CP-AB-Floyd HVAC Load Calculations

for

Amira Builders 14901 N Main St Alachua, FL 32615

Prepared By:

Ken Fonorow Florida H.E.R.O., Inc. 15220 NW 5th Ave Newberry, Fl 32669 (352) 472-5661 Tuesday, February 2, 2021

Rhvac is an ACCA approved Manual J, D and S computer program.

Calculations are performed per ACCA Manual J 8th Edition, Version 2, and ACCA Manual D.

Rhvac - Residential & Light Commercial HVAC Loads

Elite Software Development, Inc. Florida H.E.R.O. CP-AB-Flovd Newberry, FL 32669 Page 2

Project Report

General Project Information

Project Title: CP-AB-Floyd Designed By: Ken Fonorow Project Date: 2/2/2021 **Project Comment:** Custom Home Client Name: Amira Builders Client Address: 14901 N Main St Client City: Alachua, FL 32615 Client Phone: 386 462-9071

Client E-Mail Address: amirabuilders@aol.com Company Name: Florida H.E.R.O., Inc. Company Representative: Ken Fonorow

15220 NW 5th Ave Company Address: Company City: Newberry, FI 32669 Company Phone: (352) 472-5661 ken@floridahero.com Company E-Mail Address: Company Website: www.floridahero.com

Design Data

Reference City: Gainesville, Florida Front door faces West **Building Orientation:**

Daily Temperature Range: Medium Latitude: 29 Degrees Elevation: 152 ft. Altitude Factor: 0.995

	Outdoor	Outdoor	Outdoor	Indoor	Indoor	Grains
	Dry Bulb	Wet Bulb	Rel.Hum	Rel.Hum	Dry Bulb	Difference
Winter:	33	30.8	n/a	n/a	72	n/a
Summer:	92	77	51%	50%	75	52

Check Figures

Total Building Supply CFM: 1,000 CFM Per Square ft.: 0.438 Square ft. of Room Area: 2,285 Square ft. Per Ton: 970

Volume (ft3): 23.339

Building Loads

Total Heating Required Including Ventilation Air: 33.789 MBH 33,789 Btuh Total Sensible Gain: 22,084 Btuh 78 % Total Latent Gain: 6,194 Btuh 22 %

Total Cooling Required Including Ventilation Air: 28,278 Btuh 2.36 Tons (Based On Sensible + Latent)

Rhvac is an ACCA approved Manual J, D and S computer program.

Calculations are performed per ACCA Manual J 8th Edition, Version 2, and ACCA Manual D.

All computed results are estimates as building use and weather may vary.

Be sure to select a unit that meets both sensible and latent loads according to the manufacturer's performance data at your design conditions.

Rhvac - Residential & Light Conformation H.E.R.O. Newberry, FL 32669	ommercial F	IVAC Load	ls					Elite S	oftware Devel	lopment, Inc. CP-AB-Floyd Page 3
Miscellaneous Rep	oort									
System 1 Whole House			Outdo	or	Outdoor		Outdoor	Indoor	Indoor	Grains
Input Data			Dry B	ulb V	Net Bulb	R	tel.Hum	Rel.Hum	Dry Bulb	Difference
Winter:			•	33	30.8		80%	n/a	72	n/a
Summer:				92	77		51%	50%	75	51.69
Duct Sizing Inputs										
	lain Trunk			F	Runouts					
Calculate:	Yes				Yes					
Use Schedule:	Yes				Yes					
Roughness Factor:	0.15000			(0.15000					
Pressure Drop:	0.1000	in.wg./10)0 ft.		0.1000	in.wç	g./100 ft.			
Minimum Velocity:	650	ft./min				ft./mi				
Maximum Velocity:	900	ft./min			750	ft./mi	in			
Minimum Height:	0	in.			0	in.				
Maximum Height:	0	in.			0	in.				
Outside Air Data										
		Winter				nmer				
Infiltration Specified:			AC/hr		0		AC/hr			
		86	CFM			43	CFM			
Infiltration Actual:		0.229	AC/hr		0	.089	AC/hr			
Above Grade Volume:	X	23,339	Cu.ft.		X 23	,339	Cu.ft.			
		5,349	Cu.ft./hr		2	,084	Cu.ft./hr			
	Σ	C 0.0167			X 0.0	<u>)167</u>				
Total Building Infiltration:		89	CFM			35	CFM			
Total Building Ventilation:		25	CFM			50	CFM			
System 1										
Infiltration & Ventilation Ser								Summer Te		ce)
Infiltration & Ventilation Lat								Grains Diffe		
Infiltration & Ventilation Ser								Winter Tem	p. Difference	;)
Winter Infiltration Specified			36 CFM), (
Summer Infiltration Specific		`	13 CFM), (Constru	iction: Se	:mi-Ti	ght			
Duct Load Factor Scenario	s for Syste	<u>m 1</u>								
			At	tic		D	ouct	Duct	Surface	From

