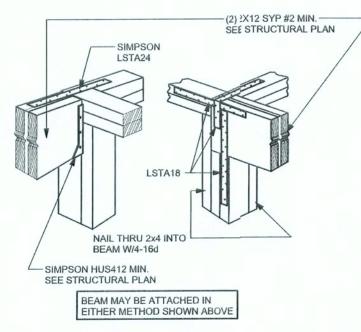
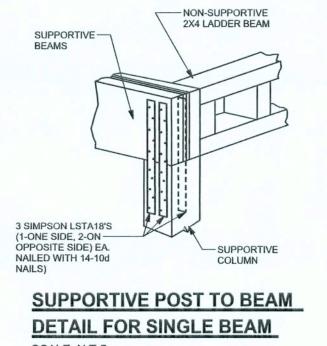
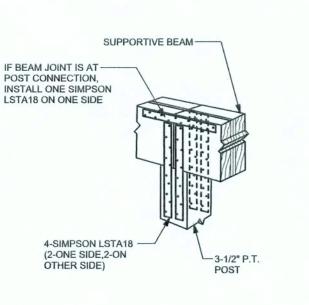

ONE STORY WALL SECTION SCALE: 3/4" = 1'-0"

EXTERIOR WALL STUD TABLE FOR SPF #2 STUDS


(1) 2x4 @ 16" OC	TO 11'-9" STUD HEIGHT
(1) 2x4 @ 12" OC	TO 13'-0" STUD HEIGHT
(1) 2x6 @ 16" OC	TO 18'-10' STUD HEIGHT
(1) 2x6 @ 12" OC	TO 20.0' STUD HEIGHT

THIS STUD HEIGHT TABLE IS PER WFCM 2001, TABLE 3.20B, EXTERIOR LOAD BEARING & NON LOAD BEARING STUD LENGTHS RESISTING INTERIOR ZONE WINDLOADS 110 MPH EXPOSURE B. STUD SPACINGS SHALL BE MULTIPLIED BY 0.85 FOR FRAMING LOCATED WITHIN 4 FEET OF CORNERS FOR END ZONE LOADING. EXAMPLE 16" O.C. x 0.85 = 13.6" O.C.




BEAM MID-WALL CONNECTION DETAIL SCALE: N.T.S.

BEAM CORNER CONNECTION. DETAIL

SCALE: N.T.S.

SUPPORTIVE CENTER POST TO BEAM DETAIL

GENERAL NOTES:

TRUSSES: TRUSSES SHALL BE DESIGNED BY A FLORIDA LICENSED ENGINEER IN ACCORDANCE WITH THE FBCR 2004. TRUSS ENGINEERING SHALL INCLUDE TRUSS DESIGN, PLACEMENT PLANS, TEMPORARY AND PERMANENT BRACING DETAILS, TRUSS-TO-TRUSS CONNECTIONS, AND UPLIFT AND REACTION LOADS FOR ALL BEARING LOCATIONS. TRUSS ENGINEERING IS THE RESPONSIBILITY OF THE TRUSS MANUFACTURER AND SHALL BE SIGNED & SEALED BY THE MANUFACTURER'S DESIGN ENGINEER. IT IS THE BUILDER'S RESPONSIBILITY VERIFY THE TRUSS DESIGNER FULLY SATISFIED ALL THE ABOVE REQUIREMENTS AND TO SELECT UPLIFT CONNECTIONS BASED ON TRUSS ENGINEERING UPLIFT AND PROVIDE FOOTINGS FOR INTERIOR BEARING WALLS. BUILDER IS TO FURNISH TRUSS ENGINEERING TO WIND LOAD ENGINEER FOR REVIEW OF TRUSS REACTIONS ON THE BUILDING STRUCTURE. STRAP 2X6 RAFTERS WITH MIN UPLIFT CONNECTION 415LB EACH END; 2X8 RAFTERS 700 LB EACH END.

SITE PREPARATION: SITE ANALYSIS AND PREPARATION IS NOT PART OF THIS PLAN FOUNDATION: CONFIRM THAT THE FOUNDATION DESIGN & SITE CONDITIONS MEET

VISUAL OBSERVATION OR SOILS TEST PROVES OTHERWISE CONCRETE: MINIMUM COMPRESSIVE STRENGTH OF CONCRETE AT 28 DAYS, F'c = 3000 PSI.

WELDED WIRE REINFORCED SLAB: 6" x 6" x 0" W1.4 x W1.4, FB = 85KSI, WELDED WIRE REINFORCEMENT FABRIC (W.W.M.) CONFORMING TO ASTM A185; LOCATED IN MIDDLE OF THE SLAB; SUPPORTED WITH APPROVED MATERIALS OR SUPPORTS AT SPACINGS NOT TO EXCEED 3'.

