUSS CUIVAL CA, 6300 EMITEPRISE LIN, MOUSEN, VE 53719 AND VICA KINDE THUSS CUIVAL CA, 6300 EMITEPRISE LIN, MOUSEN, VE 53719 AND SHALL HAVE PROPERLY ATLONED AND PROPERLY ATLONED AND SHALL HAVE PROPERLY ATLONED AND SHALL HAVE PROPERLY ATLONED AND SHALL HAVE A PROPERLY ATTACHED RECEING

CONS. E

IUS LEE'S

DELRAY BEACH, FL 83444-2161

BC BC DL TC LL

F E.

> PSF PSF

DRWG DATE

CNTONAIL1103 09/12/07 TOE-NAIL

-ENG

H

PSF

REF

TOT.

PSF PSF

DUR. FAC. SPACING

1.00

No: 34888 STATE OF FLORIDA

By Julius lee at 11:59 am, Jun 11, 2008

REVIEWED

VALLEYTRUSS DETAIL

TOP BOT CHORD CHORD 2X4 SP #2 OR SPF #1/#2 OR BETTER. 2X3(•) OR 2X4 SP #2N OR SPF #1/#2 2X4 SP #3 OR BETTER. SPF #1/#2 OR BETTER.

- ZX3 MAY BE RIPPED FROM A ZX6 (PITCHED OR SQUARE).
- * ATTACH EACH VALLEY TO EVERY SUPPORTING TRUSS WITH: ASCE 7-02 130 MPH WIND. 15' MEAN HEIGHT, BUILDING, EXP. C. RESIDENTIAL, WIND TC DL=5 FBC 2004 110 MPH, ASCE 7-02 110 NPH WIND ASCE 7-02 130 MPH WIND. 15' MEAN HEIGHT, 16d BOX (0.135" X 3.5") NAILS TOE-NAILED FOR PSF. OR (3) 16d ENCLOSED FOR

UNLESS SPECIFIED ON ENGINEER'S SEALED DESIGN, APPLY 1X4 "T"-BRACE, 80% LENGTH OF WEB, VALLEY WEB, SAME SPECIES AND GRADE OR BETTER, ATTACHED WITH 8d BOX (0.113" X 2.5") NAILS AT 6" OC, OR CONTINUOUS LATERAL BRACING, EQUALLY SPACED, FOR VERTICAL VALLEY WEBS GREATER THAN 7'9".

MAXIMUM VALLEY VERTICAL HEIGHT MAY NOT EXCEED 12'0".

TOP CHORD OF TRUSS BENEATH VALLEY SET NUST BE BRACED WITH: PROPERLY ATTACHED, RATED SHEATHING APPLIED PRIOR TO VALLEY TRUSS INSTALLATION

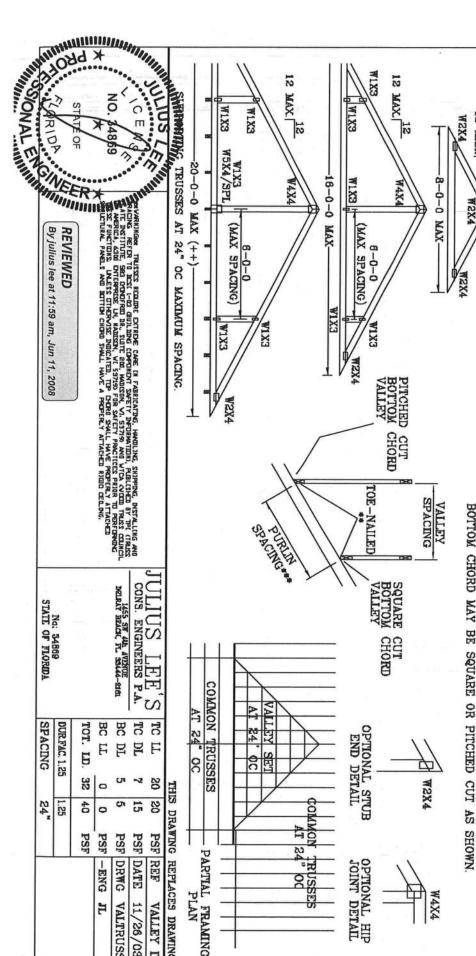
PURLINS AT 24" OC OR AS OTHERWISE SPECIFIED ON ENGINEERS' SEALED DESIGN BY VALLEY TRUSSES USED IN LIEU OF PURLIN SPACING AS SPECIFIED ON

ENGINEERS' SEALED

DESIGN.

*** NOTE THAT THE PURLIN SPACING FOR BRACING THE TOP CHORD OF THE TRUSS BENEATH THE VALLEY IS MEASURED ALONG THE SLOPE OF THE TOP CHORD. ++ LARGER SPANS MAY BE BUILT AS LONG AS THE VERTICAL HEIGHT DOES

CUT FROM 2X6 OR LARGER AS REQ'D


4-0-0

XAM

12 NAX.

NOT EXCEED 12'0"

BOTTOM CHORD MAY BE SQUARE OR PITCHED CUT AS SHOWN

THIS DRAWING REPLACES DRAWING A105

			F.	,-		ı
No: 34869			DELRAY BEACH, IL SSA44-2161	CONS. ENGINEERS P.A.	JULIUS LEE'S	
DUR	TO	BC	BC	TC	TC	١
FAC. 1.2		F	DI	PL	F	
EJ1	32	0	U	~2	20	١
1.25	40	0	Ç,	15	80	
	PSF	PSF	PSF	PSF	PSF	
			DRWG	DATE	REF	
		IL.	VALTRUSS1103	11/26/09	VALLEY DETAIL	The second second second
	DUR.FAC. 1.25	TOT. LD. 32 40 DURFAC.1.25 1.25	BC II 0 0 TOT. ID. 32 40 DURFAC 1.25 1.25	BC LL 0 0 PSF —ENG TOT. LD. 32 40 PSF DURFAC.1.25 1.25	ENGINEERS P.A. TC DL 7 15 PSF DATE \$5.50 444 AVENUE - 2161. BC DL 5 5 PSF DRWG BC LL 0 0 PSF - ENG TOT. LD. 32 40 PSF OURFAC.1.25 1.25	TO IL 20 20 PSF REF VALLEY

BOT CHORD CHORD WEBS 2X4 2X4 # to # 222 R BETTER R BETTER

PIGGYBACK DETAIL

TYPE

SPANS

â

5

30

34

86

52

>

284

2.5X4

2.6X4

386

4XB EXC.

5XB

6X8

REFER TO SEALED DESIGN FOR DASHED PLATES

TOP AND BOTTOM CHORD SPLICES MUST BE STAGGERED SO THAT ONE SPLICE IS NOT DIRECTLY OVER ANOTHER. SPACE PIGGYBACK VERTICALS AT 4' OC MAX.

PIGGYBACK BOTION CHORD MAY BE OMITED. TRUSS TOP CHORD WITH 1.5X3 PLATE. ATTACH VERTICAL WEBS

I

ATTACH PURLINS TO TOP OF FLAT TOP CHORD. IF PIGGYBACK IS SOLID LUMBER OR THE BOTTOM CHORD IS OMITTED, PURLINS MAY HE APPLIED HENEATH THE TOP CHORD OF SUPPORTING TRUSS

REFER TO ENCINEER'S SEALED DESIGN FOR REQUIRED FURLIN SPACING.

THIS DETAIL IS APPLICABLE FOR THE FOLLOWING WIND CONDITIONS:
110 MPH WIND, 30' MEAN HGT, ASCE 7-02, CLOSED BLDG,
LOCATED ANYWHERE IN ROOF, 1 MI FROM COAST
CAT I, EXP C, WIND TO DL=5 PSF, WIND BC DL=5 PSF 110 MPH WIND, 30' MEAN HGT, FBC ENCLOSED BLDG, LOCATED ANYWHERE IN ROOF WIND TO DL-5 PSF, WIND BC DL-5 PSF

> 130 MFH WIND, 30' MEAN HGT, ASCE 7-02, BLDG, LOCATED ANYWHERE IN ROOF, CAT II, WIND TO DL=6 PSF EXP. C.

> > ø U C н

> > > 584

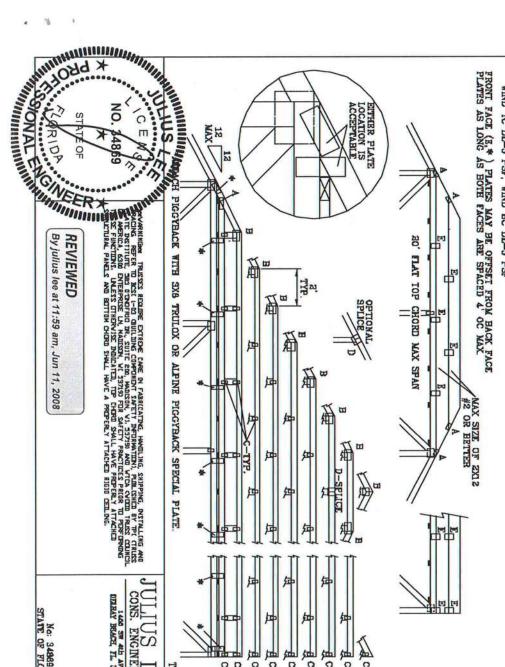
6X6

6X5

9XG

1.5X4

1.6X4

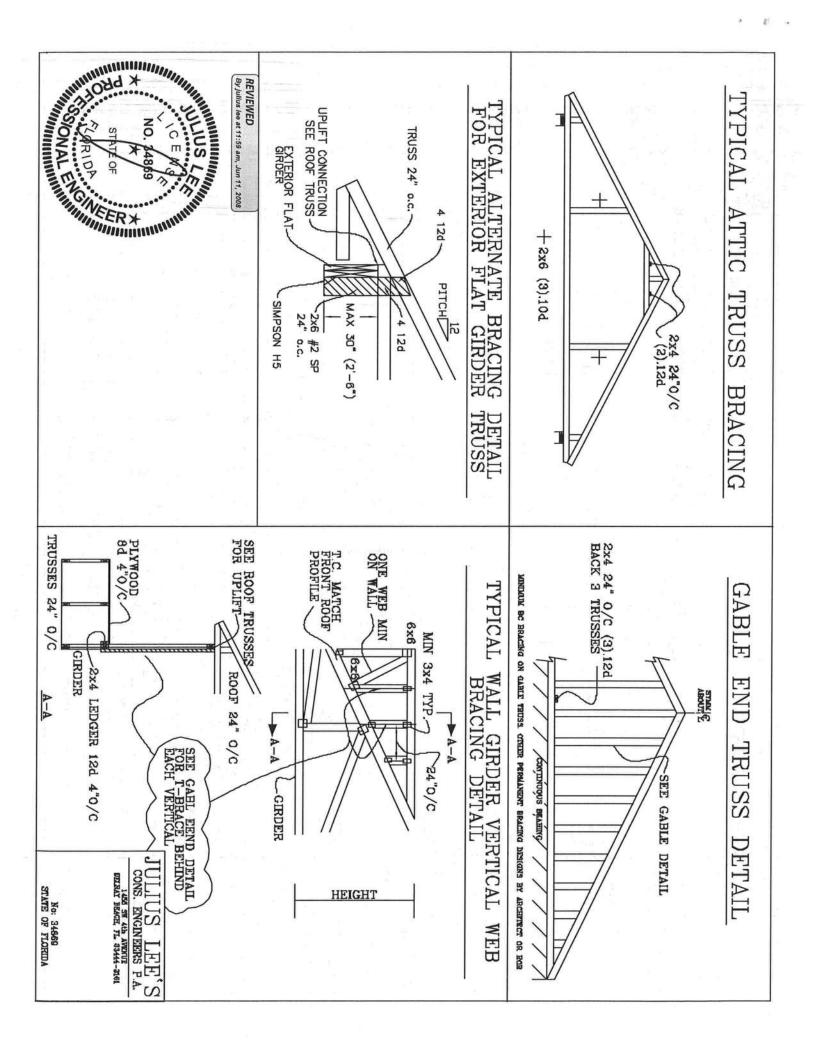

1.5X4 9XG

AXB OR SX8 TRULOX AT 4' OC, HOTATED VEHTICALLY

ATTACH TRULOX PLATES WITH (8) 0.120 X 1.575 NAILS, (EQUAL, PER FACE PER PLY. (4) NAILS IN EACH MEMBER BE CONNECTED. REFER TO DRAWING 160 TL FOR TRULOX

7 PR

INFORMATION.


MED CENCIH	REQUIRED BRACING
0' TO 7'9"	NO BRACING
7'9" TO 10'	1x4 "T" BRACE. SAME GRADE, SPECIES AS WEMBER, OR BETTER, AND 80% LENGTH OF V
	HOVE A
10' TO 14'	MEMBER, OR BETTER, AND 80% LENGTH OF W.
	H

* PIGGYBACK SPECIAL PLATE

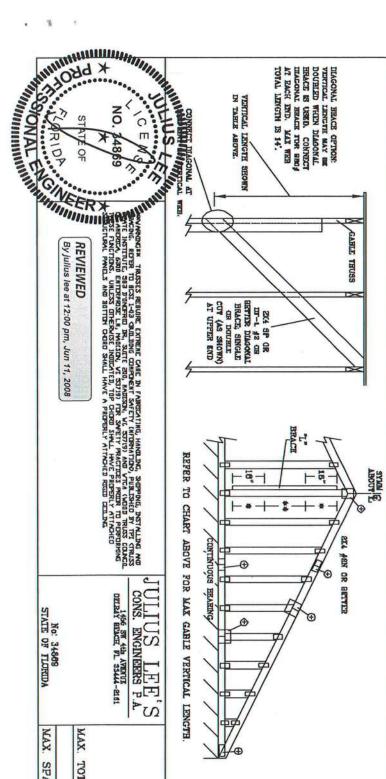
C
)
(

THIS DRAWING REPLACES DRAWINGS 634.016 834.017 847 045

STATE OF FLORIDA SPACING 2	47 PSF AT 1.15 DUR. FAC	50 PSF AT 1.25 DUR. FAC		2	IIII IIIC I FF'C MAX LOADING
24.0*	PSF AT DUR. FAC.	PSF AT -ENG JL	DUR. FAC. DRWGMITEK STD PIGGY	PSF AT DATE 09/12/07	LOADING REF PIGGYBACK

ASCE 7-02: 130 MPH WIND SPEED, 30 MEAN HEIGHT, ENCLOSED, 11 1.00, EXPOSURE 0

BRACING GROUP SPECIES AND


GRADES:

GROUP A:

HEM-PIR STANDARD

STANDARD

- 1	_			_			_									_													
]	M	A	X	% %	G	i A	I	31	J	3	1	V	E	R	Τ	'I	C.	A	L	9	L	E	N	([';	H	
		1	2	33		0	.(3.	5.2		1	6	91		0	.(ζ.		0.00	2	4	31	0.000	0	.(ζ.		SPACING	CART
	1	J.	1	S.)	TIT	L L	מלו	בונים	1	- -	1		j	TIT		מלק	מחה	1	UF.)	TIT		ひて		SPECIES	CABLE VESTICAL
	STANDARD	STUD	£3	#2	41	STANDARD	STUD	E.	£1 / #2	STANDARD	CUIS	£3	#23	17	STANDARD	CUTS	₽ŧ	打 / #2	STANDARD	STUD	£4	#23	14	STANDARD	STUD	8	打 / #2	CRADE	BRACE
	4' 0"	4. 2.	4' 2"		4' 5"	3' 11"	3' 11"	3' 11"	4 0	3' 8"	3' B"	3' 9"	3' 11"	4. 0.	3' 7"	3' 7"			3' 0"						3' 1"	3' 1"	3,	BRACES	NO.
	5' e"	6' 4'	8' 6"		8' 11°		6' 3"	B, 3,	6' 11"	4' 9"	5' 6"		B' 4"			5' 6"	S. C.	8' 4"	3' 10"		4' 6"			3' 9"			5' 6'	GROUP A	(1) 1X4 ·
	5' 6"	8' 4"	6, 2,	7' 6"		5' 4"	6' 3"	8, 3,		4' 9"	5' 8"	6. 7.	8' 10"			6' 5"	5. 5.	8' 6"	3' 10"	4' 8"	4' 8"	5' 11"	5' 11"		4' 5"	4' 5"	6′ 8"	GROUP H	"L" BRACE .
	7' 3"	8' 3"	8' 3"		8 3	7' 1"	8' 3"		8' 3"	6' 3"	7' 3"	7' 4"	7' 8"	7' 6"	6. 5.	7, 2,	2. 2.	7' 8"	5' 1"	5' 11"	6. 0,	6, 8,	6, 8,,		5' 10"	100	8' 6"	GROUP	(1) 2X4 T.
200	7' 3"	8, 6,	B, 6,		B' 11°	7' 1"	B' 3"	B' 3"	B' 6	6' 3*	7' 3°	7' 4"	8' 1"	8' 1"		7' 2"	7' 20	7' 8"	5' 1"	5' 11"	8. 0.	7' 0"	7' 0"	5' 0"	6' 10"	5' 10°	8. 8.	A GROUP B	"L" BRACE .
525058	B, 8.	9, 10,	9' 10"		8' 10"	9' 6"	9' 10"	8, 10,	9' 10"	A' 5"	8' 11"	8' 11"	8' 11"		8. 3.	8' 11"	8' 11"	8' 11"	6° 11"	7' 10"	7' 10"	7' 10"	7, 10,	8' 9"	7' 10"	7' 10"	7' 10"	GROUP A	(2) 2X4 "L"
	8, 8,	10' 4"	10' 4"	10' 7"	10' 7"	9, 8,	9' 10"	8' 10"	10, 1,	B' 5"	9' 5"	8. 6.	8, 2,	B, 2,	8' 3"		8' 11"	9, 5,	8' 11"	8. 0.	8, 1,			6' 9"			8′0"	GROUP B	BRACE **
	11' 4"	12' 11"	12 11	12' 11'	12' 11"	11' 1"		12' 11"		8, 8,	11' 4"	11. 5.		11, 8,	9' 7"	11, 1,			B' 0*			10' 3"			9' 1"		10' 3"	GROUP A	(1) axe (1)
	11' 4"	13' 1'	18' 3"		13' 11"	11' 1"	12' 10"	12' 11"	13' 4"		11' 4"	11' 6'	12' B"	12' 8"	8. 4.	11' 1"	11' 2"	12' 1"	8' 0"	8, 3,	9' 4"	11, 1,	11' 1"	7' 10"	9' 1"	9' 1"	10' 7"	GROUP	界
	14' 0"	14' 0"	14' 0"	14' 0"	14' 0"	14' 0"	14' 0"	14' 0"	14' 0"	13' 3"	14' 0°	T4. 0"	14' 0"	14' O.	18, 11.	14' 0"	14' 0"	14' O"	10, 10,	12' 3"	12, 3,	12' 8"	12' 3"	10' 7"	12' 8"	12' 3"	12' 3"	B GROUP A GROUP B	ACE * (2) ZXB "L" HRACE
	14' 0"	14' 0"	14' 0"	14' 0"	14' 0"	14' 0"	14' 0"	14' 0"	14' 0"	13' 3"	14' 0°	14. 0"	14' 0"	14' D"	12, 11.	14' 0"	14' O"	14' 0"	10' 10"	12' 6"	12' 8"	13' 2"	13' 2"	10' 7"	12' 3"	12' 3"	12′ 7″	GROUP B	HRACE =
CUDATE CITY SOLI OF TOWN		CONTINUOUS BEARING (6	PROVIDE UPLIET CONNECTIO	LIVE LOAD DEPLECTION CRAFT	Contract Part of the	CABIE TRIES D			8		SOUTHERN PINE			HELL	ON OUT	TILOGO,			STANDARD	3	DOUGLAS FIR-LARCH		dous sa	\$1 / 42 STANDARD	ON OUT	Capita	BRACING GROUP SPE		

DIAGONAL BEACE OFFINE:
VERTICAL LENGTH MAY BE
DOUBLED WEEN DIAGONAL
HRACE IS USED. CONNECT
HRACE IS USED. CONNECT

GABLE THUSS

TE
TRUSS
DETAIL
NOTES

DOUGLAS FIR-LARCH

#1 & BIR GROUP B:

TE LOAD DEPLECTION CRITERIA IS L/240.

DUTIONARY WITH E' O' OVERHAND, OR 12" PLYRODD OVERHANG. CONTINUOUS BEADING (6 PSF TC DEAD LOAD).

ATTACH EACH 'L' BRACE WITH 104 NAIS.

FOR (1) 'L' BRACE; SPACE WALLS AT 8" O.C.

FOR (2) 'L' BRACES, AND 4" O.C. BETWEEN ZONES.

FUR (2) 'L' BRACES; SPACE MALLS AT 3" O.C.

IN 18" END ZONES AND 6" O.C. BETWEEN ZONES. I. BRACING MUST BE A MINIMUM OF BOX OF WEB

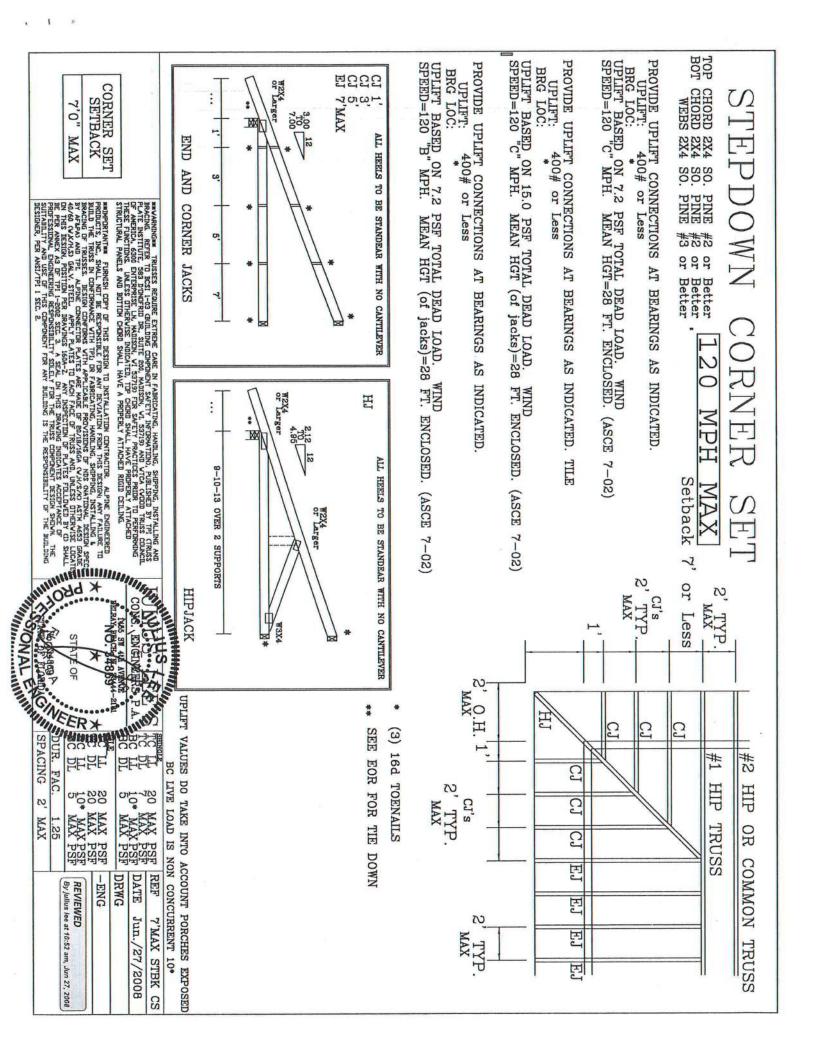
MEMBER LENGTH.

