

RE: 1023-067 -

Site Information:

Customer Info: RICHARD ECHEVERRI Project Name: . Model: . Lot/Block: . Address: ., City: LAKE CITY

Subdivision: .

State: FL.

MiTek, Inc. 16023 Swinalev Ridae Rd. Chesterfield, MO 63017 314.434.1200

Name Address and License # of Structural Engineer of Record, If there is one, for the building. Name: License #: Address:

City:

State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: FBC2020/TPI2014 Wind Code: ASCE 7-16 Roof Load: 40.0 psf

Design Program: MiTek 20/20 8.7 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 96 individual, Truss Design Drawings and 0 Additional Drawings. With my seal affixed to this sheet, I hereby certify that I am the Truss Design Engineer and this index sheet conforms to 61G15-31.003, section 5 of the Florida Board of Professional Engineers Rules.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	T32352909	A01	12/13/23	23	T32352931	G01	12/13/23
2	132352910	A02	12/13/23	24	132352932	G02	12/13/23
3	132352911	AU3	12/13/23	25	132352933	GU3	12/13/23
4	132352912	AJA	12/13/23	26	132352934	G04	12/13/23
5	132352913	A04 A05	12/13/23	21	132352935	GUS	12/13/23
0	T22252015	A05 A06	12/13/23	20	T22252027		12/13/23
8	T32352016	R01	12/13/23	29	T32352038	H02	12/13/23
ğ	T32352917	B02	12/13/23	31	T32352930	H03	12/13/23
10	T32352918	B03	12/13/23	32	T32352940	H04	12/13/23
11	T32352919	B04	12/13/23	33	T32352941	H05	12/13/23
12	T32352920	C01	12/13/23	34	T32352942	H06	12/13/23
13	T32352921	Č02	12/13/23	35	T32352943	H07	12/13/23
14	T32352922	C03	12/13/23	36	T32352944	H08	12/13/23
15	T32352923	C04	12/13/23	37	T32352945	H09	12/13/23
16	T32352924	C05	12/13/23	38	T32352946	H10	12/13/23
17	T32352925	C06	12/13/23	39	T32352947	H11	12/13/23
18	<u>T32352926</u>	CJ01	12/13/23	40	T32352948	H12	12/13/23
19	132352927	CJ02	12/13/23	41	132352949	H13	12/13/23
20	132352928	D01	12/13/23	42	132352950	H14	12/13/23
21	132352929		12/13/23	43	132352951	JUT	12/13/23
22	132352930	003	12/13/23	44	132352952	JUZ	12/13/23

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Mayo Truss Company, Inc..

Truss Design Engineer's Name: Lee, Julius

My license renewal date for the state of Florida is February 28, 2025.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Reviewed for Code Complianc

16023 Swingley Ridge Rd. Chesterfield, MO 63017

December 14,2023

RE: 1023-067 -

Site Information:

Customer Info: RICHARD ECHEVERRI Project Name: . Model: . Lot/Block: . Subdivision: . Address: ., . City: LAKE CITY State: FL.

No.	Seal#	Truss Name	Date
N $4447890123455555555555666666666666677777777777778901233455678890123345567899999999999999999999999999999999999$	Seal# T32352953 T32352954 T32352955 T32352956 T32352957 T32352959 T32352960 T32352960 T32352961 T32352962 T32352963 T32352964 T32352964 T32352965 T32352967 T32352967 T32352967 T32352970 T32352970 T32352970 T32352971 T32352972 T32352974 T32352977 T32352974 T32352977 T32352977 T32352977 T32352977 T32352978 T32352977 T32352978 T32352978 T32352980 T32352980 T32352981 T32352984 T32352985 T32352988 T32352984 T32352988 T32352988 T32352988 T32352988 T32352988 T32352988 T32352988 T32352988 T32352988 T32352988 T32352990 T32352990 T32352990 T32352991 T32352992 T32352993 T3235293 T323	Truss Name J03 J04 J05 J06 J07 J08 J09 J10 J11 J12 J13 J14 J15 J16 J17 J18 J17 J18 J19 J20 J21 J22 J23 K01 K02 K03 K04 K05 M01 M02 PB01 PB02 PB03 PB04 PB05 PB06 PB07 PB08 PB07 PB07 PB08 PB07 PB08 PB07 PB07 PB08 PB07 PB07 PB08 PB07 PB07 PB07 PB07 PB07 PB08 PB07 PB07 PB07 PB08 PB07 PB07 PB07 PB08 PB07 PB07 PB07 PB08 PB07 PB08 PB07 PB07 PB07 PB07 PB07 PB07 PB07 PB07 PB08 PB07 PB07 PB07 PB07 PB07 PB08 PB07 PB07 PB07 P008 PB11 V01 V02 V03 V04 V05 V06 V07 V08 V07 V08 V07 V10 V11 V11 V11 V11 V11 V11 V11	Date 12/13/23
90	132333004	VIZ	12/13/23

MiTek, Inc. 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200

Job	Truss	Truss Type	Qty	Ply		
1023-067	A01	Half Hip Girder	1	2	Job Reference (optional)	T32352909

Run: 8,73 S Nov 13 2023 Print: 8,730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:01 ID:sbJcuRMYaoRgZ4nv0RVfosyOIYD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:99.3

		1										1	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25		тс	0.31	Vert(LL)	0.04	15-16	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.25		BC	0.38	Vert(CT)	-0.06	16-17	>999	180		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.40	Horz(CT)	0.00	12	n/a	n/a		
BCDL	10.0	Code	FBC202	0/TPI2014	Matrix-MS							Weight: 883 lb	FT = 20%
BCLL BCDL LUMBER TOP CHORD BOT CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD	0.0* 10.0 2x6 SP No.2 2x6 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood shea 6-0-0 oc purlins, exx Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 15 (size) 2=0-3-0, 1 15=37-11: 17=37-11: 17=37-11: 17=37-11: 17=37-11: 17=37-11: 17=37-11: 17=37-11: 17=37-11: 17=37-11: 17=37-11: 17=37-11: 17=37-11: 17=37-11: 10=37-	Rep Stress Incr Code athing directly applied cept end verticals. applied or 10-0-0 oc -16,14-15. 2=0-5-8, 14=37-11-8, -8, 16=37-11-8, -8, 16=37-11-8, -8, 12=-1080 (LC 5), (LC 8), 15=-839 (LC 5), (LC 8), 15=-839 (LC 5), (LC 13), 15=-839 (LC 6), 219), 12=1566 (LC 1: (LC 14), 15=1929 (LC 885 (LC 13), 17=140) 885 (LC 13), 17=1400 855 (LC 13), 17=1400855 (LC 13), 17=1	NO FBC202 NC 1) i or 2) 5, 3) (8), , 3) (8), , 3) (8), , 3) (8), , (2), (7) (7) (7) (7) (7) (7) (7) (7) (7) (7)	0/TPI2014 2-ply truss to (0.131"x3") in Top chords c staggered at Bottom chord staggered at Web connect All loads are except if note CASE(S) see provided to d unless othern Wind: ASCE Vasd=101mp B=45ft; L=56 MWFRS (dire end vertical I plate grip DC Building Des verifying app requirements Provide adedc This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and ar All bearings a Provide mech bearing plate joint 12, 57 lk lb uplift at join at joint 14, 60 joint 15.	WB Matrix-MS be connected tog ails as follows: connected as follow 0-9-0 oc, 2x4 - 1 is connected as follow ted as follows: 2x4 considered equal ad as front (F) or b tion. Ply to ply co istribute only load vise indicated. 7-16; Vult=130mg h; TCDL=6.0psf; ft; eave=7ft; Cat. ectional); cantileve eft and right expor DL=1.60 igner / Project eng lied roof live load a specific to the us juate drainage to s been designed i ad nonconcurrent tas been designed n chord in all area by 2-00-00 wide pother members are assumed to be hanical connection capable of withst o uplift at joint 25	0.40 gether wi ws: 2x6 - row at 0- ollows: 2 4 - 1 row ly applie back (B) nnection ls noted oh (3-sec BCDL=6 BCDL=6 II; Exp B er left an sed; Lun gineer re shown c se of this prevent for a 10. with ag for a liv s where ill fit betw, with any d for a liv s where ill fit betw at joint 16 and 8	Horz(CT) th 10d - 2 rows -9-0 oc. x6 - 2 rows at 0-9-0 oc. d to all plies, s have been as (F) or (B), cond gust) 3.0psf; h=15ft; ; Enclosed; d right expose ber DOL=1.6 sponsible for overs rain loa truss compor water ponding 0 psf bottom other live loa re coad of 20.0 a rectangle veen the botto DL = 10.0psf 2. ers) of truss t 1080 lb uplift at lift at joint 17, 8, 1505 lb up 339 lb uplift at	0.00 DAD ; ed ; 50 ading nent. g. dds. 0psf om f. so to at 92 plift t	12 10) Use 12- the cho 11) Use nail star con 12) Fill 13) "NA (0.1) 14) Har provision 10 d 7799 of s othe LOAD (1) De Pl: Ur Co	n/a MiTek 10d nail: left end rd. a MiTek s into Tr s into Tr s into Tr ing at 4 nect true all nail h ILED" in 48"x3.2 nger(s) c vided su own and l b up ai uch con ers. CASE(S cad + Ro ate Incre- iform Ld Vert: 4-1 oncentra	n/a THD226 s into 1 to con UUS26 uss) o o r.7-10-C ss(es) oles w dicate 5") toe r othe fficient ± 55") toe r othe fficient ± 55") to con the to con to to to to to to con to con to con to con to con to con to con to con to con to con to to con to con to con to con to con to con to con to con to con to to con to co to co to co to co to co to co to co to co to to co to to co to co to to to co to to to to to to to to to to to to to	Weight: 883 lb 5-2 (With 18-16d Truss) or equivale inect truss(es) to 6 (With 4-10d nail r equivalent space 1 from the left enc to back face of b there hanger is in s 3-10d (0.148"x -nails per NDS g r connection devit to support conce b up at 45-100, -12 on top chord. n device(s) is the ndard e (balanced). LUS 6-11-60.02221 ads (Ib) 0 R 0 R 0 R	FT = 20% nails into Girder & ant at 15-10-12 from back face of bottom s into Girder & 2-10d ied at 2-0-0 oc max. to 53-10-0 to ottom chord. contact with lumber. 3") or 3-12d uidlines. ice(s) shall be entrated load(s) 335 and 330 lb down and The design/selection responsibility of her Increase=1.25, 4.80, 1-4=-60 8.69 MAAN
	5-18=-231/39, 9-14= 7-16=-444/38, 6-16= 8-15=-750/0, 10-13= 10-14=-1407/556, 10	-736/608, 8-14=-235/ -91/30, 7-15=-101/30 -792/1248, D-12=-1158/501	/20,),	at joint 14, 60 joint 15.	J6 ID uplift at joint	16 and 8	339 lb uplift at	t		Ji M 10 D	alius Le liTek Ir 5023 Sw ate:	ee PE No. 34869 nc. DBA MiTek USA vingley Ridge Rd. C	A FL Cert 6634 Chesterfield, MO 63017

December 14,2023

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quility Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Plate Offsets (X, Y): [2:0-2-12,Edge], [3:0-4-0,0-4-8], [6:0-5-4,0-3-0], [8:0-4-0,0-4-8], [10:0-4-0,0-4-8], [14:0-4-0,0-4-8], [16:0-4-0,0-4-8], [19:0-4-0,0-4-8], [10:0-4-0,0-4-0,0-4-0,0-4-0,0-4-0,0-4-0,0-4-0,0-4-0,0-4-0,0-4-0,0-4-0,0-4-0,0-4-0,0-4-0,0-4-0,0-4-0,0-

Job	Truss	Truss Type	Qty	Ply		
1023-067	A01	Half Hip Girder	1	2	Job Reference (optional)	132352909

Vert: 11=260 (B), 19=-1247 (B), 9=267 (B), 24=-30 (B), 26=-66 (B), 29=83 (B), 30=83 (B), 31=83 (B), 32=83 (B), 33=83 (B), 35=83 (B), 36=83 (B), 37=-97 (B), 38=-97 (B), 39=-97 (B), 40=-97 (B), 41=-153 (B), 42=-189 (B), 43=-148 (B), 44=-251 (B), 45=-251 (B), 47=-251 (B), 48=-251 (B), 49=-270 (B), 50=-270 (B), 52=-270 (B), 53=-270 (B), 54=-270 (B), 55=-270 (B), 56=-270 (B), 57=-344 (B), 59=-344 (B), 60=-344 (B), 62=-344 (B)

Run: 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:01 ID:sbJcuRMYaoRgZ4nv0RVfosyOIYD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	
1023-067	A02	Half Hip	1	1	T32352910 Job Reference (optional)

Run: 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:02 ID:egrUiosuhikicX?zTFFVVjyOIXZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:99.6

late Offsets (X, Y): [2:0-2-12,Edge], [3:0-4-0,0-4-8], [6:0-5-4,0-3-0], [8:0-4-0,0-4-8], [10:Edge,0-3-8], [13:0-3-0,0-3-4], [17:0-2-4,0-3-4]													
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.25	ТС	0.54	Vert(LL)	-0.29	14-15	>999	240	MT20	244/190	
TCDL	10.0	Lumber DOL	1.25	BC	0.93	Vert(CT)	-0.51	14-15	>999	180			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.98	Horz(CT)	0.14	11	n/a	n/a			
BCDL	10.0	Code	FBC2020/TPI2014	Matrix-AS							Weight: 404 lb	FT = 20%	

LUMBER	
TOP CHORD	2x6 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x4 SP No.2 *Except*
	11-9,14-6,13-7,12-8:2x4 SP No.1
BRACING	
TOP CHORD	Structural wood sheathing directly applied
	except end verticals
BOT CHORD	Rigid ceiling directly applied.
WEBS	1 Row at midpt 10-11, 5-15, 7-14, 7-13.
	8-12
WEBS	2 Rows at 1/3 pts 9-11
REACTIONS	(size) 2=0-3-0, 11=0-5-8, 18=0-5-8
	Max Horiz 2=270 (LC 11)
	Max Uplift 2=-63 (LC 8), 11=-2 (LC 12)
	Max Grav 2=165 (LC 1), 11=2193 (LC 17).
	18=2959 (LC 17)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	4-5=-3346/364, 5-6=-3000/380,
	6-7=-2846/387, 7-9=-2468/337,
	9-10=-143/146, 10-11=-184/83, 1-2=0/31,
	2-4=-3146/1092
BOT CHORD	2-18=-925/97, 16-18=-818/3137,
	14-16=-478/3033, 12-14=-388/2882,
	11-12=-229/1573
WEBS	3-18=-2666/373, 3-17=-394/4015,
	4-17=-898/192, 4-16=-147/57, 5-16=0/272,
	5-15=-574/104, 6-15=-1/738,
	9-11=-2455/237, 7-14=-81/173, 6-14=-31/411,
	7-13=-609/104, 8-13=0/793, 8-12=-1460/151,
	9-12=-26/1495
NOTES	

 Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=56ft; eave=7ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-6-0 to 4-1-7, Interior (1) 4-1-7 to 26-4-6, Exterior(2R) 26-4-6 to 34-3-12, Interior (1) 34-3-12 to 56-0-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 Building Designer (Preject explored reactions for

- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
 Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
6) All bearings are assumed to be SP No.2.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 2 lb uplift at joint 11 and 63 lb uplift at joint 2.

 This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

Julius Lee PE No. 34869 Mi'Tek Inc. DBA Mi'Tek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

December 14,2023

Page: 1

Job	Truss	Truss Type	Qty	Ply	
1023-067	A03	Half Hip	1	1	T32352911 Job Reference (optional)

Run: 8 73 S. Nov 13 2023 Print: 8 730 S. Nov 13 2023 MiTek Industries. Inc. Wed Dec 13 08:11:02 ID:04ODsqn?UFeIZp4LkR5Yv1yOIV5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:99.9

Plate Offsets (2	X, Y): [2:0-2-12,Edge], [[3:0-4-0,0-4-8], [8:	0-4-0,0-4-8], [10:Edge,0-	-2-0], [13:0-2-8,	0-3-4], [17:0	-2-12,0-3-0]							
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.58	Vert(LL)	-0.24	15-16	>999	240	MT20	244/190	
TCDL	10.0 l	Lumber DOL	1.25	BC	0.87	Vert(CT)	-0.42	15-16	>999	180			
BCLL	0.0* F	Rep Stress Incr	YES	WB	0.95	Horz(CT)	0.13	11	n/a	n/a			
BCDL	10.0	Code	FBC2020/TPI2014	Matrix-AS							Weight: 428 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING	2x6 SP No.2 2x4 SP No.2 2x4 SP No.2 *Except*	11-9:2x4 SP SS	 Wind: ASCE Vasd=101m B=45ft; L=5l MWFRS (dii 4-0-12, Inter 	7-16; Vult=130 ph; TCDL=6.0p 6ft; eave=7ft; C rectional) and C rior (1) 4-0-12 to	Omph (3-sec osf; BCDL=6 at. II; Exp B; C-C Exterior(o 29-8-6, Ex	cond gust) .0psf; h=15ft ; Enclosed; 2E) -1-6-0 to terior(2R) 29	;;))-8-6						

BRACING										
TOP CHORD	Structural	wood she	eathing directly applied,							
	except end	d verticals	5.							
BOT CHORD	Rigid ceilir	Rigid ceiling directly applied.								
WEBS	1 Row at r	nidpt	10-11, 5-15, 7-15, 7-13	3						
WEBS	2 Rows at	1/3 pts	8-12, 9-11							
REACTIONS	(size)	2=0-3-0,	11=0-5-8, 18=0-5-8							
	Max Horiz	2=320 (L	C 11)							
	Max Uplift	2=-64 (LC	C 8), 11=-4 (LC 12)							
	Max Grav	2=175 (L	C 1), 11=2217 (LC 17),							
		18=2963	(LC 17)							
FORCES	(lb) - Maxii	mum Con	npression/Maximum							
	Tension									
TOP CHORD	4-5=-3255	/347, 5-6	=-2713/370,							
	6-7=-2373	/363, 7-9	=-1972/322,							
	9-10=-160	/169, 10-	11=-165/93, 1-2=0/31,							
	2-4=-3079	/1104								
BOT CHORD	2-18=-920	/95, 16-18	8=-816/3095,							
	14-16=-49	8/2958, 1	2-14=-372/2401,							
	11-12=-22	1/1245								
WEBS	3-18=-267	5/364, 3-	17=-373/3974,							
	4-17=-909	/195, 4-10	6=-179/67, 5-16=0/387,	,						
	5-15=-799	/130, 6-1	5=-18/826, 8-13=-41/94	17						
	8-12=-146	1/166, 9-	12=-62/1579,							
	9-11=-230	8/244.7-	14=0/368. 7-15=-203/80	0.						
	7-13=-766	/129	,							
-										

NOTES

1) Unbalanced roof live loads have been considered for this design.

to 37-6-12, Interior (1) 37-6-12 to 56-0-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Building Designer / Project engineer responsible for 3) verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component. Provide adequate drainage to prevent water ponding. 4)
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. All bearings are assumed to be SP No.2 .

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 4 lb uplift at joint 11 and 64 lb uplift at joint 2.

This truss design requires that a minimum of 7/16" 9) structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

December 14,2023

Page: 1

Job	Truss	Truss Type	Qty	Ply	
1023-067	АЗА	Piggyback Base	1	1	T32352912 Job Reference (optional)

Run: 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:10:57 ID:nzWNOdvKapM5D6hDhTFMAeyOITe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:99.9

Plate Offsets (ate Offsets (X, Y): [2:0-2-12, Edge], [3:0-4-0, 0-4-8], [6:0-5-4, 0-3-0], [8:0-5-4, 0-3-0], [9:0-4-0, 0-4-8], [13:0-2-8, 0-3-4], [15:0-2-8, 0-3-4], [17:0-2-8, 0-3-4]													
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES FBC202	0/TPI2014	CSI TC BC WB Matrix-AS	0.51 0.85 0.85	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.22 -0.40 0.11	(loc) 15-16 15-16 11	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 405 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x6 SP No.2 2x4 SP No.2 2x4 SP No.2 *Excep Structural wood she except end verticals (4-9-3 max.): 6-8. Rigid ceiling directly	t* 11-10:2x6 SP No athing directly appli , and 2-0-0 oc purlir applied.	2) .2 ed, is	Wind: ASCE Vasd=101m B=45ft; L=50 MWFRS (dii 4-0-12, Inter 29-3-11 to 3 Exterior(2R) 55-11-12 zo vertical left a	57-16; Vult=130; ph; TCDL=6.0ps fit; eave=7ft; Ca rectional) and C- ior (1) 4-0-12 to 4-10-6, Interior (41-8-11 to 47-3 ne; cantilever lei and right expose	mph (3-sec f; BCDL=6 t. II; Exp B; C Exterior(29-3-11, E: 1) 34-10-6 -7, Interior t and right d;C-C for m	ond gust) .0psf; h=15ft; Enclosed; 2E) -1-6-0 to xterior(2R) to 41-8-11, (1) 47-3-7 to exposed ; en tembers and	; nd		Vert: 11	=-959			
WEBS REACTIONS	1 Row at midpt (size) 2=0-3-0, Max Horiz 2=236 (LC Max Uplift 2=-63 (LC Max Grav 2=196 (LC 18=2905 18=2905	5-15, 6-14, 7-14, 8- 11=0-5-8, 18=0-5-8 C 11) C 8) C 24), 11=4154 (LC (LC 17)	13 3) 18), 4) 5)	DOL=1.60 p Building Des verifying app requirement Provide ade This truss ha	VERS for reaction late grip DOL=1 signer / Project e olied roof live loa s specific to the quate drainage to as been designe	ns shown; I .60 Ingineer res Id shown co use of this Io prevent v d for a 10.0	Lumber sponsible for overs rain loa truss compor vater ponding) psf bottom	ading nent. g.						
FORCES	(Ib) - Maximum Com Tension 4-5=-3242/371, 5-6= 6-7=-2340/389, 7-8= 10-11=-2049/234, 1 8-10=-2380/358	npression/Maximum =-2705/391, =-2340/389, -2=0/31, 2-4=-3129/	6) 1028, 7)	 chord live load nonconcurrent with any other live loads * This truss has been designed for a live load of 20.0p on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 7) All bearings are assumed to be SP No.2. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 63 lb uplift at join 				ids. Opsf om f.				JULIUS		
BOT CHORD	2-18=-841/104, 16-1 14-16=-305/2962, 12 11-12=-42/85	18=-736/3155, 2-14=-206/2054,	8)					to oint				No 34	SE 369	
WEBS	3-18=-2617/346, 3-1 4-17=-858/185, 4-16 5-15=-805/134, 6-15 7-14=-393/128, 8-14 9-13=-12/303, 9-12= 10-12=-182/2017	17=-351/3938, 6=-251/74, 5-16=0/4 5=-20/871, 6-14=-78 4=-66/698, 8-13=-75 633/173,	9) 01, /240, /233, 10	 2. 3) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 						operation				
1) Unbalance this design	ed roof live loads have n.	been considered fo	r LC 1)	Dead + Ro Plate Incre Uniform Lo Vert: 4-6	Standard of Live (balance ase=1.25 ads (lb/ft) 5=-60, 6-8=-60, 1	d): Lumber 1-19=-20,	Increase=1.2	25, 0=-60		J1 M 16	llius Le iTek In 5023 Sw	e PE No. 34869 c. DBA MiTek USA ingley Ridge Rd. C	FL Cert 6634 nesterfield, MO 630	17

Concentrated Loads (lb)

December 14,2023

Page: 1

Date:

Job	Truss	Truss Type	Qty	Ply	
1023-067	A04	Piggyback	1	1	T32352913 Job Reference (optional)

Run; 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:03 ID:qGtnoR3weDAGxH_d4JdsnVyOIcT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:30.3

1-10-6

Loading	(psf)	Spacing	2-0-0		CSI	0.00	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TOLL (root)	20.0	Plate Grip DOL	1.25			0.09	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0		1.25		BC	0.05		n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	TES EBC20	20/7012014	VVB	0.02	Horz(CT)	0.00	6	n/a	n/a	Woight: 41 lb	ET - 200/
	10.0	Code	FBC20	20/1712014	Matrix-AS							weight. 41 lb	FT = 20%
LUMBER			3) Truss desig	ned for wind loads	s in the p	lane of the tr	uss					
TOP CHORD	2x4 SP No.2			only. For stu	ids exposed to wi	nd (norm	al to the face	e),					
BOT CHORD	2x4 SP No.1			see Standard	d Industry Gable E	End Deta	ils as applica	ble,					
WEBS	2x4 SP No.2			or consult qu	alified building de	esigner a	s per ANSI/T	PI 1.					
BRACING			4) Building Des	igner / Project en	gineer re	sponsible for						
TOP CHORD	Structural wood she	athing directly applie	d.	verifying app	lied roof live load	shown c	overs rain loa	ading					
BOT CHORD	Rigid ceiling directly	applied.	-	requirements	s specific to the us	se of this	truss compo	nent.					
REACTIONS	(size) 2=11-2-3,	6=11-2-3, 7=11-2-3,	5	5) Provide adequate drainage to prevent water ponding.									
	8=11-2-3,	9=11-2-3, 10=11-2-3	3, <mark>0</mark>	 Gable study spaced at 4.0.0 or 									
	11=11-2-3	3, 14=11-2-3	1) Gable studs	spaceu al 4-0-0 0	10. for o 10 i	and hottom						
	Max Horiz 2=30 (LC	11), 11=30 (LC 11)	0	chord live los	ad ponconcurrent	with any	other live los	de					
	Max Uplift 2=-21 (LC	C 12), 6=-8 (LC 12), 7	=-55 a	() This trues has been designed for a live load of 20 0 ref									
	(LC 24), 9)=-14 (LC 8), 11=-21	(LC ³	on the bottor	n chord in all area	a where	a rectandle	000					
	12), 14=-8	B (LC 12)		3-06-00 tall b	ov 2-00-00 wide w	ill fit bety	veen the bott	om					
	Max Grav 2=148 (L0	C 1), 6=227 (LC 1), 7	=5	chord and ar	v other members								
	(LC 12), 8	B=204 (LC 1), 9=197	(LC 1	0) All bearings	are assumed to b	e SP No.	1.						
	24), 10=2	19 (LC 1), 11=148 (L	.C 1), 1	1) Provide mec	hanical connectio	n (by oth	ers) of truss	to					
	14=227 (1	_C 1)		bearing plate	e capable of withs	tanding 5	5 lb uplift at	joint					
FORCES	(lb) - Maximum Corr	pression/Maximum		7, 21 lb uplift	at joint 2, 8 lb up	lift at join	t 6, 14 lb upli	ft at					111.
	lension			joint 9, 21 lb	uplift at joint 2 an	d 8 lb up	lift at joint 6.					1111110	1111
TOP CHORD	1-2=0/17, 2-3=-43/3	5, 3-4=-21/43,	1	This truss de	sign requires that	t a minim	um of 7/16"					IL ULIUS	LER
	4-5=-21/43, 5-6=-51	/34, 6-7=-10/46		structural wo	od sheathing be a	applied d	irectly to the	top			SN'	CEA	Volume
BOT CHORD	2-10=-2/31, 9-10=-9	/32, 8-9=-9/32,		chord and 1/	2" gypsum sheetr	ock be a	pplied directly	y to			5		
WEDO	0-0=-12/27 2 10 142/60 E 9	127/50 4 0 160/90		the bottom chord.									
WEB3	3-10=-143/00, 3-8=-	137/39, 4-9=-100/80	1	13) See Standard Industry Piggyback Truss Connection								869	
NOTES Detail for Cor					nnection to base	truss as a	applicable, or				*:		▲ :★ Ξ
1) Unbalanc	ed root live loads have	been considered for		consult quali	tied building desig	gner.					:		
this desig	n. CE 7.40: V/ult. 420mmh	(2 accord suct)	L	OAD CASE(S)	Standard						ט:	XTTL.	
2) Wind: ASCE 7-16; Vuit=130mpn (3-second gust)										J	X AVIU	NON :412	
vasu=10 B_45f+1	-24ft: eave=4ft: Cat II:	Evo B: Enclosed									:0	August	. 41 -
	$- \boldsymbol{\Sigma} \boldsymbol{\tau}_{11}, \boldsymbol{\nabla} \boldsymbol{\alpha}_{1} \boldsymbol{\nabla} \boldsymbol{\omega}_{-} \boldsymbol{\tau}_{11}, \boldsymbol{\nabla} \boldsymbol{\alpha}_{1}, \boldsymbol{\Pi}_{1}$	$rac{1}{2}$									0 A		

MWFRS (directional) and C-C Exterior(2E) 0-3-15 to 3-3-15, Interior (1) 3-3-15 to 3-8-11, Exterior(2R) 3-8-11 to 7-11-10, Interior (1) 7-11-10 to 8-8-5, Exterior(2E) 8-8-5 to 12-1-2 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

December 14,2023

ONAL

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

"IIIIIIIII

Julius Lee PE No. 34869

Date:

Job	Truss	Truss Type	Qty	Ply		
1023-067	A05	Piggyback Base	4	1	Job Reference (optional)	352914

Run: 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:03 ID:ZPhO12R_grM4ydudde18qQyOIRf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1	1:99.9
-----------	--------

Plate Offsets (X, Y): [2:0-2-12,Edge]	, [3:0-4-0,0-4-8], [6:0-5-4,0-3-0], [8:0-5-4,0-3-	0], [9:0-4-0,0-4-8], [12:Edg	ge,0-3-8], [15:0-2-8,0-3-4], [17:0-2-8,0-3-4], [19:0-3-4,0-3-0]

	()			0.01				<i>a</i> >					
Loading	(pst)	Spacing	2-0-0	CSI		DEFL	in	(IOC)	I/defi	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.55	Vert(LL)	-0.21	17-18	>999	240	MT20	244/190	
TCDL	10.0	Lumber DOL	1.25	BC	0.89	Vert(CT)	-0.38	17-18	>999	180			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.82	Horz(CT)	0.10	12	n/a	n/a			
BCDL	10.0	Code	FBC2020/TPI2014	Matrix-MS							Weight: 412 lb	FT = 20%	
			2) Wind: ASC	= 7-16: \/ult=130r	nnh (3-soc	cond quet)							

		2)	Wind: ASCE 7-16; Vult=130mph (3-second gust)
	2x0 SF No.2		B=45ft: $I=56ft$: eave=7ft: Cat. II: Exp. B: Enclosed:
WERS	2x4 SF N0.2 2x4 SP No.2		MWERS (directional) and C-C Exterior(2E) -1-6-0 to
	274 01 100.2		4-0-12. Interior (1) 4-0-12 to 29-3-11. Exterior(2R)
	Structural wood chaothing directly applied or		29-3-11 to 34-10-6, Interior (1) 34-10-6 to 41-8-11,
TOP CHORE	2.0.14 oc purling except and verticals and		Exterior(2R) 41-8-11 to 47-3-7, Interior (1) 47-3-7 to
	3-9-14 oc purlins, except end verticals, and $2.0.0$ oc purlins (4.10.5 max); 6.8		56-0-12 zone; cantilever left and right exposed ; end
	Pigid ceiling directly applied or 6-0-0 oc		vertical left and right exposed;C-C for members and
BOT CHORE	bracing		forces & MWFRS for reactions shown; Lumber
WEBS	1 Row at midpt 5-17 6-16 7-16 8-15		DOL=1.60 plate grip DOL=1.60
REACTIONS	(size) 2-0.3-0 12-0.5-8 13-0.5-8	3)	Building Designer / Project engineer responsible for
REAGINGING	20=0-5-8		verifying applied roof live load shown covers rain loading
	Max Horiz 2=235 (LC 11)		requirements specific to the use of this truss component.
	Max Uplift 2=-61 (LC 8), 12=-901 (LC 19)	4)	Provide adequate drainage to prevent water ponding.
	Max Gray 2=211 (LC 23), 12=-41 (LC 12).	5)	I his truss has been designed for a 10.0 pst bottom
	13=3099 (LC 18), 20=2856 (LC 17)	6)	* This trues has been designed for a live load of 20 Opsf
FORCES	(lb) - Maximum Compression/Maximum	0)	on the bottom chord in all areas where a rectangle
	Tension		3-06-00 tall by 2-00-00 wide will fit between the bottom
TOP CHORD	4-5=-3132/362, 5-6=-2607/384,		chord and any other members, with $BCDL = 10.0psf$.
	6-7=-2236/382, 7-8=-2236/382,	7)	All bearings are assumed to be SP No.2.
	11-12=-123/636, 1-2=0/31, 2-4=-2991/1002,	8)	Provide mechanical connection (by others) of truss to
	8-10=-2231/350, 10-11=-85/189		bearing plate capable of withstanding 61 lb uplift at joint
BOT CHORD	2-20=-817/103, 18-20=-716/3023,		2 and 901 lb uplift at joint 12.
	16-18=-296/2865, 14-16=-187/1925,	9)	Graphical purlin representation does not depict the size
WEDO	13-14=-54/51, 12-13=-51/54		or the orientation of the purlin along the top and/or
WEDS	3-20=-2303/341, 3-19=-334/3791, 4 10_ 960/193 4 19_ 311/64 5 19_0/399		bottom chord.
	5-17797/136 6-1723/864 6-1688/221	LC	DAD CASE(S) Standard
	7-16=-412/137 8-16=-74/740		
	8-15=-131/167, 9-15=0/379, 9-14=-699/162.		
	10-14=-156/1945, 10-13=-2231/368,		
	11-13=-479/35		
NOTES			

1) Unbalanced roof live loads have been considered for

this design.