FIBER CONCRETE SLAB: CONCRETE SLABS ON GROUND CONTAINING SYNTHETIC FIBER REINFORCEMENT. FIBER LENGTH 1/2 INCH TO 2 INCHES. DOSAGE AMOUNTS FROM 0.75 TO 1.5 POUNDS PER CUBIC YARD PER THE MANUFACTURER'S RECOMMENDATIONS. FIBERS TO COMPLY WITH ASTM C 1116. SUPPLIER TO PROVIDE ASTM C 1116 CERTIFICATION OF COMPLIANCE WHEN REQUESTED BY BUILDING OFFICIAL.

CONTROL JOINTS: WHERE SPECIFIED, SAWN CONTROL JOINTS IN SLAB-ON-GRADE SHALL BE CUT IN ACCORDANCE WITH ACI 302. JOINTS SHALL BE CUT WITHIN 12 HOURS OF SLAB PLACEMENT. THE LENGTH / WIDTH RATIOS OF SLAB AREAS SHALL NOT EXCEED 1.5 AND TYPICAL SPACING OF CUTS TO BE 12FT. DO NOT CUT WWM OR REINFORCING STEEL. (RECOMMENDED LOCATION OF CONTROL JOINTS IS SUBJECT TO OWNER AND CONTRACTOR'S APPROVAL. THE CONTROL JOINTS ARE NOT INTENDED TO PREVENT CRACKS BUT RATHER TO ENCOURAGE THE SLAB TO CRACK ON A GIVEN LINE.)

REBAR: ASTM A 615, GRADE 60, DEFORMED BARS, FY = 60 KSI. ALL LAP SPLICES 40 * DB (25" FOR #5 BARS); UNO. ALL REINFORCEMENT SHALL BE DETAILED AND PLACED IN ACCORDANCE WITH ACI 315-96, U.N.O.

GLULAM BEAMS: GLULAM BEAM, GLB, 24F-V3SP, Fb = 2.4ksi, E = 1800ksi; UNO. SUPPLIER MAY SUPPLY AN ALTERNATE BEAM WITH EQUAL PROPERTIES OR MAY SUBMIT THEIR OWN SIZING CALCS. ROOF SHEATHING: ALL ROOFS ARE HORIZONTAL DIAPHRAGMS; 7/16" OSB SHEATHING, UNBLOCKED, APPLIED PERPENDICULAR TO FRAMING, OVER A MINIMUM OF 3 FRAMING MEMBERS, WITH PANEL EDGES STAGGERED, FASTENED WITH 8d COMMON NAILS (.131), 6"OC PANEL EDGES, 12"OC INTERMEDIATE MEMBERS, GABLE ENDS AND DIAPHRAGM BOUNDARY; 4"OC, UNO.

STRUCTURAL CONNECTORS: MANUFACTURERS AND PRODUCT NUMBER FOR CONNECTORS, ANCHORS, AND REINFORCEMENT ARE LISTED FOR EXAMPLE NOT ENDORSEMENT. AN EQUIVALENT DEVICE OF THE SAME OR OTHER MANUFACTURER CAN BE SUBSTITUTED FOR ANY DEVICES LISTED IN THE EXAMPLE TABLES AS LONG AS IT MEETS THE REQUIRED LOAD CAPACITIES. MANUFACTURER'S INSTALLATION INSTRUCTIONS MUST BE FOLLOWED TO ACHIEVE RATED LOADS.

ANCHOR BOLTS: A-307 ANCHOR BOLTS WITH MINIMUM EMBEDMENT AS SPECIFIED IN DRAWINGS BUT NO LESS THAN 7" IN CONCRETE OR REINFORCED BOND BEAM OR 15" IN GROUTED CMU.

WASHERS: WASHERS USED WITH 1/2" BOLTS TO BE 2" \times 2" \times 9/64"; WITH 5/8" BOLTS TO BE 3" \times 3" \times 9/64"; WITH 3/4" BOLTS TO BE 3" \times 3" \times 9/64"; WITH 7/8" BOLTS TO BE 3" \times 3" \times 5/16"; UNO.

NAILS: ALL NAILS ARE COMMON NAILS UNLESS OTHERWISE SPECIFIED OR ACCEPTED BY FBC TEST REPORTS AS HAVING EQUAL STRUCTURAL VALUES.

BUILDER'S RESPONSIBILITY

GRADE & SPECIES TABLE

SYP #2

SYP #2

SYP #2

LSL TIMBERSTRAND 1700

MICROLAM

PARALAM

PRE ENGINEERED ROOF TRUSS -

GLB 24F-V3 SP

DOUBLE 2x4 SPF TOP PLATE NAILED -TOGETHER W/2-16d NAILS AT 16" O.C. 4' MIN. LAP w/ (12) - 16d OR 4" LAP w/

CS20 w/ (4) - 16d &(14) - 10d

SPECIFIED ON FLOOR PLAN

ALL STUDS TO BE 2x4 ----

CONTINUOUS FRAME TO

-LSTA18 (U.N.O. ---

CRIPPLES IF REQUIRED

(4) .131 x 3 1/4" GUN NAILS

- TOE NAILED THRU SILL :

INTO JACK STUD U.N.O.