708	DESIGN PLATES.	MAK, SPLICE, AND HEEL !
	2.5X4	THAN 11' 6°
	2004	THAN 4' D', BUT
23	1X4 DR	AN 4' 0"
A	TIES ON	NCAL LENGTH
"	LATE SIZES	ABLE VERTICAL PLAT

PLATES.	PEAK, SPIJCE, AND HEEL
2.5X4	GREATER THAN 11' 6"
2004	GREATER THAN 4' D', BUT
IX4 DR BX	IPSS THAN 4' 0"
NO SPILOT	VERTICAL CENCIF
SEZIS 3	GABLE VERTICAL PLATE

No: 34868			DELBAY BEACH, PL. SSA44-2101	CONS. ENGINEERS P.A.	CILIIIS L HH'S
NAX.	MAX.				
SPAC	TOT.				
ING	Ë				
MAX. SPACING 24.0"	MAX. TOT. LD. 60 PSF				
		-ENG	DWG x	DATE	REF
			DWG MITTER STD GARLE SO' E HT	11/26/09	ASCE7-02-GAB13030

C


CE STALEOF MISSES REQUIRE EXTENS CARE IN FARREXATING, MANULING, SEPPING, INSTALLING AND LINES SHEEDING, THE COLORER SETTING, MANULING, SEPPING, INSTALLING AND STALLING AND ST DIAGONAL BEACE OPTION:
VERTICAL LENGTE MAY BE
DOUBLED WICH DIAGONAL
BRACE IS USED, CONNECT
ILLICONAL BEACE TOR 840 §
AT EACH IND. MAX WEB VERTICAL MAX GABLE LENGTH SPACING 12" 16 O.C. O.C. O.C. GABLE VERTICAL SPECIES SPF SPF DFL SPF DFL SP SP H SP H Œ ASCE STUD STANDARD 41 42 STANDARD #1 #8
STUD
STANDARD GRADE STANDARD STANDARD STANDARD STUD STUD STUD BRACE 7-02: #2 GABLE TRUSS BRACES 130 GROUP A (1) 1X4 "L" BRACE . (1) 2X4 "L" BRACE . MPH GROUP H WIND GROUP A SPEED GROUP B 15 3 POOR (2) 2X4 "L" BRACE ** GROUP A 10' 5' 10' 5' 10' 5' 5' 10' 5' 5' 10' 5' 5' 10' 5' 5' 10' 5' 5' 10' 5' 1 10 ME A EXA PEN OR BETTER ABOVE FOR GROUP B 0,0 HEIGHT, Ð CONS. BEARING (1) 2X8 "L" BRACE . GROUP DELEVAL REVIOL LE STATT-SIGN MAX GABLE ä STATE OF FLORIDA US LEE'S ENGINEERS P.A. × ENCLOSED, GROUP B 10. 10 8 8 5 7 4 4 4 10' 4' 12, 3, VERTICAL LENGTH (Z) ZXB GROUP A 년 Н MAX MAX BRACE GROUP B 11 13' 7" 13' 7" 12' 0" 13' 3" TOT 1.00, SPACING 1 E ATTACH EACH 'L' BRACE WITH 104 NAILS.

FOR (1) 'L' BRACE; SPACE NAILS AT 2° O.C.

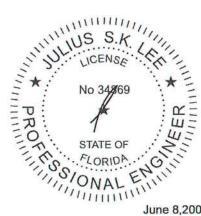
FOR (2) 'L' BRACES; SEACE NAILS AT 3° O.C.

DN 18° END ZONES AND 6° O.C. BETWEEN ZONES. CABLE END SUPPORTS LOAD FROM 4' 0" PROVIDE UPLIFT CONNECTIONS FOR 136 FLF OVER CONTINUOUS BEARING (6 PMF TC DEAD LOAD). LIVE LOAD DEPLECTION CHITERIA IS L/240 I." BRACING MUST BE A MINIMUM OF BOX OF WEB MEMBER LENGTH SPRUCE-PON-NB PLYWOOD OVERHAMG. BRACING GROUP SPECIES DOUGLAS FIR-LARCH EXPOSURE VERTIVAL LENGTH

1255 THAN 4.0 G
GREATER THAN 4.0, BUT
LISS THAN 11' 6'
GREATER THAN 11' 6' CABLE 60 24.0 PEAK, SPLICE, AND HEEL FLATES. CONTRAIS TILIS CABLE VERTICAL PSF TRUSS DATE REF DRWG FI & BIR GROUP B: GROUP DETAIL C MITER STD GABLE 15 E HT PLATE SIZES 11/26/09 ASCE7-02-CAB13015 SOUTHERN PORE
43
9TUD
STANDARD A: NO SPLICE B NOTES 2.5X4 200 STANDARD GRADES:

Qty MILTON BLDRS -Truss Type Joh Truss 14033427 300221 T06 MONO HIP 300221014 Job Reference (optional) 7.130 s Apr 28 2009 MiTek Industries, Inc. Mon Jun 08 07:54:43 2009 Page 1 Builders FrstSource Lake City FL 32055 -2-0-0⁸⁻¹⁻² 11-0-0 5-4-5 22-0-0 5x6 = 2x4 || Scale = 1:54.5 6.00 12 67 2x4 \ 3 12 11 10 13 98 3x6 3x4 = 3x5 =3x5 = 3x4 = 7-8-13 22-0-0 7-8-13 6-6-6 7-8-13 Plate Offsets (X,Y): [4:0-3-0,0-3-0], [5:0-3-0,0-2-0] LOADING (psf) SPACING CSI DEFL (loc) L/d PLATES GRIP 2-0-0 in **V**defi 20.0 Plates Increase 1.25 TC 0.47 Vert(LL) -0.14 10-12 >999 360 244/190 TCLL MT20 Vert(TL) TCDL 7.0 Lumber Increase 1.25 BC 0.60 -0.23 10-12 >999 240 BCLL 0.0 Rep Stress Incr NO WB 0.82 Horz(TL) -0.03 n/a n/a Code FBC2007/TPI2002 BCDL (Matrix) Wind(LL) 0.14 10-12 >999 240 Weight: 137 lb 5.0 BRACING LUMBER Structural wood sheathing directly applied or 4-8-8 oc purlins, except TOP CHORD 2 X 4 SYP No.2 TOP CHORD BOT CHORD 2 X 4 SYP No.2 2 X 4 SYP No.3 **BOT CHORD** Rigid ceiling directly applied or 6-6-8 oc bracing. WEBS T-Brace: 2 X 4 SYP No.3 - 6-9, 5-9 Fasten T and I braces to narrow edge of web with 10d Common wire nails, 9in o.c., with 4in minimum end distance. Brace must cover 90% of web length. MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide REACTIONS (lb/size) 9=1023/0-1-8 (input: 0-3-8), 2=1034/0-1-8 (input: 0-3-8) Max Horz 2=339(LC 7) Max Uplift 9=-240(LC 7), 2=-255(LC 7) FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1687/613, 3-4=-1513/589, 4-5=-917/366 **BOT CHORD** 2-12=-921/1434, 11-12=-644/1048, 10-11=-644/1048, 10-13=-213/355, 13-14=-213/355, 9-14=-213/355 WEBS 4-12=-257/502, 4-10=-612/485, 5-10=-484/1001, 5-9=-917/564 WILLIAM S NOTES 1) Wind: ASCE 7-05; 110mph (3-second gust); TCDL=4.2psf; BCDL=3.0psf; h=16ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding. 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 5.0psf. 5) All bearings are assumed to be SYP No.2 No 34869 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 9=240, 2=255 7) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss. 8) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required. 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). 1CIX 10) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.
 11) Truss Design Engineer: Julius Lee, PE: Florida P.E. License No. 34869: Address: 1109 Coastal Bay Blvd. Boynton Beach, FL 33435 LOAD CASE(S) Standard June 8,2009 Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.
Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component.
Applicability of design paramenters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer, For general guidance regarding fabrication, quality control, storage, defivery, erection and bracing, consult. ANSI/TP1 Quality Criteria, DSB-89 and BCS11 Building Component Safety Information available from Truss Plate Institute, S83 D'Onofrio Drive, Madison, WI 53719.


Job	Truss	Truss Type	Qty	Ply	MILTON BLDRS, -	1400040
300221	T06	MONO HIP	1		1 300221014 Job Reference (optional)	14033427
Builders ErstSource	Lake City FI 32055				7 130 s Apr 28 2009 MiTek Industries, Inc. Mon Jun 08	07:54:43 2009 Page 2

LOAD CASE(S) Standard

1) Regular: Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

Vert: 1-5=-54, 5-6=-54, 6-7=-14, 2-12=-10, 10-12=-70(F=-60), 10-13=-10, 13-14=-50, 8-14=-10

Truss Type Qty MILTON BLDRS. -Job Truss 14033428 1 300221015 Job Reference (optional) T07 MONO HIP 300221 Builders FrstSource, Lake City, FL 32055 7.130 s Apr 28 2009 MiT es, Inc. Mon Jun 08 07:54:44 2009 Page 1 -2-0-0 8-1-2 22-0-0-1-2 6-10-5 2-0-0 Scale = 1:59.5 2x4 || 5x6 = 6.00 12 67 5x6 = 2x4 \ 12 13 11 14 10 15 16 98 3x6 = 3x4 = 3x6 = 3x6 3x5 = 8-1-2 8-1-2 7-8-13 14-3-3 22-0-0 7-8-13 7-8-13 6-6-6 Plate Offsets (X,Y): [2:0-2-10,0-1-8], [4:0-3-0,0-3-4], [5:0-3-0,0-2-0] DEFL in (loc) I/defl L/d **PLATES** GRIP LOADING (psf) SPACING 1.25 244/190 TC 0.44 Vert(LL) -0.21 10-12 >999 360 MT20 TCLL 20.0 Plates Increase 7.0 Lumber Increase 1.25 BC 0.68 Vert(TL) -0.31 10-12 >825 240 TCDL 0.0 Rep Stress Incr NO WB 0.60 Horz(TL) 0.03 9 n/a n/a BCLL BCDL 5.0 Code FBC2007/TPI2002 (Matrix) Wind(LL) 0.15 10-12 >999 240 Weight: 144 lb BRACING TOP CHORD Structural wood sheathing directly applied or 4-7-4 oc purlins, except TOP CHORD 2 X 4 SYP No.2 BOT CHORD 2 X 4 SYP No.2 end verticals BOT CHORD Rigid ceiling directly applied or 6-5-4 oc bracing. WEBS 2 X 4 SYP No.3 WEBS 1 Row at midpt 6-9 2 X 4 SYP No.3 - 5-10, 5-9 T-Brace: Fasten T and I braces to narrow edge of web with 10d Common wire nails, 9in o.c., with 4in minimum end distance. Brace must cover 90% of web length. MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide. REACTIONS (lb/size) 9=1088/0-1-8 (input: 0-3-8), 2=1075/0-1-8 (input: 0-3-8) Max Horz 2=371(LC 7) Max Uplift 9=-275(LC 7), 2=-244(LC 7) FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 2-3=-1799/582 3-4=-1616/554 4-5=-999/389 TOP CHORD 2-12=-950/1537, 12-13=-577/996, 11-13=-577/996, 11-14=-577/996, 10-14=-577/996 BOT CHORD 3-12=-257/288, 4-12=-324/637, 4-10=-683/549, 5-10=-640/1275, 5-9=-1005/642 WEBS STATULIUS S. NOTES 1) Wind: ASCE 7-05; 110mph (3-second gust); TCDL=4.2psf; BCDL=3.0psf; h=16ff; Cat. II; Exp B; enclosed; MWFRS (low-rise) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Provide adequate drainage to prevent water ponding. 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 5.0psf. 5) All bearings are assumed to be SYP No.2. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 9=275 No 34869 2=244. 7) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss. 8) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required. 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). 10) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code. 11) Truss Design Engineer; Julius Lee, PE: Florida P.E. License No. 34869: Address: 1109 Coastal Bay Blvd. Boynton Beach, FL 33435 LOAD CASE(S) Standard June 8,2009 Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.
Design volid for use only with Milek connectors. This design is based only upon parameters shown, and is for an individual building component.
Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer, For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult

ANSI/TPI1 Quality Criteria, DSB-89 and BCS11 Building Component
Safety Information available from Truss Plate Institute, S83 D'Onofrio Drive, Madison, WI 53719.

١	Job	Truss	Truss Type	Qty	Ply	MILTON BLDRS	************
	300221	Т07	MONO HIP	1		300221015 Job Reference (optional)	14033428
	Builders FrstSource, Lake City, Fl	32055			7.13	30 s Apr 28 2009 MiTek Industries, Inc. Mon Jun 08 07:54:44 2009 Pa	ge 2

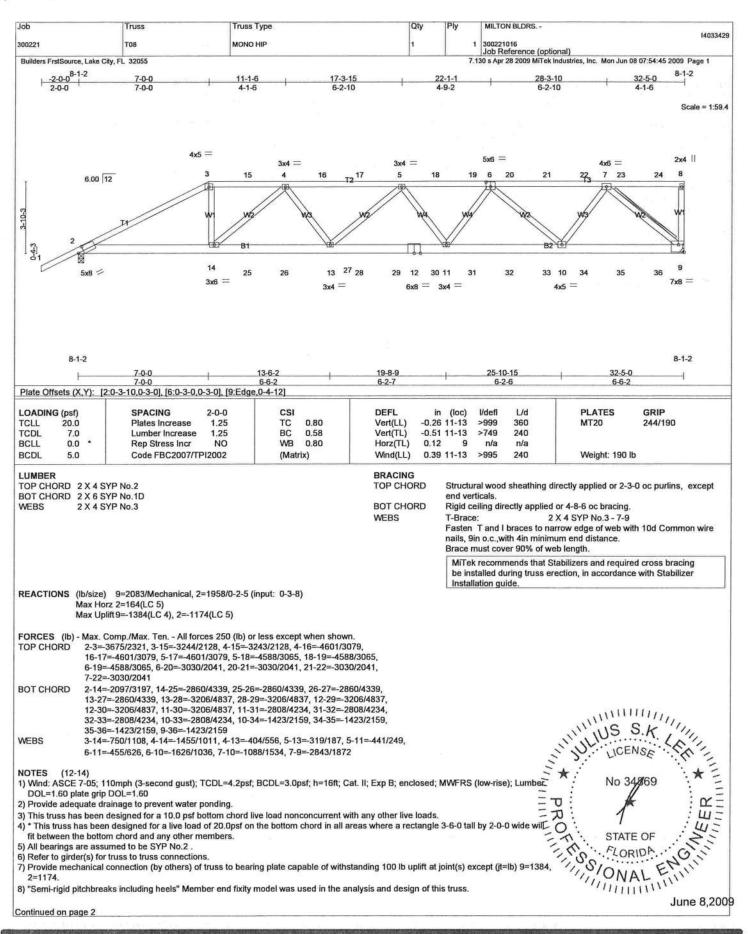
LOAD CASE(S) Standard

1) Regular: Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

Vert: 1-5--54, 5-6--54, 6-7--14, 2-12--10, 12-13--70(F--60), 13-14--110(F--60), 10-14--70(F--60), 10-15--10, 15-16--50, 8-16--10

No 34869


No 34869

STATE OF

FLORIDA

ON AL

June 8,200

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.

Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design paramenters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult. ANSI/TI Quality Criteria, DSB-89 and BCSI1 Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	MILTON BLDRS	14033429
300221	T08	MONO HIP	1	1	300221016 Job Reference (optional)	

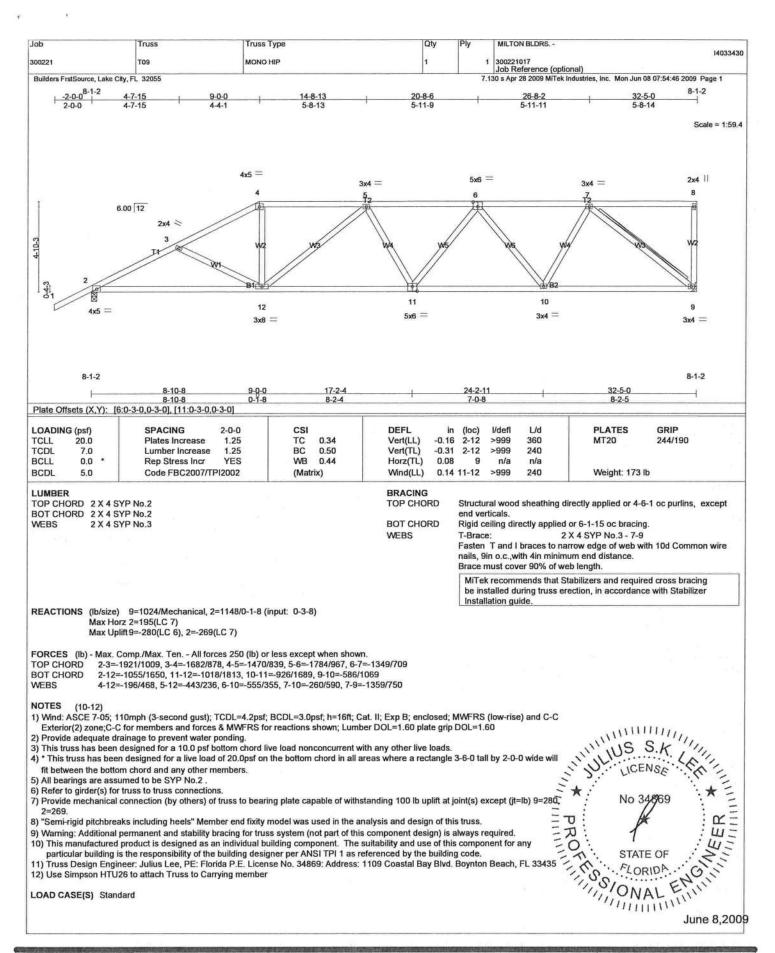
Builders FrstSource, Lake City, FL 32055

7.130 s Apr 28 2009 MiTek Industries, Inc. Mon Jun 08 07:54:45 2009 Page 2

- NOTES 9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 216 lb down and 215 lb up at 7-0-0, 103 lb down and 82 lb up at 9-0-12, 103 Ib down and 82 lb up at 11-0-12, 103 lb down and 82 lb up at 13-0-12, 103 lb down and 82 lb up at 15-0-12, 103 lb down and 82 lb up at 19-0-12, 103 lb down and 82 lb up at 21-0-12, 103 lb down and 82 lb up at 23-0-12, 103 lb down and 82 lb up at 25-0-12, 103 lb down and 82 lb up at 27-0-12, and 103 lb down and 82 lb up at 29-0-12, and 103 lb down and 82 lb up at 31-0-12 on top chord, and 66 lb down and 71 lb up at 7-0-12, 66 lb down and 71 lb up at 9-0-12, 66 lb down and 71 lb up at 11-0-12, 66 lb down and 71 lb up at 13-0-12, 66 lb down and 71 lb up at 15-0-12, 66 lb down and 71 lb up at 17-0-12, 66 lb down and 71 lb up at 19-0-12, 66 lb down and 71 lb up at 21-0-12, 66 lb down and 71 lb up at 23-0-12, 66 lb down and 71 lb up at 25-0-12, 66 lb down and 71 lb up at 27-0-12, and 66 lb down and 71 lb up at 29-0-12, and 66 lb down and 71 lb up at 31-0-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 10) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).
- 12) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.
- 13) Truss Design Engineer: Julius Lee, PE: Florida P.E. License No. 34869: Address: 1109 Coastal Bay Blvd. Boynton Beach, FL 33435
- 14) Use Simpson HTU26 to attach Truss to Carrying member

LOAD CASE(S) Standard

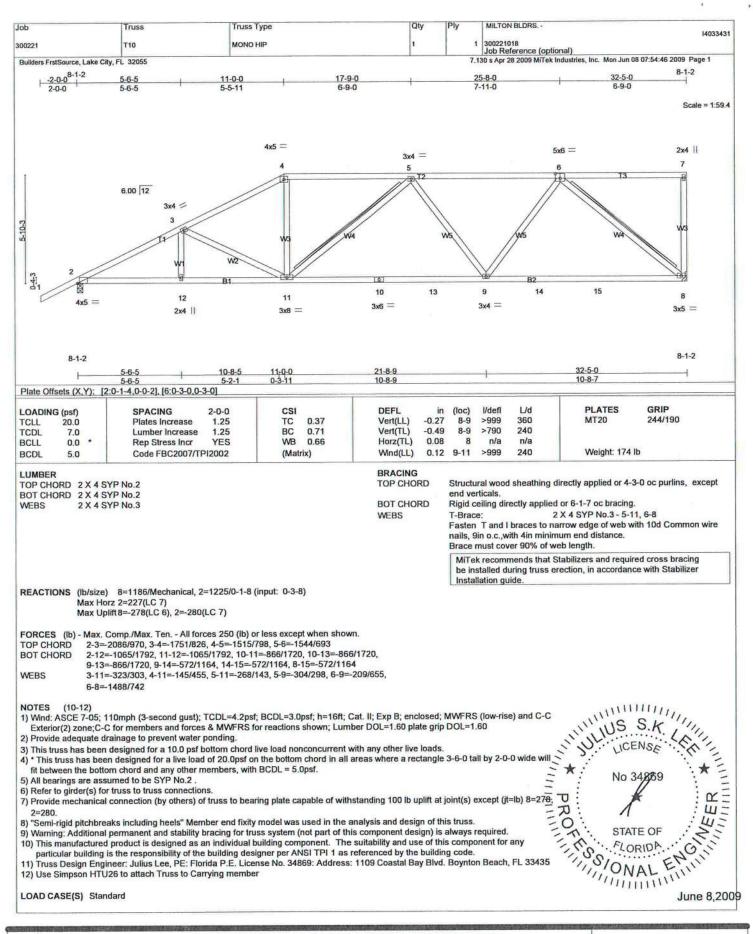
1) Regular: Lumber Increase=1.25, Plate Increase=1.25


Uniform Loads (plf)

Vert: 1-3=-54, 3-8=-54, 2-9=-10

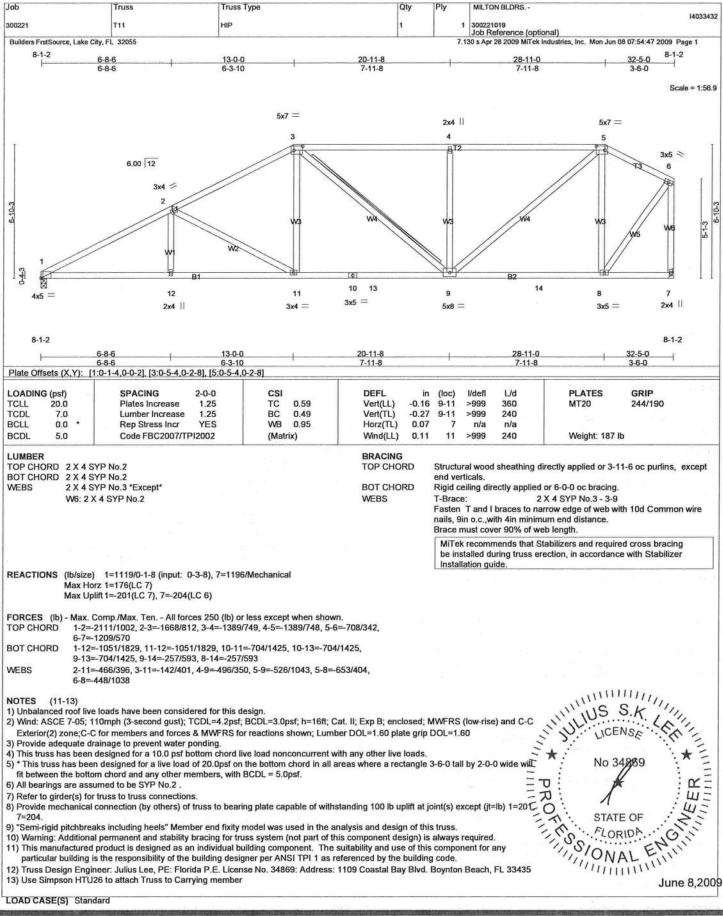
Concentrated Loads (lb)

Vert: 3=-216(F) 14=-32(F) 4=-103(F) 5=-103(F) 15=-103(F) 16=-103(F) 17=-103(F) 18=-103(F) 19=-103(F) 20=-103(F) 21=-103(F) 22=-103(F) 23=-103(F) 24=-103(F) 25-32(F) 26-32(F) 27-32(F) 28-32(F) 29-32(F) 30-32(F) 31-32(F) 32-32(F) 33-32(F) 34-32(F) 35-32(F) 36-32(F)


> No 34' SIONAL MALININ

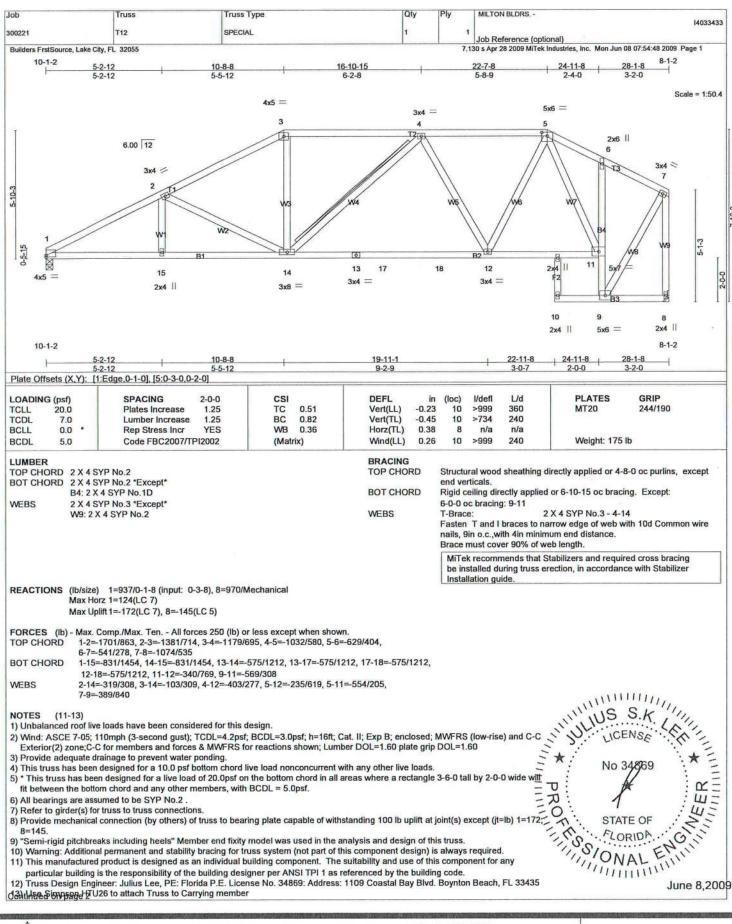
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.

Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component.


Applicability of design paramenters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult. ANSI/PII Quality Criteria, DSB-89 and BCSII Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.

Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component.

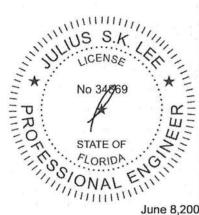

Applicability of design paramenters and proper incorporation of component is responsibility of building designer - not fruss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding flabrication, quality control, storage, delivery, erection and bracing, consult. ANSI/TP11 Quality Criteria, DSB-89 and BCS11 Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

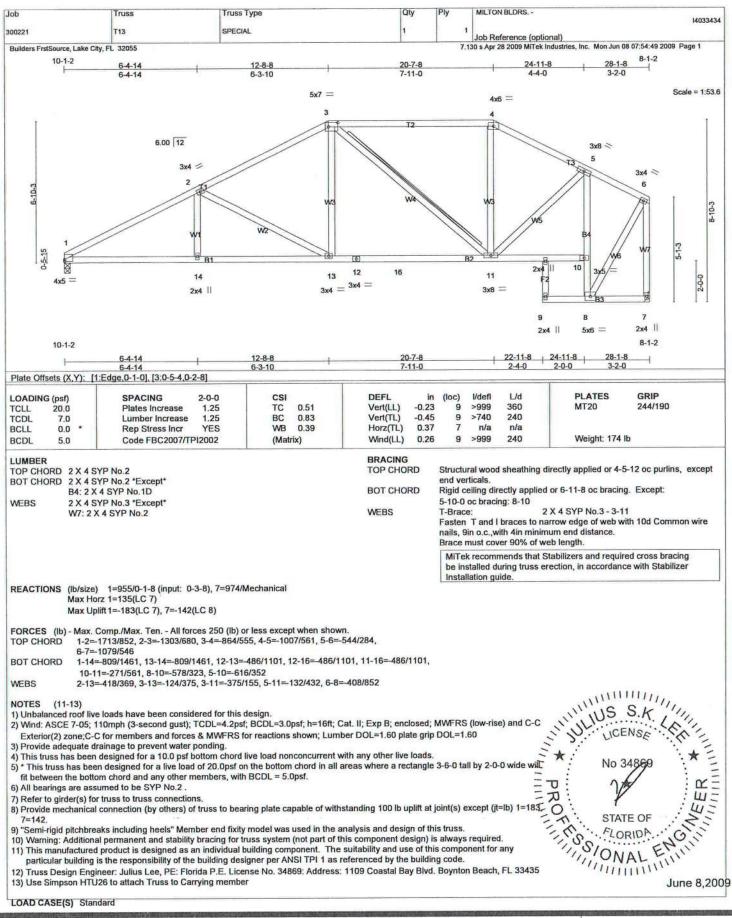
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.

Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component.

Applicability of design paramenters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding labrication, quality control, storage, delivery, erection and bracing, consult. AMSI/TIQ Quality Criteria, DSB-89 and BCS11 Building Component Safety Information available from Truss Plate Institute, S83 D'Onofrio Drive, Madison, WI 53719.

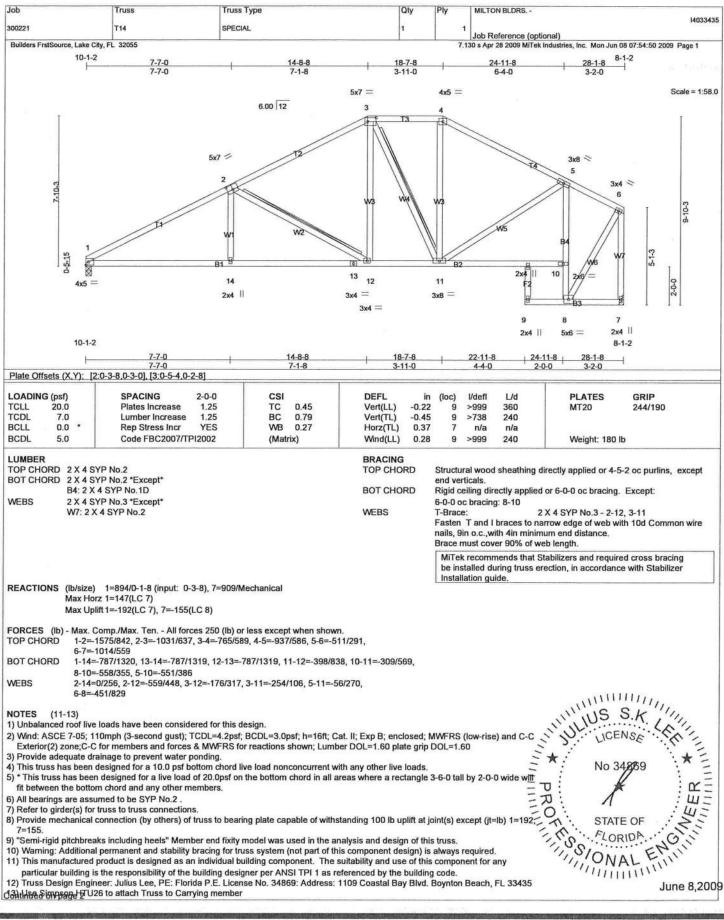
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED WITEK REFERENCE PAGE MIL-7473 BEFORE USE.
Design valid for use only with Milek connectors. This design is based only upon parameters shown, and is for an individual building component.
Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult


ANSI/P11 Quality Criteria, DSB-89 and BCS11 Building Component
Safety Information available from Truss Plate Institute, S83 D'Onofrio Drive, Madison, WI 53719.


Job	Truss	Truss Type	Qty	Ply	MILTON BLDRS	-
300221	T12	SPECIAL	1	1	Job Reference (optional)	14033433

Builders FrstSource, Lake City, FL 32055

7.130 s Apr 28 2009 MiTek Industries, Inc. Mon Jun 08 07:54:48 2009 Page 2


LOAD CASE(S) Standard

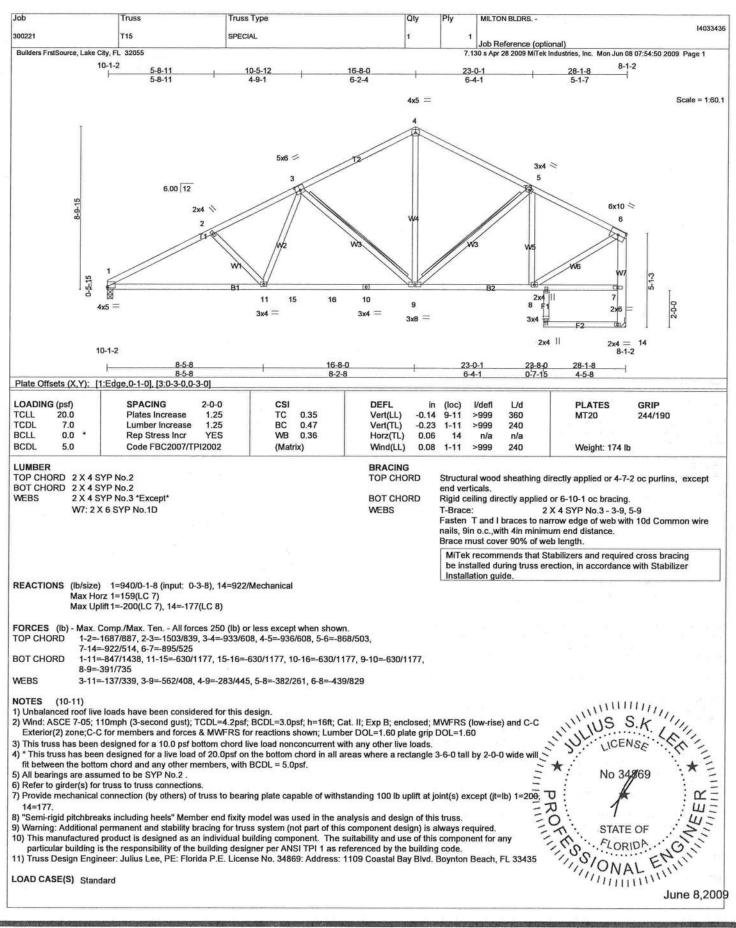
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.

Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design paramenters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult. ANSI/TP1 Quality Criteria, DSB-89 and BCS11 Building Component Safety Information available from Truss Plate Institute. 583 D'Onofrio Drive, Madison, WI 53719.

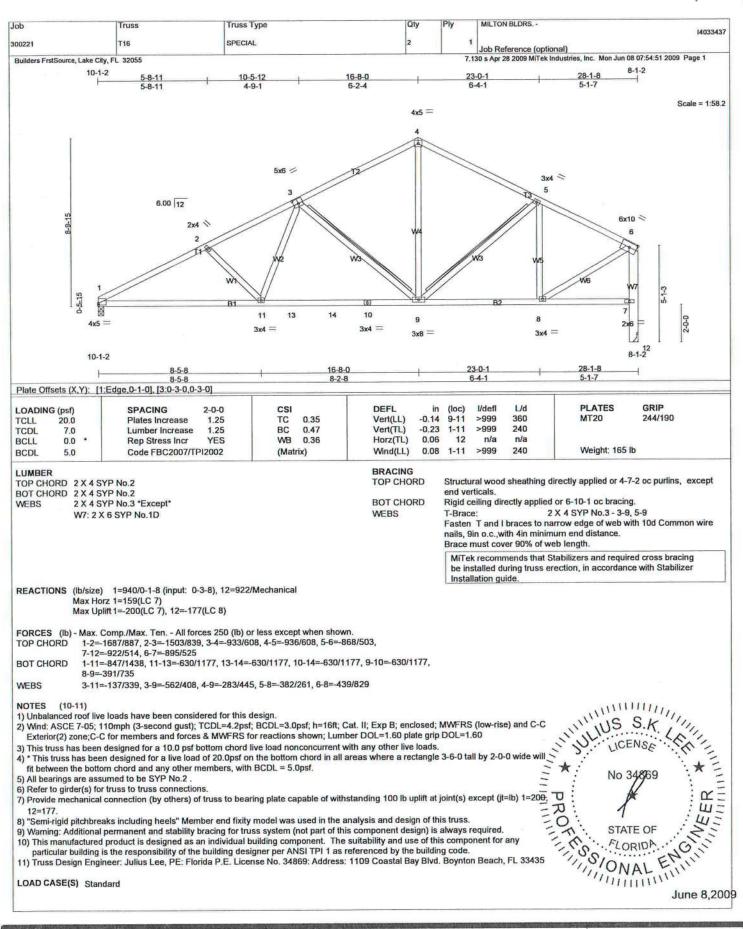
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MIT-7473 BEFORE USE.

Design valid for use only with Milek connectors, This design is based only upon parameters shown, and is for an individual building component.

Applicability of design paramenters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult. AMS/IP11 Quality Criteria, DSB-89 and BCS11 Building Component Sately Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

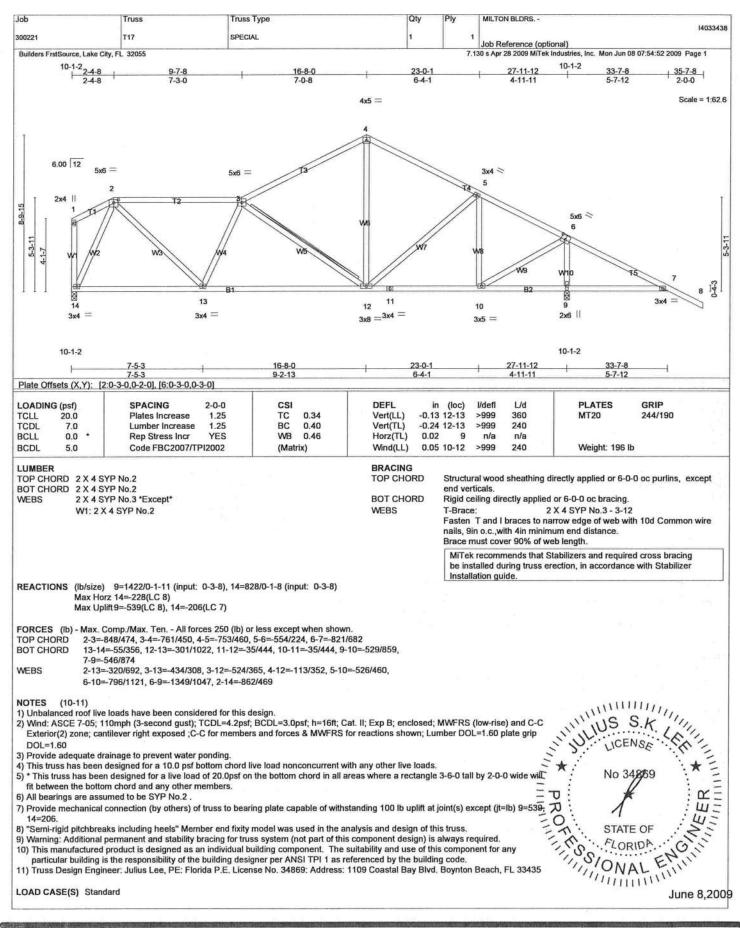

Job	Truss	Truss Type	Qty	Ply	MILTON BLDRS	14033435
300221	T14	SPECIAL	1	1	Job Reference (optional)	
Builders FrstSource, Lake City, F	L 32055			7.1	30 s Apr 28 2009 MiTek Industries, Inc. Mon Jun 08 07:54:50 2009 Pag	e 2
LOAD CASE(S) Standard	1					
-i-/ Curiudit						
	70					
7						
				•		
					111111111111111111111111111111111111111	
					IIIII SOLVE	,
					S. D. CICENSE . C.	1
					= ★ No 34869	+ =
					= 70 #	œΞ
					=R 1	Щ=
- 7					STATE OF	1
					No 34859 TO STATE OF FLORIDA CON AL ENGINEERING ON AL ENGINEERING	1
					MONAL ENT	
					111111111111	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MIT-7473 BEFORE USE.

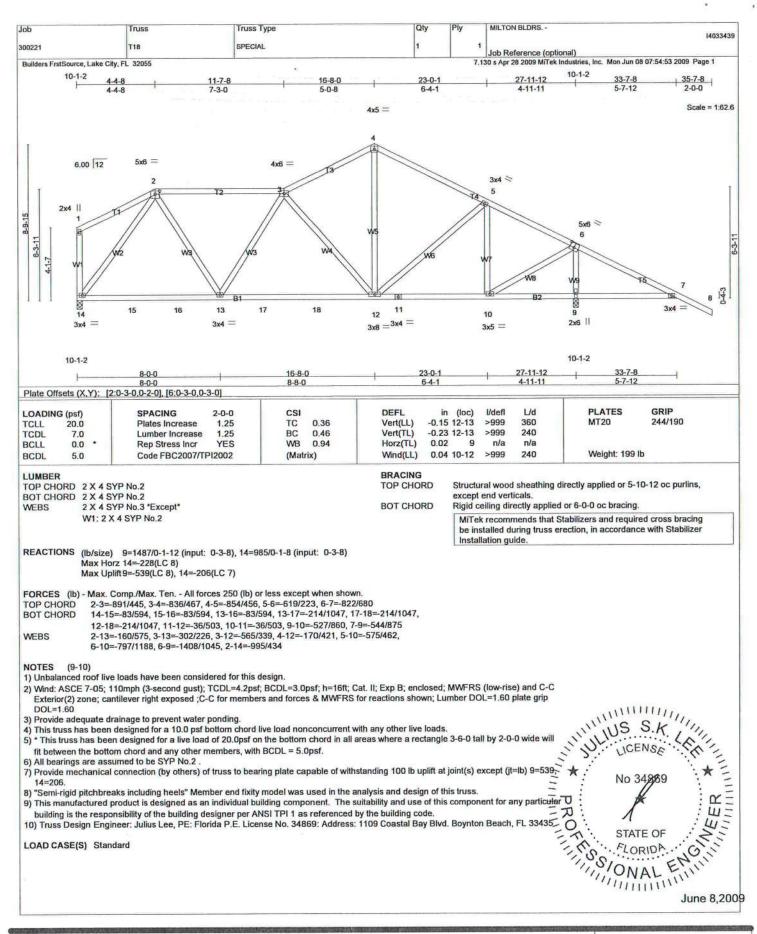

Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design paramenters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult

ANSI/TP11 Quality Criteria, DSB-89 and BCS11 Building Component Safety Information

available from Truss Plate Institute, S83 D'Onofrio Drive, Madison, WI S3719.

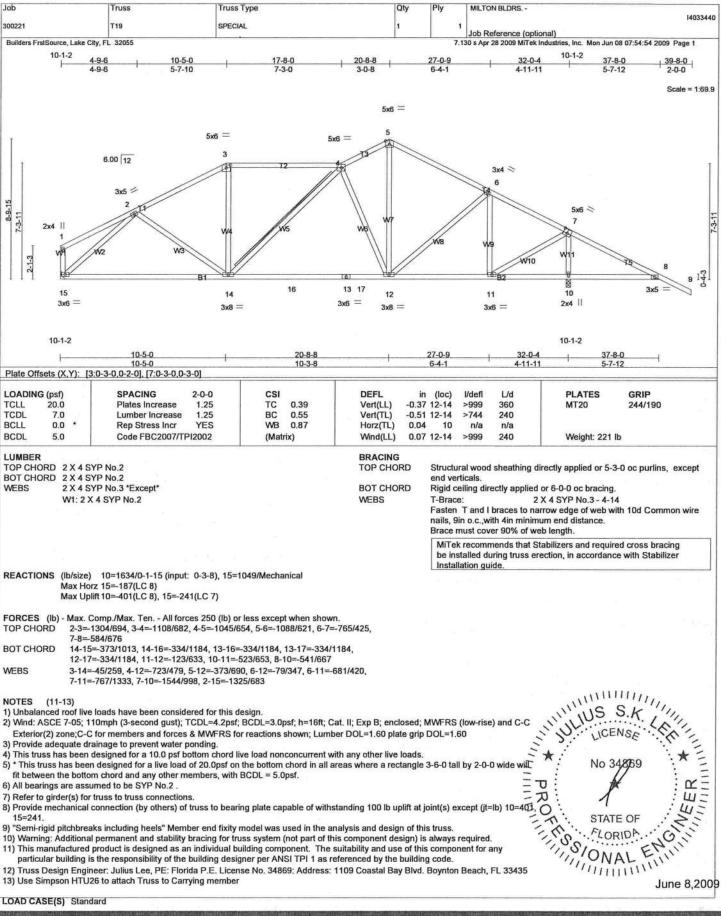


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.
Design valid for use only with Milek connectors. This design is based only upon parameters shown, and is for an individual building component.
Applicability of design paramenters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, exection and bracing, consult. AMS/TP1 Quality Criteria, DSB-89 and BCS11 Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

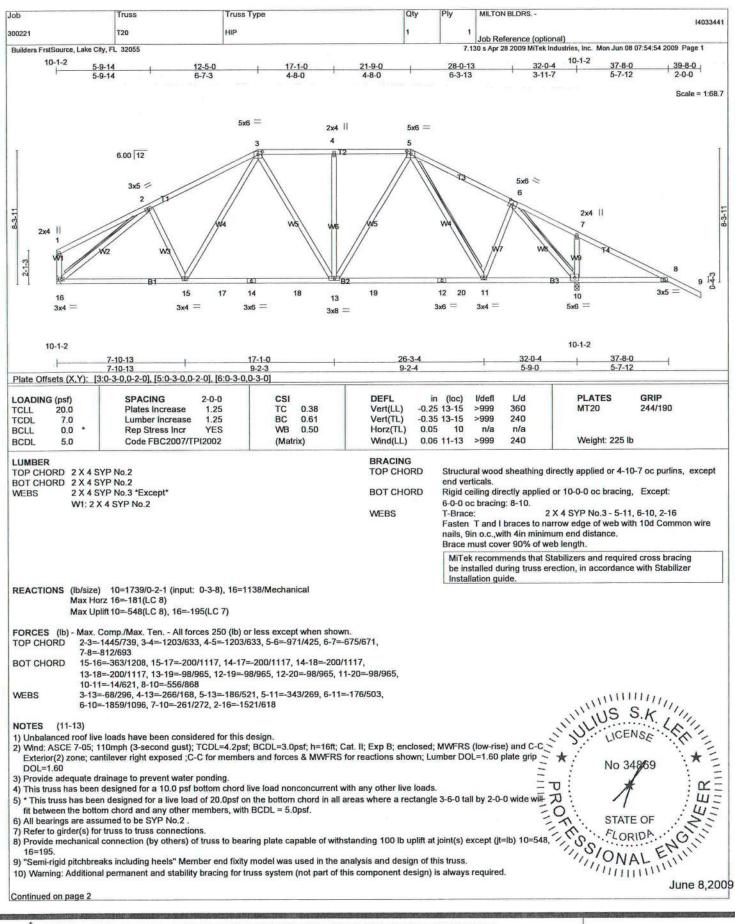


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.

Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component.
Applicability of design paramenters and proper incorporation of component is responsibility of building designer - not huss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding flabrication, quality control, storage, delivery, erection and bracing, consult. ANSI/TI1 Quality Criteria, DSB-89 and BCS11 Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.
Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component.
Applicability of design paramenters and proper incorporation of component is responsibility of building designer - not fluxs designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult. ANSI/TP11 Quality Criteria, DSB-89 and BCS11 Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.


Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component.

Applicability of design paramenters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult. AMSI/TPI Quality Criteria, DSB-89 and BCS11 Building Component Safety Information available from Truss Plate Institute. 583 D'Onofrio Drive, Madison, WI 53719.

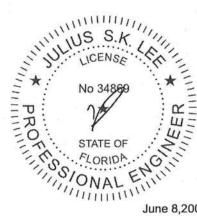
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.