				Attic	Duct	Duct	Surface	From
No.	Type	Description	Location	Ceiling	Leakage	Insulation	Area	[T]MDD
1	Supply	Main	Attic	16B	0.06	6	614	No
1	Return	Main	Attic	16B	0.06	6	227	No

Rhvac - Residential & Light Commercial HVAC Loads

Newberry, FL 32669

Florida H.E.R.O.

Elite Software Development, Inc. CP-AB-Floyd Page 4

Tabular Manual D Ductsize Grid

D	ucts	Room	Feeds Zones	Flow	Diam	Wid	Hei	Vel
CP-AE	3-Floy(
⊟ CI	P-AB-Floyd							
⊟	System 2							
	Supply							
	Return							
	System 4							
	Supply							
	Return							
Ξ	System 6							
	Supply							
	Return							
Ξ	System 8							
	Supply							
	Return							
Ξ	System 10							
	Supply							
	Return							
Ξ	System 12							
	Supply							
	Return							
⊟	System 14							
	Supply							
	Return							

Rhvac - Residential & Light Commercial HVAC Loads Florida H.E.R.O. Newberry, FL 32669			Elite S	oftware Devel	opment, Inc. CP-AB-Floyd Page 5
Total Building Summary Loads					
Component	Area	Sen	Lat	Sen	Total
Description	Quan	Loss	Gain	Gain	Gain
VYN 34 23: Glazing-Dbl Pn Vyn Fr U .34 SHGC .23, ground reflectance = 0.23, outdoor insect screen with 50% coverage, medium color blinds at 45° with 25% coverage, U-value 0.34, SHGC 0.23	81	1,075	0	1,129	1,129
VYN 34 23: Glazing-Dbl Pn Vyn Fr U .34 SHGC .23, ground reflectance = 0.23, U-value 0.34, SHGC 0.23	38.2	507	0	524	524
FrDr 34 23: Glazing-Fr Dr Dbl Pn Vyn U .34 SHGC .23, ground reflectance = 0.32, medium color blinds at 45° with 50% coverage, U-value 0.34, SHGC 0.23	114.5	1,517	0	1,108	1,108
VYN 34 23: Glazing-Dbl Pn Vyn Fr U .34 SHGC .23, ground reflectance = 0.32, outdoor insect screen with 50% coverage, medium color blinds at 45° with 25% coverage, U-value 0.34, SHGC 0.23	42	556	0	738	738
VYN 34 23: Glazing-Dbl Pn Vyn Fr U .34 SHGC .23, ground reflectance = 0.23, medium color blinds at 45° with 100% coverage, U-value 0.34, SHGC 0.23	30	398	0	608	608
VYN 34 23: Glazing-Dbl Pn Vyn Fr U .34 SHGC .23, ground reflectance = 0.32, U-value 0.34, SHGC 0.23	12	160	0	126	126
VYN 34 23: Glazing-Dbl Pn Vyn Fr U .34 SHGC .23, ground reflectance = 0.32, outdoor insect screen with 50% coverage, medium color blinds at 45° with 50% coverage, U-value 0.34, SHGC 0.23	42	556	0	712	712
11P: Door-Metal - Polyurethane Core, U-value 0.29	17.8	201	0	145	145
12E-0sw: Wall-Frame, R-19 insulation in 2 x 6 stud cavity, no board insulation, siding finish, wood studs, U-value 0.068	2218.4	5,885	0	2,929	2,929
16B-30: Roof/Ceiling-Under Attic with Insulation on Attic Floor (also use for Knee Walls and Partition Ceilings), Vented Attic, No Radiant Barrier, Dark Asphalt Shingles or Dark Metal, Tar and Gravel or Membrane, R-30 insulation, U-value 0.032	2284.9	2,852	0	3,803	3,803
16B-19: Roof/Ceiling-Under Attic with Insulation on Attic Floor (also use for Knee Walls and Partition Ceilings), Vented Attic, No Radiant Barrier, Dark Asphalt Shingles or Dark Metal, Tar and Gravel or Membrane, R-19 insulation, U-value 0.049	96	183	0	246	246
22A-pl: Floor-Slab on grade, No edge insulation, no insulation below floor, any floor cover, passive, light dry soil, U-value 0.989	267	10,299	0	0	0
Subtotals for structure:	_	24,189	0	12,068	12,068
People: Equipment:	6		1,200 1,350	1,380 2,650	2,580 4,000
Lighting:	0		1,330	2,630	4,000
Ductwork:	J	4,730	681	3,533	4,215
Infiltration: Winter CFM: 89, Summer CFM: 35		3,803	1,215	647	1,862
Ventilation: Winter CFM: 25, Summer CFM: 50		1,067	1,748	930	2,678
Exhaust: Winter CFM: 50, Summer CFM: 25		-	_	a=-	
AED Excursion:		0	0	876	876
Total Building Load Totals:		33,789	6,194	22,084	28,278
Check Figures					
Total Building Supply CFM: 1,000		er Square ft.:			0.438
Square ft. of Room Area: 2,285 Volume (ft³): 23,339	Square	ft. Per Ton:			970
Building Loads		00-00-	D		
Total Heating Required Including Ventilation Air: 33,	789 Btuh	33.789 M	RH		