TYPICAL STRAPPING (U.N.O.)

-SP4 OR (2) H2.5A OR (2) SSP---

(SEE STRUCTURAL PLAN)

ALL OPENINGS (U.N.O.)

(1) 2×6 SPF #2 SILL UP TO 11'-0" U.N.O.

(1) 2:X4 SPF #2 SILL UP TO 7'-3" U.N.O.

(FOR: 110 MPH, 10'-0" WALL HIGHT U.N.O.)

TYPICAL HEADER STRAPING DETAIL

CEILING DIAPHRAGM DETAIL

-NAIL SHEATHING TO HEADER AND TOP

PLATE WITH 8d AT 4" O.C. FOR UPLIFT

(6) .131 x 3 1/4" GUN NAILS

INTO KING STUD

TOE NAILED THRU HEADER

SPF NAILED TO TOP

(6) .131 x 3 1/4" GUN NAILS-

INTO KING STUD

TOE NAILED THRU HEADER

AND BOTTOM PLATES

INTERIOR CEILING AS -

CONTINUOUS FRAME -TO TOP PLATE AT BOTTOM CHORD OF TRUSS

2x10

2x12

Fb (psi) | E (10⁶ psi

1.6

1.6

1.8

1.7

1.9

1200

1050

975

2400

1600

2900

	R AND OWNER ARE RESPONSIBLE FOR THE FOLLOWING, WHICH ARE Y NOT PART OF THE WIND LOAD ENGINEER'S SCOPE OF WORK.
	CONDITIONS, FOUNDATION BEARING CAPACITY, GRADE AND HT, WIND SPEED AND DEBRIS ZONE, AND FLOOD ZONE.
	RIALS AND CONSTRUCTION TECHNIQUES, WHICH COMPLY WITH FBCR 2004 S FOR THE STATED WIND VELOCITY AND DESIGN PRESSURES.
BELIEVE THE PI	ITINUOUS LOAD PATH FROM TRUSSES TO FOUNDATION. IF YOU AN OMITS A CONTINUOUS LOAD PATH CONNECTION, CALL ENGINEER IMMEDIATELY.
DESIGN, PLACE	USS MANUFACTURER'S SEALED ENGINEERING INCLUDES TRUSS MENT PLANS, TEMPORARY AND PERMANENT BRACING DETAILS, SS CONNECTIONS, AND UPLIFT AND REACTION LOADS FOR ALL TIONS.

ROOF SYSTEM DESIGN

THE SEAL ON THESE PLANS FOR COMPLIANCE WITH FBCR 2004, SECTION R301.2.1 IS BASED ON REACTIONS, UPLIFTS, AND BEARING LOCATIONS IN THE RESPONSIBILITY OF THE BUILDER TO CHECK ALL DETAILS OF THE COMPLETE ROOF SYSTEM DESIGN SUBMITTED BY THE TRUSS MANUFACTURER AND HAVE IT SIGNED, AND SEALED BY A DESIGN PROFESSIONAL FOR CORRECT APPLICATION OF FBC 2001 REQUIRED OADS AND ANY SPECIAL LOADS. THE BUILDER IS RESPONSIBLE TO REVIEW EACH INDIVIDUAL TRUSS MEMBER AND THE TRUSS ROOF SYSTEM AS A WHOLE AND TO PROVIDE RESTRAINT FOR ANY LATERAL BRACING. THE BUILDER SHOULD USE CARE CHECKING THE ROOF DESIGN BECAUSE THE WIND LOAD ENGINEER IS SPECIFICALLY NOT RESPONSIBLE FOR THE TRUSS LAYOUT WHICH WAS CREATED BY THE TRUSS MANUFACTURER AND THE TRUSS DESIGNER ALSO DENIES RESPONSIBILITY FOR THE LAYOUT PER NOTES ON THEIR SEALED TRUSS SHEETS.

MASONRY NOTES: MASONRY CONSTRUCTION AND MATERIALS FOR THIS PROJECT SHALL CONFORM TO ALL REQUIREMENTS OF "SPECIFICATION FOR MASONRY STRUCTURES" (ACI 530.1/ASCE 6/TMS 602). THE CONTRACTOR AND MASON MUST IMMEDIATELY, BEFORE PROCEDING, NOTIFY THE ENGINEER OF ANY CONFLICTS BETWEEN ACI 530.1-02 AND THESE DESIGN DRAWINGS. ANY EXCEPTIONS TO ACI 530.1-02 MUST BE APPROVED BY THE ENGINEER IN WRITING.