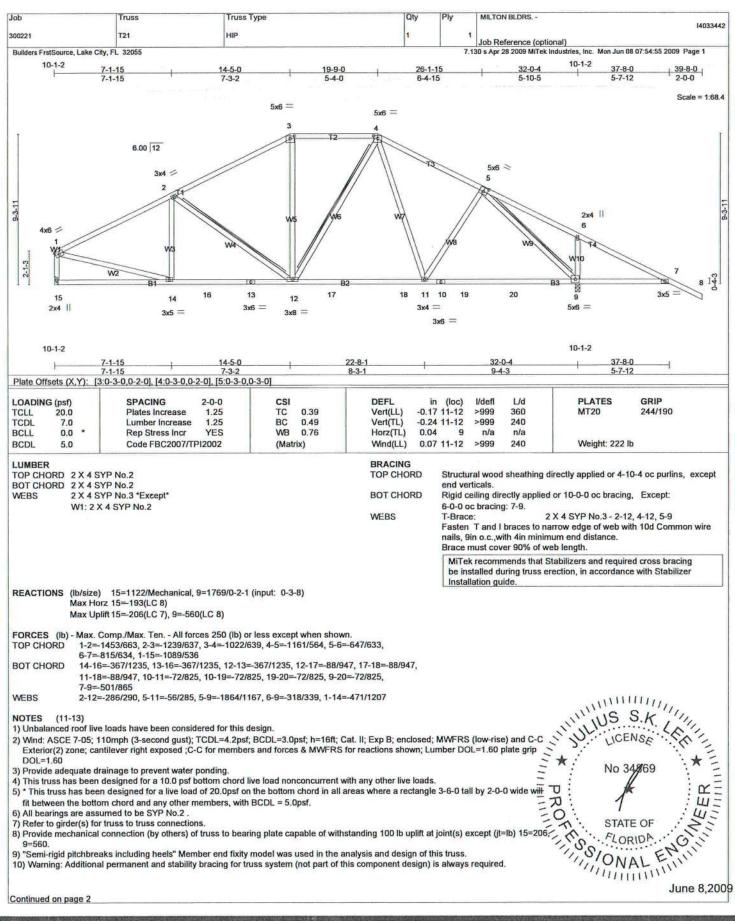
Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component, Applicability of design parameters and proper incorporation of component is responsibility to building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding flabrication, quality control, storage, delivery, erection and bracing, consult. ANSI/TPII Quality Criteria, DSB-89 and BCSI1 Building Component Safety Information available from Truss Plate Institute, 583 D'Onotrio Drive, Madison, WI 53719.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.

Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component.

Applicability of design paramenters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the exector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding tabrication, quality control, storage, delivery, erection and bracing, consult. ANSI/TP1 Quality Criteria, DSB-89 and BCS11 Building Component Safety Information available from Truss Plate Institute, S83 D'Onotrio Drive, Madison, WI 53719.


Job	Truss	Truss Type	Qty	Ply	MILTON BLDRS	14000444
300221	T20	HIP	1	1	Job Reference (optional)	14033441


7.130 s Apr 28 2009 MiTek Industries, Inc. Mon Jun 08 07:54:55 2009 Page 2

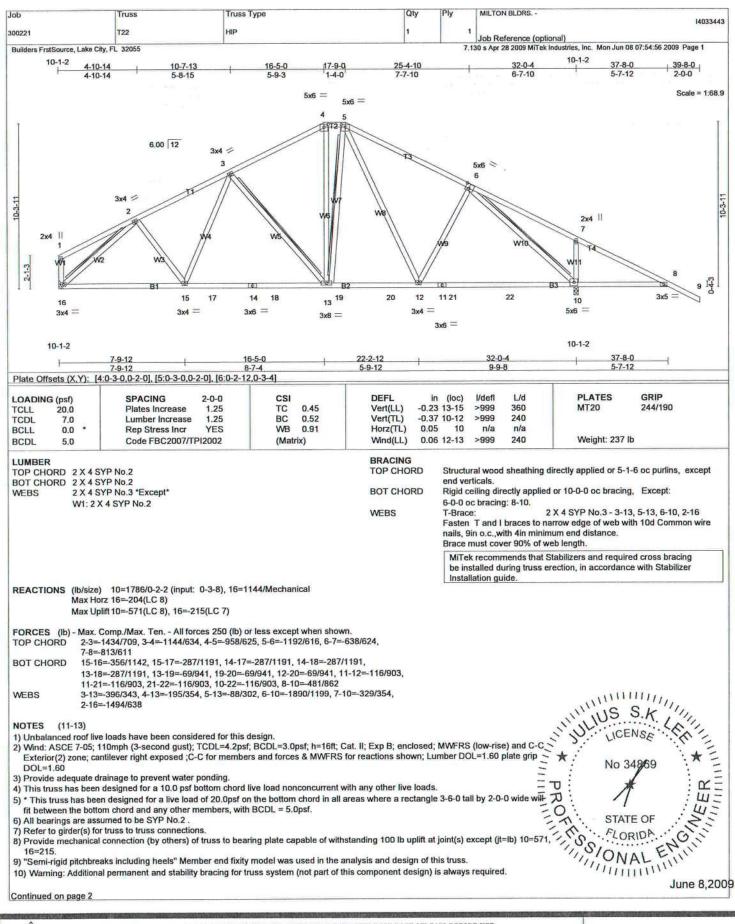
- This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.
 Truss Design Engineer: Julius Lee, PE: Florida P.E. License No. 34869: Address: 1109 Coastal Bay Blvd. Boynton Beach, FL 33435

13) Use Simpson HTU26 to attach Truss to Carrying member

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MIL-7473 BEFORE USE.
Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component.
Applicability of design paramenters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult. AMS/ITQ Quality Criteria, DS8-89 and BCS11 Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	MILTON BLDRS	
300221	T21	HIP	1	1	Job Reference (optional)	14033442


7.130 s Apr 28 2009 MiTek Industries, Inc. Mon Jun 08 07:54:55 2009 Page 2

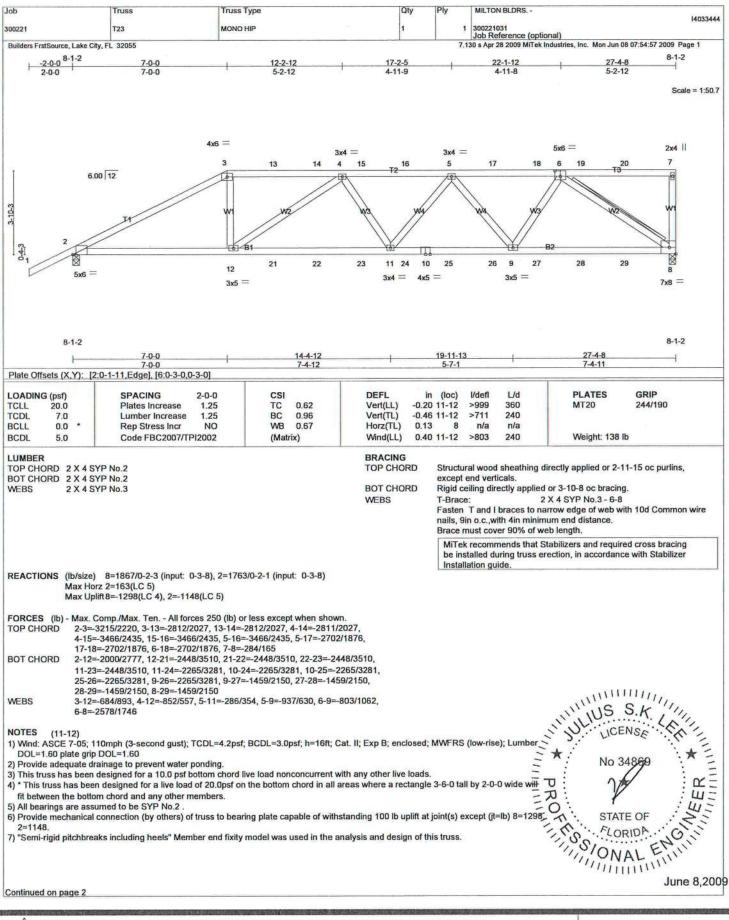
- 11) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.
 12) Truss Design Engineer: Julius Lee, PE: Florida P.E. License No. 34869: Address: 1109 Coastal Bay Blvd. Boynton Beach, FL 33435

13) Use Simpson HTU26 to attach Truss to Carrying member

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.
Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component.
Applicability of design paramenters and proper incorporation of component is responsibility of building designer - not fluxs designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding labrication, quality control, storage, delivery, erection and bracing, consult. ANIS/TIQUIII Quality Criteria, DSB-89 and BCSI1 Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	MILTON BLDRS
300221	T22	HIP	1	1	Job Reference (optional)


7.130 s Apr 28 2009 MiTek Industries, Inc. Mon Jun 08 07:54:56 2009 Page 2

- 11) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.
- 12) Truss Design Engineer: Julius Lee, PE: Florida P.E. License No. 34869: Address: 1109 Coastal Bay Blvd. Boynton Beach, FL 33435

13) Use Simpson HTU26 to attach Truss to Carrying member

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.

Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component, Applicability of design paramenters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult. AMSI/TP1 Quality Criteria, DSB-89 and BCS11 Building Component Safety Information.

Job	Truss	Truss Type	Qty	Ply	MILTON BLDRS	
300221	T23	MONO HIP	1	1	300221031 Job Reference (optional)	14033444

Builders FrstSource, Lake City, FL 32055

7.130 s Apr 28 2009 MiTek Industries, Inc. Mon Jun 08 07:54:57 2009 Page 2

NOTES (11-12)

- 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 216 lb down and 215 lb up at 7-0-0, 103 lb down and 82 lb up at 19-0-12, 103 lb down and 82 lb up at 11-0-12, 103 lb down and 82 lb up at 11-0-12, 103 lb down and 82 lb up at 11-0-12, 103 lb down and 82 lb up at 11-0-12, 103 lb down and 82 lb up at 11-0-12, 103 lb down and 82 lb up at 11-0-12, 103 lb down and 82 lb up at 11-0-12, 103 lb down and 82 lb up at 11-0-12, 103 lb down and 82 lb up at 11-0-12, 103 lb down and 82 lb up at 11-0-12, 103 lb down and 82 lb up at 11-0-12, 103 lb down and 82 lb up at 11-0-12, 103 lb down and 82 lb up at 11-0-12, 103 lb down and 118 lb up at 11-0-12, 103 lb up at 11-0-12, 103 lb down and 118 lb up at 11-0-12, 103 lb up at 11-
- 9) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

- 11) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.
- 12) Truss Design Engineer: Julius Lee, PE: Florida P.E. License No. 34869: Address: 1109 Coastal Bay Blvd. Boynton Beach, FL 33435

LOAD CASE(S) Standard

1) Regular: Lumber Increase=1.25, Plate Increase=1.25

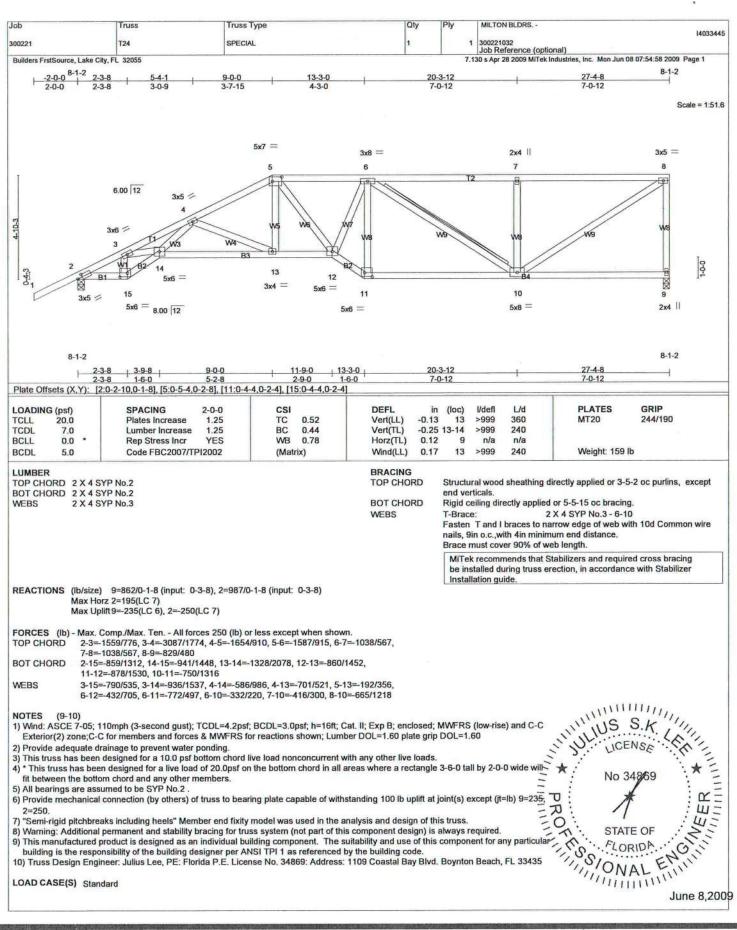
Uniform Loads (plf)

Vert: 1-3=54, 3-7=-54, 2-8=-10

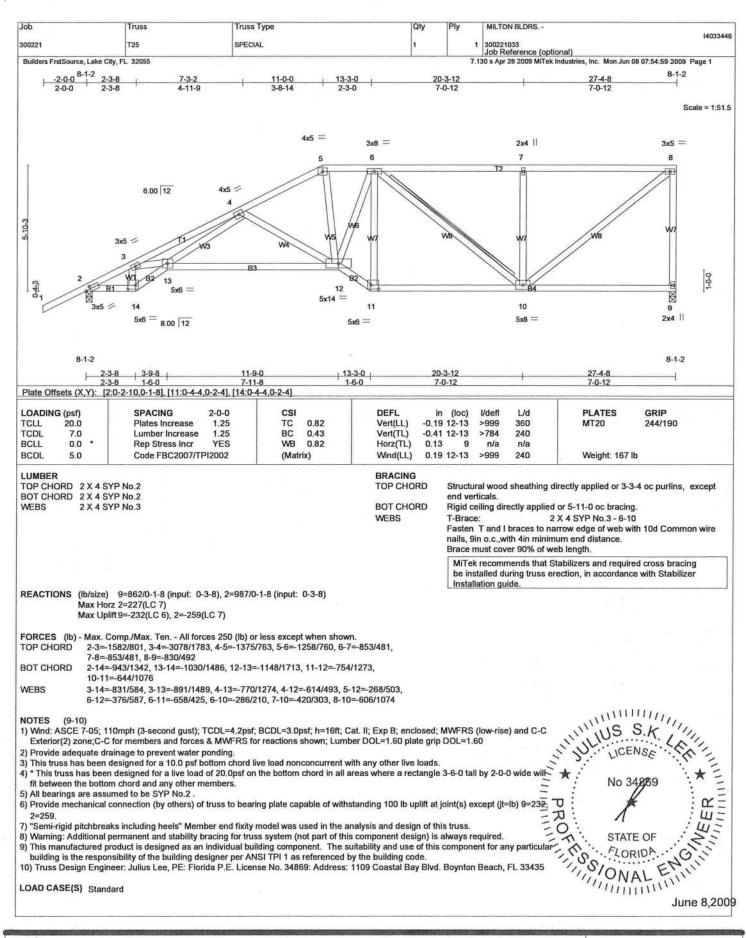
Concentrated Loads (lb)

Vert: 3=-216(B) 7=-103(B) 8=-32(B) 12=-213(B) 5=-103(B) 13=-103(B) 14=-103(B) 15=-103(B) 16=-103(B) 17=-103(B) 18=-103(B) 19=-103(B) 20=-103(B) 21=-32(B) 22=-32(B) 23=-32(B) 24=-32(B) 25=-32(B) 26=-32(B) 27=-32(B) 28=-32(B) 29=-32(B)

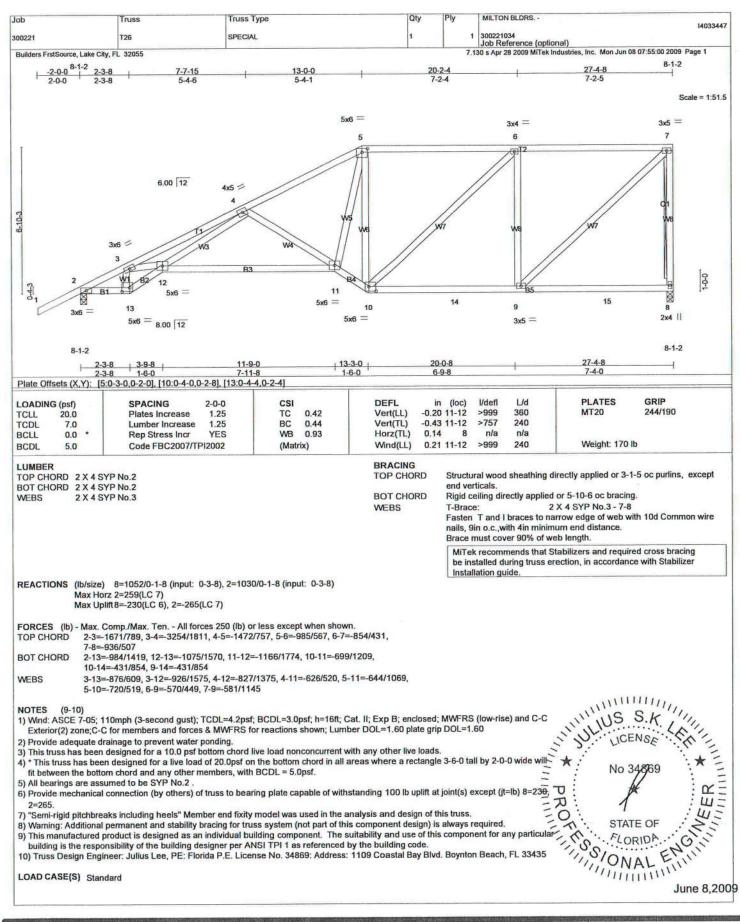
No 34869


No 34869

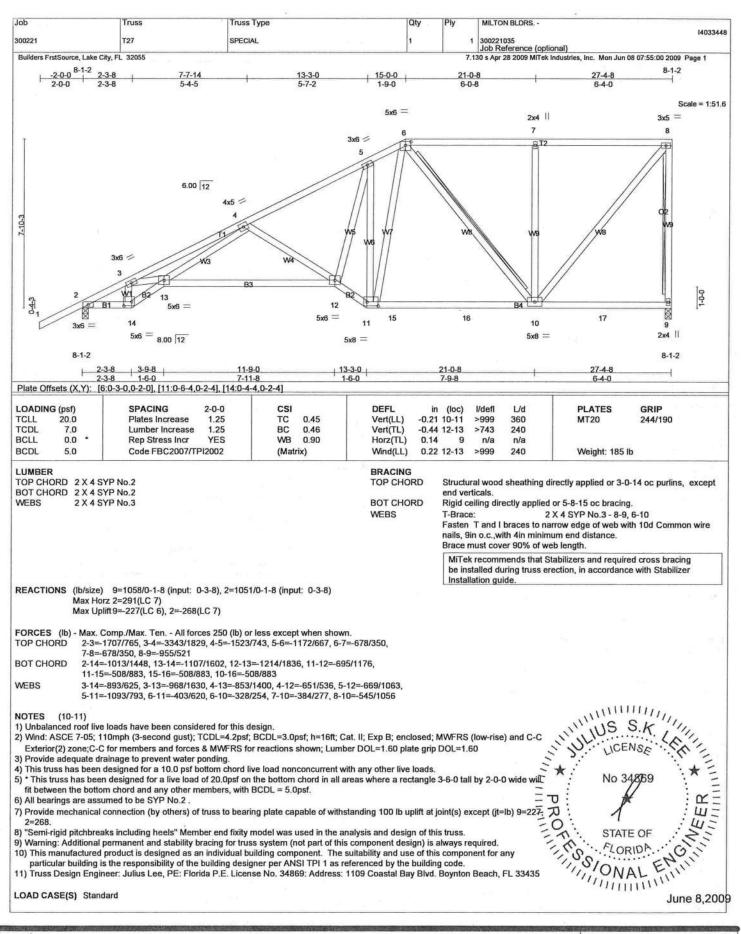
STATE OF


FLORIDA

ONAL

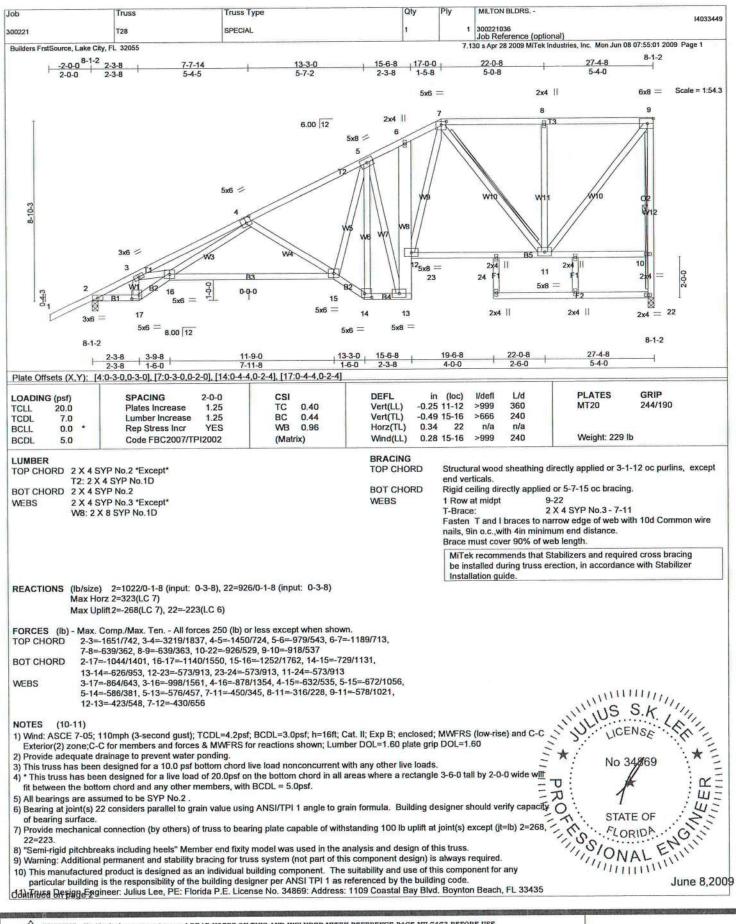

MILITARIA

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.
Design valid for use only with Milek connectors, This design is based only upon parameters shown, and is for an individual building component.
Applicability of design paramenters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult. AMSI/TI Quality Criteria, DS8-89 and BCS11 Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.
Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design paramenters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult. ANSI/T11 Quality Criteria, DSB-89 and BCS11 Building Component Sately Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

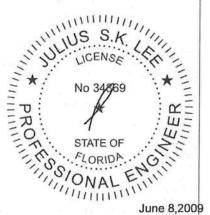
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.