Julius Lee PE No. 34869 Mi'Tek Inc. DBA Mi'Tek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

December 14,2023

Page: 1

Job	Truss	Truss Type	Qty	Ply	
1023-067	A06	Piggyback Base	1	1	Job Reference (optional)

Run: 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:04 ID:ZuiyZd9hZZX8o1ny9nxStmyOIF6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:97.6

|--|

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.57	Vert(LL)	-0.22	15-16	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.25	BC	0.92	Vert(CT)	-0.40	15-16	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.85	Horz(CT)	0.11	11	n/a	n/a		
BCDL	10.0	Code	FBC2020/TPI2014	Matrix-MS							Weight: 402 lb	FT = 20%

LUMBER TOP CHORD 2x6 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.2 *Except* 11-10:2x6 SP No.2 BRACING TOP CHORD Structural wood sheathing directly applied or 3-8-5 oc purlins, except end verticals, and 2-0-0 oc purlins (4-8-14 max.): 6-8. BOT CHORD Rigid ceiling directly applied or 2-2-0 oc bracing. WEBS 1 Row at midpt 5-15, 6-14, 7-14, 8-13 REACTIONS (size) 2=0-3-0, 11=0-5-8, 18=0-5-8 Max Horiz 2=232 (LC 11) Max Uplift 2=-31 (LC 8) Max Grav 2=94 (LC 23), 11=2161 (LC 18), 18=2913 (I C 17)	 Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=56ft; eave=7ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-0-0 to 5-6-12, Interior (1) 5-6-12 to 29-3-11, Exterior(2R) 29-3-11 to 34-10-6, Interior (1) 34-10-6 to 41-8-11, Exterior(2R) 41-8-11 to 47-3-7, Interior (1) 47-3-7 to 55-11-12 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loa requirements specific to the use of this truss compor Provide adequate drainage to prevent water ponding This truss has been designed for a 10.0 psf bottom
FORCES (Ib) - Maximum Compression/Maximum Tension	 6) * This truss has been designed for a live load of 20.0 on the bottom chord in all areas where a rectangle
TOP CHORD 4-5=-3247/371, 5-6=-2707/391, 6-7=-2344/390, 7-8=-2344/390, 10-11=-2042/237, 1-2=0/9, 2-4=-3136/1011, 8-10=-2376/361	 3-06-00 tall by 2-00-00 wide will fit between the botto chord and any other members, with BCDL = 10.0psf. 7) All bearings are assumed to be SP No.2. 8) Provide mechanical connection (by others) of truss to
BOT CHORD 2-18=-826/91, 16-18=-721/3162, 14-16=-306/2968, 12-14=-208/2049, 11-12=-43/79	 bearing plate capable of withstanding 31 lb uplift at jo Craphical purlin representation does not depict the s
WEBS 3-18=-2617/348, 3-17=-343/3927, 4-17=-857/184, 4-16=-246/66, 5-16=0/403, 5-15=-817/138, 6-15=-24/878, 6-14=-72/250, 7-14=-413/138, 8-14=-71/712, 8-13=-67/238, 9-13=-40/264, 9-12=-600/171, 10-12=-181/2047	 b) Graphical point representation does not depict the s or the orientation of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard

NOTES

Unbalanced roof live loads have been considered for 1) this design.

6-12 to 29-3-11, Exterior(2R) nterior (1) 34-10-6 to 41-8-11, to 47-3-7, Interior (1) 47-3-7 to lever left and right exposed ; end exposed;C-C for members and reactions shown; Lumber DOL=1.60 roject engineer responsible for live load shown covers rain loading to the use of this truss component. inage to prevent water ponding. lesigned for a 10.0 psf bottom ncurrent with any other live loads. designed for a live load of 20.0psf in all areas where a rectangle 00 wide will fit between the bottom members, with BCDL = 10.0psf. med to be SP No.2. connection (by others) of truss to of withstanding 31 lb uplift at joint esentation does not depict the size he purlin along the top and/or ard

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

December 14,2023

Page: 1

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only using the mathematical network of the intervention of the in

Job	Truss	Truss Type	Qty	Ply		
1023-067	B01	Piggyback Base	1	1	Job Reference (optional)	

Run: 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:04 ID:elvJzibO?dzU14Dm?CZp3MyOIBy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

10-2-12 15-5-14 20-7-5 26-9-13 33-<u>0-5</u> 39-8-12 46-5-4 54-4-0 5-3-2 5-3-2 5-1-6 4-11-10 5-3-2 6-2 6-8-7 6-8-7 7-10-12 Bracing 2-8 6x6= 6x6= 23 24625 5 26 7 4x4 -4x4 6¹² 33 27 11-0-0 8 .-8-9 7x8 🖌 3 11-0-0 6x6*=* 12 13 9 4×4. 28 2 6x8= 10 4-3-9 4-3-9 -3-14 0-8-0 ∏ Ř ⊠ 18 19 17 29 16 30 15 31 14 32 13 12 4x4 ı 2x4 II 5x5= 4x8= 5x5= 3x8= 6x6= 6x6= 4x6= 3x5= 10-2-12 20-9-1 26-9-13 32-10-9 39-10-8 46-7-0 5-3-2 15-4 54-4-0 5-3-2 4-11-10 5-1-6 5-4-14 6-0-12 6-0-12 6-11-15 6-8-7 7-9-0

Scale = 1:94.7

BOT CHORD

WEBS

NOTES

Plate Offsets (X, Y): [3:0-4-0,0-4-8], [15:0-2-8,0-3-0], [17:0-2-8,0-3-0]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25		TC	0.27	Vert(LL)	-0.21	13-14	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.25		BC	0.86	Vert(CT)	-0.38	13-14	>999	180		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.72	Horz(CT)	0.09	11	n/a	n/a		
BCDL	10.0	Code	FBC202	0/TPI2014	Matrix-AS							Weight: 411 lb	FT = 20%
LUMBER FOP CHORD 30T CHORD WEBS WEDGE 3RACING FOP CHORD BOT CHORD WEBS REACTIONS	2x6 SP No.2 2x4 SP No.2 2x4 SP No.2 *Excep Left: 2x4 SP No.3 Structural wood sheat except end verticals, (5-2-11 max.): 5-7. Rigid ceiling directly 1 Row at midpt (size) 1=0-3-0, 1 Max Horiz 1=209 (LC Max Uplift 1=-142 (LI Max Grav 1=125 (LC 18=3080 (t* 11-10:2x6 SP No.2 athing directly applie , and 2-0-0 oc purlins applied. 6-16, 8-14, 3-18, 4-1 11=0-5-8, 18=0-5-8 C 11) C 24), 11=-1 (LC 12) C 23), 11=1920 (LC 1 (LC 17)	2) 2 d, 5 7 3) 8), 4) 5)	Wind: ASCE Vasd=101mp B=45ft; L=54 MWFRS (dir 5-3-2, Interio 26-0-8, Interi to 38-5-8, Int left and right exposed;C-C reactions shu DOL=1.60 Building Des verifying app requirements Provide aded This truss ha	7-16; Vult=130mp bh; TCDL=6.0psf; E ft; eave=6ft; Cat. II ectional) and C-C E r (1) 5-3-2 to 20-7- or (1) 26-0-8 to 33- erior (1) 38-5-8 to 3- exposed ; end veri c for members and own; Lumber DOL= igner / Project engi lied roof live load s a specific to the use quate drainage to p is been designed fu	h (3-sec 3CDL=6 3CDL=6 5, Exterior 5, Exte	sond gust) .0psf; h=15ft ; Enclosed; 2E) 0-0-0 to ior(2R) 20-7- terior(2R) 30 cone; cantilev and right & MWFRS for ate grip sponsible for overs rain los truss compo water ponding 0 psf bottom	; -0-5 rer r ading nent. g.					
FORCES	(lb) - Maximum Com	pression/Maximum	6)	* This truss h	as been designed	for a liv	e load of 20.0	opsf					
FOP CHORD	Tension 5-6=-1239/293, 6-7= 7-8=-2266/350, 8-9= 9-10=-3291/312, 10- 1-2=-96/517, 2-492	1974/356, 2989/346, -11=-1782/203, 37/987 4-51443/20	7)	on the bottor 3-06-00 tall to chord and ar All bearings	n chord in all areas by 2-00-00 wide wil by other members, are assumed to be	where I fit betw with BC SP No.	a rectangle veen the bott DL = 10.0ps 2.	om f.			-	JULIUS	
	1-2=-90/01/, 2-4=-8	31/901, 4-3=-1443/2	ງສ 8)	Provide mec	nanical connection	(by oth	ers) of truss f	to				• •	

 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 142 lb uplift at joint 1 and 1 lb uplift at joint 11.
 9) This truss design requires that a minimum of 7/16"

- e) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

1) Unbalanced roof live loads have been considered for this design.

1-19=-432/96, 18-19=-432/57,

16-18=-843/762, 14-16=-93/1754

12-14=-273/3126, 11-12=-39/227

3-18=-2589/303, 4-17=-1340/185,

4-16=-13/994, 3-17=-167/2115

5-16=-6/349, 6-16=-1089/99, 6-15=0/346,

6-14=-28/394, 7-14=-17/643, 8-14=-993/167,

10-12=-236/2997, 2-19=0/212, 2-18=-614/98,

8-13=0/615, 9-13=-650/90, 9-12=-530/151,

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

December 14,2023

Page: 1

Job	Truss	Truss Type	Qty	Ply		
1023-067	B02	Piggyback Base	7	1	Job Reference (optional)	17

Run: 9.04 E 8.73 Nov 16 2023 Print: 8.730 E Nov 16 2023 MiTek Industries, Inc. Thu Dec 14 11:49:11 Page: 1 ID:Qe1UUVjk5ChHhNqexEkdKzyOIAV-Brg72EaJbNaf4?KmpvYqfpQv5AprOekETs1r7Ty9EYs

Scale = 1:96.1

Plate Offsets (X, Y): [ate Offsets (X, Y): [2:Edge,0-1-2], [4:0-4-0,0-4-8], [10:0-4-0,0-4-8], [11:0-5-8,Edge], [16:0-2-8,0-3-0], [18:0-2-4,0-3-0]											
_oading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.31	Vert(LL)	-0.21	14-15	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.25	BC	0.87	Vert(CT)	-0.38	14-15	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.76	Horz(CT)	0.12	11	n/a	n/a		
BCDL	10.0	Code	FBC2020/TPI2014	Matrix-AS							Weight: 401 lb	FT = 20%
-												

LUMBER	
TOP CHORD	2x6 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x4 SP No.2
WEDGE	Left: 2x4 SP No.2
BRACING	• • • • • • • • • • •
TOP CHORD	Structural wood sheathing directly applied,
	except
	2-0-0 00 putitins (5-2-11 max.): 6-8.
	1 Row at midpt 7 17 0 15 4 10 5 19
	(h/size) 2 442/0 2 0 44 4008/0 5 8
REACTIONS	(ID/SIZE) Z=112/0-3-0, 11=1008/0-5-8, 10-26/3/0-5-8
	Max Horiz 2–211 (I C 11)
	Max $ n _{2} = -116 (C 24) 11=-2 (C 12)$
	Max Grav $2=213$ (I C 23) $11=1960$ (I C 18)
	19=3088 (LC 17)
FORCES	(lb) - Max. Comp./Max. Ten All forces 250
	(lb) or less except when shown.
TOP CHORD	6-26=-1232/215, 26-27=-1232/215,
	7-27=-1232/215, 7-28=-1976/245,
	28-29=-1976/245, 8-29=-1976/245,
	2-34=-72/494, 3-34=0/534, 3-4=0/1016,
	4-5=-822/149, $5-6=-1436/215$,
	0-30=-2100/230, 9-33=-2200/197, 0-103021/108 10-363587/168
	11-36=-3672/147
BOT CHORD	2-20=-461/83, 19-20=-461/56.
	18-19=-864/95, 18-30=0/755, 17-30=0/755,
	17-31=0/1752, 16-31=0/1752, 16-32=0/1752,
	15-32=0/1752, 15-33=-27/2577,
	14-33=-27/2577, 13-14=-77/3227,
	11-13=-76/3230
WEBS	6-17=0/345, 7-17=-1097/54, 7-16=0/345,
	7-15=-14/405, 8-15=0/634, 9-15=-1001/106,
	9-14=0/652, 10-14=-736/80, 10-13=0/272,
	3-19=-599/47, 4-19=-2607/143,
	3 - 10 = -1349/97, $3 - 17 = 0/1008$, $4 - 18 = -48/2120$

NOTES

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=54ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-6-0 to 3-10-13, Interior (1) 3-10-13 to 20-7-5, Exterior(2R) 20-7-5 to 26-0-1, Interior (1) 26-0-1 to 33-0-5, Exterior (2R) 33-0-5 to 38-5-2, Interior (1) 38-5-2 to 54-4-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding.
 This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 6) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Provide mechanical connection (by others) of truss to bearing plate at joint(s) 2.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 116 lb uplift at joint 2 and 2 lb uplift at joint 11.
- This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

December 14,2023

Job	Truss	Truss Type	Qty	Ply	
1023-067	B03	Piggyback Base	4	1	Job Reference (optional)

Run; 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:05 ID:huxQl8W?wtgeHjPrQYsZeTyOI6v-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:96.1

Plate Offsets	(X, Y): [4:0-4-0,0-4-8],	[10:0-4-0,0-4-8], [13	0-2-8,0-3-	-4], [15:0-2-8,0	-3-0], [18:0-2-8,0-	-3-0]							
Loading TCLL (roof) TCDL BCLL BCDI	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES FBC202	0/TPI2014	CSI TC BC WB Matrix-AS	0.27 0.74 0.90	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.16 -0.29 0.08	(loc) 13-14 13-14 11	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS WEBS REACTIONS	2x6 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she except 2-0-0 oc purlins (6-0 Rigid ceiling directly 1 Row at midpt 2 Rows at 1/3 pts (size) 2=0-3-0, 1 Max Horiz 2=210 (LC Max Uplift 2=-41 (LC Max Grav 2=576 (LC 17=3084	athing directly applied -0 max.): 6-8. applied. 6-16, 9-14, 5-17, 4-1 7-16 11=0-5-8, 17=0-5-8 C 11) 2 (12) 2 (23), 11=1504 (LC 1 (LC 17)	2) 1, 7 3) 8), 5)	Wind: ASCE Vasd=101m; B=45ft; L=54 MWFRS (dir 3-11-3, Interi to 26-0-8, Inf 33-0-5 to 38- cantilever lef right expose for reactions DOL=1.60 Building Des verifying app requirements Provide adee This truss ha chord live loo	7-16; Vult=130m, ob; TCDL=6.0psf; ff; eave=6ft; Cat. ectional) and C-C ior (1) 3-11-3 to 20 erior (1) 26-0-8 to 5-8, Interior (1) 30 t and right expose d;C-C for member shown; Lumber E igner / Project eng lied roof live load s specific to the us uate drainage to is been designed ad nonconcurrent	ph (3-sec BCDL=6 II; Exp B Exteriori 0-7-5, Ext 3-33-0-5, 8-5-8 to 5 dd; end v rs and for OOL=1.6(gineer re shown c se of this prevent for a 10.1 with any	sponsible for overs rain lock	-7-5 d RS ading nent. g. ds.					
FORCES	(lb) - Maximum Com Tension 6-7=0/245, 7-8=-108 2-3=-613/47, 3-5=-1 8-9=-1279/194, 9-11	pression/Maximum 34/214, 1-2=0/40, 19/885, 5-6=0/267, =-2719/162	6) 7)	* This truss h on the bottor 3-06-00 tall h chord and an All bearings	nas been designed n chord in all area by 2-00-00 wide w ny other members are assumed to be	d for a liv as where rill fit betw , with BC e SP No.	e load of 20.0 a rectangle veen the botto DL = 10.0pst 2.	Opsf om				JULIUS	
BOT CHORD	2-19=-175/501, 17-1 16-17=-749/135, 14- 12-14=-46/2379, 11-	9=-276/501, -16=0/627, -12=-45/2382	8) 9)	Provide mec bearing plate	hanical connectio at joint(s) 2.	n (by oth	ers) of truss t ers) of truss t	.o				Mq 348	369
WEBS NOTES	6-16=-275/10, 7-16= 7-14=-33/903, 8-14= 9-13=0/651, 10-13=- 5-17=-2266/117, 3-1 4-17=-849/73, 3-18=	e-1650/72, 7-15=0/36 e0/243, 9-14=-1016/1 -748/82, 10-12=0/272 9=0/239, 4-18=0/557 e-632/55, 5-16=-23/18	3, 07, 2, 10 342	bearing plate 2.) This truss de structural wo chord and 1/ the bottom c	e capable of withs sign requires that od sheathing be a 2" gypsum sheetr hord.	tanding 4 a minim applied d ock be a	1 lb uplift at j um of 7/16" irectly to the t oplied directly	oint top / to		THUM I	* PRO	fething	All Harris
 Unbalance this design 	ed roof live loads have n.	been considered for	11) Graphical pu or the orienta bottom chore	rlin representation ation of the purlin d. Standard	n does no along the	ot depict the s top and/or	size			111	ONA	ENGINI

LOAD CASE(S) Standard

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

December 14,2023

ONALE minim

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

Julius Lee PE No. 34869

Date:

Job	Truss	Truss Type	Qty	Ply	
1023-067	B04	Нір	1	1	T32352919 Job Reference (optional)

Run: 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:06 ID:RyYJe?YtVBdOkuNrQ_KfeiyOI1i-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:91.8

Plate Offsets (X, Y):	[3:0-4-0,0-4-8], [8:0-4-0,0-4-8], [9:0-4-0,0-4-8], [14:0-2-8,0-3-0], [17:0-2-8,0-3-0]	

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.32	Vert(LL)	-0.17	12-13	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.25	BC	0.76	Vert(CT)	-0.31	12-13	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.99	Horz(CT)	0.08	10	n/a	n/a		
BCDL	10.0	Code	FBC2020/TPI2014	Matrix-AS							Weight: 410 lb	FT = 20%

LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS	2x6 SP N 2x4 SP N 2x4 SP N Structural Rigid ceili 1 Row at	o.2 o.2 o.2 I wood she ing directly midpt	eathing dii y applied. 5-15, 6-1	rectly ap	oplied. , 4-16,
			3-16		
REACTIONS	(size) Max Horiz Max Uplift Max Grav	1=0-3-0, 1=211 (L 1=-5 (LC 1=490 (L 16=3076	10=0-5-8, .C 11) 12) .C 23), 10: (I C 17)	, 16=0-5 =1500 (;-8 LC 18),
FORCES	(lb) - Max	imum Cor	npression	/Maxim	um
TOP CHORD	5-6=-59/1	65, 6-7=-9	976/200, 1	-2=-643	3/64, 360/186
BOT CHORD	1-18=-17 15-16=-7 11-13=-3	5/531, 16- 52/129, 13 1/2332, 10	18=-271/5 3-15=0/56)-11=-30/2	531, 7, 2335	505/100
WEBS	5-15=-230 6-13=-26/ 8-12=0/70 4-16=-224 3-17=0/50	0/0, 6-15= /953, 7-13 02, 9-12=- 41/97, 4-1 67, 3-16=-	-1501/60, =0/207, 8 801/85, 9 5=0/1789 861/74, 2	6-14=0 -13=-10 -11=0/2 , 2-18=0 -17=-64	/280, 65/107, 90, 0/240, 7/76
NOTES					

1) Unbalanced roof live loads have been considered for this design.

 Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=54ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-0-to 5-5-3, Interior (1) 5-5-3 to 21-8-5, Exterior(2R) 21-8-5 to 29-4-9, Interior (1) 29-4-9 to 31-11-4, Exterior(2R) 31-11-4 to 39-7-8, Interior (1) 39-7-8 to 54-1-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 Divide Designer (Designer exposed; End vertical left and right exposed; Designer (Designer exposed; End vertical left and right exposed; C-C for members and forces & MWFRS

- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
 Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) All bearings are assumed to be SP No.2.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 5 lb uplift at joint 1.

 This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

December 14,2023

Page: 1

Job	Truss	Truss Type	Qty	Ply	
1023-067	C01	Нір	1	1	Job Reference (optional)

Run: 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:06 ID:EhF9Txuh0BZVVw7TrujScCyOHsw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:65.2

Plate Offsets (X, Y): [4:0-1-12,0-3-0], [6:0-4-0,0-4-8], [10:0-2-8,0-3-0], [12:0-2-8,0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.87	Vert(LL)	-0.16	11-12	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.25	BC	0.70	Vert(CT)	-0.29	11-12	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.56	Horz(CT)	0.07	8	n/a	n/a		
BCDL	10.0	Code	FBC2020/TPI2014	Matrix-AS							Weight: 286 lb	FT = 20%

LUMBER

TOP CHORD	2x4 SP No.2 *Except* 4-6,6-7:2x6 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x4 SP No.2 *Except* 8-7:2x6 SP No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied,
	except end verticals.
BOT CHORD	Rigid ceiling directly applied.
WEBS	1 Row at midpt 3-11, 7-8, 4-10, 5-9, 6-9
REACTIONS	(size) 8=0-5-8, 14=0-5-8
	Max Horiz 14=278 (LC 11)
	Max Uplift 8=-5 (LC 12)
	Max Grav 8=1710 (LC 17), 14=1636 (LC 17)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=-2705/224, 2-3=-2440/263,
	3-4=-1853/274, 4-5=-1414/261,
	5-7=-912/210, 1-14=-1499/176,
	7-8=-1576/221
BOT CHORD	13-14=-464/421, 11-13=-503/2678,
	9-11=-341/1666, 8-9=-114/135
WEBS	2-13=-433/137, 2-12=-587/85, 3-12=0/570,
	3-11=-837/147, 4-11=-41/884,
	1-13=-185/2478, 5-10=-47/601,
	4-10=-417/124, 5-9=-1045/157,
	6-9=-356/142, 7-9=-223/1692
NOTES	

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=36ft; eave=5ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-1-12 to 3-9-6, Interior (1) 3-9-6 to 19-0-12, Exterior(2R) 19-0-12 to 24-2-6, Interior (1) 24-2-6 to 36-1-4 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
 Provide adequate drainage to prevent water ponding.
 This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) All bearings are assumed to be SP No.2.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 5 lb uplift at joint 8.
- This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

December 14,2023

Page: 1

Job	Truss	Truss Type	Qty	Ply	
1023-067	C02	Roof Special	1	1	T32352921 Job Reference (optional)

Run: 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:07 ID:IfmYtKulTh0jzhzQCqiwTiyOHrd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:79.1

Plate Offsets (X_Y)	[7:0-3-0 Edge]	[9·Edge 0-1-8]	[13.0-2-8 0-3-0]	[14.0-2-4.0-3-0]
	[1.0-3-0,Euge],	[9.Euge,0-1-0],	[13.0-2-0,0-3-0]	, [14.0-2-4,0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.70	Vert(LL)	-0.18	10-11	>999	240	MT20	244/190	
TCDL	10.0	Lumber DOL	1.25	BC	0.84	Vert(CT)	-0.34	10-11	>999	180			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.77	Horz(CT)	0.06	9	n/a	n/a			
BCDL	10.0	Code	FBC2020/TPI2014	Matrix-AS							Weight: 277 lb	FT = 20%	
UMBER 2) Wind: ASCE 7-16: Vult=130mph (3-second qust)													

LUMBER	
TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x4 SP No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied,
	except end verticals.
BOT CHORD	Rigid ceiling directly applied.
WEBS	1 Row at midpt 8-9, 6-10, 4-12
REACTIONS	(size) 1=0-3-0, 9=0-5-8, 15=0-5-8
	Max Horiz 1=249 (LC 11)
	Max Uplift 9=-2 (LC 12)
	Max Grav 1=256 (LC 25), 9=1622 (LC 17),
	15=2137 (LC 17)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	3-4=-2212/239, 4-5=-1787/252,
	5-6=-2029/302, 6-8=-1308/211,
	8-9=-1457/194, 1-3=-2253/396
BOT CHORD	1-15=-350/138, 12-15=-349/2255,
	11-12=-286/1596, 9-11=-289/1823
WEBS	2-15=-1810/269, 2-14=-185/2465,
	3-14=-520/133, 5-11=-124/988,
	6-11=-699/196, 5-12=-61/595,
	7-10=-552/182, 6-10=-699/105,
	8-10=-194/1820, 4-13=0/408, 4-12=-654/111,
	3-13=-343/73

NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=44ft; eave=5ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-0-0 to 4-5-3, Interior (1) 4-5-3 to 26-0-2, Exterior(2E) 26-0-2 to 28-3-8, Interior (1) 28-3-8 to 44-2-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
 Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
 7) All bearings are assumed to be SP No.2.
- 8) Provide mechanical connection (by others) of truss to
- bearing plate capable of withstanding 2 lb uplift at joint 9.

 This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

December 14,2023

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality** Criteria and DBS-22 available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	
1023-067	C03	Roof Special	1	1	T32352922 Job Reference (optional)

Run: 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:07 ID:_ULdn?jvbHNfQUHCMFNZQryOHo_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:81.4

Plate Offsets (X, Y): [10:Edge,0-1-8], [12:0-2-8,0-3-0], [14:0-2-8	3,0-3-0], [15:0-2-4,0-3-0]
--	----------------------------

Loading TCLL (roof) TCDL	(psf) 20.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.25 1.25	CSI TC BC	0.70 0.64	DEFL Vert(LL) Vert(CT)	in -0.15 -0.28	(loc) 12-13 12-13	l/defl >999 >999	L/d 240 180	PLATES MT20	GRIP 244/190	
BCLL	0.0*	Rep Stress Incr	YES	WB	0.55	Horz(CT)	0.07	10	n/a	n/a			
BCDL	10.0	Code	FBC2020/TPI2014	Matrix-AS							Weight: 264 lb	FT = 20%	
JMBER 2) Wind: ASCE 7-16; Vult=130mph (3-second gust)													

TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x4 SP No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied,
	except end verticals.
BOT CHORD	Rigid ceiling directly applied.
WEBS	1 Row at midpt 9-10, 7-11, 5-13, 7-13
REACTIONS	(size) 2=0-3-0, 10=0-5-8, 16=0-5-8
	Max Horiz 2=234 (LC 11)
	Max Uplift 2=-34 (LC 12), 16=-2 (LC 12)
	Max Grav 2=336 (LC 23), 10=1588 (LC 17),
	16=2146 (LC 17)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/22, 2-4=-2188/509, 4-5=-2160/261,
	5-6=-1755/277, 6-7=-1776/263,
	7-8=-1355/200, 8-9=-1355/200,
	9-10=-1460/173
BOT CHORD	2-16=-456/209, 13-16=-369/2196,
	11-13=-271/2088, 10-11=-79/98
WEBS	3-16=-1828/276, 3-15=-206/2515,
	4-15=-539/139, 7-12=0/314, 7-11=-1032/111,
	8-11=-422/140, 9-11=-178/1869, 5-14=0/379,
	4-14=-326/62, 6-13=-111/1256, 5-13=-619/99,
	/-13=-841/132

- NOTES
- 1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=44ft; eave=5ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-6-0 to 2-11-3, Interior (1) 2-11-3 to 26-0-2, Exterior(2R) 26-0-2 to 30-5-5, Interior (1) 30-5-5 to 44-2-4 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
 Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
 7) All bearings are assumed to be SP No.2.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 2 lb uplift at joint 16 and 34 lb uplift at joint 2.
- This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

December 14,2023

Page: 1

Job	Truss	Truss Type	Qty	Ply	
1023-067	C04	Roof Special	1	1	T32352923 Job Reference (optional)

Run; 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:08 ID:XtqWIzj5EAJVNT2TnMGLNxyOHex-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:81.4

Plate Offsets (X, Y): [14:0-2-8,0-3-0], [17:0-2-8,0-3-0]

L oading TCLL (roof) TCDL 3CLL 3CDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES FBC202	0/TPI2014	CSI TC BC WB Matrix-AS	0.71 0.50 0.79	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.12 -0.25 0.08	(loc) 14-15 15-16 11	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 269 lb	GRIP 244/190 FT = 20%	
JUMBER TOP CHORD 30T CHORD WEBS 3RACING TOP CHORD 30T CHORD WEBS FORCES TOP CHORD 30T CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood sheat except end verticals. Rigid ceiling directly 1 Row at midpt (size) 2=0-3-0, 1 Max Horiz 2=214 (LC Max Uplift 2=-35 (LC Max Grav 2=331 (LC 18=1938 ((lb) - Maximum Com Tension 4-5=-1953/260, 5-6= 6-7=-1580/271, 7-8= 8-9=-1269/182, 9-10 1-2=0/22, 2-4=-1984 2-18=-406/209, 16-1 15-16=-253/1689, 13 12-13=-254/2083, 11 3-18=-1741/277, 3-1 4-17=-542/2140, 8-13 5-16=0/332, 4-16=-3 6-15=-136/1081, 7-1	athing directly applied applied. 9-11, 5-15 1=0-5-8, 18=0-5-8 (11) 12), 18=-1 (LC 12) (23), 11=1396 (LC 1 (LC 1) pression/Maximum -1590/277, -1991/267, =-81/76, 10-11=-124 /461 8=-332/1902, 3-15=-256/2080, 1-12=-173/1269 7=-208/2251, =0/169, 9-11=-1751/ 22/60, 5-15=-572/10, 5=-674/138,	2) d, 3)), 4) 5) 6) /44, 7) 8) 8) 173, 9) 2,	Wind: ASCE Vasd=101mp B=45ft; L=44 MWFRS (dirr 2-11-3, Interi- to 30-5-13, Ir left and right exposed;C-C reactions sho DOL=1.60 Building Desi- verifying app requirements Provide adeo This truss ha chord live loa * This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and an All bearings a Provide mect bearing plate 18 and 35 lb This truss de structural wo chord and 1/2 the bottom ch	7-16; Vult=130mpł h; TCDL=6.0psf; E ft; eave=5ft; Cat. II cctional) and C-C E or (1) 2-11-3 to 26- tierior (1) 30-5-13 t exposed ; end vert for members and wm; Lumber DOL= gner / Project engi lied roof live load s specific to the use uate drainage to p s been designed fc d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide will y 2-00-00 wide will y 2-00-00 wide thsta uplift at joint 2. sign requires that a od sheathing be ap 2" gypsum sheetron ord.	n (3-sec 3CDL=6 3CDL=6 5 Exp B 5 sterior 0-2, Ex 0-2,	sponsible for outer state of the sponsible for outer state outer state outer s	-0-2 ever - - - - - - - - - - - - - - - - - - -			* 1			
	7-14=-7/456, 8-14=-{ 8-12=-1157/116	504/83, 9-12=-21/915	^{5,} LC	DAD CASE(S)	Standard						P	. Xetter M	Bhu :	

NOTES

1) Unbalanced roof live loads have been considered for this design.