Rhvac - Residential & Light Commercial HVAC Loads
Florida H.E.R.O.
Newberry, FL 32669

Elite Software Development, Inc.
CP-AB-Floyd
Page 6

Total Building Summary Loads (cont'd)

Building Loads

Total Sensible Gain: 22,084 Btuh 78 % Total Latent Gain: 6,194 Btuh 22 %

Total Cooling Required Including Ventilation Air: 28,278 Btuh 2.36 Tons (Based On Sensible + Latent)

Notes

Rhvac is an ACCA approved Manual J, D and S computer program.

Calculations are performed per ACCA Manual J 8th Edition, Version 2, and ACCA Manual D.

All computed results are estimates as building use and weather may vary.

Be sure to select a unit that meets both sensible and latent loads according to the manufacturer's performance data at your design conditions.

Rhvac - Residential & Light Commercial HVAC Loads	Elite Software Development, Inc.
Florida H.E.R.O.	CP-AB-Floyd
Newberry, FL 32669	Page 7

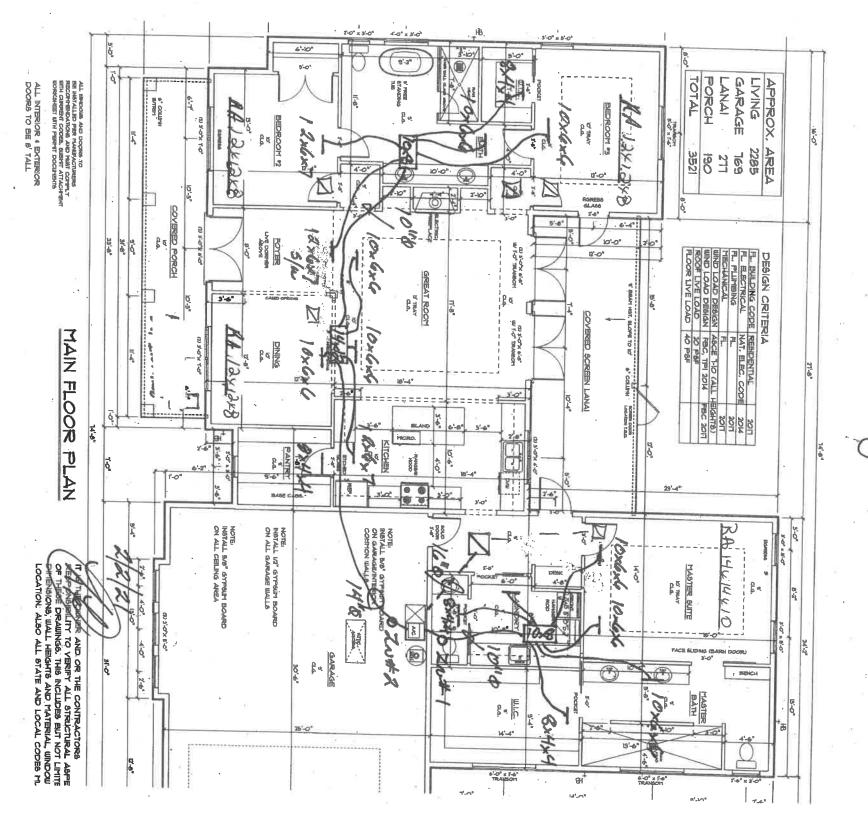
System 1 Room Load Summary

		,	Htg	Min	Run	Run	Clg	Clg	Min	Act
Rooi	m	Area	Sens	Htg	Duct	Duct	Sens	Lat	Clg	Sys
No Nam	ie	SF	Btuh	CFM	Size	Vel	Btuh	Btuh	CFM	CFM
Zone 1										
1 Mas	ter Suite	252	3,430	63	2-6	358	3,080	535	141	141
2 Mast	ter Bath	180	2,784	51	1-6	338	1,452	668	66	66
3 MBR	RWIC	143	2,374	43	1-4	376	718	103	33	33
4 Laur	ndry	99	139	3	1-4	251	478	350	22	22
5 PWD	DR [®]	36	816	15	1-4	113	216	88	10	10
6 Gara	age Entry	90	1,517	28	0-0	0	669	51	31	31
	e 1 subtotal	800	11,059	202			6,613	1,795	302	302
Zone 2										
7 Kitch	nen	204	2,452	45	1-7	481	2,815	648	129	129
8 Pant	ry	76	858	16	1-4	306	584	34	27	27
9 Dinir	ng	156	2,120	39	1-6	523	2,246	84	103	103
10 Foye	er	96	1,961	36	1-7	575	3,361	67	154	154
11 Grea	at Room	345	3,177	58	2-6	504	4,332	483	198	198
12 Bedr	room 2	182	3,331	61	1-7	559	3,266	133	149	149
13 Bath		195	1,651	30	1-4	438	837	311	38	38
14 Bedr	room 3	192	4,332	79	1-6	432	1,856	187	85	85
15_BR 3	3 WIC	40	504	9	1-4	88	167	23	8	8
Zone	e 2 subtotal	1,485	20,387	373			19,464	1,970	890	890