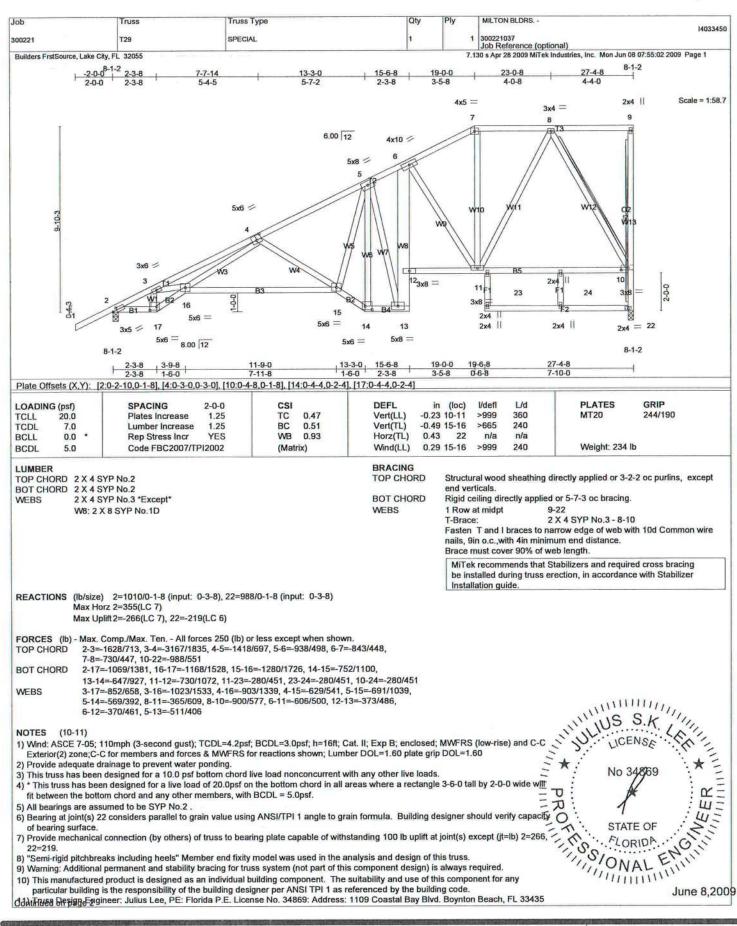

Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult. ANSI/TH Quality Criteria, DSB-89 and BCS11 Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MII-7473 BEFORE USE.

Design valid for use only with MTek connectors. This design is based only upon parameters shown, and is for an individual building component.

Applicability of design paramenters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult. AMSI/TH Quality Criteria, DSB-89 and BCS11 Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.



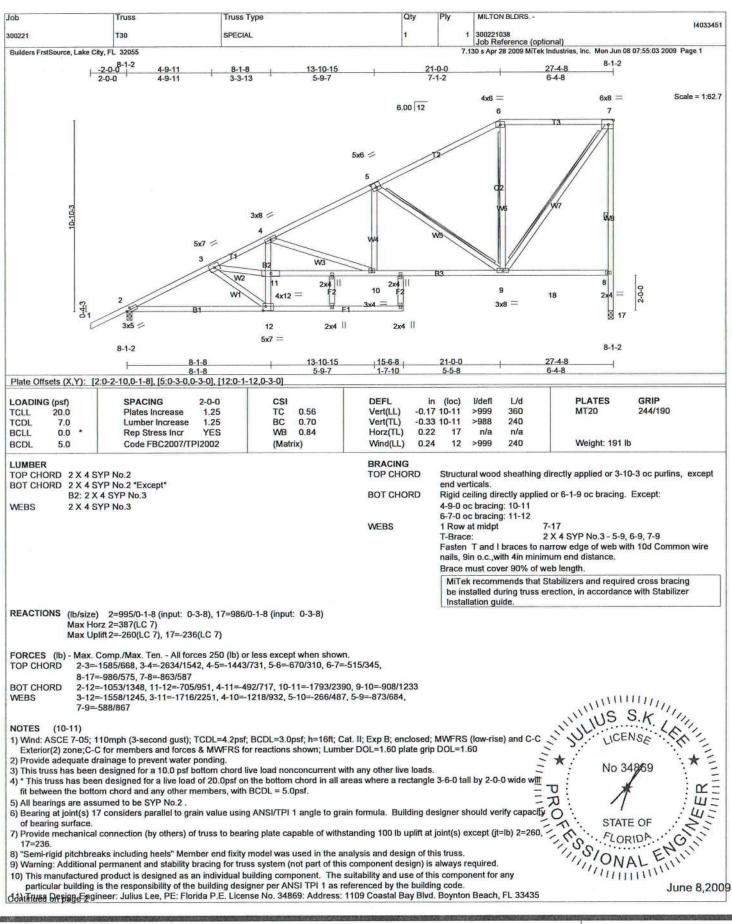

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MII-7473 BEFORE USE.

Design valid for use only with Milek connectors. This design is based only upon parameters shown, and is for an individual building component.
Applicability of design paramenters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding flabrication, quality control, storage, delivery, erection and bracing, consult. ANSI/TP1 Quality Criteria, DSB-89 and BCS11 Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	MILTON BLDRS	
300221	T28	SPECIAL	1	,	300221036 Job Reference (optional)	14033449
Builders FrstSource, Lake	City, FL 32055			7.	130 s Apr 28 2009 MiTek Industries, Inc. Mon Jun 08	07:55:01 2009 Page 2

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.


Design valid for use only with Milek connectors. This design is based only upon parameters shown, and is for an individual building component.
Applicability of design paramenters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding tabrication, quality control, storage, delivery, erection and bracing, consult. AMSI/TI Quality Criteria, DSB-89 and BCSI1 Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	MILTON BLDRS	20000000000
300221	T29	SPECIAL	1	1	300221037 Job Reference (optional)	1403345
Builders FrstSource, Lake City, F	L 32055	The state of the s		7.1	30 s Apr 28 2009 MiTek Industries, Inc. Mon Jun 08 07:55:02 2009 Pa	age 2

LOAD CASE(S) Standard

No 34869

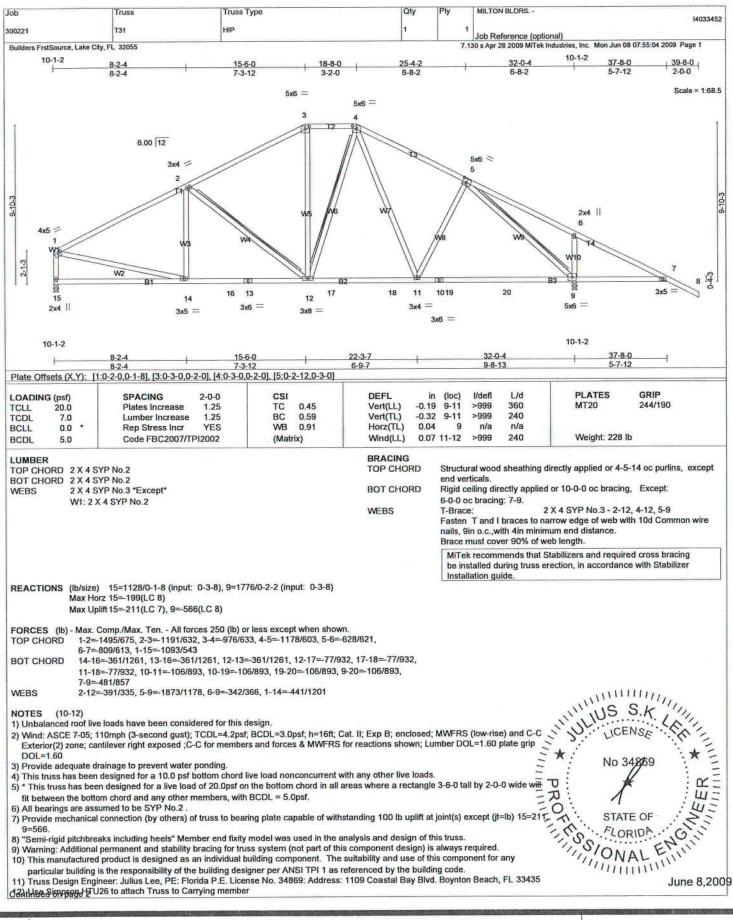
RO STATE OF FLORIDA STATE OF S IIIN EER *

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED WITEK REFERENCE PAGE MII-7473 BEFORE USE.

Design valid for use only with Milek connectors, this design is based only upon parameters shown, and is for an individual building component. Applicability of design paramenters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer; For general guidance regarding tabrication, quality control, storage, delivery, erection and bracing, consult. ANSI/TI Quality Criteria, DSB-89 and BCS11 Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	MILTON BLDRS	
300221	Т30	SPECIAL	1	1	300221038 Job Reference (optional)	14033451
Builders FrstSource, Lake City, F	L 32055			7.13	30 s Apr 28 2009 MiTek Industries, Inc. Mon Jun 08 07:55:03 2009 Pa	age 2

LOAD CASE(S) Standard


No 34860

No 34860

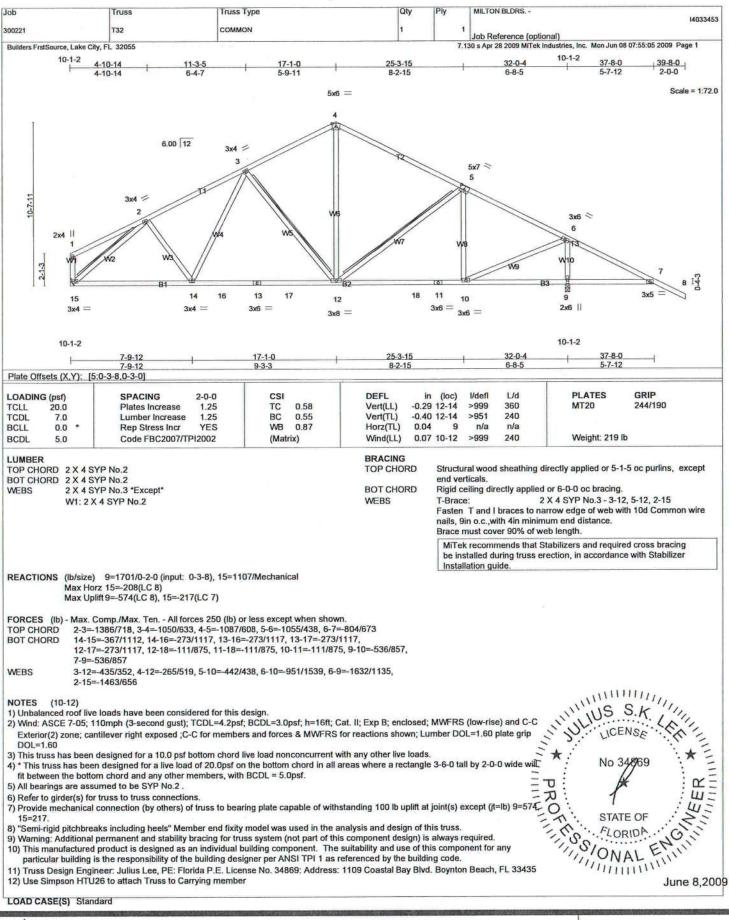
STATE OF

LORIDA

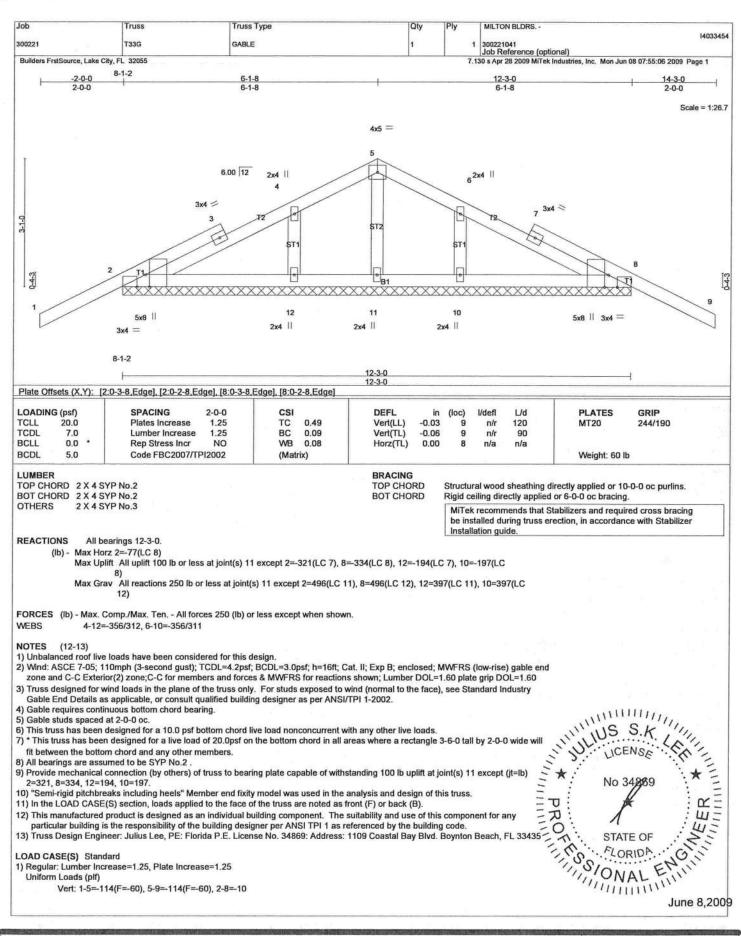
June 8,200

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.

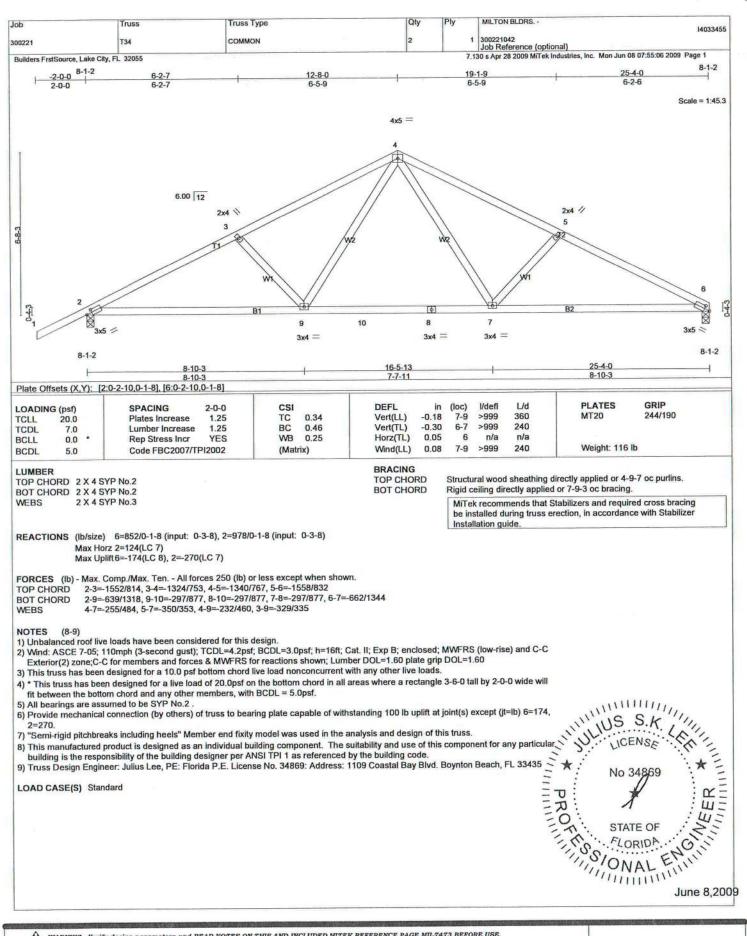
Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not hruss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult. AMSI/T11 Quality Criteria, DSB-89 and BCS11 Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.


Job	Truss	Truss Type	Qty	Ply	MILTON BLDRS, -	10000000000
300221	Т31	HIP	1	1	Job Reference (optional)	14033452

Builders FrstSource, Lake City, FL 32055


7.130 s Apr 28 2009 MiTek Industries, Inc. Mon Jun 08 07:55:04 2009 Page 2

LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.
Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component, applicability of design paramenters and proper incorporation of component is responsibility of building designer - not fruss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult. AMSI/TP1 Quality Criteria, DSB-89 and BCS11 Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.

Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component.

Applicability of design paramenters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult. ANSI/TI Quality Criteria, DSB-89 and BCSI1 Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.
Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component.
Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult

ANSI/TPI Quality Criteria, DSB-89 and BCSI1 Building Component
Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job Truss Type Qty MILTON BLDRS. -Truss 14033456 T34G GABLE Job Reference (optional) Builders FrstSource, Lake City, FL 32055 7.130 s Apr 28 2009 MiTek Industries, Inc. Mon Jun 08 07:55:07 2009 Page -2-0-0 8-1-2 12-8-0 6-2-7 Scale = 1:45.9 5x8 = 33 6 6.00 12 ST3 5-10-0 3x4 < 3×4 > 3x5 / 3×4 > 0-4-3 Bt ¢ 11 10 5x8 || 4x5 3x4 = 3x4 = 17 16 15 14 13 34 12 8-1-2 8-1-2 8-10-3 16-5-13 25-4-0 8-10-3 8-10-3 Plate Offsets (X,Y): [2:0-3-8,Edge], [6:0-2-0,0-0-0], [9:0-4-0,0-3-1] LOADING (psf) SPACING 2-0-0 CSI DEFL (loc) I/defl L/d PLATES GRIP TCLL 20.0 Plates Increase 1.25 TC 0.86 Vert(LL) -0.139-10 >999 360 MT20 244/190 TCDL 7.0 Lumber Increase 1 25 BC 0.37 Vert(TL) -0.25 9-10 >599 240 BCIL 00 Rep Stress Incr NO WR 0.50 Horz(TL) 0.02 9 n/a n/a BCDL 5.0 Code FBC2007/TPI2002 (Matrix) Wind(LL) 0.04 9-10 >999 240 Weight: 171 lb BRACING LUMBER TOP CHORD 2 X 4 SYP No.1D *Except* Structural wood sheathing directly applied or 5-8-1 oc purlins. TOP CHORD **BOT CHORD** T1,T3: 2 X 4 SYP No.2 Rigid ceiling directly applied or 6-0-0 oc bracing. 2 X 4 SYP No 3 - 6-14 BOT CHORD 2 X 4 SYP No. 2 WEBS T-Brace: 2 X 4 SYP No.3 WEBS Fasten T and I braces to narrow edge of web with 10d Common wire OTHERS 2 X 4 SYP No 3 nails, 9in o.c., with 4in minimum end distance. Brace must cover 90% of web length. MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide REACTIONS All bearings 13-1-0 except (jt=length) 9=0-3-8. (lb) - Max Horz 2=145(LC 7) Max Uplift All uplift 100 lb or less at joint(s) 12, 13, 17 except 2=298(LC 7), 9=-282(LC 8), 14=-741(LC 7) Max Grav All reactions 250 lb or less at joint(s) 12, 13, 15, 16, 17 except 2=564(LC 11), 9=682(LC 12), 14=1838(LC 1) FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 5-6=-232/751, 6-33=-577/423, 7-33=-987/487, 7-8=-1234/651, 8-9=-1369/658 * STANLING S.K. **BOT CHORD** 13-14=0/288, 13-34=0/288, 12-34=0/288, 11-12=0/288, 10-11=0/288, 9-10=-536/1230 WEBS 6-10=-361/729, 7-10=-782/518, 6-14=-1535/726, 5-14=-739/491 (13-14)1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 110mph (3-second gust); TCDL=4.2psf; BCDL=3.0psf; h=16ft; Cat. II; Exp B; enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1-2002. 4) All plates are 2x4 MT20 unless otherwise indicated. 5) Gable studs spaced at 2-0-0 oc. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. U 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 5.0psf. D Ш 8) All bearings are assumed to be SYP No.2 Ш JOIN 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12, 13, 17 except (jt=lb) 2=298, 9=282, 14=741. 10) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss, 11) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required. 12) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). 13) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code. June 8,2009 CONTRUES DESIGNED FIGURE STATE PROJECT VALUE OF THE STATE OF THE STATE

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.

Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not trust designer. Fracting shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult. AMS/ITQ Quality Criteria, DSB-89 and BCS11 Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	MILTON BLDRS, -	14033456
300221	T34G	GABLE	1		300221043 Job Reference (optional)	1100100
Builders FrstSource	, Lake City, FL 32055			7.	130 s Apr 28 2009 MiTek Industries, Inc. Mon Jun 08 07	:55:07 2009 Page 2
LOAD CASE/S	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					

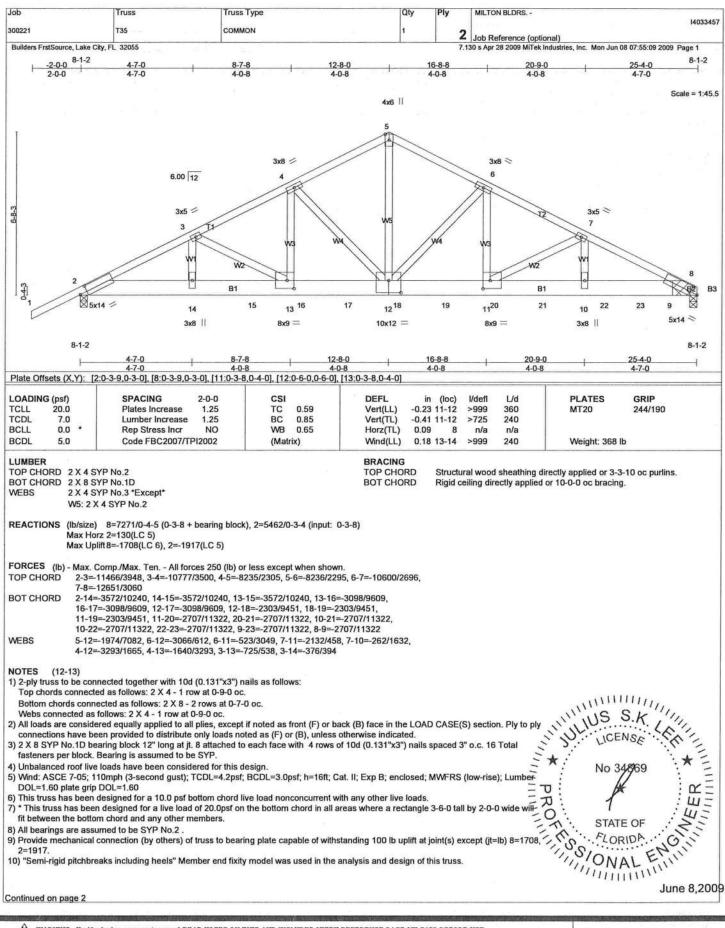
DAD CASE(S) Standard

1) Regular: Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

Vert: 1-3=-114(F=-60), 4-6=-114(F=-60), 6-33=-114(F=-60), 8-33=-141(F=-87), 8-9=-54, 2-34=-10, 11-34=-50, 9-11=-10

No 34869


No 34869

STATE OF

FLORIDA

ON AL

June 8,200

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.

Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult. ANIS/TP11 Quality Criteria, DSB-89 and BCS11 Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	MILTON BLDRS	14033457
300221	T35	COMMON	1	2	Job Reference (optional)	14035431
Builders FrstSource, Lake	City, FL 32055		7	7.1	30 s Apr 28 2009 MiTek Industries, Inc. Mon Jun 08 07:55:09 2	009 Page 2

Builders FrstSource, Lake City, FL 32055

NOTES (12-13)

- 11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 2073 lb down and 1390 lb up at 7-0-12, 1014 lb down and 286 lb up at 9-0-12, 1175 lb down and 284 lb up at 11-0-12, 1186 lb down and 210 lb up at 13-0-12, 960 lb down and 151 lb up at 15-0-12, 964 lb down and 148 lb up at 17-0-12, 899 lb down and 161 lb up at 19-0-12, 920 lb down and 183 lb up at 21-0-12, and 912 lb down and 183 lb up at 25-2-4 on bottom chord.
- The design/selection of such connection device(s) is the responsibility of others.