	ACI530.1-02 Section	Specific Requirements
1.4A	Compressive strength	8" block bearing walls F'm = 1500 psi
2.1	Mortar	ASTM C 270, Type N, UNO
2.2	Grout	ASTM C 476, admixtures require approva
2.3	CMU standard	ASTM C 90-02, Normal weight, Hollow, medium surface finish, 8"x8"x16" running bond and 12"x12" or 16"x16" column block
2.3	Clay brick standard	ASTM C 216-02, Grade SW, Type FBS, 5.5"x2.75"x11.5"
2.4	Reinforcing bars, #3 - #11	ASTM 615, Grade 60, Fy = 60 ksi, Lap splices min 48 bar dia. (30" for #5)
2.4F	Coating for corrosion protection	Anchors, sheet metal ties completely embedded in mortar or grout, ASTM A525, Class G60, 0.60 oz/ft2 or 304SS
2.4F	Coating for corrosion protection	Joint reinforcement in walls exposed to moisture or wire ties, anchors, sheet metaties not completely embedded in mortar o grout, ASTM A153, Class B2, 1.50 oz/ft2 or 304SS
3.3.E.2	Pipes, conduits, and accessories	Any not shown on the project drawings require engineering approval.
3.3.E.7	Movement joints	Contractor assumes responsibility for type and location of movement joints if not detailed on project drawings.

ANCHOR TABLE

OBTAIN UPLIFT REQUIREMENTS FROM TRUSS MANUFACTURER'S ENGINEERING

DESIGN DATA

	UPLIFT LBS. SPF	TRUSS CONNECTOR*	TO PLATES	TO RAFTER/TRUSS	TO STUDS
< 420	< 245	H5A	3-8d	3-8d	
< 455	< 265	H5	4-8d	4-8d	
< 360	< 235	H4	4-8d	4-8d	
< 455	< 320	H3	4-8d	4-8d	
< 415	< 365	H2.5	5-8d	5-8d	
< 600	< 535	H2.5A	5-8d	5-8d	
< 950	< 820	H6	8-8d	8-8d	
< 745	< 565	H8	5-10d, 1 1/2"	5-10d, 1 1/2"	
< 1465	< 1050	H14-1	13-8d	12-8d, 1 1/2"	
< 1465	< 1050	H14-2	15-8d	12-8d, 1 1/2"	
< 990	< 850	H10-1	8-8d, 1 1/2"	8-8d, 1 1/2"	
< 760	< 655	H10-2	6-10d	6-10d	
< 1470	< 1265	H16-1	10-10d, 1 1/2"	2-10d, 1 1/2"	
< 1470	< 1265	H16-2	10-10d, 1 1/2"	2-10d, 1 1/2"	
< 1000	< 860	MTS24C	7-10d 1 1/2"	7-10d 1 1/2"	
< 1450	< 1245	HTS24	12-10d 1 1/2"	12-10d 1 1/2"	
< 2900	< 2490	2 - HTS24			
< 2050	< 1785	LGT2	14 -16d	14 -16d	
		HEAVY GIRDER TIEDOWNS*			TO FOUNDATION
< 3965	< 3330	MGT		22 -10d	1-5/8" THREADED ROD 12" EMBEDMENT
< 10980	< 6485	HGT-2		16 -10d	2-5/8" THREADED ROD 12" EMBEDMENT
< 10530	< 9035	HGT-3		16 -10d	2-5/8" THREADED ROD 12" EMBEDMENT
< 9250	< 9250	HGT-4		16 -10d	2-5/8" THREADED ROD 12" EMBEDMENT
		STUD STRAP CONNECTOR*			TO STUDS
< 435	< 435	SSP DOUBLE TOP PLATE	3 -10d		4 -10d
< 455	< 420	SSP SINGLE SILL PLATE	1 -10d		4 -10d
< 825	< 825	DSP DOUBLE TOP PLATE	6 -10d		8 -10d
< 825	< 600	DSP SINGLE SILL PLATE	2 -10d		8 -10d
< 885	< 760	SP4			6-10d, 1 1/2"
< 1240	< 1065	SPH4			10-10d, 1 1/2"
< 885	< 760	SP6			6-10d, 1 1/2"
< 1240	< 1065	SPH6			10-10d, 1 1/2"
< 1235	< 1165	LSTA18	14-10d		
< 1235	< 1235	LSTA21	16-10d		
< 1030	< 1030	CS20	18-8d		
< 1705	< 1705	CS16	28-8d		
		STUD ANCHORS*	TO STUDS		TO FOUNDATION
< 1350	< 1305	LTT19	8-16d		1/2" AB
< 2310	< 2310	LTTI31	18-10d, 1 1/2"		1/2" AB
< 2775	< 2570	HD2A	2-5/8" BOLTS		5/8" AB
< 4175	< 3695	HTT16	18 - 16d		5/8" AB
< 1400	< 1400	PAHD42	16-16d		
< 3335	< 3335	HPAHD22	16-16d		
< 2200	< 2200	ABU44	12-16d		1/2" AB
< 2300	< 2300	ABU66	12-16d		1/2" AB
< 2320	< 2320	ABU88	18 - 16d		2-5/8" AB