"minim Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

ONA

December 14,2023

Job	Truss	Truss Type	Qty	Ply	
1023-067	C05	Roof Special	1	1	T32352924 Job Reference (optional)

Run: 8 73 S. Nov 13 2023 Print: 8 730 S. Nov 13 2023 MiTek Industries. Inc. Wed Dec 13 08:11:08 ID:ck1ti2AogEmrcWUIcnuiZYyOHbn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:81.4

Plate Offsets (X, Y): [12:0-2-8,0-3-0], [14:0-2-8,0-3-0], [15:0-2-4,0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.25	тс	0.73	Vert(LL)	-0.19	12-13	>999	240	MT20	244/190	
TCDL	10.0	Lumber DOL	1.25	BC	0.73	Vert(CT)	-0.35	12-13	>999	180			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.58	Horz(CT)	0.09	10	n/a	n/a			
BCDL	10.0	Code	FBC2020/TPI2014	Matrix-AS							Weight: 249 lb	FT = 20%	
			2) Wind: ASCE	7-16: Vult=130	mph (3-sec	ond aust)							

LUMBER	
TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x4 SP No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied,
	except end verticals.
BOT CHORD	Rigid ceiling directly applied.
WEBS	1 Row at midpt 8-10, 5-13, 7-13
REACTIONS	(size) 2=0-3-0, 10=0-5-8, 16=0-5-8
	Max Horiz 2=195 (LC 11)
	Max Uplift 2=-36 (LC 12), 16=-1 (LC 12)
	Max Grav 2=318 (LC 23), 10=1529 (LC 18),
	16=2153 (LC 17)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	4-5=-2094/257, 5-6=-1733/274,
	6-7=-1733/260, 7-8=-2405/256, 8-9=-88/53,
	9-10=-177/55, 1-2=0/22, 2-4=-2107/604
BOT CHORD	2-16=-553/209, 13-16=-464/2116,
	11-13=-251/2606, 10-11=-247/2616
WEBS	3-16=-1834/274, 3-15=-204/2521,
	4-15=-555/138, 8-11=0/240, 8-10=-2874/234
	6-13=-110/1219, 5-14=0/364, 4-14=-307/59,
	5-13=-604/109, 7-13=-883/144, 7-12=0/532,
	8-12=-629/86
NOTES	

1) Unbalanced roof live loads have been considered for

this design.

- Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=44ft; eave=5ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-6-0 to 2-11-3, Interior (1) 2-11-3 to 26-0-2, Exterior(2R) 26-0-2 to 30-5-5, Interior (1) 30-5-5 to 44-2-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3)
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component. 4) Provide adequate drainage to prevent water ponding. 5)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. All bearings are assumed to be SP No.2 .
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1 lb uplift at joint 16 and 36 lb uplift at joint 2.
- This truss design requires that a minimum of 7/16" 9) structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

December 14,2023

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only using the mathematical network of the intervention of the in

Job	Truss	Truss Type	Qty	Ply		
1023-067	C06	Roof Special Girder	1	1	Job Reference (optional)	

Run: 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:09 ID:eoxHDEFlcbufiiTJ2qzWPJyOHXo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:79.1

Plate Offsets (X, Y): [3:0-2-0,0-3-0],	[9:0-2-0,0-3-0], [15:	Edge,0-3-8	8], [18:0-4-0,0-3	3-4], [22:0-2-8,0-3	3-0]							
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 NO FBC202	20/TPI2014	CSI TC BC WB Matrix-MS	0.57 0.76 0.77	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.15 -0.29 0.06	(loc) 18-19 18-19 15	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 289 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 *Excep 2x4 SP No.2 *Excep 2x4 SP No.2 *Excep Structural wood sheat 3-7-12 oc purlins, ex Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 1-2 5-0-0 oc bracing: 23- 1 Row at midpt (size) 1=0-3-0, 1	t* 13-14:2x6 SP No. t* 18-15:2x6 SP No. t* 12-16:2x6 SP No. athing directly applie ccept end verticals. applied or 10-0-0 or 25,24-25 -24. 6-20 5=0-5-8, 24=0-5-8	N(2 1) 2 2) ed or 5 3) 4)	OTES Unbalanced this design. Wind: ASCE Vasd=101mp B=45ft; L=44 MWFRS (dirr end vertical I plate grip DC Building Des verifying app requirements Provide adec	roof live loads ha 7-16; Vult=130m oh; TCDL=6.0psf ft; eave=5ft; Cat. ectional); cantilev eft and right expo JL=1.60 igner / Project en lied roof live load a specific to the u uate drainage to	ve been ph (3-sec ; BCDL=6 II; Exp B rer left an osed; Lun gineer re shown c se of this prevent	considered fo cond gust) c.0psf; h=15ft; f. Enclosed; d right expose ber DOL=1.6 sponsible for overs rain loa truss compor water ponding	r ed ; 50 nent. g.					
	Max Horiz 1=151 (LC Max Uplift 1=-85 (LC 24=-17 (LI Max Grav 1=59 (LC 24=2193 (20), 15=-137 (LC 8 20), 15=-137 (LC 8 C 8) 26), 15=1235 (LC 1) LC 1)	5) 6)), 7)	 5) All plates are 3x4 M12U unless otherwise indicated. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom 									
TOP CHORD	(lb) - Maximum Com Tension 1-2=-34/716, 2-4=-8 5-6=-1788/69, 6-7=- 13-16=-1103/59, 12- 13-14=-3138/178, 14 7-8=-1485/109, 8-10 10-11=-2545/78, 11-	pression/Maximum 18/1370, 4-5=-1644/ 1495/108, 13=-593/39, I-15=-1161/74, =-2203/87, 12=-1186/60	(33, 8) 9) 10	 chord and any other members. 8) Bearings are assumed to be: Joint 1 SP No.2, Joint 24 SP No.2, Joint 15 SP No.2. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 137 lb uplift at joint 15, 17 lb uplift at joint 24 and 85 lb uplift at joint 1. 10) "NAILED" indicates 3-10d (0.148"x3") or 3-12d 									
BOT CHORD	1-25=-664/10, 24-25 23-24=-1357/28, 21- 19-21=0/1646, 17-19 16-17=-122/2911, 15	=-664/10, 23=0/1609, 9=-35/2203, 5-16=-12/209	11 L(I) In the LOAD of the truss a	CASE(S) section re noted as front Standard	, loads a (F) or ba	pplied to the f ck (B).	ace			PRO	fellin	Solle III
WEBS	5-22=-574/50, 5-21= 6-20=-508/54, 7-20= 14-16=-146/3052, 2- 3-24=-1891/58, 3-23 4-23=-1090/47, 4-22 9-18=-1/327, 8-19=0 10-17=-11/566, 10-1 13-17=-793/97, 11-1	-161/37, 6-21=0/25(-34/1001, 25=0/175, 2-24=-68 =-13/2431, =0/1025, 8-20=-667 /459, 9-19=-482/52, 8=-416/53, 3=-1449/17	_{),} 1) 1/18, /65,	 Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (lb/t) Vert: 1-5=-60, 5-7=-60, 13-14=-60, 15-26=-20, 7-12=-60 Concentrated Loads (lb) Vert: 31=67 (F), 32=63 (F) Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO Date: 								ELENIIII LENIIII A FL Cert 6634 hesterfield, MO 63017	

December 14,2023

Page: 1

Job	Truss	Truss Type	Qty	Ply	
1023-067	CJ01	Diagonal Hip Girder	1	1	T32352926 Job Reference (optional)

Run: 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:10 ID:DGp7Fk9VBg0oceMQrtIHA_yPFXV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:53.9

Plate Offsets (X, Y): [3:0-4-0,0-4-8]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 NO FBC2020	0/TPI2014	CSI TC BC WB Matrix-MS	0.58 0.94 0.99	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.20 -0.32 -0.01	(loc) 7-8 7-8 5	l/defl >798 >503 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 97 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x6 SP No.2 2x4 SP No.1 2x4 SP No.2 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 5= Mecha 9=0-4-9 Max Horiz 9=185 (LC Max Uplift 5=-449 (L 9=-213 (L) Max Grav. 5=1295 (J	athing directly applied applied or 10-0-0 oc nical, 6= Mechanical C 8) C 8), 6=-367 (LC 1), C 8) C 13) 6=-241 (L C 9)	5) 6) 7) d or 8) 9) , LO	Bearings are Refer to girde Provide mech bearing plate 5, 213 lb upli "NAILED" ind NDS guidline In the LOAD of the truss a AD CASE(S) Dead + Roc Plate Increas Uniform Loa Vert: 1-55 Concentrate	assumed to be: , J ar(s) for truss to trus nanical connection capable of withsta t at joint 9 and 367 licates 2-12d (0.144 s. CASE(S) section, I re noted as front (F Standard of Live (balanced): I ise=1.25 ads (Ib/ft) =-60, 6-9=-20 ad Loads (Ib)	oint 9 S ss cont (by oth nding 4 Ib uplif 3"x3.25 pads ap oads ap	P No.1 . lections. ers) of truss t 49 lb uplift at t at joint 6. ") toe-nails p oplied to the f ck (B). Increase=1.	o ; joint er face 25,					
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com 9=900 (LC (lb) - Maximum Com 1-2=0/72, 2-4=-1125 8-9=-185/38, 7-8=-2: 2-9=-861/208, 3-8=-2: 3-7=-1101/265 2-8=	(155, 4-5=-179/510 (155, 4-5=-179/510 (17946, 6-7=-0/0 (24/352, 4-7=-466/121 (-102/944	17,	Vert: 3=-4 13=-42 (E (B), 18=-2	4 (B), 8=-5 (B), 10= 3), 14=-47 (F), 15=(25 (F), 19=-22 (B),	47 (B), 59 (B), 20=-20	12=-39 (F), 16=4 (F), 17= 9 (F), 21=-18	=6 5 (B)				JULIUS	
NOTES 1) Wind: ASC Vasd=101 B=45ft; L= MWFRS(plate grip 1 2) Building D verifying a requireme 3) This truss chord live 4) * This trus on the bot 3-06-00 ta chord and	CE 7-16; Vult=130mph mph; TCDL=6.0psf; B(:24ft; eave=4ft; Cat. II; directional); cantilever al left and right expose DOL=1.60 esigner / Project engin pplied roof live load sh nts specific to the use has been designed for load nonconcurrent wi s has been designed for tom chord in all areas II by 2-00-00 wide will :	d;) ing ent. s. ssf n							Ju M 16 D:	lius Lee iTek In 023 Sw ate:	NO 348 NO 348 NO R V NO	FL Cert 6634 resterfield, MO 63017	

December 14,2023

Page: 1

Job	Truss	Truss Type	Qty	Ply	
1023-067	CJ02	Diagonal Hip Girder	1	1	T32352927 Job Reference (optional)

Run: 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:10 ID:Te6rZPgQQieDvXHHnK2ZamyPG8s-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1-1(0-12 2-6-7	7-6-8	12-4-12	12-10-0
1-1(D-12 0-7-12	5-0-0	4-10-4	0-5-4

Scale = 1:45.3

Plate Offsets (X, Y): [3:0-4-0,0-4-8], [12:Edge,0-5-8]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 NO FBC20	20/TPI2014	CSI TC BC WB Matrix-MS	0.62 0.44 0.33	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.04 -0.06 -0.01	(loc) 9-10 9-10 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 101 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x6 SP No.2 *Excep 2x6 SP No.2 2x4 SP No.2 Structural wood she 6-0-0 oc purlins, exx Rigid ceiling directly bracing, Except: 10-0-0 oc bracing: 8 (size) 7= Mecha 11=1-3-7 Max Horiz 11=134 (L Max Uplift 7=-103 (L 11=-301 (Max Grav 7=274 (LC	t* 3-1:2x6 SP SS athing directly applie cept end verticals. applied or 6-0-0 oc -9. nical, 8= Mechanica .C 25) C 5), 8=-27 (LC 5), LC 8) C 1), 8=319 (LC 3),	4, 5 ed or 6, 7, 8, 8, 1, 9,	 This truss if The trust if<!--</td--><td>has been designed in chord in all area y 2-00-00 wide winy other members assumed to be: , er(s) for truss to t shanical connection capable of withs t at joint 8 and 30 dicates 2-12d (0.1 as. o ther connection ficient to support (0-3-14 on top cho 10-3-14 on bottoo such connection c y of others.</td><td>a for a liv as where ill fit betw Joint 11 russ conr n (by oth tanding 1 l lb uplift 48"x3.25 device(s concentre ord, and 2 n chord. levice(s)</td><td>e load of 20. a rectangle veen the bott SP No.2 . nections. ers) of truss 03 lb uplift a at joint 11. ") toe-nails p) shall be tted load(s) 2 60 lb down a The design/ is the</td><td>to t joint per 217 and</td><td></td><td></td><td></td><td></td><td></td><td></td>	has been designed in chord in all area y 2-00-00 wide winy other members assumed to be: , er(s) for truss to t shanical connection capable of withs t at joint 8 and 30 dicates 2-12d (0.1 as. o ther connection ficient to support (0-3-14 on top cho 10-3-14 on bottoo such connection c y of others.	a for a liv as where ill fit betw Joint 11 russ conr n (by oth tanding 1 l lb uplift 48"x3.25 device(s concentre ord, and 2 n chord. levice(s)	e load of 20. a rectangle veen the bott SP No.2 . nections. ers) of truss 03 lb uplift a at joint 11. ") toe-nails p) shall be tted load(s) 2 60 lb down a The design/ is the	to t joint per 217 and						
FORCES	(lb) - Maximum Com Tension	pression/Maximum	10	of the truss are noted as front (F) or back (B).								IIIIII.		
TOP CHORD	2-12=-74/20, 1-2=0/ 5-6=-59/33, 6-7=-25/	75, 2-5=-500/1236, /63	1)	1) Dead + Roof Live (balanced): Lumber Increase=1.25,								LEE		
BOT CHORD	11-12=-499/226, 10- 9-10=-151/408, 8-9=	-11=-1190/443, =0/0		Uniform Lo	ads (lb/ft)					(1		0 F .	
WEBS	6-9=-205/110, 5-10= 3-11=-752/189, 2-11 3-10=-459/1457	=-327/183, 5-9=-459/ =-765/362,	/169,	Vert: 1-2 Concentrat Vert: 14=	=-60, 2-7=-60, 8-1 ed Loads (lb) =28 (B), 16=-88 (F	12=-20 [;]), 18=-11	(F), 19=37	(B),			1	No 34	869	
NOTES				20=22 (E	3), 21=-260 (F)					-	-112			
1) Wind: AS Vasd=101 B=45ft; L= MWFRS (end vertic plate grip 2) Building D	CE 7-16; Vult=130mph Imph; TCDL=6.0psf; B(=24ft; eave=4ft; Cat. II; directional); cantilever al left and right expose DOL=1.60 Designer / Project engin	(3-second gust) CDL=6.0psf; h=15ft; Exp B; Enclosed; left and right expose d; Lumber DOL=1.6 meer responsible for	ed ; 0									SSIONA	D.A.	

2) verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

December 14,2023

Page: 1

Job	Truss	Truss Type	Qty	Ply	
1023-067	D01	Half Hip Girder	1	2	T32352928 Job Reference (optional)

612

Mayo Truss Company, Inc., Mayo, FL - 32066,

7-0-6

0-8-0

7-4-15

Scale = 1:52.5

| -1-6-0 | 1-6-0

6-5-12

6-5-12

Special 6x8=

> 4 12

18-5-8

5-9-8 NAILED

13

Ш

NAILED

14

Ш

ПП

2x4 II

7-0-6

5

╇ 6

3x4 💋 3 Τ ПП

12-8-0

6-2-4

Loa TCI TCI BCI BCI	ading LL (roof) DL LL DL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 NO FBC20	20/TPI2014	CSI TC BC WB Matrix-MS	0.29 0.36 0.79	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.06 0.02	(loc) 6-7 6-7 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 253 lb	GRIP 244/190 FT = 20%
LUI TOI BO WE WE BR/ TOI BO	MBER P CHORD T CHORD BS DGE ACING P CHORD T CHORD ACTIONS	2x4 SP No.2 *Excep 2x6 SP No.2 2x4 SP No.2 Left: 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 2=0-3-0, (Max Horiz 2=206 (LC Max Uplift 2=-357 (L	athing directly applie cept end verticals. applied or 10-0-0 oc 6=0-5-8 C 7) C 8), 6=-1008 (LC 5	4; d or 5; ; 6; 7; 8;	 Wind: ASCE Vasd=101mg B=45ft; L=24 MWFRS (dir end vertical I plate grip DC Building Des verifying app requirements Provide adec This truss ha chord live loa * This truss ha on the bottor 	7-16; Vult=130mp ph; TCDL=6.0psf; lft; eave=4ft; Cat. I ectional): cantileve left and right exposi- catileve left and right exposi- left a	bh (3-see BCDL=6 I; Exp B er left an sed; Lun sineer re shown c e of this prevent or a 10. with any I for a liv s where	cond gust) 3.0psf; h=15ft 5.0psf; h=15ft 5.	; ed ; 60 nent. g. ds. Dpsf					
FOI TOI BO' WE	Max Opint 22-337 (LC 10), 02-1000 (LC 0) Max Grav 2=1634 (LC 13), 6=2983 (LC 13) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/40, 2-3=-2650/642, 3-4=-2247/774, 4-5=-90/74, 5-6=-301/32 3OT CHORD 2-7=-610/2360, 6-7=-708/2002 WEBS 3-8=-23/219, 3-7=-567/172, 4-7=-633/1482, 4-6=-3030/1015				 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 9) All bearings are assumed to be SP No.2. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 357 lb uplift at joint 2 and 1008 lb uplift at joint 6. 11) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines. 									
NO 1) 2)	 NOTES 2-ply truss to be connected together with 10d (0.131*x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc, 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc. All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 			1: 0 L 1) AD	2) Hanger(s) or provided suff Ib down and Ib down and design/selec responsibility OAD CASE(S) Dead + Roo Plate Increa Uniform Lo: Vert: 1-4 Concentrat Vert: 7	other connection ficient to support of 457 lb up at 12-8 429 lb up at 12-8 tion of such conner y of others. Standard of Live (balanced): ase=1.25 ads (lb/ft) =-60, 4-5=-60, 6-9 ed Loads (lb) 418 (B) 4=-1174 (device(s oncentra -0 on top -0 on bo -0 on bo -ction de Lumber =-20	 s) shall be ated load(s) 1 o chord, and it ttom chord vice(s) is the Increase=1. -71 (B) 147 	355 522 The 25,			* PROYIN	ALLINA ALLINA ONA	D.A.C.IN

- CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- Vert: 1-4=-60, 4-5=-60, 6-9=-20
- Concentrated Loads (lb)
- Vert: 7=-418 (B), 4=-1174 (B), 13=-71 (B), 14=-71 (B), 15=-273 (B), 16=-273 (B)

December 14,2023

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

Julius Lee PE No. 34869

Date:

Job	Truss	Truss Type	Qty	Ply	
1023-067	D02	Half Hip	1	1	T32352929 Job Reference (optional)

Run: 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:11 ID:9B_ko2b4jjYhxA6KyQOjdZyPFWx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:56.1

Plate Offsets (X, Y): [2:0-3-11,0-0-3], [4:0-3-0,0-3-4], [5:0-5-4,0-2-0], [9:0-2-8,0-3-4]

_oading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
FCLL (roof)	20.0	Plate Grip DOL	1.25		TC	0.54	Vert(LL)	-0.08	8-9	>999	240	MT20	244/190	
FCDL	10.0	Lumber DOL	1.25		BC	0.58	Vert(CT)	-0.16	8-9	>999	180			
BCLL	0.0*	Rep Stress Incr	YES		WB	0.28	Horz(CT)	0.02	7	n/a	n/a			
BCDL	10.0	Code	FBC202	0/TPI2014	Matrix-AS							Weight: 118 lb	FT = 20%	
-UMBER FOP CHORD 3OT CHORD WEBS SLIDER BRACING	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Left 2x4 SP No.2 1	1-6-0	5) 6)	This truss ha chord live loa * This truss h on the bottor 3-06-00 tall h chord and an	s been designed f ad nonconcurrent v nas been designed n chord in all areas by 2-00-00 wide wi by other members.	or a 10.0 with any I for a liv s where Il fit betw) psf bottom other live loa e load of 20.0 a rectangle reen the botto	ads. Opsf om						
TOP CHORD 30T CHORD WEBS REACTIONS	Structural wood shea except end verticals. Rigid ceiling directly 1 Row at midpt (size) 2=0-3-0,7 Max Horiz 2=260 (LC Max Uplift 2=-30 (LC Max Grav 2=826 (LC	athing directly applied. - applied. 6-7, 4-8, 5-7 7=0-5-8 C 11) C 12), 7=-17 (LC 9) C 1), 7=729 (LC 1)	d, 7) 8) 9) LC	All bearings Provide mec bearing plate 7 and 30 lb u This truss de structural wo chord and 1/ the bottom c	are assumed to be hanical connection o capable of withste polifit at joint 2. sign requires that od sheathing be a 2" gypsum sheetro hord. Standard	e SP No. anding 1 a minim pplied di ock be ap	2 . ers) of truss f 7 lb uplift at j um of 7/16" rectly to the pplied directly	to joint top y to						
ORCES	(lb) - Maximum Com Tension	pression/Maximum		(-)										
FOP CHORD	1-2=0/40, 2-5=-1015 6-7=-55/64	5/117, 5-6=-119/129,											In.	
BOT CHORD WEBS	2-8=-330/838, 7-8=- 4-9=0/337, 4-8=-736 5-7=-760/146	119/242 5/106, 5-8=-18/539,									ALL.	JULIUS	LEE	
NOTES											5		· E .	
 Unbalance this design 	ed roof live loads have	been considered for										No 34	369	
2) Wind ASC	CE 7-16: Vult=130mph	(3-second gust)								_	~ .		/l • ^	1.0

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior (1) 1-6-0 to 16-0-0, Exterior(2E) 16-0-0 to 18-3-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

December 14,2023

Page: 1

Job	Truss	Truss Type	Qty	Ply	
1023-067	D03	Monopitch	1	1	T32352930 Job Reference (optional)

Run: 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:11 ID:tN7xTHw0M0ysgKgW1bN2DGyPFWW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:61.6

Plate Offsets (X, Y): [2:0-3-11,0-0-3], [4:0-2-8,0-3-0], [6:0-0-13,0-1-8], [9:0-2-8,0-3-0]

TCLL (roof) TCDL 3CLL 3CDL	20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr Code	1.25 1.25 YES FBC2020 4)	0/TPI2014 * This truss ł	TC BC WB Matrix-AS	0.48 0.45 0.43	Vert(LL) Vert(CT) Horz(CT) e load of 20.	-0.06 -0.10 0.02	7-8 7-8 7	>999 >999 n/a	240 180 n/a	MT20 Weight: 114 lb	244/190 FT = 20%	
TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Left 2x4 SP No.2 1 Structural wood shee except end verticals. Rigid ceiling directly 1 Row at midpt (size) 2=0-30.7 Max Horiz 2=294 (LC Max Uplift 2=-28 (LC Max Grav 2=900 (LC	-6-0 athing directly applie 6-7, 5-7 2-0-5-8 2 11) 12), 7=-15 (LC 9) 2 17), 7=885 (LC 17)	5) 6) d, 7) LO	on the bottor 3-06-00 tall b chord and ar All bearings Provide mec bearing plate 7 and 28 lb u This truss de structural wo chord and 1/ the bottom c AD CASE(S)	n chord in all areas by 2-00-00 wide wi by other members, are assumed to be hanical connection e capable of withsta uplift at joint 2. sign requires that od sheathing be a 2" gypsum sheetro hord. Standard	s where Il fit betw with BC SP No. a (by oth- anding 1 a minim pplied di ock be ap	a rectangle veen the bott DL = 10.0ps 2. ers) of truss is 5 lb uplift at j um of 7/16" rectly to the oplied directly	om f. to joint top y to						
FORCES	(lb) - Maximum Com Tension	pression/Maximum												
TOP CHORD	6-7=-152/106, 1-2=0, 5-6=-178/133	/40, 2-5=-1170/127,											In.	
BOT CHORD WEBS	2-8=-388/1085, 7-8= 5-7=-863/147, 4-9=0, 5-8=-3/535	-191/624 /225, 4-8=-533/123,									ALL STREET	JULIUS	LEE	
NOTES											5		·	
 Wind: ASC Vasd=101 B=45ft; L= MWFRS (1-6-0, Inte and right e C for mem 	CE 7-16; Vult=130mph mph; TCDL=6.0psf; BC :24ft; eave=4ft; Cat. II; directional) and C-C Ex rior (1) 1-6-0 to 18-3-12; exposed ; end vertical la bers and forces & MW	(3-second gust) CDL=6.0psf; h=15ft; Exp B; Enclosed; tterior(2E) -1-6-0 to 2 zone; cantilever le eft and right exposed FRS for reactions	ft d;C-								* PRO	NO 34		

 Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

shown; Lumber DOL=1.60 plate grip DOL=1.60

 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. Julius Lee PE No. 34869 MiTek Inc. DBA MITek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

December 14,2023

 Image: Constraint of the state of

Scale = 1:71.2

P

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES FBC20	20/TPI2014	CSI TC BC WB Matrix-AS	0.20 0.23 0.15	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.04 0.01	(loc) 30-31 30-31 21	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 295 lb	GRIP 244/190 FT = 20%		
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	MBER IP CHORD 2x4 SP No.2 DT CHORD 2x4 SP No.2 EBS 2x4 SP No.2 HERS 2x4 SP No.2 ACING Example IP CHORD Structural wood sheathing directly applied, except end verticals, and 2-0-0 oc purlins (10-0-0 max.): 10-12, 18-24. IT CHORD Rigid ceiling directly applied. ESS 1 Bow at midot 10-27, 12-25, 13-33, 9-5				BOT CHORD 30-31=-137/320, 29-30=-133/136, 28-29=-133/136, 26-28=-133/187, 25-26=-129/187, 24-25=-78/144, 23-24=-36/76, 22-23=-36/76, 21-22=0/53 WEBS 6-30=-163/3, 6-38=-56/65, 37-38=-57/67, 36-37=-54/66, 27-36=-72/79, 10-27=-68/0, 10-32=-63/0, 25-32=-69/0, 12-25=-118/0, 25-33=-126/55, 33-34=-95/49, 34-35=-124/58, 17-35=-94/46, 2-40-255/121-20-40-288/122						 braced against lateral movement (i.e. diagonal web). Gable studs spaced at 2-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord any other members. 					
BOT CHORD WEBS JOINTS	Rigid ceiling 1 Row at mi 1 Brace at J 34, 37, 40	g directly idpt Jt(s): 32,	applied. 10-27, 12-25, 13-33	, 9-36		2-40=-255/121, 39- 30-39=-275/129, 11 13-33=-47/14, 14-3 24-34=-222/118, 16	40=-25 -32=-8 4=-178, -35=-4	3/122, 7/2, 26-32=-8 ⁻ 103, 5/19, 9-36=-4-	1/2, 4/22,	11) All 12) Pro be: 31,	bearings ovide me aring plat , 6 lb upli	are as chanica e capa ft at joi	sumed to be SP al connection (by ble of withstandir nt 27, 26 lb uplift	No.2. others) of truss to ng 18 lb uplift at joint at joint 21, 130 lb		
REACTIONS	34, 37, 40 8 (size) 21=0-5-8, 23=0-3-8, 24=18-5-8, 25=18-5-8, 26=18-5-8, 27=18-5-8, 21=18-5-8, 25=18-5-8, 25=18-5-8, 21=					 8-37=-155/92, 28-37=-166/95, 7-38=-43/24, 29-38=-40/21, 5-39=-52/23, 4-40=-43/17, 18-22=0/125 13 This truss design requi structural wood sheath chord and 1/2" gypsum the bottom chord. 14) Graphical purlin represe or the orientation of the bottom chord. 15-12=0/125 15-22=0/125 16-00, 55; BCDL=6.0psf; h=15ft; 6ft; eave=4ft; Cat. II; Exp B; Enclosed; rectional) and C-C Exterior(2E) -1-6-0 to or (1) 1-6-0 to 11-7-7, Exterior(2E) 11-7-7 to rior(2R) 14-5-9 to 18-8-8, Interior (1) 18-8-8 						is ib uplift at joint 2 equires that a mile eathing be applie issum sheetrock b presentation (Ge if the burnin along c E N ndard No 341	8 and 28 lb uplift at nimum of 7/16" d directly to the top e applied directly to sinot depict the size the op and/or			
FORCES	(lb) - Maxim Tension	um Com	pression/Maximum	,	to 27-7-0 zo vertical left a	ne; cantilever left a and right exposed;C	nd right -C for n	exposed ; end nembers and	d			ti	ODE	L'age		
TOP CHORD	Tension 1-2=0/56, 2-4=-128/107, 4-5=-87/144, 5-6=-64/133, 6-7=-74/94, 7-8=-59/134, 8-9=-46/111, 9-10=-46/125, 10-11=-44/112, 11-12=-44/112, 18-19=-268/11, 19-20=0/63, 2-31=-240/70, 19-21=-373/56, 12-13=-44/121, 13-14=-45/110, 14-16=0/131, 16-17=-11/79, 17-18=-74/26, 15-24=-62/89, 15-18=-169/36				 to 27-7-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component. Provide adequate drainage to prevent water ponding. 						Julius Lee PE No. 34869 MiTek Inc. DBA MITek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:					

December 14,2023

Page: 1

Job	Truss	Truss Type	Qty	Ply	
1023-067	G02	Attic	14	1	T32352932 Job Reference (optional)

Run: 8 73 S. Nov 13 2023 Print: 8 730 S Nov 13 2023 MiTek Industries. Inc. Wed Dec 13 08:11:12 ID:ho?Jxd9ASKfgNfTGUZ_TgEyPEg_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:71.8

Plate Offsets (X, Y): [2:Edge,0-0-0], [4:0-4-0,0-4-8], [6:0-2-1,0-2-0], [7:0-5-4,0-3-0], [9:0-2-1,0-2-0], [11:0-4-0,0-4-8], [13:Edge,0-0-0], [16:0-3-8,0-4-8], [17:0-3-8,0-4-8]													
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.25	тс	0.27	Vert(LL)	-0.15	16-17	>999	240	MT20	244/190	
TCDL	10.0	Lumber DOL	1.25	BC	0.92	Vert(CT)	-0.23	16-17	>999	180			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.22	Horz(CT)	0.03	13	n/a	n/a			
BCDL	10.0	Code	FBC2020/TPI2014	Matrix-AS		Attic	-0.12	16-17	>999	360	Weight: 235 lb	FT = 20%	
LUMBER 2) Wind: ASCE 7-16; Vult=130mph (3-second gust)													

LU	IVI	в	E	۲.	

