

RE: 4789421 - MILLER RES.

MiTek, Inc.

16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314434.1200

Site Information:
Customer Info: JOHN CRAWFORD HOMES Project Name: Miller Res. Model: Custom
Lot/Block: N/A Subdivision: N/A
Address: TBD, TBD
City: Columbia Cty State: FL

Name Address and License # of Structural Engineer of Record, If there is one, for the building.

Name: License #: _____
Address: _____
City: _____ State: _____

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: FBC2023/TPI2014

Design Program: MiTek 20/20 8.8

Wind Code: ASCE 7-22

Wind Speed: 130 mph

Roof Load: 40.0 psf

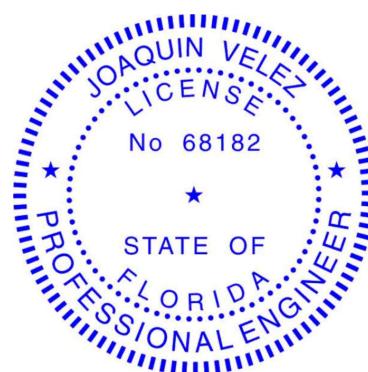
Floor Load: 55.0 psf

This package includes 83 individual, Truss Design Drawings and 0 Additional Drawings.

With my seal affixed to this sheet, I hereby certify that I am the Truss Design Engineer and this index sheet conforms to 61G15-31.003, section 5 of the Florida Board of Professional Engineers Rules.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	T38148061	CJ01	8/7/25	15	T38148075	EJ06	8/7/25
2	T38148062	CJ01B	8/7/25	16	T38148076	EJ07	8/7/25
3	T38148063	CJ01C	8/7/25	17	T38148077	EJ07G	8/7/25
4	T38148064	CJ03	8/7/25	18	T38148078	EJ08	8/7/25
5	T38148065	CJ03A	8/7/25	19	T38148079	F01	8/7/25
6	T38148066	CJ03B	8/7/25	20	T38148080	F02	8/7/25
7	T38148067	CJ03C	8/7/25	21	T38148081	F03	8/7/25
8	T38148068	CJ05	8/7/25	22	T38148082	F04	8/7/25
9	T38148069	CJ05A	8/7/25	23	T38148083	F05	8/7/25
10	T38148070	CJ05B	8/7/25	24	T38148084	F06	8/7/25
11	T38148071	EJ01	8/7/25	25	T38148085	F07	8/7/25
12	T38148072	EJ02	8/7/25	26	T38148086	F08	8/7/25
13	T38148073	EJ03	8/7/25	27	T38148087	F09	8/7/25
14	T38148074	EJ04	8/7/25	28	T38148088	F10	8/7/25

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date adjacent to the seal.


Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies

The truss drawing(s) referenced above have been prepared by
MiTek USA, Inc. under my direct supervision based on the parameters
provided by Builders FirstSource-Lake City, FL.

Truss Design Engineer's Name: Velez, Joaquin

My license renewal date for the state of Florida is February 28, 2027.

IMPORTANT NOTE: The seal on these truss component designs is a certification
that the engineer named is licensed in the jurisdiction(s) identified and that the
designs comply with ANSI/TPI 1. These designs are based upon parameters
shown (e.g., loads, supports, dimensions, shapes and design codes), which were
given to MiTek or TRENCO. Any project specific information included is for MiTek's or
TRENCO's customers file reference purpose only, and was not taken into account in the
preparation of these designs. MiTek or TRENCO has not independently verified the
applicability of the design parameters or the designs for any particular building. Before use,
the building designer should verify applicability of design parameters and properly
incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date: _____

August 7,2025

RE: 4789421 - MILLER RES.

MiTek, Inc.

16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200

Site Information:

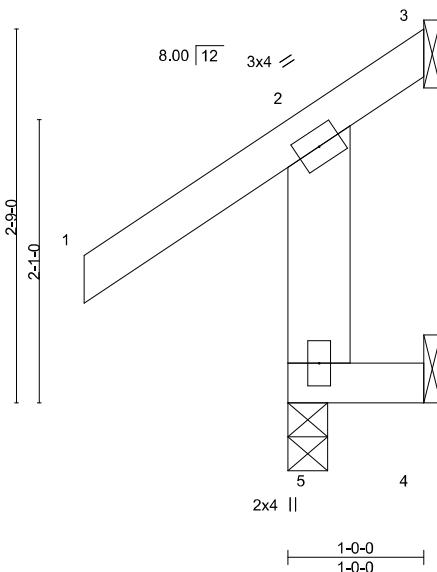
Customer Info: JOHN CRAWFORD HOMES Project Name: Miller Res. Model: Custom
Lot/Block: N/A Subdivision: N/A

Address: TBD, TBD

City: Columbia Cty State: FL

No.	Seal#	Truss Name	Date
29	T38148089	HJ08	8/7/25
30	T38148090	HJ10	8/7/25
31	T38148091	HJ10A	8/7/25
32	T38148092	HJ10B	8/7/25
33	T38148093	KW1	8/7/25
34	T38148094	PB01	8/7/25
35	T38148095	PB02	8/7/25
36	T38148096	PB03	8/7/25
37	T38148097	PB04	8/7/25
38	T38148098	PB05	8/7/25
39	T38148099	PB06	8/7/25
40	T38148100	PB07	8/7/25
41	T38148101	T01G	8/7/25
42	T38148102	T02	8/7/25
43	T38148103	T02G	8/7/25
44	T38148104	T03	8/7/25
45	T38148105	T04	8/7/25
46	T38148106	T05	8/7/25
47	T38148107	T06	8/7/25
48	T38148108	T07	8/7/25
49	T38148109	T07G	8/7/25
50	T38148110	T08	8/7/25
51	T38148111	T09	8/7/25
52	T38148112	T10	8/7/25
53	T38148113	T11	8/7/25
54	T38148114	T12	8/7/25
55	T38148115	T13	8/7/25
56	T38148116	T14	8/7/25
57	T38148117	T15	8/7/25
58	T38148118	T16	8/7/25
59	T38148119	T17	8/7/25
60	T38148120	T18	8/7/25
61	T38148121	T19	8/7/25
62	T38148122	T20	8/7/25
63	T38148123	T21	8/7/25
64	T38148124	T22	8/7/25
65	T38148125	T23	8/7/25
66	T38148126	T24	8/7/25
67	T38148127	T24G	8/7/25
68	T38148128	T25	8/7/25
69	T38148129	T25G	8/7/25
70	T38148130	T26G	8/7/25
71	T38148131	T27	8/7/25
72	T38148132	T27G	8/7/25
73	T38148133	T28	8/7/25
74	T38148134	T29	8/7/25
75	T38148135	T30	8/7/25
76	T38148136	T31	8/7/25
77	T38148137	T32	8/7/25
78	T38148138	T33	8/7/25
79	T38148139	T34	8/7/25
80	T38148140	T35	8/7/25
81	T38148141	T36	8/7/25
82	T38148142	TF01	8/7/25
83	T38148143	TG01	8/7/25

Job 4789421	Truss CJ01	Truss Type Jack-Open	Qty 4	Ply 1	MILLER RES.	T38148061
----------------	---------------	-------------------------	----------	----------	-------------	-----------


Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:03 2025 Page 1

ID:2eRY39KFhR2benj7cX?4RUzckGi-xgiaN29Ffdj0MlwCo51ugYK?c6a?bdiMOG8ShTyqVpU

-1-6-0 1-6-0 1-0-0 1-0-0

Scale = 1:17.0

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.29	Vert(LL)	-0.00	5	>999	240	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.14	Vert(CT)	0.00	5	>999	180		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.00	Horz(CT)	-0.01	3	n/a	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MR						Weight: 10 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x6 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 1-0-0 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 5=0-3-8, 3=Mechanical, 4=Mechanical

Max Horz 5=69(LC 9)
Max Uplift 5=-21(LC 8), 3=-59(LC 1), 4=-60(LC 9)
Max Grav 5=252(LC 1), 3=16(LC 10), 4=50(LC 10)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 21 lb uplift at joint 5, 59 lb uplift at joint 3 and 60 lb uplift at joint 4.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

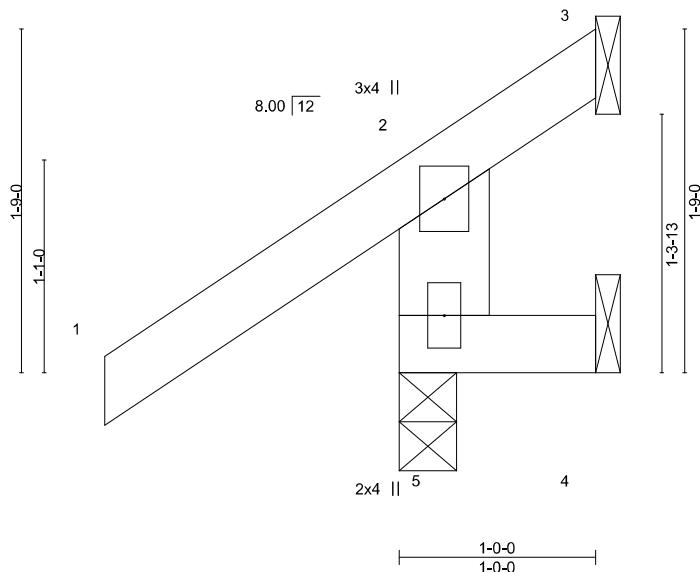
Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.ipinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / Mitek-US.com


Job 4789421	Truss CJ01B	Truss Type Jack-Open	Qty 2	Ply 1	MILLER RES.	T38148062
----------------	----------------	-------------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:03 2025 Page 1
ID:2eRY39KFhR2benj7cX?4RUzckGi-xgian29Ffdj0MlwCo51ugYK?c6b4bdiMOG8ShTyqVpU

-1-6-0 1-6-0 1-0-0 1-0-0

Scale = 1:11.7

1-0-0
1-0-0

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.29	Vert(LL)	0.00	5	>999	240	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.07	Vert(CT)	0.00	5	>999	180		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.00	Horz(CT)	-0.00	3	n/a	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MR						Weight: 8 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x6 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 1-0-0 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 5=0-3-8, 3=Mechanical, 4=Mechanical

Max Horz 5=49(LC 9)
Max Uplift 5=61(LC 12), 3=-50(LC 1), 4=-38(LC 1)
Max Grav 5=252(LC 1), 3=10(LC 8), 4=6(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 61 lb uplift at joint 5, 50 lb uplift at joint 3 and 38 lb uplift at joint 4.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

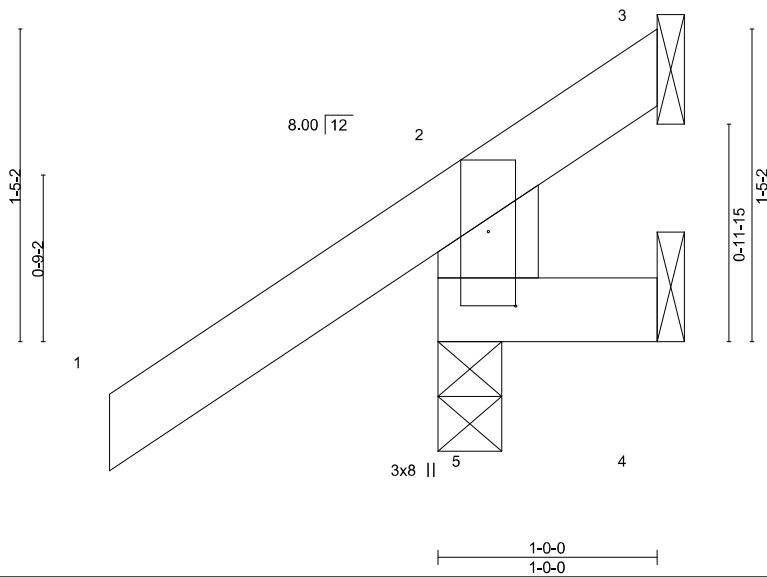
Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpiinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / Mitek-US.com


Job 4789421	Truss CJ01C	Truss Type Jack-Open	Qty 4	Ply 1	MILLER RES.	T38148063
----------------	----------------	-------------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:04 2025 Page 1
ID:2eRY39KFhR2benj7cX?4RUzckGi-PsGybOAtQxrtzSVPMoY7DltAMWxCK4yWcwu?DvyqVpT

-1-6-0 1-6-0 1-0-0 1-0-0

Scale = 1:10.5

Plate Offsets (X,Y) -- [5:0-4-1,0-1-8]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.29	Vert(LL)	0.00	5 >999	240	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.08	Vert(CT)	0.00	5 >999	180		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.00	Horz(CT)	-0.00	3 n/a	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MR					Weight: 7 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x6 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 1-0-0 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 5=0-3-8, 3=Mechanical, 4=Mechanical
Max Horz 5=50(LC 12)
Max Uplift 5=-81(LC 12), 3=-45(LC 1), 4=-43(LC 1)
Max Grav 5=252(LC 1), 3=9(LC 8), 4=12(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCPi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 81 lb uplift at joint 5, 45 lb uplift at joint 3 and 43 lb uplift at joint 4.

This item has been
digitally signed and
sealed by Velez, Joaquin, PE
on the date indicated here.
Printed copies of this
document are not considered
signed and sealed and the
signature must be verified
on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

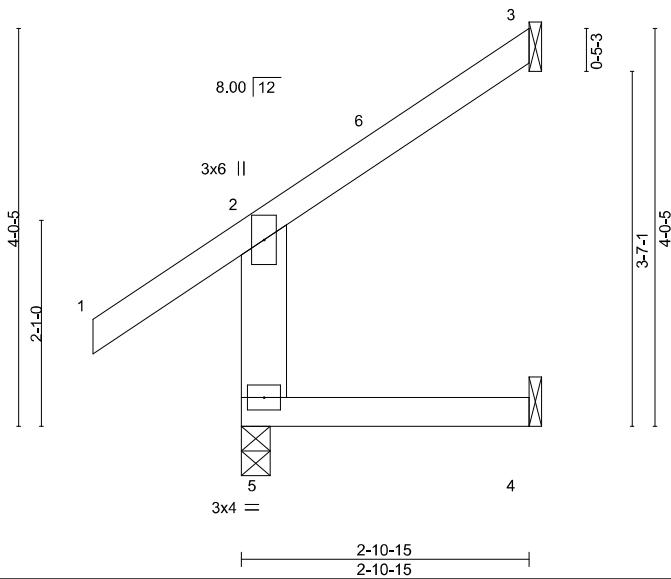
August 7,2025

⚠ WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.ipinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / Mitek-US.com

Job 4789421	Truss CJ03	Truss Type Jack-Open	Qty 2	Ply 1	MILLER RES.	T38148064
----------------	---------------	-------------------------	----------	----------	-------------	-----------


Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:04 2025 Page 1

-1-6-0 1-6-0 2-10-15 2-10-15

ID:2eRY39KFhR2ben7cX?4RUzckGi-PsGybOAQxrtzSVPMoY7DltAMWlt8K4yWcwu?DvyqVpT

Scale = 1:23.3

LOADING (psf)	SPACING-	CSI.	DEFL.	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.25	TC 0.29	Vert(LL) 0.01	MT20	244/190
TCDL 10.0	Lumber DOL 1.25	BC 0.34	Vert(CT) -0.01		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) -0.05		
BCDL 10.0	Code FBC2023/TPI2014	Matrix-MR	(loc) 4-5		
			I/defl >999		
			L/d 240		
			180		
			n/a		
				Weight: 17 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x6 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 2-10-15 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 5=0-3-8, 3=Mechanical, 4=Mechanical

Max Horz 5=96(LC 9)
Max Uplift 5=-6(LC 12), 3=-74(LC 12), 4=-26(LC 12)
Max Grav 5=243(LC 1), 3=74(LC 19), 4=46(LC 10)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 -1-6-0 to 1-6-0, Zone1 1-6-0 to 2-10-3 zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 6 lb uplift at joint 5, 74 lb uplift at joint 3 and 26 lb uplift at joint 4.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

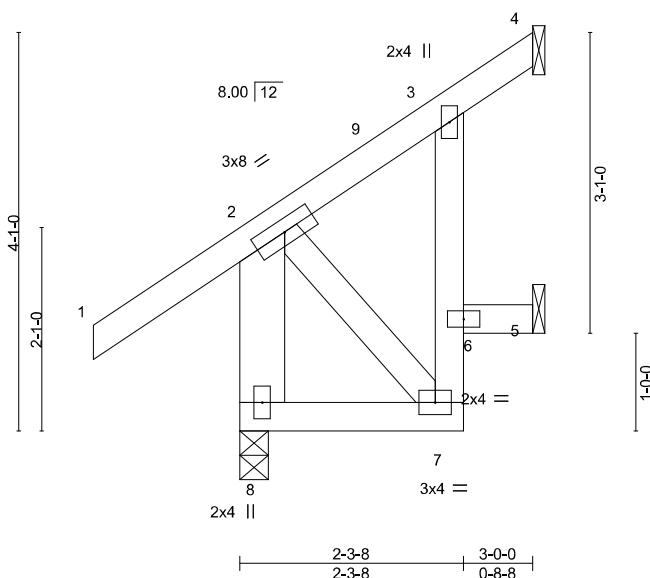
August 7,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.ipinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / Mitek-US.com

Job 4789421	Truss CJ03A	Truss Type Jack-Open	Qty 2	Ply 1	MILLER RES.	T38148065
----------------	----------------	-------------------------	----------	----------	-------------	-----------


Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:05 2025 Page 1

-1-6-0 1-6-0 2-3-8 2-3-8 3-0-0 0-8-8

ID:2eRY39KFh2benj7cX?4RUzckGi-t3pKokBVBEzkkb4bwW4MlzPL4vI13WrfradYIMyqVpS

Scale = 1:23.6

LOADING (psf)	SPACING-	CSI.	DEFL.	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.25	TC 0.29	Vert(LL) 0.02	MT20	244/190
TCDL 10.0	Lumber DOL 1.25	BC 0.04	Vert(CT) 0.02		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.09	Horz(CT) -0.02		
BCDL 10.0	Code FBC2023/TPI2014	Matrix-MP		Weight: 25 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2 *Except*
3-7: 2x4 SP No.3
WEBS 2x6 SP No.2 *Except*
2-7: 2x4 SP No.3

REACTIONS. (size) 8=0-3-8, 4=Mechanical, 5=Mechanical
Max Horz 8=98(LC 9)
Max Uplift 8=7(LC 12), 4=-104(LC 12)
Max Grav 8=245(LC 1), 4=107(LC 19), 5=16(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
WEBS 2-7=97/294

NOTES-

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 -1-6-0 to 1-6-0, Zone1 1-6-0 to 2-11-4 zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 7 lb uplift at joint 8 and 104 lb uplift at joint 4.

This item has been
digitally signed and
sealed by Velez, Joaquin, PE
on the date indicated here.
Printed copies of this
document are not considered
signed and sealed and the
signature must be verified
on any electronic copies.

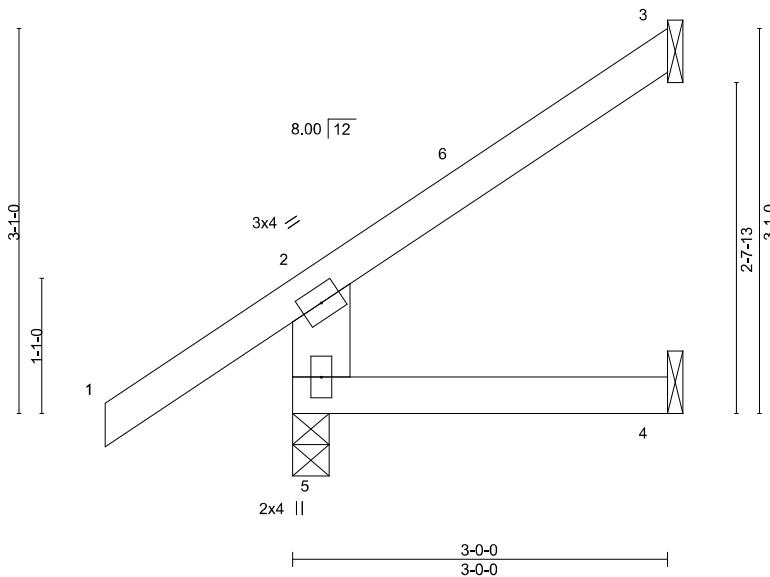
Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpiinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com


Job 4789421	Truss CJ03B	Truss Type Jack-Open	Qty 2	Ply 1	MILLER RES.	T38148066
----------------	----------------	-------------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:05 2025 Page 1
ID:2eRY39KFhR2benj7cX?4RUzckGi-i3pKokBVBEEzkb4bwW4MlzPL6vGV3XCfradYIMyqVpS

-1-6-0 1-6-0 3-0-0 3-0-0

Scale = 1:18.5

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.29	Vert(LL)	0.01	4-5	>999	240	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.14	Vert(CT)	-0.01	4-5	>999	180		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.00	Horz(CT)	-0.01	3	n/a	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MR						Weight: 15 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x6 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 3-0-0 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

(size) 5=0-3-8, 3=Mechanical, 4=Mechanical
Max Horz 5=96(LC 12)
Max Uplift 5=-40(LC 12), 3=-60(LC 12), 4=-9(LC 12)
Max Grav 5=245(LC 1), 3=69(LC 19), 4=47(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 -1-6-0 to 1-6-0, Zone1 1-6-0 to 2-11-4 zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 40 lb uplift at joint 5, 60 lb uplift at joint 3 and 9 lb uplift at joint 4.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

⚠ WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpiinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / Mitek-US.com

Job 4789421	Truss CJ03C	Truss Type Jack-Open	Qty 4	Ply 1	MILLER RES.	T38148067
----------------	----------------	-------------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:06 2025 Page 1
ID:2eRY39KFhR2benj7cX?4RUzckGI-MFNj04B8xY5bDfnUDbblAyX1Jdbo_So4EN6loyqVpR

-1-6-0 1-6-0 3-0-0 3-0-0

Scale = 1:17.3

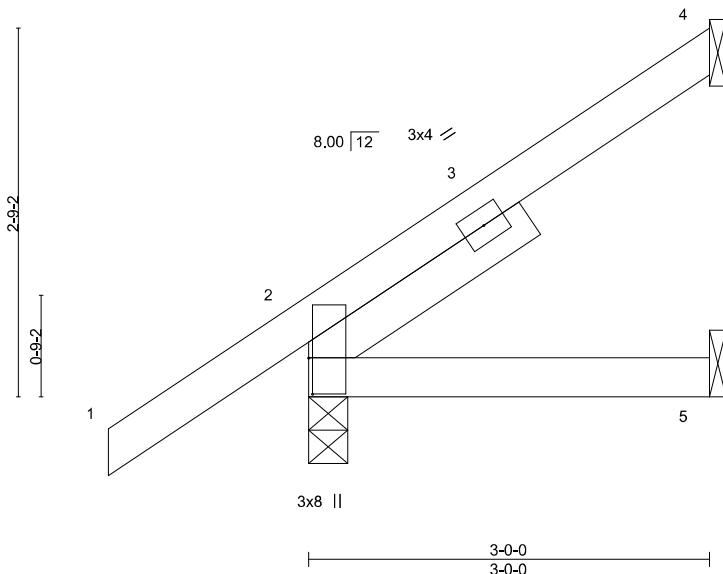


Plate Offsets (X,Y) - [2:0-3-4,0-0-5]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.21	Vert(LL)	-0.00	5-8	>999	240	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.08	Vert(CT)	-0.01	5-8	>999	180		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.00	Horz(CT)	0.00	2	n/a	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MP						Weight: 16 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
SLIDER Left 2x4 SP No.3 1-11-8

BRACING-

TOP CHORD Structural wood sheathing directly applied or 3-0-0 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

(size) 4=Mechanical, 2=0-3-8, 5=Mechanical
Max Horz 2=109(LC 12)
Max Uplift 4=-58(LC 12), 2=-46(LC 12), 5=-4(LC 12)
Max Grav 4=74(LC 19), 2=230(LC 1), 5=50(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 -1-6-0 to 1-6-0, Zone1 1-6-0 to 2-11-4 zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 58 lb uplift at joint 4, 46 lb uplift at joint 2 and 4 lb uplift at joint 5.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

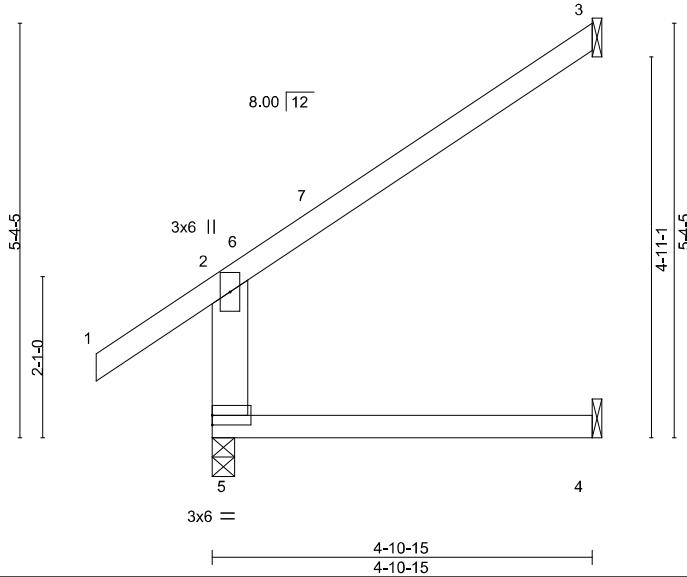
August 7,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.ipinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / Mitek-US.com

Job 4789421	Truss CJ05	Truss Type Jack-Open	Qty 2	Ply 1	MILLER RES.	T38148068
----------------	---------------	-------------------------	----------	----------	-------------	-----------


Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:06 2025 Page 1

ID:2eRY39KFhR2benj7cX?4RUzckGI-MFNj04B8xY5bDfnUDbbIAyTQJUlo_So4EN6loyqVpR
4-10-15
4-10-15

-1-6-0
1-6-0

Scale = 1:29.8

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.51	Vert(LL)	0.07	4-5	>749	240	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.65	Vert(CT)	0.07	4-5	>832	180		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.00	Horz(CT)	-0.17	3	n/a	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MR						Weight: 23 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x6 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 4-10-15 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

(size) 5=0-3-8, 3=Mechanical, 4=Mechanical
Max Horz 5=132(LC 12)
Max Uplift 5=12(LC 12), 3=-116(LC 12), 4=-27(LC 12)
Max Grav 5=308(LC 1), 3=138(LC 19), 4=86(LC 3)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-5=-264/191

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCp=0.18; MWFRS (envelope) gable end zone and C-C Zone3 -1-6-0 to 1-6-0, Zone1 1-6-0 to 4-10-3 zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 12 lb uplift at joint 5, 116 lb uplift at joint 3 and 27 lb uplift at joint 4.

This item has been
digitally signed and
sealed by Velez, Joaquin, PE
on the date indicated here.
Printed copies of this
document are not considered
signed and sealed and the
signature must be verified
on any electronic copies.

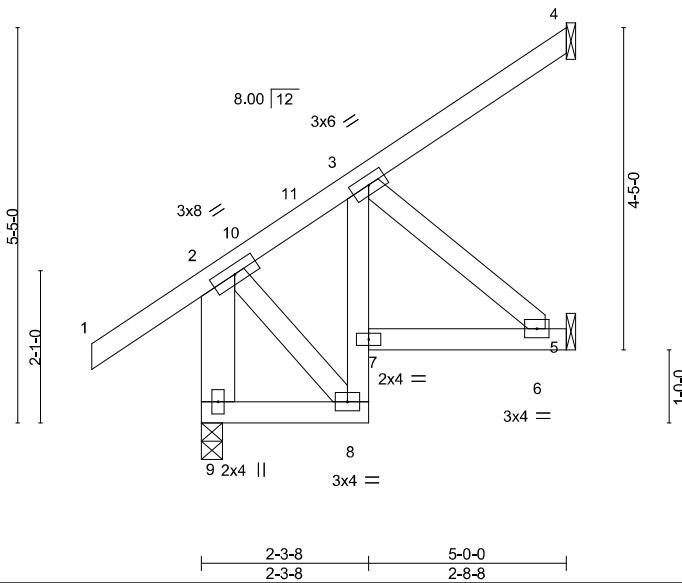
Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from Truss Plate Institute ([www.ipinst.org](#)) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association ([www.sbcsccomponents.com](#))

MiTek
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / [MiTek-US.com](#)


Job 4789421	Truss CJ05A	Truss Type Jack-Open	Qty 2	Ply 1	MILLER RES.	T38148069
----------------	----------------	-------------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:07 2025 Page 1
ID:2eRY39KFhR2benj7cX?4RUzckGl-qRx5DQCmisEsqvEz1w6qrOvhUjs1XQRylu6fqEyqVpQ

-1-6-0 2-3-8 5-0-0
1-6-0 2-3-8 2-8-8

Scale = 1:31.6

2-3-8 5-0-0
2-3-8 2-8-8

LOADING (psf)	SPACING-	CSI.	DEFL.	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.25	TC 0.29	Vert(LL) -0.01 in (loc) 6-7 >999 L/d 240	MT20	244/190
TCDL 10.0	Lumber DOL 1.25	BC 0.45	Vert(CT) -0.01 6-7 >999 180		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.08	Horz(CT) -0.03 5 n/a n/a		
BCDL 10.0	Code FBC2023/TPI2014	Matrix-MP		Weight: 36 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2 *Except*
3-8: 2x4 SP No.3
WEBS 2x4 SP No.3 *Except*
2-9: 2x6 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 5-0-0 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing, Except: 6-0-0 oc bracing: 7-8.

REACTIONS. (size) 9=0-3-8, 4=Mechanical, 5=Mechanical

Max Horz 9=134(LC 12)
Max Uplift 9=12(LC 12), 4=63(LC 12), 5=81(LC 12)
Max Grav 9=311(LC 1), 4=86(LC 19), 5=119(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-9=292/130
BOT CHORD 8-9=262/99
WEBS 3-6=195/273

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCPi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 -1-6-0 to 1-6-0, Zone1 1-6-0 to 4-11-4 zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 12 lb uplift at joint 9, 63 lb uplift at joint 4 and 81 lb uplift at joint 5.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

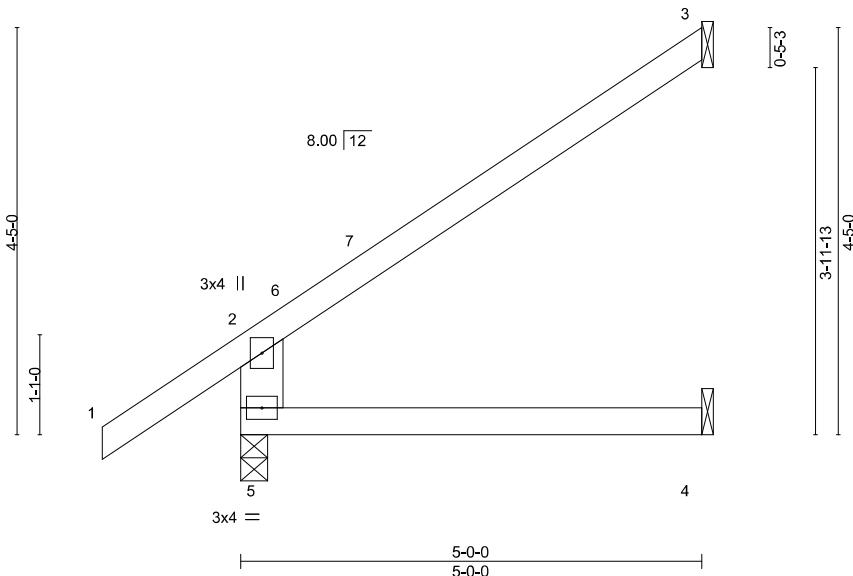
Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpiinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com


Job 4789421	Truss CJ05B	Truss Type Jack-Open	Qty 2	Ply 1	MILLER RES.	T38148070
----------------	----------------	-------------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:07 2025 Page 1
ID:2eRY39KFhR2benj7cX?4RUzckGi-qRx5DQCmisESqvEz1w6qrOVg7ju8XRiylu6fqEyqVpQ

-1-6-0 1-6-0 5-0-0 5-0-0

Scale = 1:25.0

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.38	Vert(LL)	0.05	4-5	>999	240	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.38	Vert(CT)	-0.05	4-5	>999	180		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.00	Horz(CT)	-0.05	3	n/a	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MR						Weight: 21 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x6 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 5-0-0 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 5=0-3-8, 3=Mechanical, 4=Mechanical

Max Horz 5=147(LC 12)
Max Uplift 5=42(LC 12), 3=-103(LC 12), 4=-11(LC 12)
Max Grav 5=311(LC 1), 3=134(LC 19), 4=87(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-5=-267/215

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCp=0.18; MWFRS (envelope) gable end zone and C-C Zone3 -1-6-0 to 1-6-0, Zone1 1-6-0 to 4-11-4 zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 42 lb uplift at joint 5, 103 lb uplift at joint 3 and 11 lb uplift at joint 4.

This item has been
digitally signed and
sealed by Velez, Joaquin, PE
on the date indicated here.
Printed copies of this
document are not considered
signed and sealed and the
signature must be verified
on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpi.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsc.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / Mitek-US.com

Job 4789421	Truss EJ01	Truss Type Jack-Partial	Qty 10	Ply 1	MILLER RES.	T38148071
----------------	---------------	----------------------------	-----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:08 2025 Page 1

-1-6-0 7-0-0
1-6-0 7-0-0

ID:2eRY39KFhR2benj7cX?4RUzckGi-leVTRmDOT9MJS3pAbed3Nb1nB7C?Gqr5XYsDMhyqVpP

Scale = 1:38.0

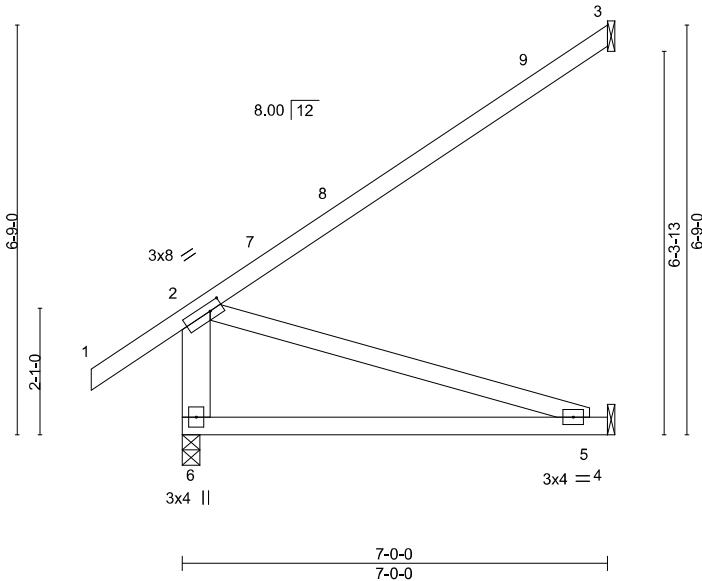


Plate Offsets (X,Y) -- [2:0-2-8,0-1-8]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.62	Vert(LL)	-0.08	5-6	>949	240	
TCDL 10.0	Lumber DOL	1.25	BC 0.47	Vert(CT)	-0.17	5-6	>473	180	
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.26	Horz(CT)	-0.01	3	n/a	n/a	
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS					Weight: 40 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x6 SP No.2 *Except*
2-5: 2x4 SP No.3

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 9-1-12 oc bracing.

REACTIONS. (size) 6=0-3-8, 3=Mechanical, 4=Mechanical

Max Horz 6=178(LC 12)
Max Uplift 6=-24(LC 12), 3=-109(LC 12), 4=-61(LC 12)
Max Grav 6=385(LC 1), 3=168(LC 19), 4=145(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-6=-307/137
BOT CHORD 5-6=-418/285
WEBS 2-5=-298/436

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCpI=0.18; MWFRS (envelope) gable end zone and C-C Zone3 -1-6-0 to 1-6-0, Zone1 1-6-0 to 6-11-4 zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 24 lb uplift at joint 6, 109 lb uplift at joint 3 and 61 lb uplift at joint 4.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

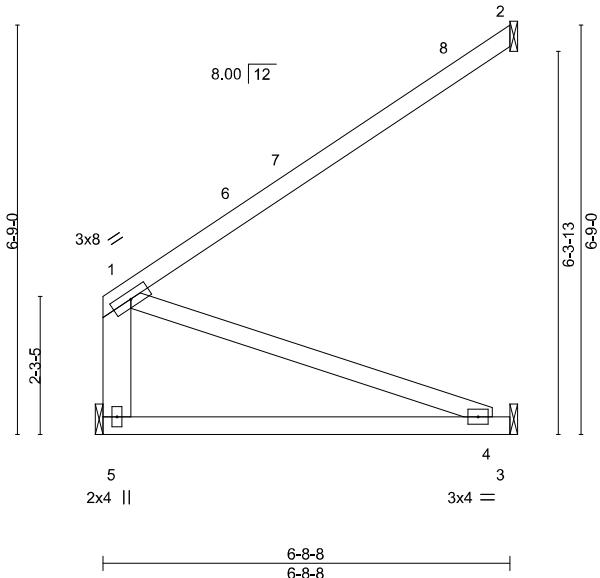
August 7,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.ipinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / Mitek-US.com

Job 4789421	Truss EJ02	Truss Type Jack-Partial	Qty 3	Ply 1	MILLER RES.	T38148072
----------------	---------------	----------------------------	----------	----------	-------------	-----------


Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:08 2025 Page 1

ID:2eRY39KFhR2benj7cX?4RUzckGi-leVTRmDOT9MJS3pAbed3Nb1kU7B1Gux5XYsDMhyqVpP

6-8-8
6-8-8

Scale = 1:38.0

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.79	Vert(LL)	-0.10	4-5	>757	240	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.53	Vert(CT)	-0.20	4-5	>379	180		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.00	Horz(CT)	-0.01	5	n/a	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MP						Weight: 36 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x6 SP No.2 *Except*
1-4: 2x4 SP No.3

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 5=Mechanical, 2=Mechanical, 3=Mechanical

Max Horz 2=160(LC 12)
Max Uplift 5=-132(LC 12), 2=-35(LC 12)
Max Grav 5=273(LC 19), 2=193(LC 1), 3=128(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCPi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 0-2-12 to 3-2-12, Zone1 3-2-12 to 6-7-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 132 lb uplift at joint 5 and 35 lb uplift at joint 2.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

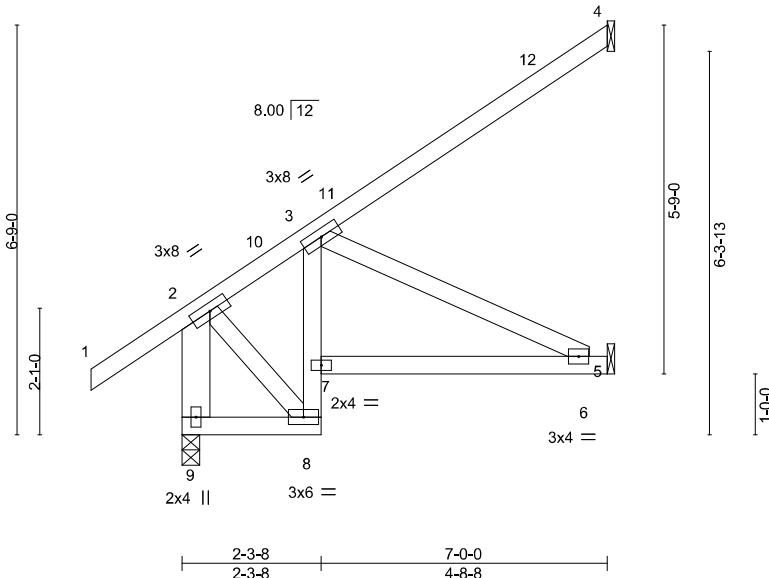
August 7,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.ipinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / Mitek-US.com

Job 4789421	Truss EJ03	Truss Type Jack-Partial	Qty 2	Ply 1	MILLER RES.	T38148073
----------------	---------------	----------------------------	----------	----------	-------------	-----------


Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:09 2025 Page 1

ID:2eRY39KFhR2benj7cX?4RUzckGi-mq3re5E0ETUA4DNM9L8lwpa1EXZo?JkFmCbm7yqVpO

-1-6-0 2-3-8 7-0-0
1-6-0 2-3-8 4-8-8

Scale = 1:38.0

-1-6-0 2-3-8 7-0-0
1-6-0 2-3-8 4-8-8

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.28	Vert(LL)	-0.03	6-7	>999	240	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.43	Vert(CT)	-0.06	6-7	>999	180		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.16	Horz(CT)	-0.02	5	n/a	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS						Weight: 45 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2 *Except*
3-8: 2x4 SP No.3
WEBS 2x4 SP No.3 *Except*
2-9: 2x6 SP No.2

REACTIONS. (size)

9=0-3-8, 4=Mechanical, 5=Mechanical
Max Horz 9=178(LC 12)
Max Uplift 9=-24(LC 12), 4=-78(LC 12), 5=-92(LC 12)
Max Grav 9=385(LC 1), 4=126(LC 19), 5=167(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-9=-390/161
BOT CHORD 8-9=-253/113, 6-7=-331/279
WEBS 3-6=-310/367

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCp=0.18; MWFRS (envelope) gable end zone and C-C Zone3 -1-6-0 to 1-6-0, Zone1 1-6-0 to 6-11-4 zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 24 lb uplift at joint 9, 78 lb uplift at joint 4 and 92 lb uplift at joint 5.