WIND LOADS PER FLORIDA BUILDING CODE 2004 RESIDENTIAL, SECTION R301,2.1

(ENCLOSED SIMPLE DIAPHRAGM BUILDINGS WITH FLAT, HIPPED, OR GABLE ROOFS:

MEAN ROOF HEIGHT NOT EXCEEDING LEAST HORIZONTAL DIMENSION OR 60 FT; NOT

SLOPE AND UNOBSTRUCTED UPWIND FOR 50x HEIGHT OR 1 MILE WHICHEVER IS LESS.)

ON UPPER HALF OF HILL OR ESCARPMENT 60FT IN EXP. B, 30FT IN EXP. C AND >10%

BUILDING IS NOT IN THE HIGH VELOCITY HURRICANE ZONE

7.) INTERNAL PRESSURE COEFFICIENT = N/A (ENCLOSED BUILDING)

8.) COMPONENTS AND CLADDING DESIGN WIND PRESSURES (TABLE R301.2(2))

BUILDING IS NOT IN THE WIND-BORNE DEBRIS REGION

1.) BASIC WIND SPEED = 110 MPH

3.) WIND IMPORTANCE FACTOR = 1.0

5.) ROOF ANGLE = 10-45 DEGREES

6.) MEAN ROOF HEIGHT = <30 FT

2.) WIND EXPOSURE = B

DESIGN LOADS

FLOOR 40 PSF (ALL OTHER DWELLING ROOMS)

10 PSF (ATTICS WITHOUT STORAGE, <3:12)

30 PSF (SLEEPING ROOMS) 30 PSF (ATTICS WITH STORAGE)

16 PSF (4:12 TO <12:12)

NOT IN FLOOD ZONE (BUILDER TO VERIFY)

12 PSF (12:12 AND GREATER)

STAIRS 40 PSF (ONE & TWO FAMILY DWELLINGS)

ROOF 20 PSF (FLAT OR <4:12)

SOIL BEARING CAPACITY 1000PSF

4.) BUILDING CATEGORY = II

Mark Disosway, P.E. for resolution. Do not proceed without clarification COPYRIGHTS AND PROPERTY RIGHTS:

Zone Effective Wind Area (ft2)

19.9 -21.8 18.1 -18.1

19.9 -25.5 18.1 -21.8

-40.6

3 | 19.9 | -25.5 | 18.1 | -21.8

5 21.8 -29.1 18.5 -22.6

Doors & Windows | 21.8 | -29.1

8x7 Garage Door 19.5 -22.9

16x7 Garage Door 18.5 -21.0

Worst Case

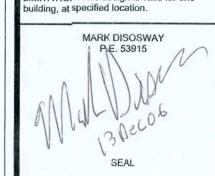
(Zone 5, 10 ft2)

Mark Disosway, P.E. hereby expressly reser its common law copyrights and property right in these instruments of service. This document is not to be reproduced, altered or copied in any form or mainer without first the express writter permission and consent of Mark Disosway. CERTIFICATION: I hereby certify that I have examined this plan, and that the applicable

VINDLOAD ENGINEER: Mark Disosway

PE No.53915, POB 868, Lake City, FL

32056, 386-754-5419


DIMENSIONS:

REVISIONS

SOFTPLAN

code residential 2004, to the best of my LIMITATION: This design is valid for one

comply with section R301.2.1, florida building

B & B Homes, Inc

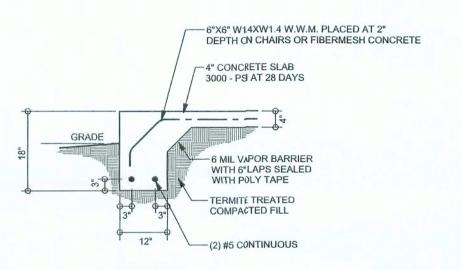
ADDRESS:

Mark Disosway P.E. P.O. Box 868

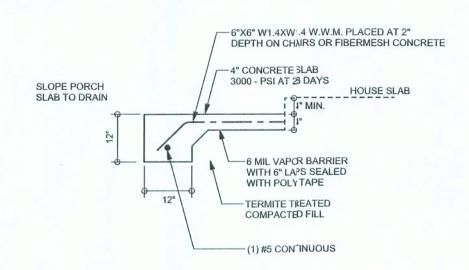
PRINTED DATE December 13, 2006 DRAWN BY: CHECKED BY