TOP CHORD	2x6 SP No.2
BOT CHORD	2x6 SP No.2 *Except* 17-16:2x8 SP 2400F 2.0E
WEBS	2x4 SP No.2
SLIDER	Left 2x6 SP No.2 1-6-0, Right 2x6 SP No.2 1-6-0
BRACING	
TOP CHORD	Structural wood sheathing directly applied, except
	2-0-0 oc purlins (6-0-0 max.): 7-8.
BOT CHORD JOINTS	Rigid ceiling directly applied. 1 Brace at Jt(s): 19, 20
PEACTIONS	(20) $(2-0.5.8)$ $(13-0.5.8)$
REACTIONS	$\begin{array}{c} \text{(312e)} & \text{(2=0-3-6, 13=0-3-6)} \\ \text{Max Horiz} & \text{(2=-214 (I C 10))} \end{array}$
	Max Grav 2=1525 (LC 18), 13=1525 (LC 19)
FORCES	(Ib) - Maximum Compression/Maximum Tension
TOP CHORD	1-2=0/58, 2-5=-1768/0, 5-6=-1207/0,
	6-7=-396/66, 7-8=-255/75, 8-9=-389/63,
	9-10=-1207/0, 10-13=-1767/0, 13-14=0/58
BOT CHORD	2-18=0/1368, 15-18=0/1367, 13-15=0/1215
WEBS	5-17=0/766, 10-16=0/763, 6-19=-1137/0,
	19-20=-1133/0, 9-20=-1148/0, 11-15=-375/29,
	11-16=-156/285, 4-18=-377/26,
	4-17=-156/285, 7-19=0/61, 8-20=-16/115,
	7-20=-120/104
NOTES	

1)

Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=26ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior (1) 1-6-0 to 11-2-0, Exterior (2E) 11-2-0 to 14-11-0, Exterior(2R) 14-11-0 to 19-1-15, Interior (1) 19-1-15 to 27-7-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component. Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom 5) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 6) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 7) Ceiling dead load (5.0 psf) on member(s). 5-6, 9-10, 6-19, 19-20, 9-20; Wall dead load (5.0psf) on member (s).5-17, 10-16
- 8) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 16-17
- 9) All bearings are assumed to be SP No.2. 10) This truss design requires that a minimum of 7/16"
- structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 12) Attic room checked for L/360 deflection.
- LOAD CASE(S) Standard

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

December 14,2023

Job	Truss	Truss Type	Qty	Ply	
1023-067	G03	Attic	1	1	T32352933 Job Reference (optional)

Run: 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:13 ID:dPXBFZAwP1G9V2zo5RP0J2yPEYD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:71.7

Plate Offsets (X, Y): [2:Edge,0-0-0], [4:0-4-0,0-4-8], [6:0-2-1,0-2-0], [7:0-7-0,0-2-12], [9:0-2-1,0-2-0], [13:Edge,0-0-0], [15:0-3-8,0-4-8], [17:0-3-8,0-4-8]											
Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	l/defl	L/d	PLATES	

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.27	Vert(LL)	-0.10	17-18	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.25	BC	0.40	Vert(CT)	-0.15	17-18	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.13	Horz(CT)	0.03	13	n/a	n/a		
BCDL	10.0	Code	FBC2020/TPI2014	Matrix-AS		Attic	-0.08	15-16	>999	360	Weight: 231 lb	FT = 20%

LUMBER	
--------	--

TOP CHORD	2x6 SP No.2
BOT CHORD	2x6 SP No.2 *Except* 17-15:2x8 SP 2400F 2.0E
WEBS	2x4 SP No.2
SLIDER	Left 2x6 SP No.2 1-6-0, Right 2x6 SP No.2 1-6-0
BRACING	
TOP CHORD	Structural wood sheathing directly applied, except
	2-0-0 oc purlins (6-0-0 max.): 7-8.
BOT CHORD	Rigid ceiling directly applied.
JOINTS	1 Brace at Jt(s): 19, 20
REACTIONS	(size) 2=0-5-8, 13=0-5-8, 16=0-1-8
	Max Horiz 2=205 (LC 11)
	Max Grav 2=1203 (LC 18), 13=1021 (LC 18), 16=813 (LC 16)
FORCES	(lb) - Maximum Compression/Maximum Tension
TOP CHORD	1-2=0/58, 2-5=-1333/0, 5-6=-821/42,
	6-7=-404/63, 7-8=-213/76, 8-9=-314/56,
	9-10=-884/54, 10-11=-1160/17,
	11-13=-1205/0
BOT CHORD	2-18=-14/1074, 16-18=0/1074, 14-16=0/916,
	13-14=0/861
WEBS	5-17=0/374, 10-15=-16(257, 6-19=-601/26, 19-20=-599/28, 9-20=-803/32, 4-18=-29/127, 4-17=-256/89, 11-14=-133/149, 11-15=-263/132, 7-19=-3/102, 8-20=-47/61, 7-20=-246/29

NOTES

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=26ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior (1) 1-6-0 to 11-2-0, Exterior(2E) 11-2-0 to 14-11-0, Exterior(2R) 14-11-0 to 19-1-15, Interior (1) 19-1-15 to 26-1-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 Building Designer / Project engineer responsible for
- verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
 Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Ceiling dead load (5.0 psf) on member(s). 5-6, 9-10, 6-19, 19-20, 9-20; Wall dead load (5.0psf) on member (s).5-17, 10-15
- Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 16-17, 15-16
- 9) Bearings are assumed to be: Joint 2 SP No.2 , Joint 16 SP 2400F 2.0E , Joint 13 SP No.2 .
- 10) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 16.
- 11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 13) Attic room checked for L/360 deflection.
- LOAD CASE(S) Standard

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

December 14,2023

Job	Truss	Truss Type	Qty	Ply	
1023-067	G04	Attic Girder	1	2	T32352934 Job Reference (optional)

Run; 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:13 ID:9zH7NBX4dveGe4nWOk1wo1yOIsf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:71.7

Plate Offsets (X, Y): [2:Edge,0-0-0], [4:0-4-0,0-4-8], [6:0-2-1,0-2-0], [7:0-7-0,0-2-12], [9:0-2-1,0-2-0], [15:0-3-8,0-4-8], [17:0-3-8,0-4-8]

Loading	(psf)	Spacing	3-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.25		тс	0.24	Vert(LL)	-0.08	17-18	>999	240	MT20	244/190	
TCDL	10.0	Lumber DOL	1.25		BC	0.35	Vert(CT)	-0.12	17-18	>999	180			
BCLL	0.0*	Rep Stress Incr	NO		WB	0.08	Horz(CT)	0.02	13	n/a	n/a			
BCDL	10.0	Code	FBC202	0/TPI2014	Matrix-MS		Attic	-0.06	15-16	>999	360	Weight: 461 lb	FT = 20%	
3CDL LUMBER TOP CHORD 3OT CHORD WEBS SLIDER BRACING TOP CHORD 3OT CHORD JOINTS REACTIONS	10.0 2x6 SP No.2 2x6 SP No.2 *Excep 2.0E 2x4 SP No.2 Left 2x6 SP No.2 1 1-6-0 2-0-0 oc purlins (6-0 (Switched from shee Rigid ceiling directly bracing. 1 Brace at Jt(s): 7, 8, 19, 20 (size) 2=0-5-8, 1 Max Horiz 2=307 (LC	Code t* 17-15:2x8 SP 240 I-6-0, Right 2x6 SP I -0 max.) ted: Spacing > 2-0-(applied or 10-0-0 oc 3=0-5-8, 16=0-1-8 27)	FBC202 1) 00F No.2 2) 0). 3 3) 4)	0/TPI2014 2-ply truss to (0.131"x3") n Top chords c staggered at Bottom chorce staggered at oc. Web connect All loads are except if note CASE(S) sec provided to d unless otherw Unbalanced in this design. Wind: ASCE Vasd=101mp	Matrix-MS be connected tog ails as follows: onnected as follow 0-9-0 oc. Is connected as fo 0-9-0 oc, 2x8 - 2 r ed as follows: 2x4 considered equally d as front (F) or b- tion. Ply to ply cor istribute only loads vise indicated. roof live loads have 7-16; Vult=130mp h: TCDL=6.00sf: B	ether wir vs: 2x6 - llows: 2: ows stag - 1 row y applied ack (B) f nection s noted a e been o h (3-sec 3CDL=6	Attic h 10d 2 rows 66 - 2 rows ggered at 0-9 at 0-9-0 oc. 4 to all plies, ace in the LC s have been as (F) or (B), considered fo ond gust) .0psf: h=15ft;	-0.06 -0 DAD	15-16 12) Prov bea 13) Gra or tr bott 14) Attic LOAD C	>999 vide mec ring plate ohical pu e orient om chore room cl caSE(S)	360 chanica e at joi urlin re ation c d. hecked Star	Weight: 461 lb al connection (by int(s) 16. presentation doe of the purlin along d for L/360 deflec ndard	FT = 20% others) of truss to s not depict the size the top and/or tion.	
FORCES TOP CHORD BOT CHORD WEBS	Max Grav 2=1801 (L 16=1225 ((lb) - Maximum Com Tension 1-2=0/86, 2-5=-1995 6-7=-594/56, 7-8=-3i 9-10=-1323/40, 10-1 11-13=-1796/0 2-18=-10/1611, 16-1 13-14=0/1280 4-18=-51/184, 4-17= 10-15=-2/389, 11-15 11-14=-206/213, 6-1 19-20=-907/45, 9-20 8-20=-65/80, 7-20=-3	 .7.7 .7.8 .7.1 .7.1 .7.2 .7.2 .7.2 .7.2 .7.3 .7.4 .7.4<td>5) (1373, 6) (1373, 7) 47, 8) 154, 9) 10</td><td>Vasd=101mp B=45ft; L=26 MWFRS (dire end vertical le plate grip DO Building Desi verifying appl requirements Provide adeq This truss ha chord live loa * This truss ha chord live loa * This truss ha on the botton 3-06-00 tall b chord and an Ceiling dead 6-19, 19-20, 9 (s),5-17, 10-1</td><td>h; TCDL=6.0psf; E ft; eave=4ft; Cat. Il actional); cantileve eft and right expose iL=1.60 gner / Project eng ied roof live load s specific to the use uate drainage to p s been designed fi d nonconcurrent v as been designed fi d no concurrent v as been d no concurrent v a</td><td>3CDL=6 (; Exp B; r left and ed; Lum ineer res- shown ca of this revent v or a 10.0 vith any for a liv s where I fit betw hember(pad (5.0 f) and a</td><td>0.0psf; h=15ft; Enclosed; d right expose ber DOL=1.6 sponsible for overs rain loa vater ponding 0 psf bottom other live loa: e load of 20.0 a rectangle reen the botto s). 5-6, 9-10, osf) on memb dditional botto</td><td>ed; 0 ding nent. J. ds. lpsf om ver</td><td></td><td>Contraction of the second s</td><td>A PARTY</td><td>No 34</td><td>LEE SE B69 D.A. C. M.</td><td></td>	5) (1373, 6) (1373, 7) 47, 8) 154, 9) 10	Vasd=101mp B=45ft; L=26 MWFRS (dire end vertical le plate grip DO Building Desi verifying appl requirements Provide adeq This truss ha chord live loa * This truss ha chord live loa * This truss ha on the botton 3-06-00 tall b chord and an Ceiling dead 6-19, 19-20, 9 (s),5-17, 10-1	h; TCDL=6.0psf; E ft; eave=4ft; Cat. Il actional); cantileve eft and right expose iL=1.60 gner / Project eng ied roof live load s specific to the use uate drainage to p s been designed fi d nonconcurrent v as been designed fi d no concurrent v as been d no concurrent v a	3CDL=6 (; Exp B; r left and ed; Lum ineer res- shown ca of this revent v or a 10.0 vith any for a liv s where I fit betw hember(pad (5.0 f) and a	0.0psf; h=15ft; Enclosed; d right expose ber DOL=1.6 sponsible for overs rain loa vater ponding 0 psf bottom other live loa: e load of 20.0 a rectangle reen the botto s). 5-6, 9-10, osf) on memb dditional botto	ed; 0 ding nent. J. ds. lpsf om ver		Contraction of the second s	A PARTY	No 34	LEE SE B69 D.A. C. M.	

"minin chord dead load (5.0 psf) applied only to room. 16-17, Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 11) Bearings are assumed to be: Joint 2 SP No.2, Joint 16 Date:

December 14,2023

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

15-16

SP 2400F 2.0E , Joint 13 SP No.2 .

Job	Truss	Truss Type	Qty	Ply	
1023-067	G05	Piggyback Base	1	1	Job Reference (optional)

Run; 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:14 ID:6Xhj?aKf?UUw7vqv0?1ZpeyOldQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:67.1

Plate Offsets (X, Y): [2:Edge,0-0-0], [4:0-4-0,0-4-8], [5:0-5-4,0-3-0], [9:Edge,0-0-0], [12:0-4-0,0-4-8]

Loading	(psf) S	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0 F	Plate Grip DOL	1.25		тс	0.18	Vert(LL)	-0.03	12-13	>999	240	MT20	244/190
TCDL	10.0 L	Lumber DOL	1.25		BC	0.29	Vert(CT)	-0.06	12-13	>999	180		
BCLL	0.0* F	Rep Stress Incr	YES		WB	0.32	Horz(CT)	0.03	9	n/a	n/a		
BCDL	10.0 C	Code	FBC202	0/TPI2014	Matrix-AS							Weight: 231 lb	FT = 20%
LUMBER			3)	Building Desi	gner / Project engir	neer re	sponsible for						
TOP CHORD	2x6 SP No.2			verifying appl	ied roof live load sh	nown ce	overs rain loa	ding					
BOT CHORD	2x6 SP No.2			requirements	specific to the use	of this	truss compo	nent.					
WEBS	2x4 SP No.2		4)	Provide adeq	uate drainage to pr	event v	vater ponding	g.					
SLIDER	Left 2x6 SP No.2 1-6	5-0, Right 2x6 SP N	o.2 5)	This truss ha	s been designed for	r a 10.0) psf bottom						
	1-6-0			chord live loa	d nonconcurrent wi	ith any	other live loa	ds.					
BRACING			6)	* This truss h	as been designed f	or a liv	e load of 20.0	Opsf					
TOP CHORD	Structural wood sheath	hing directly applied	1,	on the bottom 3-06-00 tall b	v 2-00-00 wide will	where fit betw	a rectangle /een the bott	om					
	2 0 0 oc purling (6 0 0	max): 5 6		chord and an	y other members.								
	Pigid ceiling directly an	nlied	7)	All bearings a	are assumed to be \$	SP No.	2.						
WERS	1 Row at midnt 5-	.11	8)	Provide mech	nanical connection	(by oth	ers) of truss t	0					
REACTIONS	(cizo) 2-0.5.8.0-0	0.5.9		bearing plate	capable of withstar	nding 3	8 lb uplift at j	oint					
REACTIONS	(Size) 2=0-5-0, 9=0 Max Horiz 2=205 (I C 1	0-5-0		2.									
	Max Holift 2=-38 (LC 1	2)	9)	This truss de	sign requires that a	minim	um of 7/16"						
	Max Grav 2=1136 (LC 12	2) (1) 9=1041 (I C 1)		structural wo	od sheathing be ap	plied di	rectly to the	top					
FORCES				chord and 1/2	2" gypsum sheetroo	k be ap	oplied directly	/ to					
FURGES	(ID) - Maximum Compre	ession/maximum	10	the bottom cr	NORD.								1
	5-6677/124 6-798	5/126 7-9-1240/5	5) Graphical pul	tion of the purlin of		top and/or	size					1111
	1-2=0/58 2-5=-1232/1	13	,	bottom chord	nion of the putilitian	Sing the	top anu/or					1 ULIUS	LEDU
BOT CHORD	2-13=-41/892, 11-13=0)/892.10-11=0/867			Standard						A.	CEN	
	9-10=-7/867	,,	, LO	AD CASE(S)	Stanuaru						3	. TOLW	SE.
WEBS	4-13=0/183, 4-12=-305	5/90, 5-12=-10/319,										No. 24	0.00
	5-11=-101/121, 6-11=-2	23/325, 7-11=-315/	/94,							-	1. J. J.	ANO 340	509
	7-10=0/184									- E	*:		∧ :★ =
NOTES										=	:	1 1	
1) Unbalance	ed roof live loads have be	een considered for									D:	X 11 11.	. Vnacz=
this desigr	۱.									-	TH		OALKA!S
2) Wind: ASC	CE 7-16; Vult=130mph (3	B-second gust)									- 0	A WORK	
Vasd=101	mph; TCDL=6.0psf; BCD	DL=6.0psf; h=15ft;									37	ALLON	01.55
B=45ft; L=	26tt; eave=4ft; Cat. II; Ex	xp B; Enclosed;									11	S. HI	
	directional) and C-C Exte	erior(2E) -1-6-0 to	4.0									ONA	LEIN
1-6-0, Inte	1101 (1) 1-6-0 to 11-2-0, E	=xterior(2E) 11-2-01	10									11111	inne.
14-11-0, E	.xtenur(2K) 14-11-0 to 19	9-1-15, Interior (1)											

B=45ft; L=26ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior (1) 1-6-0 to 11-2-0, Exterior(2E) 11-2-0 to 14-11-0, Exterior(2R) 14-11-0 to 19-1-15, Interior (1) 19-1-15 to 26-1-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

December 14,2023

Page: 1

minin

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

Julius Lee PE No. 34869

Date:

Job	Truss	Truss Type	Qty	Ply	
1023-067	G06	Jack-Open Girder	1	1	T32352936 Job Reference (optional)

Run; 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:14 ID:mF6uG7Bk_SI?69WgJSHfosyOHQ7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

JUS26

Scale = 1:38.1

Plate Offsets (X, Y): [6:Edge,0-1-12]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25		TC	0.05	Vert(LL)	0.00	5-6	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.25		BC	0.19	Vert(CT)	0.00	5-6	>999	180		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.01	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	FBC202	0/TPI2014	Matrix-MP							Weight: 15 lb	FT = 20%
LUMBER			8)	Use MiTek J	US26 (With 4-10d	d nails int	o Girder & 4-	10d					
TOP CHORD	2x4 SP No.2		,	nails into Tru	uss) or equivalent	at 0-5-8	from the left	end					
BOT CHORD	2x6 SP No.2			to connect tr	uss(es) to front fa	ce of bot	tom chord.						
WEBS	2x4 SP No.2		9)	Fill all nail ho	oles where hange	r is in cor	ntact with lum	ber.					
BRACING			10) In the LOAD	CASE(S) section	, loads a	pplied to the	face					
TOP CHORD	Structural wood she	eathing directly appli	ed or	of the truss a	are noted as front	(F) or ba	ck (B).						
	2-4-12 oc purlins, e	except end verticals.	LC	AD CASE(S)	Standard								
BOT CHORD	Rigid ceiling directly	y applied or 10-0-0 o	c 1)	Dead + Ro	of Live (balanced)	: Lumber	Increase=1.	25,					
	bracing.			Plate Increa	ase=1.25								
REACTIONS	(size) 4= Mech	anical, 6=0-3-0		Uniform Lo	ads (lb/ft)								
	Max Horiz 6=43 (LC	(8)		Vert: 1-3	=-60, 4-6=-20								
	Max Grav 4=191 (L	.C 1), 6=682 (LC 1)		Concentrat	ed Loads (lb)								
FORCES	(lb) - Maximum Cor	npression/Maximum		Vert: 7=-	694 (F)								
	Tension												
TOP CHORD	1-6=-51/0, 1-2=-26/	26, 2-3=-12/0											
BOT CHORD	5-6=-36/16, 4-5=0/0)											
WEBS	2-5=-84/33, 1-5=-17	7/39											
NOTES												minin	1111
1) Wind: AS	CE 7-16; Vult=130mpl	h (3-second gust)										W UIUS	15.11.
Vasd=101	1mph; TCDL=6.0psf; E	3CDL=6.0psf; h=15ft;										JUL	-EE 11,
B=45ft; L=	=24ft; eave=4ft; Cat. II	; Exp B; Enclosed;										CEA	18:00 1
MWFRS ((directional); cantileve	r left and right expose	ed ;								5		1
end vertic	al left and right expos	ed; Lumber DOL=1.6	60								- ·	No. 24	000

plate grip DOL=1.60 Building Designer / Project engineer responsible for 2) verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

Bearings are assumed to be: Joint 6 SP No.2 . 5)

Refer to girder(s) for truss to truss connections. 6)

7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 6.

December 14,2023

Page: 1

ONAL

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

111111

Julius Lee PE No. 34869

Date:

Job	Truss	Truss Type	Qty	Ply		
1023-067	H01	Common Supported Gable	1	1	Job Reference (optional)	T32352937

Run: 9.04 S 8.73 Nov 16 2023 Print: 8.730 S Nov 16 2023 MiTek Industries. Inc. Thu Dec 14 11:53:52 ID:_Lxskz_GCvjcjyxXu5CDKYyOH71-Tv9M0J_aQi_nHBJmmQ4jY4ZyLRtykuZb54cCVhy9EUT

Scale = 1:52.3

Plate Offsets (X, Y): [6:0-2-0,Edge], [14:0-6-0,0-4-8], [21:0-2-8,0-3-0], [23:0-6-0,0-6-12]

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.25		ТС	0.18	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL		10.0	Lumber DOL	1.25		BC	0.15	Vert(CT)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.10	Horz(CT)	0.00	14	n/a	n/a		
BCDL		10.0	Code	FBC202	20/TPI2014	Matrix-AS	5.10	(01)					Weight: 114 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wo except end v Rigid ceiling All bearings 1	pod shea verticals. directly 7-9-0.	athing directly applied,	-BC202 3) 4) , 5) 6) 7)	Truss desigr only. For stu see Standarc or consult qu Building Des verifying app requirements All plates are Gable requirr Truss to be fi braced again	Matrix-AS ned for wind load ds exposed to w 4 Industry Gable alified building di igner / Project er lied roof live load s specific to the u 1.5x4 MT20 unl es continuous bo ully sheathed froi st lateral movem	Is in the pl rind (norm End Detai esigner as ngineer res d shown c use of this ess otherw ttom chor m one fac eent (i.e. d	ane of the tru al to the face Is as applical or per ANSI/TF sponsible for overs rain loa truss compor vise indicated d bearing. e or securely iagonal web)	uss ble, PI 1. ading nent. d.				weight: 114 ib	FT = 20%
(lb) -	Max Horiz 23	3=-180 (L	_C 10)	8)	Gable studs	spaced at 2-0-0	oc.		-					
	Max Oplift All 14 15 Max Grav All (s) 14	l upilit 10 l, 16, 17, 5=-139 (L l reaction) 15, 16, l=312 (L	20, 21, 23 except .C 12), 22=-124 (LC 1 as 250 (lb) or less at junction 17, 20, 21, 22, 23 exc C 17), 18=301 (LC 18	^{S)} 9) 12) 10 oint cept 3),	This truss ha chord live loa) * This truss h on the bottom 3-06-00 tall b chord and an	s been designed ad nonconcurrent as been designe n chord in all are by 2-00-00 wide v w other members	I for a 10.0 t with any ed for a liv as where will fit betw s with BC) psf bottom other live loa e load of 20.0 a rectangle veen the botto DI = 10.0 psf	ads. Opsf om					

19=316 (LC 17) (lb) - Max. Comp./Max. Ten. - All forces 250 FORCES (lb) or less except when shown. TOP CHORD 1-23=-278/92, 11-12=-253/101,

- NOTES
- 1) Unbalanced roof live loads have been considered for this design

12-14 = -268/63

- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) 0-3-14 to 3-3-14, Exterior(2N) 3-3-14 to 8-10-8, Corner(3R) 8-10-8 to 11-10-8, Exterior(2N) 11-10-8 to 19-3-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- chord and any other members, with BCDL = 10.0psf.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint (s) 23, 14, 20, 21, 17, 16 except (jt=lb) 22=123, 15=139.
- 12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

December 14,2023

Page: 1

👠 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only using the mathematical network of the intervention of the in

Job	Truss	Truss Type	Qty	Ply	
1023-067	H02	Common	1	1	Job Reference (optional)

Run; 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:15 ID:Tu8NnN0CxKYP1AV3x9INphyOH5h-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:54.5

Plate Offsets (X, Y): [5:0-2-14,0-2-0]

oading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
CLL (roof)	20.0	Plate Grip DOL	1.25		TC	0.18	Vert(LL)	-0.01	9-10	>999	240	MT20	244/190	
FCDL	10.0	Lumber DOL	1.25		BC	0.20	Vert(CT)	-0.03	9-10	>999	180			
BCLL	0.0*	Rep Stress Incr	YES		WB	0.17	Horz(CT)	0.01	7	n/a	n/a			
BCDL	10.0	Code	FBC202	0/TPI2014	Matrix-AS							Weight: 122 lb	FT = 20%	
UMBER	2x4 SP No.2		4) 5)	This truss ha	as been designed fo ad nonconcurrent w	or a 10.0 /ith any) psf bottom other live loa	ids.						
	2X4 SP N0.2 2x4 SP No.2		3)	on the bottor	n chord in all areas	where	a rectangle	opsi						
	2X4 3P NU.2			3-06-00 tall b	ov 2-00-00 wide will	l fit betv	een the botto	om						
	Structural wood sheat	thing directly applie	d	chord and ar	ny other members.									
	except end verticals.	aning directly applie	6)	All bearings	are assumed to be	SP No.	2.							
BOT CHORD	Rigid ceiling directly a	pplied.	7)	Provide mec	hanical connection	(by oth	ers) of truss t	tO						
REACTIONS	(size) 7=0-5-8, 11	=0-5-8		bearing plate	e capable of withsta	inding 4	1 lb uplift at j	oint						
	Max Horiz 11=-190 (L0	C 10)	8)	7. This trues de	eian requires that a	, minim	um of 7/16"							
	Max Uplift 7=-41 (LC 1	12)	0)	o) This trues design requires that a minimum of 7100 structural word sheatthing he applied directly to the top										
	Max Grav 7=802 (LC	1), 11=694 (LC 1)		chord and 1/	2" gypsum sheetro	ck be a	oplied directly	/ to						
ORCES	(lb) - Maximum Comp	ression/Maximum		the bottom c	hord.									
	Tension		_ LO	AD CASE(S)	Standard									
OP CHORD	1-2=-752/55, 2-3=-57 4-5=-746/53, 5-6=0/63	7/117, 3-4=-576/11 3. 1-11=-648/44.	5,											
	5-7=-757/93	-, ,												
BOT CHORD	10-11=-136/241, 8-10	=0/570, 7-8=0/85										minin	1111.	
VEBS	1-10=0/432, 5-8=0/46	3, 2-10=-8/110,										W UI IUS	15.11	
	2-9=-245/84, 3-9=-63/	/391, 4-9=-230/83,										1000	SE III	
	4-8=-15/108										3	CEN	SA. 4	
NOTES										0	-	1 ×	S & S	
this design	ed root live loads have b	een considered for									2.1	No 34	369 🧯 💈	
Wind AS	CF 7-16: Vult=130mph (;	3-second aust)									*:		a:* =	
Vasd=101	mph: TCDL=6.0psf: BCI	DL=6.0psf: h=15ft:									:	- II / 🃩		
B=45ft; L=	24ft; eave=4ft; Cat. II; E	xp B; Enclosed;									ט:			
MWFRS (directional) and C-C Ext	erior(2E) 0-1-12 to									1	NACE THE	101-11-14	
2 1 1 2 Int	orior (1) 2 1 12 to 9 10	9 Exterior(2D) 9 1(סר											

2, Interior (1) 3-1-12 to 8-10-8, Exterior(2R) 8-10-8 to 11-10-8, Interior (1) 11-10-8 to 19-3-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading 3) requirements specific to the use of this truss component.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

December 14,2023

ONAL

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

Julius Lee PE No. 34869

Date:

Nitek 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MTEk-US.com

Job	Truss	Truss Type	Qty	Ply		
1023-067	H04	Attic	2	1	Job Reference (optional)	