This item has been
digitally signed and
sealed by Velez, Joaquin, PE
on the date indicated here.
Printed copies of this
document are not considered
signed and sealed and the
signature must be verified
on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from Truss Plate Institute ([www.ipinst.org](#)) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association ([www.sbcsccomponents.com](#))

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / [MiTek-US.com](#)

Job 4789421	Truss EJ04	Truss Type Jack-Partial	Qty 9	Ply 1	MILLER RES.	T38148074
----------------	---------------	----------------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:09 2025 Page 1

ID:2eRY39KFhR2benj7cX?4RUzckGl-mq3re5E0ETUA4DNM9L8lwpayvXYu?GQFmCbmu7yqVpO

-1-6-0 7-0-0 7-0-0

Scale = 1:32.6

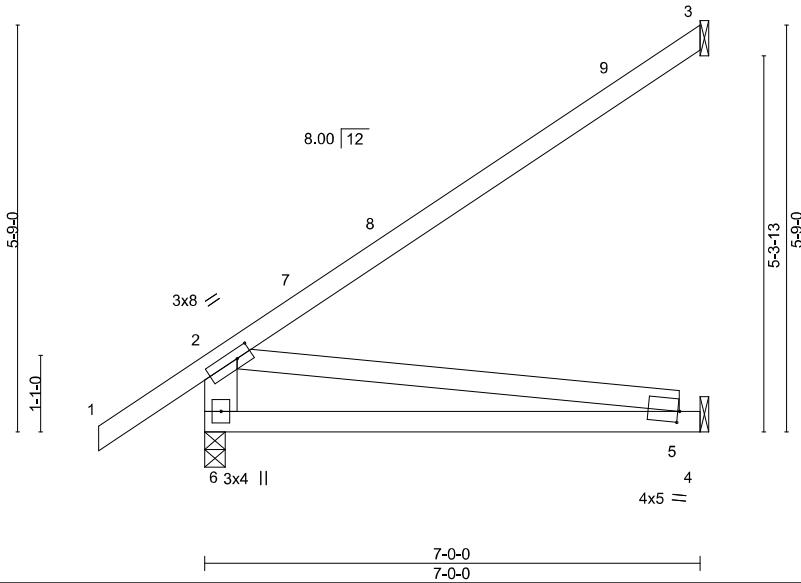


Plate Offsets (X,Y) - [2:0-2-8,0-1-8], [5:0-0-5,0-1-15]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.62	Vert(LL)	-0.08	5-6	>957	240	
TCDL 10.0	Lumber DOL	1.25	BC 0.49	Vert(CT)	-0.17	5-6	>472	180	
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.37	Horz(CT)	-0.01	3	n/a	n/a	
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS					Weight: 37 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x6 SP No.2 *Except*
2-5: 2x4 SP No.3

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 8-2-7 oc bracing.

REACTIONS. (size) 6=0-3-8, 3=Mechanical, 4=Mechanical

Max Horz 6=191(LC 12)
Max Uplift 6=-52(LC 12), 3=-108(LC 12), 4=-34(LC 12)
Max Grav 6=385(LC 1), 3=168(LC 19), 4=144(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-6=-308/179
BOT CHORD 5-6=-521/440
WEBS 2-5=-444/526

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCpI=0.18; MWFRS (envelope) gable end zone and C-C Zone3 -1-6-0 to 1-6-0, Zone1 1-6-0 to 6-11-4 zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 52 lb uplift at joint 6, 108 lb uplift at joint 3 and 34 lb uplift at joint 4.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

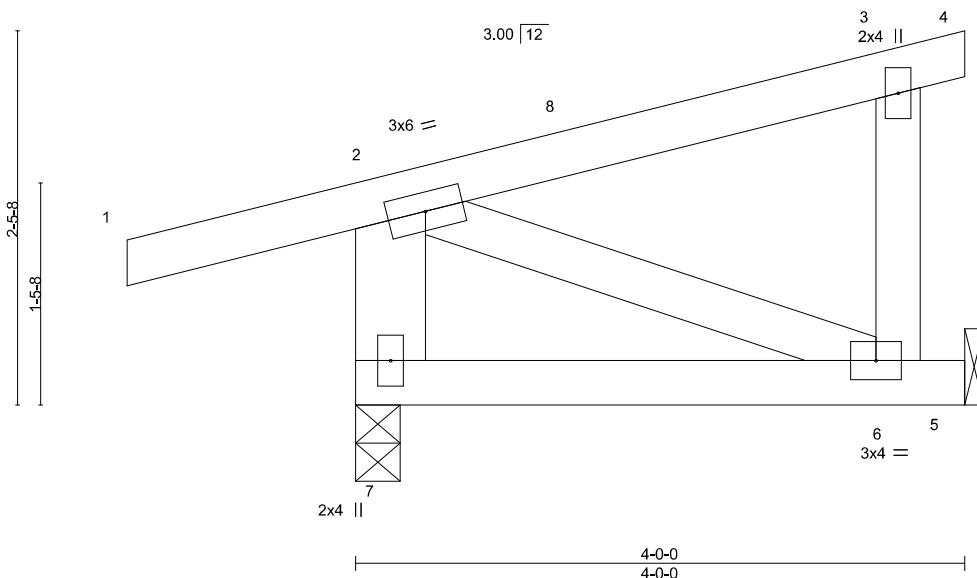
Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.ipinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / Mitek-US.com


Job 4789421	Truss EJ06	Truss Type Jack-Closed	Qty 4	Ply 1	MILLER RES.	T38148075
----------------	---------------	---------------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:10 2025 Page 1
ID:2eRY39KFhR2benj7cX?4RUzckGi-E0dDsRFe?mc1NyYj3XS07Djwz3kouO?sLJRZyqVpN

-1-6-0 1-6-0 4-0-0 4-0-0

Scale = 1:15.2

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.23	Vert(LL)	-0.01	6-7	>999	240	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.18	Vert(CT)	-0.03	6-7	>999	180		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.04	Horz(CT)	-0.00	5	n/a	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MP						Weight: 24 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3 *Except*
2-7: 2x6 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 4-0-0 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 7=0-3-8, 5=Mechanical

Max Horz 7=58(LC 9)
Max Uplift 7=-117(LC 8), 5=-52(LC 12)
Max Grav 7=276(LC 1), 5=128(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-7=-229/262

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 -1-6-0 to 1-6-0, Zone1 1-6-0 to 4-0-0 zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 117 lb uplift at joint 7 and 52 lb uplift at joint 5.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

⚠ WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpiinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com

Job 4789421	Truss EJ07	Truss Type Monopitch	Qty 5	Ply 1	MILLER RES.	T38148076
----------------	---------------	-------------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:10 2025 Page 1

ID:2eRY39KFhR2benj7Cx?4RUzckGi-E0dDsRFe?mc1iNyYj3fXS07Cdw?CkoRO?sLJRZyqVpN

-1-6-0 1-6-0 2-0-0 2-0-0

Scale = 1:12.8

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.25	TC 0.30	Vert(LL) -0.00	7 >999	240	MT20	244/190
TCDL 10.0	Lumber DOL 1.25	BC 0.04	Vert(CT) -0.00	7 >999	180		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) -0.00	5 n/a	n/a		
BCDL 10.0	Code FBC2023/TPI2014	Matrix-MR				Weight: 13 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3 *Except*
2-7: 2x6 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 2-0-0 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. (size) 7=0-3-8, 5=Mechanical

Max Horz 7=44(LC 9)
Max Uplift 7=-112(LC 8), 5=-21(LC 9)
Max Grav 7=224(LC 1), 5=36(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-7=-192/334

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 112 lb uplift at joint 7 and 21 lb uplift at joint 5.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

⚠ WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpi.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsc.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com

Job 4789421	Truss EJ07G	Truss Type Monopitch Supported Gable	Qty 2	Ply 1	MILLER RES.	T38148077
----------------	----------------	---	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:11 2025 Page 1
ID:2eRY39KFhR2benj7cX?4RUzckGi-iDBc3nFGm4kuJWXlGmBm?EfNIKLITFhYDW4tz?yqVpM

-1-6-0 1-6-0 2-0-0 2-0-0

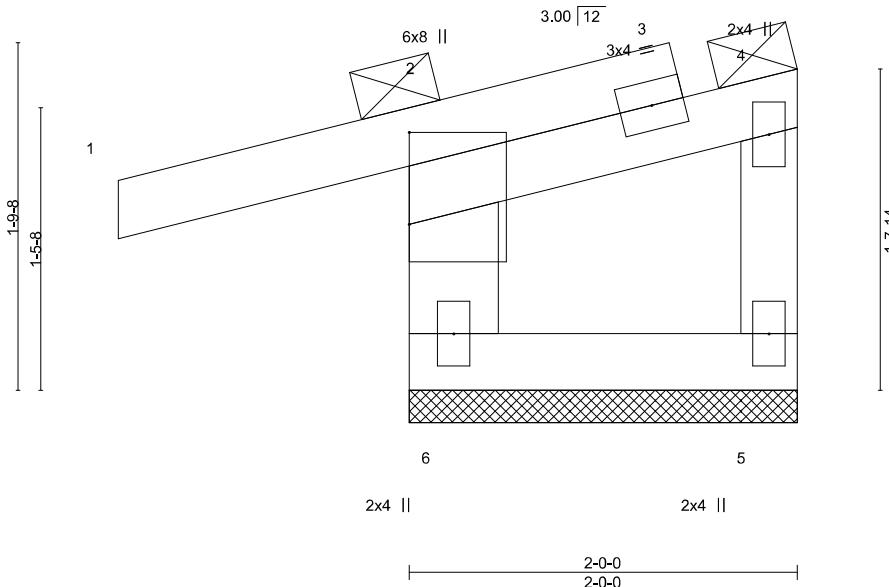


Plate Offsets (X,Y) -- [2:0-5-11,0-0-0]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	I/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.31	Vert(LL)	-0.01	1	n/r	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.02	Vert(CT)	-0.01	1	n/r		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.00	Horz(CT)	0.00	5	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-R					Weight: 14 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x6 SP No.2 *Except*
4-5: 2x4 SP No.3

BRACING-

TOP CHORD 2-0-0 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS.

(size) 6=2-0-0, 5=2-0-0
Max Horz 6=34(LC 9)
Max Uplift 6=-124(LC 8), 5=-13(LC 9)
Max Grav 6=224(LC 1), 5=30(LC 3)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-6=-202/364

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCPi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) Gable requires continuous bottom chord bearing.
- 6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 124 lb uplift at joint 6 and 13 lb uplift at joint 5.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

This item has been
digitally signed and
sealed by Velez, Joaquin, PE
on the date indicated here.
Printed copies of this
document are not considered
signed and sealed and the
signature must be verified
on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from Truss Plate Institute ([www.ipinst.org](#)) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association ([www.sbcsccomponents.com](#))

Job 4789421	Truss EJ08	Truss Type Jack-Partial	Qty 2	Ply 1	MILLER RES.	T38148078
----------------	---------------	----------------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:11 2025 Page 1

ID:2eRY39KFhR2benj7cX?4RUzckGi-iDBc3nFGm4kuJWXlGmBm?EfMoKH8TFhYDW4tz?yqVpM

-1-6-0 5-0-0
1-6-0 5-0-0

Scale: 1/2"=1"

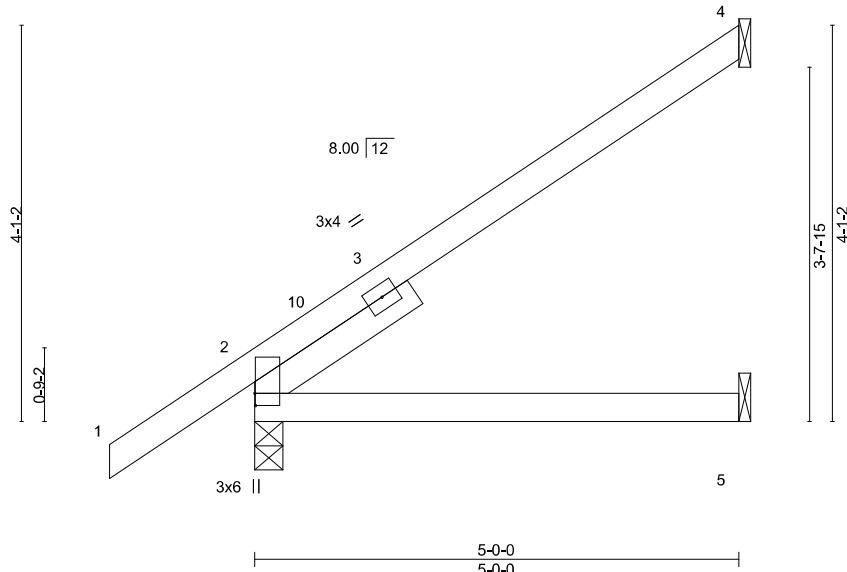


Plate Offsets (X,Y) -- [2:0-1-8,0-0-1]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.34	Vert(LL)	0.05	5-8	>999	240	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.31	Vert(CT)	-0.06	5-8	>999	180		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.00	Horz(CT)	-0.02	4	n/a	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MP						Weight: 22 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
SLIDER Left 2x4 SP No.3 1-11-8

BRACING-

TOP CHORD Structural wood sheathing directly applied or 5-0-0 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 4=Mechanical, 2=0-3-8, 5=Mechanical
Max Horz 2=160(LC 12)

Max Uplift 4=-99(LC 12), 2=-49(LC 12), 5=-9(LC 12)

Max Grav 4=137(LC 19), 2=301(LC 1), 5=90(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 -1-6-0 to 1-6-0, Zone1 1-6-0 to 4-11-4 zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 99 lb uplift at joint 4, 49 lb uplift at joint 2 and 9 lb uplift at joint 5.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

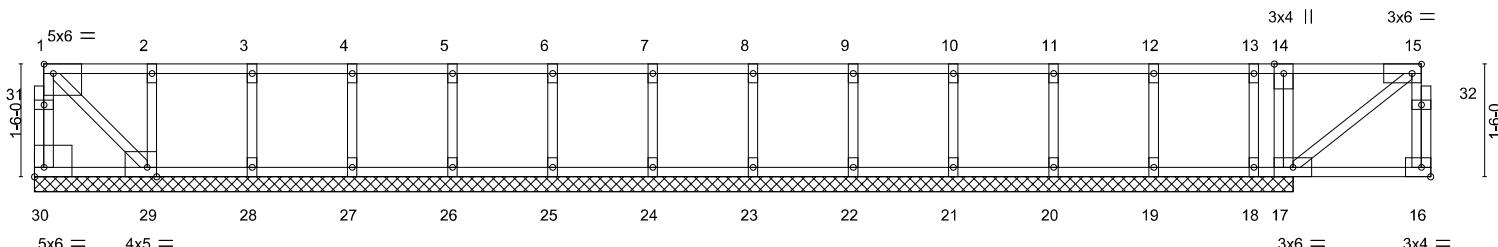
August 7,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.ipinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / Mitek-US.com

Job 4789421	Truss F01	Truss Type GABLE	Qty 1	Ply 1	MILLER RES.	T38148079
----------------	--------------	---------------------	----------	----------	-------------	-----------


Builders FirstSource (Lake City,FL), Lake City, FL - 32055, 8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:12 2025 Page 1
ID:2eRY39KFhR2benj7cX?4RUzckGi-API_G7GuXOsIg6xqUi?YRCR1keeCc7hSAqQVSyqVpL

0-1-8

H | 1-3-0 |

15-0-0

1-7-0 | 0-1-8
Scale = 1:30.7

1-6-12	2-10-12	4-2-12	5-6-12	6-10-12	8-2-12	9-6-12	10-10-12	12-2-12	13-6-12	14-10-12	16-2-12	16-7-8	18-7-0
1-6-12	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	0-4-12	1-11-8

Plate Offsets (X, Y) - [1:Edge,0-1-8], [15:0-1-8,Edge], [29:0-1-8,Edge], [30:Edge,0-1-8]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	I/defl	L/d	PLATES	GRIP
TCLL 40.0	Plate Grip DOL	1.00	TC 0.76	Vert(LL)	n/a	-	n/a	999	
TCDL 10.0	Lumber DOL	1.00	BC 0.23	Vert(CT)	n/a	-	n/a	999	
BCLL 0.0	Rep Stress Incr	NO	WB 0.44	Horz(CT)	-0.02	17	n/a	n/a	
BCDL 5.0	Code FBC2023/TPI2014		Matrix-S					Weight: 93 lb	FT = 20%F, 11%E

LUMBER-

TOP CHORD 2x4 SP 2700F 2.2E or 2x4 SP 2850F 2.0E or 2x4 SP M 31(flat)
BOT CHORD 2x4 SP 2700F 2.2E or 2x4 SP 2850F 2.0E or 2x4 SP M 31(flat)
WEBS 2x4 SP No.3(flat)
OTHERS 2x4 SP No.3(flat)

BRACING-

TOP CHORD Structural wood sheathing directly applied or 10-0-0 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing, Except: 10-0-0 oc bracing: 16-17.

REACTIONS.

All bearings 16-9-0.
(lb) - Max Uplift All uplift 100 lb or less at joint(s) except 30=-1267(LC 4), 18=-495(LC 4)
Max Grav All reactions 250 lb or less at joint(s) 28, 27, 26, 25, 24, 23, 22, 21, 20, 19 except 29=1454(LC 1), 17=1756(LC 4)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
TOP CHORD 1-30=0/1274, 1-2=0/1342, 2-3=0/1342, 3-4=0/1342, 4-5=0/1342, 5-6=0/1342, 6-7=0/1342, 7-8=0/1342, 8-9=0/1342, 9-10=0/1342, 10-11=0/1342, 11-12=0/1342, 12-13=0/1342, 13-14=0/1342, 14-15=0/1342
BOT CHORD 28-29=-1342/0, 27-28=-1342/0, 26-27=-1342/0, 25-26=-1342/0, 24-25=-1342/0, 23-24=-1342/0, 22-23=-1342/0, 21-22=-1342/0, 20-21=-1342/0, 19-20=-1342/0, 18-19=-1342/0, 17-18=-1342/0
WEBS 1-29=-1819/0, 13-18=-34/267, 14-17=-431/0, 15-17=-1702/0

NOTES-

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are 1.5x3 MT20 unless otherwise indicated.
- 3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 4) Gable studs spaced at 1-4-0 oc.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1267 lb uplift at joint 30 and 495 lb uplift at joint 18.
- 6) N/A
- 7) This truss has large uplift reaction(s) from gravity load case(s). Proper connection is required to secure truss against upward movement at the bearings. Building designer must provide for uplift reactions indicated.
- 8) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 9) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

- 1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00
Uniform Loads (plf)
Vert: 16-30=-10, 1-15=-100
Concentrated Loads (lb)
Vert: 15=-1050

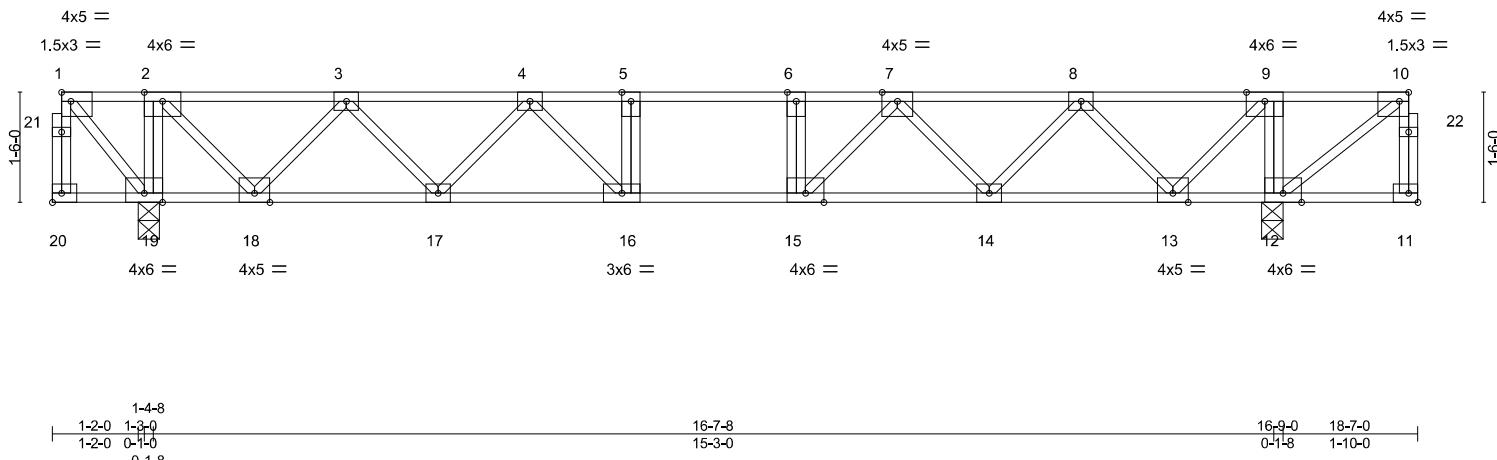
This item has been
digitally signed and
sealed by Velez, Joaquin, PE
on the date indicated here.
Printed copies of this
document are not considered
signed and sealed and the
signature must be verified
on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.ipinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)


MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / Mitek-US.com

Job 4789421	Truss F02	Truss Type Floor	Qty 7	Ply 1	MILLER RES.	T38148080
----------------	--------------	---------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:13 2025 Page 1
ID:2eRY39KFhR2benj7cX?4RUzckGi-ebIMUTHXlh_bZqh7OBDE4fkf8xox1kqhqZ_1uyqVpK

0-1-8
H | 1-0-0 | 1-3-0 | 2-0-0 | 1-7-0 | 0-1-8
Scale = 1:31.4

Plate Offsets (X,Y) - [1:Edge,0-1-8], [10:0-1-8,Edge]		1-4-8		16-7-8		16-9-0		18-7-0	
1-2-0	1-3-0	1-2-0	0-1-0	15-3-0	16-7-8	0-1-8	1-10-0	0-1-8	

LOADING (psf)
TCLL 40.0
TCDL 10.0
BCLL 0.0
BCDL 5.0

SPACING-
Plate Grip DOL 2-0-0
Lumber DOL 1.00
Rep Stress Incr NO
Code FBC2023/TPI2014

CSI.
TC 0.53
BC 0.43
WB 0.54
Matrix-S

DEFL.
Vert(LL) -0.14 16-17 >999 360
Vert(CT) -0.16 16-17 >999 240
Horz(CT) 0.02 12 n/a n/a

PLATES
MT20
GRIP
244/190
Weight: 108 lb
FT = 20%F, 11%E

LUMBER-

TOP CHORD 2x4 SP 2700F 2.2E or 2x4 SP 2850F 2.0E or 2x4 SP M 31(flat)
BOT CHORD 2x4 SP 2700F 2.2E or 2x4 SP 2850F 2.0E or 2x4 SP M 31(flat)
WEBS 2x4 SP No.3(flat)

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing, Except: 10-0-0 oc bracing: 19-20.

REACTIONS.

(size) 19=0-3-8, 12=0-3-8
Max Grav 19=2102(LC 3), 12=2227(LC 4)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=0/966, 2-3=455/830, 3-4=-1436/636, 4-5=-1953/624, 5-6=-1953/624, 6-7=-1953/624, 7-8=-1362/907, 8-9=-337/1255, 9-10=0/1483
BOT CHORD 18-19=-966/0, 17-18=-712/1070, 16-17=-597/1773, 15-16=-624/1953, 14-15=-767/1726, 13-14=-1060/976, 12-13=-1483/0
WEBS 2-19=-977/0, 9-12=-1057/0, 1-19=-1479/0, 9-13=0/1138, 2-18=0/1055, 8-13=-1066/0, 3-18=-993/0, 8-14=0/695, 3-17=0/623, 7-14=-700/0, 4-17=-604/0, 7-15=-124/803, 6-15=-402/7, 4-16=-278/651, 5-16=-333/77, 10-12=-1878/0

NOTES-

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are 3x4 MT20 unless otherwise indicated.
- 3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 4) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf)

Vert: 11-20=-10, 1-10=-100

Concentrated Loads (lb)

Vert: 1=-1080 10=-1080

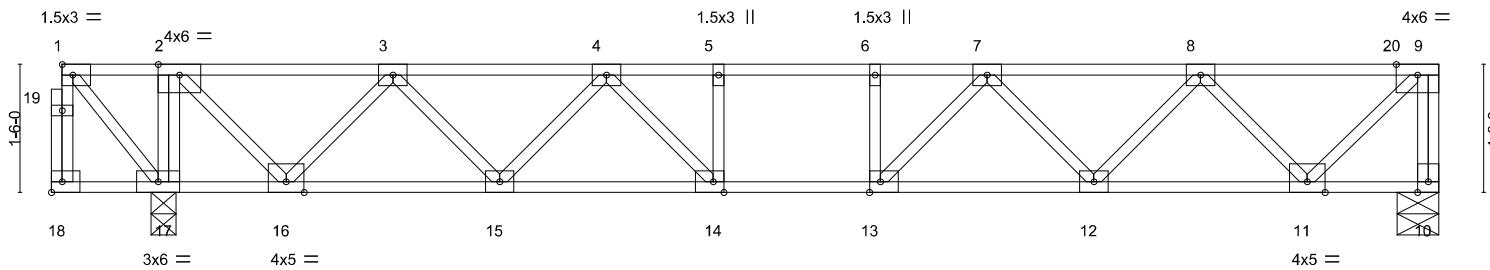
This item has been
digitally signed and
sealed by Velez, Joaquin, PE
on the date indicated here.
Printed copies of this
document are not considered
signed and sealed and the
signature must be verified
on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.ipinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)


MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / Mitek-US.com

Job 4789421	Truss F03	Truss Type Floor	Qty 1	Ply 1	MILLER RES.	T38148081
----------------	--------------	---------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:14 2025 Page 1
ID:2eRY39KFhR2benj7cX?4RUzckGi-7oskhpl93?6SA_GKyvkTdsHv3YIAgV0_vUJXaKqVpJ

0-1-8
H | 1-0-0 | 1-3-0 | 1-8-8 | 1-3-8
Scale = 1:27.0

1-4-8
1-2-0 1-3-0
1-2-0 0-1-0
0-1-8
14-8-8
13-4-0
16-3-0
1-6-8

Plate Offsets (X,Y)– [13:0-1-8,Edge], [14:0-1-8,Edge]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 40.0	Plate Grip DOL	1.00	TC 0.21	Vert(LL)	-0.09	12-13	>999	360	
TCDL 10.0	Lumber DOL	1.00	BC 0.29	Vert(CT)	-0.11	12-13	>999	240	
BCLL 0.0	Rep Stress Incr	YES	WB 0.48	Horz(CT)	0.02	10	n/a	n/a	
BCDL 5.0	Code FBC2023/TPI2014		Matrix-S					Weight: 91 lb	FT = 20%F, 11%E

LUMBER-

TOP CHORD 2x4 SP 2700F 2.2E or 2x4 SP 2850F 2.0E or 2x4 SP M 31(flat)
BOT CHORD 2x4 SP 2700F 2.2E or 2x4 SP 2850F 2.0E or 2x4 SP M 31(flat)
WEBS 2x4 SP No.3(flat)

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing, Except: 6-0-0 oc bracing: 17-18,16-17.

REACTIONS.

(size) 10=0-5-14, 17=0-3-8
Max Grav 10=806(LC 1), 17=948(LC 1)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
TOP CHORD 9-10=-799/0, 2-3=-695/0, 3-4=-1651/0, 4-5=-2143/0, 5-6=-2143/0, 6-7=-2143/0, 7-8=-1671/0, 8-9=-716/0
BOT CHORD 15-16=0/1298, 14-15=0/1978, 13-14=0/2143, 12-13=0/1986, 11-12=0/1330
WEBS 2-17=-903/0, 9-11=0/998, 2-16=0/959, 8-11=-913/0, 3-16=-898/0, 8-12=0/507, 3-15=0/530, 7-12=-469/0, 4-15=-495/0, 7-13=-42/444, 4-14=-24/465

NOTES-

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are 3x4 MT20 unless otherwise indicated.
- 3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 4) CAUTION, Do not erect truss backwards.

This item has been
digitally signed and
sealed by Velez, Joaquin, PE
on the date indicated here.
Printed copies of this
document are not considered
signed and sealed and the
signature must be verified
on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.ipinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / Mitek-US.com

Job 4789421	Truss F04	Truss Type Floor	Qty 1	Ply 1	MILLER RES.	T38148082
----------------	--------------	---------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:15 2025 Page 1
ID:2eRY39KFhR2benj7cX?4RUzckGi-b_Q6v9InqJEJo8rWVcFi94q3Bxd7Pzv788346nyqVpl

0-1-8
H | 1-3-0 | 1-11-0 | 1-3-8 | 0-1-8
Scale = 1:30.8

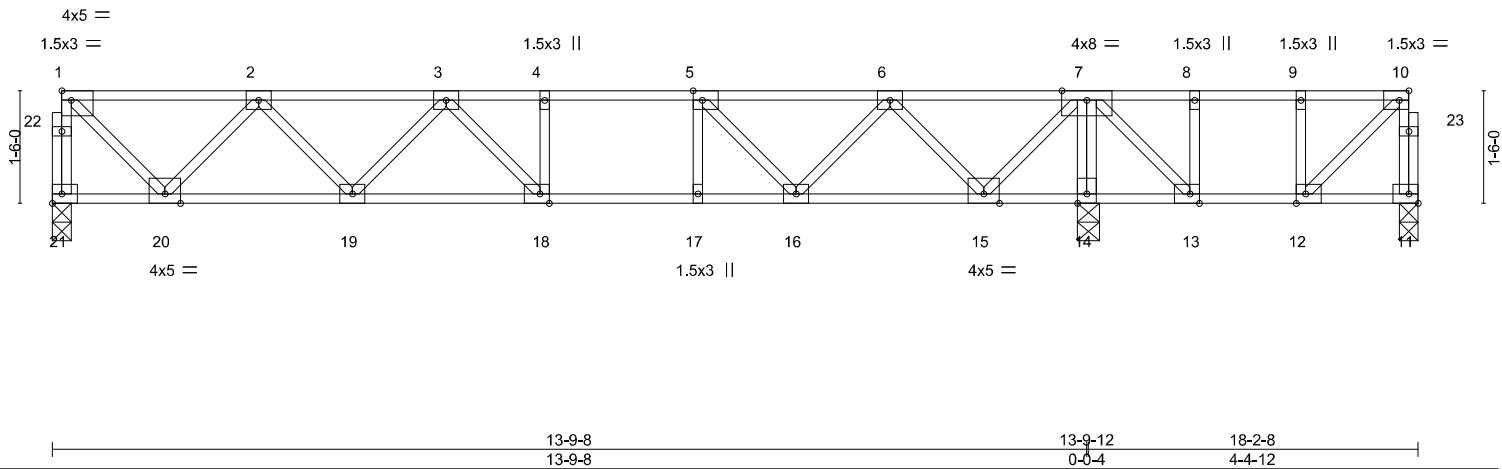


Plate Offsets (X,Y) -- [1:Edge,0-1-8], [5:0-1-8,Edge], [10:0-1-8,Edge], [12:0-1-8,Edge], [13:0-1-8,Edge], [18:0-1-8,Edge]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	I/defl	L/d	PLATES	GRIP
TCLL 40.0	Plate Grip DOL	1.00	TC 0.25	Vert(LL)	-0.10 18-19	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL	1.00	BC 0.37	Vert(CT)	-0.13 18-19	>999	240		
BCLL 0.0	Rep Stress Incr	YES	WB 0.43	Horz(CT)	0.02 14	n/a	n/a		
BCDL 5.0	Code FBC2023/TPI2014		Matrix-S					Weight: 101 lb	FT = 20%F, 11%E

LUMBER-

TOP CHORD 2x4 SP 2700F 2.2E or 2x4 SP 2850F 2.0E or 2x4 SP M 31(flat)
BOT CHORD 2x4 SP 2700F 2.2E or 2x4 SP 2850F 2.0E or 2x4 SP M 31(flat)
WEBS 2x4 SP No.3(flat)

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS.

(size) 21=0-3-0, 11=0-3-0, 14=0-3-8
Max Uplift 11=11(LC 3)
Max Grav 21=726(LC 10), 11=222(LC 7), 14=1088(LC 1)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-21=-719/0, 1-2=-621/0, 2-3=1453/0, 3-4=-1727/0, 4-5=-1727/0, 5-6=-1364/0, 6-7=-479/0

BOT CHORD 19-20=0/1170, 18-19=0/1692, 17-18=0/1727, 16-17=0/1727, 15-16=0/1037, 14-15=-292/0, 13-14=-292/0

WEBS 7-14=-1096/0, 1-20=0/852, 7-15=0/911, 2-20=-816/0, 6-15=-836/0, 2-19=0/421, 6-16=0/503, 3-19=-356/0, 5-16=-566/0, 3-18=-103/265, 7-13=0/425

NOTES-

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are 3x4 MT20 unless otherwise indicated.
- 3) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 11 lb uplift at joint 11.
- 4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.
Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 5) CAUTION, Do not erect truss backwards.

This item has been
digitally signed and
sealed by Velez, Joaquin, PE
on the date indicated here.
Printed copies of this
document are not considered
signed and sealed and the
signature must be verified
on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

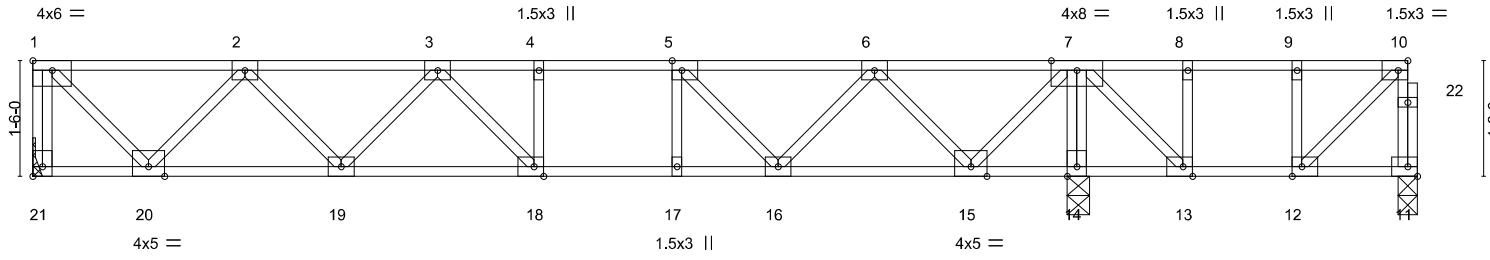
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.ipinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / Mitek-US.com

Job 4789421	Truss F05	Truss Type Floor	Qty 2	Ply 1	MILLER RES.	T38148083
----------------	--------------	---------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:15 2025 Page 1
ID:2eRY39KFhR2benj7cX?4RUzckGi-b_Q6v9InqJEJo8rWVcFi94q3hxdfPz?788346nyqVpI


1-3-0

1-8-0

1-3-8

0-1-8

Scale = 1:29.9

13-6-8

13-6-8

13-6-12

0-0-4

17-11-8

4-4-12

Plate Offsets (X,Y) -- [1:Edge,0-1-8], [5:0-1-8,Edge], [10:0-1-8,Edge], [12:0-1-8,Edge], [13:0-1-8,Edge], [18:0-1-8,Edge], [21:Edge,0-1-8]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	I/defl	L/d	PLATES	GRIP
TCLL 40.0	Plate Grip DOL	1.00	TC 0.22	Vert(LL)	-0.09	18-19	>999	360	
TCDL 10.0	Lumber DOL	1.00	BC 0.34	Vert(CT)	-0.12	18-19	>999	240	
BCLL 0.0	Rep Stress Incr	YES	WB 0.43	Horz(CT)	0.02	14	n/a	n/a	
BCDL 5.0	Code FBC2023/TPI2014		Matrix-S					Weight: 100 lb	FT = 20%F, 11%E

LUMBER-

TOP CHORD 2x4 SP 2700F 2.2E or 2x4 SP 2850F 2.0E or 2x4 SP M 31(flat)
BOT CHORD 2x4 SP 2700F 2.2E or 2x4 SP 2850F 2.0E or 2x4 SP M 31(flat)
WEBS 2x4 SP No.3(flat)

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS.