612081

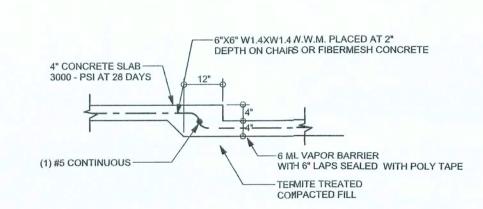
5-1

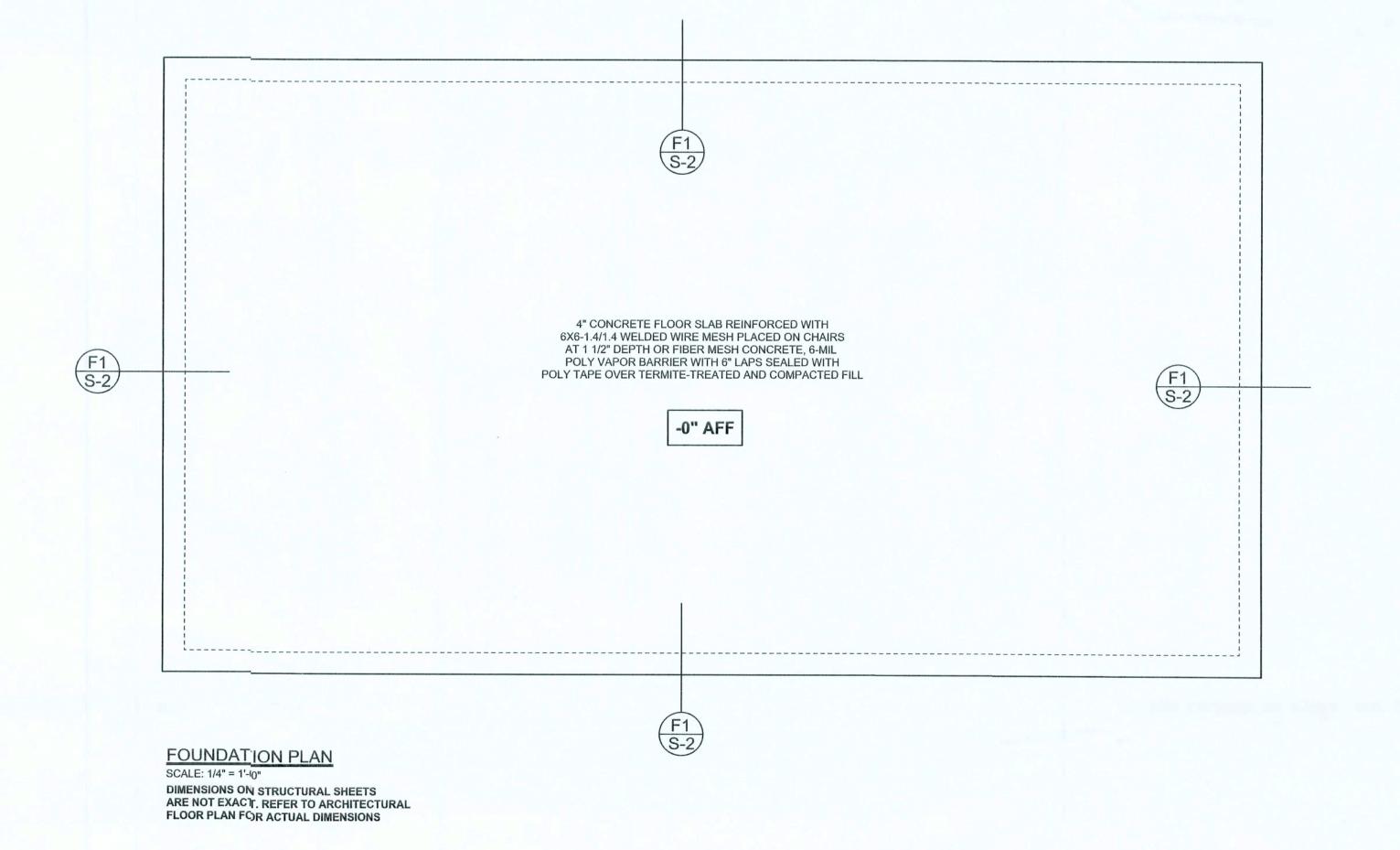

Jack & Latasha Crary Residence 386 SW Boseman Court Lake City, Florida 32024

Lake City, Florida 32056 Phone: (386) 754 - 5419 Fax: (386) 269 - 4871


FINALS DATE: 13 / Dec / 06 JOB NUMBER

DRAWING NUMBER


OF 3 SHEETS


F1 MONOLITHIC FOOTING

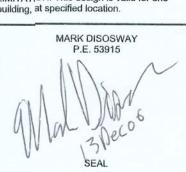
F5 PORCH FOOTING
S-2 SCALE: 1/2" = 1'-0"

F6 TYPICAL NON - BEARING STEP FOOTING
S-2 SCALE: 1/2" = 1'-0"

REVISIONS

SOFTPIA

WINDLOAD ENGINEER: Mark Disosway, PE No.53915, POB 868, Lake City, FL 32056, 386-754-5419


DIMENSIONS:

Stated dimensions supercede scaled dimensions. Refer all questions to Mark Disosway, P.E. for resolution. Do not proceed without clarification.