 12) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.
- 13) Truss Design Engineer: Julius Lee, PE: Florida P.E. License No. 34869: Address: 1109 Coastal Bay Blvd. Boynton Beach, FL 33435

LOAD CASE(S) Standard

1) Regular: Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

Vert: 1-5=54, 5-8=-54, 2-8=-10

Concentrated Loads (lb)

Vert: 8=-912(B) 15=-2073(B) 16=-1014(B) 17=-1175(B) 18=-1186(B) 19=-960(B) 20=-964(B) 21=-899(B) 22=-920(B) 23=-912(B)

No 34869

No 34869

STATE OF

FLORIDA

ONAL

INTERIOR OF

MILTON BLDRS. -Job Truss Truss Type Qty 14033458 T36 HIP 30022 Job Reference (optional) Builders FrstSource, Lake City, FL 32055 7.130 s Apr 28 2009 MiTek Industries, Inc. Mon Jun 08 07:55:10 2009 Page 1 -2-0-0 ⁸⁻¹⁻² 11-8-13 16-5-11 28-2-8 7-0-0 Scale = 1:51.6 4x6 = 4x6 = 3x4 = 3x4 = 12 13 4 17 75 16 18 6.00 12 3-10-3 143 6 10 22 9 11 8 5x8 = 5x8 = 5x6 = 3x5 = 3x5 = 8-1-2 8-1-2 21-2-8 7-0-0 14-1-4 28-2-8 7-0-0 Plate Offsets (X,Y): [2:0-1-11,Edge], [7:0-1-11,Edge] LOADING (psf) SPACING 2-0-0 CSI DEFL in (loc) 1/defl 1 /d PI ATES GRIP 20.0 Plates Increase 1.25 TC 0.83 Vert(LL) -0.20244/190 TCLL 10 >999 360 MT20 TCDL 7.0 Lumber Increase 1.25 BC 0.51 Vert(TL) -0.38 10-11 >872 240 BCLL 0.0 Rep Stress Incr NO WB 0.71 0.10 Horz(TL) n/a n/a Code FBC2007/TPI2002 Wind(LL) BCDL 5.0 (Matrix) 0.34 8-10 >989 240 Weight: 151 lb LUMBER BRACING Structural wood sheathing directly applied or 1-7-8 oc purlins. TOP CHORD 2 X 4 SYP No.2 TOP CHORD BOT CHORD 2 X 6 SYP No.1D BOT CHORD Rigid ceiling directly applied or 4-8-0 oc bracing. WEBS 2 X 4 SYP No.3 MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide. REACTIONS (lb/size) 7=1788/0-2-2 (input: 0-3-8), 2=1913/0-2-4 (input: 0-3-8) Max Horz 2=94(LC 5) Max Uplift 7=-1425(LC 6), 2=-1521(LC 5) FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=3581/2857, 3-12=-3158/2628, 12-13=-3157/2628, 4-13=-3157/2627, 4-14-4137/3373, 14-15-4137/3373, 15-16-4137/3373, 5-16-4137/3373, 5-17=-3181/2660, 17-18=-3182/2660, 6-18=-3182/2661, 6-7=-3601/2888 2-11=-2533/3115, 11-19=-3215/4059, 19-20=-3215/4059, 20-21=-3215/4059, BOT CHORD 10-21=-3215/4059, 10-22=-3199/4064, 9-22=-3199/4064, 9-23=-3199/4064, 23-24=-3199/4064, 8-24=-3199/4064, 7-8=-2510/3140 **WEBS** 3-11=-969/1043, 4-11=-1209/870, 4-10=-234/319, 5-10=-229/316, 5-8=-1198/859, 6-8=-973/1038 WALLEY SY NOTES (11-12)1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-05; 110mph (3-second gust); TCDL=4.2psf; BCDL=3.0psf; h=16ft; Cat. II; Exp B; enclosed; MWFRS (low-rise); porch left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 6) All bearings are assumed to be SYP No.2 No 34869 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (it=lb) 7=1425, 2=1521 U 8) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss. 9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 217 lb down and 215 lb up at 7-0-0, 🞵 103 lb down and 82 lb up at 9-0-12, 103 lb down and 82 lb up at 11-0-12, 103 lb down and 82 lb up at 13-0-12, 103 lb down and 82 lb 0 HOW up at 14-1-4, 103 lb down and 82 lb up at 15-1-12, 103 lb down and 82 lb up at 17-1-12, and 103 lb down and 82 lb up at 19-1-12, angl 1 STATE OF 217 lb down and 215 lb up at 21-2-8 on top chord, and 277 lb down and 265 lb up at 7-0-0, 66 lb down and 46 lb up at 9-0-12, 66 lb down and 46 lb up at 11-0-12, 66 lb down and 46 lb up at 13-0-12, 66 lb down and 46 lb up at 14-1-4, 66 lb down and 46 lb up at 15-1-12, and 66 lb down and 46 lb up at 19-1-12, and 277 lb down and 265 lb up at 21-1-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). June 8,2009

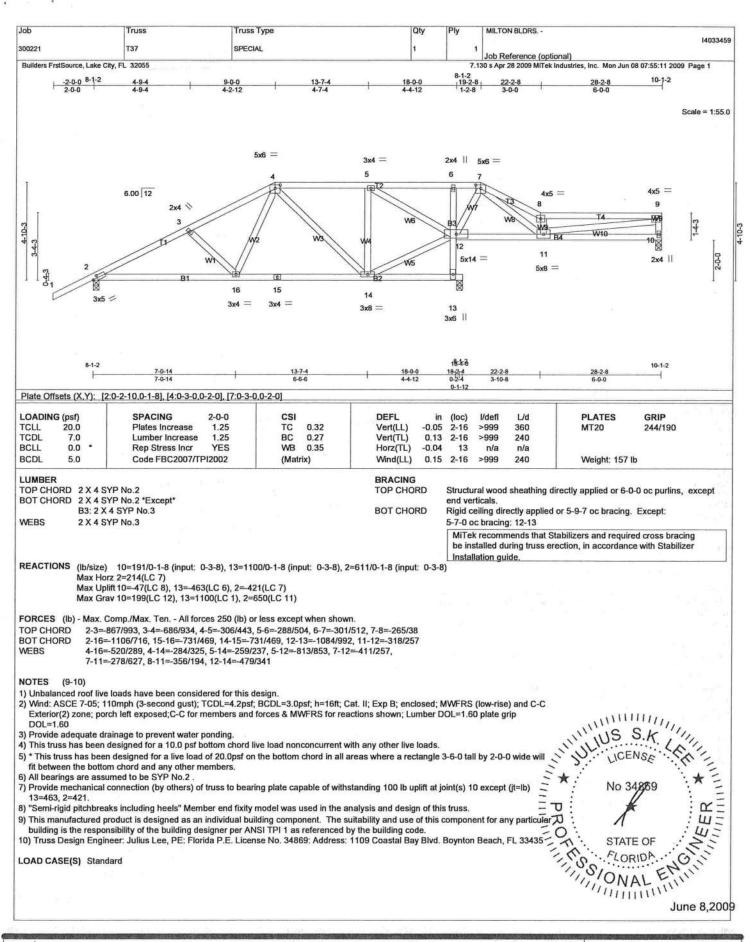
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.

Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component.

Applicability of design paramenters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for falteral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult. ANSI/TI Quality Criteria, DSB-89 and BCS11 Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Continued on page 2

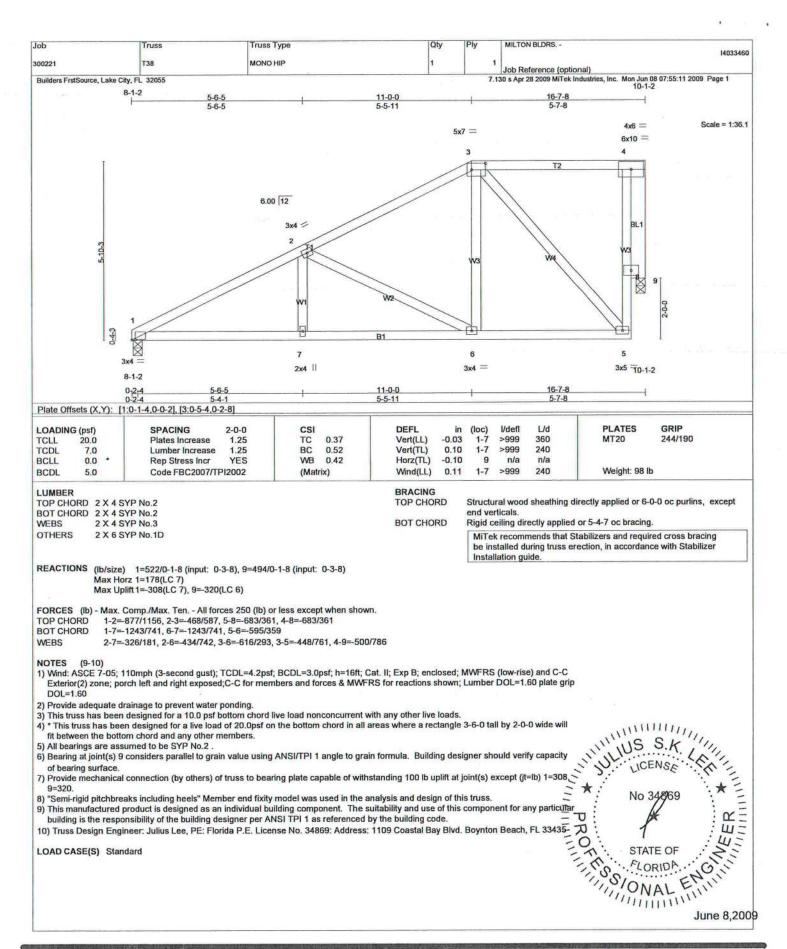
Job	Truss	Truss Type	Qty	Ply	MILTON BLDRS	1403345
300221	T36	HIP	1	1	Job Reference (optional)	
Builders FrstSource,	Lake City, FL 32055			7.	130 s Apr 28 2009 MiTek Industries, Inc. Mor	n Jun 08 07:55:10 2009 Page 2
building designation (12) Truss Designation	gner per ANSI TPI 1 as refe n Engineer: Julius Lee, PE:	as an individual building component. erenced by the building code. Florida P.E. License No. 34869: Add				e responsibility of the
Uniform Load Vert: Concentrated	ber Increase=1.25, Plate Ins s (plf) 1-3=54, 3-6=54, 6-7=-54, Loads (lb)		B) 13=-103(B) 14=-103(B) 1	15=-103/B) 16=-103/B) 17=-103/B) 18=-103/B	s) 19=-32(B) 20=-32(B)
21=3	2(B) 22=-32(B) 23=-32(B)	24=32(B)	0) 10 100(0) 11 100(0)		,	,


No 34869

No 34869

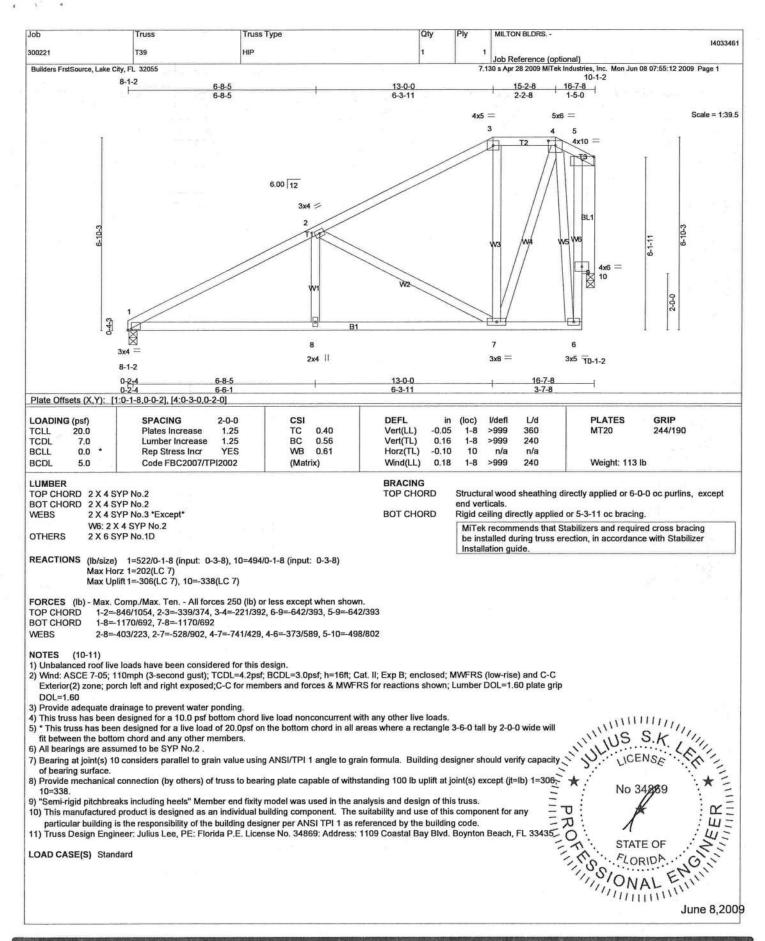
STATE OF

FLORIDA


June 8,200

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.

Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component.

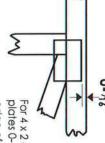

Applicability of design paramenters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer, For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult. AMSI/TI Quality Criteria, DSB-89 and BCS11 Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MIL-7473 BEFORE USE.

Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component.

Applicability of design paramenters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding tobication, quality control, storage, delivery, erection and bracing, consult. ANSI/TI1 Quality Criteria, DSB-89 and BCS11 Building Component Sately Information. available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE.


Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult. AMSUFIL Quality Criteria, DSB-89 and BCS11 Building Component Safety Information.

Symbols

PLATE LOCATION AND ORIENTATION

Dimensions are in ft-in-sixteenths. Apply plates to both sides of truss offsets are indicated. Center plate on joint unless x, y and fully embed teeth.

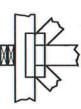
plates 0-1/46" from outside For 4 x 2 orientation, locate edge of truss.

required direction of slots in connector plates.

This symbol indicates the

*Plate location details available in MiTek 20/20 software or upon request.

PLATE SIZE


to slots. Second dimension is the length parallel to slots. width measured perpendicular The first dimension is the plate

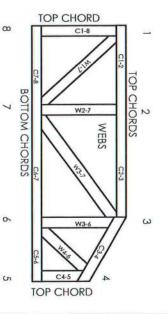
LATERAL BRACING LOCATION

if indicated. output. Use T, I or Eliminator bracing by text in the bracing section of the Indicated by symbol shown and/or

BEARING

number where bearings occur reaction section indicates joint Indicates location where bearings (supports) occur. Icons vary but

ANSI/TPI1: Industry Standards:


Plate Connected Wood Truss Construction. National Design Specification for Metal Design Standard for Bracing.

DSB-89

Installing & Bracing of Metal Plate Connected Wood Trusses Guide to Good Practice for Handling, **Building Component Safety Information**

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

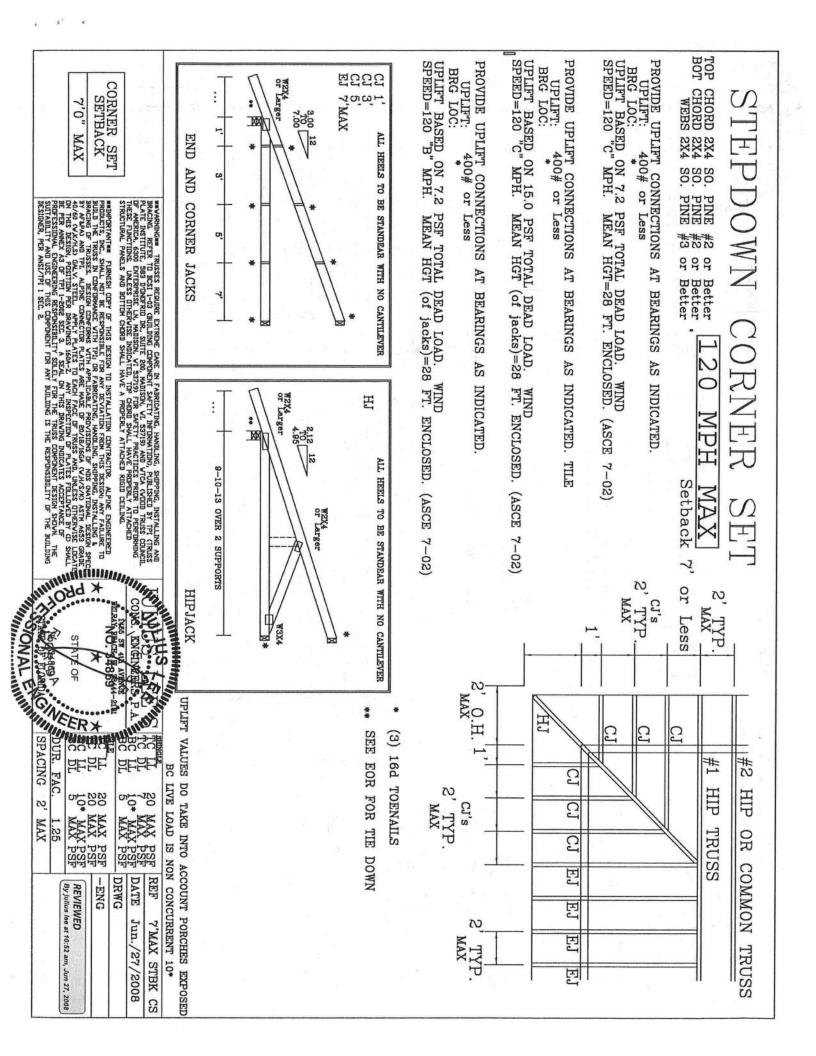
PRODUCT CODE APPROVALS

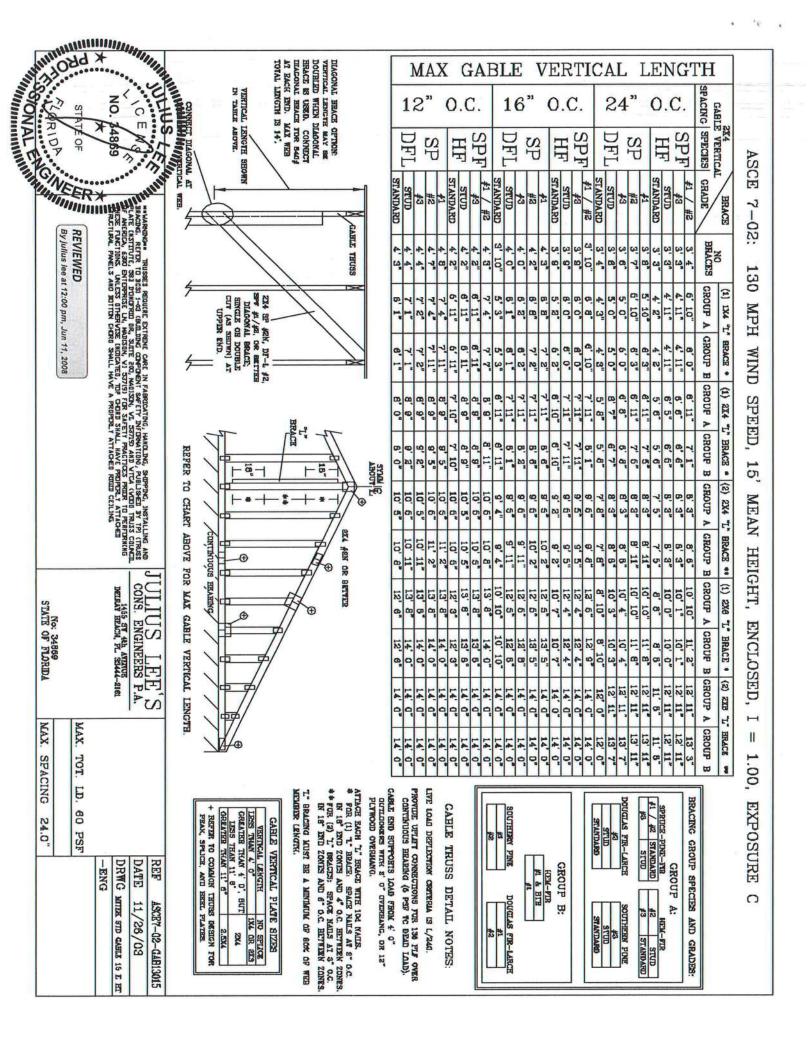
CC-ES Reports:

9730, 95-43, 96-31, 9667A ESR-1311, ESR-1352, ER-5243, 9604B NER-487, NER-561 95110, 84-32, 96-67, ER-3907, 9432A

© 2006 MiTek® All Rights Reserved

Boynton, FL 33435 Julius Lee Engineering 1109 Coastal Bay Blvd.


General Safety Notes


Damage or Personal Injury Failure to Follow Could Cause Property

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSII
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative T_i I, or Eliminator bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, properly owner and all other interested parties.
- Cut members to bear tightly against each other

Ċ

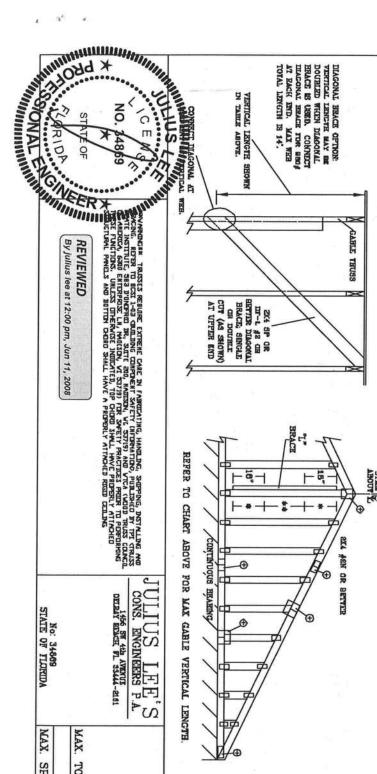
- Place plates on each face of truss at each oint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing. or less, if no ceiling is installed, unless otherwise noted.
- Connections not shown are the responsibility of others
- Do not cut or after truss member or plate without prior approval of an engineer
- Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.

ASCE 7-02: 130 MPH WIND SPEED, 30 MEAN HEIGHT, ENCLOSED, I II 1.00, EXPOSURE

	_	M 2		-21),(C		B.		6	33	v	E O	.(3	. 1	C	_	.L	."		-),(HSPACING	
	LHL	1 1 1	יל	2	111	H	-	カロロ			1 1	7	2	111	I I	77	カロゴ	100000000000000000000000000000000000000		1 1	7	2	111	I I	מלט	D D	SPECIES	GABLE VERTICAL
STANDARD	STUD	#3	#22	12	STANDARD	STUD	*3	£1 / #2	ш	STUD	13	**	41	STANDARD	STUD	#8	打/#2	STANDARD	STUD	*3	#10	41	STANDARD	STUD	₽\$	£1 / #2	GRADE	BRACE
4. 0	4.	4.	4. 4.	4. 5.	3' 11'	3' 11"	3 11	Ι.	3' 6"	3. 8.		3' 11"		3. 7.	3' 7"		3.8		4		3 6			3' 1"	3' 1"	3 2	BRACES	S
5. 6.		6,	6' 11"		5' 4"	6. 3	8 3	6. 11.		5 6	1 -	8' 4"	8 4,	4 6	5' 6"	C)	8.4.	3' 10"		4. 6,	5, 6,	5. 8.	3' 9"	4' 6"	4' 5"	5' 6'	GROUP A	(1) 1X4 °L"
5, 8,	1000	6, 2,		7' 8"		6. 3.	8 3	7. 5.	4' 9"	5, 8,	6' 7"	8' 10"	B' 10"	4' B"	6′5"	5, 5,	6' 6"	3' 10"	4. 8.	4. 8.	5' 11"	5' 11"	3′ 9"	4' 5"	4' 5"	6′ 8"	GROUP B	BRACE .
7, 3		8' 3"		3,			8' 3"				7' 4"	7' 8"	7' 8"		7' 2"			5' 1"							6, 10,	6' 6"	GROUP A	(1) 2X4 "L"
7' 9"		8' 6"		B' 11°	7' 1"	8º 3º	e' 3,	8. e.	8' 3"	7' 3°		8' 1"	B' 1°	\$0 <u>.</u>	-5°	7' 20	7' 8"	5' 1"	5' 11"	8' 0"	7' 0"	7' 0"	5' 0"	200	5° 10°	8' 9"	GROUP B	BRACE .
8.8		9' 10"	9' 10"	8, 10,	8, 8,	9' 10"		9' 10"	8° 5"	8' 11"	8. 11		B' 11"	8. 3.	8' 11"	8' 11"	B. 11.	8, 11,	7' 10"		1.0	7' 10"	8, 9,	7' 10"	7' 10"	7' 10'	GROUP A	(2) 2X4 "L"
8' 9"	10′4″	10′ 4″	10' 7"	10' 7"		9' 10"	9' 10"			.g, 9,		8, Au	B, 2,	.5 .8		8, 11,	9) 10	e, 11.	8' 0"	8′ 1"		8' 5"			7' 10"	8 0"	GROUP B	BRACE **
11' 4"	12' 11"	12, 11,	12' 11'	12' 11"	11' 1"	18, 10,	12, 11,	12' 11"		11' 4"	11. 5.	11, 9,	11, 8,	8, 2,		11' 2"	11. 9.	B' 0*	8, 3,	9' 4"	10′ 3″	10' 3"	7′ 10″	9' 1"	9' 1"	10' 3"	GROUP A	(1) 2X6 T
11' 4"	13, 1,	18' 3"	13' 11"	13' 11"	11' 1"	12' 10"	12' 11"	13' 4"	8 ² 8 ¹¹	11' 4"	11' 6'	12' B"	12' B"	8. 4.	11, 1,"	11' 2"	12 1	8, 0,	8, 3,	9. 4.	11, 1,"	11, 1,,	7' 10"	9' 1"	9' 1"	10′ 7"	GROUP	"L" BRACE .
14' 0"	14' O"	14' 0"	14' 0"	14. O.	14' Q"	14' 0"	14' 0"	14. Q.	13' 3"	14' O.	14' O"	14' 0"	14' O*	18, 11.		14. 0	14. Q.		12' 3"	12' 3'	12' 8"	12' 3"	10' 7"	12' 8*		12′ 3″	B GROUP A	(2) ZXB 'L'
14' 0"	14' 0"	14' 0"	14' 0"	14. 0	14' 0"	14' 0"	14' 0"	14. 0.	13' 3"	14. 0.	14. 0"		٠,	12' 11.	- 1	- 7	14. 0.		12' 6"	12, 8,	13' 2"	13' 2"	10' 7"	12′ 3″	12' 3"	12′ 7"	GROUP B	BRACE .