(size) 21=Mechanical, 11=0-3-0, 14=0-3-8
Max Uplift 11=16(LC 3)
Max Grav 21=717(LC 10), 11=209(LC 7), 14=1082(LC 9)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
TOP CHORD 1-21=-709/0, 1-2=-605/0, 2-3=1409/0, 3-4=-1657/0, 4-5=-1657/0, 5-6=-1315/0, 6-7=-453/0
BOT CHORD 19-20=0/1142, 18-19=0/1635, 17-18=0/1657, 16-17=0/1657, 15-16=0/1002, 14-15=-270/0, 13-14=-270/0
WEBS 7-14=-1091/0, 1-20=0/855, 7-15=0/897, 2-20=-798/0, 6-15=-824/0, 2-19=0/398, 6-16=0/482, 3-19=-336/0, 5-16=-537/0, 7-13=0/409

NOTES-

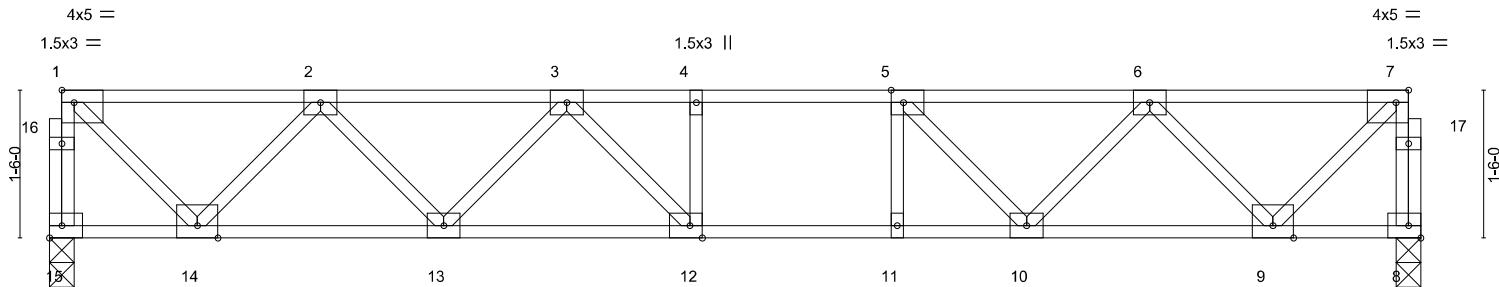
- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are 3x4 MT20 unless otherwise indicated.
- 3) Refer to girder(s) for truss to truss connections.
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 16 lb uplift at joint 11.
- 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 6) CAUTION, Do not erect truss backwards.

This item has been
digitally signed and
sealed by Velez, Joaquin, PE
on the date indicated here.
Printed copies of this
document are not considered
signed and sealed and the
signature must be verified
on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.ipinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / Mitek-US.com

Job 4789421	Truss F06	Truss Type Floor	Qty 2	Ply 1	MILLER RES.	T38148084
----------------	--------------	---------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055, 8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:16 2025 Page 1
ID:2eRY39KFhR2benj7cX?4RUzckGi-3A_U6VJPbcMAQIQi3JmxiHM8ZLq18QNHNoeeDyqVpH

0-1-8
1-3-0 1-11-0 0-1-8
Scale = 1:23.4

13-11-0
13-11-0

Plate Offsets (X,Y) -- [1:Edge,0-1-8], [5:0-1-8,Edge], [7:0-1-8,Edge], [12:0-1-8,Edge]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 40.0	Plate Grip DOL	1.00	TC 0.59	Vert(LL)	-0.14	12-13	>999	360	
TCDL 10.0	Lumber DOL	1.00	BC 0.91	Vert(CT)	-0.18	12-13	>923	240	
BCLL 0.0	Rep Stress Incr	YES	WB 0.42	Horz(CT)	0.03	8	n/a	n/a	
BCDL 5.0	Code FBC2023/TPI2014		Matrix-S					Weight: 75 lb	FT = 20%F, 11%E

LUMBER-

TOP CHORD 2x4 SP No.2(flat)
BOT CHORD 2x4 SP No.2(flat)
WEBS 2x4 SP No.3(flat)

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 15=0-3-0, 8=0-3-0
Max Grav 15=745(LC 1), 8=745(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-15=-739/0, 7-8=-742/0, 1-2=641/0, 2-3=1505/0, 3-4=-1830/0, 4-5=-1830/0,
5-6=-1501/0, 6-7=-642/0

BOT CHORD 13-14=0/1206, 12-13=0/1764, 11-12=0/1830, 10-11=0/1830, 9-10=0/1198
WEBS 7-9=0/881, 1-14=0/880, 6-9=-826/0, 2-14=-840/0, 6-10=0/459, 2-13=0/444,
5-10=-558/0, 3-13=-385/0, 3-12=-98/342

NOTES-

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are 3x4 MT20 unless otherwise indicated.
- 3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.
Strongbacks to be attached to walls at their outer ends or restrained by other means.

This item has been
digitally signed and
sealed by Velez, Joaquin, PE
on the date indicated here.
Printed copies of this
document are not considered
signed and sealed and the
signature must be verified
on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.ipinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / Mitek-US.com

Job 4789421	Truss F07	Truss Type Floor Girder	Qty 1	Ply 1	MILLER RES.	T38148085
----------------	--------------	----------------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:16 2025 Page 1
ID:2eRY39KFhR2benj7cX?4RUzckGi-3A_U6VJPbcMAQlQi3JmxHMARLwg8M9HNoeeDyqVpH

0-1-8

1-3-0 1-4-8
1.5x3 =

6x8 || 3x6 || 3x6 ||

1 10 2 3

0-1-8
1.5x3 =

Scale = 1:12.4

5x6 ||

11 4

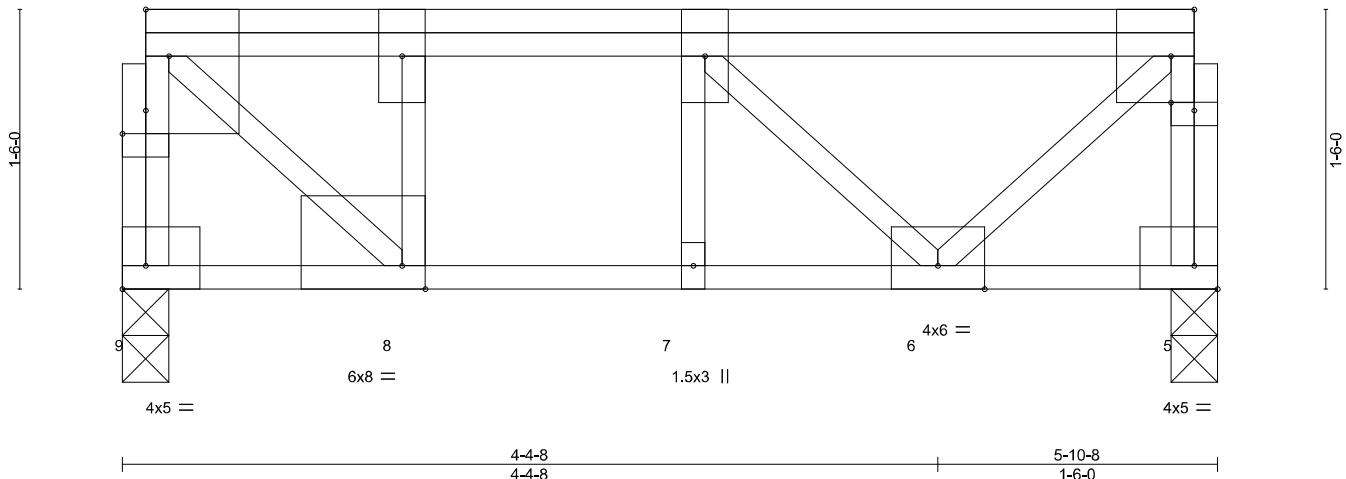


Plate Offsets (X,Y) -- [1:Edge,0-1-8], [1:0-1-8,0-1-8], [4:0-1-8,0-0-8], [4:0-3-0,Edge], [5:Edge,0-1-8], [8:0-1-8,Edge], [9:Edge,0-1-8]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	I/defl	L/d	PLATES	GRIP
TCLL 40.0	Plate Grip DOL	1.00	TC 0.47	Vert(LL)	-0.06	6-7	>999	360	
TCDL 10.0	Lumber DOL	1.00	BC 0.55	Vert(CT)	-0.08	6-7	>877	240	
BCLL 0.0	Rep Stress Incr	NO	WB 0.69	Horz(CT)	0.01	5	n/a	n/a	
BCDL 5.0	Code FBC2023/TPI2014		Matrix-S					Weight: 43 lb	FT = 20%F, 11%E

LUMBER-

TOP CHORD 2x4 SP 2700F 2.2E or 2x4 SP 2850F 2.0E or 2x4 SP M 31(flat)
BOT CHORD 2x4 SP 2700F 2.2E or 2x4 SP 2850F 2.0E or 2x4 SP M 31(flat)
WEBS 2x4 SP No.3(flat) *Except*
1-8: 2x4 SP No.2(flat)

BRACING-

TOP CHORD Structural wood sheathing directly applied or 5-10-8 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

(size) 9=0-3-0, 5=0-3-0
Max Grav 9=1665(LC 1), 5=1851(LC 1)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-9=-1715/0, 4-5=-1860/0, 1-2=-1817/0, 2-3=-1817/0, 3-4=-1008/0

BOT CHORD 7-8=0/1817, 6-7=0/1817

WEBS 4-6=0/1374, 1-8=0/2442, 3-6=-1153/0, 2-8=-1437/0, 3-7=-276/16

NOTES-

- 1) Unbalanced floor live loads have been considered for this design.
- 2) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.
Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 3) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 741 lb down at 1-2-12, and 741 lb down at 3-2-12, and 740 lb down at 5-2-12 on top chord. The design/selection of such connection device(s) is the responsibility of others.
- 4) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf)

Vert: 5-9=-10, 1-4=-220

Concentrated Loads (lb)

Vert: 3=-741(F) 10=-741(F) 11=-740(F)

This item has been
digitally signed and
sealed by Velez, Joaquin, PE
on the date indicated here.
Printed copies of this
document are not considered
signed and sealed and the
signature must be verified
on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpiinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / Mitek-US.com

Job 4789421	Truss F08	Truss Type Floor	Qty 1	Ply 1	MILLER RES.	T38148086
----------------	--------------	---------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:16 2025 Page 1
ID:2eRY39KFhR2benj7cX?4RUzckGi-3A_U6VJPbcMAQlQi3JmxiHMAFLyf8TqHNoeeDyqVpH

0-1-8

1-3-0 1-5-0

0-1-8

Scale = 1:11.7

1 3x4 =

2 1.5x3 ||

3 3x4 =

4

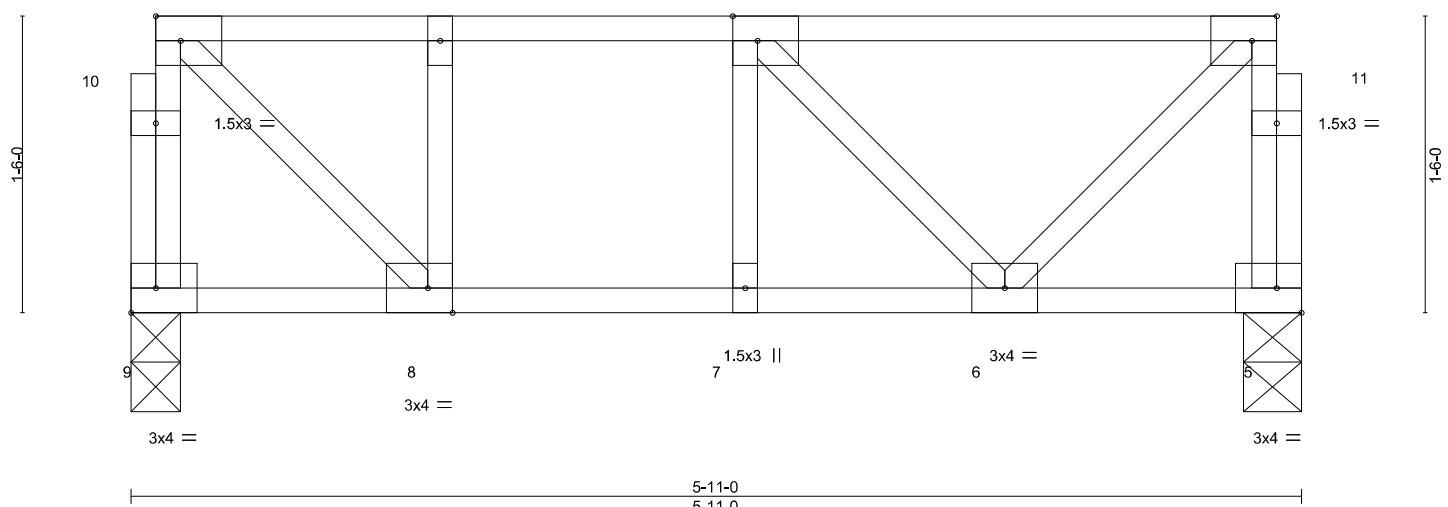


Plate Offsets (X,Y) - [3:0-1-8,Edge], [4:0-1-8,Edge], [8:0-1-8,Edge]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 40.0	Plate Grip DOL	1.00	TC 0.48	Vert(LL)	-0.03	6-7 >999	360	MT20	244/190
TCDL 10.0	Lumber DOL	1.00	BC 0.42	Vert(CT)	-0.04	6-7 >999	240		
BCLL 0.0	Rep Stress Incr	YES	WB 0.20	Horz(CT)	0.00	5 n/a	n/a		
BCDL 5.0	Code FBC2023/TPI2014		Matrix-S					Weight: 36 lb	FT = 20%F, 11%E

LUMBER-

TOP CHORD 2x4 SP No.2(flat)
BOT CHORD 2x4 SP No.2(flat)
WEBS 2x4 SP No.3(flat)

BRACING-

TOP CHORD Structural wood sheathing directly applied or 5-11-0 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

(size) 9=0-3-0, 5=0-3-8
Max Grav 9=305(LC 1), 5=305(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-9=-329/0, 4-5=-308/0, 1-2=-310/0, 2-3=-310/0

BOT CHORD 7-8=0/310, 6-7=0/310

WEBS 4-6=0/261, 1-8=0/417

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

This item has been
digitally signed and
sealed by Velez, Joaquin, PE
on the date indicated here.
Printed copies of this
document are not considered
signed and sealed and the
signature must be verified
on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.ipinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / Mitek-US.com

Job 4789421	Truss F09	Truss Type Floor	Qty 1	Ply 1	MILLER RES.	T38148087
----------------	--------------	---------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:17 2025 Page 1
ID:2eRY39KFhR2benj7cX?4RUzckGi-XNYtKr1MwU11R?ud1HAFVvQNIbtyEqcSYBBfyqVpG

0-1-8

1 3x4 = 1-3-0 2 1.5x3 || 1-6-10 3 1.5x3 ||

3x4 =

4 0-1-8

Scale = 1:10.2

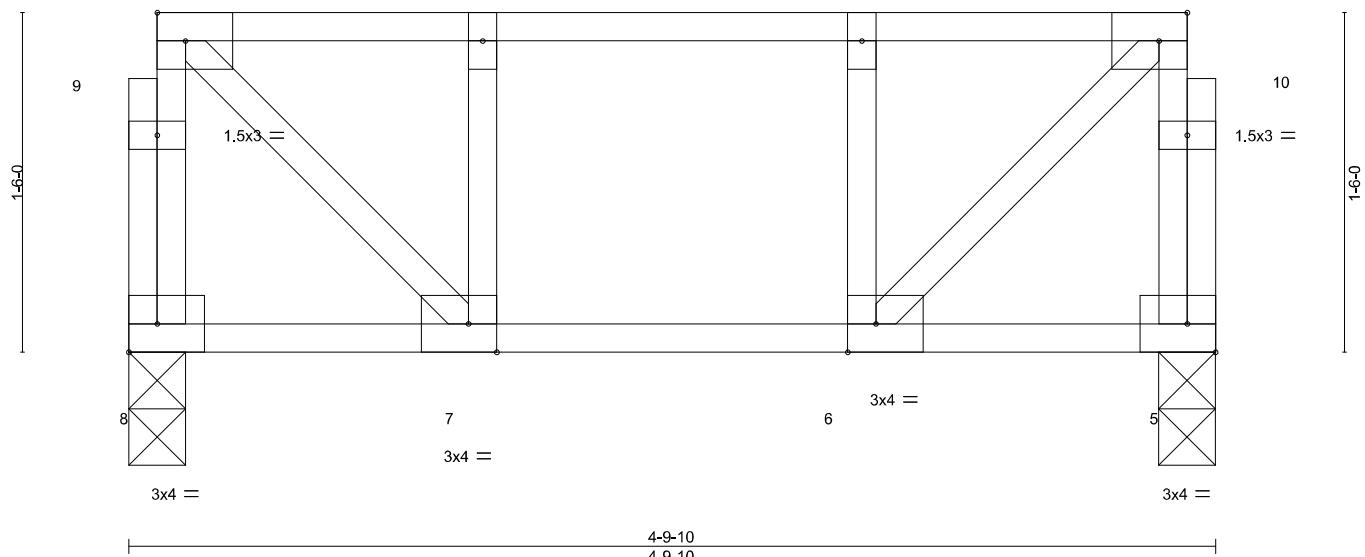


Plate Offsets (X,Y) - [4:0-1-8,Edge], [6:0-1-8,Edge], [7:0-1-8,Edge]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 40.0	Plate Grip DOL	1.00	TC 0.14	Vert(LL)	-0.01	7 >999	360	MT20	244/190
TCDL 10.0	Lumber DOL	1.00	BC 0.12	Vert(CT)	-0.01	7 >999	240		
BCLL 0.0	Rep Stress Incr	YES	WB 0.12	Horz(CT)	0.00	5 n/a	n/a		
BCDL 5.0	Code FBC2023/TPI2014		Matrix-S					Weight: 30 lb	FT = 20%F, 11%E

LUMBER-

TOP CHORD 2x4 SP No.2(flat)
BOT CHORD 2x4 SP No.2(flat)
WEBS 2x4 SP No.3(flat)

BRACING-

TOP CHORD Structural wood sheathing directly applied or 4-9-10 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

(size) 8=0-3-0, 5=0-3-0
Max Grav 8=244(LC 1), 5=244(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
WEBS 4-6=0/262, 1-7=0/262

NOTES-

- 1) Unbalanced floor live loads have been considered for this design.
- 2) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.
Strongbacks to be attached to walls at their outer ends or restrained by other means.

This item has been
digitally signed and
sealed by Velez, Joaquin, PE
on the date indicated here.
Printed copies of this
document are not considered
signed and sealed and the
signature must be verified
on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.ipinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / Mitek-US.com

Job 4789421	Truss F10	Truss Type Floor	Qty 1	Ply 1	MILLER RES.	T38148088
----------------	--------------	---------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:17 2025 Page 1
ID:2eRY39KFhR2benj7cX?4RUzckGi-XNYtKrK1MwU11R?ud1HAFVvRslNotyPQcSYBBfyqVpG

0-1-8

| 1 | 3x4 =

1-3-0

2 1.5x3 ||

1-3-8

3 1.5x3 ||

4

0-1-8

Scale = 1:10.2

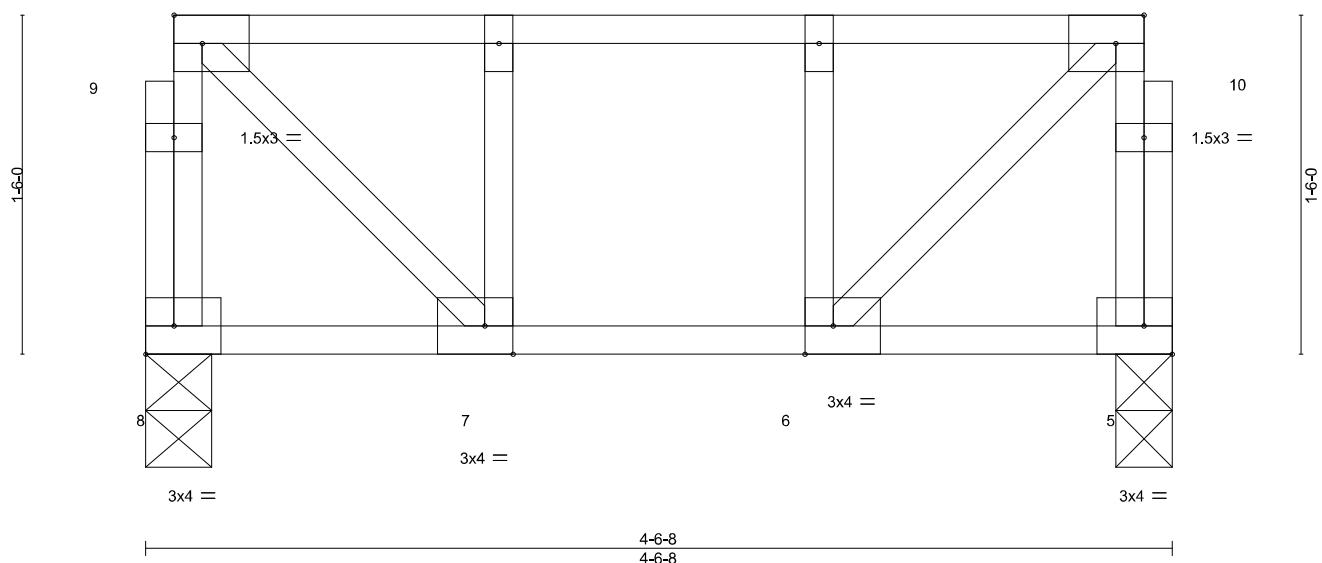


Plate Offsets (X,Y) - [4:0-1-8,Edge], [6:0-1-8,Edge], [7:0-1-8,Edge]

LOADING (psf)	SPACING-	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 40.0	Plate Grip DOL	2-0-0	TC 0.11	Vert(LL)	-0.01	6 >999	360	MT20 244/190
TCDL 10.0	Lumber DOL	1.00	BC 0.10	Vert(CT)	-0.01	7 >999	240	
BCLL 0.0	Rep Stress Incr	YES	WB 0.11	Horz(CT)	0.00	5 n/a	n/a	
BCDL 5.0	Code FBC2023/TPI2014		Matrix-S				Weight: 29 lb	FT = 20%F, 11%E

LUMBER-

TOP CHORD 2x4 SP No.2(flat)
BOT CHORD 2x4 SP No.2(flat)
WEBS 2x4 SP No.3(flat)

BRACING-

TOP CHORD Structural wood sheathing directly applied or 4-6-8 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

(size) 8=0-3-8, 5=0-3-0

Max Grav 8=230(LC 1), 5=230(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced floor live loads have been considered for this design.
- 2) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

This item has been
digitally signed and
sealed by Velez, Joaquin, PE
on the date indicated here.
Printed copies of this
document are not considered
signed and sealed and the
signature must be verified
on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpiinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MITek-US.com

Job 4789421	Truss HJ08	Truss Type Diagonal Hip Girder	Qty 2	Ply 1	MILLER RES.	T38148089
----------------	---------------	-----------------------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:18 2025 Page 1
ID:2eRY39KFhR2benj7cX?4RUzckGi?Z6FXALf7Ecufba5BkpPniST19e2cPQZq6Hkj5yqVpF

-2-1-7 3-6-1 7-0-2
2-1-7 3-6-1 3-6-1

Scale: 1/2"=1"

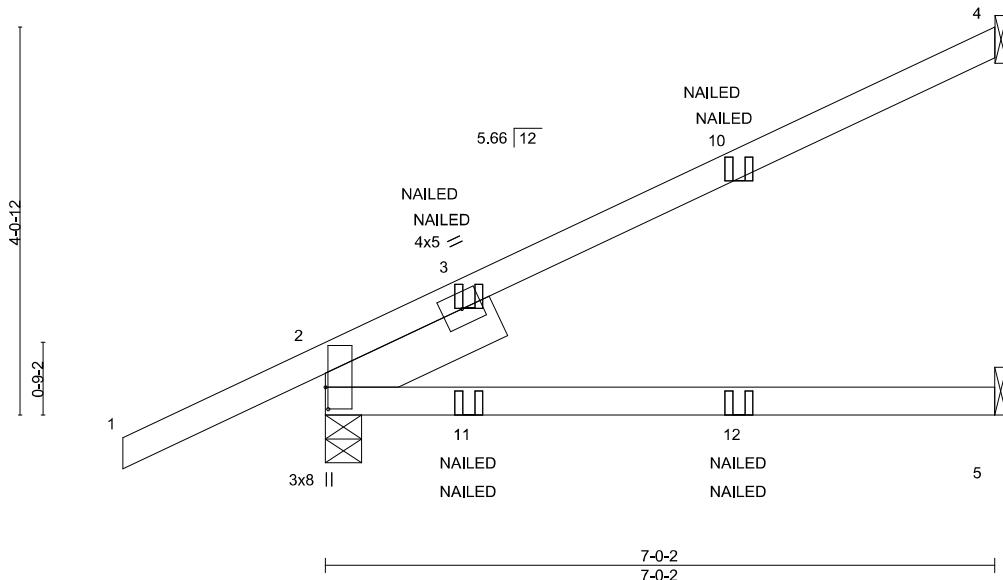


Plate Offsets (X,Y) - [2:0-2-12,0-0-5]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.66	Vert(LL)	0.17	5-8	>497	240	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.42	Vert(CT)	0.17	5-8	>494	180		
BCLL 0.0 *	Rep Stress Incr	NO	WB 0.00	Horz(CT)	-0.04	4	n/a	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS						Weight: 30 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
SLIDER Left 2x6 SP No.2 1-11-8

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

(size) 4=Mechanical, 2=0-4-9, 5=Mechanical
Max Horz 2=159(LC 29)
Max Uplift 4=-135(LC 8), 2=-201(LC 8), 5=-32(LC 8)
Max Grav 4=158(LC 35), 2=321(LC 35), 5=108(LC 3)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-256/530

NOTES-

- Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCPi=0.18; MWFRS (envelope) gable end zone; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 135 lb uplift at joint 4, 201 lb uplift at joint 2 and 32 lb uplift at joint 5.
- "NAILED" indicates 3-10d (0.148"x3") or 2-12d (0.148"x3.25") toe-nails per NDS guidelines.
- In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S)

Standard

- Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25
Uniform Loads (plf)
Vert: 1-4=-60, 5-6=-20
Concentrated Loads (lb)
Vert: 3=86(F=43, B=43) 11=76(F=38, B=38) 12=-7(F=-3, B=-3)

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

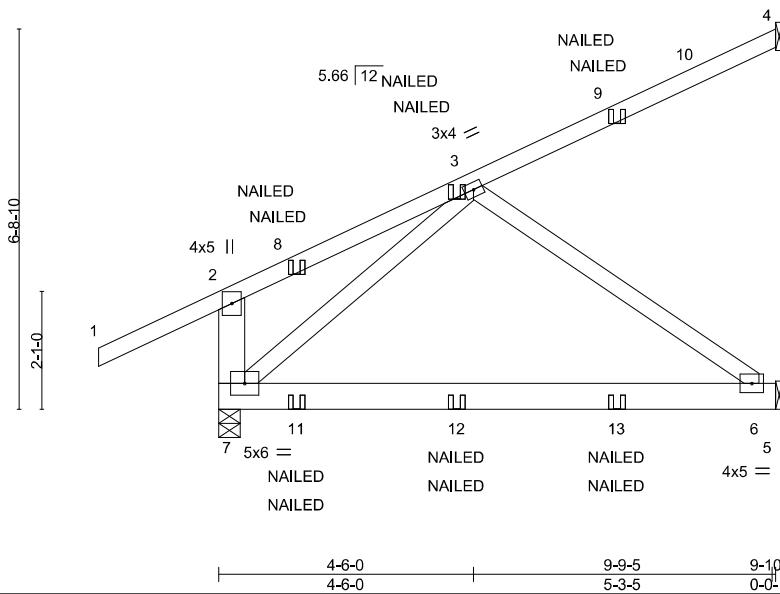
Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpiinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / Mitek-US.com


Job 4789421	Truss HJ10	Truss Type Diagonal Hip Girder	Qty 1	Ply 1	MILLER RES.	T38148090
----------------	---------------	-----------------------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:18 2025 Page 1
ID:2eRY39KFhR2benj7c?4RUzckGi-?Z6FXALf7Ecufba5BkpPniSTz9c1cLIZq6Hkj5yqVpF

-2-1-7 4-6-0 9-10-1
2-1-7 4-6-0 5-4-1

Scale = 1:40.8

4-6-0 9-9-5 9-10-1
4-6-0 5-3-5 0-0-12

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.66	Vert(LL)	0.14	6-7	>814	240	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.55	Vert(CT)	-0.21	6-7	>535	180		
BCLL 0.0 *	Rep Stress Incr	NO	WB 0.26	Horz(CT)	0.00	4	n/a	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS						Weight: 63 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x6 SP No.2
WEBS 2x4 SP No.3 *Except*
2-7: 2x6 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 7=0-4-9, 4=Mechanical, 5=Mechanical

Max Horz 7=179(LC 8)
Max Uplift 7=-422(LC 8), 4=-120(LC 8), 5=-277(LC 8)
Max Grav 7=554(LC 46), 4=155(LC 1), 5=337(LC 43)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

BOT CHORD 6-7=-306/269
WEBS 3-7=-341/182, 3-6=-338/384

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 422 lb uplift at joint 7, 120 lb uplift at joint 4 and 277 lb uplift at joint 5.
- 8) "NAILED" indicates 3-10d (0.148"x3") or 2-12d (0.148"x3.25") toe-nails per NDS guidelines.
- 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

Vert: 1-2=-60, 2-4=-60, 5-7=-20

Concentrated Loads (lb)

Vert: 8=95(F=48, B=48) 9=-63(F=-32, B=-32) 11=61(F=30, B=30) 12=6(F=3, B=3) 13=-41(F=-21, B=-21)

This item has been
digitally signed and
sealed by Velez, Joaquin, PE
on the date indicated here.
Printed copies of this
document are not considered
signed and sealed and the
signature must be verified
on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

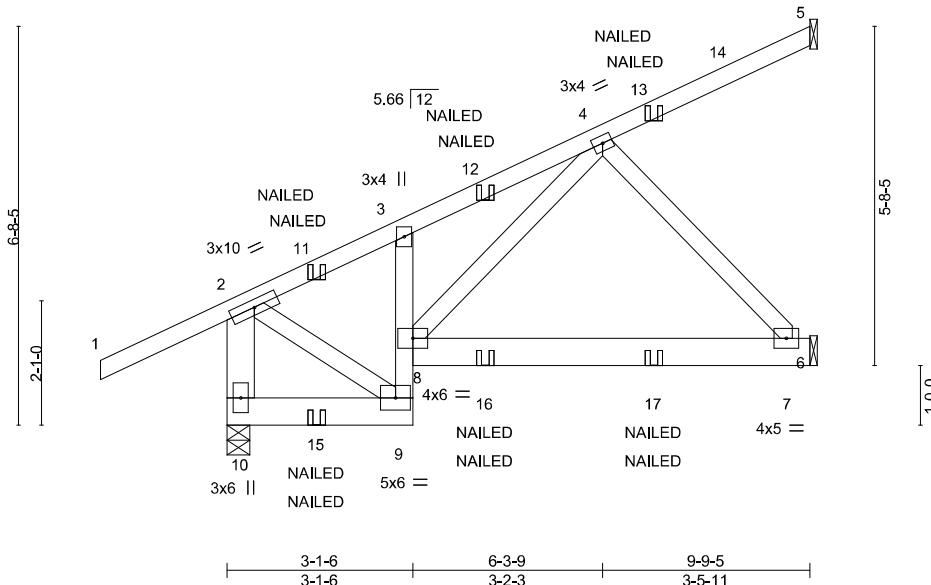
August 7,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from Truss Plate Institute ([www.tpiinst.org](#)) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association ([www.sbcsccomponents.com](#))

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / [MiTek-US.com](#)

Job 4789421	Truss HJ10A	Truss Type Diagonal Hip Girder	Qty 1	Ply 1	MILLER RES.	T38148091
----------------	----------------	-----------------------------------	----------	----------	-------------	-----------


Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:19 2025 Page 1

ID:2eRY39KFhR2benj7cX?4RUzckGi-TlgdkWLHuXklHl8HkSKewKw_iUzw?Lqwj3m1FYyqVpE

-2-1-7 3-1-6 6-3-9 9-9-5
2-1-7 3-1-6 3-2-3 3-5-11

Scale = 1:38.7

LOADING (psf)	SPACING-	CSI.	DEFL.	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.25	TC 0.42	Vert(LL) 0.10 in (loc)	MT20	244/190
TCDL 10.0	Lumber DOL 1.25	BC 0.70	Vert(CT) -0.11 7-8 >999		
BCLL 0.0 *	Rep Stress Incr NO	WB 0.18	Horz(CT) -0.04 6 n/a		
BCDL 10.0	Code FBC2023/TPI2014	Matrix-MS			
Weight: 68 lb FT = 20%					

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x6 SP No.2 *Except*
3-9: 2x4 SP No.3
WEBS 2x4 SP No.3 *Except*
2-10: 2x6 SP No.2

REACTIONS. (size)

10=0-4-9, 5=Mechanical, 6=Mechanical
Max Horz 10=179(LC 8)
Max Uplift 10=418(LC 8), 5=-38(LC 8), 6=-370(LC 8)
Max Grav 10=566(LC 46), 5=79(LC 1), 6=452(LC 43)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-10=-593/408, 2-3=-448/315, 3-4=-579/487
BOT CHORD 7-8=-247/253
WEBS 2-9=-257/448, 4-8=-378/320, 4-7=-386/376

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCPi=0.18; MWFRS (envelope) gable end zone; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 418 lb uplift at joint 10, 38 lb uplift at joint 5 and 370 lb uplift at joint 6.
- 8) "NAILED" indicates 3-10d (0.148"x3") or 2-12d (0.148"x3.25") toe-nails per NDS guidelines.
- 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25
Uniform Loads (plf)
Vert: 1-2=-60, 2-5=-60, 9-10=-20, 6-8=-20
Concentrated Loads (lb)
Vert: 11=95(F=48, B=48) 12=-14(F=-7, B=-7) 15=63(F=32, B=32) 17=-125(F=-62, B=-62)

This item has been
digitally signed and
sealed by Velez, Joaquin, PE
on the date indicated here.
Printed copies of this
document are not considered
signed and sealed and the
signature must be verified
on any electronic copies.

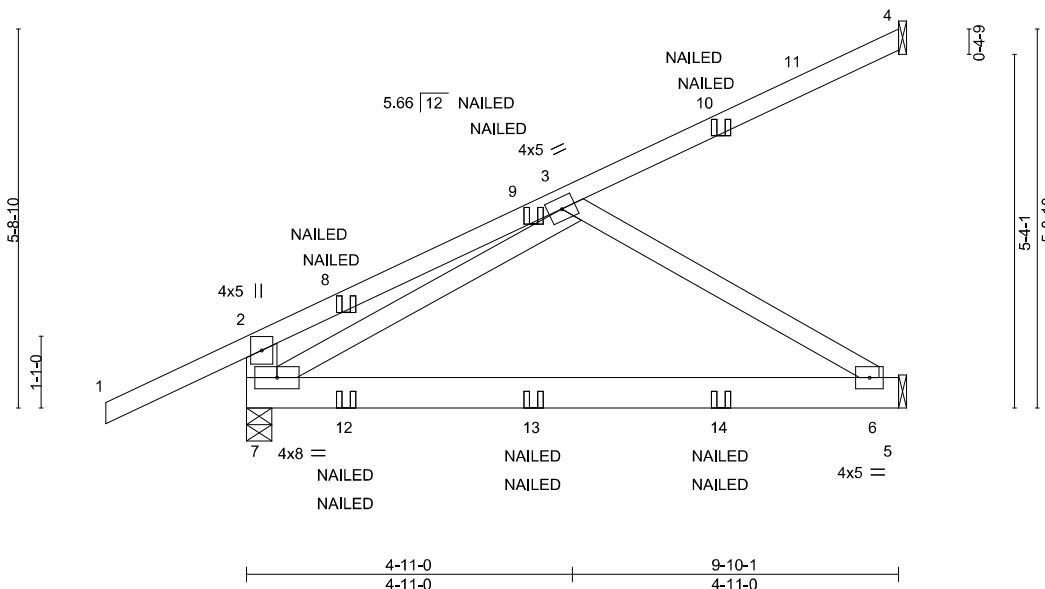
Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

⚠ WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DS-B-22** available from Truss Plate Institute (www.tpiinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com


Job 4789421	Truss HJ10B	Truss Type Diagonal Hip Girder	Qty 1	Ply 1	MILLER RES.	T38148092
----------------	----------------	-----------------------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:20 2025 Page 1
ID:2eRY39KFhR2benj7cX?4RUzckGi-xxD?ysMverscuvjTl9rts7XqNyHd4FpslQmrn_yqVpD

-2-1-7 4-11-0 9-10-1
2-1-7 4-11-0 4-11-0

Scale = 1:34.8

4-11-0 9-10-1
4-11-0 4-11-0

LOADING (psf)	SPACING-	CSI.	DEFL.	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.25	TC 0.60	Vert(LL) -0.11 in (loc) 6-7 >999	MT20	244/190
TCDL 10.0	Lumber DOL 1.25	BC 0.54	Vert(CT) -0.21 6-7 >557		
BCLL 0.0 *	Rep Stress Incr NO	WB 0.26	Horz(CT) -0.00 4 n/a		
BCDL 10.0	Code FBC2023/TPI2014	Matrix-MS			
				Weight: 60 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x6 SP No.2
WEBS 2x4 SP No.3 *Except*
2-7: 2x6 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 4=Mechanical, 5=Mechanical, 7=0-4-9

Max Horz 7=193(LC 8)
Max Uplift 4=-106(LC 8), 5=-184(LC 8), 7=-234(LC 4)
Max Grav 4=147(LC 1), 5=317(LC 43), 7=476(LC 46)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-288/276
BOT CHORD 6-7=-278/317
WEBS 3-6=-375/328, 3-7=-462/187

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCPi=0.18; MWFRS (envelope) gable end zone; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 106 lb uplift at joint 4, 184 lb uplift at joint 5 and 234 lb uplift at joint 7.
- 8) "NAILED" indicates 3-10d (0.148"x3") or 2-12d (0.148"x3.25") toe-nails per NDS guidelines.
- 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25
Uniform Loads (plf)
Vert: 1-2=-60, 2-4=-60, 5-7=-20
Concentrated Loads (lb)
Vert: 8=89(F=44, B=44) 10=-68(F=-34, B=-34) 12=70(F=35, B=35) 13=6(F=3, B=3) 14=-44(F=-22, B=-22)

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.ipinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / Mitek-US.com

Job 4789421	Truss KW1	Truss Type GABLE	Qty 1	Ply 1	MILLER RES.	T38148093
----------------	--------------	---------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:20 2025 Page 1
ID:2eRY39KFhR2benj7cX?4RUzckGi-xxD?ysMwerscuvjTl9rts7XyByPy4JMsIQmrn_yqVpD

Scale = 1:13.2

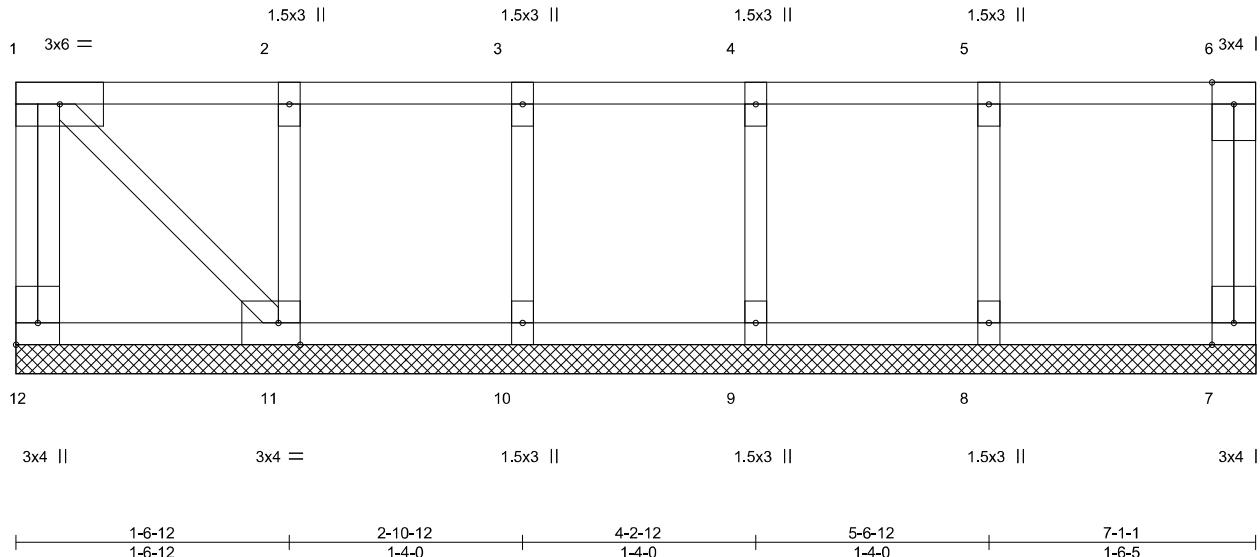


Plate Offsets (X,Y) - [11:0-1-8,Edge], [12:Edge,0-1-8]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	I/defl	L/d	PLATES	GRIP
TCLL 40.0	Plate Grip DOL	1.00	TC 0.10	Vert(LL)	n/a	-	n/a	MT20	244/190
TCDL 10.0	Lumber DOL	1.00	BC 0.01	Vert(CT)	n/a	-	n/a		
BCLL 0.0	Rep Stress Incr	YES	WB 0.04	Horz(CT)	-0.00	7	n/a		
BCDL 5.0	Code FBC2023/TPI2014		Matrix-S					Weight: 39 lb	FT = 20%F, 11%E

LUMBER-

TOP CHORD 2x4 SP No.2(flat)
BOT CHORD 2x4 SP No.2(flat)
WEBS 2x4 SP No.3(flat)
OTHERS 2x4 SP No.3(flat)

BRACING-

TOP CHORD Structural wood sheathing directly applied or 7-1-1 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

All bearings 7-1-1.
(lb) - Max Grav All reactions 250 lb or less at joint(s) 12, 7, 11, 10, 9, 8

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Gable requires continuous bottom chord bearing.
- 2) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 3) Gable studs spaced at 1-4-0 oc.
- 4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.
Strongbacks to be attached to walls at their outer ends or restrained by other means.