COPYRIGHTS AND PROPERTY RIGHTS: Mark Disosway, P.E. hereby expressly reserves its common law copyrights and property right in these instruments of service. This document is not to be reproduced, altered or copied in any form or manner without first the express written permission and consent of Mark Disosway.

CERTIFICATION: I hereby certify that I have examined this plan, and that the applicable portions of the plan, relating to wind engineering comply with section R301.2.1, florida building code residential 2004, to the best of my knowledge.

LIMITATION: This design is valid for one building, at specified location.

B & B Homes, Inc.

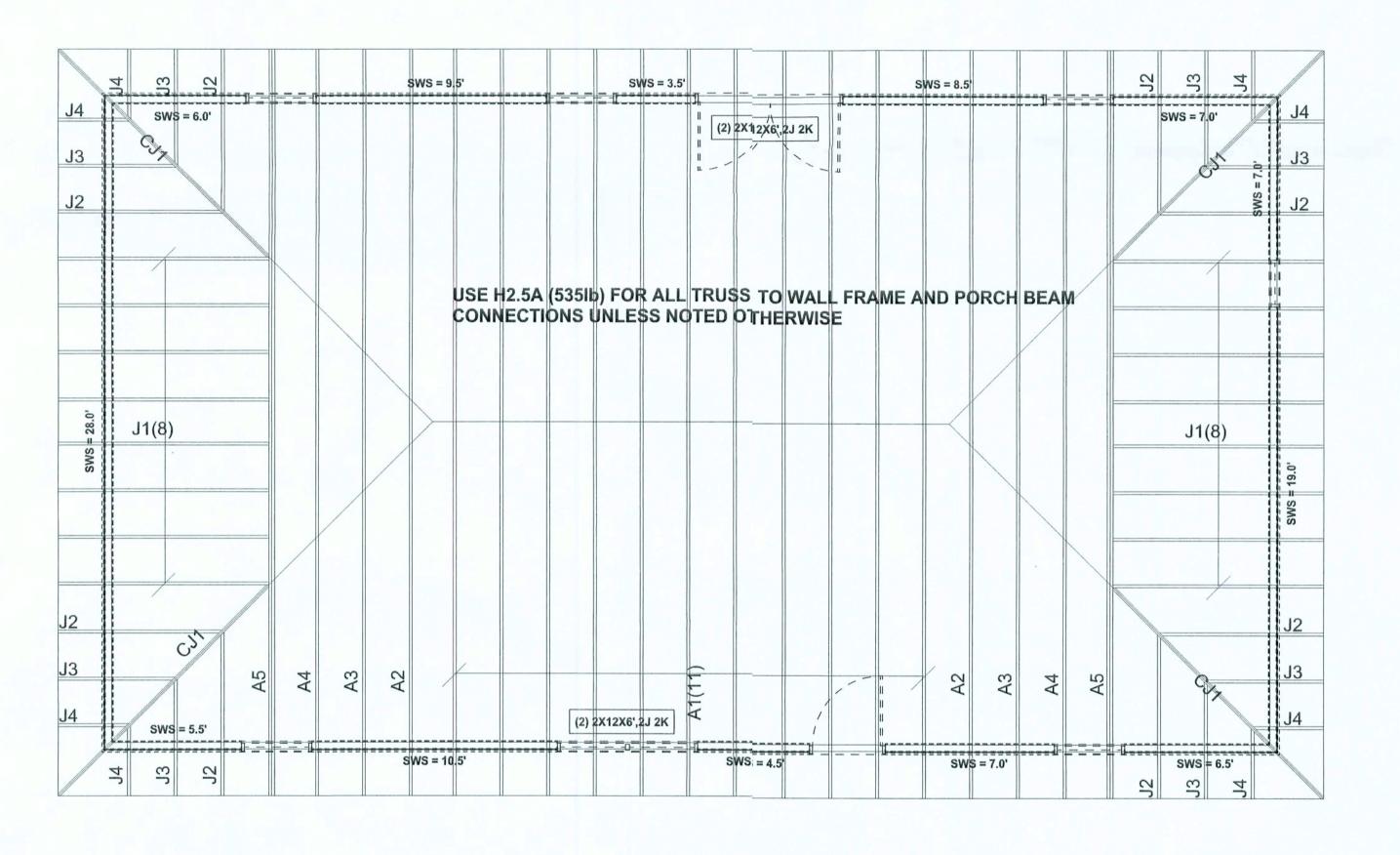
Jack & Latasha Crary Residence

ADDRESS: 386 SW Boseman Court Lake City, Florida 32024

Mark Disosway P.E.
P.O. Box 868
Lake City, Florida 32056
Phone: (386) 754 - 5419
Fax: (386) 269 - 4871