DOUGLAS FIR-LARCE

STANDARD


SOUTHERN PONE STANDARD

SPRUCE-PINE-INB
#1 / #2 STANDARD
#3 STUD

STANDARD

BRACING GROUP SPECIES AND GRADES:

GROUP A:

DIAGONAL BEACE OPTION:
YESTICAL LENGTE MAY BE
DOUBLED WHITH DIAGONAL
ERACE IS USED, CONNECT
ITIACONAL BEACE TOR SEEL
AT EACH IND. MAX WEB

GABLE TRUSS

TRUSS	
DETAIL	
NOTES:	

SOLIHE NAMED HOS

FI & BIR GROUP B:

LIVE LOAD DEPLECTION CHATERIA IS L/240. ABLE END SUFFORTS LOAD FROM 4' 0" CONTINUOUS HEARING (6 PSF TC DEAD LOAD). PLYWOOD OVERHAMG.

ATIACE EACH "L" BRACE WITH 104 NAILS.

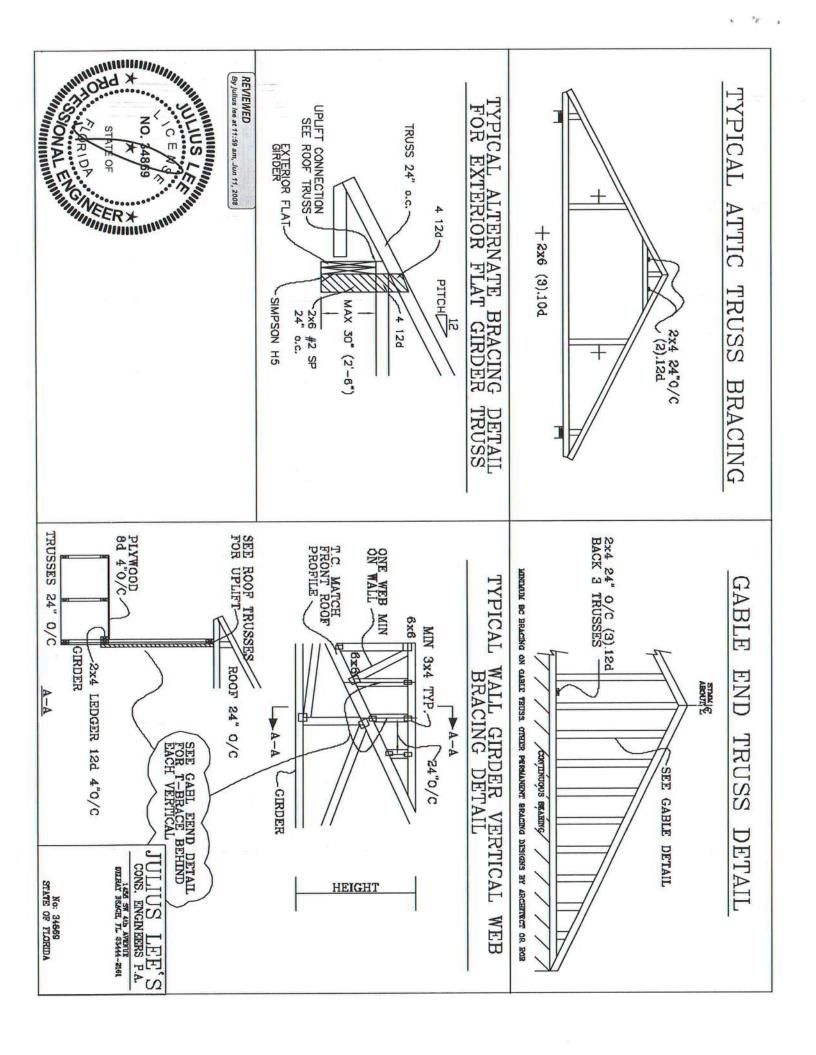
\$ FOR (1) "L" BRACE: SPACE NAILS AT 8" O.C.

\$ FOR (2) "L" BRACES: SEACE NAILS AT 3" O.C.

BY 18" END ZONES AND 6" O.C. BETTEEN ZONES. HENDER CENCIH. I" BRACING MUST BE A MINIMUM OF BOX OF WEB

S DESIGN FOR	HAX, SPLICE, AND HEEL I
2.5X4	EATER THAN 11' 8"
2X4	EATER THAN 4' D' BUT
1X4 OR 2X3	SS THAN 4' O'
NO SPIICE	ARRINCAT CENCIN
SEZES 3	GABLE VERTICAL PLATE

SPACING	TOT. LD.					ı					
24.0"	60 PSF					4	PEAK SPL	GREATER THAN 11' 8"	GREATER THAN	NAME SECTI	ARRIBON
		-ENG	DWG MYZK	DATE 11	REF AS		PEAK, SPLICE, AND HEEL PLATES.	EVAN, 11, 9,	KAN 4 D' BUT	4.00	-
			MINER SED CYBER 30, E M.	11/26/09	ASCE7-02-GAB13030		S DESIGN FOR	2.5X4	274	1X4 DR 2X3	NO SPILOR


DELBAY BEACH, PL 33444-2161

ENGINEERS P.A.

No: 34869 STATE OF FLORIDA

NAX.

MAX.

BOT CHORD CHORD WEBS 284 300 经金品 R BETTER R BETTER R BETTER

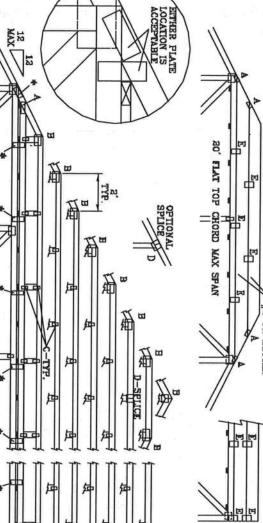
PIGGYBACK

REFER TO SEALED DESIGN FOR DASHED PLATES.

TOP AND BOTTOM CHORD SPLICES MUST BE STAGGERED SO THAT ONE SPLICE IS NOT DIRECTLY OVER ANOTHER. SPACE PIGGYBACK VERTICALS AT 4' OC MAX.

PIGGYBACK BOTION CHORD MAY BE OMITTED. TRUSS TOP CHORD WITH 1.5X3 PLATE. ATTACH VERTICAL WEBS TO

ATTACH PURLINS TO TOP OF FLAT TOP CHORD. IF PIGGYBACK IS SOLID LUMBER OR THE BOTTOM CHORD IS OMITTED, PURLINS MAY HE APPLIED HENEATH THE TOP CHORD OF SUPPORTING TRUSS.


REFER TO ENGINEER'S SEALED DESIGN FOR REQUIRED FURLIN SPACING

THIS DETAIL IS APPLICABLE FOR THE FOLLOWING WIND CONDITIONS:

110 MPH WIND, 30' MEAN HGT, ASCE 7-02, CLOSED BLDC, LOCATED ANYWHERE IN ROOF, 1 MI FROM COAST CAT I, EXP C, WIND TC DI=5 PSF, WIND BC DI=5 PSF 110 MPH WIND, 30' MEAN HGT, FEG ENCLOSED BLDG, LOCATED ANYWHERE IN ROOF WIND TO DL-5 PSF, WIND BC DL-5 PSF

130 MPH WIND, 30' MEAN HGT, ASCE 7-02, CLOSED BLDG, LOCATED ANYWHERE IN ROOF, CAT II, EXP. C. WIND TC DL=6 PSF, WIND HC DL=6 PSF

FRONT FACE (E,*) PLATES MAY BE OFFSET FROM BACK FACE PLATES AS LONG AS BOTH FACES ARE SPACED 4' OC MAX. 占 MAX SIZE OF ZXIZ

Ħ	b	n	ы	>	TAKL	TOINT
4X8 0	5 X 4	1.538	4X8	284	30,	
R SX6 TI	9X9	1.6X4	6X6	2.5X4	34,	SPANS
OR SX6 TRULOX AT 4'	6X6	1.6X4	6X6	2.6X4	86	SPANS UP TO
LY DC,	5X6	1.5X4	5X6	335	52,	

ATTACH THULOX PLATES WITH (8) 0.120" X 1.375" NAILS, EQUAL, PER FACE PER PLY. (4) NAILS IN EACH MEMBER BE CONNECTED. REFER TO DRAWING 160 TL FOR THULOX INFORMATION 2 S

10' TO 14' MEMBER OR HETTER AND
SAME GRADE, SPECIES AS I

* PIGGYBACK SPECIAL PLATE

ATTACH TEETH TO THE PIGGYBACK AT THE TIME OF FABRICATION. ATTACH TO SUPPORTING TRUSS BTIE (4) 0.120" X 1.375" NAILS PER FACE PER PLY. APPLY PIGGYBACK SPECIAL PLATE TO EACH TRUSS FACE AND SPACE 4' OC OR LESS.

8 1/4" 24

C a D O a

X Z

PIGGYBACK WITH 3X8 TRULOX OR ALPINE PIGGYBACK SPECIAL PLATE

THIS DRAWING REPLACES DRAWINGS 634,016 834,017 & 847,045

55 PSF AT 1.33 DUR. FAC. 1.25 DUR. MAX LOADING 50 PSF REF DRWG MITEK STD PIGG DATE -ENG H 09/12/07 PIGGYBACK

1.15 47 PSF .15 DUR. FAC FAC

NO. 34869

NO. 34869 JULIUS LEE'S CONS. ENGINEERS P.A. 1972 - 11 'SPWSE APPERED

No: 34869 STATE OF FLORIDA

SPACING

VALLEYTRUSS DETAIL

TOP WEES CHORD 2X4 SP #2 OR SPF #1/#2 OR BETTER. 2X3(*) OR 2X4 SP #2N OR SPF #1/#2 OR BETTER. 2X4 SP #3 OR BETTER.

- ZX3 MAY BE RIPPED FROM A ZX6 (PITCHED OR SQUARE).
- * ATTACH EACH VALLEY TO EVERY SUPPORTING TRUSS WITH: ASCE 7-02 130 MPH WIND. 15' MEAN HEIGHT, ENC BUILDING, EXP. C. RESIDENTIAL, WIND TC DL=5 PSF. FBC 2004 110 MPH, ASCE 7-02 110 NPH WIND ASCE 7-02 130 MPH WIND. 15' MEAN HEIGHT, (Z) 18d BOX (0.135" X 3.5") NAILS TOE-NAILED FOR OR (3) 16d ENCLOSED FOR

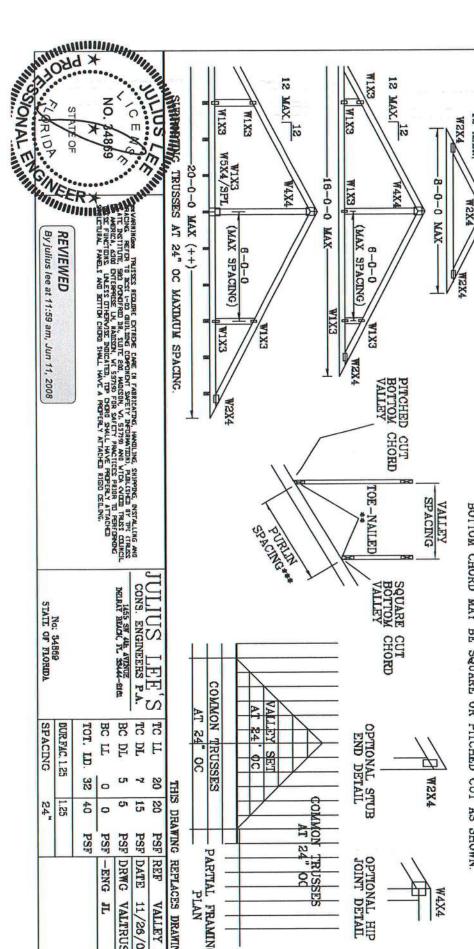
UNLESS SPECIFIED ON ENGINEER'S SEALED DESIGN, APPLY 1X4 "T"-BRACE, 80% LENGTH OF WEH, VALLEY WEH, SAME SPECIES AND GRADE OR BETTER, ATTACHED WITH 8d BOX (0.113" X 2.5") NAILS AT 6" OC, OR CONTINUOUS LATERAL BRACING, EQUALLY SPACED, FOR VERTICAL VALLEY WEBS GREATER THAN 7'9".

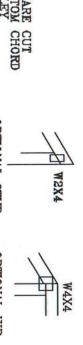
MAXIMUM VALLEY VERTICAL HEIGHT MAY NOT EXCEED 12'0".

TOP CHORD OF TRUSS BENEATH VALLEY SET MUST BE BRACED WITH:
PROPERLY ATTACHED, RATED SHEATHING APPLIED PRIOR TO VALLEY TRUSS INSTALLATION

PURLINS AT 24" OC OR AS OTHERWISE SPECIFIED ON ENGINEERS' SEALED DESIGN ENGINEERS' SEALED DESIGN. BY VALLEY TRUSSES USED IN LIEU OF PURLIN SPACING AS SPECIFIED ON

** NOTE THAT THE PURLIN SPACING FOR BRACING THE TOP CHORD OF THE TRUSS BENEATH THE VALLEY IS MEASURED ALONG THE SLOPE OF THE TOP CHORD.


CUT FROM 2X6 OR LARGER AS REQ'D


4-0-0 MAX

12 MAX.

++ LARGER SPANS MAY BE BUILT AS LONG AS THE VERTICAL HEIGHT DOES NOT EXCEED 12'0"

BOTTOM CHORD MAY BE SQUARE OR PITCHED CUT AS SHOWN

- PARTIAL FRAMING

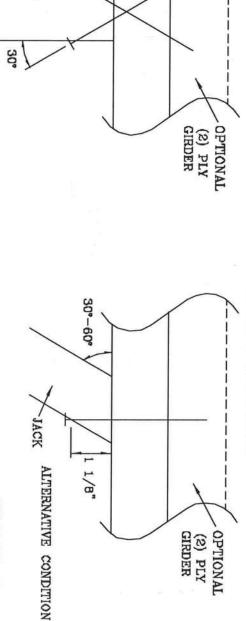
ı	
	SIHI
	DRAWING
	REPLACES
	DRAWING
	A105

			1.25	B	BURFAC 1.25	SPA	Ng: 34869 STATE OF FLORIDA	
		PSF	40	32	TOT. LD. 32 40	TOT		
T	PSF -ENG JL	PSF	0	0	F	BC LL		HOPERLY ATTACHED RIGO CELOG.
VALTRUSS1103	DRWG	PSF	C	U	PL	BC	DELEAT BEACH, IL SSA44-EIGI	NETY INTORNATION), PUBLISHED BY THE CHAUSE OUTHOUS ON VI. 53799 AND WIDA CYCIM TRUES CULINCIL
11/26/09	PSF DATE	PSF	15	~7	DL	TC	3	ICATING, HANDLING, SHIPPING, INSTALLING AND
VALLEY DETAIL	PSF REF	PSF	80	20	F	TC	S, HH. ISIIIIIII	

TOE-NAIL DETAIL

TOE-NAILS TO BE DRIVEN AT AN ANGLE OF APPROXIMATELY THIRTY DEGREES WITH THE PIECE AND STARTED APPROXIMATELY ONE-THIRD THE LENGTH OF THE NAIL FROM THE END OF THE MEMBER.

PER ANSI/AF&PA NDS-2001 SECTION 12.4.1 — EDGE DISTANCE, END DISTANCE, SPACING: "EDGE DISTANCES, END DISTANCES AND SPACINGS FOR NAILS AND SPIKES SHALL BE SUFFICIENT TO PREVENT SPLITTING OF THE WOOD."


THE NUMBER OF TOE-NAILS TO BE USED IN A SPECIFIC APPLICATION IS DEPENDENT UPON PROPERTIES FOR THE CHORD SIZE, LUMBER SPECIES, AND NAIL TYPE. PROPER CONSTRUCTION PRACTICES AS WELL AS GOOD JUDGEMENT SHOULD DETERMINE THE NUMBER OF NAILS TO BE USED.

THIS DETAIL DISPLAYS A TOE-NAILED CONNECTION FOR JACK FRAMING INTO A SINGLE OR DOUBLE PLY SUPPORTING GIRDER.

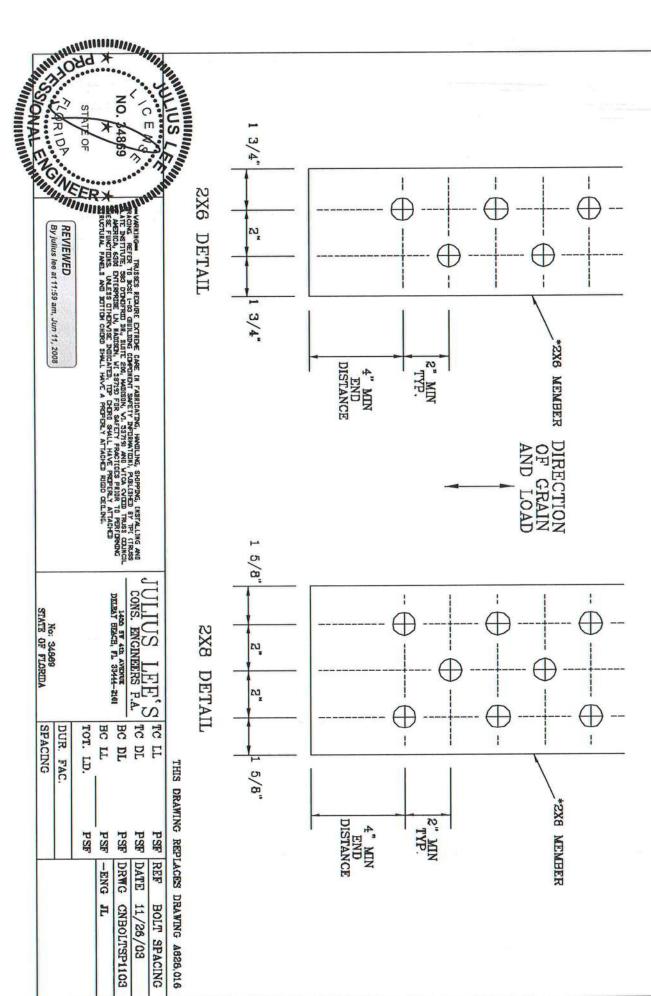
MAXIMUM VERTICAL RESISTANCE OF 16d (0.162"X3.5") COMMON TOE-NAILS

ATT VATTT	Ð	4	ယ	N	TOE-NAILS	NUMBER OF
DO WAY DE	493#	394#	296#	187#	1 PLY	
ALL WALLES AND THE CHILDREN NO COLUMN TO TAKE THE PROPERTY TO	639#	511#	383#	256#	2 PLIES 1	SOUTHERN PINE
מרו מרו חב	452#	361#	271#	181#	1 PLY	DOUGLAS
TOTAL TOTAL	585#	468#	351#	234#	2 PLIES	DOUGLAS FIR-LARCH
TRAME LATER	390#	312#	234#	156#	1 PLY	HEM-FIR
2013	507#	406#	304#	203#	2 PLIES	-FIR
211	384#	307#	230#	154#	1 PLY	SPRUCE
	496#	397#	298#	189#	2 PLIES	SPRUCE PINE FIR

A CHAPTER MAL DE MOULIFIADE DI AFFROTRIALE DONALION OF LUAD PACTUR.

1/8

	White Strain	JACK	30		THIS	DRAWING RE	PLACES	THIS DRAWING REPLACES DRAWING 784040
	White Control of the state of t	Me		S, HH'I SDI'INI	TC LL	PSF	REF	TOE-NAIL
	CENG	SACING. REFER TO BC	REQUIRE EXTREME CARE IN FABRUCATING, HANDLING, SAMPPING, INSTALLING AND REQUIRE EXTREME COMPONENT SAFETY (WITHWAITING, PUBLISHED BY TRY CITALISM		TC DL	PSF	DATE	09/12/07
	NO. 34869	ANERICA, 6900 ENTER	THE 20D, NAMESON, WE SOTION AND VICA (WOOD TON, VESTION TON VICE SAFETY PRACTICES PRINT OF THE VICE SOFT OF	DELRAY SEACH, FL S3444 2161	BC DL	PSF	DRWG	CNTONAIL1103
	T	STUDETURAL PANELS AN	AND BUTTON CHURC SHALL HAVE A PROPERLY ATTACHED ROOM CELLING		BC III	PSF	-ENG JL	л
•	and STATE OF	REVIEWED	0		TOT. LD.	PSF		
d.	MAN ABIOP	By julius lee	By Julius lee at 11:59 am, Jun 11, 2008	No: 34889	DUR. FAC.	1.00		
	W.C.	44		STATE OF FLORIDA	SPACING			
19	THURSTON AL CHINA							


DIAMETER BOLT SPACING FOR LOAD APPLIED PARALLEL TO

* GRADE AND SPECIES AS SPECIFIED ON THE ALPINE DESIGN

BOLT HOLES SHALL BE A MINIMUN OF 1/32" TO A MAXIMUM OF 1/16" LARGER THAN BOLT DIAMETER.

TYPICAL LOCATION OF 1/2" DIAMETER THRU BOLTS. QUANTITIES AS NOTED ON SEALED DESIGN MUST BE IN ONE OF THE PATTERNS SHOWN BELOW. APPLIED

WASHERS REQUIRED UNDER BOLT HEAD AND NUT

By julius lee at 11:59 am, Jun 11, 2008

REVIEWED

CONS.

DELEAT SEACH, FL 33444-2161

BC DL BC

TOT. LD.

F

PSF PSF PSF

-ENG

H

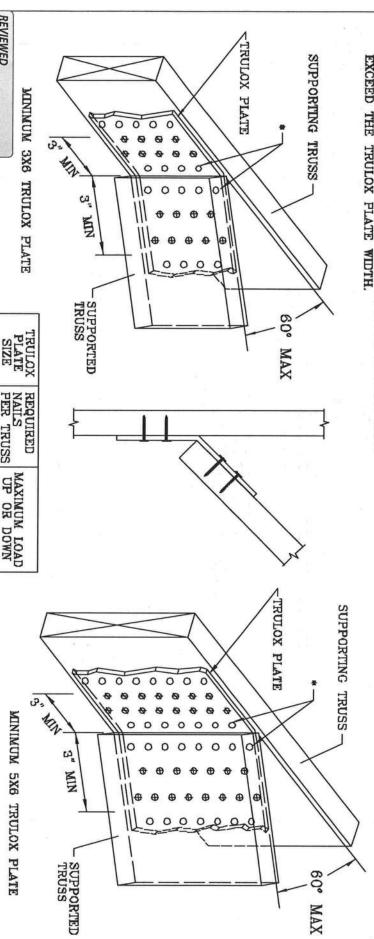
DRWG

CNBOLTSP1103 11/26/03

DATE

No: 34869 STATE OF FLORIDA

SPACING DUR. FAC.