This item has been
digitally signed and
sealed by Velez, Joaquin, PE
on the date indicated here.
Printed copies of this
document are not considered
signed and sealed and the
signature must be verified
on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

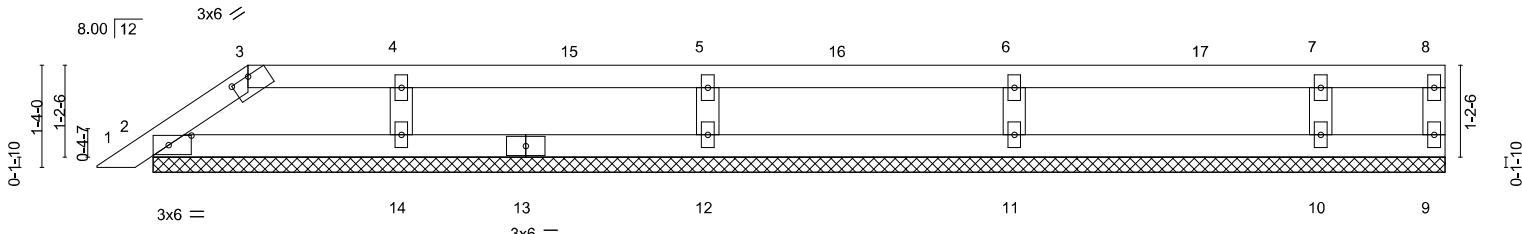
 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpiinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MITek-US.com

Job 4789421	Truss PB01	Truss Type GABLE	Qty 1	Ply 1	MILLER RES.	T38148094
----------------	---------------	---------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,


8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:21 2025 Page 1

ID:2eRY39KFhR2benj7cX?4RUzckGi-P8nN9CNYP9_TW3lgstM6PL460MkZpmT0W4WPKQyqVpc

17-7-8

15-7-8

Scale = 1:30.1

17-7-8
17-7-8

Plate Offsets (X,Y) - [2:0-3-9,0-1-8], [3:0-3-0,0-0-2]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	I/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.16	Vert(LL)	0.00	1	n/r	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.12	Vert(CT)	0.00	1	n/r		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.04	Horz(CT)	0.00	9	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-S					Weight: 56 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3
OTHERS 2x4 SP No.3

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

All bearings 16-10-6.
(lb) - Max Horz 2=44(LC 12)
Max Uplift All uplift 100 lb or less at joint(s) 9, 2, 14, 12, 10 except 11=-100(LC 9)
Max Grav All reactions 250 lb or less at joint(s) 9, 2 except 14=311(LC 1), 12=321(LC 26), 11=331(LC 1), 10=254(LC 26)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 0-3-5 to 2-0-0, Zone2 2-0-0 to 6-2-15, Zone1 6-2-15 to 17-5-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding.
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9, 2, 14, 12, 10 except (jt=lb) 11=100.
- See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

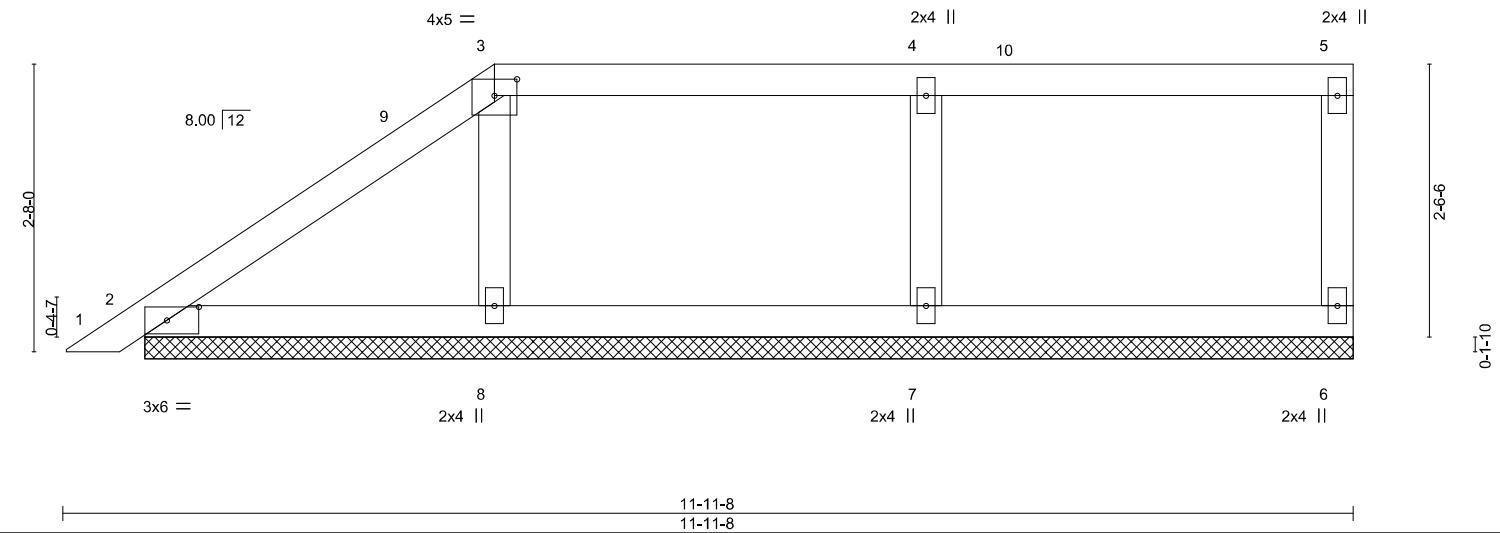
August 7,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.ipinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / Mitek-US.com

Job 4789421	Truss PB02	Truss Type GABLE	Qty 1	Ply 1	MILLER RES.	T38148095
----------------	---------------	---------------------	----------	----------	-------------	-----------


Builders FirstSource (Lake City,FL), Lake City, FL - 32055, 8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:21 2025 Page 1

ID:2eRY39KFhR2benj7cX?4RUzckGi-P8nN9CNYP9_TW3lgstM6PL45WMkUpml0W4WPKQyqVpC

4-0-0
4-0-0

11-11-8
7-11-8

Scale = 1:21.4

11-11-8
11-11-8

Plate Offsets (X,Y) - [2:0-3-9,0-1-8], [3:0-2-8,0-1-13]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	I/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.19	Vert(LL)	-0.00	1	n/r	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.12	Vert(CT)	0.00	1	n/r		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.06	Horz(CT)	0.00	6	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-S					Weight: 44 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3
OTHERS 2x4 SP No.3

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

All bearings 11-2-6.
(lb) - Max Horz 2=95(LC 12)
Max Uplift All uplift 100 lb or less at joint(s) 6, 2, 8 except 7=-116(LC 8)
Max Grav All reactions 250 lb or less at joint(s) 6, 2 except 8=284(LC 1), 7=358(LC 26)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 4-7=-274/141

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCPi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 0-3-5 to 3-3-5, Zone1 3-3-5 to 4-0-0, Zone2 4-0-0 to 8-0-0, Zone1 8-0-0 to 11-9-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) Provide adequate drainage to prevent water ponding.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 4-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 2, 8 except (jt=lb) 7=116.
- 11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.ipinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / Mitek-US.com

Job 4789421	Truss PB03	Truss Type GABLE	Qty 1	Ply 1	MILLER RES.	T38148096
----------------	---------------	---------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:22 2025 Page 1
ID:2eRY39KFhR2benj7cX?4RUzckGi-uKlmNYOAAStK8DtsQatLyYcHJm4iYCG9lkFstyqVpB

6-0-0
6-0-0

11-11-8
5-11-8

2x4 ||

Scale: 1/2"=1"

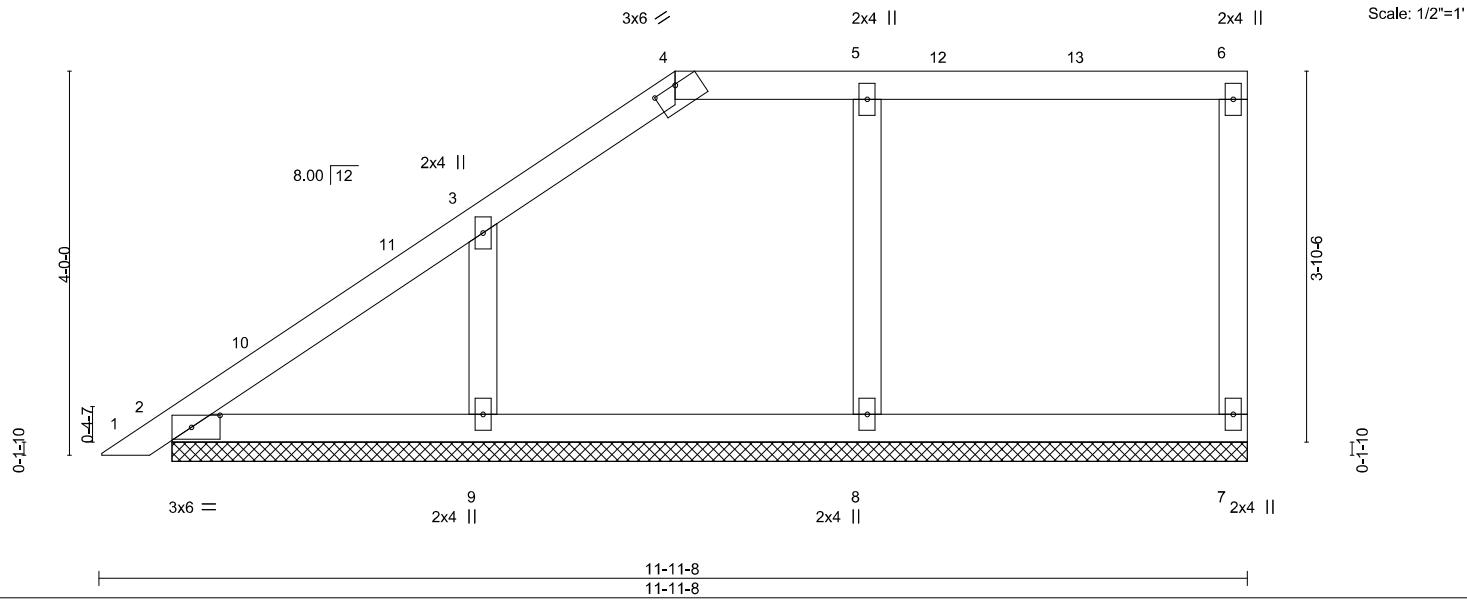


Plate Offsets (X,Y) - [2:0-3-9,0-1-8], [4:0-3-0,0-0-2]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.19	Vert(LL)	-0.00	1	n/r	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.12	Vert(CT)	0.00	1	n/r		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.07	Horz(CT)	0.00	7	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-S					Weight: 49 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3
OTHERS 2x4 SP No.3

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

All bearings 11-2-6.
(lb) - Max Horz 2=147(LC 12)
Max Uplift All uplift 100 lb or less at joint(s) 7, 8 except 9=166(LC 12)
Max Grav All reactions 250 lb or less at joint(s) 7, 2 except 9=325(LC 19), 8=337(LC 1)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 5-8=255/139

NOTES-

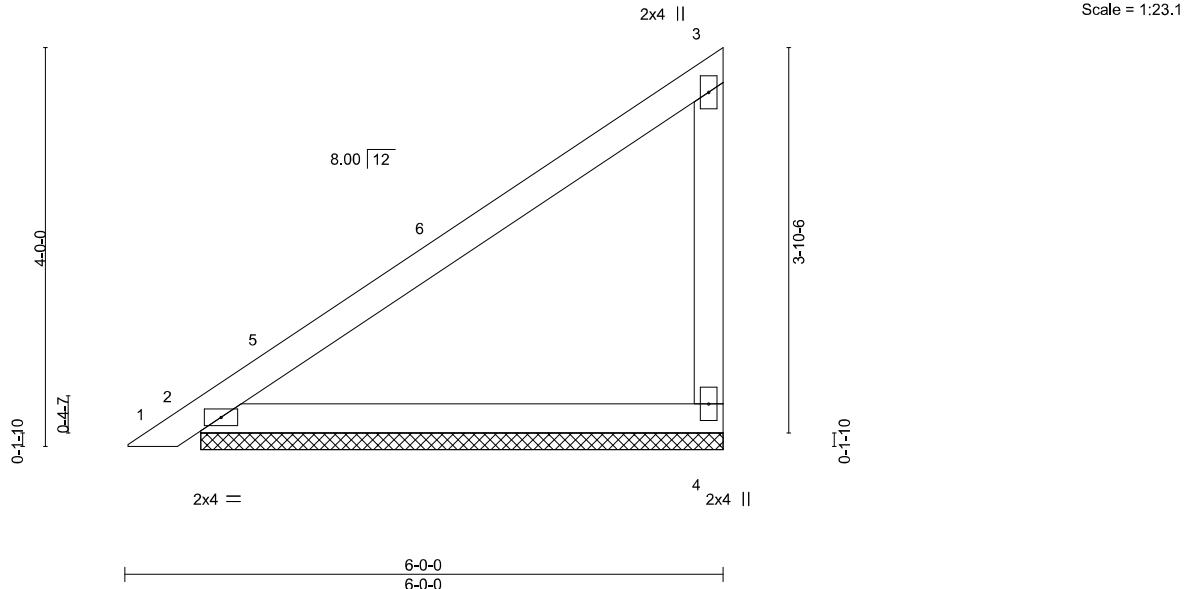
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCPi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 0-3-5 to 3-3-5, Zone1 3-3-5 to 6-0-0, Zone2 6-0-0 to 10-2-15, Zone1 10-2-15 to 11-9-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) Provide adequate drainage to prevent water ponding.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 4-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 8 except (jt=lb) 9=166.
- 11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.ipinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / Mitek-US.com

Job 4789421	Truss PB04	Truss Type Piggyback	Qty 3	Ply 1	MILLER RES.	T38148097
----------------	---------------	-------------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:22 2025 Page 1
ID:2eRY39KFhR2benj7cX?4RUzckGi-uKLmNYOAAS7K8DtsQatLyYcCxm0XYDP9lkFystyqVpB

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	I/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.47	Vert(LL)	0.02	1	n/r	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.32	Vert(CT)	0.01	1	n/r		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.00	Horz(CT)	0.00		n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-P					Weight: 23 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3

REACTIONS. (size) 4=5-2-14, 2=5-2-14
Max Horz 2=142(LC 12)
Max Uplift 4=106(LC 12), 2=29(LC 12)
Max Grav 4=216(LC 19), 2=234(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 0-3-5 to 3-3-5, Zone1 3-3-5 to 5-10-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 4=106.
- 8) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

This item has been
digitally signed and
sealed by Velez, Joaquin, PE
on the date indicated here.
Printed copies of this
document are not considered
signed and sealed and the
signature must be verified
on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

⚠ WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpiinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com

Job 4789421	Truss PB05	Truss Type Piggyback	Qty 1	Ply 1	MILLER RES.	T38148098
----------------	---------------	-------------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:23 2025 Page 1

ID:2eRY39KFhR2benj7cX?4RUzckGi-MWv8auPoxmFBIMS2zIoaUm9S9AQRHgtJ_O?VOJyqVpA
6-0-0
6-0-0

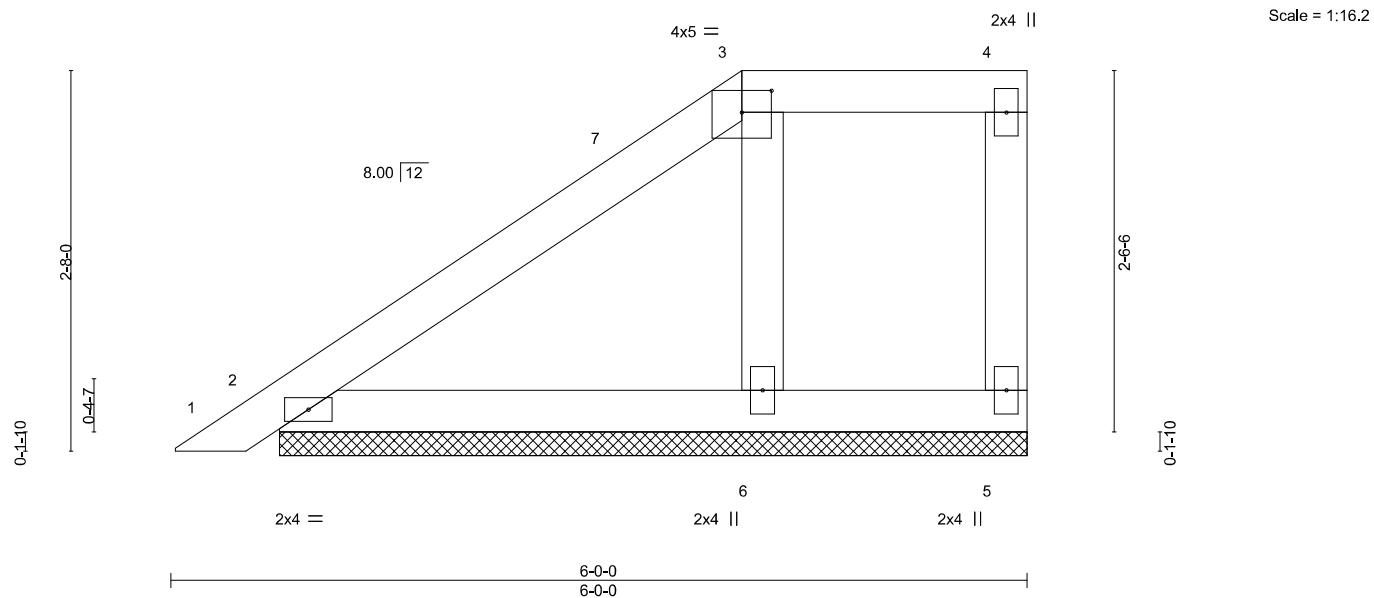


Plate Offsets (X,Y) - [3:0-2-8,0-1-13]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.19	Vert(LL)	0.00	1	n/r	120	
TCDL 10.0	Lumber DOL	1.25	BC 0.09	Vert(CT)	0.00	1	n/r	120	
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.05	Horz(CT)	0.00	5	n/a	n/a	
BCDL 10.0	Code FBC2023/TPI2014		Matrix-P					Weight: 24 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

(size) 5=5-2-14, 2=5-2-14, 6=5-2-14
Max Horz 2=95(LC 12)
Max Uplift 5=27(LC 8), 2=28(LC 12), 6=65(LC 12)
Max Grav 5=60(LC 1), 2=162(LC 1), 6=214(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCPi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 0-3-5 to 3-3-5, Zone1 3-3-5 to 4-0-0, Zone3 4-0-0 to 5-10-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 2, 6.
- 9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

This item has been
digitally signed and
sealed by Velez, Joaquin, PE
on the date indicated here.
Printed copies of this
document are not considered
signed and sealed and the
signature must be verified
on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.ipinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / Mitek-US.com

Job 4789421	Truss PB06	Truss Type Piggyback	Qty 1	Ply 1	MILLER RES.	T38148099
----------------	---------------	-------------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:23 2025 Page 1

ID:2eRY39KFhR2benj7cX?4RUzckGi-MWv8auPoxmFBIMS2zlOaUm9R4AQ9Hg0J_O?VOJyqVpA
6-0-0
6-0-0

Scale: 1"=1'

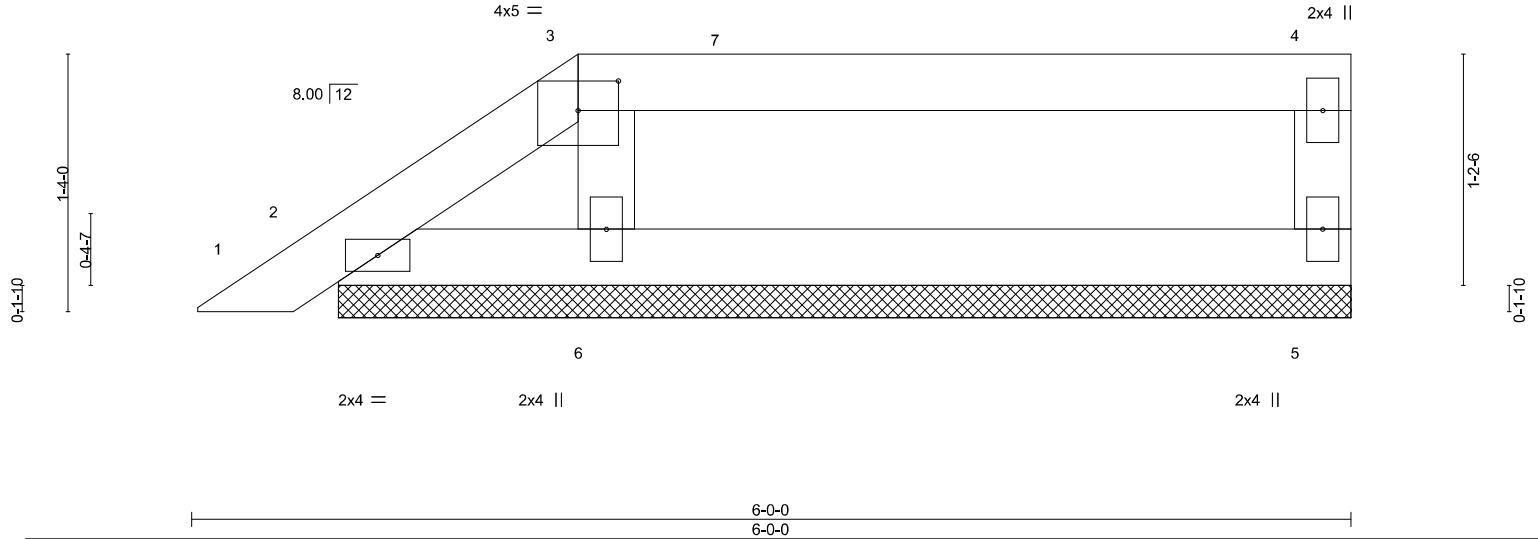


Plate Offsets (X,Y) - [3:0-2-8,0-1-13]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	I/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.25	Vert(LL)	0.00	1	n/r	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.11	Vert(CT)	0.00	1	n/r		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.04	Horz(CT)	0.00	5	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-P					Weight: 19 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

(size) 5=5-2-14, 2=5-2-14, 6=5-2-14
Max Horz 2=44(LC 12)
Max Uplift 5=49(LC 8), 2=29(LC 12), 6=42(LC 9)
Max Grav 5=146(LC 1), 2=82(LC 1), 6=209(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCPi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 2, 6.
- 9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DS-B-22** available from Truss Plate Institute (www.ipinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / Mitek-US.com

Job 4789421	Truss PB07	Truss Type GABLE	Qty 1	Ply 1	MILLER RES.	T38148100
----------------	---------------	---------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:24 2025 Page 1

ID:2eRY39KFhR2benj7cX?4RUzckGi-qjTWoEPQi4N2NW1FX?vp1zidHamc06nSD2k3wlyqVp9

8-3-4
8-3-4

5x6 = 2x4 ||

Scale = 1:30.1

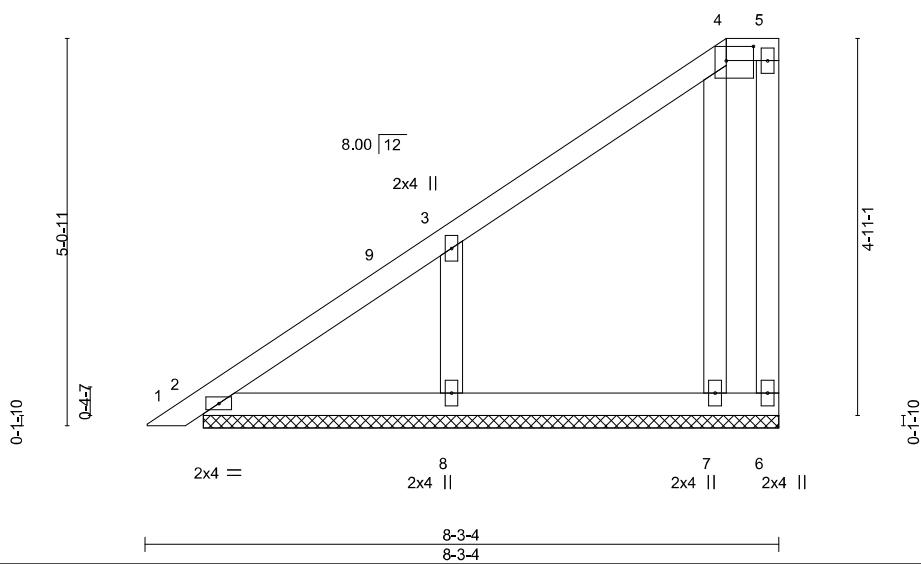


Plate Offsets (X,Y) -- [4:0-4-4,0-2-4]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.16	Vert(LL)	-0.00	1	n/r	120	
TCDL 10.0	Lumber DOL	1.25	BC 0.09	Vert(CT)	0.00	1	n/r	120	
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.07	Horz(CT)	-0.00	7	n/a	n/a	
BCDL 10.0	Code FBC2023/TPI2014		Matrix-S					Weight: 41 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3
OTHERS 2x4 SP No.3

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS.

All bearings 7-6-2.
(lb) - Max Horz 2=187(LC 12)
Max Uplift All uplift 100 lb or less at joint(s) 6, 7 except 8=173(LC 12)
Max Grav All reactions 250 lb or less at joint(s) 6, 2, 7 except 8=342(LC 19)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 3-8=259/243

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 0-3-5 to 3-3-5, Zone1 3-3-5 to 7-7-0, Zone3 7-7-0 to 8-1-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) Provide adequate drainage to prevent water ponding.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 4-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 7 except (jt=lb) 8=173.
- 11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.ipinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com

Job 4789421	Truss T01G	Truss Type Common Supported Gable	Qty 1	Ply 1	MILLER RES.	T38148101
----------------	---------------	--------------------------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:24 2025 Page 1
ID:2eRY39KFhR2benj7c?4RUzckGi-qjTwEPQi4N2NW1FX?vp1zidaanO078SD2k3wlyqVp9

-1-6-0 1-6-0 4-6-0 4-6-0 9-0-0 4-6-0 10-6-0 1-6-0

Scale = 1:24.7

4x5 =

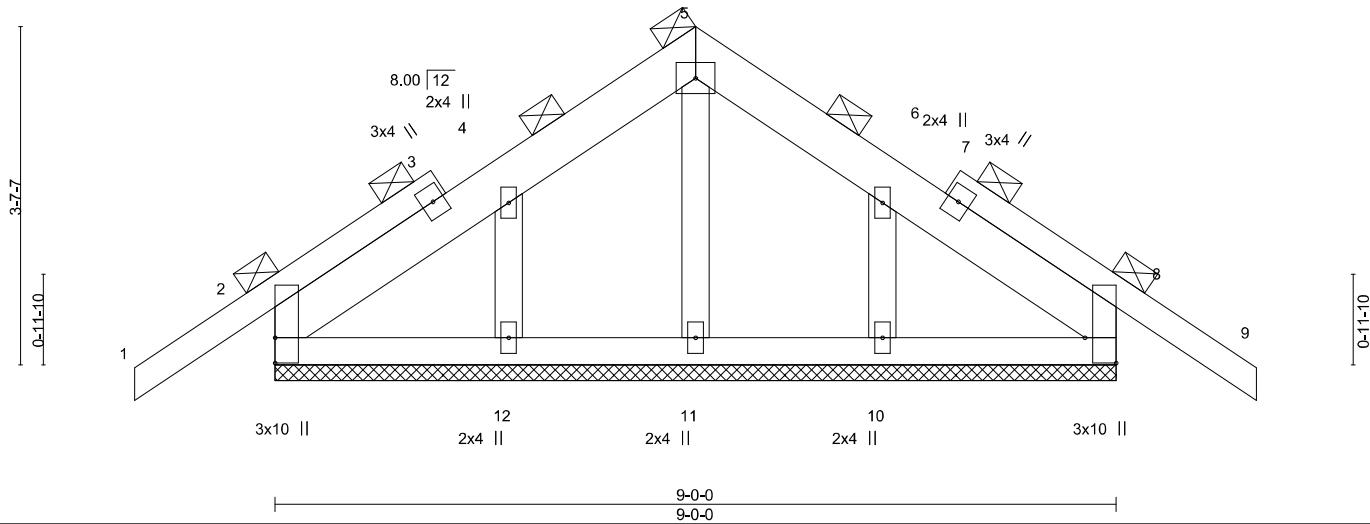


Plate Offsets (X,Y) -- [2:Edge,0-0-0], [8:Edge,0-4-0]

LOADING (psf)	SPACING-	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.25	TC 0.14	Vert(LL)	-0.00	9	n/r	MT20	244/190
TCDL 10.0	Lumber DOL 1.25	BC 0.04	Vert(CT)	-0.01	9	n/r		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.05	Horz(CT)	0.00	8	n/a		
BCDL 10.0	Code FBC2023/TPI2014	Matrix-S					Weight: 60 lb	FT = 20%

LUMBER-

TOP CHORD 2x6 SP No.2 *Except*
1-3,7-9: 2x4 SP No.2
BOT CHORD 2x4 SP No.2
OTHERS 2x4 SP No.3

BRACING-

TOP CHORD 2-0-0 oc purlins (6-0-0 max.).
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

All bearings 9-0-0.
(lb) - Max Horz 2=-88(LC 10)
Max Uplift All uplift 100 lb or less at joint(s) 2, 8, 12, 10
Max Grav All reactions 250 lb or less at joint(s) 2, 8, 11, 12, 10

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8, 12, 10.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

This item has been
digitally signed and
sealed by Velez, Joaquin, PE
on the date indicated here.
Printed copies of this
document are not considered
signed and sealed and the
signature must be verified
on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.ipinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / Mitek-US.com

Job 4789421	Truss T02	Truss Type Common	Qty 1	Ply 1	MILLER RES.	T38148102
----------------	--------------	----------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:25 2025 Page 1
ID:2eRY39KFhR2benj7cX?4RUzckGi-lv1u?aQ2TNVu?gcR5iR2ZBEhlzxPIT0bRIUcTByqVp8

-1-6-0 5-7-0 10-0-0 14-5-0 20-0-0
1-6-0 5-7-0 4-5-0 4-5-0 5-7-0

4x5 ||

Scale = 1:46.0

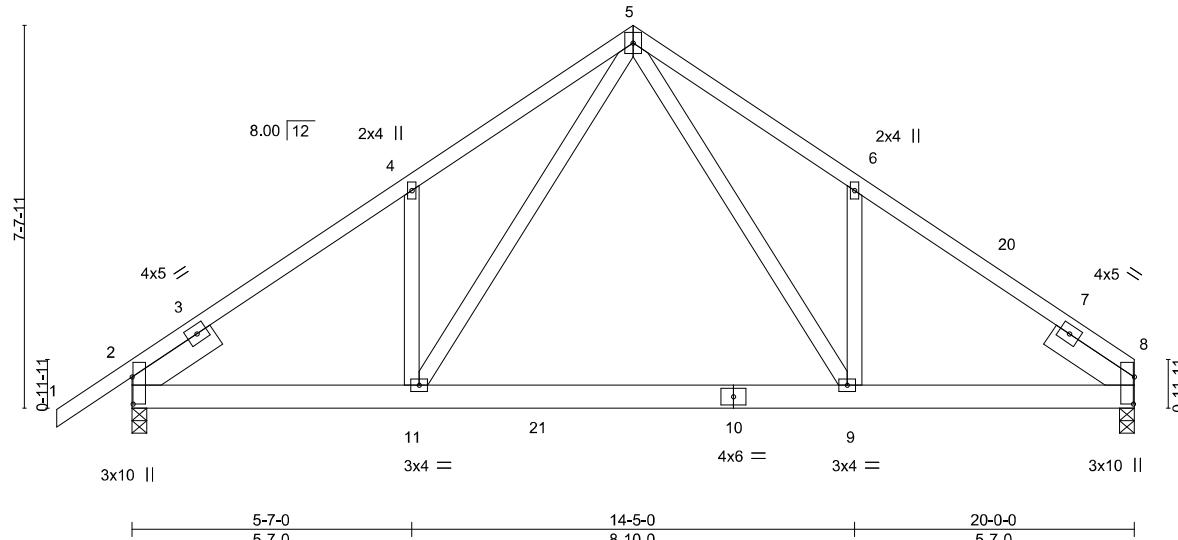


Plate Offsets (X,Y) -- [2:0-6-7,0-0-4], [8:0-6-7,0-0-4]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.63	Vert(LL)	-0.16	9-11	>999	240	
TCDL 10.0	Lumber DOL	1.25	BC 0.83	Vert(CT)	-0.32	9-11	>748	180	
BCLL 0.0 *	Rep Stress Incr	NO	WB 0.46	Horz(CT)	0.03	8	n/a	n/a	
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS					Weight: 131 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x6 SP No.2
WEBS 2x4 SP No.3
SLIDER Left 2x6 SP No.2 1-11-8, Right 2x6 SP No.2 1-11-8

BRACING-

TOP CHORD Structural wood sheathing directly applied or 3-9-5 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 8=0-3-8, 2=0-3-8

Max Horz 2=181(LC 9)
Max Uplift 8=-259(LC 13), 2=-297(LC 12)
Max Grav 8=1178(LC 20), 2=1267(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-1636/369, 4-5=-1651/515, 5-6=-1665/521, 6-8=-1648/386

BOT CHORD 2-11=-325/1395, 9-11=-152/900, 8-9=-236/1302

WEBS 5-9=-341/971, 5-11=-333/951

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl.,
GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 -1-6-0 to 1-6-0, Zone1 1-6-0 to 10-0-0, Zone2 10-0-0 to 14-5-0,
Zone1 14-5-0 to 20-0-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific
to the use of this truss component.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb)
8=259, 2=297.

7) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

Vert: 1-5=-60, 5-8=-60, 11-16=-20, 9-11=-80(F=-60), 9-12=-20

This item has been
digitally signed and
sealed by Velez, Joaquin, PE
on the date indicated here.
Printed copies of this
document are not considered
signed and sealed and the
signature must be verified
on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

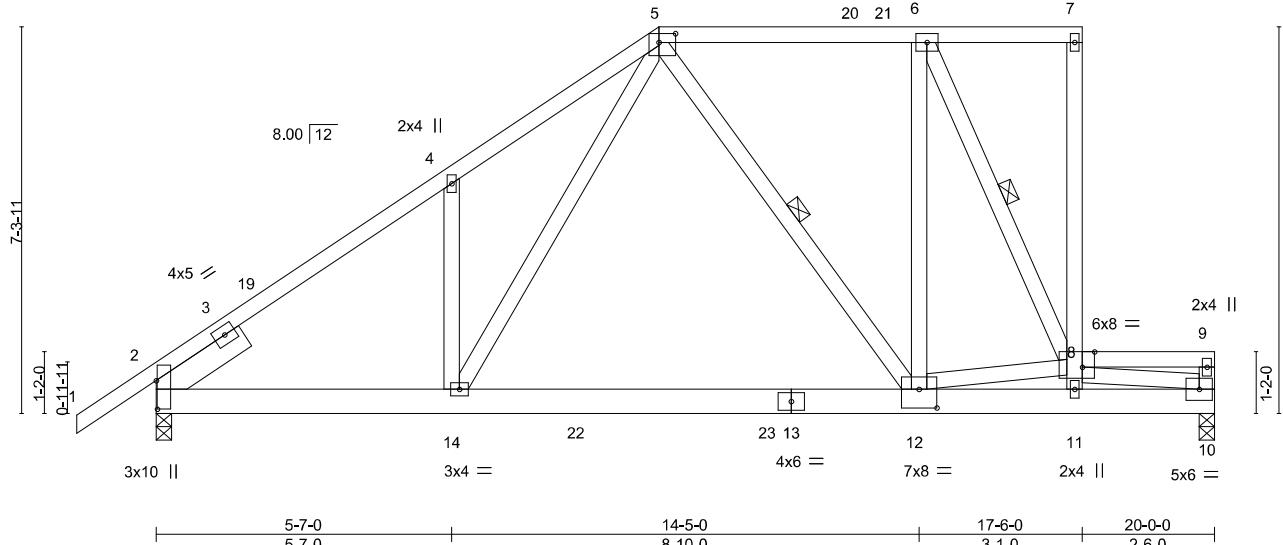
 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.ipinst.org)
and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com

Job 4789421	Truss T04	Truss Type Roof Special	Qty 1	Ply 1	MILLER RES.	T38148105
----------------	--------------	----------------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,


8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:27 2025 Page 1

ID:2eRY39KFhR2benj7cX?4RUzckGi-El9fQFSJ??lcE_mpC7TWfcK1pnZ4DMduv?zjX4yqVp6

-1-6-0 5-7-0 9-6-0 14-5-0 17-6-0 20-0-0
1-6-0 5-7-0 3-11-0 4-11-0 3-1-0 2-6-0

5x6 = 4x5 = 2x4 ||

Scale = 1:43.6

Job 4789421	Truss T05	Truss Type Roof Special	Qty 1	Ply 1	MILLER RES.	T38148106
----------------	--------------	----------------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055, 8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:27 2025 Page 1 ID:2eRY39KFhR2benj7cX?4RUzckGi-E19fQFSJ??lC_mpC7TWfcK_0ngsDI3uv?zjX4yqVp6

-1-6-0 5-7-0 11-6-0 14-5-0 17-6-0 20-0-0
1-6-0 5-7-0 5-11-0 2-11-0 3-1-0 2-6-0

5x6 = 3x8 = 2x4 //

Scale = 1:51.5

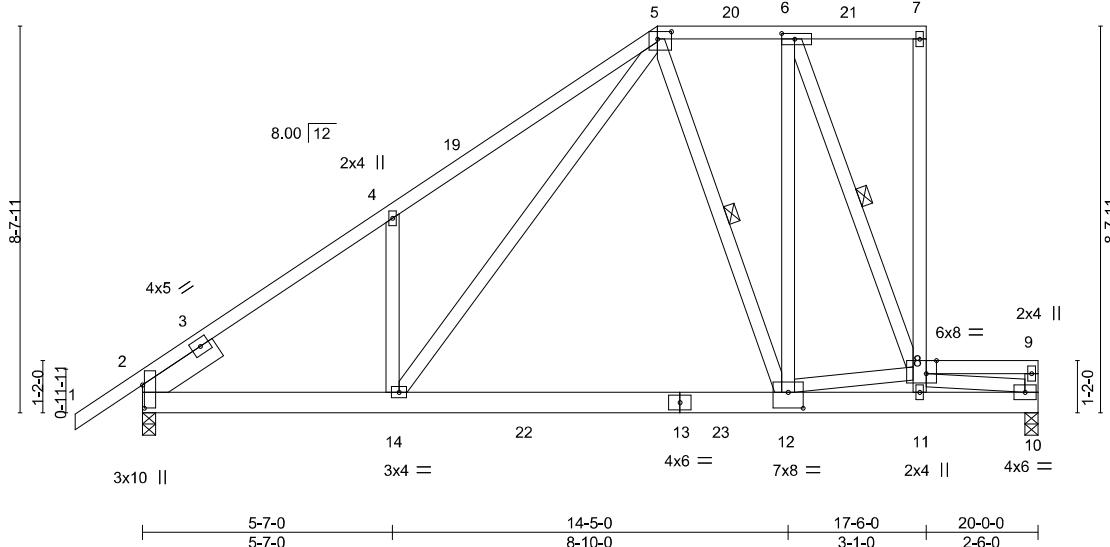


Plate Offsets (X,Y) - [2:0-6-3,0-0-8], [5:0-3-12,0-2-0], [6:0-3-8,0-1-8], [8:0-2-12,Edge], [12:0-4-0,0-4-4]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.77	Vert(LL)	-0.15	12-14	>999	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.57	Vert(CT)	-0.31	12-14	>779		
BCLL 0.0 *	Rep Stress Incr	NO	WB 0.81	Horz(CT)	0.02	10	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS					Weight: 163 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x6 SP No.2 *Except*
10-13: 2x6 SP 2400F 2.0E or 2x6 SP M 26
WEBS 2x4 SP No.3
SLIDER Left 2x6 SP No.2 1-11-8

BRACING-

TOP CHORD Structural wood sheathing directly applied or 3-10-2 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing, Except: 8-9-0 oc bracing: 2-14.
WEBS 1 Row at midpt 5-12, 6-8

REACTIONS. (size) 10=0-3-8, 2=0-3-8

Max Horz 2=660(LC 12)
Max Uplift 10=-350(LC 12), 2=-187(LC 12)
Max Grav 10=1160(LC 19), 2=1248(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-1584/262, 4-5=-1653/407, 5-6=-672/171, 8-11=-728/207, 8-9=-278/91
BOT CHORD 2-14=-707/1503, 12-14=-465/896, 11-12=-707/2231, 10-11=-828/2437
WEBS 4-14=-336/286, 5-14=-415/1044, 5-12=-226/256, 6-12=-417/1682, 6-8=-1887/534,
8-12=-1626/481, 8-10=-2265/774

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 1-6-0 to 1-6-0, Zone1 1-6-0 to 11-6-0, Zone2 11-6-0 to 15-8-14, Zone1 15-8-14 to 19-10-4 zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 10-350, 2=187.
- 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.ipinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com

Job 4789421	Truss T06	Truss Type Roof Special	Qty 1	Ply 1	MILLER RES.	T38148107
----------------	--------------	----------------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:28 2025 Page 1

ID:2eRY39KFhR2benj7cX?4UzckGi-iUi1dbSxmItTs8K0mr_IBpsBzWwylo27fiG3WYqVp5

-1-6-0 5-7-0 10-0-0 13-6-0 17-6-0 20-0-0
1-6-0 5-7-0 4-5-0 3-6-0 4-0-0 2-6-0

Scale = 1:59.0

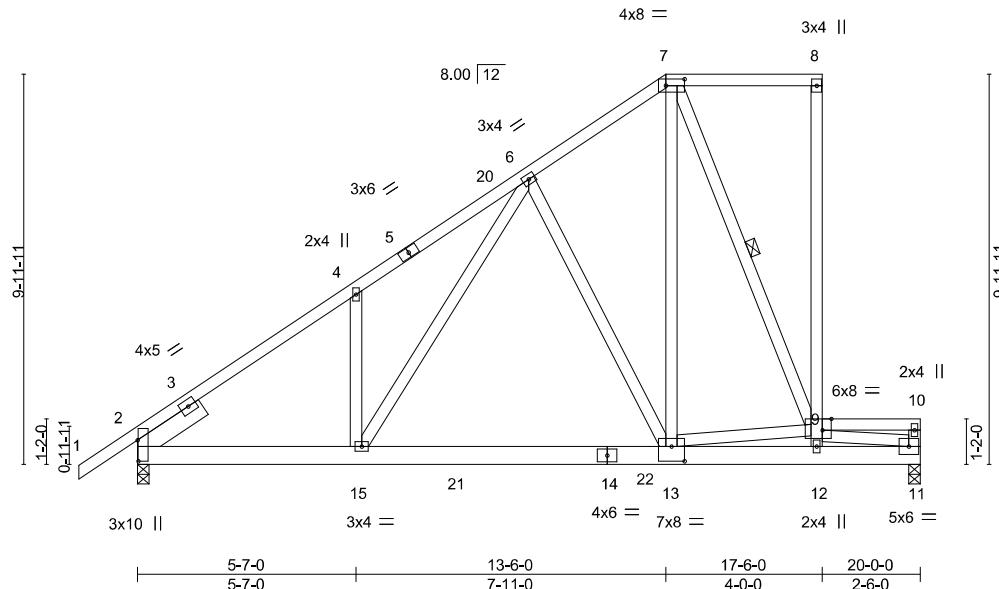


Plate Offsets (X,Y) - [2:0-6-7,0-0-4], [7:0-5-12,0-2-0], [9:0-2-12,Edge], [13:0-4-0,0-4-8]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.65	Vert(LL)	-0.14	13-15	>999	240	
TCDL 10.0	Lumber DOL	1.25	BC 0.93	Vert(CT)	-0.28	13-15	>860	180	
BCLL 0.0 *	Rep Stress Incr	NO	WB 0.77	Horz(CT)	0.03	11	n/a	n/a	
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS					Weight: 168 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x6 SP No.2
WEBS 2x4 SP No.3 *Except*
8-12: 2x4 SP No.2
SLIDER Left 2x6 SP No.2 1-11-8

REACTIONS.

(size) 11=0-3-8, 2=0-3-8
Max Horz 2=771(LC 12)
Max Uplift 11=411(LC 12), 2=-146(LC 12)
Max Grav 11=1174(LC 19), 2=1231(LC 19)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
TOP CHORD 2-4=-1536/205, 4-6=-1553/304, 6-7=-753/152, 9-12=-450/161, 9-10=-284/104
BOT CHORD 2-15=-755/1500, 13-15=-576/1049, 12-13=-757/2355, 11-12=-1017/2627
WEBS 6-15=-342/866, 6-13=-613/305, 7-13=-415/1708, 7-9=-1634/545, 9-13=-1741/516,
9-11=-2458/958

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 1-6-0 to 1-6-0, Zone1 1-6-0 to 13-6-0, Zone3 13-6-0 to 17-4-4, Zone1 17-4-4 to 19-10-4 zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 11=411, 2=146.
- 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25
Uniform Loads (plf)
Vert: 1-7=-60, 7-8=-60, 9-10=-60, 15-16=-20, 13-15=-80(F=-60), 11-13=-20

This item has been
digitally signed and
sealed by Velez, Joaquin, PE
on the date indicated here.
Printed copies of this
document are not considered
signed and sealed and the
signature must be verified
on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.ipinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / Mitek-US.com

Job 4789421	Truss T07	Truss Type Roof Special	Qty 1	Ply 1	MILLER RES.	T38148108
----------------	--------------	----------------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:28 2025 Page 1

ID:2eRY39KFhR2benj7cX?4RUzckGi-iU1dbSxmlTs8K0mr_lBps8BByOyiC27fiG3WyqVp5

-1-6-0 5-7-0 10-0-0 15-6-0 17-6-0 20-0-0
1-6-0 5-7-0 4-5-0 5-6-0 2-0-0 2-6-0

Scale = 1:66.0

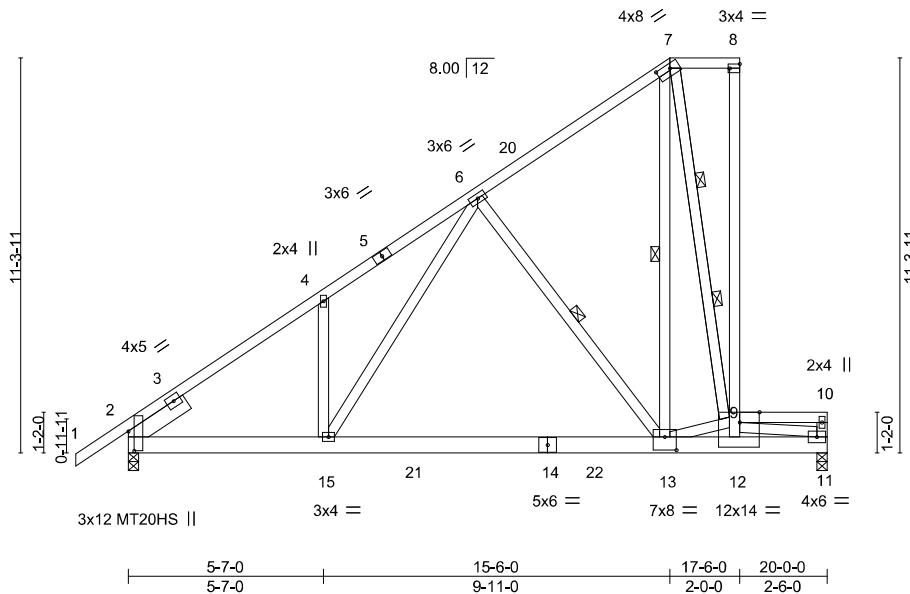


Plate Offsets (X,Y)-- [2:0-6-12,0-2-0], [7:0-4-12,0-1-8], [8:Edge,0-1-8], [12:0-6-12,Edge], [13:0-4-0,0-4-8]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	I/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.87	Vert(LL)	-0.24	13-15	>999	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.81	Vert(CT)	-0.47	13-15	>505	MT20HS	187/143
BCLL 0.0 *	Rep Stress Incr	NO	WB 1.00	Horz(CT)	0.02	11	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS					Weight: 172 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x6 SP No.2 *Except*
11-14: 2x6 SP 2400F 2.0E or 2x6 SP M 26
WEBS 2x4 SP No.3 *Except*
8-12,7-9: 2x4 SP No.2
SLIDER Left 2x6 SP No.2 1-11-8

REACTIONS. (size) 11=0-3-8, 2=0-3-8

Max Horz 2=881(LC 12)
Max Uplift 11=-516(LC 12), 2=-106(LC 12)
Max Grav 11=1340(LC 19), 2=1262(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-1651/170, 4-6=-1631/259, 6-7=-683/86, 9-12=-1098/269, 9-10=-323/134
BOT CHORD 2-15=-821/1634, 13-15=-636/1116, 12-13=-774/2439, 11-12=-1230/2853
WEBS 6-15=-355/993, 6-13=-738/361, 7-13=-631/2712, 7-9=-2714/870, 9-13=-1980/620,
9-11=-2654/1150

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 -1-6-0 to 1-6-0, Zone1 1-6-0 to 15-6-0, Zone3 15-6-0 to 17-4-4, Zone1 17-4-4 to 19-10-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are MT20 plates unless otherwise indicated.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 11=516, 2=106.
- 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) per Standard

⚠ WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.ipinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

This item has been
digitally signed and
sealed by Velez, Joaquin, PE
on the date indicated here.
Printed copies of this
document are not considered
signed and sealed and the
signature must be verified
on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

Job 4789421	Truss T07	Truss Type Roof Special	Qty 1	Ply 1	MILLER RES.	T38148108
----------------	--------------	----------------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:28 2025 Page 2
ID:2eRY39KFhR2benj7cX?4RUzckGi-iUl1dbSxmlTs8K0mr_lBps8BByOyiC27fiG3WyqVp5

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25
Uniform Loads (plf)
Vert: 1-7=-60, 7-8=-60, 9-10=-60, 15-16=-20, 13-15=-80(F=-60), 11-13=-20

This item has been
digitally signed and
sealed by Velez, Joaquin, PE
on the date indicated here.
Printed copies of this
document are not considered
signed and sealed and the
signature must be verified
on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

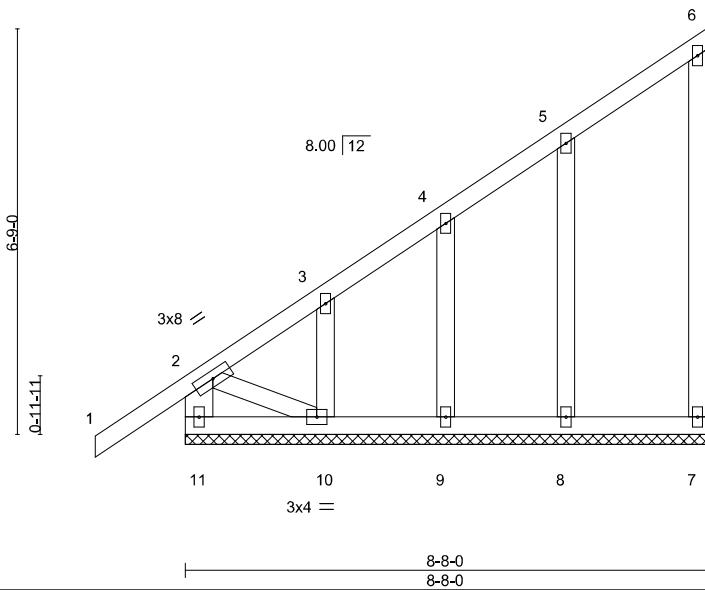
August 7,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpiinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / Mitek-US.com

Job 4789421	Truss T07G	Truss Type Monopitch Supported Gable	Qty 1	Ply 1	MILLER RES.	T38148109
----------------	---------------	---	----------	----------	-------------	-----------


Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:29 2025 Page 1

ID:2eRY39KFhR2benj7cX?4RUzckGi-AgGPrxTZXc?KThvCKYV_k1PSKaUahMzBMJSqczyqVp4

-1-6-0 8-8-0
1-6-0 8-8-0

Scale = 1:38.4

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.27	Vert(LL)	-0.02	1	n/r	120	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.04	Vert(CT)	-0.01	1	n/r	120		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.14	Horz(CT)	-0.00	7	n/a	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-S						Weight: 59 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3 *Except*
2-11: 2x6 SP No.2
OTHERS 2x4 SP No.3

REACTIONS.

All bearings 8-8-0.
(lb) - Max Horz 11=252(LC 12)
Max Uplift All uplift 100 lb or less at joint(s) 7, 11, 9, 8 except 10=-148(LC 12)
Max Grav All reactions 250 lb or less at joint(s) 7, 11, 9, 10, 8

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
TOP CHORD 2-3=-337/166, 3-4=-272/125
BOT CHORD 10-11=-440/173
WEBS 2-10=-184/469

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCPi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 8) Gable studs spaced at 2-0-0 oc.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 11, 9, 8 except (jt=lb) 10=148.

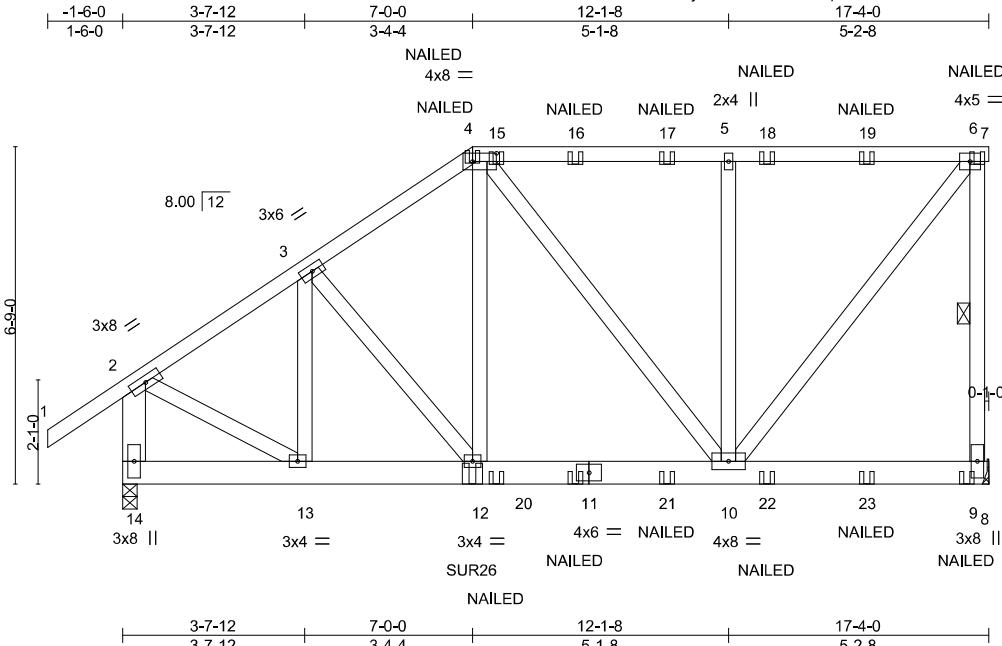
This item has been
digitally signed and
sealed by Velez, Joaquin, PE
on the date indicated here.
Printed copies of this
document are not considered
signed and sealed and the
signature must be verified
on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

⚠ WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpi.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)


MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com

Job 4789421	Truss T08	Truss Type Half Hip Girder	Qty 1	Ply 1	MILLER RES.	T38148110
----------------	--------------	-------------------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:30 2025 Page 1

ID:2eRY39KFhR2benj7cX?4RUzckGi-ftqn2HUBlw7B5RUouG0DGEyaG_KTQcJLbzBN8PyqVp3

Job 4789421	Truss T08	Truss Type Half Hip Girder	Qty 1	Ply 1	MILLER RES.	T38148110
----------------	--------------	-------------------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055, 8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:30 2025 Page 2
ID:2eRY39KFhR2benj7cX?4RUzckGi-ftqn2HUBLw7B5RUOUg0DGEyaG_kTQcJLbzBN8PyqVp3

LOAD CASE(S) Standard

Uniform Loads (plf)

Vert: 1-2=-60, 2-4=-60, 4-6=-60, 6-7=-20, 8-14=-20

Concentrated Loads (lb)

Vert: 4=-70(B) 6=-47(B) 9=-157(B) 11=-147(B) 12=-235(B) 15=-28(B) 16=-28(B) 17=-28(B) 18=-26(B) 19=-26(B) 20=-147(B) 21=-147(B) 22=-151(B) 23=-151(B)

This item has been
digitally signed and
sealed by Velez, Joaquin, PE
on the date indicated here.
Printed copies of this
document are not considered
signed and sealed and the
signature must be verified
on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

⚠ WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.ipinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MITek-US.com

Job 4789421	Truss T09	Truss Type Half Hip	Qty 1	Ply 1	MILLER RES.	T38148111
----------------	--------------	------------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055, 8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:30 2025 Page 1 ID:2eRY39KFhR2benj7cX?4RUzckGi-ftqn2HUBLw7B5RUOUg0DGEya4_eJQkNLbzBN8PyqVp3

-1-6-0 4-6-0 9-0-0 13-1-8 17-4-0
1-6-0 4-6-0 4-6-0 4-1-8 4-2-8

Scale = 1:47.3

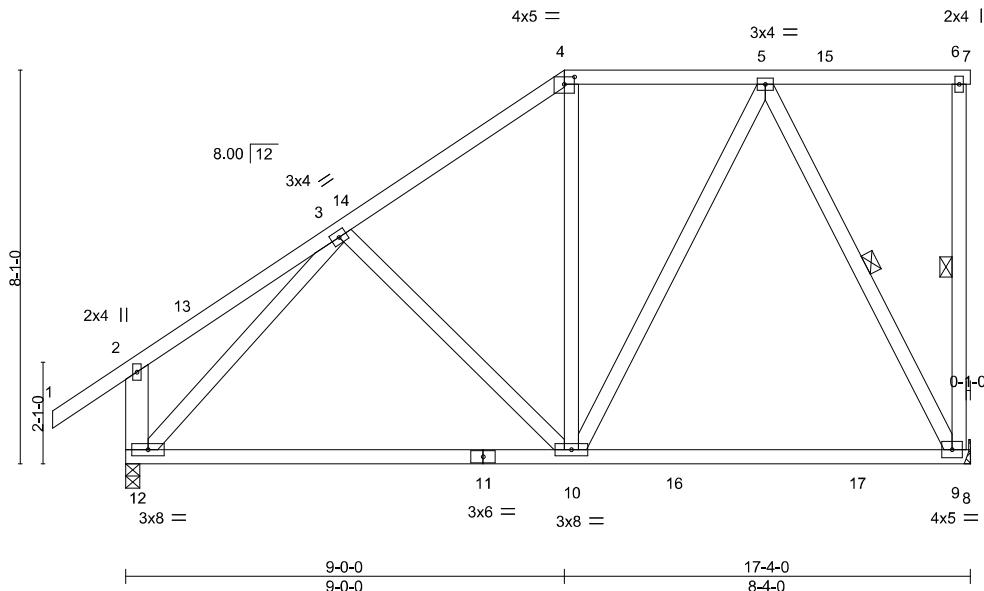


Plate Offsets (X,Y) - [4:0-2-8,0-1-13]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.46	Vert(LL)	-0.17	9-10	>999	240	
TCDL 10.0	Lumber DOL	1.25	BC 0.78	Vert(CT)	-0.26	10-12	>767	180	
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.45	Horz(CT)	0.01	9	n/a	n/a	
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS					Weight: 127 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3 *Except*
2-12: 2x6 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.
WEBS 1 Row at midpt 6-9, 5-9

REACTIONS.

(size) 9=Mechanical, 12=0-3-8
Max Horz 12=240(LC 12)
Max Uplift 9=211(LC 9), 12=150(LC 12)
Max Grav 9=769(LC 2), 12=840(LC 19)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
TOP CHORD 3-4=-598/111, 4-5=-440/136, 2-12=-287/145
BOT CHORD 10-12=-269/521, 9-10=-90/284
WEBS 5-10=-119/401, 5-9=-594/199, 3-12=-610/43

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCPi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 -1-6-0 to 1-6-0, Zone1 1-6-0 to 9-0-0, Zone2 9-0-0 to 13-1-8, Zone1 13-1-8 to 17-4-0 zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 9=211, 12=150.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.ipinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.432.1200 / MiTek-US.com

Job 4789421	Truss T10	Truss Type Half Hip	Qty 1	Ply 1	MILLER RES.	T38148112
----------------	--------------	------------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:31 2025 Page 1

ID:2eRY39KFhR2benj7cX?4RUzckGi-73O9GdVp3DF2jb3bRzXSpRUKDO4U9CRUqdxwgryqVp2

-1-6-0 | 5-8-0 | 11-0-0 | 17-4-0
1-6-0 | 5-8-0 | 5-4-0 | 6-4-0

4x8 = 2x4 ||

Scale = 1:54.9

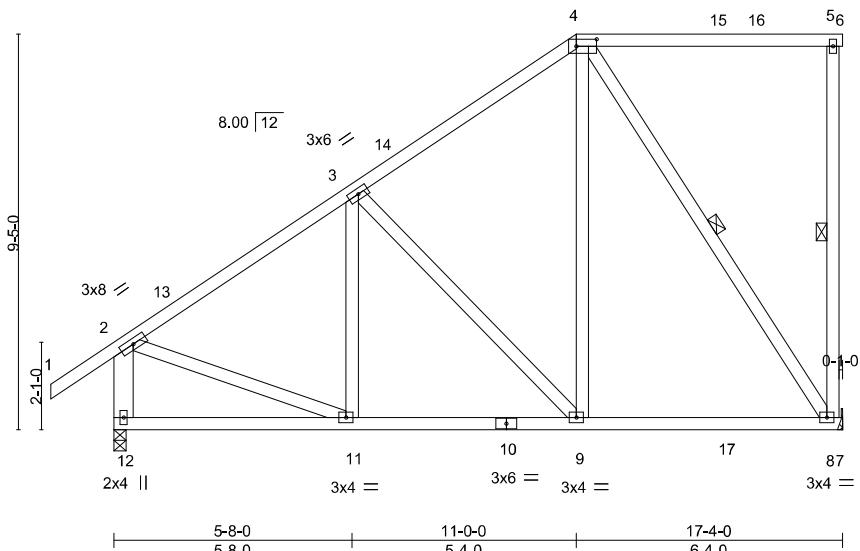


Plate Offsets (X,Y) - [4:0-5-12,0-2-0]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.50	Vert(LL)	-0.06	8-9	>999	240	
TCDL 10.0	Lumber DOL	1.25	BC 0.40	Vert(CT)	-0.10	8-9	>999	180	
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.40	Horz(CT)	0.01	8	n/a	n/a	
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS					Weight: 131 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3 *Except*
2-12: 2x6 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.
WEBS 1 Row at midpt 5-8, 4-8

REACTIONS. (size) 8=Mechanical, 12=0-3-8

Max Horz 12=291(LC 12)
Max Uplift 8=-212(LC 12), 12=-138(LC 12)
Max Grav 8=764(LC 2), 12=859(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-720/96, 3-4=-485/91, 2-12=-769/153
BOT CHORD 11-12=-320/172, 9-11=-281/594, 8-9=-128/359
WEBS 3-9=-347/220, 4-9=-118/508, 4-8=-629/229, 2-11=0/493

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 -1-6-0 to 1-6-0, Zone1 1-6-0 to 11-0-0, Zone2 11-0-0 to 15-2-15, Zone1 15-2-15 to 17-4-0 zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8=212, 12=138.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

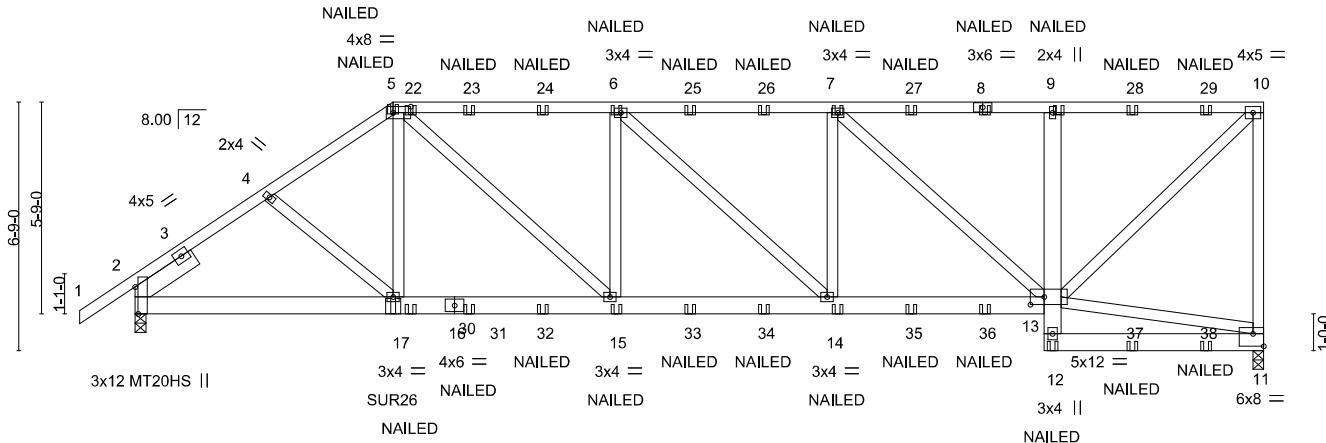
Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.ipinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com


Job 4789421	Truss T11	Truss Type Half Hip Girder	Qty 1	Ply 2	MILLER RES.	T38148113
----------------	--------------	-------------------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:33 2025 Page 1

-1-6-0 3-7-12 7-0-0 13-0-6 18-11-1 24-8-0 30-7-8
1-6-0 3-7-12 3-4-4 6-0-6 5-10-11 5-8-15 5-11-8

Scale = 1:62.6

7-0-0 13-0-6 18-11-1 24-8-0 30-7-8
7-0-0 6-0-6 5-10-11 5-8-15 5-11-8

Plate Offsets (X,Y) - [2:0-8-13,Edge], [5:0-5-12,0-2-0], [11:Edge,0-4-0], [13:0-4-8,0-2-8]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.70	Vert(LL)	0.12	15-17	>999	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.59	Vert(CT)	-0.18	15-17	>999	MT20HS	187/143
BCLL 0.0 *	Rep Stress Incr	NO	WB 0.58	Horz(CT)	0.06	11	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS					Weight: 461 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x6 SP No.2
WEBS 2x4 SP No.3
SLIDER Left 2x6 SP No.2 1-11-8

BRACING-

TOP CHORD Structural wood sheathing directly applied or 5-4-6 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size)

11=0-3-8, 2=0-3-8
Max Horz 2=214(LC 8)
Max Uplift 11=1341(LC 5), 2=1153(LC 8)
Max Grav 11=2534(LC 1), 2=2403(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-3217/1635, 4-5=3194/1665, 5-6=-3713/1937, 6-7=-3533/1823, 7-9=-2257/1184,
9-10=-2220/1165, 10-11=-2292/1207
BOT CHORD 2-17=-1404/2500, 15-17=-1447/2657, 14-15=-1937/3713, 13-14=-1823/3533,
9-13=-466/269
WEBS 4-17=-282/371, 5-17=-211/479, 5-15=-750/1446, 6-15=-339/212, 6-14=-261/191,
7-14=-364/756, 7-13=-1717/882, 10-13=-1604/3056

NOTES-

- 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:
Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc.
Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.
Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCp=0.18; MWFRS (envelope) gable end zone; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 5) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 6) Provide adequate drainage to prevent water ponding.
- 7) All plates are MT20 plates unless otherwise indicated.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 11=1341, 2=1153.
- 11) Use Simpson Strong-Tie SUR26 (6-10d Girder, 6-10dx1 1/2 Truss) or equivalent at 7-0-0 from the left end to connect truss(es) to back face of bottom chord, skewed 45.0 deg. to the right, sloping 0.0 deg. down.
- 12) Fill all nail holes where hanger is in contact with lumber.

Detail Note 55 pages 3-10d (0.148"x3") or 2-12d (0.148"x3.25") toe-nails per NDS guidelines

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord member only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DBS-22** available from Truss Plate Institute (www.ipinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7, 2025

MiTek
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.432.1200 / MiTek-US.com

Job 4789421	Truss T11	Truss Type Half Hip Girder	Qty 1	Ply 2	MILLER RES.	T38148113
----------------	--------------	-------------------------------	----------	-----------------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055, 8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:33 2025 Page 2
ID:2eRY39KFhR2benj7cX?4RUzckGl-3SWwgJW3arVmyvDzZOawusZ0WCi_d32nHxQ1kyqVp0

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

Vert: 1-5=-60, 5-10=-60, 13-18=-20, 11-12=-20

Concentrated Loads (lb)

Vert: 5=-62(B) 8=-31(B) 9=-28(B) 17=-247(B) 15=-144(B) 6=-31(B) 14=-144(B) 7=-31(B) 13=-147(B) 22=-31(B) 23=-31(B) 24=-31(B) 25=-31(B) 26=-31(B)
27=-31(B) 28=-28(B) 29=-28(B) 30=-144(B) 31=-144(B) 32=-144(B) 33=-144(B) 34=-144(B) 35=-144(B) 36=-144(B) 37=-147(B) 38=-147(B)

This item has been
digitally signed and
sealed by Velez, Joaquin, PE
on the date indicated here.
Printed copies of this
document are not considered
signed and sealed and the
signature must be verified
on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpi.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / Mitek-US.com

Job 4789421	Truss T12	Truss Type Half Hip	Qty 1	Ply 1	MILLER RES.	T38148114
----------------	--------------	------------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:33 2025 Page 1
ID:2eRY39KFhR2benj7cX?4RUzckGi-3SWwgJW3arVmyvDzZOawusZqqCdld4PnHxQ1kyqVp0

-1-6-0 4-7-0 9-0-0 16-11-12 24-8-0 30-7-8
1-6-0 4-7-0 4-5-0 7-11-12 7-8-4 5-11-8

Scale = 1:54.5

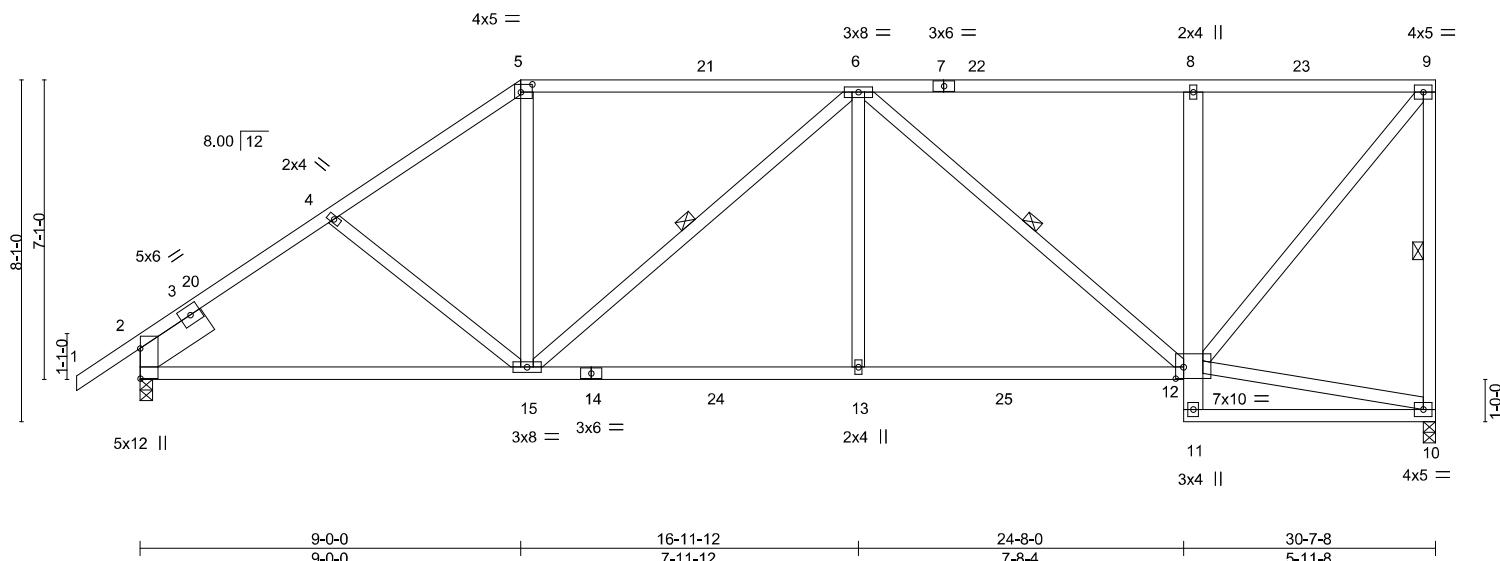


Plate Offsets (X,Y) - [2:0-8-9,0-0-1], [5:0-3-4,0-2-4], [12:0-2-4,0-3-4]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.94	Vert(LL)	-0.16	12-13	>999	240	
TCDL 10.0	Lumber DOL	1.25	BC 0.95	Vert(CT)	-0.30	12-13	>999	180	
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.56	Horz(CT)	0.08	10	n/a	n/a	
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS					Weight: 209 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2 *Except*
8-11: 2x6 SP No.2
WEBS 2x4 SP No.3
SLIDER Left 2x8 SP 2400F 2.0E 1-11-8

REACTIONS. (size) 10=0-3-8, 2=0-3-8

Max Horz 2=266(LC 12)
Max Uplift 10=-363(LC 9), 2=-346(LC 12)
Max Grav 10=1350(LC 2), 2=1417(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-1705/432, 4-5=-1595/411, 5-6=-1314/396, 6-8=-964/260, 8-9=-942/254,

9-10=-1249/373

BOT CHORD 2-15=-504/1321, 13-15=-419/1611, 12-13=-419/1611, 8-12=-428/220

WEBS 5-15=-46/541, 6-15=-455/200, 6-13=0/454, 6-12=-853/278, 9-12=-397/1470

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 -1-6-0 to 1-6-12, Zone1 1-6-12 to 9-0-0, Zone2 9-0-0 to 13-4-0, Zone1 13-4-0 to 30-5-12 zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

4) Provide adequate drainage to prevent water ponding.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb)
10=363, 2=346.