Run: 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:16 Page: 1

1-8-9

Scale = 1:89.5

1-8-9 Plate Offsets (X, Y): [2:0-4-0.0-4-8]. [4:0-2-1.0-2-0]. [8:0-2-1.0-2-0]. [10:0-4-0.0-4-8]. [22:0-3-0.0-3-4]

	(,,, ,), [=:0 : 0,0 :	0];[::0 = :;0 = 0];[0.0 2 .,0 2	0],[:0:0 : 0,0	. 0], [0 0 0,0	0.1										
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP			
TCLL (roof)	20.0	Plate Grip DOL	. 1.25		TC	0.40	Vert(LL)	-0.22	30-31	>999	240	MT20	244/190			
TCDL	10.0	Lumber DOL	1.25		BC	0.97	Vert(CT)	-0.32	23-25	>999	180					
BCLL	0.0	 Rep Stress Inc 	r YES		WB	0.52	Horz(CT)	0.08	13	n/a	n/a					
BCDL	10.0	Code	FBC2	020/TPI2014	Matrix-AS		Attic	-0.20	16-29	>755	360	Weight: 293 lb	FT = 20%			
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD JOINTS	2x6 SP No.2 2x4 SP No.2 *Exc No.1 2x4 SP No.2 *Exc No.2 Structural wood s except end vertic (6-0-0 max.): 5-7. Rigid ceiling direc 1 Brace at Jt(s): 3	ept* 22-13,26-22:2: ept* 32-1,13-11:2x6 heathing directly ap als, and 2-0-0 oc pu tly applied. 3,	x4 SP 6 SP oplied, rrlins	WEBS	29-30=0/767, 3 9-16=0/857, 4-3 34-35=-1009/0, 10-14=-243/19, 2-30=-251/129, 5-33=-1/321, 7 6-33=-522/37, (25-26=-1/66, 2: 19-20=-206/0, 15-17=-1271/0, 21-24=-29/163, 27-30=-1327/0	-29=0/858, 33=-1411/0, 8-34=-1411 10-15=-233 1-31=0/143 34=-1/323, 6-34=-527/4 3-24=-220/0 17-18=-216/ 17-20=0/10 24-25=0/53	15-16=0/749 33-35=-1005 7/0, 2-31=-23 3/129, 30, 11-14=0/1 6-35=0/77, 1, 27-28=0/3 , 21-22=-33/2 55, 722, 20-21=-5 99, 25-28=-94	, 0/0, 0/17, 1414, 44, 28, 390/0, 46/0,	 8) Bott cho 25-2 9) Bea SP 10) This stru cho the 11) Gra or th bott 12) Attic 	com choi rd dead 27, 23-2: rrings ar No.1. s truss d ctural we rd and 1 bottom o phical prine orient oom chor c room c	rd live load (f 5, 21-2 e assu esign r ood sh /2" gyp chord. urlin re tation c d.	load (40.0 psf) a 5.0 psf) applied c 23, 19-21, 17-19, med to be: Joint requires that a m leathing be appli- bosum sheetrock l presentation doe of the purlin along d for L/360 deflet	nd additional botton nly to room. 27-29 16-17 32 SP No.2, Join ad directly to the tr be applied directly as not depict the s g the top and/or stion.	im), t 13 op to ize		
REACTIONS	(size) 13-0-5	-8 32-0-5-8		 Unbalanced roof live loads have been considered for 						LOAD CASE(S) Standard						
FORCES	Max Horiz 32=-25 Max Grav 13=19' (lb) - Maximum C	1 (LC 10) 6 (LC 19), 32=1815 pmpression/Maximu	5 (LC 18) um	this design. 2) Wind: ASCI Vasd=101m B=45ft: L=3	E 7-16; Vult=130 hph; TCDL=6.0p 2ft: eave=4ft: Ca)mph (3-sec sf; BCDL=6 at II: Exp B	ond gust) .0psf; h=15ft; Enclosed:	;								
TOP CHORD	Tension 1-3=-2193/0, 3-4= 5-6=-495/54, 6-7= 8-9=-1506/0, 9-1 ⁻¹ 1-32=-1756/0, 11	1503/0, 4-5=-623/ 492/51, 7-8=-621/ =-2184/0, 11-12=0/ -13=-1855/0	46, 46, /66,	MWFRS (directional) and C-C Exterior(2E) 0-2-12 to 3-4-14, Interior (1) 3-4-14 to 12-2-3, Exterior(2R) 12-2-3 to 16-8-1, Interior (1) 16-8-1 to 19-6-13, Exterior(2R) 19-6-13 to 24-0-11, Interior (1) 24-0-11 to 33-3-0 zone;						JULIUS						
BOT CHORD	31-32=-96/376, 3 24-28=0/3319, 2C 15-18=0/2458, 14 27-29=-62/156, 2 23-25=-2436/0, 2 19-21=-2020/0, 1 16-17=-63/156	D-31=0/1782, 28-30 -24=0/3694, 18-20= -15=0/1584, 13-14= 5-27=-1113/0, 1-23=-2436/0, 7-19=-2020/0,	=0/2689, =0/2458, =0/233,	 cantiever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component. Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 					POLATE OF							

on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom

Ceiling dead load (10.0 psf) on member(s). 3-4, 8-9,

chord and any other members.

4-33, 33-35, 34-35, 8-34

MONAL EN Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

December 14,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

7)

Job	Truss	Truss Type	Qty	Ply		
1023-067	H05	Attic	2	1	Job Reference (optional)	32352941

Run: 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:17

Mayo Truss Company, Inc., Mayo, FL - 32066,

Scale = 1:89.5

Plate Offsets (X, Y): [2:0-4-0,0-4-8], [4:0-2-1,0-2-0], [8:0-2-1,0-2-0], [10:0-4-0,0-4-8], [22:0-3-0,0-3-4]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP			
TCLL (roof)	20.0	Plate Grip DOL	1.25		TC	0.42	Vert(LL)	-0.22	14-15	>999	240	MT20	244/190			
TCDL	10.0	Lumber DOL	1.25		BC	0.97	Vert(CT)	-0.32	19	>999	180					
BCLL	0.0*	Rep Stress Incr	YES		WB	0.54	Horz(CT)	0.08	13	n/a	n/a					
BCDL	10.0	Code	FBC2	020/TPI2014	Matrix-AS		Attic	-0.19	16-29	>761	360	Weight: 293	lb FT = 20%			
LUMBER TOP CHORD BOT CHORD	2x6 SP No.2 2x4 SP No.2 *Excep No.1	it* 22-13,26-22:2x4 S	SP SP	WEBS	29-30=0/739, 3-2 9-16=0/858, 4-34 33-35=-995/0, 8-3 5-34=0/325, 7-35	9=0/835, =-1405/0, 35=-1383, =-2/316, (15-16=0/750 , 33-34=-995 /0, 6-33=0/77 6-34=-531/35), /0, 7, 5,	 8) Bott cho 25-2 9) Bea 	tom choi rd dead 27, 23-2 irings ar	rd live load (5, 21-2 e assu	load (40.0 psf) 5.0 psf) applied 23, 19-21, 17-1 med to be: Joi	and additional bottom J only to room. 27-29, 9, 16-17 nt 32 SP No.2 , Joint 13			
WEBS	2x4 SP No.2 *Except* 32-1,13-11:2x6 SP No.2				6-35=-513/43, 10 2-30=-212/148, 1	-14=-237, 0-15=-24	/20, 2-31=-27 1/126,	79/11,	SP No.1 . 10) This truss design requires that a minimum of 7/16"							
BRACING TOP CHORD	Structural wood she except end verticals (6-0-0 max.): 5-7.	athing directly applie , and 2-0-0 oc purling	d, s	1-31=0/1424, 11-14=0/1412, 27-28=0/339, 25-26=0/68, 23-24=-220/0, 21-22=-32/29, 19-20=-206/0, 17-18=-203/61, 15-17=-1282/0, 17-20=0/1061, 20-21=-385/0.						 structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. 11) Graphical purlin representation does not depict the size 						
BOT CHORD JOINTS	Rigid ceiling directly 1 Brace at Jt(s): 33, 34, 35	applied.		21-24=-34/153, 24-25=0/545, 25-28=-957/0, 27-30=-1320/0						or the orientation of the purlin along the top and/or bottom chord. 12) Attic room checked for L/360 deflection.						
REACTIONS	(size) 13=0-5-8, Max Horiz 32=-253 (Max Grav 13=1907	. 32=0-3-8 LC 10) (LC 19). 32=1812 (L)	C 18)	 Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=130mph (3-second gust) 						CASE(S)) Sta	ndard				
FORCES	(lb) - Maximum Corr Tension	pression/Maximum	/	Vasd=101mp B=45ft; L=32	oh; TCDL=6.0psf ft; eave=4ft; Cat.	BCDL=6	.0psf; h=15fi ; Enclosed;	t;								
TOP CHORD	1-3=-2125/0, 3-4=-1 5-6=-487/55, 6-7=-5 8-9=-1489/0, 9-11=- 1-32=-1753/0, 11-13	493/0, 4-5=-620/47, 01/49, 7-8=-626/45, 2174/0, 11-12=0/66, 3=-1847/0		MWFRS (directional) and C-C Exterior(2E) 0-4-12 to 3-6-10, Interior (1) 3-6-10 to 12-2-3, Exterior(2R) 12-2-3 to 16-7-13, Interior (1) 16-7-13 to 19-6-13, Exterior(2R) 19-6-13 to 24-0-6, Interior (1) 24-0-6 to 33-3-0 zone;						ULIUS LER SAL						
BOT CHORD	31-32=-120/340, 30 28-30=0/2652, 24-2 18-20=0/2465, 15-1; 13-14=0/228, 27-29 23-25=-2434/0, 21-2 19-21=-2029/0, 17-1 16-17=-69/144	-31=0/1731, 8=0/3294, 20-24=0/3 8=0/2465, 14-15=0/1 =-52/165, 25-27=-10 :3=-2434/0, 19=-2029/0,	686, 577, 97/0,	 califications right exposed for reactions DOL=1.60 Building Desverifying app requirements Provide adec This truss ha chord live loa * This truss ha on the bottor 3-06-00 tall h 	d;C-C for membe shown; Lumber I ligner / Project en lied roof live load a specific to the u uate drainage to s been designed ad nonconcurrent has been designed n chord in all are: y 2-00-00 wide v	gineer re shown c se of this prevent v for a 10.0 with any d for a liv as where vill fit betv	sponsible for overs a MWFI sponsible for overs rain loc truss compo water pondin 0 psf bottom other live loc e load of 20. a rectangle	RS ading onent. g. ads. Opsf				NO 3	4869 ALENGINI			

3-06-00 tall by 2-00-00 wide will fit between the bottom

Ceiling dead load (10.0 psf) on member(s). 3-4, 8-9,

chord and any other members.

4-34, 33-34, 33-35, 8-35

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

December 14,2023

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

7)
Job	Truss	Truss Type	Qty	Ply		
1023-067	H06	Attic Girder	1	2	Job Reference (optional)	352942

Run: 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:18 Page: 1

Scale = 1:89.5

Plate Offsets (X, Y): [2:0-4-0,0-4-8], [4:0-1-9,0-1-8], [8:0-1-9,0-1-8], [10:0-4-0,0-4-8], [22:0-2-8,0-3-0], [26:0-2-8,0-3-0]

Loading	(psf)	Spacing	2-7-8		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.25		TC	0.33	Vert(LL)	-0.15	14-15	>999	240	MT20	244/190	
TCDL	10.0	Lumber DOL	1.25		BC	0.83	Vert(CT)	-0.22	19	>999	180			
BCLL	0.0*	Rep Stress Incr	NO		WB	0.37	Horz(CT)	0.05	13	n/a	n/a			
BCDL	10.0	Code	FBC202	0/TPI2014	Matrix-MS		Attic	-0.14	16-29	>999	360	Weight: 584 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD JOINTS REACTIONS	2x6 SP No.2 2x4 SP No.2 2x4 SP No.2 *Except No.2 2-0-0 oc purlins (6-0- verticals (Switched from shee Rigid ceiling directly bracing. 1 Brace at Jt(s): 5, 7, 33, 34, 35, 1, 11 (size) 13=0-5-8, Max Horiz 32=-331 (0)	t* 32-1,13-11:2x6 SP -0 max.), except end ted: Spacing > 2-0-0 applied or 6-0-0 oc 32=0-3-8 LC 6)	Wi i). 1)	EBS 2 3 4 4 3 7 6 2 2 1 2 2 5 7 5 2 2 9 7 5 2 2 9 7 5 2 9 1 2 2 2 5 7 5 2 2 9 7 6 2 2 2 2 5 7 7 7 6 2 2 2 2 7 7 7 7 7 7 7 7 7 7 7 7	2-31=-389/1, 2-30=- 3-29=0/1094, 15-16 0-15=-299/162, 10 1-33=-1856/0, 33-34 34-35=-1319/0, 8-34 -34=0/415, 6-35=0 5-33=-693/38, 1-31= 27-28=0/439, 25-26 11-22=-56/29, 19-22 5-17=-1682/0, 17-2 21-24=-30/242, 24-2 27-30=-1730/0 be connected toge ails as follows: onnected as follows:	-269/20 =0/970 -14=-32 5=-1319 4=-1829 /101, 6 =0/1938 =-3/85, D=-290/ 20=0/14 25=0/74 ther wir s: 2x6 -	1, 29-30=0/96 9-16=0/1117 20/11, 3/0, 3/0, 5-33=0/42 	62, 7, 25, 27, 0, 0/70, 62/0, 45/0,	8) This cho 9) * Th 3-0 cho 10) Cei 4-3 11) Bot cho 25- 12) All 13) Gra or t bott 14) Atti	s truss h rd live lc his truss the botto 6-00 tall rd and a ling dead 3, 33-35 tom choi rd dead 27, 23-2 bearings phical p he orient com choi c room co	as bee bad not has be om cho by 2-0 iny oth d load , 34-35 rd live load (! 5, 21-2 5, 21-2 s, are as urlin re tation of rd.	In designed for a n concurrent with a een designed for a rd in all areas wh 0-00 wide will fit h er members. (10.0 psf) on mer 5, 8-34 load (40.0 psf) ar boad (40.0 psf) ar 5.0 psf) applied or 23, 19-21, 17-19, ssumed to be SP prosentation doe of the purlin along d for L/360 deflect	10.0 psf bottom any other live loads a live load of 20.0ps ere a rectangle between the bottom nber(s). 3-4, 8-9, d additional bottom hly to room. 27-29, 16-17 No.2. s not depict the size the top and/or tion.	sf 1 e
FORCES	(lb) - Maximum Com	pression/Maximum	5 14)	staggered at Bottom chord	0-9-0 oc. Is connected as foll	lows: 2	4 - 1 row at		LOAD	CASE(S)) Sta	ndard		
TOP CHORD	1-3=-2776/0, 3-4=-19 5-6=-619/50, 6-7=-63 8-9=-1956/0, 9-11=-2 1-32=-2309/0, 11-13	962/0, 4-5=-792/0, 33/49, 7-8=-804/0, 2841/0, 11-12=0/87, =-2434/0	2)	0-9-0 oc. Web connect All loads are except if note	ed as follows: 2x4 considered equally ed as front (F) or ba	- 1 row applied ick (B) 1	at 0-9-0 oc. d to all plies, ace in the LO	DAD			S. S	JULIUS		
BOT CHORD	31-32=-201/385, 30- 28-30=0/3488, 24-28 18-20=0/3223, 15-18 13-14=0/231, 27-29= 23-25=-3208/0, 21-2: 19-21=-2678/0, 17-1: 16-17=-99/206	31=0/2271, 3=0/4319, 20-24=0/4/ 3=0/3223, 14-15=0/2/ -76/231, 25-27=-143 3=-3208/0, 9=-2678/0,	816, 065, 3) 32/0, 4) 5)	provided to d unless other Unbalanced this design. Wind: ASCE Vasd=101mp B=45ft; L=32 MWFRS (dire end vertical liplate grip DC Building Desi verifying app	roof live loads have 7-16; Vult=130mph h; TCDL=6.0psf; B ft; eave=4ft; Cat. II; ectional); cantilever eft and right expose IL=1.60 igner / Project engin lied roof live load si	noted a been o (3-sec CDL=6 Exp B left and ed; Lum	as (F) or (B), considered for ond gust) .0psf; h=15ft; Enclosed; d right expose iber DOL=1.6 sponsible for overs rain loar	r ed ; 0 dina			* PROVIN			

verifying applied roof live load shown covers rain loading

requirements specific to the use of this truss component.

Provide adequate drainage to prevent water ponding.

All plates are 1.5x4 MT20 unless otherwise indicated.

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

December 14,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

6)

7)

Job	Truss	Truss Type	Qty	Ply		
1023-067	H07	Attic Girder	1	2	Job Reference (optional)	T32352943

Run: 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:19 Page: 1 ID:4E5QMtv1t?Rz9ohMrVP0SjyOFmd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 12-0-3 21-11-4

5-0-8

Scale = 1:89.5

20-0-15 21-11-4₂₆₋₆₋₈ 20-0-15 21-11-4₂₆₋₆₋₈ 1-8-9 0-1-12 4-7-4 1-8-9 1-8-9 9-7-12 9-9-8 13-2-10 4-7-4 0-1-12 1-8-9 1-8-9 <u>1-8-9</u> 1-8-9 1-8-9

	Plate Offsets (X, Y):	[2:0-4-0,0-4-8], [4:0-2-1,0-2-0]	[8:0-2-1,0-2-0], [10:0-4-0,0-4-8],	, [16:0-5-8,Edge], [22:0-	-2-8,0-3-0], [26:0-2-8,0-3-0], [29:0-5-8,Edge]
--	-----------------------	----------------------------------	------------------------------------	---------------------------	--

5-0-8

														-
Loading	(psf)	Spacing	2-7-8		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.25		тс	0.30	Vert(LL)	-0.08	21-23	>999	240	MT20	244/190	
TCDL	10.0	Lumber DOL	1.25		BC	0.61	Vert(CT)	-0.16	21-23	>999	180			
BCLL	0.0*	Rep Stress Incr	NO		WB	0.26	Horz(CT)	0.03	13	n/a	n/a			
BCDL	10.0	Code	FBC202	0/TPI2014	Matrix-MS		Attic	-0.06	16-29	>999	360	Weight: 607 lb	FT = 20%	
LUMBER TOP CHORD 3OT CHORD WEBS BRACING TOP CHORD BOT CHORD JOINTS REACTIONS	2x6 SP No.2 2x4 SP No.2 2x4 SP No.2 *Excep No.2 2-0-0 oc purlins (6-0 verticals (Switched from shee Rigid ceiling directly bracing. 1 Brace at Jt(s): 5, 7, 1, 11, 33, 34, 35 (size) 13=0-5-8, Max Horiz 22, 221 (t* 32-1,13-11:2x6 SF -0 max.), except end ted: Spacing > 2-0-0 applied or 6-0-0 oc 32=0-3-8	WE j). 1)	EBS 2 1 4 3 1 1 6 2 2 2 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 1 2 2 2 1	2-31=-695/0, 29-30 5-16=0/1121, 9-16 1-33=-2016/0, 33-3 34-35=-1645/0, 8-3 1-14=0/1946, 5-33 -35=0/54, 6-33=-5 7-18=-138/0, 19-2 3-24=-311/0, 25-2 27-30=-2258/0, 25- 21-24=-124/309, 20 7-20=0/1405, 15-1 2-29=-125/378, 14- 0-16=-176/314 be connected toos	=0/1175 =0/133 5=-1645 4=-2073 =0/302 11/31, 6 0=-299/ 6=0/73, 28=-122 -21=-43 7=-210 16=0/27 ether wither wither the second secon	5, 3-29=0/133 5, 3-29=0/133 5/0, 1-31=0/15 5/0, 1-31=0/15 7-34=0/323, 5-34=-539/23, 0, 21-22=-56 10, 24-22=-0 72/108, 7/0, 29-31=0/ 85, th 10d	8, 1/0, 939, /25, , /843, /2207,	 Thi chc * TI on ' 3-0 chc (s). (s). (s). Bot chc 25- 11) All (Table chc) chc (s). (s).<td>s truss h rd live lc his truss the botto 6-00 tall rd and a ling dead 35, 34-3 3-29, 9-1 tom choo rd dead 27, 23-2 bearings phical p he orient</td><td>as beo bad no has b m cho by 2-(by 2-(load 5, 8-3 lo to ad load load (5, 21-2 are a urlin ro tation</td><td>en designed for a noconcurrent with een designed for ord in all areas wi 00-00 wide will fit her members. (5.0 psf) on men 4; Wall dead loa load (40.0 psf) a 5.0 psf) applied (23, 19-21, 17-19, ssumed to be ppresentation do of the purlin alon</td><td>10.0 psf bottom any other live lo a live load of 20 here a rectangle between the bo hber(s). 3-4, 8-9 d (5.0psf) on me nd additional bc only to room. 27 , 16-17 P No.2. es not depict the g the top and/or</td><td>n Dads. D.Opsf Httom H, 4-33, ember Dttom -29, e size</td>	s truss h rd live lc his truss the botto 6-00 tall rd and a ling dead 35, 34-3 3-29, 9-1 tom choo rd dead 27, 23-2 bearings phical p he orient	as beo bad no has b m cho by 2-(by 2-(load 5, 8-3 lo to ad load load (5, 21-2 are a urlin ro tation	en designed for a noconcurrent with een designed for ord in all areas wi 00-00 wide will fit her members. (5.0 psf) on men 4; Wall dead loa load (40.0 psf) a 5.0 psf) applied (23, 19-21, 17-19, ssumed to be ppresentation do of the purlin alon	10.0 psf bottom any other live lo a live load of 20 here a rectangle between the bo hber(s). 3-4, 8-9 d (5.0psf) on me nd additional bc only to room. 27 , 16-17 P No.2. es not depict the g the top and/or	n Dads. D.Opsf Httom H, 4-33, ember Dttom -29, e size
	Max Grav 13=2534 ((LC 6) (LC 15), 32=2400 (LC	C 14)	(0.131"x3") n	ails as follows:	s: 2v6 -	2 rows		bot 13) Atti	tom chor c room c	d. hecke	ed for L/360 defle	ction.	
FORCES	(lb) - Maximum Com Tension	pression/Maximum		staggered at	0-9-0 oc.	5. 2.00 -	210W5		LOAD	CASE(S) Sta	andard	10.	
TOP CHORD	1-3=-3023/0, 3-4=-20 5-6=-427/78, 6-7=-40 8-9=-2034/0, 9-11=-3 1-32=-2330/0, 11-13 31-32=-221/403, 30- 28-30=0/2300, 24-26 18-20=0/2202, 15-18 14-15=-289/1215, 13 27-29=0/2525, 25-27 23-25=-1730/0, 21-2 19-21=-1227/65, 17- 16-17=0/2435	005/0, 4-5=-640/69, 00/86, 7-8=-627/73, 3056/0, 11-12=0/87, i=-2463/0 31=-568/1080, 3=0/3082, 20-24=0/3 3=0/2202, 3-14=0/202, 7=-151/812, i3=-1730/0, 19=-1227/65,	2) 514, 3) 4)	Bottom chorc 0-9-0 oc. Web connect All loads are except if note CASE(S) sec provided to d unless otheru Unbalanced this design. Wind: ASCE Vasd=101mp B=45ft; L=32 MWFRS (dirr end vertical lip plate grip DC	ted as follows: 2x4 considered equally ad as front (F) or ba tion. Ply to ply con istribute only loads vise indicated. roof live loads have 7-16; Vult=130mpf bh; TCDL=6.0psf; E ft; eave=4ft; Cat. II actional); cantilever eft and right expose VL=1.60	- 1 row r applied ack (B) f nection noted a been of (3-sec CDL=6 ; Exp B; left and ed; Lum	44 - 1 row at at 0-9-0 oc. d to all plies, ace in the LO s have been as (F) or (B), considered for ond gust) .0psf; h=15ft; Enclosed; d right expose ber DOL=1.6	DAD r ed ; 0		. and the second	* PROMIT			
			5)	Building Desi	igner / Project engi	neer res	sponsible for							

verifying applied roof live load shown covers rain loading

requirements specific to the use of this truss component.

Provide adequate drainage to prevent water ponding.

...... Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

December 14,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

6)

Job	Truss	Truss Type	Qty	Ply		
1023-067	H08	Attic	5	1	Lob Reference (ontional)	

Run: 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:20

Page: 1

Mayo Truss Company, Inc., Mayo, FL - 32066,

11-6-1 14-11-3 18-4-6 21-9-8 26-4-0 5-2-9 9-7-12 9-9-8 13-2-10 16-7-13 20-0-1521-11-4 31-7-0 5-2-9 4-5-3 0-1-12 1-6-13 1-8-9 0-1-124-4-12 5-3-0 1-8-9 1-8-9 1-8-9 1-8-9

Plate Offsets (X, Y): [2:0-4-0,0-4-8], [4:0-2-1,0-2-0], [8:0-2-1,0-2-0], [10:0-4-0,0-4-9]; [18:0-5-8,Edge], [22:0-2-8,0-3-0], [27:0-2-8,0-3-0], [30:0-5-8,Edge]

Scale = 1:93.2

Loading TCLL (roof) TCDL BCLL BCDI	(psf) 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.25 1.25 YES FBC20	20/77812014	CSI TC BC WB Matrix-AS	0.35 0.76 0.41	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.13 -0.24 0.04 -0.09	(loc) 21-23 21-23 13 16-30	I/defI >999 >999 n/a ∖999	L/d 240 180 n/a 360	PLATES MT20	GRIP 244/190					
LUMBER TOP CHORD BOT CHORD WEBS	2x6 SP No.2 2x4 SP No.2 2x4 SP No.2 *Except	t* 13-11,32-1:2x6 SP	V 18020	VEBS 2	29-30=0/892, 3-30= 9-16=0/947, 4-33=- 34-35=-1124/0, 8-3 0-14=-485/0, 27-2	=0/948, 1444/0 4=-148 8=0/40	15-16=0/854, 33-35=-1124, 3/0, 2-31=-521 3, 25-26=0/52,	/0, /0,	8) Bott choi 25-2 9) All b	tom choir rd dead 28, 23-2 pearings	rd live l load (5 5, 21-2 are as	oad (40.0 psf) ar 5.0 psf) applied o 3, 19-21, 17-19, ssumed to be SP	nd additional bottom nly to room. 28-30, 16-17 No.2.					
BRACING TOP CHORD	No.2 Structural wood shea except end verticals, (6-0-0 max.): 5-7.	athing directly applied and 2-0-0 oc purlins	d,	17-18=-103/0, 15-17=-1609/0, 17-20=0/1068, 20-21=-360/79, 21-24=-96/231, 24-25=0/630, 25-27=-894/0, 28-29=-1728/0, 5-33=-1/276, 7-34=0/290, 6-35=0/77, 6-33=-425/19, C 24 = 41244 = 41.44 = 0.0407									directly to the top e applied directly to					
BOT CHORD JOINTS	Rigid ceiling directly 1 Brace at Jt(s): 33, 34, 35	applied.		6-34=-442/16, 11-14=0/1425, 1-31=0/1407, 14-16=0/1666, 10-16=-134/252, 30-31=0/1694, 2-30=-95/296							 bottom chord. 12) Attic room checked for L/360 deflection. LOAD CASE(S) Standard 							
REACTIONS	(size) 13=0-5-8, Max Horiz 32=-253 (I Max Grav 13=1911 (32=0-3-8 LC 10) LC 19), 32=1809 (LC	N 1 (18)	OTES) Unbalanced this design.	considered for		LOAD C	CASE(S)) Star	ndard								
FORCES	(lb) - Maximum Com	pression/Maximum	<i>'</i> 2) Wind: ASCE Vasd=101mp	cond gust) 6.0psf; h=15ft;													
TOP CHORD	1-3=-2273/0, 3-4=-15 5-6=-407/52, 6-7=-35 8-9=-1574/0, 9-11=-2 11-13=-1851/0, 1-32	552/0, 4-5=-579/47, 90/58, 7-8=-569/50, 2300/0, 11-12=0/66, =-1750/0		B=45ft; L=32ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-4-12 to 3-6-10, Interior (1) 3-6-10 to 12-2-3, Exterior(2R) 12-2-3 to 16-7-13, Interior (1) 16-7-13 to 19-6-13, Exterior(2R)								JULIUS						
BOT CHORD	31-32=-138/350, 29- 26-29=0/2322, 24-26 18-20=0/1647, 15-18 14-15=-238/898, 13- 25-28=-122/581, 23-	31=-455/787, 5=0/2322, 20-24=0/26 3=0/1647, 14=0/195, 28-30=0/1 25=-1303/0	647, 935,	cantilever left right exposed for reactions DOL=1.60	t and right exposed d;C-C for members shown; Lumber D0	i; end v and fo DL=1.60	vertical left and rces & MWFR	ł S			*	No 34	869 A *					
	21-23=-1303/0, 19-2 17-19=-922/51, 16-1	1=-922/51, 7=0/1861	3 4 5	 Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component. Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom 						operation								

- chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 7) Ceiling dead load (10.0 psf) on member(s). 3-4, 8-9, 4-33, 33-35, 34-35, 8-34

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date: December 14,2023

Job	Truss	Truss Type	Qty	Ply	
1023-067	H09	Attic	7	1	T32352945 Job Reference (optional)

Scale	_	1.03	5

 $\frac{220-0}{0.1-12} \xrightarrow{52-0}{0.2-12} \xrightarrow{1-8-9} \xrightarrow{1-$