TRULOX CONNECTION DETAIL

SHOWN (+). 11 GAUGE (0.120" X 1.375") NAILS REQUIRED FOR TRULOX PLATE ATTACHMENT. FILL ROWS COMPLETELY WHERE

NAILS MAY BE OMITTED FROM THESE ROWS THIS DETAIL MAY BE USED WITH SO, PINE, DOUGLAS-FIR OR HEM-FIR CHORDS WITH A MINIMUM 1.00 DURATION OF LOAD OR SPRUCE-PINE-FIR CHORDS WITH A MINIMUM 1.15 DURATION OF LOAD. CHORD SIZE OF BOTH TRUSSES MUST

TRULOX PLATE IS CENTERED ON THE CHORDS AND BENT BETWEEN NAIL ROWS.

REFER TO ENGINEER'S SEALED DESIGN REFERENCING INFORMATION NOT SHOWN THIS DETAIL FOR LUMBER, PLATES, AND OTHER

NO. 4889

NO. 48

REVIEWED

6X8 3X6

15 9

#088 350#

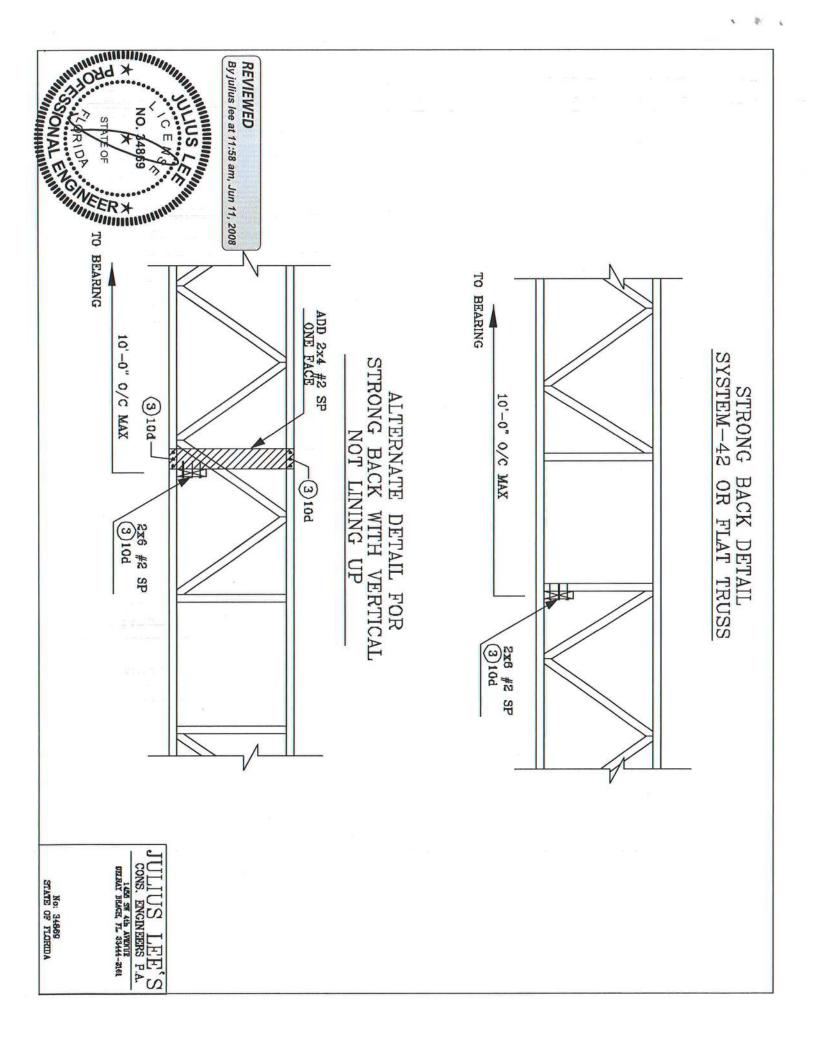
THIS DRAWING REPLACES DRAWINGS 1,158,889 1,158,98 1,154,844 1,152,217 1,152,017 1,159,154 & 1,151,524

1,158,989/R

MINIMUM 5X6 TRULOX PLATE

ULIUS LEE'S DETRYL BEYOK' IT 38444-SIGT

S


DATE REF

-ENG DRWG

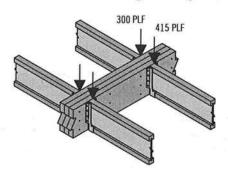
> CNTRULOX1103 11/26/03 TRULOX

No: 34869 STATE OF FLORIDA

PER TRUSS

MULTIPLE-MEMBER CONNECTIONS FOR SIDE-LOADED BEAMS

Maximum Uniform Load Applied to Either Outside Member (PLF)


					Co	onnector Pattern		
Connector Type	Number of Rows	Connector On-Center Spacing	Assembly A 1 2" 1 134"	Assembly B	Assembly C	Assembly D	Assembly E 1 2 1 31/2	Assembly F
			3½" 2-ply	51/4" 3-ply	51/4" 2-ply	7" 3-ply	7" 2-ply	7" 4-ply
10d (0.128" x 3")	2	12"	370	280	280	245		
Nail ⁽¹⁾	3	12"	555	415	415	370		
1/2" A307	A SOLUTION OF	24"	505	380	520	465	860	340
Through Bolts(2)(4)	2	19.2"	635	475	655	580	1,075	425
im ough buits		16"	760	570	785	695	1,290	505
		24"	680	510	510	455		
SDS 1/4" x 31/2"(4)	2	19.2"	850	640	640	565		
		16"	1,020	765	765	680		
		24"				455	465	455
SDS 1/4" x 6"(3)(4)	2	19.2"				565	580	565
		16"		L. Language		680	695	680
		24"	480	360	360	320		THE PROPERTY OF
USP WS35 (4)	2	19.2"	600	450	450	400		1.5 88
		16"	715	540	540	480		
		24"				350	525	350
USP WS6 (3)(4)	2	19.2"				440	660	440
		16"				525	790	525
33/8"		24"	635	475	475	425		
TrussLok(4)	2	19.2"	795	595	595	530		
		16"	955	715	715	635		A SECRETARY SE
5"		24"		500	500	445	480	445
TrussLok(4)	2	19.2"		625	625	555	600	555
		16"		750	750	665	725	665
63/4"		24"				445	620	445
TrussLok(4)	2	19.2"				555	770	555
		16"				665	925	665

Nailed connection values may be doubled for 6" on-center or tripled for 4" on-center nail spacing.

General Notes

- Connections are based on NDS® 2005 or manufacturer's code report.
- Use specific gravity of 0.5 when designing lateral connections.
- Values listed are for 100% stress level. Increase 15% for snow-loaded roof conditions or 25% for non-snow roof conditions, where code allows.
- Bold Italic cells indicate Connector Pattern must be installed on both sides.
 Stagger fasteners on opposite side of beam by ½ the required Connector Spacing.
- Verify adequacy of beam in allowable load tables on pages 16–33.
- 7" wide beams should be side-loaded only when loads are applied to both sides
 of the members (to minimize rotation).
- Minimum end distance for bolts and screws is 6".
- Beams wider than 7" require special consideration by the design professional.

Uniform Load Design Example

First, check the allowable load tables on pages 16–33 to verify that three pieces can carry the total load of 715 plf with proper live load deflection criteria. Maximum load applied to either outside member is 415 plf. For a 3-ply $13\!\!\!/^4$ assembly, two rows of 10d (0.128" x 3") nails at 12" on-center is good for only 280 plf. Therefore, use three rows of 10d (0.128" x 3") nails at 12" on-center (good for 415 plf).

Alternates

Two rows of 1/2" bolts or SDS 1/4" x 31/2" screws at 19.2" on-center.

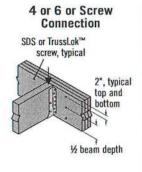
⁽²⁾ Washers required. Bolt holes to be 9/16" maximum.

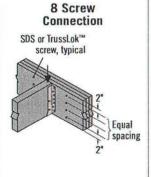
^{(3) 6&}quot; SDS or WS screws can be used with Parallam® PSL and Microllam® LVL, but are not recommended for TimberStrand® LSL.

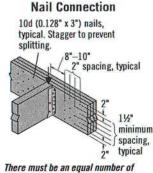
^{(4) 24&}quot; on-center bolted and screwed connection values may be doubled for 12" on-center spacing

MULTIPLE-MEMBER CONNECTIONS FOR SIDE-LOADED BEAMS

Point Load—Maximum Point Load Applied to Either Outside Member (lbs)


				Co	onnector Pattern		
Connector Type	Number of Connectors	Assembly A	Assembly B	Assembly C	Assembly D	Assembly E	Assembly F
		1¾ ¹ 3½" 2-ply	1¾" 51⁄4" 3-ply	1¾" 3½" 5¼" 2-ply	1¾" 3½" 1¾" 7" 3-ply	3½" 7" 2-ply	134" 7" 4-ply
10d (0.128" x 3") Nail	6	1,110	835	835	740		
	12	2,225	1,670	1,670	1,485		
	18	3,335	2,505	2,505	2,225		
	24	4,450	3,335	3,335	2,965		
SDS Screws	4	1,915	1,435(4)	1,435	1,275	1,860(2)	1,405(2)
1/4" x 31/2" or WS35	6	2,870	2,150 (4)	2,150	1,915	2,785(2)	2,110(2)
1/4" x 6" or WS6(1)	8	3,825	2,870 (4)	2,870	2,550	3,715(2)	2,810(2)
01/11 - FR	4	2,545	1,910 (4)	1,910	1,695	1,925(3)	1,775(3)
33/8" or 5" TrussLok™	6	3,815	2,860 (4)	2,860	2,545	2,890(3)	2,665(3)
Hussruk	8	5,090	3,815 (4)	3,815	3,390	3,855(3)	3,550(3)


(1) 6" SDS or WS screws can be used with Parallam® PSL and Microllam® LVL, but are not recommended for TimberStrand® LSL.


See General Notes on page 38

- (2) 6" long screws required.
- (3) 5" long screws required.
- (4) 3½" and 3½" long screws must be installed on both sides.

Connections

nails on each side of the connection

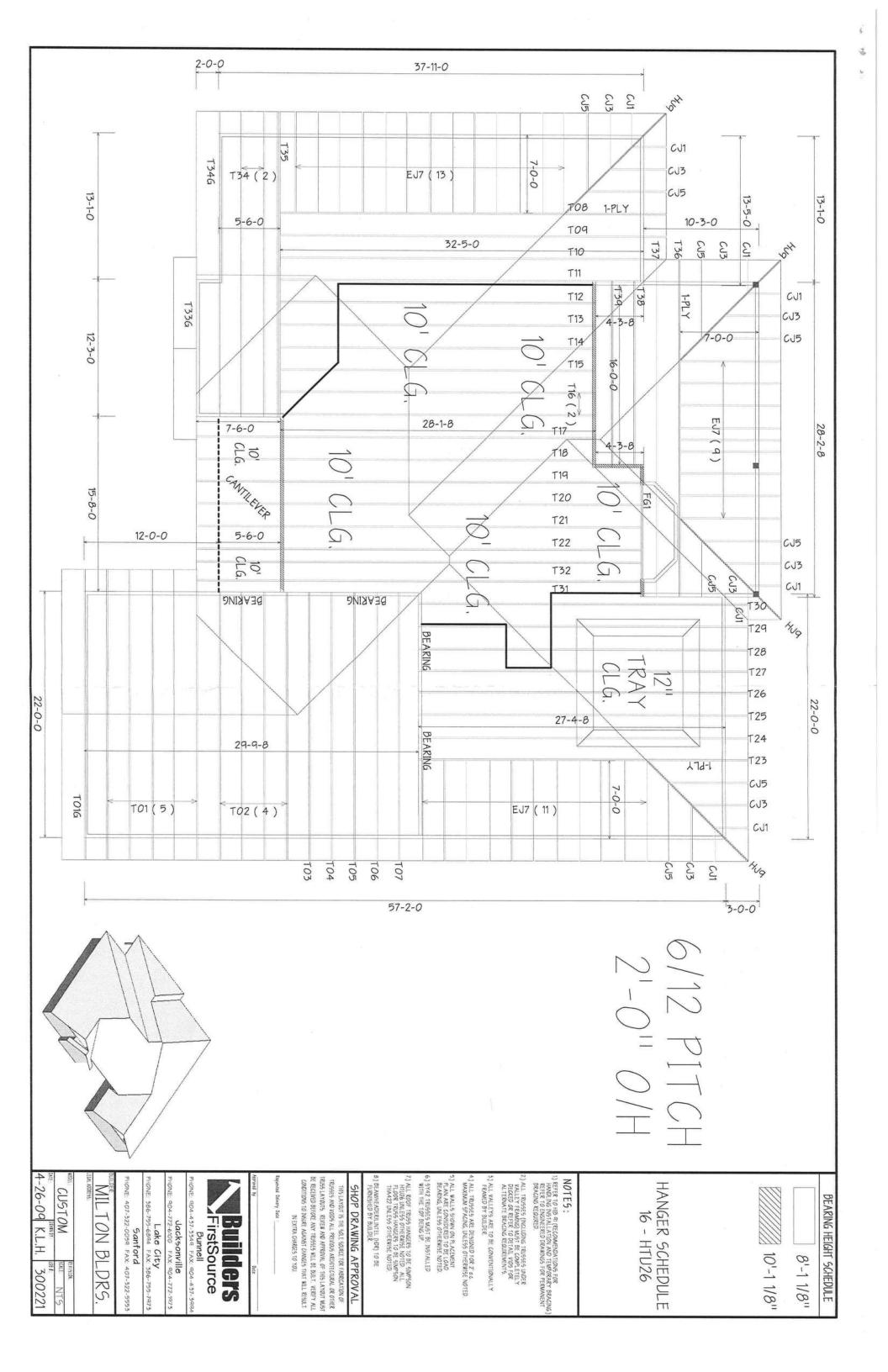
Point Load Design Example

First, verify that a 3-ply 1¾" x 14" beam is capable of supporting the 3,000 lb point load as well as all other loads applied. The 3,000 lb point load is being transferred to the beam with a face mount hanger. For a 3-ply 1¾" assembly, eight 3¾" TrussLok™ screws are good for 3,815 lbs with a face mount hanger.

MULTIPLE-MEMBER CONNECTIONS FOR TOP-LOADED BEAMS

13/4" Wide Pieces

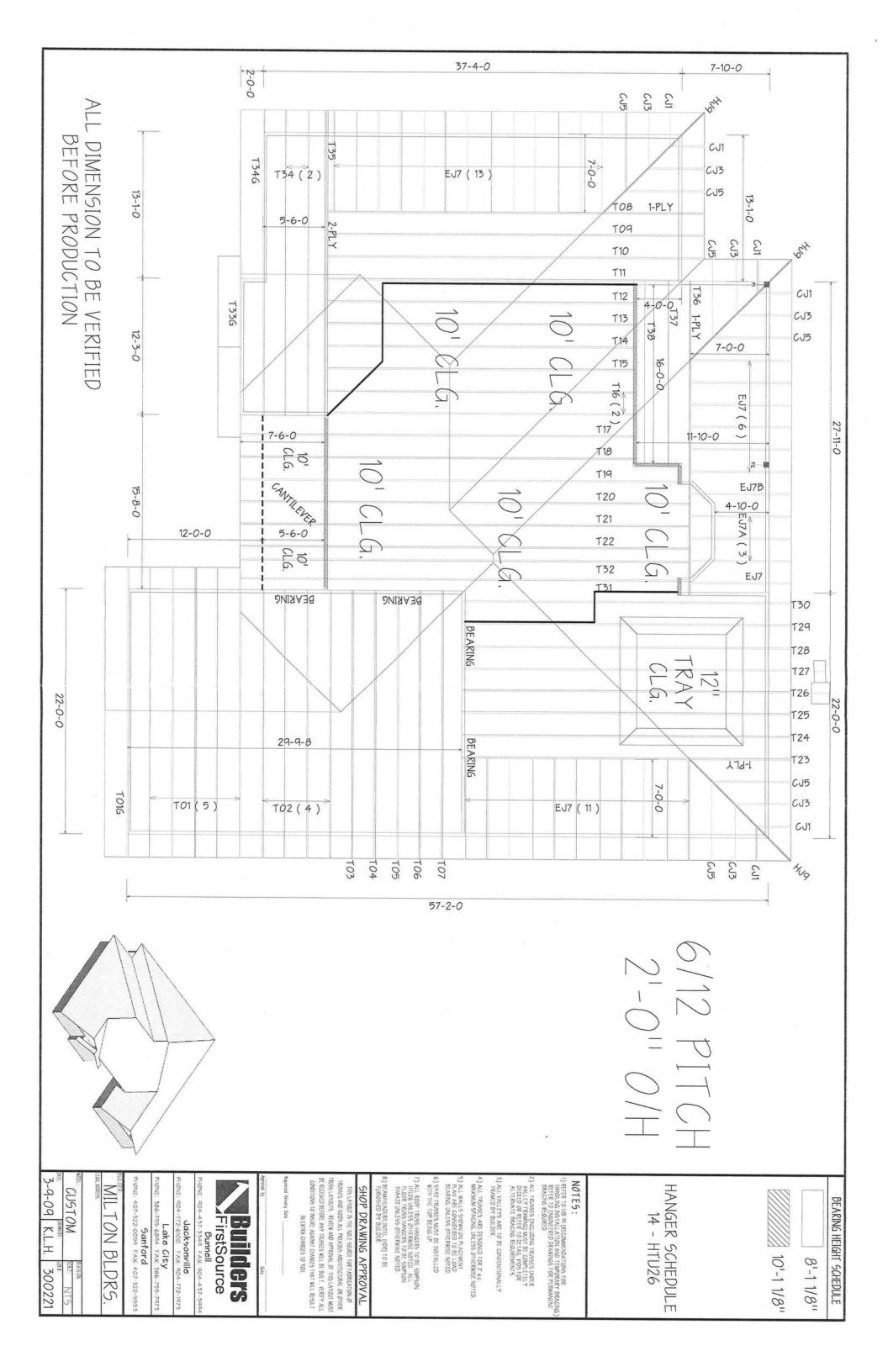
- Minimum of three rows of 10d (0.128" x 3") nails at 12" on-center.
- Minimum of four rows of 10d (0.128" x 3") nails at 12" on-center for 14" or deeper.
- If using 12d-16d (0.148"-0.162" diameter) nails, the number of nailing rows may be reduced by one.
- Minimum of two rows of SDS, WS, or TrussLok™ screws at 16" on-center. Use 3¾" minimum length with two or three plies; 5" minimum for 4-ply members. 6" SDS and WS screws are not recommended for use with TimberStrand® LSL. For 3- or 4-ply members, connectors must be installed
- on both sides. Stagger fasteners on opposite side of beam by ½ of the required connector spacing.
- Load must be applied evenly across entire beam width. Otherwise, use connections for side-loaded heams


31/2" Wide Pieces

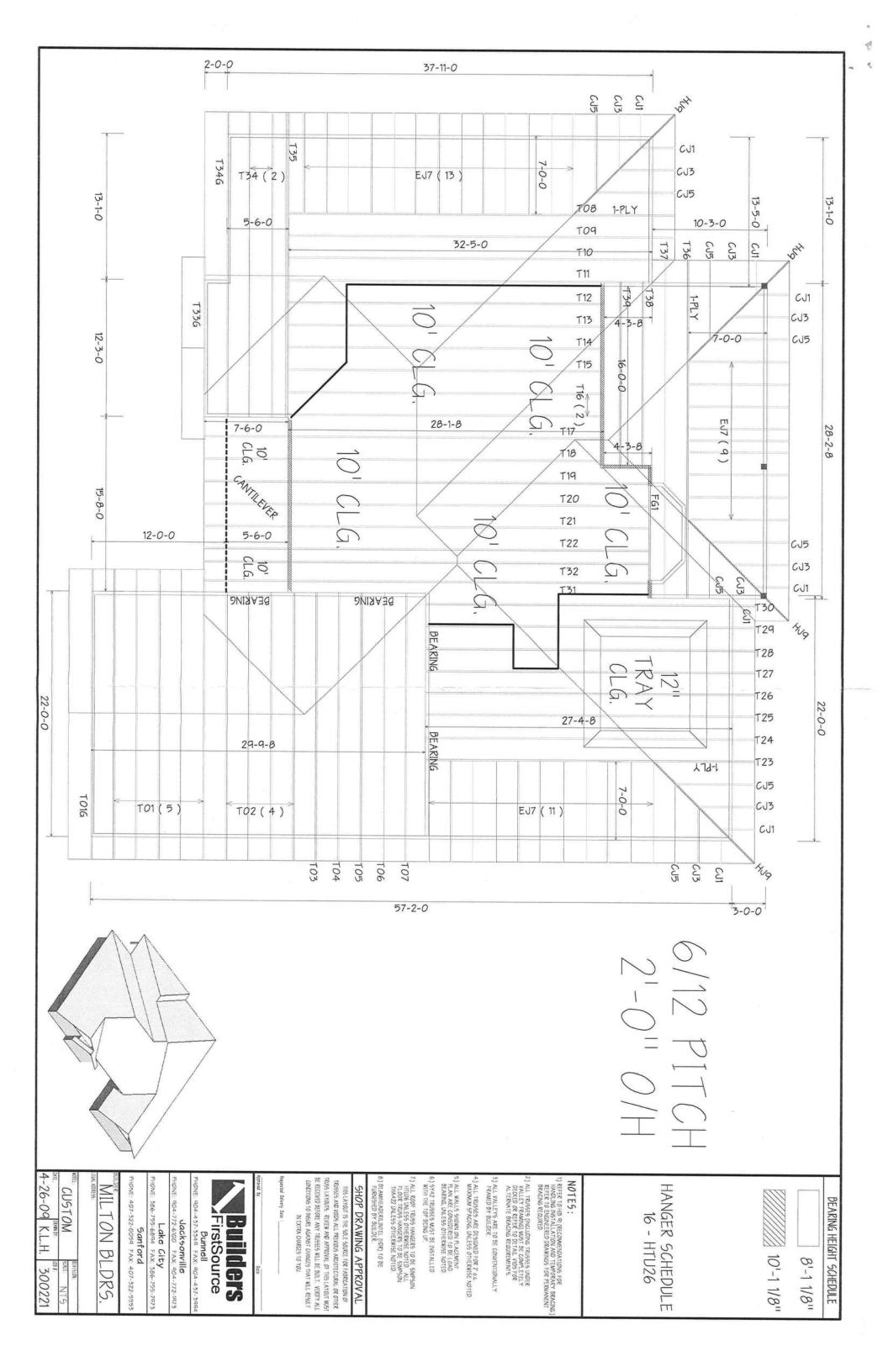
- Minimum of two rows of SDS, WS, or TrussLok™ screws, 5" minimum length, at 16" on-center. 6" SDS and WS screws are not recommended for use with TimberStrand® LSL. Connectors must be installed on both sides. Stagger fasteners on opposite side of beam by ½ of the required connector spacing.
- Load must be applied evenly across entire beam width. Otherwise, use connections for side-loaded beams.
- Minimum of two rows of ½" bolts at 24" on-center staggered.

Multiple pieces can be nailed or bolted together to form a header or beam of the required size, up to a maximum width of 7"

 $\gamma_{\mathcal{A}}$


1051 South 1/2 of Lot 20 . 49 Acres LOT 14 SEPTIL TAINK 2000 Porch Ac GARAGE 3' SIDE WAIK O WELL 421

N.E. DEW DROP WAY


Barrington House SITEPLAN Jay Milton Jimh

V

North 19

· }		

in the second se			