This item has been
digitally signed and
sealed by Velez, Joaquin, PE
on the date indicated here.
Printed copies of this
document are not considered
signed and sealed and the
signature must be verified
on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.ipinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / Mitek-US.com

Job 4789421	Truss T13	Truss Type Half Hip	Qty 1	Ply 1	MILLER RES.	T38148115
----------------	--------------	------------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:34 2025 Page 1
ID:2eRY39KFhR2benj7cX?4RUzckGi-Xe4lufXiL8dda3oA7559R467sb?7MV6wWb9bHAyqVp?

-1-6-0 5-7-0 11-0-0 17-11-12 24-8-0 30-7-8
1-6-0 5-7-0 5-5-0 6-11-12 6-8-4 5-11-8

Scale = 1:57.5

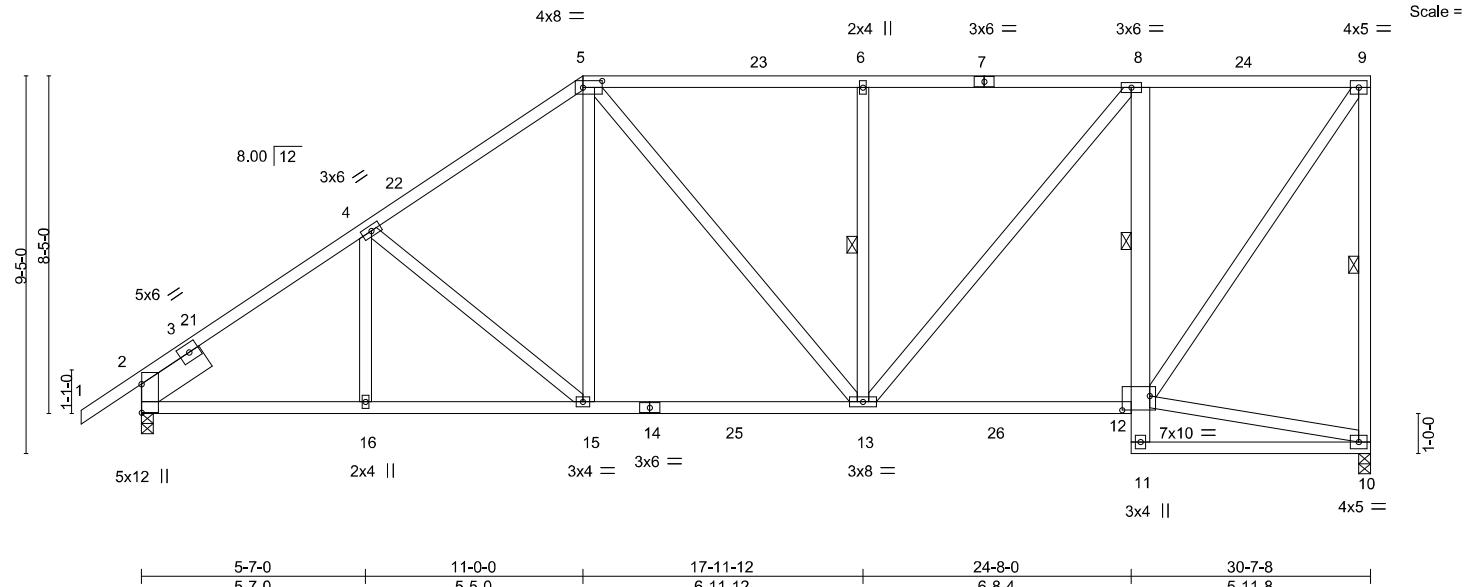


Plate Offsets (X,Y) - [2:0-8-9,0-0-1], [5:0-5-12,0-2-0], [12:0-8-4,0-4-4]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.99	Vert(LL)	-0.13	12-13	>999	240	
TCDL 10.0	Lumber DOL	1.25	BC 0.79	Vert(CT)	-0.23	12-13	>999	180	
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.66	Horz(CT)	0.06	10	n/a	n/a	
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS					Weight: 229 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2 *Except*
2-14: 2x4 SP No.1, 8-11: 2x6 SP No.2
WEBS 2x4 SP No.3
SLIDER Left 2x8 SP 2400F 2.0E 1-11-8

REACTIONS.

(size) 10=0-3-8, 2=0-3-8
Max Horz 2=317(LC 12)
Max Uplift 10=-359(LC 9), 2=-341(LC 12)
Max Grav 10=1358(LC 2), 2=1416(LC 2)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
TOP CHORD 2-4=-1724/408, 4-5=-1501/400, 5-6=-1286/355, 6-8=-1286/355, 8-9=-810/215,
9-10=-1258/372
BOT CHORD 2-16=-533/1348, 15-16=-533/1348, 13-15=-390/1213, 12-13=-218/828, 8-12=-886/338
WEBS 4-15=-295/186, 5-15=-82/474, 6-13=-450/232, 8-13=-262/714, 9-12=-371/1397

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 -1-6-0 to 1-6-12, Zone1 1-6-12 to 11-0-0, Zone2 11-0-0 to 15-4-0, Zone1 15-4-0 to 30-5-12 zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb). 10=-359, 2=341.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

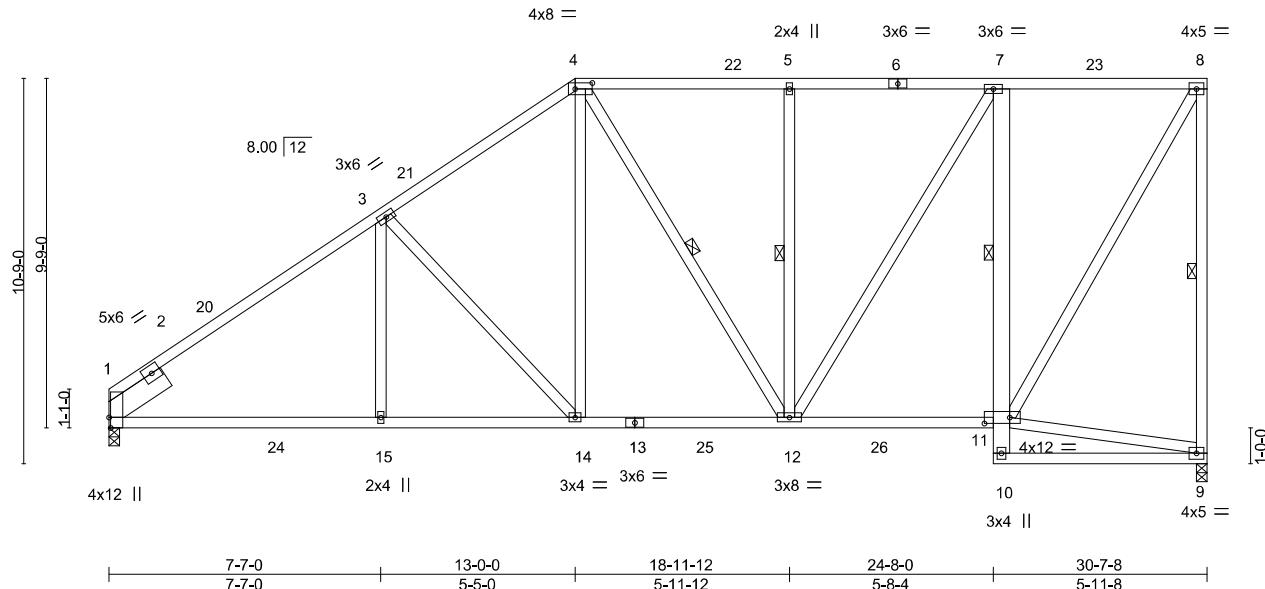
August 7,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.ipinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / Mitek-US.com

Job 4789421	Truss T14	Truss Type Half Hip	Qty 1	Ply 1	MILLER RES.	T38148116
----------------	--------------	------------------------	----------	----------	-------------	-----------


Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:35 2025 Page 1

ID:2eRY39KFhR2benj7cX?4RUzckGl?qdq5_YK6SIUBCNMgpcOzHfk8?IE5wH4kFv8pcyqVp_

7-7-0 13-0-0 18-11-12 24-8-0 30-7-8
7-7-0 5-5-0 5-11-12 5-8-4 5-11-8

Scale: 3/16"=1"

7-7-0 13-0-0 18-11-12 24-8-0 30-7-8
7-7-0 5-5-0 5-11-12 5-8-4 5-11-8

Plate Offsets (X,Y) -- [1:0-3-8,Edge], [4:0-5-12,0-2-0], [11:0-8-8,0-2-0]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.89	Vert(LL)	-0.10	12-14	>999	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.99	Vert(CT)	-0.18	14-15	>999		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.79	Horz(CT)	0.06	9	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS					Weight: 243 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 *Except*
1-4: 2x4 SP No.1
BOT CHORD 2x4 SP No.2 *Except*
7-10: 2x6 SP No.2
WEBS 2x4 SP No.3
SLIDER Left 2x8 SP 2400F 2.0E 1-11-8

REACTIONS.

(size) 1=0-3-8, 9=0-3-8
Max Horz 1=336(LC 12)
Max Uplift 1=293(LC 12), 9=355(LC 9)
Max Grav 1=1370(LC 2), 9=1369(LC 2)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
TOP CHORD 1-3=-1766/392, 3-4=-1406/386, 4-5=-1078/316, 5-7=-1078/316, 7-8=-687/179,
8-9=-1269/368
BOT CHORD 1-15=-545/1397, 14-15=-545/1397, 12-14=-371/1113, 11-12=-179/694, 7-11=-924/334
WEBS 3-15=0/263, 3-14=-515/256, 4-14=-147/604, 5-12=-379/196, 7-12=-272/725,
8-11=-348/1338

NOTES-

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 0-0-0 to 3-0-12, Zone1 3-0-12 to 13-0-0, Zone2 13-0-0 to 17-4-0, Zone1 17-4-0 to 30-5-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=293, 9=355.

This item has been
digitally signed and
sealed by Velez, Joaquin, PE
on the date indicated here.
Printed copies of this
document are not considered
signed and sealed and the
signature must be verified
on any electronic copies.

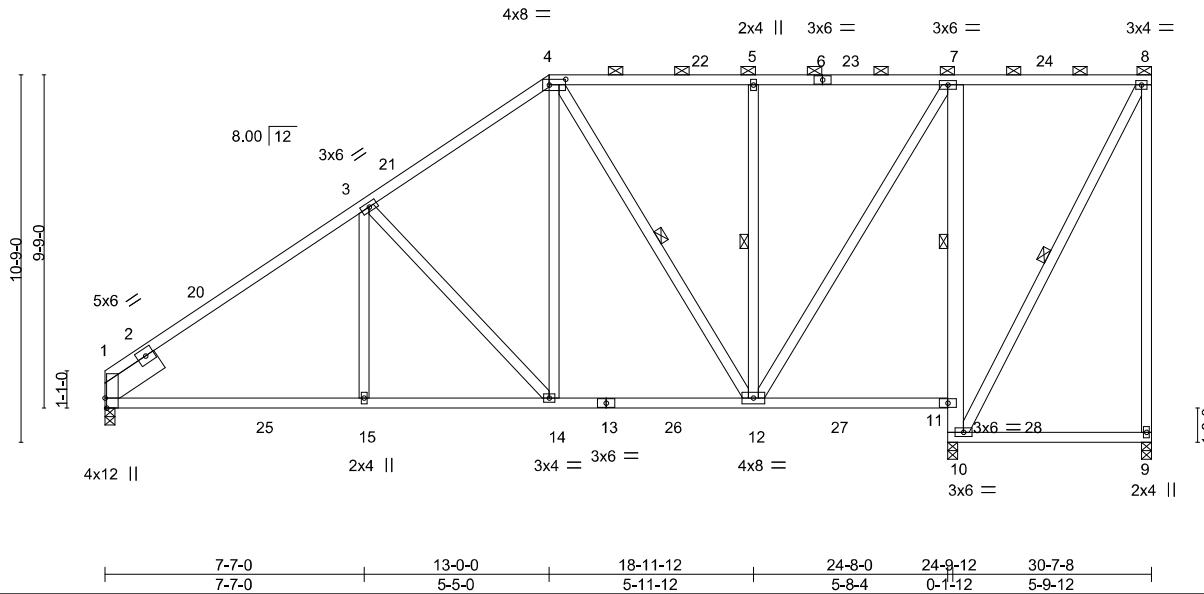
Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.ipinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com


Job 4789421	Truss T15	Truss Type Piggyback Base	Qty 1	Ply 1	MILLER RES.	T38148117
----------------	--------------	------------------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055, 8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:35 2025 Page 1

ID:2eRY39KFhR2benj7cX?4RUzckGi-?qd5_YK6SIUBCNMpcOzHNF?N_5wG4kFv8pcyqVp_

7-7-0 13-0-0 18-11-12 24-8-0 30-7-8
7-7-0 5-5-0 5-11-12 5-8-4 5-11-8

Scale = 1:67.5

7-7-0 13-0-0 18-11-12 24-8-0 24-9-12 30-7-8
7-7-0 5-5-0 5-11-12 5-8-4 0-1-12 5-9-12

Plate Offsets (X,Y) - [1:0-3-8,Edge], [4:0-5-12,0-2-0]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.69	Vert(LL)	-0.07	15-18	>999	240	
TCDL 10.0	Lumber DOL	1.25	BC 0.68	Vert(CT)	-0.13	15-18	>999	180	
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.79	Horz(CT)	-0.03	1	n/a	n/a	
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS					Weight: 236 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2 *Except*
7-10: 2x6 SP No.2
WEBS 2x4 SP No.3
SLIDER Left 2x8 SP 2400F 2.0E 1-11-8

BRACING-

TOP CHORD Structural wood sheathing directly applied or 3-5-10 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.); 4-8.
BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. Except:
1 Row at midpt 7-11
WEBS 1 Row at midpt 4-12, 5-12, 8-10

REACTIONS. (size) 1=0-3-8, 9=0-3-8, 10=0-3-8

Max Horz 1=336(LC 12)
Max Uplift 1=237(LC 12), 9=77(LC 13), 10=367(LC 9)
Max Grav 1=1104(LC 19), 9=59(LC 28), 10=1677(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-3=-1314/306, 3-4=-906/294, 4-5=-467/204, 5-7=-467/204
BOT CHORD 1-15=-476/1081, 14-15=-476/1081, 12-14=-293/700, 10-11=-1365/387, 7-11=-1231/403
WEBS 3-15=0/286, 3-14=-566/267, 4-14=-152/631, 4-12=-475/168, 5-12=-382/197,
7-12=-337/1082

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 0-0-0 to 3-0-12, Zone1 3-0-12 to 13-0-0, Zone2 13-0-0 to 17-4-0, Zone1 17-4-0 to 30-5-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9 except (jt=lb) 1=237, 10=367.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

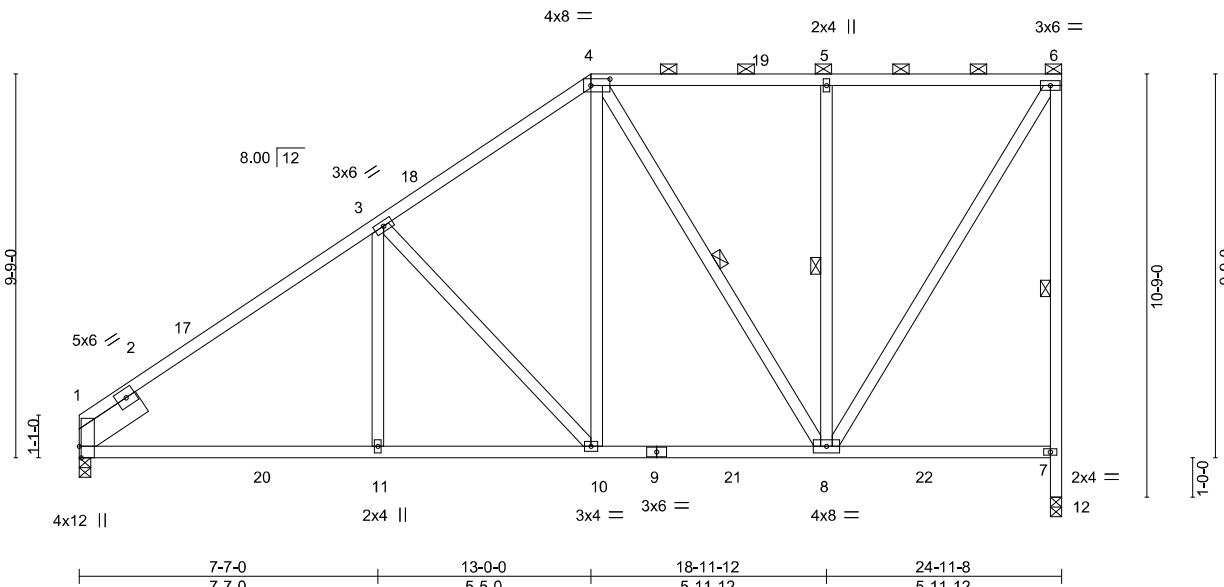
August 7,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.ipinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / Mitek-US.com

Job 4789421	Truss T16	Truss Type Piggyback Base	Qty 2	Ply 1	MILLER RES.	T38148118
----------------	--------------	------------------------------	----------	----------	-------------	-----------


Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:36 2025 Page 1

ID:2eRY39KFhR2benj7cX?4RUzckGi-T0B2JKZytmtLpMyYEW7dWVBxvPiQqOADzvehL3yqVoz

7-7-0 13-0-0 18-11-12 24-11-8
7-7-0 5-5-0 5-11-12 5-11-12

Scale = 1:58.6

7-7-0 13-0-0 18-11-12 24-11-8
7-7-0 5-5-0 5-11-12 5-11-12

Plate Offsets (X,Y) -- [1:0-3-8,Edge], [4:0-5-12,0-2-0]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	I/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.76	Vert(LL)	-0.07	11-15	>999	240	
TCDL 10.0	Lumber DOL	1.25	BC 0.73	Vert(CT)	-0.12	11-15	>999	180	
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.75	Horz(CT)	0.06	12	n/a	n/a	
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS					Weight: 178 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3 *Except*
6-12: 2x4 SP No.2
SLIDER Left 2x8 SP 2400F 2.0E 1-11-8

BRACING-

TOP CHORD Structural wood sheathing directly applied or 2-11-1 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 4-6.
BOT CHORD Rigid ceiling directly applied or 8-4-10 oc bracing.
WEBS 1 Row at midpt 6-12, 4-8, 5-8

REACTIONS.

(size) 1=0-3-8, 12=0-3-8
Max Horz 1=336(LC 12)
Max Uplift 1=220(LC 12), 12=284(LC 12)
Max Grav 1=1136(LC 19), 12=1144(LC 2)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-3=-1367/280, 3-4=-983/265, 4-5=-565/168, 5-6=-565/168, 7-12=-1144/284,

6-7=-1021/298

BOT CHORD 1-11=-454/1121, 10-11=-454/1121, 8-10=-270/757

WEBS 3-11=0/283, 3-10=-560/270, 4-10=-154/627, 4-8=-432/190, 5-8=-416/214,

6-8=-319/1058

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 0-0-0 to 3-0-0, Zone1 3-0-0 to 13-0-0, Zone2 13-0-0 to 17-2-15, Zone1 17-2-15 to 24-9-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Bearing at joint(s) 12 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=220, 12=284.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DS-B-22** available from Truss Plate Institute (www.ipinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / Mitek-US.com

Job 4789421	Truss T17	Truss Type Half Hip Girder	Qty 1	Ply 2	MILLER RES.	T38148119
----------------	--------------	-------------------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:37 2025 Page 1

ID:2eRY39KFhR2benj7cX?4RUzckGi-xDIRWgZae3?BRWWkoEes2iklPp7RZq4MCZOFlVqVoy

7-7-0 13-0-0 18-11-12 21-1-8 24-11-8
7-7-0 5-5-0 5-11-12 2-1-12 3-10-0

Scale = 1:61.7

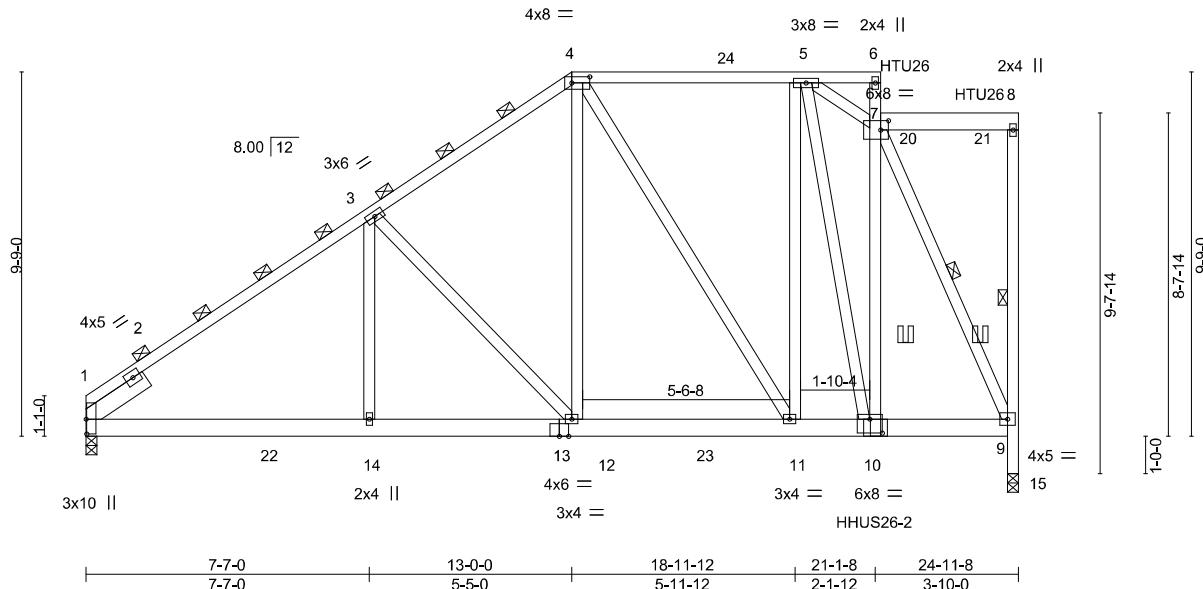


Plate Offsets (X,Y) - [1:0-4-12,0-0-4], [4:0-5-12,0-2-0], [7:0-2-8,0-3-0], [10:0-4-0,0-4-8]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	I/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.52	Vert(LL)	-0.05	12-14	>999	240	
TCDL 10.0	Lumber DOL	1.25	BC 0.43	Vert(CT)	-0.08	12-14	>999	180	
BCLL 0.0 *	Rep Stress Incr	NO	WB 0.71	Horz(CT)	0.05	15	n/a	n/a	
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS					Weight: 449 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 *Except*
7-8: 2x6 SP No.2
BOT CHORD 2x6 SP No.2
WEBS 2x4 SP No.3 *Except*
8-15: 2x4 SP No.2
SLIDER Left 2x6 SP No.2 1-11-8

REACTIONS.

(size) 1=0-3-8, 15=0-3-8
Max Horz 1=336(LC 8)
Max Uplift 1=410(LC 8), 15=1512(LC 8)
Max Grav 1=1671(LC 2), 15=4642(LC 2)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
TOP CHORD 1-3=-2239/579, 3-4=-1930/579, 9-15=-4642/1512, 8-9=-628/212, 4-5=-1697/555
BOT CHORD 1-14=-696/1779, 12-14=-696/1779, 11-12=-532/1546, 10-11=-554/1693, 9-10=-586/1785
WEBS 3-14=-45/264, 3-12=-583/320, 4-12=-176/659, 4-11=-592/507, 5-11=-288/603,
5-10=-685/795, 7-10=-747/2291, 7-9=-4305/1414, 5-7=-2159/709

NOTES-

- 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:
Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc, 2x6 - 2 rows staggered at 0-9-0 oc.
Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.
Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCpI=0.18; MWFRS (envelope) gable end zone; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 5) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 6) Provide adequate drainage to prevent water ponding.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Bearing at joint(s) 15 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=410, 15=1512.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 12) Use Simpson Strong-Tie HHUS26-2 (14-16d Girder, 6-16d Truss) or equivalent at 21-1-9 from the left end to connect truss(es) to continuous foundation.

BRACING-

TOP CHORD 2-0-0 oc purlins (6-0-0 max.), except end verticals, and sheathed or 6-0-0 oc purlins: 7-8, 4-6.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.
WEBS 1 Row at midpt 8-15, 7-9

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.ipinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

Job 4789421	Truss T17	Truss Type Half Hip Girder	Qty 1	Ply 2	MILLER RES.	T38148119
----------------	--------------	-------------------------------	----------	-----------------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:37 2025 Page 2
ID:2eRY39KFhR2benj7cX?4RUzckGi-xDIRWgZae3?BRWWkoEes2ikIp7RZq4MCZOFlVqVoy

NOTES-

- 13) Use Simpson Strong-Tie HTU26 (20-10d Girder, 11-10dx1 1/2 Truss) or equivalent spaced at 2-0-0 oc max. starting at 21-11-4 from the left end to 23-11-4 to connect truss(es) to back face of top chord.
- 14) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

Vert: 1-4=-60, 7-8=-60, 9-16=-20, 4-6=-60

Concentrated Loads (lb)

Vert: 10=-2921(F) 20=-504(B) 21=-508(B)

This item has been
digitally signed and
sealed by Velez, Joaquin, PE
on the date indicated here.
Printed copies of this
document are not considered
signed and sealed and the
signature must be verified
on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

⚠ WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.ipinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MITek-US.com

Job 4789421	Truss T18	Truss Type PIGGYBACK BASE	Qty 5	Ply 1	MILLER RES.	T38148120
----------------	--------------	------------------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055, 8.830 s Feb 18 2025 MiTek Industries, Inc. Thu Aug 7 11:21:15 2025 Page 1 ID:2eRY39KFhR2benj7cX?4RUzckGi-W_1pv6Sqlk?6QLJEKb9yOLvTxGYKeOlPnRWbJyqF12

7-7-0 15-0-0 21-0-0
7-7-0 7-5-0 6-0-0

Scale = 1:65.9

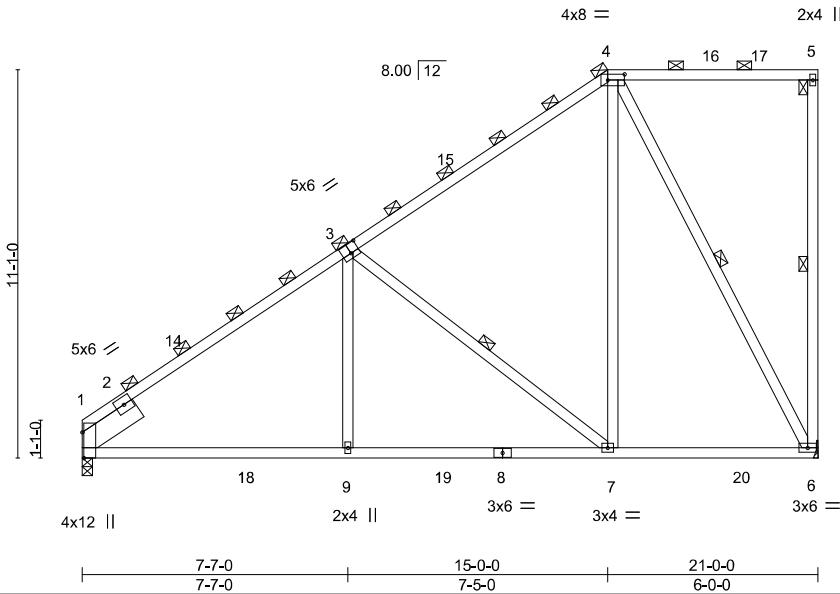


Plate Offsets (X,Y)-- [1:0-8-13,Edge], [3:0-3-0,0-3-4], [4:0-5-12,0-2-0]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.61	Vert(LL)	-0.08	7-9	>999	240	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.60	Vert(CT)	-0.16	7-9	>999	180		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.66	Horz(CT)	-0.04	1	n/a	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS						Weight: 144 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3
SLIDER Left 2x8 SP 2400F 2.0E 1-11-8

BRACING-

TOP CHORD 2-0-0 oc purlins (4-9-6 max.), except end verticals.
BOT CHORD Rigid ceiling directly applied or 8-8-11 oc bracing.
WEBS 1 Row at midpt 5-6, 3-7, 4-6

REACTIONS.

(lb/size) 6=834/Mechanical, 1=834/0-3-8 (min. 0-1-8)
Max Horz 1=387(LC 12)
Max Uplift 6=-313(LC 12), 1=-142(LC 12)
Max Grav 6=960(LC 2), 1=1005(LC 19)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
TOP CHORD 1-2=-265/26, 2-14=-1179/139, 3-14=-1022/161, 3-15=-590/70, 4-15=-478/101
BOT CHORD 1-18=-415/992, 9-18=-415/992, 9-19=-415/992, 8-19=-415/992, 7-8=-415/992,
7-20=-156/429, 6-20=-156/429
WEBS 3-9=0/380, 3-7=-723/330, 4-7=-149/744, 4-6=-891/325

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCPi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 0-0-0 to 3-0-0, Zone1 3-0-0 to 15-0-0, Zone2 15-0-0 to 19-2-15, Zone1 19-2-15 to 20-10-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 313 lb uplift at joint 6 and 142 lb uplift at joint 1.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S)

Standard

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.ipinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.432.1200 / Mitek-US.com

Job 4789421	Truss T19	Truss Type Half Hip	Qty 1	Ply 1	MILLER RES.	T38148121
----------------	--------------	------------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055, 8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:38 2025 Page 1 ID:2eRY39KFhR2benj7cX?4RUzckGi-QPjpk0aCPN822g5xMxA5bwHvBDQ?II6WRD7oPxyqVox

7-7-0 7-7-0 7-5-0 21-0-0 6-0-0

4x8 = 2x4 //

Scale = 1:65.2

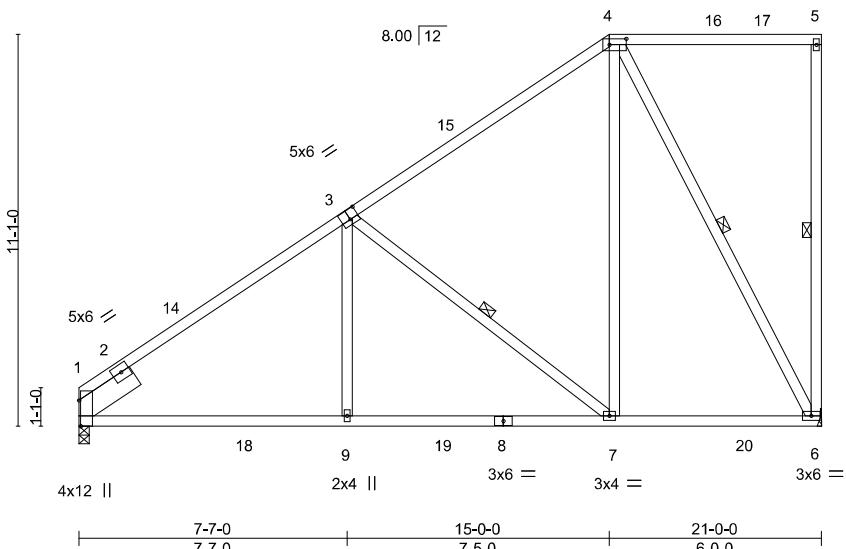


Plate Offsets (X,Y) - [1:0-8-13,Edge], [3:0-3-0,0-3-4], [4:0-5-12,0-2-0]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.58	Vert(LL)	-0.08	7-9	>999	240	
TCDL 10.0	Lumber DOL	1.25	BC 0.60	Vert(CT)	-0.16	7-9	>999	180	
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.66	Horz(CT)	-0.04	1	n/a	n/a	
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS					Weight: 144 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3
SLIDER Left 2x8 SP 2400F 2.0E 1-11-8

BRACING-

TOP CHORD Structural wood sheathing directly applied or 4-9-6 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 8-8-11 oc bracing.
WEBS 1 Row at midpt 5-6, 3-7, 4-6

REACTIONS. (size) 6=Mechanical, 1=0-3-8

Max Horz 1=387(LC 12)
Max Uplift 6=-313(LC 12), 1=-142(LC 12)
Max Grav 6=960(LC 2), 1=1005(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-3=-1179/161, 3-4=-590/101
BOT CHORD 1-9=-415/992, 7-9=-415/992, 6-7=-156/429
WEBS 3-9=0/380, 3-7=-723/330, 4-7=-149/744, 4-6=-891/325

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCPi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 0-0-0 to 3-0-0, Zone1 3-0-0 to 15-0-0, Zone2 15-0-0 to 19-2-15, Zone1 19-2-15 to 20-10-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=313, 1=142.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.ipinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com

Job 4789421	Truss T20	Truss Type Half Hip Girder	Qty 1	Ply 1	MILLER RES.	T38148122
----------------	--------------	-------------------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:38 2025 Page 1

ID:2eRY39KFhR2benj7cX?4RUzckGi-QPjpk0aCPN822g5MxA5bwHzADoIcFMWRD7oPxyqVox

-1-6-0 2-3-8 7-0-0 10-8-0 14-0-0 17-4-0
1-6-0 2-3-8 4-8-8 3-8-0 3-4-0 3-4-0

Scale = 1:44.2

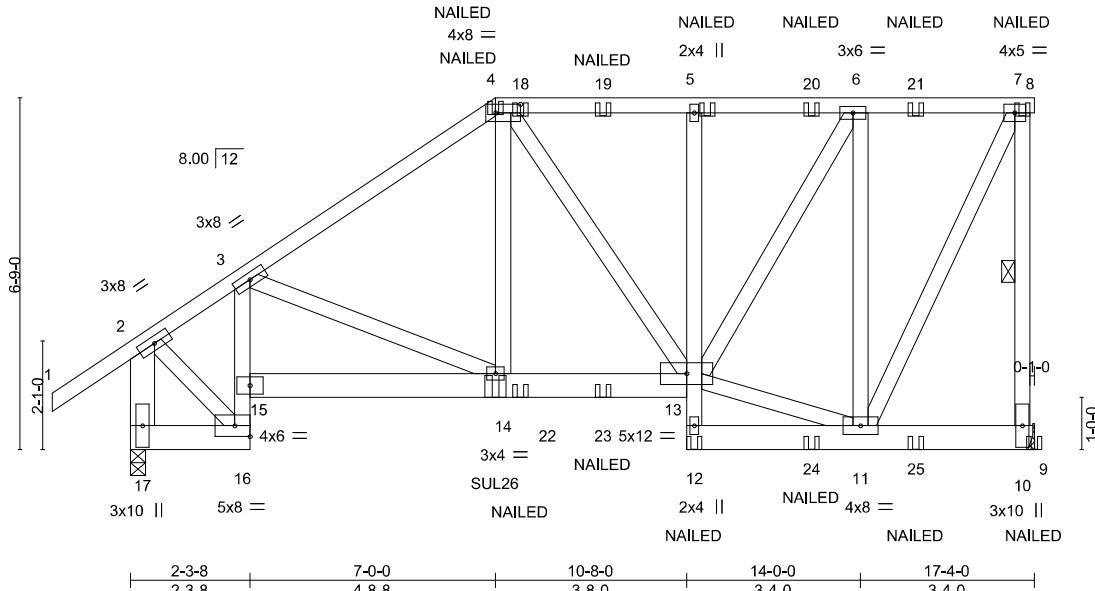


Plate Offsets (X,Y) - [4.0-5-12,0.2-0]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.33	Vert(LL)	0.08	13-14	>999	240	
TCDL 10.0	Lumber DOL	1.25	BC 0.75	Vert(CT)	-0.09	13-14	>999	180	
BCLL 0.0 *	Rep Stress Incr	NO	WB 0.83	Horz(CT)	0.08	10	n/a	n/a	
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS					Weight: 156 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x6 SP No.2 *Except*
3-16: 2x4 SP No.1, 5-12: 2x4 SP No.3
WEBS 2x4 SP No.3 *Except*
2-17: 2x6 SP No.2

REACTIONS.