PRINTED DATE:
December 13, 2006

DRAWN BY: CHECKED BY:
David Disosway


FINALS DATE: 13 / Dec / 06

> JOB NUMBER: 612081 DRAWING NUMBER

S-2

OF 3 SHEETS

SOFTPIAN

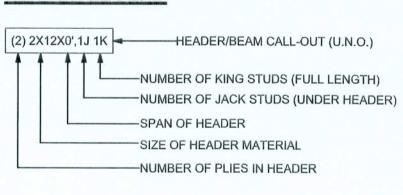
STRUCTURAL PLAN SCALE: 1/4" = 1'-0"

STRUCTURAL PLAN NOTES

ALL LOAD BEARING FRAME WALL & PORCH HEADERS SHALL BE A MINIMUM OF (2) 2X12 SYP #2 (U.N.O.)

SN-2 ALL LOAD BEARING FRAME WALL HEADERS SHALL HAVE (1) JACK STUD & (1) KING STUD EACH SIDE (U.N.O.)

DIMENSIONS ON STRUCTURAL SHEETS ARE NOT EXACT. REFER TO ARCHITECTURAL


FLOOR PLAN FOR ACTUAL DIMENSIONS

PERMANENT TRUSS BRACING IS TO BE INSTALLED AT LOCATIONS AS SHOWN ON THE SEALED TRUSS DRAWINGS. LATERAL BRACING IS TO BE RESTRAINED PER BCSI1-03, BCSI-B1, BCSI-B2, & BCSI-B3. BCSI-B1, BCSI-B2, & BCSI-B3 ARE FURNISHED BY THE TRUSS SUPPLIER, WITH THE SEALED TRUSS PACKAGE

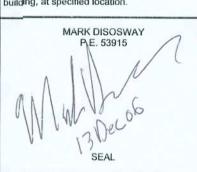
WALL LEGEND

SWS = 0.0'	1ST FLOOR EXTERIOR WALL WITH 7/16" O.S.B. WALL SHEATHING FULLY BLOCKED 8d COMMON NAILS 6" O.C. EDGE, 12" O.C. FIELD (U.N.O.)
SWS = 0.0'	2ND FLOOR EXTERIOR WALL WITH 7/16" O.S.B. WALL SHEATHING FULLY BLOCKED 8d COMMON NAILS 6" O.C. EDGE, 12" O.C. FIELD (U.N.O.)
IBW	1ST FLOOR INTERIOR BEARING WALLS SEE DETAILS ON SHEET S-1
BW 	2ND FLOOR INTERIOR BEARING WALLS SEE DETAILS ON SHEET S-1

HEADER LEGEND

TOTAL SHEAR WALL SEGMENTS SWS = 0.0' INDICATES SHEAR WALL SEGMENTS

	REQUIRED	ACTUAL
TRANSVERSE	35.2'	92.5'
LONGITUDINAL	32.5'	63.0'


WINDLOAD ENGINEER: Mark Disosway, PE No.53915, POB 868, Lake City, FL 32056, 386-754-5419 DIMENSIONS:

Stated dimensions supercede scaled dimensions. Refer all questions to Mark Disosway, P.E. for resolution. Do not proceed without clarification.

COPYRIGHTS AND PROPERTY RIGHTS:
Mark Disosway, P.E. hereby expressly reserves
its common law copyrights and property right in
these instruments of service. This document is
not to be reproduced, altered or copied in any
form of manner without first the express written form or manner without first the express written permission and consent of Mark Disosway.

CERTIFICATION: I hereby certify that I have examined this plan, and that the applicable portions of the plan, relating to wind engineering comply with section R301.2.1, florida building code residential 2004, to the best of my knowledge.

LIMITATION: This design is valid for one building, at specified location.

B & B Homes, Inc.

Jack & Latasha Crary Residence

ADDRESS: 386 SW Boseman Court Lake City, Florida 32024

Mark Disosway P.E. P.O. Box 868 Lake City, Florida 32056 Phone: (386) 754 - 5419 Fax: (386) 269 - 4871

PRINTED DATE: December 13, 2006 DRAWN BY: CHECKED BY:

David Disosway

FINALS DATE: 13 / Dec / 06 JOB NUMBER:

612081 DRAWING NUMBER

S-3 OF 3 SHEETS

CONNECTIONS, WALL, & HEADER DESIGN IS BASED ON REACTIONS & UPLIFTS FROM TRUSS ENGINEERING FURNISHED BY BUILDER. MAYO TRUSS JOB #BB-CRARY