Vent	ilation		1,067				930	1,748		
Duct	Latent							497		
Retu	ırn Duct		1,277				954	184		
Syst	em 1 total	2,285	33,789	575			22,084	6,194	923	1,000

System 1 Main Trunk Size: 14x14 in. Velocity: 735 ft./min Loss per 100 ft.: 0.347 in.wg

Note: Since the system is multizone, the Peak Fenestration Gain Procedure was used to determine glass sensible gains at the room and zone levels, so the sums of the zone sensible gains and airflows for cooling shown above are not intended to equal the totals at the system level. Room and zone sensible gains and cooling CFM values are for the hour in which the glass sensible gain for the zone is at its peak. Sensible gains at the system level are based on the "Average Load Procedure + Excursion" method.

Cooling System Summary


	Cooling	Sensible/Latent	Sensible	Latent	Total
	Tons	Split	Btuh	Btuh	Btuh
Net Required:	2.36	78% / 22%	22,084	6,194	28,278
Actual:	2.38	77% / 23%	22,022	6,578	28,600

Equipment Data

	Heating System	Cooling System
Type:	Air Source Heat Pump	Air Source Heat Pump
Model:	CH14NB030*0**A*	CH14NB030*0**A*
Indoor Model:		FB4CNP030L
Brand:	14 SEER HP	14 SEER HP
Description:	Air Source Heat Pump	Air Source Heat Pump
Efficiency:	8.2 HSPF	14 SEER
Sound:	0	0
Capacity:	28,600 Btuh	28,600 Btuh
Sensible Capacity:	n/a	22,022 Btuh
Latent Capacity:	n/a	6,578 Btuh
AHRI Reference No.:	n/a	9162305

Rhvac - Residential & Light Commercial HVAC Loads Florida H.E.R.O. Newberry, FL 32669	Elite Software Development, Inc. CP-AB-Floyd Page 8
System 1 Room Load Summary (cont'd)	
Equipment Data	
This system's equipment was selected in accordance with ACCA Manual S. Manual S equipment sizing data: SODB: 92F, SOWB: 77F, WODB: 33F, SIDB: 75F, SIRH: 22,084 Btuh, Lat. gain: 6,194 Btuh, Sen. loss: 33,789 Btuh, Entering clg. coil DB: 76.7F, Entering htg. coil DB: 69.9F, Clg. coil TD: 20F, Htg. coil TD: 50F, Req. clg. airflow: 923 CFM	tering clg. coil WB: 63.6F,

CF-AB-Floyd