(size) 10=Mechanical, 17=0-3-8
Max Horz 17=189(LC 8)
Max Uplift 10=-996(LC 5), 17=-668(LC 8)
Max Grav 10=1597(LC 35), 17=1313(LC 35)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
TOP CHORD 2-3=-990/555, 3-4=-1561/943, 4-5=-1141/726, 5-6=-1132/720, 6-7=-598/373,
7-10=-1355/850, 2-17=-1449/790
BOT CHORD 15-16=-546/276, 3-15=-555/332, 14-15=-747/1039, 13-14=-847/1271, 5-13=-310/192
WEBS 3-14=-425/524, 4-14=-507/699, 11-13=-339/543, 6-13=-690/1046, 6-11=-1081/703,
7-11=-843/1351, 2-16=-560/1035

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 10-996, 17=668.
- 9) Use Simpson Strong-Tie SUL26 (6-16d Girder, 6-10dx1 1/2 Truss) or equivalent at 7-0-0 from the left end to connect truss(es) to front face of bottom chord, skewed 45.0 deg. to the left, sloping 0.0 deg. down.
- 10) Fill all nail holes where hanger is in contact with lumber.
- 11) "NAILED" indicates 3-10d (0.148"x3") or 2-12d (0.148"x3.25") toe-nails per NDS guidelines.
- 12) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S)

Standard

This item has been
digitally signed and
sealed by Velez, Joaquin, PE
on the date indicated here.
Printed copies of this
document are not considered
signed and sealed and the
signature must be verified
on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from Truss Plate Institute ([www.ipinst.org](#)) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association ([www.sbcsccomponents.com](#))

Job 4789421	Truss T20	Truss Type Half Hip Girder	Qty 1	Ply 1	MILLER RES.	T38148122
----------------	--------------	-------------------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055, 8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:38 2025 Page 2
ID:2eRY39KFhR2benj7cX?4RUzckGi-QPjpk0aCPN822g5xMxA5bwHzADoIcI FMWRD7oPxyqVox

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

Vert: 1-2=-60, 2-4=-60, 4-7=-60, 7-8=-20, 16-17=-20, 13-15=-20, 9-12=-20

Concentrated Loads (lb)

Vert: 7=-54(F) 10=-155(F) 5=-28(F) 14=-330(F) 13=-147(F) 18=-56(F) 19=-56(F) 20=-28(F) 21=-28(F) 22=-119(F) 23=-119(F) 24=-147(F) 25=-147(F)

This item has been
digitally signed and
sealed by Velez, Joaquin, PE
on the date indicated here.
Printed copies of this
document are not considered
signed and sealed and the
signature must be verified
on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpiinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / Mitek-US.com

Job 4789421	Truss T22	Truss Type Half Hip	Qty 1	Ply 1	MILLER RES.	T38148124
----------------	--------------	------------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:40 2025 Page 1

ID:2eRY39KFhR2benj7cX?4RUzckGi-MoRZ8icSx_Oml_FJTM CZgLMH304qmHNpuXcvUqyqVov
 -1-6-0 2-3-8 6-3-0 10-8-0 11-0-0 17-4-0
 1-6-0 2-3-8 3-11-8 4-5-0 0-4-0 6-4-0

Scale = 1:54.8

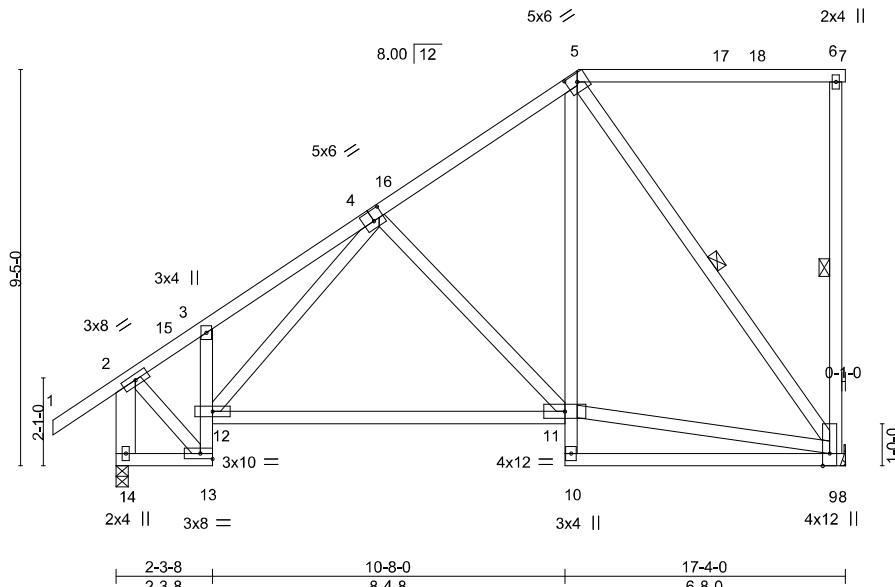


Plate Offsets (X,Y) - [4:0-3-0,0-3-0], [5:0-3-0,0-2-3]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.49	Vert(LL)	-0.19	11-12	>999	240	
TCDL 10.0	Lumber DOL	1.25	BC 0.70	Vert(CT)	-0.40	11-12	>507	180	
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.35	Horz(CT)	0.07	9	n/a	n/a	
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS					Weight: 139 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
 BOT CHORD 2x4 SP No.2 *Except*
 5-10: 2x4 SP No.3
 WEBS 2x4 SP No.3 *Except*
 2-14: 2x6 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.
 BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.
 WEBS 1 Row at midpt 6-9, 5-9

REACTIONS.

(size) 9=Mechanical, 14=0-3-8
 Max Horz 14=291(LC 12)
 Max Uplift 9=211(LC 12), 14=138(LC 12)
 Max Grav 9=679(LC 1), 14=784(LC 1)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
 TOP CHORD 2-3=492/114, 3-4=695/302, 4-5=504/119, 2-14=830/203
 BOT CHORD 13-14=-286/132, 12-13=-271/0, 11-12=-329/539, 5-11=-160/443
 WEBS 9-11=-134/368, 5-9=-589/256, 2-13=-51/503, 4-11=-306/256

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 -1-6-0 to 1-6-0, Zone1 1-6-0 to 10-11-8, Zone2 10-11-8 to 15-2-7, Zone1 15-2-7 to 17-4-0 zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 9=211, 14=138.

This item has been
 digitally signed and
 sealed by Velez, Joaquin, PE
 on the date indicated here.
 Printed copies of this
 document are not considered
 signed and sealed and the
 signature must be verified
 on any electronic copies.

Joaquin Velez PE No.68182
 MiTek Inc. DBA MiTek USA FL Cert 6634
 16023 Swingley Ridge Rd.
 Chesterfield, MO 63017
 Date:

August 7,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.ipinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
 16023 Swingley Ridge Rd.
 Chesterfield, MO 63017
 314.432.1200 / MiTek-US.com

Job 4789421	Truss T23	Truss Type Half Hip	Qty 1	Ply 1	MILLER RES.	T38148125
----------------	--------------	------------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:40 2025 Page 1

ID:2eRY39KFhR2benj7cX?4RUzckGi-MoRZ8icSx_Oml_FJTMZgLMHJ08?mFppuXcvUqyqVov

-1-6-0 6-6-0 13-0-0 17-4-0
1-6-0 6-6-0 6-6-0 4-4-0

Scale = 1:62.6

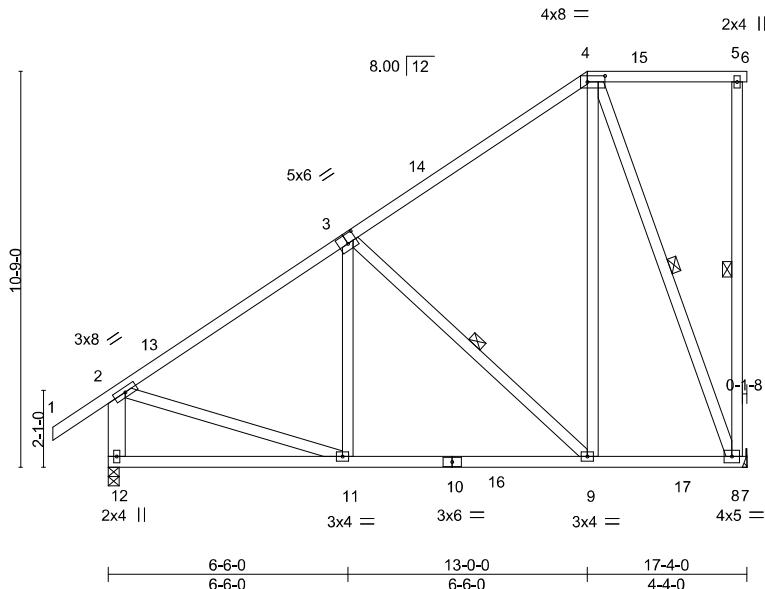


Plate Offsets (X,Y) - [3:0-3-0,0-3-0], [4:0-5-12,0-2-0]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	I/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.48	Vert(LL)	-0.05	9-11	>999	240	
TCDL 10.0	Lumber DOL	1.25	BC 0.44	Vert(CT)	-0.10	9-11	>999	180	
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.45	Horz(CT)	-0.01	8	n/a	n/a	
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS					Weight: 140 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3 *Except*
2-12: 2x6 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 9-7-1 oc bracing.
WEBS 1 Row at midpt 5-8, 3-9, 4-8

REACTIONS. (size) 8=Mechanical, 12=0-3-8

Max Horz 12=343(LC 12)
Max Uplift 8=-265(LC 12), 12=-118(LC 12)
Max Grav 8=781(LC 19), 12=881(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-762/70, 3-4=-387/43, 2-12=-787/134
BOT CHORD 11-12=-380/200, 9-11=-302/638, 8-9=-101/265
WEBS 3-9=-514/273, 4-9=-146/579, 4-8=-726/279, 2-11=0/505

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCPi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 -1-6-0 to 1-6-0, Zone1 1-6-0 to 13-0-0, Zone3 13-0-0 to 17-4-0 zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8=265, 12=118.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.ipinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com

Job 4789421	Truss T24	Truss Type Common	Qty 4	Ply 1	MILLER RES.	T38148126
----------------	--------------	----------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055, 8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:41 2025 Page 1 ID:2eRY39KFhR2benj7cX?4RUzckGi-q_?xM2d5iWdw7qW13joDYvTSQPbVkJy7BMS0GyqVou

-1-6-0 5-5-2 9-10-0 14-2-14 19-8-0 21-2-0
1-6-0 5-5-2 4-4-14 4-4-14 5-5-2 1-6-0

Scale = 1:45.7

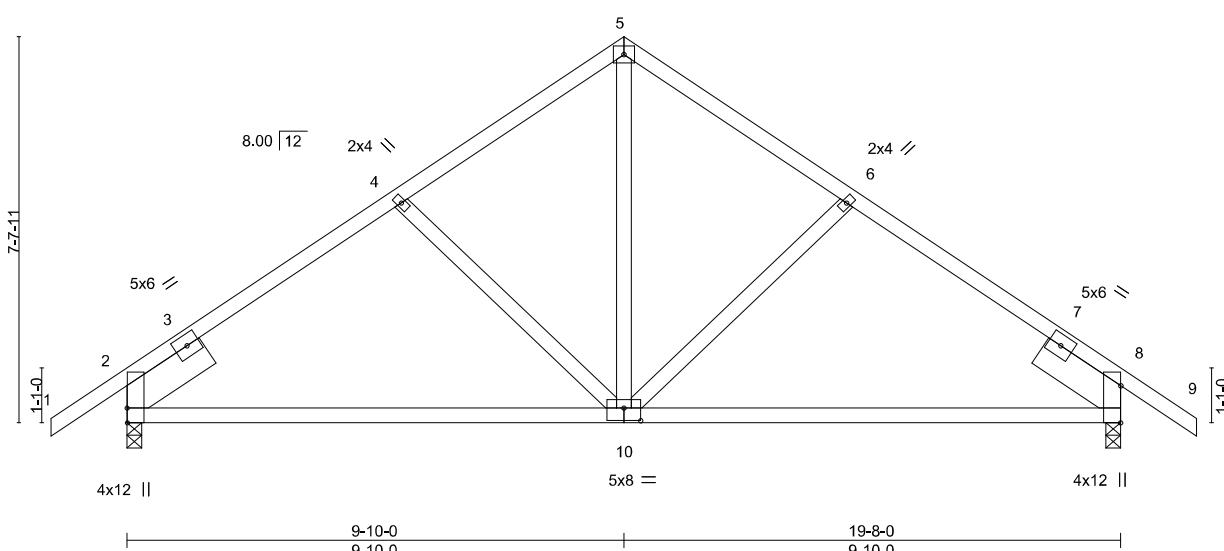


Plate Offsets (X,Y) - [2:0-3-8,Edge], [8:0-8-13,Edge], [10:0-4-0,0-3-0]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.39	Vert(LL)	0.13	10-13	>999	240	
TCDL 10.0	Lumber DOL	1.25	BC 0.73	Vert(CT)	-0.22	10-13	>999	180	
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.37	Horz(CT)	0.03	8	n/a	n/a	
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS					Weight: 110 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3
SLIDER Left 2x8 SP 2400F 2.0E 1-11-8, Right 2x8 SP 2400F 2.0E 1-11-8

BRACING-

TOP CHORD Structural wood sheathing directly applied or 5-4-10 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 2=0-3-8, 8=0-3-8

Max Horz 2=-187(LC 10)
Max Uplift 2=-212(LC 12), 8=-212(LC 13)
Max Grav 2=877(LC 1), 8=877(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-910/437, 4-5=-730/431, 5-6=-730/431, 6-8=-910/437

BOT CHORD 2-10=-260/692, 8-10=-275/692

WEBS 5-10=-359/503

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCPi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 -1-6-0 to 1-6-0, Zone1 1-6-0 to 9-10-0, Zone2 9-10-0 to 14-4-3, Zone1 14-4-3 to 21-2-0 zone; end vertical left and right exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb, 2=212, 8=212).

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

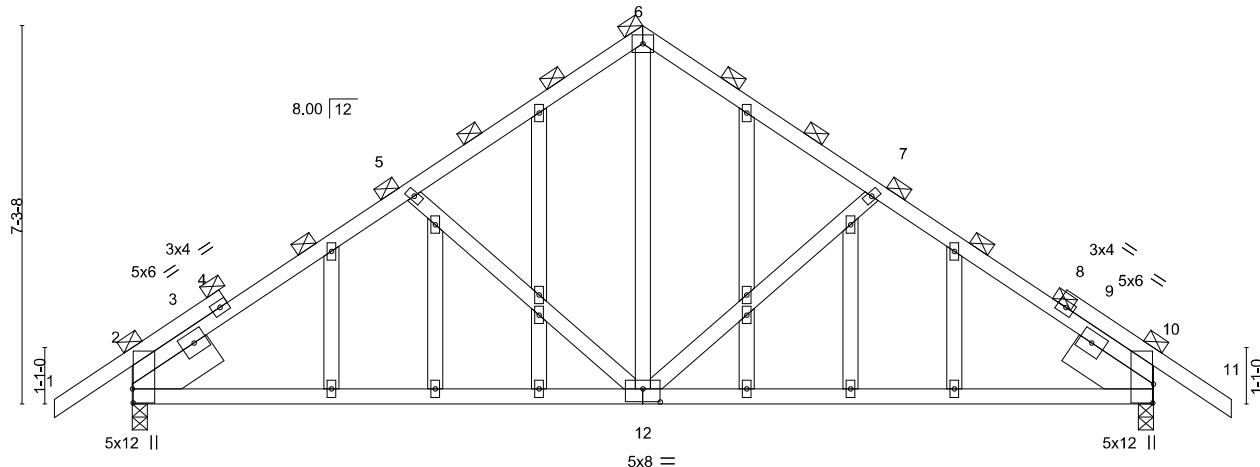
August 7,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from Truss Plate Institute ([www.ipinst.org](#)) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association ([www.sbcsccomponents.com](#))

Job 4789421	Truss T24G	Truss Type GABLE	Qty 1	Ply 1	MILLER RES.	T38148127
----------------	---------------	---------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,


8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:41 2025 Page 1

ID:2eRY39KFhR2benj7cX?4RUzckGi-q_?xM2d5iWdw7qW13joDYvYQP4Vko7BMS0GyqVou

-1-6-0 5-5-2 9-10-0 14-2-14 19-8-0 21-2-0
1-6-0 5-5-2 4-4-14 5-5-2 1-6-0

Scale = 1:44.4

4x5 =

9-10-0 19-8-0
9-10-0 9-10-0

Plate Offsets (X,Y) - [2:0-3-4,0-0-3], [10:0-4-6,0-0-3], [12:0-4-0,0-3-0]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.32	Vert(LL)	0.13	2-12	>999	240	
TCDL 10.0	Lumber DOL	1.25	BC 0.77	Vert(CT)	-0.24	2-12	>937	180	
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.33	Horz(CT)	0.02	10	n/a	n/a	
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS					Weight: 148 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3
OTHERS 2x4 SP No.3
SLIDER Left 2x8 SP 2400F 2.0E 1-9-3, Right 2x8 SP 2400F 2.0E 1-9-3

BRACING-

TOP CHORD 2-0-0 oc purlins (6-0-0 max.).
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 2=0-3-8, 10=0-3-8

Max Horz 2=178(LC 11)
Max Uplift 2=219(LC 12), 10=-219(LC 13)
Max Grav 2=870(LC 1), 10=870(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-5=-945/435, 5-6=-726/420, 6-7=-726/420, 7-10=-943/436
BOT CHORD 2-12=-296/735, 10-12=-301/735
WEBS 6-12=-353/513, 7-12=-275/200, 5-12=-275/200

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 -1-6-0 to 1-6-0, Zone1 1-6-0 to 9-10-0, Zone2 9-10-0 to 14-4-4, Zone1 14-4-4 to 21-2-0 zone; end vertical left and right exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=219, 10=219.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from Truss Plate Institute ([www.ipinst.org](#)) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association ([www.sbcsccomponents.com](#))

Job 4789421	Truss T25	Truss Type Common	Qty 2	Ply 1	MILLER RES.	T38148128
----------------	--------------	----------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:42 2025 Page 1

ID:2eRY39KFhR2benj7cX?4RUzckGI-IAZKZOdjTceUXHPbnE1lmRhFquaEFH6Mr50YiyqVot

-1-6-0 1-6-0 4-8-0 4-8-0 9-4-0 4-8-0 10-10-0 1-6-0

Scale = 1:27.6

4x5 =

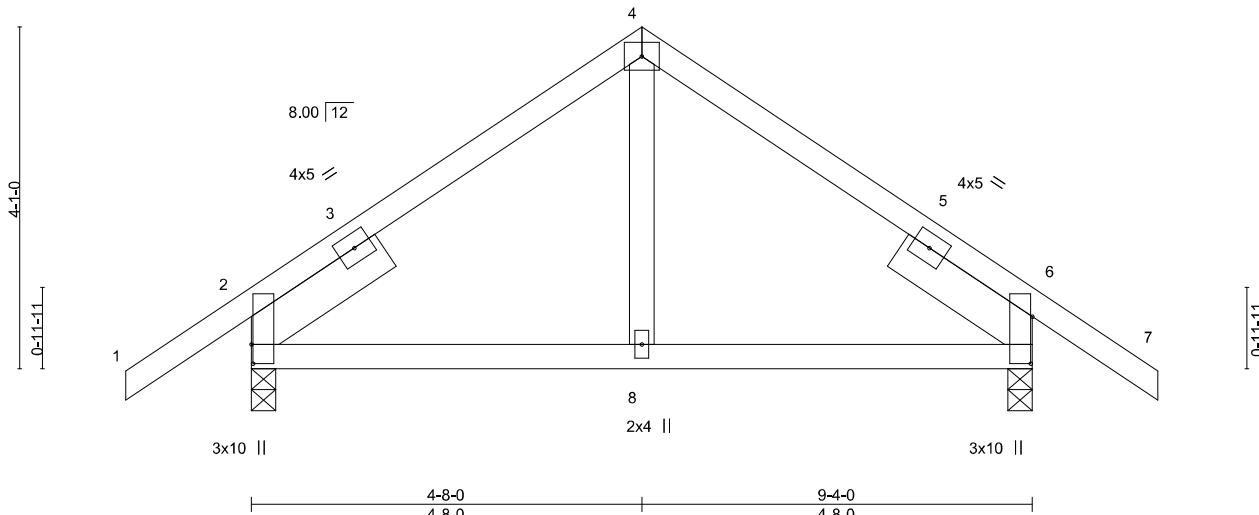


Plate Offsets (X,Y) - [2:0-2-12,0-0-4], [6:0-6-12,0-0-4]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.19	Vert(LL)	0.02	8-11	>999	240	
TCDL 10.0	Lumber DOL	1.25	BC 0.17	Vert(CT)	-0.02	8-15	>999	180	
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.07	Horz(CT)	-0.01	2	n/a	n/a	
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS					Weight: 51 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3
SLIDER Left 2x6 SP No.2 1-11-8, Right 2x6 SP No.2 1-11-8

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size)

2=0-3-8, 6=0-3-8
Max Horz 2=-102(LC 10)
Max Uplift 2=-120(LC 12), 6=-120(LC 13)
Max Grav 2=463(LC 1), 6=463(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-283/275, 4-6=-283/275

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 -1-6-0 to 1-6-0, Zone1 1-6-0 to 4-8-0, Zone2 4-8-0 to 9-0-1, Zone1 9-0-1 to 10-10-0 zone; end vertical left and right exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=120, 6=120.

This item has been
digitally signed and
sealed by Velez, Joaquin, PE
on the date indicated here.
Printed copies of this
document are not considered
signed and sealed and the
signature must be verified
on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

⚠ WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.ipinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / Mitek-US.com

Job 4789421	Truss T25G	Truss Type GABLE	Qty 1	Ply 1	MILLER RES.	T38148129
----------------	---------------	---------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:42 2025 Page 1

ID:2eRY39KFhR2benj7cX?4RUzckGi-IAZKZOdjTceUXHPibnE1lmRhMqupEFJ6Mr50YiyqVot

-1-6-0 1-6-0 4-8-0 4-8-0 9-4-0 4-8-0 10-10-0 1-6-0

Scale = 1:25.8

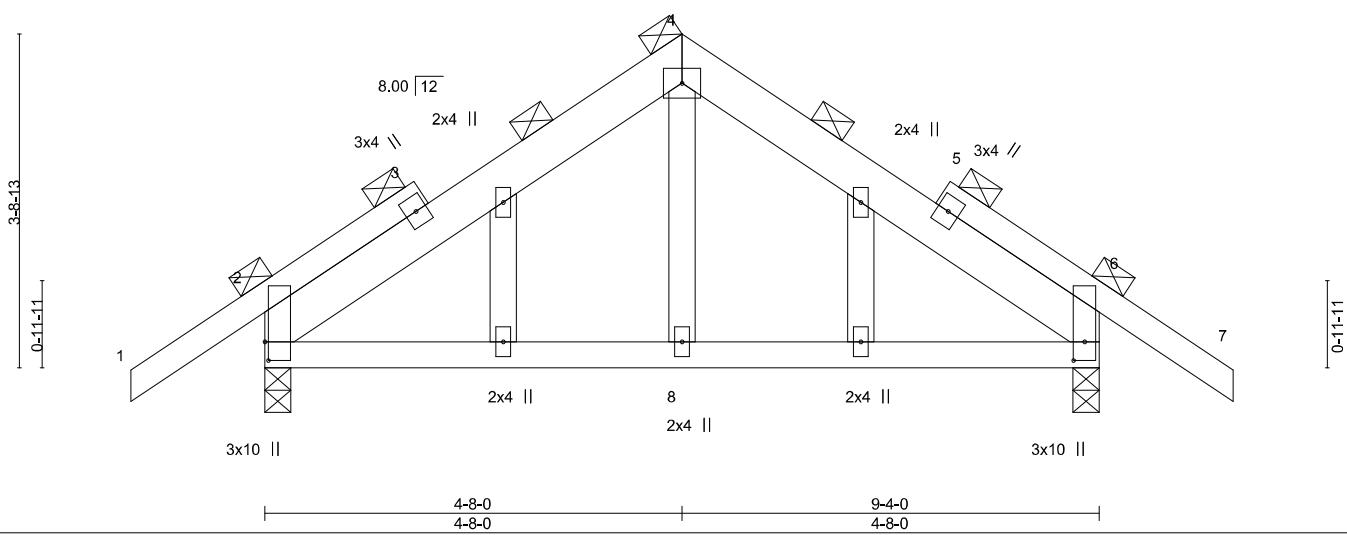


Plate Offsets (X,Y) - [2:0-2-8,0-0-7], [6:0-2-8,0-1-8]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.25	Vert(LL)	0.01	8-15	>999	240	
TCDL 10.0	Lumber DOL	1.25	BC 0.16	Vert(CT)	-0.01	8-19	>999	180	
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.07	Horz(CT)	-0.00	2	n/a	n/a	
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS					Weight: 62 lb	FT = 20%

LUMBER-

TOP CHORD 2x6 SP No.2 *Except*

1-3,5-7: 2x4 SP No.2

BOT CHORD 2x4 SP No.2

WEBS 2x4 SP No.3

OTHERS 2x4 SP No.3

REACTIONS.

(size) 2=0-3-8, 6=0-3-8

Max Horz 2=-90(LC 10)

Max Uplift 2=-123(LC 12), 6=-123(LC 13)

Max Grav 2=463(LC 1), 6=463(LC 1)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-373/311, 4-6=-373/309

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 zone; end vertical left and right exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

5) Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=123, 6=123.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

This item has been
digitally signed and
sealed by Velez, Joaquin, PE
on the date indicated here.
Printed copies of this
document are not considered
signed and sealed and the
signature must be verified
on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.ipinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com

Job 4789421	Truss T26G	Truss Type Common Supported Gable	Qty 1	Ply 1	MILLER RES.	T38148130
----------------	---------------	--------------------------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:43 2025 Page 1
ID:2eRY39KFhR2benj7cX?4RUzckGi-mN6inkeLvmL9R_u8UIGz_tkEG_zjvFaVrZ49yqVos

-1-6-0 5-4-0 10-8-0 12-2-0
1-6-0 5-4-0 5-4-0 1-6-0

Scale = 1:26.1

4x5 =

Plate Offsets (X,Y) - [2:0-1-12,0-0-1], [10:0-1-12,0-1-1]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	I/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.15	Vert(LL)	-0.01	11	n/r	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.03	Vert(CT)	-0.01	11	n/r		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.05	Horz(CT)	0.00	10	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-S					Weight: 60 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
OTHERS 2x4 SP No.3

BRACING-

TOP CHORD 2-0-0 oc purlins (6-0-0 max.).
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

All bearings 10-8-0.
(lb) - Max Horz 2-0-10(LC 10)
Max Uplift All uplift 100 lb or less at joint(s) 2, 10, 15, 16, 13, 12
Max Grav All reactions 250 lb or less at joint(s) 2, 10, 14, 15, 16, 13, 12

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCPi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10, 15, 16, 13, 12.
- 10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2, 10.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

This item has been
digitally signed and
sealed by Velez, Joaquin, PE
on the date indicated here.
Printed copies of this
document are not considered
signed and sealed and the
signature must be verified
on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.ipinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / Mitek-US.com

Job 4789421	Truss T27	Truss Type Common	Qty 5	Ply 1	MILLER RES.	T38148131
----------------	--------------	----------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:43 2025 Page 1
ID:2eRY39KFhR2benj7cX?4RUzckGi-mN6inkeEvml9R_u8UIGz_sYE5VzgcFaVrZ49yqVos

-1-6-0 4-9-12 9-4-0 13-10-4 18-8-0 20-2-0
1-6-0 4-9-12 4-6-4 4-6-4 4-9-12 1-6-0

Scale = 1:42.7

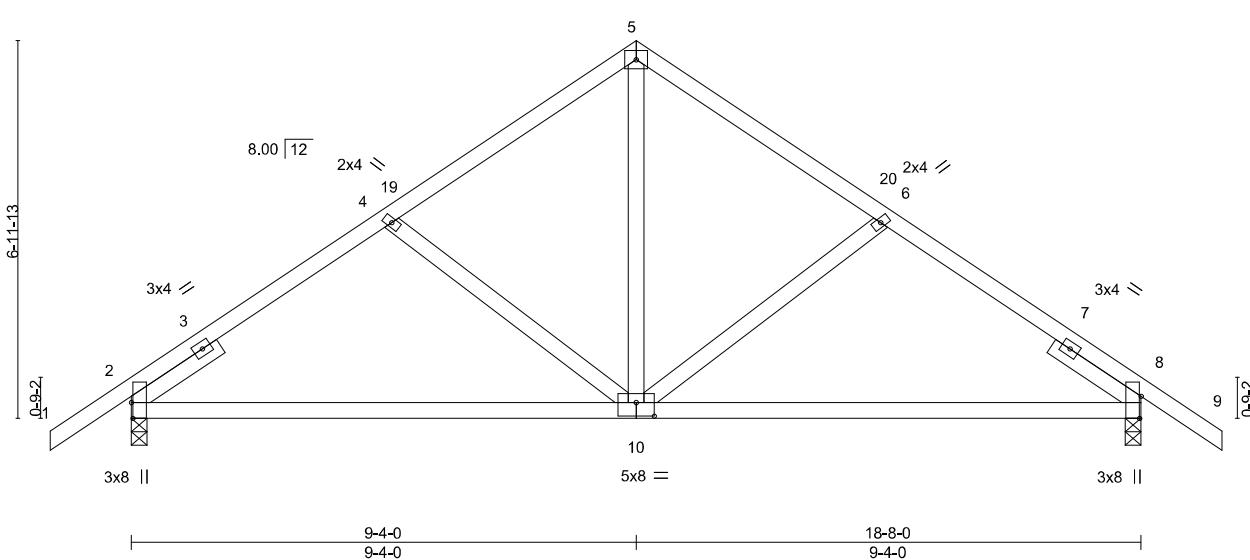


Plate Offsets (X,Y) - [2:0-3-8,Edge], [8:0-4-15,Edge], [10:0-4-0,0-3-0]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	I/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.22	Vert(LL)	-0.10 10-13	>999	240	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.71	Vert(CT)	-0.20 10-13	>999	180		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.19	Horz(CT)	0.02 8	n/a	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS					Weight: 99 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3
SLIDER Left 2x4 SP No.3 1-11-8, Right 2x4 SP No.3 1-11-8

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

(size) 2=0-3-8, 8=0-3-8
Max Horz 2=178(LC 11)
Max Uplift 2=-205(LC 12), 8=-205(LC 13)
Max Grav 2=837(LC 1), 8=837(LC 1)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-819/227, 4-5=-731/209, 5-6=-731/209, 6-8=-819/227

BOT CHORD 2-10=-203/761, 8-10=-110/722

WEBS 5-10=-111/504, 6-10=-264/196, 4-10=-264/196

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl.,
GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 -1-6-0 to 1-6-0, Zone1 1-6-0 to 9-4-0, Zone2 9-4-0 to 13-6-15,
Zone1 13-6-15 to 20-2-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific
to the use of this truss component.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb)
2=205, 8=205.

This item has been
digitally signed and
sealed by Velez, Joaquin, PE
on the date indicated here.
Printed copies of this
document are not considered
signed and sealed and the
signature must be verified
on any electronic copies.

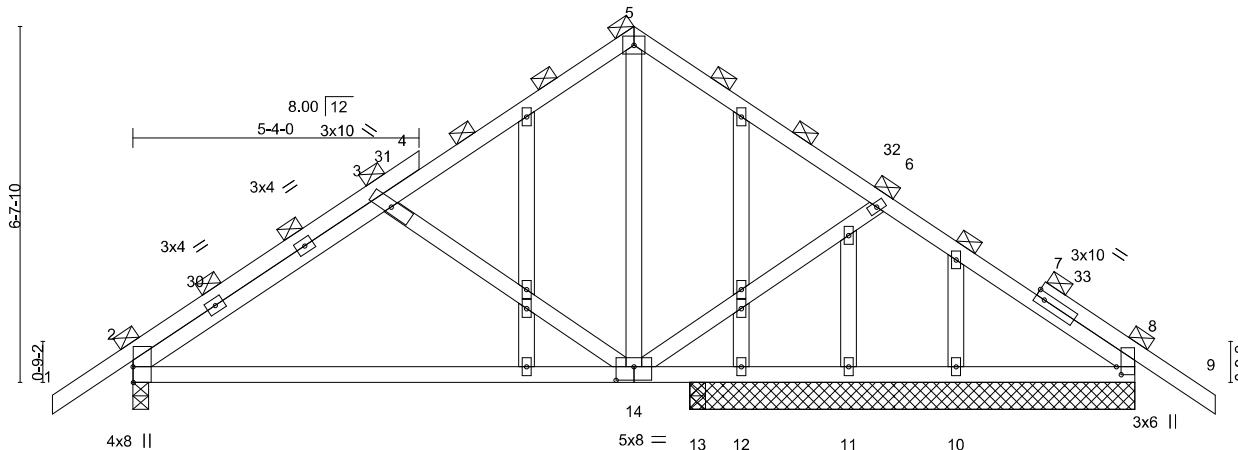
Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.ipinst.org)
and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com


Job 4789421	Truss T27G	Truss Type GABLE	Qty 1	Ply 1	MILLER RES.	T38148132
----------------	---------------	---------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:44 2025 Page 1
ID:2eRY39KFhR2benj7cX?4RUzckGi-EZg4_3fz?DuCnbZ5iCGVrBxyMdS3i7nOp9a7dbyqVor

-1-6-0 4-9-12 9-4-0 13-10-4 18-8-0 20-2-0
1-6-0 4-9-12 4-6-4 4-6-4 4-9-12 1-6-0

Scale = 1:43.0

9-4-0 10-8-0 18-8-0
9-4-0 1-4-0 8-0-0

Plate Offsets (X,Y) - [2:0-3-8,Edge], [8:0-1-12,0-1-1], [14:0-4-0,0-3-0]

LOADING (psf)	SPACING-	CSI.	DEFL.	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	2-0-0	TC 0.54	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.68		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.20		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS	Weight: 125 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3
OTHERS 2x4 SP No.3

BRACING-

TOP CHORD 2-0-0 oc purlins (6-0-0 max.).
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

All bearings 8-3-8 except (jt=length) 2=0-3-8, 13=0-3-8.
(lb) - Max Horz 2=-170(LC 10)
Max Uplift All uplift 100 lb or less at joint(s) except 2=-166(LC 12), 8=-176(LC 13), 12=-293(LC 1), 13=-212(LC 12)
Max Grav All reactions 250 lb or less at joint(s) 12, 11, 10 except 2=720(LC 1), 8=664(LC 1), 13=471(LC 1), 8=664(LC 1)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
TOP CHORD 2-3=-791/177, 3-5=-523/146, 5-6=-544/135, 6-8=-757/179
BOT CHORD 2-14=-169/675, 13-14=-76/599, 12-13=-76/599, 11-12=-76/599, 10-11=-76/599,
8-10=-76/599
WEBS 5-14=-44/412, 6-14=-289/214, 3-14=-329/219

NOTES-

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Enc., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 1-6-0 to 1-6-0, Zone1 1-6-0 to 9-4-0, Zone2 9-4-0 to 13-6-15, Zone1 13-6-15 to 20-2-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 166 lb uplift at joint 2, 176 lb uplift at joint 8, 293 lb uplift at joint 12, 212 lb uplift at joint 13 and 176 lb uplift at joint 8.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

This item has been
digitally signed and
sealed by Velez, Joaquin, PE
on the date indicated here.
Printed copies of this
document are not considered
signed and sealed and the
signature must be verified
on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from Truss Plate Institute ([www.ipinst.org](#)) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association ([www.sbcsccomponents.com](#))

Job 4789421	Truss T28	Truss Type Common	Qty 2	Ply 1	MILLER RES.	T38148133
----------------	--------------	----------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:45 2025 Page 1
ID:2eRY39KFhR2benj7cx?4RUzckGi-iESCPgbmX03Ol8HGvokNO3C01nxRa6Y2pKg91yqVoq

-1-6-0 4-9-12 9-4-0 13-10-4 18-8-0 19-10-0
1-6-0 4-9-12 4-6-4 4-6-4 4-9-12 1-2-0

Scale = 1:42.5

Plate Offsets (X,Y) - [2:0-3-8,Edge], [8:0-4-15,Edge], [10:0-4-0,0-3-0]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.22	Vert(LL)	-0.10 10-13	>999	240	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.71	Vert(CT)	-0.21 10-17	>999	180		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.19	Horz(CT)	0.02 8	n/a	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS					Weight: 98 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3
SLIDER Left 2x4 SP No.3 1-11-8, Right 2x4 SP No.3 1-11-8

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 2=0-3-8, 8=0-3-8

Max Horz 2=177(LC 11)
Max Uplift 2=206(LC 12), 8=196(LC 13)
Max Grav 2=838(LC 1), 8=815(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-821/227, 4-5=-734/211, 5-6=-734/214, 6-8=-919/232

BOT CHORD 2-10=-207/760, 8-10=-115/728

WEBS 5-10=-113/505, 6-10=-269/199, 4-10=-264/196

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl.,
GCPi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 -1-6-0 to 1-6-0, Zone1 1-6-0 to 9-4-0, Zone2 9-4-0 to 13-6-15,
Zone1 13-6-15 to 19-10-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip
DOL=1.60

3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific
to the use of this truss component.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 206 lb uplift at joint 2 and 196 lb uplift at
joint 8.