													1		
Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)		20.0	Plate Grip DOL	1.25		TC	0.34	Vert(LL)	-0.10	23-25	>999	240	MT20	244/190	
TCDL		10.0	Lumber DOL	1.25		BC	0.62	Vert(CT)	-0.18	21-23	>999	180	-		
BCLI		0.0*	Rep Stress Incr	YES		WB	0.62	Horz(CT)	0.02	15	n/a	n/a			
BCDI		10.0	Code	FBC20	20/TPI2014	Matrix-AS	0.02	Attic	-0.06	18-31	>999	360	Weight: 337 lb	FT = 20%	
BOBL		10.0	0000	1 0020	20/11/2011	Manx / to		71110	0.00	10 01	2000	000	Wolgin. oor is	11 - 2070	
LUMBER				W	/EBS 3	31-32=0/759, 5-31	=0/908,	17-18=0/624,	,	7) Cei	ling dea	d load	(5.0 psf) on mer	nber(s). 6-35, 35-37,	
TOP CHORD	2x6 SP N	0.2				1-18=0/945, 6-35	=-1364/	0, 35-37=-111	18/0,	36-	37, 10-3	6, 5-6,	10-11; Wall de	ad load (5.0psf) on	
BOT CHORD	2x6 SP N	o.2 *Excep	t* 31-18:2x4 SP No.	2	3	86-37=-1118/0, 10	-36=-13	31/0, 3-34=-1	746/0,	mei	mber(s).	5-31, 1	11-18		
WEBS	2x4 SP N	o.2 *Excep	t* 5-32,15-13:2x6 SF	5	4	1-33=-1212/0, 12-1	16=-371	/1, 3-33=0/12	54,	8) Bot	tom cho	rd live	load (40.0 psf) a	and additional bottom	
	No.2				7	7-35=0/232, 9-36=	0/215, 8	-37=0/40,		cho	rd dead	load (5.0 psf) applied	only to room. 29-31,	
SLIDER	Left 2x6 S	SP No.2 1	1-6-0		8	3-36=-358/32, 8-35	5=-391/3	31, 29-30=0/3	99,	27-2	29, 25-2	7, 23-2	25, 21-23, 19-21	, 18-19	
BRACING					4	27-28=-25/29, 25-2	26=-203	/0, 23-24=-65	/7,	9) All I	pearings	are as	ssumed to be SI	² No.2 .	
TOP CHORD	Structura	I wood she	athing directly applie	ed,	4	21-22=-185/0, 19-2	20=-136	/0, 17-19=-98	9/0,	10) This	s truss d	esign i	requires that a n	ninimum of 7/16"	
	except er	nd verticals	, and 2-0-0 oc purlin	S		19-22=0/889, 22-2	3=-210/2	229,		stru	ctural w	ood sh	eathing be appl	ied directly to the top	
	(6-0-0 ma	ax.): 7-9.			2	23-26=-263/98, 26	-27=0/8	96, 27-30=-11	126/0,	cho	rd and 1	/2" gy	psum sheetrock	be applied directly to	1
BOT CHORD	Rigid ceil	ing directly	applied.		4	29-32=-1243/0, 13	10=0/1	251,		the	bottom (chord.		and the state of the state	_
JOINTS	1 Brace a	at Jt(s): 35,				10-10=-75/041, 12	1_0/795	3/149,		II) Gia	ipnical p	unin re	presentation do	es not depict the size)
	36, 37				· `	51-33=0/1007, 4-3	1=0/705			bott		alion d	or the putiin alor	ig the top and/or	
REACTIONS	(size)	15=0-5-8,	34=0-3-8	N	OIES					12) Atti		u. hocko	d for 1 /360 defle	action	
	Max Horiz	34=236 (L	_C 11)	1)	Unbalanced	roof live loads hav	e been (considered to	r			Cto	ndord	cuon.	
	Max Grav	15=1812	(LC 19), 34=1943 (L	C 18)	this design.	7 40 1/14 400	h (0			LUAD	SASE(S) Sla	nuaru		
FORCES	(lb) - Max	imum Com	pression/Maximum	Ζ,	Wind: ASCE	7-16; Vult=130mp		cona gust)							
	Tension				B=45ft 1=32	ft: eave=4ft: Cat I	I Evp B	· Enclosed:	,					1111.	
TOP CHORD	7-8=-318/	/89, 8-9=-3	38/88, 1-3=-50/113,		MWERS (dir	actional) and C-C	Fyterior	(2E) 0-2-0 to					1111111	111.	
	3-5=-205	1/0, 5-6=-1	406/0, 6-7=-490/83,		3-3-14 Interi	or (1) 3-3-14 to 12	-2-3 Fx	(2C) 0-2-0 10 (terior(2R) 12-	-2-3				IULIOU	LEE	
	9-10=-498	8/82, 10-11	=-1402/0, 11-13=-21	110/0,	to 15-4-2 Int	erior (1) 15-4-2 to	19-6-13	Exterior(2R)	20			1	CE	No	
	13-14=0/6	66, 13-15 = -	-1732/0		19-6-13 to 22	P-8-11 Interior (1)	22-8-11	to 33-3-0 zor	ne:			2			
BOT CHORD	1-34=-3/4	4, 33-34=-	218/234,		cantilever lef	t and right expose	d : end \	/ertical left an	id				· No. 2/	1960	
	32-33=-6	72/343, 30-	-32=-161/869,		right exposed	:C-C for members	s and for	rces & MWFR	RS		-	1.1		1009	
	26-30=0/2	1679, 22-26	6=0/2404, 20-22=0/1	814,	for reactions	shown; Lumber D	OL=1.60) plate grip				*:		Λ • * =	
	17-20=0/	1814, 16-1	/=0/1257, 15-16=0/2	281, 70/0	DOL=1.60							:	1 1*		
	29-31=0/2	2202, 27-29	y=0/1101, 25-27=-97	3	Building Des	igner / Project eng	ineer re	sponsible for				υ:	X 11 //L.	. Voic=	1
	23-23=-9	70/0, 21-23 21/019	=-940/0, 19-21=-948	<i>ы</i> о,	verifying app	lied roof live load	shown c	overs rain loa	ding			- 74		ACTURAS	
	10-19=-22	21/910			requirements	s specific to the us	e of this	truss compor	nent.			- 0	a viero		
				4	Provide adec	uate drainage to r	prevent	water ponding	n			34		04.25	

- This truss has been designed for a 10.0 psf bottom 5)
- chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 6) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

minin S/ONAL ENG minim Julius Lee PE No. 34869

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

December 14,2023

Page: 1

Job	Truss	Truss Type	Qty	Ply		
1023-067	H10	Piggyback Base Supported Gable	1	1	Job Reference (optional)	T32352946

Run: 9.04 S 8.73 Nov 16 2023 Print: 8.730 S Nov 16 2023 MiTek Industries, Inc. Thu Dec 14 11:55:34 ID:7yH0K0UPsbO3iOOmfy2d24yOGeh-TXJwQBDZO2rJXs6NkrvehbnOfZiid0fcYyJc3my9ESt

Scale = 1:69

Plate Offsets	(X, Y): [2:0-1-5,0-2-4]	, [6:0-2-8,0-3-0], [9:0-2-	0,0-1-13	3], [13:0-2-0,0-1	1-13], [15:0-2-8,0	0-3-0], [19	:0-2-8,Edge]	, [22:Edge	e,0-2-15], [30:0-:	2-8,0-3	3-0], [38:Edge,0-2	2-5]
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25		TC	0.17	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.25		BC	0.09	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.11	Horz(CT)	0.01	22	n/a	n/a		
BCDL	10.0	Code	-BC202	0/TPI2014	Matrix-AS							Weight: 272 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she except end verticals	eathing directly applied, s, and 2-0-0 oc purlins	3) 4) 5)	Truss design only. For stu see Standard or consult qu Building Desiverifying app requirements Provide adeco	ned for wind load ds exposed to w d Industry Gable alified building c igner / Project el lied roof live load s specific to the u uate drainage tt	ds in the pl vind (norm End Deta lesigner as ngineer re d shown co use of this o prevent v	lane of the tr al to the face ils as applica s per ANSI/T sponsible for overs rain loa truss compo water pondin	uss e), ble, PI 1. ading nent. g.					
BOT CHORD WEBS	(6-0-0 max.): 9-13. Rigid ceiling directly 1 Row at midpt	/ applied. 11-30, 12-29, 14-28, 15-27, 10-31, 8-32, 7-3	6) 7) 8) 33	Gable require Truss to be fi braced again	es continuous be ully sheathed fro ist lateral moven	ottom chor om one fac nent (i.e. d	d bearing. e or securely iagonal web)	u. /).					
REACTIONS (lb) -	All bearings 31-7-8. Max Horiz 38=-249 Max Uplift All uplift 22, 23, 2 35, 36, 3 Max Grav All reactir (s) 22, 23 30, 31, 3 (lb) - Max. Comp./// (lb) or less except w	(LC 10) 100 (lb) or less at joint(s 4, 25, 26, 27, 30, 33, 34 7 except 38=-136 (LC 1 ons 250 (lb) or less at jo 3, 24, 25, 26, 27, 28, 29 2, 33, 34, 35, 36, 37, 38 lax. Ten All forces 250 rhen shown.	9) 10) , 11) 0) int 12)	 This truss ha chord live loa This truss h on the bottom 3-06-00 tall b chord and an Provide mecl bearing plate (s) 22, 30, 27 (it=lb) 38=13 	spaced at 2-0-0 spaced at 2-0-0 d nonconcurren has been designen n chord in all are hy 2-00-00 wide by other member hanical connecti capable of with 7, 26, 25, 24, 23, 6.	d for a 10.0 t with any ed for a liv eas where will fit betw 's. on (by oth standing 1 . 33, 34, 35	0 psf bottom other live loa e load of 20. a rectangle veen the bott ers) of truss 00 lb uplift a 5, 36, 37 exc	ads. Opsf om to t joint ept				ULIUS	

NOTES

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: AŠCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=32ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) 0-1-12 to 3-3-11, Exterior(2N) 3-3-11 to 12-6-3, Corner(3R) 12-6-3 to 15-9-0, Exterior(2N) 15-9-0 to 18-11-13, Corner(3R) 18-11-13 to 21-11-9, Exterior(2N) 21-11-9 to 33-1-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 13) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

December 14,2023

Page: 1

Job	Truss	Truss Type	Qty	Ply	
1023-067	H11	Half Hip Girder	1	2	T32352947 Job Reference (optional)

Run: 8,73 S Nov 13 2023 Print: 8,730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:22 ID:byz1?HRZLMi7aMAaXnCaAGyPG7s-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:50.5

Plate Offsets (X, Y): [4:0-6-4,0-3-0]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 NO FBC202	0/TPI2014	CSI TC BC WB Matrix-MS	0.22 0.22 0.09	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.02 0.00	(loc) 6-7 6-7 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 131 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 *Excep 2x6 SP No.2 2x4 SP No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 6= Mecha Max Horiz 8=131 (LC Max Uplift 6=-116 (L Max Grav 6=1267 (L	t* 4-5:2x6 SP No.2 athing directly applied cept end verticals. applied or 6-0-0 oc unical, 8=0-3-0 C 7) C 5), 8=-124 (LC 8) .C 1), 8=984 (LC 1)	4) d or 5) 6) 7) 8)	Wind: ASCE Vasd=101mp B=45ft; L=24 MWFRS (dirr end vertical li plate grip DC Building Desi verifying app requirements Provide adecc This truss ha chord live loa * This truss h on the bottom	7-16; Vult=130mph h; TCDL=6.0psf; B ft; eave=4ft; Cat. II; cctional); cantilever eft and right expose L=1.60 gner / Project engin ied roof live load sl specific to the use juate drainage to pi s been designed fo d nonconcurrent w as been designed in chord in all areas	a (3-sec CDL=6 EXP B left an- ed; Lum neer re hown c of this revent of r a 10.0 ith any for a liv where	cond gust) 5.0psf; h=15ft; ; Enclosed; d right expose aber DOL=1.6 sponsible for overs rain loa truss compor water ponding 0 psf bottom other live loa e load of 20.0 a rectangle	ed; 0 ding nent. J. ds.	I) Di PI Ui	ead + Ro ate Incre- niform Lo Vert: 1-2 oncentra Vert: 4= (F), 13=	oof Live ease=1 bads (II 2=-60, ted Lo -212 (I -377 (I	e (balanced): Lun .25 b/ft) 2-4=-60, 4-5=-60 ads (lb) F), 7=-225 (F), 10 F), 14=-379 (F)	ıber Increase=1.25, ⊦, 6-9=-20 ।=-171 (F), 12=-172
FORCES TOP CHORD BOT CHORD WEBS NOTES	(lb) - Maximum Com Tension 1-2=0/63, 2-3=-79/3 4-5=-63/39, 5-6=-44 8-9=-33/109, 7-8=-1 4-7=-133/706, 4-6=- 3-8=-108/69	pression/Maximum 5, 3-4=-66/103, 7/0, 2-9=-119/31 24/573, 6-7=-128/598 764/140, 4-8=-963/11	9) 10 3 11 16, 12	3-06-00 tall b chord and an Bearings are) Refer to girde) Provide mech bearing plate 6 and 124 lb) Use MiTek Li	y 2-00-00 wide will y other members. assumed to be: Jo er(s) for truss to tru- nanical connection capable of withsta uplift at joint 8. SSH15-TZ (With 6-	fit betw int 8 SI ss conr (by oth nding 1 10d HE	veen the botto P No.2 . nections. ers) of truss to 16 lb uplift at DG nails into	om o joint				JULIUS	
 2-ply truss (0.131"x3") Top chords oc, 2x6 - 2 Bottom chu staggered Web conne All loads a except if nu CASE(S) s provided to unless othe Unbalance this design 	to be connected toge) nais as follows: s connected as follows: ords connected as follows ords connected as foll at 0-9-0 oc. ected as follows: 2x4 - re considered equally oted as front (F) or ba section. Ply to ply conr o distribute only loads erwise indicated. d roof live loads have I.) AD 14 15	Girder & 7-10 equivalent at to front face of left, sloping C Use MiTek JU nails into Tru starting at 5-0- truss(es) to fr) Fill all nail ho) Hanger(s) or provided suff lb down and 5-0-5, and 35 design/select responsibility DAD CASE(S)	vid x 1-1/2 HDG nail 3-8-3 from the left of bottom chord, sk. 0.0 deg. down. JS26 (With 4-10d r ss) or equivalent sp)-5 from the left end ont face of bottom les where hanger is other connection d cicient to support co 104 lb up at 3-8-3, 59 lb down at 7-0-5 ion of such connect of others. Standard	Is into 7 end to ewed 1 nails int paced a d to 7-0 chord. s in cor evice(s ncentra and 35 o n top	Fruss) or connect truss 6.7 deg.to the o Girder & 2 at 2-0-0 oc ma -5 to connect ntact with luml) shall be ated load(s) 2: 8 lb down at ochord. The vice(s) is the	(es) 9 10d ix. per. 33		л. Л. М.	ulius Le iTek In 5023 Sw	No 34	B69 OF UPACITUTI FL Cert 6634 hesterfield, MO 63017	

LOAD CASE(S) Standard

December 14,2023

Page: 1

Date:

Job	Truss	Truss Type	Qty	Ply	
1023-067	H12	Half Hip	1	1	T32352948 Job Reference (optional)

Run: 8,73 S Nov 13 2023 Print: 8,730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:23 ID:kdUMGEF1F8U_yG3DIZNWihyPG5X-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:61.3

Plate Offsets (X, Y): [5:Edge,0-3-8], [6:Edge,0-1-8]

-													
Loading TCLL (roof) TCDL	(psf) 20.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.25 1.25		CSI TC BC	0.43 0.32	DEFL Vert(LL) Vert(CT)	in 0.05 -0.10	(loc) 7-8 7-8	l/defl >999 >881	L/d 240 180	PLATES MT20	GRIP 244/190
BCLL	0.0*	Rep Stress Incr	YES		WB	0.25	Horz(CT)	0.04	5	n/a	n/a		
BCDL	10.0	Code	FBC202	0/TPI2014	Matrix-AS							Weight: 63 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 *Excep 2x4 SP No.2 2x4 SP No.2 Structural wood she except end verticals Rigid ceiling directly (size) 5= Mecha 8=0-3-0 Max Horiz 8=223 (L0 8=-43 (L0 8=-43 (L0 8=452 (L0 8=452 (L0	ot* 4-5:2x6 SP No.2 athing directly applied. anical, 6= Mechanical C 11) C 12), 6=-144 (LC 9), C 2), 6=214 (LC 17), C 23)	5) 6) 4, 7) 8) 9) 10)	This truss ha chord live loa * This truss h on the bottor 3-06-00 tall li chord and ar Bearings are Refer to gird Provide mec bearing plate 5, 144 lb upl This truss de structural wo chord and 1/ the bottom c	s been designed ad nonconcurren has been designe n chord in all are yy 2-00-00 wide + hy other member assumed to be: er(s) for truss to hanical connectii e capable of with- ft at joint 6 and 4 sign requires that od sheathing be 2" gypsum sheet hord.	d for a 10.0 t with any ed for a liv- as where will fit betw s. , Joint 8 S truss conn on (by oth- standing 2 t3 lb uplift at a minimu applied di trock be ap	 p psf bottom other live loz e load of 20. a rectangle eeen the bott P No.2. ections. ers) of truss 3 lb uplift at at joint 8. um of 7/16" rectly to the oplied directl 	ads. Opsf om to joint top y to					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	10	diagonal or v	ertical web shall	not excee	d 0.500in.						
TOP CHORD	1-2=0/63, 2-3=-151/ 4-5=-133/122, 5-6=0	0, 3-4=-234/142,)/0, 2-9=-144/51	10	AD CASE(S)	Stanuaru							annin 110	11111
BOT CHORD	8-9=-41/164, 7-8=-4	99/436, 6-7=-95/110										ULIUS	LEF
WEBS	3-8=-346/257, 4-7=-	153/304, 3-7=-338/42	21								A.	CEA	0. 4
 NOTES 1) Unbalance this design 2) Wind: ASC Vasd=101 B=45ft; L= 	ed roof live loads have n. CE 7-16; Vult=130mph mph; TCDL=6.0psf; B -24ft; eave=4ft; Cat. II;	been considered for (3-second gust) CDL=6.0psf; h=15ft; Exp B; Enclosed;									* 7	No 34	869

MWFRS (directional) and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior (1) 1-6-0 to 7-2-15, Exterior(2E) 7-2-15 to 7-10-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Building Designer / Project engineer responsible for 3) verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

4) Provide adequate drainage to prevent water ponding.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

December 14,2023

Page: 1

ONAL

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

minin

C

Date:

Julius Lee PE No. 34869

Job	Truss	Truss Type	Qty	Ply	
1023-067	H13	Half Hip	1	1	Job Reference (optional)

Run: 8,73 S Nov 13 2023 Print: 8,730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:23 ID:Nr5BW4ZuRxQxEfnSTpMNRtyPG6P-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:50.5

Plate Offsets (X, Y): [4:0-6-4,0-2-0], [5:Edge,0-3-8]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.25		TC	0.32	Vert(LL)	-0.02	7-8	>999	240	MT20	244/190	
TCDL	10.0	Lumber DOL	1.25		BC	0.21	Vert(CT)	-0.05	7-8	>999	180			
BCLL	0.0*	Rep Stress Incr	YES		WB	0.20	Horz(CT)	-0.01	5	n/a	n/a			
BCDL	10.0	Code	FBC202	0/TPI2014	Matrix-AS		()					Weight: 66 lb	FT = 20%	
LUMBER TOP CHORD SOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood sheat except end verticals. Rigid ceiling directly (size) 5= Mecha 8=0-3-0 Max Horiz 8=195 (LC Max Uplift 5=-13 (LC (LC 12) Max Grav 5=54 (LC (LC 1)	athing directly applie applied. nical, 6= Mechanica 2 9) 9), 6=-53 (LC 9), 8= 1), 6=236 (LC 17), 8	5) 6) 8d, 7) 8) 8, 9) 1, 9) 46 10 8=452	This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Bearings are Refer to gird Provide mec bearing plate 5, 53 lb uplift D) This truss de structural wo chord and 1/ the bottom c	as been designed ad nonconcurrent nas been designe n chord in all are by 2-00-00 wide v y other members e assumed to be: er(s) for truss to t hanical connection capable of withs a t joint 6 and 46 esign requires that ood sheathing be 2" gypsum sheet hord.	for a 10.0 with any with any with any with any with any with as where will fit betwices. Joint 8 S rruss connor no (by oth standing 1 Ib uplift a trainim applied di rock be applied with the standing 1) psf bottom other live load e load of 20. a rectangle veen the bott P No.2 . ections. ers) of truss 3 lb uplift at t joint 8. um of 7/16" rectly to the pplied directl	tds. Opsf om to joint top y to						
FORCES	(lb) - Maximum Com	pression/Maximum	11	diagonal or v	vertical web shall	not excee	ed 0.500in.							
TOP CHORD	1-2=0/63, 2-3=-44/83	3, 3-4=-228/61,	LO	DAD CASE(S)	Standard									
	4-5=-88/95, 5-6=0/0,	2-9=-109/113										11110	1111	
BOT CHORD	8-9=-15/16, 7-8=-395	5/223, 6-7=-122/160	1									IN ULIUS	LEE	
WEBS	4-7=-30/192, 4-6=-3 3-7=-69/284	13/209, 3-8=-381/14	3,								S. S. S. S.	CEA	ISE. M	G.
NOTES											2	1 11 11		
1) Unbalanc	ed roof live loads have	been considered for								-		NO 34	869	3
this desig	n.										*:		:★	3
2) Wind: AS	CE 7-16; Vult=130mph	(3-second gust)									1:	1 . *		Ξ
Vasd=10' B=45ft; L= MWFRS (1-6-0, Inte 7-10-4 zo vertical le forces & I	mph; TCDL=6.0psf; BC =24ft; eave=4ft; Cat. II; directional) and C-C Ey rrior (1) 1-6-0 to 6-0-8, I ne; cantilever left and ri t and right exposed;C-C MVFRS for reactions st Polate are DOL 1.60	CDL=6.0psf; h=15ft; Exp B; Enclosed; kterior(2E) -1-6-0 to Exterior(2E) 6-0-8 to ight exposed ; end C for members and hown; Lumber)									Con SIONA	P.A.CINII	The second se

DOL=1.60 plate grip DOL=1.60 Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

4) Provide adequate drainage to prevent water ponding.

3)

December 14,2023

SIONALEN

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

Julius Lee PE No. 34869

Date:

Job	Truss	Truss Type	Qty	Ply	
1023-067	H14	Half Hip	1	1	T32352950 Job Reference (optional)

Run; 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:24 ID:8rXM3BFbZy8d7foSyLvHOOyPG6p-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:46.2

Plate Offsets (X, Y): [4:0-6-4,0-2-0], [5:Edge,0-3-8]

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.25		TC	0.23	Vert(LL)	-0.01	7-8	>999	240	MT20	244/190
TCDL		10.0	Lumber DOL	1.25		BC	0.13	Vert(CT)	-0.02	7-8	>999	180		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.13	Horz(CT)	0.00	5	n/a	n/a		
BCDL		10.0	Code	FBC20	20/TPI2014	Matrix-AS							Weight: 60 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N Structura except er Rigid ceil (size) Max Horiz Max Uplift Max Grav	0.2 1. wood she nd verticals ing directly 5= Mecha 8=0-3-0 8=165 (LC 5=-21 (LC (LC 12) 5=90 (LC (LC 1)	athing directly applie applied. inical, 6= Mechanica C 11) S 9), 6=-28 (LC 9), 8 1), 6=189 (LC 17), 8	5 ed, 7 8 al, 9 =-50 ¹¹ 3=452	This truss ha chord live loa * This truss I on the botton 3-06-00 tall II chord and an Bearings are Refer to gird Provide mec bearing platt 5, 28 lb uplif 0) This truss de structural wo chord and 1/ the bottom c	as been designer ad nonconcurrer has been design m chord in all are by 2-00-00 wide y other membe er(s) for truss to hanical connecti e capable of with t at joint 6 and 5 assign requires th hod sheathing be (2" gypsum shee hord.	d for a 10.0 nt with any led for a live eas where will fit betwrs. : , Joint 8 S truss conn ion (by othe standing 2 0 Ib uplift a at a minimu e applied di	 psf bottom other live loa e load of 20. a rectangle eeen the bott P No.2. ections. ers) of truss 1 lb uplift at t joint 8. um of 7/16" rectly to the oplied directly 	ads. Opsf om to joint top y to					
FORCES	(lb) - Max Tension	kimum Com	pression/Maximum		diagonal or v	/ertical web shal	ll not excee	d 0.500in.						
TOP CHORD	1-2=0/63 4-5=-74/8	, 2-3=-14/6 30, 5-6=0/0	6, 3-4=-216/63, , 2-9=-67/89	L	UAD CASE(S)	Siandard							minin	11111
BOT CHORD	8-9=-15/1	6, 7-8=-34	0/183, 6-7=-137/182	2									IN JULIUS	LEFIL
WEBS	4-7=-18/1 3-7=-5/21	38, 4-6=-2 5	38/165, 3-8=-325/62	2,								Sale	CEA	SE.
NOTES												2	·	
1) Unbalanc	ed roof live	loads have	been considered fo	r									NO 34	869
this desig	n.											*:		
2) Wind: AS Vasd=101 B=45ft; L=	CE 7-16; Vu 1mph; TCDL =24ft; eave=	Ilt=130mph .=6.0psf; B 4ft; Cat. II;	(3-second gust) CDL=6.0psf; h=15ft; Exp B; Enclosed;									F	10 bits to	en en

MWFRS (directional) and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior (1) 1-6-0 to 4-10-2, Exterior(2E) 4-10-2 to 7-10-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

December 14,2023

Page: 1

ONAL

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

minin

Julius Lee PE No. 34869

Date:

Job	Truss	Truss Type	Qty	Ply	
1023-067	J01	Jack-Open	1	1	Job Reference (optional)

-1-6-0

1-6-0

Mayo Truss Company, Inc., Mayo, FL - 32066,

Run: 8,73 S Nov 13 2023 Print: 8,730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:24 ID:vqnmV5FSsdZR667?ycuhd9yPFYg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-8-5

2-8-5

2-8-5

Page: 1

S(a) = 1.21.0	Scale	=	1:21.8
---------------	-------	---	--------

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES FBC2020/TPI2014	CSI TC BC WB Matrix-MR	0.17 0.05 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 12 lb	GRIP 244/190 FT = 20%
	Out CD No 0		7) Provide m	echanical connect	tion (by oth	ers) of truss	to					
BOT CHORD	2x4 SP N0.2 2x4 SP No.2		5 and 14	b uplift at joint 3	istanuing -	to ib upilit at	joint					
WEBS	2x4 SP No.2		LOAD CASE	S) Standard								
BRACING				-,								
TOP CHORD	Structural wood she	eathing directly applie	ed or									
	2-8-5 oc purlins, ex	xcept end verticals.										
BOT CHORD	Rigid ceiling directly bracing.	y applied or 10-0-0 o	с									
REACTIONS	(size) 3= Mech 5=0-3-0	anical, 4= Mechanica	al,									
	Max Horiz 5=69 (LC	C 12)										
	Max Uplift 3=-14 (L	C 12), 5=-40 (LC 12)										
	Max Grav 3=51 (LC (LC 1)	C 17), 4=43 (LC 3), 5	=231									
FORCES	(lb) - Maximum Cor	mpression/Maximum										
TODOLODO	Tension	~~~~~										
TOP CHORD	2-5=-198/140, 1-2=	=0/44, 2-3=-44/24										
NOTES	4-5=0/0											1111
1) Wind: AS	CE 7 16: \/ult_120mp	h (2 second quist)								8	ILIUS	LENI
Vasd=101	$1 \text{ mph} \cdot \text{TCDI} = 6.0 \text{ psf} \cdot \text{F}$	BCDI = 6.0 psf h = 15 ft								1	30-	E "11,
B=45ft; L=	=24ft; eave=4ft; Cat. II	I; Exp B; Enclosed;	,							5	CEA	Sr.
MWFRS ((directional) and C-C E	Exterior(2E) -1-6-0 to								8	×	
1-6-0, Inte	erior (1) 1-6-0 to 2-7-9	zone; cantilever left	and								No 34	869
right expo	sed ; end vertical left	and right exposed;C-	-C							*:		/ :★ Ξ
for memb	ers and forces & MWH	-RS for reactions sho	own;								. D. A 🖈	
2) Building D	OL=1.60 plate grip Do	UL=1.00 ineer responsible for							-	P	TAM / AA I	
verifving a	applied roof live load s	shown covers rain loa	adina							P	DUCIAND	0
requireme	ents specific to the use	e of this truss compor	nent.							- 4	N. A.	A:23
3) This truss	has been designed for	or a 10.0 psf bottom								1	OR OR	10 6
chord live	load nonconcurrent w	vith any other live loa	ids.							1	SIG	ENIN
4) * This trus	ss has been designed	tor a live load of 20.0	Upst								UNA	Linn
	uom chora in all areas	s where a rectangle										III.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

Bearings are assumed to be: , Joint 5 SP No.2 . 5)

6) Refer to girder(s) for truss to truss connections.

December 14,2023

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

Julius Lee PE No. 34869

Date:

Job	Truss	Truss Type	Qty	Ply	
1023-067	J02	Jack-Open	1	1	T32352952 Job Reference (optional)

Run; 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:24 ID:k_82m8JDRTJbq1a9It?5tQyPFYa-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:25.8			1							1	-		
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.42	Vert(LL)	-0.05	4-5	>999	240	MT20	244/190	
TCDL	10.0	Lumber DOL	1.25	BC	0.36	Vert(CT)	-0.11	4-5	>634	180			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.03	3	n/a	n/a			
BCDL	10.0	Code	FBC2020/TPI2014	Matrix-AS							Weight: 22 lb	FT = 20%	
LUMBER TOP CHORD	2x4 SP No.2		 Provide me bearing pla 	chanical connect te capable of with	tion (by oth hstanding 2	ers) of truss 3 lb uplift at	to joint						
BOT CHORD	2x4 SP No.2		5 and 42 lb	uplift at joint 3.	-								
WEBS	2x4 SP No.2		This truss d	lesign requires th	nat a minim	um of 7/16"							
			structural w	ood sheathing h	e annlied d	irectly to the	ton						

6-0-5

11LDO	2/10/11	0.2
BRACING		
TOP CHORD	Structural except er	l wood sheathing directly applied, id verticals.
BOT CHORD	Rigid ceil	ing directly applied.
REACTIONS	(size)	3= Mechanical, 4= Mechanical, 5=0-3-0
	Max Horiz	5=109 (LC 12)
	Max Uplift	3=-42 (LC 12), 5=-23 (LC 12)
	Max Grav	3=155 (LC 1), 4=107 (LC 3), 5=345 (LC 1)
FORCES	(lb) - Max Tension	imum Compression/Maximum
TOP CHORD	2-5=-293/	/168, 1-2=0/44, 2-3=-94/54
BOT CHORD	4-5=0/0	

NOTES

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior (1) 1-6-0 to 5-11-9 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component. This truss has been designed for a 10.0 psf bottom 3)
- chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) Bearings are assumed to be: , Joint 5 SP No.2 .
- Refer to girder(s) for truss to truss connections. 6)

sneatning be appli chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

December 14,2023

Job	Truss	Truss Type	Qty	Ply	
1023-067	J03	Jack-Open	1	1	Job Reference (optional)

Run: 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:25 ID:G3657cWFgNKJIVpEEEIrWoyPFYK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:41.1

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES FBC202	20/TPI2014	CSI TC BC WB Matrix-AS	0.28 0.30 0.18	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.06 -0.01	(loc) 7-8 7-8 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 50 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood shea except end verticals. Rigid ceiling directly (size) 5= Mecha 9=0-3-0 Max Horiz 9=149 (LC Max Grav 5=160 (LC (LC 1)	athing directly applied. applied. anical, 6= Mechanical C 12) C 12), 9=-11 (LC 12) C 3), 6=248 (LC 1), 9	6) 7) 8) d, I, LC =474	Refer to girde Provide mech bearing plate 9 and 61 lb u This truss de structural wo chord and 1/2 the bottom cl DAD CASE(S)	er(s) for truss t hanical connec capable of wit plift at joint 6. sign requires t od sheathing b 2" gypsum shea hord. Standard	o truss con tion (by othe hstanding 1 nat a minimu e applied di etrock be ap	nections. ers) of truss 1 lb uplift at um of 7/16" rectly to the oplied directl	to joint top y to						
FORCES	(lb) - Maximum Com	pression/Maximum												
TOP CHORD	2-9=-421/123, 1-2=0 3-4=-73/34, 4-5=0/7)/44, 2-3=-457/0, 1												
BOT CHORD	8-9=-135/350.7-8=-	135/350. 6-7=0/0												

 BOT CHORD
 8-9=-135/350, 7-8=-135/350, 6-7=0/0

 WEBS
 4-7=-14/130, 3-8=0/202, 3-7=-409/157

NOTES

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior (1) 1-6-0 to 9-3-9 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
 This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) Bearings are assumed to be: , Joint 9 SP No.2 .