This item has been
digitally signed and
sealed by Velez, Joaquin, PE
on the date indicated here.
Printed copies of this
document are not considered
signed and sealed and the
signature must be verified
on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.ipinst.org)
and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / Mitek-US.com

Job 4789421	Truss T29	Truss Type Roof Special	Qty 1	Ply 1	MILLER RES.	T38148134
----------------	--------------	----------------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:45 2025 Page 1

ID:2eRY39KFhR2benj7cX?4RUzckGi-iESCPgbmX03O18HGvokNO3881mURYdY2pKg91yqVoq

3-6-0 9-4-0 13-10-4 18-8-0 19-10-0
3-6-0 5-10-0 4-6-4 4-9-12 1-2-0

Scale = 1:41.7

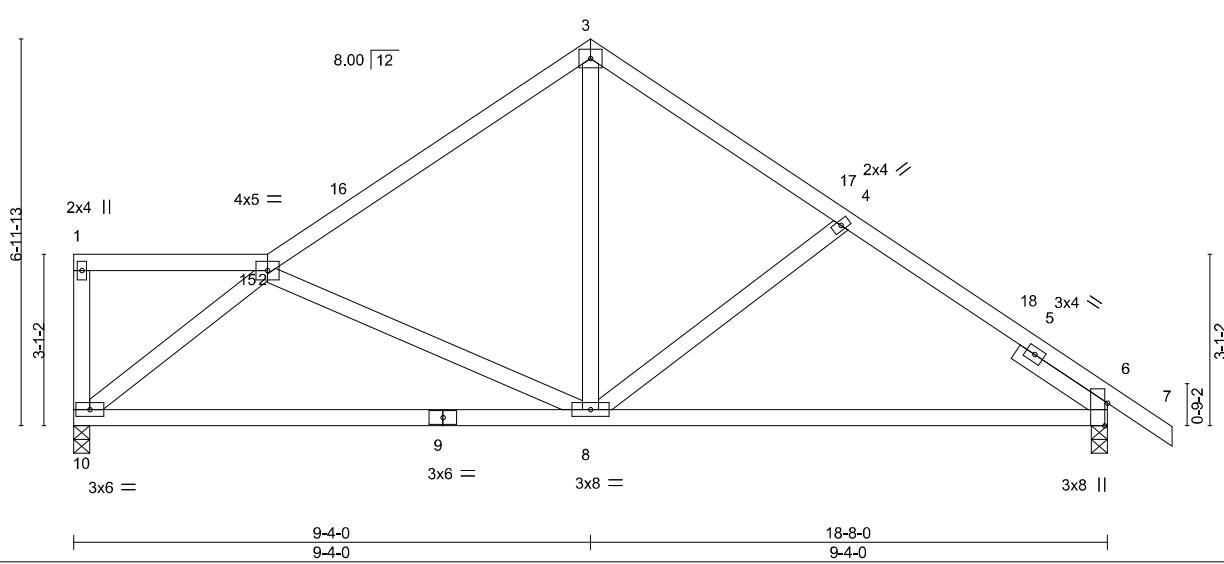


Plate Offsets (X,Y) - [6:0-4-15,Edge]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.47	Vert(LL)	-0.16	8-10	>999	240	
TCDL 10.0	Lumber DOL	1.25	BC 0.80	Vert(CT)	-0.33	8-10	>670	180	
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.35	Horz(CT)	0.02	6	n/a	n/a	
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS					Weight: 102 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3
SLIDER Right 2x4 SP No.3 1-11-8

BRACING-

TOP CHORD Structural wood sheathing directly applied or 5-11-14 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size)

10=0-3-8, 6=0-3-8
Max Horz 10=-181(LC 13)
Max Uplift 10=-173(LC 12), 6=-191(LC 13)
Max Grav 10=739(LC 1), 6=813(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-755/198, 3-4=-736/205, 4-6=-918/220
BOT CHORD 8-10=-194/718, 6-8=-108/724
WEBS 2-10=-898/266, 3-8=-88/482, 4-8=-261/197

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCPi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 0-1-12 to 3-1-12, Zone1 3-1-12 to 9-4-0, Zone2 9-4-0 to 13-6-15, Zone1 13-6-15 to 19-10-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 173 lb uplift at joint 10 and 191 lb uplift at joint 6.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.ipinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com

Job 4789421	Truss T30	Truss Type Roof Special	Qty 1	Ply 1	MILLER RES.	T38148135
----------------	--------------	----------------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:46 2025 Page 1
ID:2eRY39KFhR2benj7cX?4RUzckGl-ByoqPlgDXq8w0viTqdJzwccNdR79A?HhGT3DhUyqVop

1-10-0 5-6-0 9-4-0 13-10-4 18-8-0
1-10-0 3-8-0 3-10-0 4-6-4 4-9-12

Scale = 1:41.2

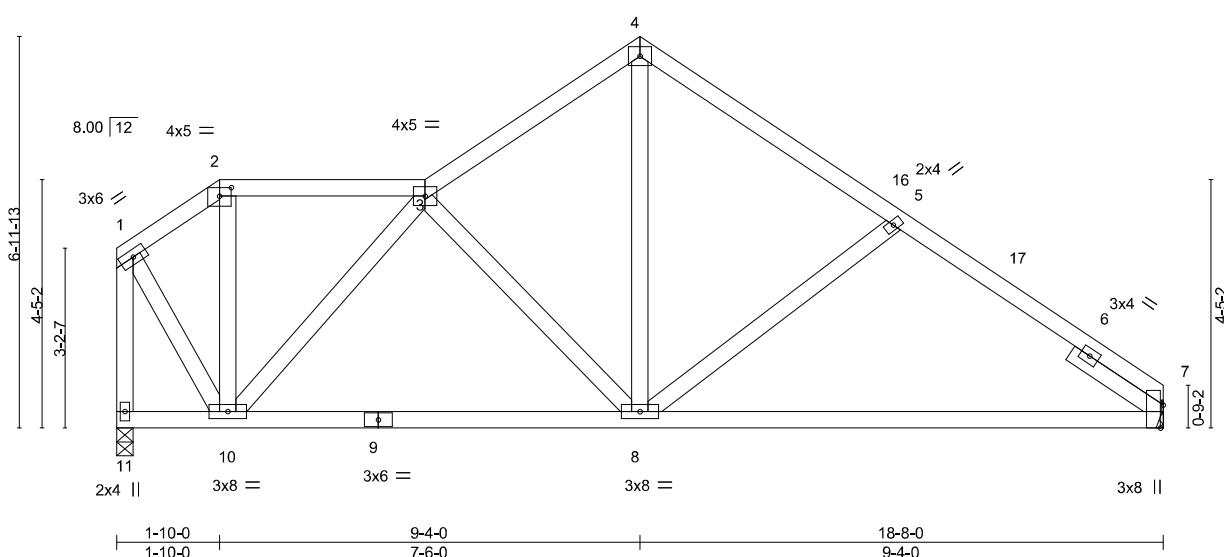


Plate Offsets (X,Y) - [2:0-2-8,0-1-13], [7:0-4-15,Edge]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.23	Vert(LL)	-0.12	8-14	>999	240	
TCDL 10.0	Lumber DOL	1.25	BC 0.64	Vert(CT)	-0.24	8-14	>918	180	
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.33	Horz(CT)	0.01	7	n/a	n/a	
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS					Weight: 111 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3
SLIDER Right 2x4 SP No.3 1-11-8

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. (size) 7=Mechanical, 11=0-3-8

Max Horz 11=160(LC 13)
Max Uplift 7=161(LC 13), 11=174(LC 12)
Max Grav 7=741(LC 1), 11=741(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-397/119, 2-3=-314/121, 3-4=-709/229, 4-5=-733/217, 5-7=-883/241,
1-11=-751/204
BOT CHORD 8-10=-151/680, 7-8=-141/735
WEBS 3-10=-565/168, 4-8=-125/490, 5-8=-279/202, 1-10=-139/591

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 0-1-12 to 5-6-0, Zone1 5-6-0 to 9-4-0, Zone2 9-4-0 to 13-6-15, Zone1 13-6-15 to 18-8-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 161 lb uplift at joint 7 and 174 lb uplift at joint 11.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.ipinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / Mitek-US.com

Job 4789421	Truss T31	Truss Type Roof Special	Qty 1	Ply 1	MILLER RES.	T38148136
----------------	--------------	----------------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055, 8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:46 2025 Page 1 ID:2eRY39KFhR2benj7cX?4RUzckGi-ByoqPlgDXq8w0viTqdJzwccNdR8PA02hGT3DhUyqVop

3-10-0 7-6-0 9-4-0 13-10-4 18-8-0
3-10-0 3-8-0 1-10-0 4-6-4 4-9-12

Scale = 1:41.2

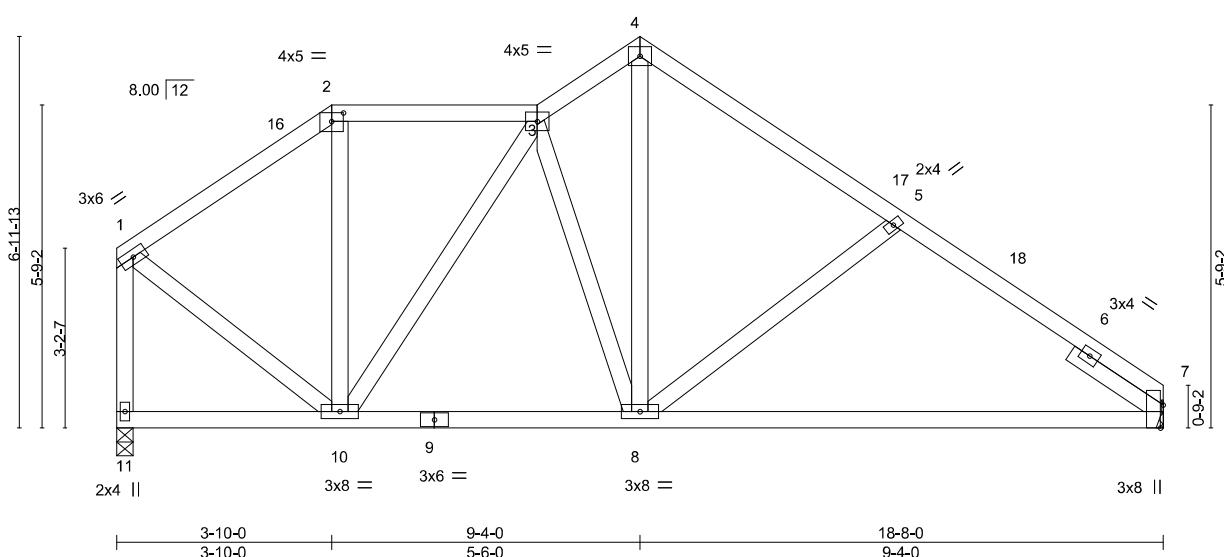


Plate Offsets (X,Y) - [2:0-2-8,0-1-13], [7:0-4-15,Edge]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.23	Vert(LL)	-0.13	8-14	>999	240	
TCDL 10.0	Lumber DOL	1.25	BC 0.63	Vert(CT)	-0.26	8-14	>840	180	
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.28	Horz(CT)	0.01	7	n/a	n/a	
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS					Weight: 117 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3
SLIDER Right 2x4 SP No.3 1-11-8

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 7=Mechanical, 11=0-3-8

Max Horz 11=160(LC 13)
Max Uplift 7=161(LC 13), 11=174(LC 12)
Max Grav 7=741(LC 1), 11=741(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-566/187, 2-3=-422/194, 3-4=-662/256, 4-5=-730/226, 5-7=-883/253,
1-11=-704/227

BOT CHORD 8-10=-99/606, 7-8=-154/734
WEBS 3-10=-340/107, 4-8=-162/508, 5-8=-281/201, 1-10=-116/514

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 0-1-12 to 3-1-12, Zone1 3-1-12 to 3-10-0, Zone3 3-10-0 to 7-6-0, Zone1 7-6-0 to 9-4-0, Zone2 9-4-0 to 13-6-15, Zone1 13-6-15 to 18-8-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 161 lb uplift at joint 7 and 174 lb uplift at joint 11.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

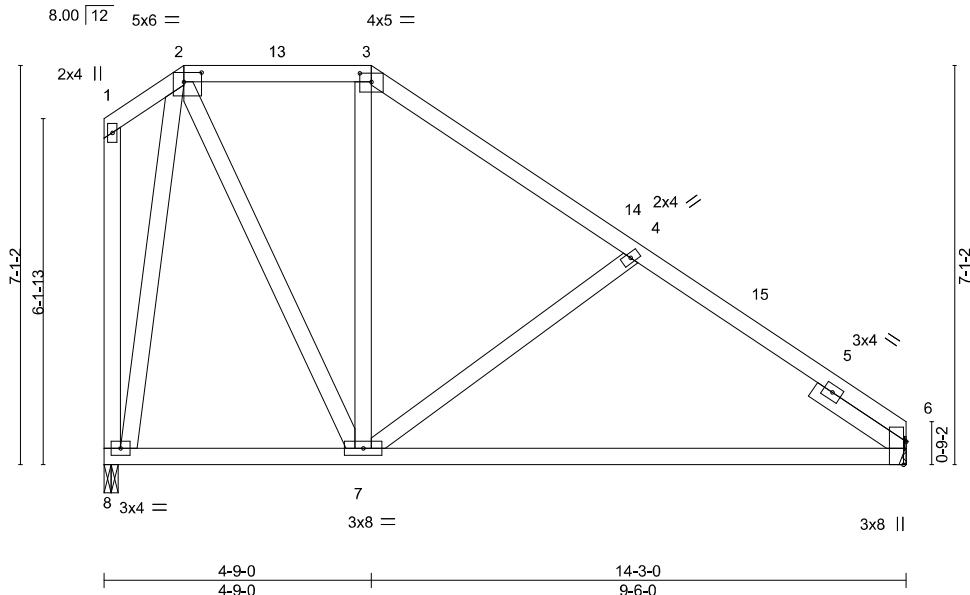
August 7,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.ipinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com

Job 4789421	Truss T32	Truss Type Hip	Qty 1	Ply 1	MILLER RES.	T38148137
----------------	--------------	-------------------	----------	----------	-------------	-----------


Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:47 2025 Page 1

ID:2eRY39KFhR2benj7cX?4RUzckGi-f8MDc5hrH8Gne2HfNkQcSp9VqrUevQRrV7pnDwyqVoo

1-5-0 4-9-0 9-4-4 14-3-0
1-5-0 3-4-0 4-7-4 4-10-12

Scale = 1:41.0

4-9-0 14-3-0
4-9-0 9-6-0

Plate Offsets (X,Y) - [2:0-3-12,0-2-0], [3:0-2-8,0-1-13], [6:0-4-15,Edge]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.33	Vert(LL)	-0.15	7-11	>999	240	
TCDL 10.0	Lumber DOL	1.25	BC 0.63	Vert(CT)	-0.31	7-11	>547	180	
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.46	Horz(CT)	-0.02	6	n/a	n/a	
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS					Weight: 96 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3
SLIDER Right 2x4 SP No.3 1-11-8

BRACING-

TOP CHORD Structural wood sheathing directly applied or 5-10-15 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 6=Mechanical, 8=0-3-0

Max Horz 8=-226(LC 13)
Max Uplift 6=-111(LC 13), 8=-181(LC 13)
Max Grav 6=564(LC 1), 8=564(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-275/123, 3-4=-423/98, 4-6=-798/144
BOT CHORD 6-7=-53/504
WEBS 2-7=-166/421, 4-7=-316/214, 2-8=-527/178

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCpI=0.18; MWFRS (envelope) gable end zone and C-C Zone3 0-1-12 to 4-9-0, Zone2 4-9-0 to 8-11-15, Zone1 8-11-15 to 14-3-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 111 lb uplift at joint 6 and 181 lb uplift at joint 8.

This item has been
digitally signed and
sealed by Velez, Joaquin, PE
on the date indicated here.
Printed copies of this
document are not considered
signed and sealed and the
signature must be verified
on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.ipinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / Mitek-US.com

Job 4789421	Truss T33	Truss Type Hip	Qty 1	Ply 1	MILLER RES.	T38148138
----------------	--------------	-------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:47 2025 Page 1

ID:2eRY39KFhR2benj7cX?4RUzckGi-f8MDc5hrH8Gne2HfNKqCSp9W5rUuvQarV7pnDwyqVoo

1-3-8 4-10-8 9-5-0 14-3-0
1-3-8 3-7-0 4-6-8 4-10-0

Scale = 1:40.5

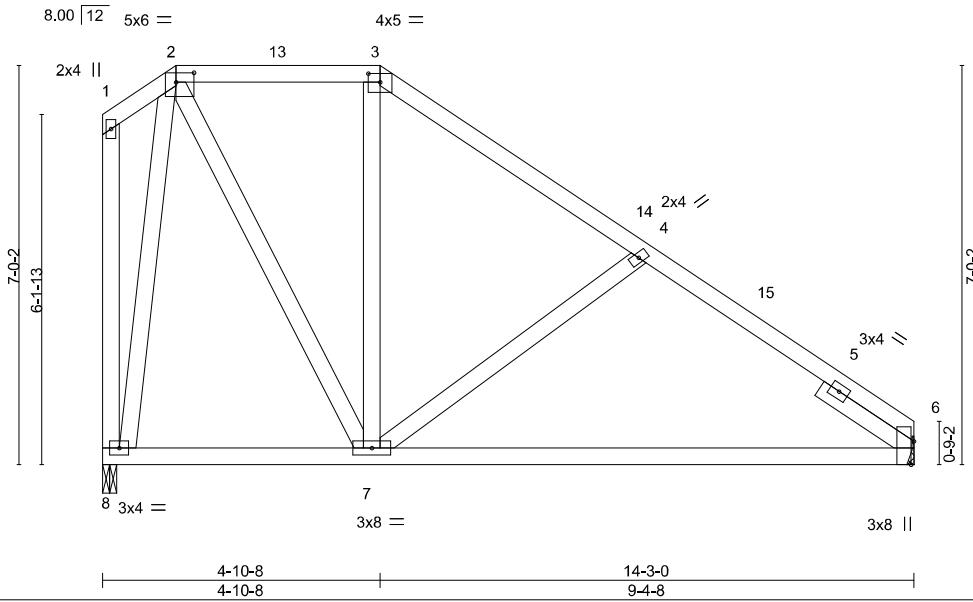


Plate Offsets (X,Y) - [2:0-3-12,0-2-0], [3:0-2-8,0-1-13], [6:0-4-15,Edge]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.31	Vert(LL)	-0.14	7-11	>999	240	
TCDL 10.0	Lumber DOL	1.25	BC 0.61	Vert(CT)	-0.29	7-11	>580	180	
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.45	Horz(CT)	-0.01	6	n/a	n/a	
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS					Weight: 96 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3
SLIDER Right 2x4 SP No.3 1-11-8

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 6=Mechanical, 8=0-3-0

Max Horz 8=-225(LC 13)
Max Uplift 6=-112(LC 13), 8=-181(LC 13)
Max Grav 6=564(LC 1), 8=564(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-282/124, 3-4=-429/99, 4-6=-779/146
BOT CHORD 6-7=-54/505
WEBS 2-7=-167/423, 4-7=-311/211, 2-8=-531/184

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCPi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 0-1-12 to 4-10-8, Zone2 4-10-8 to 9-1-7, Zone1 9-1-7 to 14-3-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 112 lb uplift at joint 6 and 181 lb uplift at joint 8.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.ipinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / Mitek-US.com

Job 4789421	Truss T34	Truss Type Hip Girder	Qty 1	Ply 1	MILLER RES.	T38148139
----------------	--------------	--------------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:48 2025 Page 1
ID:2eRY39KFhR2benj7cX?4RUzckGi-7KwbqRiU2SOeFCssx2LR?1hhNFwiezc_knYKmMyqVon

-1-6-0 5-0-0 6-4-0 11-4-0 12-10-0
1-6-0 5-0-0 1-4-0 5-0-0 1-6-0

Scale = 1:33.3

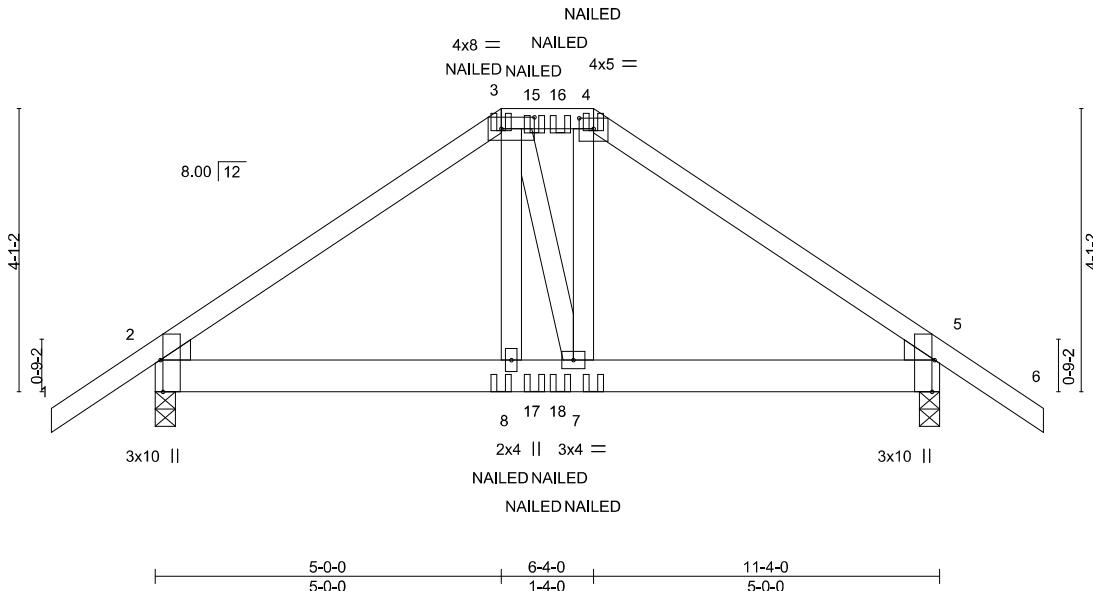


Plate Offsets (X,Y) -- [2:0-5-8,Edge], [3:0-5-12,0-2-0], [4:0-2-8,0-1-13], [5:0-5-8,Edge]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	I/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.28	Vert(LL)	0.02	8 >999	240	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.26	Vert(CT)	-0.02	8 >999	180		
BCLL 0.0 *	Rep Stress Incr	NO	WB 0.08	Horz(CT)	0.01	5 n/a	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS					Weight: 69 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x6 SP No.2
WEBS 2x4 SP No.3

WEDGE

Left: 2x4 SP No.3 , Right: 2x4 SP No.3

REACTIONS. (size) 2=0-3-8, 5=0-3-8

Max Horz 2=-108(LC 6)
Max Uplift 2=-379(LC 8), 5=376(LC 9)
Max Grav 2=775(LC 35), 5=775(LC 36)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-868/483, 3-4=-676/440, 4-5=-871/488
BOT CHORD 2-8=-353/708, 7-8=-356/714, 5-7=-335/691

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCPi=0.18; MWFRS (envelope) gable end zone; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 379 lb uplift at joint 2 and 376 lb uplift at joint 5.
- 8) "NAILED" indicates 3-10d (0.148"x3") or 2-12d (0.148"x3.25") toe-nails per NDS guidelines.
- 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

Vert: 1-3=-60, 3-4=-60, 4-6=-60, 9-12=-20

Concentrated Loads (lb)

Vert: 3=-72(F) 4=-72(F) 8=-42(F) 7=-42(F) 15=-64(F) 16=-64(F) 17=-40(F) 18=-40(F)

This item has been
digitally signed and
sealed by Velez, Joaquin, PE
on the date indicated here.
Printed copies of this
document are not considered
signed and sealed and the
signature must be verified
on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building system. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpiinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / Mitek-US.com

Job 4789421	Truss T35	Truss Type Common	Qty 3	Ply 1	MILLER RES.	T38148140
----------------	--------------	----------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:48 2025 Page 1
ID:2eRY39KFhR2benj7cX?4RUzckGi-7KwbqRiU2SOeFCssx2LR?1hh3Fv8ezQ_knYKmMyqVon

-1-6-0 1-6-0 5-8-0 5-8-0 11-4-0 5-8-0 12-10-0 1-6-0

4x5 =

Scale = 1:29.7

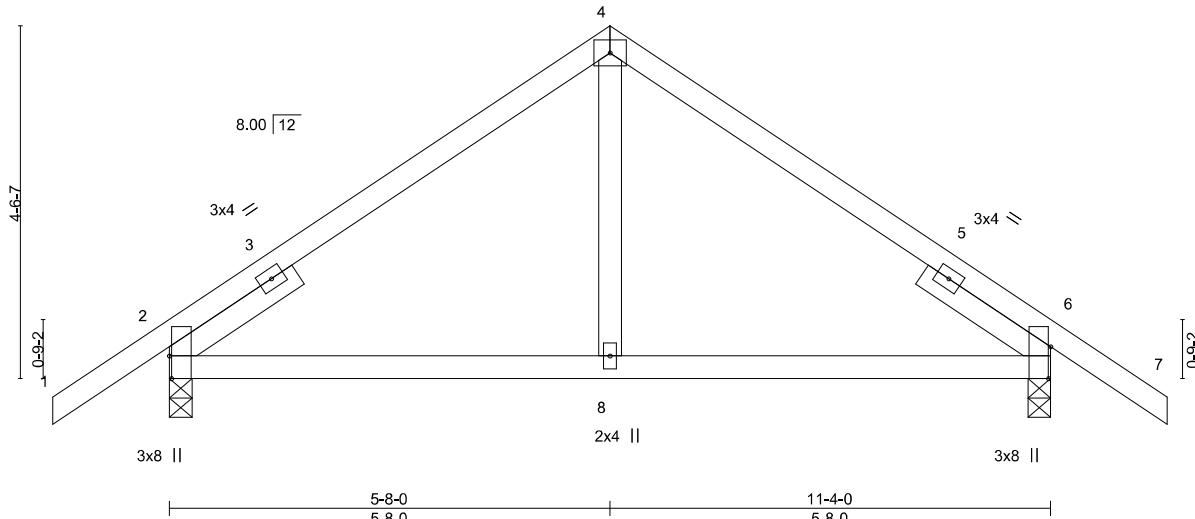


Plate Offsets (X,Y) - [2:0-3-8,Edge], [6:0-4-15,Edge]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.30	Vert(LL)	0.03	8-11	>999	240	
TCDL 10.0	Lumber DOL	1.25	BC 0.29	Vert(CT)	-0.04	8-11	>999	180	
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.09	Horz(CT)	-0.01	2	n/a	n/a	
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS					Weight: 55 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3
SLIDER Left 2x4 SP No.3 1-11-8, Right 2x4 SP No.3 1-11-8

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 2=0-3-8, 6=0-3-8

Max Horz 2=-118(LC 10)
Max Uplift 2=-139(LC 12), 6=-139(LC 13)
Max Grav 2=543(LC 1), 6=543(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-394/189, 4-6=-394/189
BOT CHORD 2-8=-37/340, 6-8=-37/340

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 -1-6-0 to 1-6-0, Zone1 1-6-0 to 5-8-0, Zone2 5-8-0 to 9-10-15, Zone1 9-10-15 to 12-10-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 139 lb uplift at joint 2 and 139 lb uplift at joint 6.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.ipinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com

Job 4789421	Truss T36	Truss Type Common Girder	Qty 1	Ply 1	MILLER RES.	T38148141
----------------	--------------	-----------------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:49 2025 Page 1
ID:2eRY39KFhR2benj7cX?4RUzckGi-bXUz1nj6pIWVtMR2VlsgYEEoMeCINIM8zRltloyqVom

2-10-7 5-8-0 8-5-9 11-4-0
2-10-7 2-9-9 2-9-9 2-10-7

Scale = 1:28.1

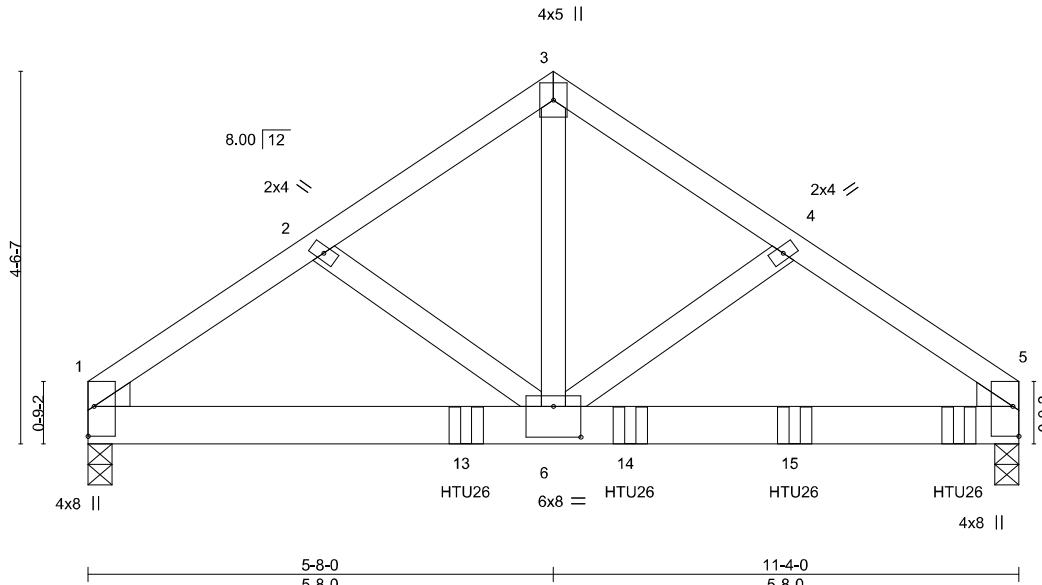


Plate Offsets (X,Y) -- [1:Edge,0-0-14], [5:Edge,0-0-14], [6:0-4-0,0-4-8]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	I/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.52	Vert(LL)	-0.05	6-12	>999	240	
TCDL 10.0	Lumber DOL	1.25	BC 0.49	Vert(CT)	-0.11	6-12	>999	180	
BCLL 0.0 *	Rep Stress Incr	NO	WB 0.62	Horz(CT)	-0.00	5	n/a	n/a	
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS					Weight: 64 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x6 SP 2400F 2.0E or 2x6 SP M 26
WEBS 2x4 SP No.3

WEDGE

Left: 2x4 SP No.3 , Right: 2x4 SP No.3

REACTIONS. (size) 1=0-3-8, 5=0-3-8

Max Horz 1=-93(LC 25)
Max Uplift 1=268(LC 8), 5=503(LC 9)
Max Grav 1=1210(LC 1), 5=2230(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-1765/404, 2-3=-1664/401, 3-4=-1695/405, 4-5=-1855/426

BOT CHORD 1-6=-349/1401, 5-6=331/1568

WEBS 3-6=-369/1637, 4-6=-266/148

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 268 lb uplift at joint 1 and 503 lb uplift at joint 5.
- 7) Use Simpson Strong-Tie HTU26 (20-10d Girder, 11-10dx1 1/2 Truss) or equivalent spaced at 2-0-0 oc max. starting at 4-7-4 from the left end to 10-7-4 to connect truss(es) to back face of bottom chord.
- 8) Fill all nail holes where hanger is in contact with lumber.
- 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25
Uniform Loads (plf)

Vert: 1-3=60, 3-5=60, 7-10=20

Concentrated Loads (lb)

Vert: 12=-724(B) 13=-544(B) 14=-544(B) 15=-721(B)

This item has been
digitally signed and
sealed by Velez, Joaquin, PE
on the date indicated here.
Printed copies of this
document are not considered
signed and sealed and the
signature must be verified
on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.ipinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

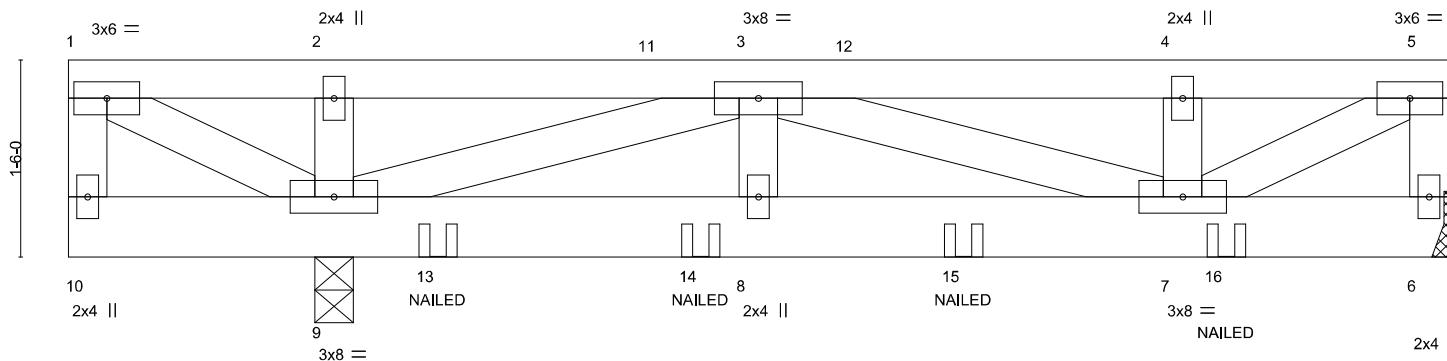
MiTek
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / Mitek-US.com

Job 4789421	Truss TF01	Truss Type Flat Girder	Qty 1	Ply 2	MILLER RES.	T38148142
----------------	---------------	---------------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:50 2025 Page 1

ID:2eRY39KFhR2benj7cX?4RUzckGl-3j2LF7kka3eLVW0E3SNv4Sn132a96oDHB41RqFyqVol


2-0-4
2-0-4

5-3-0
3-2-12

8-5-12
3-2-12

10-6-0
2-0-4

Scale = 1:17.6

1-10-8 2-0-4 5-3-0 8-5-12 10-6-0
1-10-8 0-1-12 3-2-12 3-2-12 2-0-4

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.27	Vert(LL)	-0.02	7-8	>999	240	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.32	Vert(CT)	-0.04	7-8	>999	180		
BCLL 0.0 *	Rep Stress Incr	NO	WB 0.39	Horz(CT)	0.01	6	n/a	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS						Weight: 120 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x6 SP No.2
WEBS 2x4 SP No.3

REACTIONS. (size) 6=Mechanical, 9=0-3-8
Max Uplift 6=-465(LC 4), 9=-694(LC 4)
Max Grav 6=1383(LC 1), 9=2111(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 3-4=-1863/635, 4-5=-1863/635, 5-6=-1267/433

BOT CHORD 8-9=-799/2326, 7-8=-799/2326

WEBS 2-9=-855/296, 3-9=-2475/835, 3-7=-490/181, 4-7=-753/267, 5-7=-703/2062

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Unbalanced roof live loads have been considered for this design.

4) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone; Lumber DOL=1.60 plate grip DOL=1.60

5) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

6) Provide adequate drainage to prevent water ponding.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

9) Refer to girder(s) for truss to truss connections.

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 465 lb uplift at joint 6 and 694 lb uplift at joint 9.

11) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidelines.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

Vert: 1-5=280, 6-10=20

Concentrated Loads (lb)

Vert: 13=-108(B) 14=-108(B) 15=-108(B) 16=-108(B)

This item has been
digitally signed and
sealed by Velez, Joaquin, PE
on the date indicated here.
Printed copies of this
document are not considered
signed and sealed and the
signature must be verified
on any electronic copies.

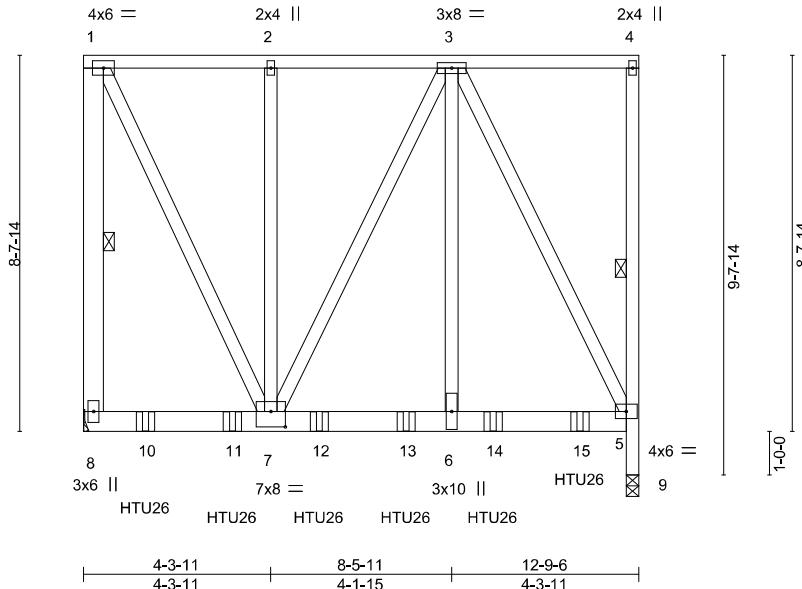
Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpiinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / Mitek-US.com


Job 4789421	Truss TG01	Truss Type Roof Special Girder	Qty 1	Ply 2	MILLER RES.	T38148143
----------------	---------------	-----------------------------------	----------	----------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:50 2025 Page 1
ID:2eRY39KFhR2benj7cX?4RUzckGl-3j2LF7kka3eLVW0E3SNv4Sn0u2XS6gqHB41RqFyqVol

4-3-11 8-5-11 12-9-6
4-3-11 4-1-15 4-3-11

Scale = 1:53.1

4-3-11 8-5-11 12-9-6
4-3-11 4-1-15 4-3-11

Plate Offsets (X,Y) - [7:0-4-0,0-4-4]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.34	Vert(LL)	-0.03	5-6 >999	240	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.56	Vert(CT)	-0.06	5-6 >999	180		
BCLL 0.0 *	Rep Stress Incr	NO	WB 0.93	Horz(CT)	0.05	9 n/a	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS					Weight: 286 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x6 SP No.2
WEBS 2x4 SP No.3 *Except*
1-8: 2x6 SP No.2, 4-9: 2x4 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.
WEBS 1 Row at midpt 1-8, 4-9

REACTIONS. (size) 8=Mechanical, 9=0-3-8

Max Uplift 8=-1109(LC 4), 9=-1107(LC 4)
Max Grav 8=3257(LC 2), 9=3252(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-8=-2511/876, 1-2=-1215/413, 2-3=-1215/413, 5-9=-3252/1107
BOT CHORD 6-7=-415/1218, 5-6=-415/1218
WEBS 1-7=-911/2682, 3-6=-681/2170, 3-5=-2665/908

NOTES-

- 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:
Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc, 2x4 - 1 row at 0-9-0 oc.
Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.
Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=22ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone; Lumber DOL=1.60 plate grip DOL=1.60
- 5) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 6) Provide adequate drainage to prevent water ponding.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Refer to girder(s) for truss to truss connections.
- 10) Bearing at joint(s) 9 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1109 lb uplift at joint 8 and 1107 lb uplift at joint 9.
- 12) Use Simpson Strong-Tie HTU26 (20-10d Girder, 11-10dx1 1/2 Truss) or equivalent spaced at 2-0-0 oc max. starting at 1-5-2 from the left end to 11-5-2 to connect truss(es) to front face of bottom chord.
- 13) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S) Standard

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.ipinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

This item has been
digitally signed and
sealed by Velez, Joaquin, PE
on the date indicated here.
Printed copies of this
document are not considered
signed and sealed and the
signature must be verified
on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

Job 4789421	Truss TG01	Truss Type Roof Special Girder	Qty 1	Ply 2	MILLER RES.	T38148143
----------------	---------------	-----------------------------------	----------	-----------------	-------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055, 8.830 s Jul 24 2025 MiTek Industries, Inc. Wed Aug 6 17:01:50 2025 Page 2
ID:2eRY39KFhR2benj7cX?4RUzckGl-3j2LF7kka3eLVW0E3SNv4Sn0u2XS6gqHB41RqFyqVol

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

Vert: 1-4=-60, 5-8=-20

Concentrated Loads (lb)

Vert: 10=-814(F) 11=-814(F) 12=-814(F) 13=-814(F) 14=-814(F) 15=-814(F)

This item has been
digitally signed and
sealed by Velez, Joaquin, PE
on the date indicated here.
Printed copies of this
document are not considered
signed and sealed and the
signature must be verified
on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 7,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.ipinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / Mitek-US.com

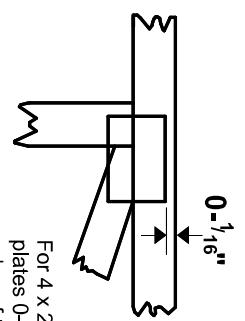

Symbols

PLATE LOCATION AND ORIENTATION

Center plate on joint unless x, y offsets are indicated.

Dimensions are in ft-in-sixteenths.

Apply plates to both sides of truss and fully embed teeth.

For 4 x 2 orientation, locate plates 0-1/16" from outside edge of truss.

This symbol indicates the required direction of slots in connector plates.

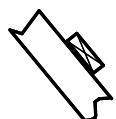

* Plate location details available in MiTek software or upon request.

PLATE SIZE

4 x 4

The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

BEARING

Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number/letter where bearings occur. Min size shown is for crushing only.

Industry Standards:

ANSI/TPI1: National Design Specification for Metal Plate Connected Wood Truss Construction.

DSB-22: Design Standard for Bracing.

BCSI: Building Component Safety Information, Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses.

Numbering System

6-4-8 dimensions shown in ft-in-sixteenths (Drawings not to scale)

1. Joint ID

2. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.

3. Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.

4. Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.

5. Never exceed the design loading shown and never slack materials on inadequately braced trusses.

6. Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI1.

7. Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI1.

8. Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.

9. Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.

10. Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.

11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.

12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.

13. Top chords must be sheathed or purlins provided at spacing indicated on design.

14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.

15. Connections not shown are the responsibility of others.

16. Do not cut or alter truss member or plate without prior approval of an engineer.

17. Install and load vertically unless indicated otherwise.

18. Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.

19. Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.

20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.

21. The design does not take into account any dynamic or other loads other than those expressly stated.

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.

2. Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.

3. Never exceed the design loading shown and never slack materials on inadequately braced trusses.

4. Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.

5. Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI1.

6. Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI1.

7. Unless otherwise noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.

8. Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.

9. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.

10. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.

11. Top chords must be sheathed or purlins provided at spacing indicated on design.

12. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.

13. Connections not shown are the responsibility of others.

14. Do not cut or alter truss member or plate without prior approval of an engineer.

15. Install and load vertically unless indicated otherwise.

16. Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.

17. Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.

18. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.

19. The design does not take into account any dynamic or other loads other than those expressly stated.

MitTek®