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

No 34869 * ULIUS LEG No 34869 * ULIUS LEG No 34869 * ULIUS LEG No 34869 * VOR I DA S/ONAL ENGINING

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

December 14,2023

Job	Truss	Truss Type	Qty	Ply	T0005005 (
1023-067	J04	Jack-Open	3	1	Job Reference (optional)

Run: 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:25 ID:XgpxKX0gKVKVxS4Eg9_DU_yPG1y-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:46.2

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.25		тс	0.53	Vert(LL)	0.10	6-7	>807	240	MT20	244/190	
TCDL	10.0	Lumber DOL	1.25		BC	0.51	Vert(CT)	-0.21	6-7	>392	180			
BCLL	0.0*	Rep Stress Incr	YES		WB	0.19	Horz(CT)	-0.01	4	n/a	n/a			
BCDL	10.0	Code	FBC202	0/TPI2014	Matrix-AS							Weight: 47 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood shea except end verticals. Rigid ceiling directly (size) 4= Mecha 7=0-3-0 Max Horiz 7=205 (LC Max Uplift 4=-47 (LC Max Grav 4=245 (LC	athing directly applie applied. nical, 5= Mechanica 2 12) 2 17), 5=-228 (LC 12) 2 3), 5=332 (LC 17),	5) 6) 7) d, 8) I, LO	Bearings are Refer to gird Provide mec bearing plate 4 and 228 lb This truss de structural wo chord and 1/ the bottom c	assumed to be: er(s) for truss to hanical connection capable of withs uplift at joint 5. usign requires that od sheathing be 2" gypsum sheet hord. Standard	, Joint 7 S truss com on (by othe standing 4 at a minimu applied di rrock be ap	P No.2 . nections. ers) of truss i 7 lb uplift at j um of 7/16" rectly to the oplied directly	to joint top y to						
FORCES	/=382 (LU (lb) - Maximum Com) pression/Maximum												
ONCES	Tension	pression/iviaximum												
TOP CHORD	2-7=-301/34, 1-2=0/6	63, 2-3=-215/110,												
	3-4=-42/180	-												
BOT CHORD	6-7=-314/117, 5-6=0	//0											111.	
WEBS	3-6=-270/537, 2-6=-	119/318										MULLIS	1.111	
NOTES												JULIOO	LEE "	
 Wind: ASC Vocd=101 	CE 7-16; Vult=130mph	(3-second gust)									SN	CEA	SA.	
Vaed-101	mph ⁻ TCDI –6 Opsf ⁻ B(CDI -6 Onef h-15ft											00.	

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior (1) 1-6-0 to 6-11-4 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 4) * This truss has been designed for a live load of 20.0psf
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

December 14,2023

Job	Truss	Truss Type	Qty	Ply	
1023-067	J05	Jack-Open	1	1	Job Reference (optional)

Run: 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:26 ID:uv8Fy3HT8G6NaqlSynNNNdyPG1c-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Page

Scale = 1:42

Loading	(psf)	Spacing	2-0-0		CSI	0.24	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (1001)	20.0		1.20			0.34	Vert(LL)	0.05	0-7	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.25		BC	0.34		-0.10	6-7	>696	180		
BCDL	10.0	Code	FBC202	20/TPI2014	Matrix-AS	0.09		-0.01	4	n/a	n/a	Weight: 39 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood shee except end verticals. Rigid ceiling directly (size) 4= Mecha 7=0-3-0 Max Horiz 7=181 (LC Max Uplift 4=-6 (LC 7=337 (LC 7=337 (LC	athing directly applied applied. nical, 5= Mechanical, ; 12) ;7), 5=-145 (LC 12) ; 3), 5=238 (LC 17), ;1)	5) 6) 7) , 8) LC	Bearings are Refer to girde Provide mech bearing plate and 145 lb up This truss de structural woo chord and 1/2 the bottom ch DAD CASE(S)	assumed to be: , er(s) for truss to tr hanical connection capable of withst olift at joint 5. sign requires that od sheathing be a 2" gypsum sheetro hord. Standard	Joint 7 S uss con h (by oth anding 6 a minim pplied d pock be ap	SP No.2 . nections. ers) of truss i b uplift at jc um of 7/16" irectly to the oplied directly	to int 4 top y to					
FORCES	(lb) - Maximum Com	pression/Maximum											
TOP CHORD	2-7=-270/47, 1-2=0/6 3-4=-26/112	63, 2-3=-190/96,											
BOT CHORD	6-7=-296/106, 5-6=0	/0											
WEBS	3-6=-191/406, 2-6=-	108/301										, mining	11111
NOTES												IN ULIUS	LEFUI
1) Wind: AS	CE 7-16; Vult=130mph	(3-second gust)									J.	CEN	6

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior (1) 1-6-0 to 5-8-14 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 4) * This truss has been designed for a live load of 20.0psf
- 4) I his truss has been designed for a live load of 20.0pst on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

December 14,2023

Job	Truss	Truss Type	Qty	Ply	
1023-067	J06	Jack-Open	1	1	Job Reference (optional)

Run: 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:26 ID:cxpGv3lkW0OFipU72Vf4TWyPFZJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

4-7-4

Scale = 1:30.8

L oading TCLL (roof) TCDL 3CLL 3CDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES FBC2020	0/TPI2014	CSI TC BC WB Matrix-AS	0.36 0.38 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.04 -0.04 -0.05	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 20 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she except end vertical: Rigid ceiling directly (size) 3= Mech 5=0-3-0 Max Horiz 5=157 (L Max Uplift 3=-61 (L) Max Grav 3=126 (L) (LC 1)	eathing directly applie s. / applied. anical, 4= Mechanica C 12) C 12) C 17), 4=82 (LC 3), 5	7) 8) _{9d,} 9) ^{II,} LO	Provide mec bearing plate Provide mec bearing plate 3. This truss de structural wo chord and 1/ the bottom c PAD CASE(S)	hanical connec e at joint(s) 5. hanical connec e capable of wit ssign requires th od sheathing b 2" gypsum she hord. Standard	tion (by othe tion (by othe hstanding 6 nat a minimu e applied di etrock be ap	ers) of truss t ers) of truss t 1 lb uplift at j um of 7/16" rectly to the pplied directly	to ioint top y to						
FORCES TOP CHORD BOT CHORD NOTES 1) Wind: AS(Vasd=101 B=45ft; L=	(lb) - Maximum Cor Tension 2-5=-251/106, 1-2= 4-5=0/0 CE 7-16; Vult=130mpl mph; TCDL=6.0psf; E =24ft; eave=4ft; Cat. II	npression/Maximum 0/63, 2-3=-146/74 n (3-second gust) 3CDL=6.0psf; h=15ft; ; Exp B; Enclosed;												

- B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed;
 MWFRS (directional) and C-C Exterior(2E) -1-6-0 to
 1-6-0, Interior (1) 1-6-0 to 4-6-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown;
 Lumber DOL=1.60 plate grip DOL=1.60
 2) Building Designer / Project engineer responsible for
- verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.3) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) Bearings are assumed to be: , Joint 5 SP No.2 .
- 6) Refer to girder(s) for truss to truss connections.

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

December 14,2023

Job	Truss	Truss Type	Qty	Ply	
1023-067	J07	Jack-Open	1	1	Job Reference (optional)

Run: 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:26 ID:vHkwNTq7sAHG1uXTyTHjF_yPFZC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:26.9

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC 0.24	Vert(LL)	0.01	4-5	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.25	BC 0.26	Vert(CT)	0.01	4-5	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB 0.00	Horz(CT)	-0.03	3	n/a	n/a		
BCDL	10.0	Code	FBC2020/TPI2014	Matrix-MR						Weight: 16 lb	FT = 20%
LUMBER			7) Provide mec	hanical connection (by oth	ers) of truss	to					
TOP CHORD	2x4 SP No.2		bearing plate	capable of withstanding	44 lb uplift at j	joint					
BOT CHORD	2x4 SP No.2		3.								
WEBS	2x4 SP No.2		LOAD CASE(S)	Standard							
BRACING											
TOP CHORD	Structural wood she 3-4-13 oc purlins, e	eathing directly applie except end verticals.	d or								
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc	3								
REACTIONS	(size) 3= Mecha 5=0-3-0	anical, 4= Mechanica	Ι,								
	Max Horiz 5=133 (L	C 12)									
	Max Uplift 3=-44 (LO	C 12)									
	Max Grav 3=86 (LC	17), 4=59 (LC 3), 5=	252								
	(LC 1)										
FORCES	(lb) - Maximum Con	npression/Maximum									
	Tension										
TOP CHORD	2-5=-217/115, 1-2=	0/63, 2-3=-113/57									
BOICHORD	4-5=0/0										11.
NOTES	=	(a								JULIUS	15111
1) Wind: ASC	CE 7-16; Vult=130mpr	(3-second gust)								JUL	SEE 11
Vasu=1011	24ft: apvo=4ft: Cat. II	Evo B: Enclosed							S	CEN	SA.
MWFRS (c	directional) and C-C F	Exp B, Enclosed, Exterior(2E) -1-6-0 to							5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1-6-0 Inter	rior (1) 1-6-0 to 3-4-1	zone: cantilever left a	and							No 34	869
right expos	sed ; end vertical left a	and right exposed;C-0	C						+/.		
for membe	ers and forces & MWF	RS for reactions sho	wn;						7:	/ 🔸	
Lumber DO	OL=1.60 plate grip DC	DL=1.60						-	+12	CONF ?	
Building De	esigner / Project engi	neer responsible for						-	- F		A Mins
verifying a	pplied roof live load s	hown covers rain load	ding						6	uer.	
requirement	nts specific to the use	of this truss compon	ent.						-	· · · · · · · · · · · · · · · · · · ·	01:25
3) I NIS Truss	has been designed to	r a 10.0 psr bottom	4.0						(1)	CO OR	GN
 4) * This true 	s has been designed	for a live load of 20.0	15. nef						U	1. SIONA	ENIN
on the bott	tom chord in all areas	where a rectangle	P01								in the second se
3-06-00 tal	Il by 2-00-00 wide will	fit between the botto	m						line I -	DE No. 34960	
chord and	any other members.							M	iTek In	c. DBA MiTek USA	FL Cert 6634
5) Bearings a	are assumed to be: , J	oint 5 SP No.2 .						10	023 Sw	ingley Ridge Rd. Cl	hesterfield, MO 63017
6) Refer to gi	rder(s) for truss to tru	iss connections.						D	ate:		

December 14,2023

Page: 1

Job	Truss	Truss Type	Qty	Ply	
1023-067	J08	Jack-Open	1	1	T32352958 Job Reference (optional)

Run: 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:26 ID:kR5BdWvuS01Plp_dJkO7VFyPFZ6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

So

Scale = 1:24.7													
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.25	Vert(LL)	0.00	4-5	>999	240	MT20	244/190	
TCDL	10.0	Lumber DOL	1.25	BC	0.14	Vert(CT)	0.00	4-5	>999	180			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.01	3	n/a	n/a			
BCDL	10.0	Code	FBC2020/TPI2014	Matrix-MR							Weight: 12 lb	FT = 20%	
LUMBER			5) Bearings ar	e assumed to be	e: , Joint 5 S	SP No.2 .							
TOP CHORD	2x4 SP No.2		Refer to gire	der(s) for truss t	o truss con	nections.							
BOT CHORD	2x4 SP No.2		Provide me	chanical connect	tion (by oth	ers) of truss	to						

2-2-7

WEBS	2x4 SP N	0.2
BRACING		
TOP CHORD	Structural 2-2-7 oc p	wood sheathing directly applied or burlins, except end verticals.
BOT CHORD	Rigid ceili bracing.	ing directly applied or 10-0-0 oc
REACTIONS	(size)	3= Mechanical, 4= Mechanical, 5=0-3-0
	Max Horiz	5=109 (LC 12)
	Max Uplift	3=-25 (LC 12), 4=-6 (LC 12), 5=-9 (LC 12)
	Max Grav	3=41 (LC 17), 4=34 (LC 3), 5=219 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	·
TOP CHORD	2-5=-189/	(130, 1-2=0/63, 2-3=-72/42
BOT CHORD	4-5=0/0	

NOTES

- Wind: ASCE 7-16; Vult=130mph (3-second gust) 1) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior (1) 1-6-0 to 2-1-11 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component. 3)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4)
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

- bearing plate capable of withstanding 9 lb uplift at joint 5,
- 25 lb uplift at joint 3 and 6 lb uplift at joint 4.
- LOAD CASE(S) Standard

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

December 14,2023

Job	Truss	Truss Type	Qty	Ply	
1023-067	J09	Jack-Open	1	1	Job Reference (optional)

-1-6-0 | 1-0-0 |

Mayo Truss Company, Inc., Mayo, FL - 32066,

Run: 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:27 ID:YbSSuZ_f1soZTkRmf?VXkWyPFZ0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:35

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.25		TC	0.28	Vert(LL)	0.00	5	>999	240	MT20	244/190
TCDL		10.0	Lumber DOL	1.25		BC	0.01	Vert(CT)	0.00	5	>999	180		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.04	Horz(CT)	0.00	3	n/a	n/a		
BCDL		10.0	Code	FBC202	0/TPI2014	Matrix-MP							Weight: 9 lb	FT = 20%
				5)	Rearings are	assumed to be	loint 5 S	P No 2						
TOP CHORD	2x4 SP No 3	2		6)	Refer to gird	er(s) for truss to	truss con	nections						
BOT CHORD	2x4 SP No.2	2		7)	Provide mec	hanical connecti	on (by oth	ers) of truss	to					
WEBS	2x4 SP No.2	2		,	bearing plate	capable of with	standing 4	8 lb uplift at	joint					
BRACING					5, 61 lb uplif	at joint 4 and 71	1 lb uplift a	t joint 3.						
TOP CHORD	Structural w 1-0-0 oc pu	ood shearlins, exc	athing directly applie cept end verticals.	ed or LC	DAD CASE(S)	Standard								
BOT CHORD	Rigid ceiling bracing.	directly	applied or 10-0-0 or	0										
REACTIONS	(size) 3 5	= Mecha =0-3-0	nical, 4= Mechanica	al,										
	Max Horiz 5	=48 (LC	12)											
	Max Uplift 3	=-71 (LC _C 12)	1), 4=-61 (LC 12), 5	5=-48										
	Max Grav 3	=68 (ĹC _C 1)	12), 4=32 (LC 10), 5	5=229										
FORCES	(lb) - Maxim Tension	um Com	pression/Maximum											
TOP CHORD BOT CHORD	2-5=-220/16	60, 1-2=0 6	/63, 2-3=-78/104										mm	um.
WEBS	2-4=-55/220)										2	ILIUS	LENI

- NOTES
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 1) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component. 3)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

December 14,2023

Job	Truss	Truss Type	Qty	Ply	
1023-067	J10	Jack-Partial	1	1	Job Reference (optional)

Run: 8,73 S Nov 13 2023 Print: 8,730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:27 ID:T94xgJvS2DHDWwxHrqrHYZyPFVE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

-2-11-0 1-1-6 2-2-11 1-1-6 1-1-6 2-11-0

Scale = 1:43.1

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES FBC202	0/TPI2014	CSI TC BC WB Matrix-MP	0.66 0.09 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 6-7 6-7 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 17 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N Structura 2-2-11 oc Rigid ceil bracing. (size)	o.2 o.2 o.2 I wood shea purlins, e: ing directly 4= Mecha	thing directly applied kcept end verticals. applied or 6-0-0 oc nical, 5= Mechanical	4) d or 6) 7) I, 8)	* This truss h on the bottor 3-06-00 tall h chord and ar Bearings are Refer to gird Provide mec bearing plate 4, 148 lb upli "NAILED" im	has been designe n chord in all are by 2-00-00 wide v by other members assumed to be: er(s) for truss to hanical connective capable of withs fit at joint 5 and 1 dicates 2-12d (0.	ed for a live as where a will fit betw s. , Joint 7 S truss com on (by othe standing 2 16 lb uplif 148"x3.25	e load of 20.0 a rectangle een the botto P No.2 . nections. ers) of truss t 9 lb uplift at j t at joint 7. ') toe-nails p	Dpsf om o oint er					
	Max Horiz Max Uplift Max Grav	7=0-4-9 7=50 (LC 4=-29 (LC 7=-116 (L 4=70 (LC (LC 1)	12) 12), 5=-148 (LC 23) C 12) 1), 5=95 (LC 30), 7=	9) ^{),} LC 405 1)	In the LOAD of the truss a DAD CASE(S) Dead + Roo Plate Increa	ss. CASE(S) sectior are noted as front Standard of Live (balanced ase=1.25	n, loads ap t (F) or bac l): Lumber	pplied to the f ck (B). Increase=1.2	ace 25,					
FORCES	(lb) - Max Tension	timum Com	pression/Maximum		Uniform Loa Vert: 1-2	ads (lb/ft) =-60, 2-4=-60, 5-	-7=-20							
TOP CHORD	2-7=-545 3-4=-51/2	/722, 1-2=0 25	/72, 2-3=-142/289,										minin	1111.
BOT CHORD WEBS	6-7=-100, 3-7=-434,	/114, 5-6=0 /173, 3-6=-2	/0 221/194									AL.	JULIUS	LEE
NOTES 1) Wind: ASC Vasd=101	CE 7-16; Vu Imph; TCDL	llt=130mph .=6.0psf; B((3-second gust) CDL=6.0psf; h=15ft;										No 34	869

- B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner (3) -2-11-0 to 1-1-6, Exterior(2R) 1-1-6 to 2-2-7 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

December 14,2023

Job	Truss	Truss Type	Qty	Ply	
1023-067	J11	Jack-Open	1	1	T32352961 Job Reference (optional)

-1-6-0

Mayo Truss Company, Inc., Mayo, FL - 32066,

Run: 8,73 S Nov 13 2023 Print: 8,730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:27 ID:I1vnNYnYequnhEbAh08ibEyPFVP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

1.5x4 🛚

2-8-6

Scale = 1:33.9

Loading TCLL (roof) TCDL BCLL		(psf) 20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.25 1.25 YES		CSI TC BC WB	0.17 0.16 0.02	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 -0.01	(loc) 5-6 5-6 4	l/defl >999 >999	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL		10.0	Code	FBC202	20/TPI2014	Matrix-MP	0.02	1012(01)	0.01		n/d	n/a	Weight: 12 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No 2x4 SP No 2x4 SP No Structural 2-8-6 oc p Rigid ceilin	0.2 0.2 0.2 wood she urlins, exi ng directly	athing directly applie cept end verticals. applied or 10-0-0 oc	4) 5) d or 6) 7)	* This truss h on the botton 3-06-00 tall b chord and an Bearings are Refer to girde Provide mect bearing plate 4 21 lb upliff	has been designed in chord in all area yo 2-00-00 wide wi yo other members. assumed to be: , er(s) for truss to the hanical connection capable of withst at joint 5 and 63 1	l for a live s where ill fit betw Joint 6 S russ coni n (by othe anding 1 b uplift a	e load of 20.0 a rectangle veen the botto P No.2 . nections. ers) of truss t 2 lb uplift at j t joint 6	Opsf om to oint					
REACTIONS	bracing. (size) Max Horiz Max Uplift Max Grav	4= Mecha 6=0-3-0 6=69 (LC 4=-12 (LC (LC 12) 4=21 (LC (LC 1)	nical, 5= Mechanical 12) : 9), 5=-21 (LC 1), 6= 17), 5=20 (LC 3), 6=	I, LC 63 :302	DAD CASE(S)	, joint 0.								
FORCES	(lb) - Maxi Tension	mum Com	pression/Maximum											
TOP CHORD BOT CHORD WEBS	2-7=-90/5 6-7=-32/12 3-6=-141/	9, 1-2=0/4 25, 5-6=0/0 103	4, 2-3=-76/35, 3-4=-4 D	14/19									ILUS	LECTION
NOTES												11	CEA	1. S. 11.
1) Wind: ASC Vasd=101 B=45ft; L= MWFRS (i 1-6-0, Inte and right e C for merr shown; Lu	CE 7-16; Vul mph; TCDL= =24ft; eave=4 directional) a erior (1) 1-6-0 exposed ; en hbers and for unber DOL=	t=130mph =6.0psf; B(Ift; Cat. II; and C-C E: 0 to 2-7-10 d vertical I rces & MW 1.60 plate	(3-second gust) CDL=6.0psf; h=15ft; Exp B; Enclosed; xterior(2E) -1-6-0 to zone; cantilever left eft and right exposec /FRS for reactions grip DOL=1.60	d;C-								M * PRO		SEP SCALL
2) Building D	esigner / Pro	oject engin	eer responsible for	dina								11	C OR	DAGINI

- B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior (1) 1-6-0 to 2-7-10 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads.

December 14,2023

ONAL

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

/////III

Date:

Julius Lee PE No. 34869

Job	Truss	Truss Type	Qty	Ply	
1023-067	J12	Jack-Open	5	1	T32352962 Job Reference (optional)

Run: 8,73 S Nov 13 2023 Print: 8,730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:28 ID:T94xgJvS2DHDWwxHrqrHYZyPFVE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

0-8-12 <u>3-0-0</u> -1-6-0 1-6-0 2-3-4 0-8-12

Special

Scale = 1:38.8

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.25		TC	0.17	Vert(LL)	0.00	5-6	>999	240	MT20	244/190
TCDL		10.0	Lumber DOL	1.25		BC	0.16	Vert(CT)	0.00	5-6	>999	180		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.02	Horz(CT)	-0.01	4	n/a	n/a		
BCDL		10.0	Code	FBC20	20/TPI2014	Matrix-MP							Weight: 13 lb	FT = 20%
LUMBER				4) * This truss h	nas been designed	d for a liv	e load of 20.	0psf					
TOP CHORD	2x4 SP No.2				on the bottor	n chord in all area	s where	a rectangle						
BOT CHORD	2x4 SP No.2				3-06-00 tall t	by 2-00-00 wide wi		veen the both	Om					
WEBS	2x4 SP No.2			5) Rearings are	b accumed to be:	Joint 6 9	P No 2						
BRACING				. 6) Refer to gird	er(s) for truss to t	russ con	nections						
TOP CHORD	 Structural we 3-0-0 oc pur 	ood shea lins, exc	athing directly applie cept end verticals.	dor 0) Provide mec	hanical connection	n (by oth	ers) of truss	to					
BOT CHORD	Rigid ceiling bracing.	directly	applied or 10-0-0 oc	;	bearing plate 4, 11 lb uplift	e capable of withst t at joint 5 and 59 l	anding 1	77 lb uplift a t joint 6.	t joint					
REACTIONS	(size) 4=	= Mecha =0-3-0	nical, 5= Mechanica	I, ⁸) Hanger(s) or provided suff	ficient to support c	device(s) shall be ated load(s) '	143					
	Max Horiz 6=	=73 (LC	12)		lb down and	207 lb up at 2-11	-4 on top	chord. The	1					
	Max Uplift 4=	=-177 (L)	C 23). 5=-11 (LC 1).		design/selec	tion of such conne	ection de	vice(s) is the	•					
	6=	=-59 (LC	12)	0	responsibility	of others.								
	Max Grav 4=	=103 (LC	28), 5=28 (LC 3), 6	i=303 ⁹	of the truss a	are noted as front (, ioads a (F) or ba	ck (B).	face					
	(L	.01)		L	OAD CASE(S)	Standard								
FORCES	(Ib) - Maximi Tension	um Com	pression/Maximum	1) Dead + Roo	of Live (balanced):	: Lumbei	Increase=1	.25,					
TOP CHORD	2-7=-83/50,	1-2=0/44	4, 2-3=-89/41, 3-4=-4	46/21		ase=1.25								
BOT CHORD	6-7=-35/134	, 5-6=0/0)		Vort: 1-2	aus (10/11) 60 2-460 5-7	20						11111	
WEBS	3-6=-153/11	9			Concentrat	=-00, 2-4=-00, 3-7 ed Loade (lb)	20						1 ULIUS	LEDU
NOTES					Vort: 4-F	50 (B)						1	O E A	
1) Wind: AS Vasd=10 B=45ft; L: MWFRS 1-6-0, Into and right C for mer	CE 7-16; Vult= 1mph; TCDL=6. =24ft; eave=4ft; (directional) and erior (1) 1-6-0 to exposed ; end v mbers and force	130mph .0psf; B0 ; Cat. II; d C-C Ex o 2-11-4 vertical less & MW	(3-second gust) CDL=6.0psf; h=15ft; Exp B; Enclosed; kterior(2E) -1-6-0 to zone; cantilever left eft and right exposed /FRS for reactions	d;C-								11. * PF	No 34	869 *

- shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads.

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

December 14,2023

Minimum W ONALE

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

Julius Lee PE No. 34869

Date:

Job	Truss	Truss Type	Qty	Ply	
1023-067	J13	Jack-Open Supported Gable	2	1	T32352963 Job Reference (optional)

-1-6-0

0-7-0

Mayo Truss Company, Inc., Mayo, FL - 32066,

Run; 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:28 ID:IgF6teiMSW3BpS5E8iW7RVyPG2M-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

0-7-0

Scale = 1:26.6

Loading		(psf)	Spacing	2-0-0		CSI	0.04	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TOLL (1001)		20.0		1.20			0.04	Vert(LL)	0.00	4-5	>999	240	MI 20	244/190
TCDL		10.0	Lumber DOL	1.25		BC	0.01	Vert(CT)	0.00	4-5	>999	180		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL		10.0	Code	FBC202	20/TPI2014	Matrix-MR							Weight: 6 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SP N 2x4 SP N 2x4 SP N	0.2 0.2 0.2		6)	* This truss on the botto 3-06-00 tall chord and a	has been design m chord in all are by 2-00-00 wide ny other member	ed for a liv eas where will fit betw 's.	e load of 20. a rectangle veen the bott	0psf com					
BRACING				7)	Bearings are	e assumed to be:	, Joint 4 S	SP No.2 .						
TOP CHORD	Structura 0-7-0 oc	l wood she ourlins, ex	athing directly applice controls of the second s	ed or 8) 9)	Refer to gird Provide med	ler(s) for truss to chanical connecti	truss con on (by oth	nections. ers) of truss	to					
BOT CHORD	Rigid ceil bracing.	Rigid ceiling directly applied or 10-0-0 oc bracing. bearing plate capable of withstanding 8 lb uplift at joint 5, 1 lb uplift at joint 4 and 36 lb uplift at joint 3.												
REACTIONS	(size) Max Horiz Max Uplift Max Grav	3= Mecha 5=13 (LC 3=-36 (LC (LC 10) 3=24 (LC (LC 12)	nical, 4=0-7-0, 5=0 12) : 12), 4=-1 (LC 12), 10), 4=0 (LC 10), 5	-7-0 L 5=-8 =30		Standard								
FORCES	(lb) - Max Tension	imum Com	pression/Maximum											
TOP CHORD	2-5=-115	/37, 1-2=-3	/0, 2-3=-190/64											
BOT CHORD	4-5=0/1													
NOTES														11111
1) Wind: AS Vasd=10 ^o B=45ft; L MWFRS cantilever right expo for reaction DOI =1 6 ^o	CE 7-16; Vu 1mph; TCDL =24ft; eave= (directional) r left and righ osed;C-C for ons shown; L	It=130mph =6.0psf; B0 2ft; Cat. II; and C-C C nt exposed members a Lumber DO	(3-second gust) CDL=6.0psf; h=15ft Exp B; Enclosed; orner(3E) zone; ; end vertical left an and forces & MWFF L=1.60 plate grip	; nd RS								*	No 34	

- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- Truss to be fully sheathed from one face or securely 4) braced against lateral movement (i.e. diagonal web).
- Gable studs spaced at 2-0-0 oc. 5)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

December 14,2023

ONAL

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

minin

Julius Lee PE No. 34869

Date:

Job	Truss	Truss Type	Qty	Ply	
1023-067	J14	Jack-Open	1	1	T32352964 Job Reference (optional)

Run; 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:28 ID:KdzNSOqeXp9QqZOJ3Bsh5QyPGCW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3x4 =

Scale = 1:24.7

Loading	(psf)	Spacing	2-0-0	CSI	0.45	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
	20.0		1.25	BC	0.45	Vert(CT)	-0.00	4-9	>999	180	101120	244/190	
BCU	10.0	Ren Stress Incr	VES	WB	0.30	Horz(CT)	0.13	4-9	>039 n/a	n/a			
BCDL	10.0	Code	FBC2020/TPI	2014 Matrix-AS	0.00	11012(01)	0.01	5	Π/a	n/a	Weight: 23 lb	FT = 20%	
LUMBER TOP CHORD 3OT CHORD BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 Structural wood shea Rigid ceiling directly (size) 2=0-3-0, 3 Mechanic Max Horiz 2=55 (LC Max Grav 2=410 (LC Max Grav 2=410 (LC	athing directly applie applied. B= Mechanical, 4= al 12) 12, 3=-26 (LC 12) 2 1), 3=-160 (LC 1), 4	7) Prov bea 3 ar 8) This ed. stru cho the LOAD (vide mechanical connectii ring plate capable of with d 39 lb uplift at joint 2. truss design requires tha ctural wood sheathing be rd and 1/2" gypsum sheet bottom chord. :ASE(S) Standard	on (by othe standing 2 at a minimu applied di trock be ap	ers) of truss 6 lb uplift at um of 7/16" rectly to the pplied directl	to joint top y to						
	(LC 3)												
FORCES	(lb) - Maximum Com	pression/Maximum											
TOP CHORD BOT CHORD	1-2=0/22, 2-3=-201/2 2-4=-274/230	274											
NOTES													
 Wind: AS Vasd=101 B=45ft; L= MWFRS (1-6-0, Inte and right of C for men shown; Lu 	CE 7-16; Vult=130mph Imph; TCDL=6.0psf; B0 =24ft; eave=4ft; Cat. II; (directional) and C-C E3 erior (1) 1-6-0 to 6-10-3 exposed; end vertical I nbers and forces & MW umber DOL=1.60 plate	(3-second gust) CDL=6.0psf; h=15ft; Exp B; Enclosed; kterior(2E) -1-6-0 to zone; cantilever left eft and right expose (FRS for reactions grip DOL=1.60	t d;C-							S. S	No 34		
 Building D verifying a requireme 	Designer / Project engin applied roof live load sh ents specific to the use	eer responsible for own covers rain loa of this truss compor	ding nent.							ł	ROAZ	spin	
3) This truss	has been designed for	a 10.0 psf bottom								- 7	US FAIL	UF III	1

- chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle
- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. Bearings are assumed to be: , Joint 2 SP No.2 . 5)
- 6) Refer to girder(s) for truss to truss connections.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

December 14,2023

ONAL

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

minin

Julius Lee PE No. 34869

Date:

Job	Truss	Truss Type	Qty	Ply	
1023-067	J15	Jack-Open	1	1	T32352965 Job Reference (optional)

6-10-5

Mayo Truss Company, Inc., Mayo, FL - 32066,

Loading

TCDI

BCLL

BCDL

WEBS

WEBS

NOTES

1)

3)

4)

-1-6-0

Run: 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:29 ID:5_1hqZYedxb2PdPf14PX_tyPGBb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

13-0-3

Page: 1

13-6-15

```
1-6-0
                                                                                                                                                   6-10-5
                                                                                                                                                                                                                                                       6-1-13
                                                                                                                                                                                                                                                                                                           0-6-12
                                                                                                                                                                                                                                                                                                           1.5x4 u
                                                                                                                                                                                                                                                                                                                 5
                                                                                                                                                                                                                                                                                                          4
                                                                                                                                                                                                         12
3 Г
                                                                                                                                                                                                                                               15
                                                                                                                                                                                                               3x4 =
                                                                                                                                                                                                           3
                                                                                                                                                                                                                                                                                                                                          3-8-9
                                4-0-13
                                                                                                                       14
                                                                                                 2
                                             ς
μ_
                                                                                                                                                                                                             8
                                                                                                                                                                                                                                                                                                            7
                                                                                                                                                                                                                                                                                                                   6
                                                                                                                                                                                                            1.5x4 II
                                                                                                                                                                                                                                                                                                          3x4 =
                                                                                                           3x4 =
                                                                                                                                                                                                                                                                                                          13-6-15
                                                                                                                                                       6-10-5
                                                                                                                                                                                                                                                       13-0-3
                                                                                                                                                        6-3-1
                                                                                                                                                                                                                                                       6-1-13
 Scale = 1:35.8
                                                                                                                 2-0-0
                                                                                                                                                              CSI
                                                                                                                                                                                                                DEFL
                                                                                                                                                                                                                                                                         l/defl
                                                                                                                                                                                                                                                                                        L/d
                                                                                                                                                                                                                                                                                                   PLATES
                                                                                                                                                                                                                                                                                                                                     GRIP
                                                        (psf)
                                                                         Spacing
                                                                                                                                                                                                                                                in
                                                                                                                                                                                                                                                           (loc)
TCLL (roof)
                                                        20.0
                                                                        Plate Grip DOL
                                                                                                                1.25
                                                                                                                                                              тс
                                                                                                                                                                                                   0.50
                                                                                                                                                                                                                Vert(LL)
                                                                                                                                                                                                                                          -0.09
                                                                                                                                                                                                                                                            7-8
                                                                                                                                                                                                                                                                        >999
                                                                                                                                                                                                                                                                                       240
                                                                                                                                                                                                                                                                                                    MT20
                                                                                                                                                                                                                                                                                                                                     244/190
                                                                                                                                                              BC
                                                        10.0
                                                                                                                1 25
                                                                                                                                                                                                                Vert(CT)
                                                                        Lumber DOL
                                                                                                                                                                                                   0.64
                                                                                                                                                                                                                                          -0.21
                                                                                                                                                                                                                                                            7-8
                                                                                                                                                                                                                                                                        >775
                                                                                                                                                                                                                                                                                       180
                                                         0.0*
                                                                        Rep Stress Incr
                                                                                                                 YES
                                                                                                                                                              WB
                                                                                                                                                                                                   0.80
                                                                                                                                                                                                                Horz(CT)
                                                                                                                                                                                                                                           0.02
                                                                                                                                                                                                                                                                6
                                                                                                                                                                                                                                                                            n/a
                                                                                                                                                                                                                                                                                        n/a
                                                        10.0
                                                                        Code
                                                                                                                 FBC2020/TPI2014
                                                                                                                                                              Matrix-AS
                                                                                                                                                                                                                                                                                                     Weight: 59 lb
                                                                                                                                                                                                                                                                                                                                     FT = 20%
LUMBER
                                                                                                                           6) Refer to girder(s) for truss to truss connections.
TOP CHORD
                             2x4 SP No.2
                                                                                                                                  Provide mechanical connection (by others) of truss to
                              2x4 SP No.2
                                                                                                                                   bearing plate capable of withstanding 71 lb uplift at joint
BOT CHORD
                                                                                                                                   6 and 30 lb uplift at joint 2.
                              2x4 SP No.2
                                                                                                                           8)
                                                                                                                                  This truss design requires that a minimum of 7/16"
BRACING
                                                                                                                                   structural wood sheathing be applied directly to the top
TOP CHORD
                               Structural wood sheathing directly applied.
                                                                                                                                   chord and 1/2" gypsum sheetrock be applied directly to
BOT CHORD
                              Rigid ceiling directly applied.
                                                                                                                                   the bottom chord.
REACTIONS (size)
                                                  2=0-3-0, 5= Mechanical, 6=
                                                                                                                           LOAD CASE(S) Standard
                                                  Mechanical
                            Max Horiz 2=95 (LC 12)
                                                 2=-30 (LC 12), 6=-71 (LC 12)
                            Max Uplift
                                                  2=665 (LC 1), 5=276 (LC 3), 6=319
                            Max Grav
                                                  (LC 1)
FORCES
                               (lb) - Maximum Compression/Maximum
                               Tension
TOP CHORD
                               1-2=0/22, 2-3=-1163/271, 3-4=-57/24,
                               4-5=0/67
BOT CHORD
                              2-8=-271/1090, 7-8=-200/1090, 6-7=0/0
                                                                                                                                                                                                                                                                         To and the second secon
                               4-7=0/241, 3-8=0/281, 3-7=-1132/208
      Wind: ASCE 7-16; Vult=130mph (3-second gust)
       Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft;
       B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed;
       MWFRS (directional) and C-C Exterior(2E) -1-6-0 to
                                                                                                                                                                                                                                                                                                                          34869
       1-6-0, Interior (1) 1-6-0 to 13-6-3 zone; cantilever left
       and right exposed ; end vertical left and right exposed;C-
       C for members and forces & MWFRS for reactions
       shown; Lumber DOL=1.60 plate grip DOL=1.60
2) Building Designer / Project engineer responsible for
       verifying applied roof live load shown covers rain loading
        requirements specific to the use of this truss component.
       This truss has been designed for a 10.0 psf bottom
                                                                                                                                                                                                                                                                                                                 ON
       chord live load nonconcurrent with any other live loads.
                                                                                                                                                                                                                                                                                                         11111
       * This truss has been designed for a live load of 20.0psf
       on the bottom chord in all areas where a rectangle
                                                                                                                                                                                                                                                                                   Julius Lee PE No. 34869
       3-06-00 tall by 2-00-00 wide will fit between the bottom
                                                                                                                                                                                                                                                                                  MiTek Inc. DBA MiTek USA FL Cert 6634
       chord and any other members.
                                                                                                                                                                                                                                                                                  16023 Swingley Ridge Rd. Chesterfield, MO 63017
5) Bearings are assumed to be: , Joint 2 SP No.2 .
                                                                                                                                                                                                                                                                                   Date:
                                                                                                                                                                                                                                                                                                                             December 14,2023
          🗥 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
            Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
           Design valid for use only with wit refere connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org)
and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)
                                                                                                                                                                                                                                                                                                                   16023 Swingley Ridge Rd.
                                                                                                                                                                                                                                                                                                                     Chesterfield MO 63017
                                                                                                                                                                                                                                                                                                               314.434.1200 / MiTek-US.com
```

Job	Truss	Truss Type	Qty	Ply	
1023-067	J16	Monopitch	2	1	T32352966 Job Reference (optional)

Run: 8,73 S Nov 13 2023 Print: 8,730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:29 ID:Os0BRa2MzXmDqx2XwBe88WyPGAy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:38.1

Plate Offsets (X, Y): [3:0-3-0,0-3-4]

on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom

chord and any other members.

Loading TCLL (roof) TCDL BCLL	(psf) 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.25 1.25 YES		CSI TC BC WB	0.56 0.68 0.34	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.11 -0.25 0.03	(loc) 7-8 7-8 6	l/defl >999 >758 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190	
BCDL	10.0	Code	FBC2020)/TPI2014	Matrix-AS							Weight: 69 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she Rigid ceiling directly 1 Row at midpt (size) 2=0-3-0, § Mechanic Max Horiz 2=108 (LC Max Uplift 2=-28 (LC Max Grav 2=752 (LC (LC 1)	athing directly applied applied. 3-7 5= Mechanical, 6= al C 12) 12), 6=-119 (LC 12) C 1), 5=378 (LC 3), 6:	5) 6) 7) d. 8) LO =397	Bearings are Refer to girdk Provide mech bearing plate 6 and 28 lb u This truss de structural wo chord and 1/2 the bottom ch AD CASE(S)	assumed to be: , J er(s) for truss to tru hanical connection capable of withsta plift at joint 2. sign requires that a od sheathing be ap 2" gypsum sheetro hord. Standard	loint 2 S ss conr (by oth nding 1 a minim pplied di ck be ap	P No.2 . lections. ers) of truss t 19 lb uplift at um of 7/16" rectly to the t pplied directly	o ; joint ; op / to						
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 1-2=0/22, 2-4=-1347 2-8=-270/1259, 7-8=	pression/Maximum 7/269, 4-5=0/91 152/1249, 6-7=0/0											1111.	
WEBS NOTES 1) Wind: ASC Vasd=1011 B=45ft; L=: MWFRS (c 1-6-0, Inter and right e C for mem shown; Lui	3-8=0/334, 4-7=0/34 CE 7-16; Vult=130mph mph; TCDL=6.0psf; Bi 24ft; eave=4ft; Cat. II; directional) and C-C E: rior (1) 1-6-0 to 15-8-8 ixposed; end vertical I bers and forces & MW mber DOL=1.60 plate	0, 3-7=-1306/159 (3-second gust) CDL=6.0psf; h=15ft; Exp B; Enclosed; xterior(2E) -1-6-0 to zone; cantilever left eft and right exposec /FRS for reactions grip DOL=1.60	l;C-								PAO	No 34		ANNULL.
 Building Doverifying aprequirement This truss chord live l * This truss 	esigner / Project engir pplied roof live load sh nts specific to the use has been designed fo load nonconcurrent wi s has been designed f	neer responsible for nown covers rain load of this truss compone r a 10.0 psf bottom th any other live load or a live load of 20.0p	ling ent. s. osf							Jı	llius Le	© C R S/ONA e PE No. 34869	D.A. CININ	

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

December 14,2023

Job	Truss	Truss Type	Qty	Ply	
1023-067	J17	Jack-Open	7	1	Job Reference (optional)

Run; 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:30 ID:5xwO9?KU3opDI5yW1T_dMgyPG47-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:56.6

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.25		TC	0.56	Vert(LL)	0.12	7-8	>716	240	MT20	244/190	
TCDL	10.0	Lumber DOL	1.25		BC	0.52	Vert(CT)	-0.23	7-8	>375	180			
BCLL	0.0*	Rep Stress Incr	YES		WB	0.22	Horz(CT)	-0.01	5	n/a	n/a			
BCDL	10.0	Code	FBC202	0/TPI2014	Matrix-AS							Weight: 54 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she except end verticals Rigid ceiling directly (size) 5= Mecha	athing directly applie applied. nical, 6= Mechanica	5) 6) 7) ed, 8)	Bearings are Refer to gird Provide mec bearing plate 5 and 218 lb This truss de structural wo chord and 1/ the bottom co	e assumed to be er(s) for truss to hanical connect e capable of with uplift at joint 6 ssign requires th bod sheathing be (2" gypsum shee hord.	e: , Joint 8 S o truss con tion (by oth nstanding 2 nat a minim e applied d etrock be a	SP No.2 . nections. ers) of truss 6 lb uplift at j um of 7/16" rectly to the oplied directly	to joint top y to						

		8=0-3-0
	Max Horiz	8=225 (LC 12)
	Max Uplift	5=-26 (LC 17), 6=-218 (LC 12)
	Max Grav	5=206 (LC 3), 6=324 (LC 17),
		8=455 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	2-9=-126/	(101, 1-2=0/63, 2-3=-56/78,
	3-4200	110 1-5-20/132

Т BOT CHORD 8-9=-15/16, 7-8=-328/125, 6-7=0/0 WEBS 3-8=-346/91, 4-7=-251/418, 3-7=-128/335 NOTES

1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior (1) 1-6-0 to 7-11-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads.
 This truss has been designed for a live load of 20.0psf 4)
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

LOAD CASE(S) Standard

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

December 14,2023

Page: 1

Job	Truss	Truss Type	Qty	Ply	
1023-067	J18	Jack-Open	2	1	Job Reference (optional)

Run: 9.04 E 8.73 Nov 16 2023 Print: 8.730 E Nov 16 2023 MiTek Industries, Inc. Thu Dec 14 11:56:31 Page: 1 ID:_nGcGdCe6wu?O9SMFbHVGsyPG3?-JUGTOhvJzZ0DsdzKaJR?Uce1cX2DUaG?fJd7azy9ES_

Scale = 1:51.1

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25		TC	0.54	Vert(LL)	-0.08	6-7	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.25		BC	0.53	Vert(CT)	-0.16	6-7	>549	180		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.98	Horz(CT)	-0.01	4	n/a	n/a		
BCDL	10.0	Code	FBC20)20/TPI2014	Matrix-AS							Weight: 53 lb	FT = 20%
LUMBER			4	* This truss h	nas been designed	for a liv	e load of 20.	0psf					
TOP CHORD	2x4 SP No.2			on the bottor	n chord in all areas	s where	a rectangle						
BOT CHORD	2x4 SP No.2			3-06-00 tall b	by 2-00-00 wide wil	ll fit betw	veen the bott	om					
WEBS	2x4 SP No.2			chord and ar	ny other members.								
BRACING			Ę	 Refer to gird 	er(s) for truss to tr	uss con	nections.						
TOP CHORD	Structural wood she except end verticals	athing directly applie	ed, 6	 Provide mec bearing plate 5, 207 lb upli 	hanical connection capable of withsta	i (by oth anding 5	ers) of truss 585 lb uplift at ft at joint 6	to t joint					
BOT CHORD	Rigid ceiling directly	applied.	-	5, 807 ib upi	nt at joint 4 and 240	o in upii o minim	11 at joint 6.						
REACTIONS	All bearings 8-0-0. ex	cept 4= Mechanical		structural wo	od sheathing be a	a minim polied d	irectly to the	top					
(lb) -	Max Horiz 7=225 (LC	C 12)		chord and 1/	2" gypsum sheetro	ock be a	pplied directly	v to					
	Max Uplift All uplift 1	00 (lb) or less at join	nt(s)	the bottom c	hord.			•					
	except 4=	-807 (LC 17), 5=-58 2 (LC 12)	6 (LC	OAD CASE(S)	Standard								
	3), 6=-240 Max Gray All reaction	J (LU 12)	t ioint	.,									
	(s) 5 exce (LC 17), 7	ept 4=323 (LC 12), 6: 7=351 (LC 1)	=1505										
FORCES	(lb) - Max. Comp./M	ax. Ten All forces	250										
	(lb) or less except w	hen shown.											
TOP CHORD	2-7=-294/11, 3-4=-5	29/482											11.
BOICHORD	6-7=-328/125	100/000										MI UIS	1.111
WEB5	3-6=-1102/1042, 2-6	5=-120/330										JULIOU	LEE
NOTES		(a									1	CEN	18:00
 1) Wind: AS 	CE 7-16; Vult=130mph	(3-second gust)									-	· V	- E

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior (1) 1-6-0 to 7-11-4 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

December 14,2023

Job	Truss	Truss Type	Qty	Ply	
1023-067	J19	Jack-Open	4	1	Job Reference (optional)

Run: 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:30 ID:L0bwu9TRwgfu1X8aXCgfAUyPG2f-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:49.8

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES FBC2020	0/TPI2014	CSI TC BC WB Matrix-AS	0.72 0.68 0.30	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.15 -0.36 -0.01	(loc) 6-7 6-7 4	l/defl >605 >262 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 53 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N Structural except er Rigid ceili (size) Max Horiz Max Uplift Max Grav	0.2 0.2 0.2 1 wood she do verticals ing directly 4= Mecha 7=0-5-8 7=225 (L0 4=-83 (L0 4=-83 (L0 7=421 (L0	athing directly applied applied. anical, 5= Mechanical, C 12) C 17), 5=-309 (LC 12) C 3), 5=-412 (LC 17), C 1)	5) 6) 7) i, 8) LO	Bearings are Refer to gird Provide mec bearing plate 4 and 309 lb This truss de structural wo chord and 1/ the bottom cl DAD CASE(S)	assumed to be: er(s) for truss to hanical connection of apable of withs uplift at joint 5. sign requires that od sheathing be 2" gypsum sheet hord. Standard	, Joint 7 S truss coni on (by oth standing 8 at a minim applied di rrock be a	P No.2 . nections. ers) of truss f 3 lb uplift at j um of 7/16" rectly to the pplied directly	to joint top y to						
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASC	(lb) - Max Tension 2-7=-328/ 3-4=-65/2 6-7=-328/ 3-6=-341/	imum Com (23, 1-2=0/ (38 (125, 5-6=0 (642, 2-6=- lt=130mph	pression/Maximum 63, 2-3=-226/129,)/0 126/330 (3-second gust)										JULIUS		

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior (1) 1-6-0 to 7-11-4 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 4) * This truss has been designed for a live load of 20.0psf
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

No 34869 * ORIDACIA

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

December 14,2023

Job	Truss	Truss Type	Qty	Ply	
1023-067	J20	Jack-Open	4	1	Job Reference (optional)

Run: 8 73 S. Nov 13 2023 Print: 8 730 S. Nov 13 2023 MiTek Industries. Inc. Wed Dec 13 08:11:31 ID:Cdd0B0te071cCF2DoUlipfyPG4j-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

0-8-12 8-0-0 1-6-0 1-6-0 7-6-12 6-10-0 0-5-4 0-8-12 1.5x4 I 5 4 12 10 0-3-8 Ĥ 11 7-10-6 8-3-9 3x5 -3x4 **I** 10 3 2 1-2-6 -N 8 23 76 4x4 =3x4 u 1.5x4 u 0-8-12 0-7-4 8-0-0 7-6-12 H 0-5-4 6-10-0 -7-4

Scale - 1:56.8

00010 - 1.00.0													
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.52	Vert(LL)	-0.09	7-8	>999	240	MT20	244/190	
TCDL	10.0	Lumber DOL	1.25	BC	0.53	Vert(CT)	-0.19	7-8	>457	180			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.28	Horz(CT)	0.00	6	n/a	n/a			
BCDL	10.0	Code	FBC2020/TPI2014	Matrix-AS							Weight: 54 lb	FT = 20%	
LUMBER	2x4 SP No 2		7) Provide me bearing plat	chanical connec e capable of with	tion (by oth hstanding 9	ers) of truss 8 lb uplift at	to ioint						

		51 <u>2</u>
BOT CHORD	2x4 SP No	o.2
WEBS	2x4 SP No	o.2
BRACING		
TOP CHORD	Structural except en	wood sheathing directly applied, d verticals.
BOT CHORD	Rigid ceili	ng directly applied.
REACTIONS	(size)	6= Mechanical, 8=0-3-0
	Max Horiz	8=231 (LC 12)
	Max Uplift	6=-98 (LC 12)
	Max Grav	6=300 (LC 17), 8=455 (LC 1)
FORCES	(lb) - Max Tension	imum Compression/Maximum
TOP CHORD	2-9=-231/	44, 1-2=0/63, 2-3=-254/0,
	3-4=-186/	95, 4-5=-17/0
BOT CHORD	8-9=-59/2	12, 7-8=-403/330, 6-7=0/0
WEBS	3-8=-311/	180, 4-7=-204/203, 3-7=-338/412

NOTES

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior (1) 1-6-0 to 8-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for 2) verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component. This truss has been designed for a 10.0 psf bottom 3)
- chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearings are assumed to be: Joint 8 SP No.2 . 5)
- 6) Refer to girder(s) for truss to truss connections.

bearing plate capable of withstanding 98 lb uplift at joint

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

0 0-1-8

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

December 14,2023

Page: 1

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only using the mathematical network of the intervention of the in

Job	Truss	Truss Type	Qty	Ply	
1023-067	J21	Jack-Open	1	1	T32352971 Job Reference (optional)

Run: 8,73 S Nov 13 2023 Print: 8,730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:31 ID:6bCEFRndcGSaeJCF?VES6NyPGA?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3x4 =

Scale = 1:39.2

chord live load nonconcurrent with any other live loads.

Plate Offsets (X, Y): [4:0-3-9,Edge]

Loading	((psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.25		тс	0.25	Vert(LL)	-0.01	5-6	>999	240	MT20	244/190
TCDL		10.0	Lumber DOL	1.25		BC	0.23	Vert(CT)	-0.01	5-6	>999	180		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.12	Horz(CT)	0.00	4	n/a	n/a		
BCDL		10.0	Code	FBC202	0/TPI2014	Matrix-MP		()					Weight: 23 lb	FT = 20%
LUMBER				5)	* This truss h	as been designed	for a liv	e load of 20.	0psf					
TOP CHORD	2x4 SP No.2				on the botton	n chord in all areas	s where	a rectangle						
BOT CHORD	2x4 SP No.2				3-06-00 tall b	y 2-00-00 wide wil	Il fit betv	een the bott	om					
WEBS	2x4 SP No.2				chord and an	y other members.								
BRACING				6)	Bearings are	assumed to be: ,	Joint 6 S	SP No.2 .						
TOP CHORD	Structural wo	od shea	athing directly applie	dor ()	Refer to girde	er(s) for truss to tr	uss con	nections.						
	3-1-2 oc purli	ins, exc	cept end verticals.	8)	Provide mecl	nanical connection	i (by oth	ers) of truss	to					
BOT CHORD	Rigid ceiling o	directly	applied or 10-0-0 oc		bearing plate	capable of withsta	anding 8	1 Ib uplift at j	joint					
	bracing.				4, 11 lb uplift	at joint 5 and 12 lt	b uplift a	t joint 6.						
REACTIONS	(size) 4=	Mecha	nical, 5= Mechanical	I, ⁹⁾	Gap between	i inside of top chor	id beani	ig and first						
	6=0	0-3-0			diagonal or v	enical web shall h	ot excee	a 0.500in.						
	Max Horiz 6=	128 (LC	: 12)	LC	DAD CASE(S)	Standard								
	Max Uplift 4=-	-81 (LC	12), 5=-11 (LC 1), 6	i=-12										
	(LC	C 12)												
	Max Grav 4=6 (LC	67 (LC ⁻ C 1)	17), 5=42 (LC 12), 6	=305										
FORCES	(lb) - Maximu	m Com	pression/Maximum											
	Tension													
TOP CHORD	2-7=-128/217	7. 1-2=0	/63. 2-3=-36/148.											
	3-4=-95/263	,											1 JLIUS	LED 11.
BOT CHORD	6-7=-15/16, 5	5-6=0/0										11	CEA	
WEBS	4-6=-411/124	l, 3-6=-1	134/206									5	. UEN	Spi
NOTES												5		
1) Unbalanc	ed roof live load	ls have	been considered for								-		No 34	869
this desig	in.											*:		▲ :★ Ξ
2) Wind: AS	CE 7-16; Vult=1	30mph	(3-second gust)									:	c at	// : E
Vasd=10	1mph; TCDL=6.0	0psf; BC	DL=6.0psf; h=15ft;								-	ט:		
B=45ft; L:	=24ft; eave=4ft;	Cat. II;	Exp B; Enclosed;									D:	KUNIW	
MWFRS	(directional) and	C-C Ex	terior(2E) -1-6-0 to									:0	Thomas	442
1-6-0, Inte	erior (1) 1-6-0 to	3-1-2 z	one; cantilever left a	ind								24		04.25
right expo	osed ; end vertica	al left ar	nd right exposed;C-0	2								11	COLOH	GN
for memb	ers and forces 8	& MWFF	RS for reactions show	wn;									IL ONIA	ENI
Lumber D	DOL=1.60 plate g	grip DOI	L=1.60										MA	- million
3) Building [Jesigner / Projec	ct engin	eer responsible for											
verifying a	applied roof live	load sh	own covers rain load	ding							Ju	ilius Le	e PE No. 34869	FL Contract
requireme	ents specific to the	he use o	of this truss compone	ent.							M	11ek In	c. DBA MiTek USA	hostorfield MO 63017
This truss	s has been desig	ned for	a 10.0 psf bottom								10	1045 SW	ingley Riuge Rd. C.	nester netu, MO 0501/

16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

December 14,2023

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	
1023-067	J22	Jack-Open	1	1	T32352972 Job Reference (optional)

Run; 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:32 ID:SITijLe5RaxHCTHyI_1ddryPGAB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:37.1

Loading		(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.25	TC	0.24	Vert(LL)	0.00	5-6	>999	240	MT20	244/190
TCDL		10.0	Lumber DOL	1.25	BC	0.18	Vert(CT)	0.00	5-6	>999	180		
BCLL		0.0*	Rep Stress Incr	YES	WB	0.01	Horz(CT)	-0.02	4	n/a	n/a		
BCDL		10.0	Code	FBC2020/TPI201	4 Matrix-MP							Weight: 15 lb	FT = 20%
LUMBER				4) * This tr	uss has been design	ed for a live	e load of 20.	0psf					
TOP CHORD	2x4 SP No.2	2		on the b	oottom chord in all are	eas where	a rectangle						
BOT CHORD	2x4 SP No.2	2		3-06-00	tall by 2-00-00 wide	will fit betw	een the bott	om					
WEBS	2x4 SP No.2	2		chord a	nd any other member	rs.							
BRACING				5) Bearing	s are assumed to be:	:, Joint 6 S	SP No.2 .						
TOP CHORD	Structural w	ood shea	athing directly applied	dor 6) Referto 7) Provide	girder(s) for truss to mechanical connecti	o truss coni ion (bv oth	nections. ers) of truss	to					
BOT CHORD	Rigid ceiling	g directly	applied or 10-0-0 oc	bearing 4, 32 lb	plate capable of with uplift at joint 5 and 20	nstanding 3 0 lb uplift a	0 lb uplift at t joint 6.	joint					
REACTIONS	(size) 4	= Mechai	nical, 5= Mechanical,	, LOAD CAS	E(S) Standard								
	Max Horiz 6	=0-5-0 =115 (LC	: 12)										
	Max I Inlift 4	=-30 (LC	12) 5=-32 (I C 1) 6:	=-20									
	(LC 12)	12), 0- 02 (20 1), 0-	- 20									
	Max Grav 4	=27 (LC	10), 5=13 (LC 3), 6=3	303									
	(1	LC 1)											
FORCES	(lb) - Maxim Tension	um Com	pression/Maximum										
TOP CHORD	2-7=-114/90	0, 1-2=0/6	63, 2-3=-113/63,										
	3-4=-72/38											1111	
BOLCHORD	6-7=-53/229	9, 5-6=0/C)									ULIUS	LEF
WEB5	3-6=-111/57	(S.	CEN	0
NOTES			(a. 1)								5		
1) Wind: ASC	CE 7-16; Vult=	=130mph	(3-second gust)									No. 24	000
Vasd=101	mph; TCDL=6	5.0pst; BC	DL=6.0pst; n=15tt;									340	009
B=4511; L=	directional) an		EXP B; Enclosed;								*:		/
1-6-0 Inte	rior (1) 1-6-01	to 2-5-2 7	one: cantilever left a	nd						=		Charles 1	
right expos	sed : end vert	ical left a	nd right exposed C-C	2						-	D		
for membe	ers and forces	& MWFF	RS for reactions show	vn:							J		OPV : 415
Lumber D	OL=1.60 plate	grip DO	L=1.60								-0		A
2) Building D	esigner / Proj	ect engin	eer responsible for								1	A. KORI	Dicks
verifying a	pplied roof liv	e load sh	own covers rain load	ing							11	00	-Nº II
requireme	nts specific to	the use of	of this truss compone	ent.								ONA	LEIM

- Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior (1) 1-6-0 to 2-5-2 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - verify design parameters and READ NOTES ON THIS AND INCLOSED INTERNETING TO THE REFERENCE FOR UNITY TO THE INSTANCE OF THE ADDRESS OF THE ADDRESS

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	
1023-067	J23	Jack-Open	1	1	T32352973 Job Reference (optional)

Run; 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:32 ID:LoBo?uUxVbI78ToS1Ilac6yPGAO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

1.5x4 🛚

Scale = 1:39.8

	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES FBC20	20/TPI2014	CSI TC BC WB Matrix-MP	0.26 0.18 0.01	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 -0.02	(loc) 5-6 5-6 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 13 lb	GRIP 244/190 FT = 20%
2x4 SP No 2x4 SP No 2x4 SP No Structural 1-10-11 oc Rigid ceilir bracing. (size)	.2 .2 .2 wood shea purlins, o g directly 4= Mecha 6=0-3-0	athing directly applie except end verticals. applied or 10-0-0 oc nical, 5= Mechanical	4 ed or 6	 * This truss h on the bottor 3-06-00 tall h chord and ar Bearings are Refer to gird Provide mec bearing plate 5, 30 lb uplift OAD CASE(S) 	has been design in chord in all ar by 2-00-00 wide by other member assumed to be er(s) for truss t hanical connect c capable of with at joint 6 and 2 Standard	ned for a liv/ reas where e will fit betw ers. 2: , Joint 6 S o truss conr tion (by othe hstanding 6 26 lb uplift a	e load of 20. a rectangle reen the bott P No.2 . nections. ers) of truss 6 lb uplift at t joint 4.	0psf om to joint					
Max Horiz Max Uplift Max Grav	6=104 (LC 4=-26 (LC (LC 12) 4=12 (LC (LC 1)	C 12) 9), 5=-66 (LC 1), 6= 10), 5=8 (LC 8), 6=3	=-30 324										
(lb) - Maxiı Tension	num Com	pression/Maximum											
2-7=-125/1 3-4=-57/32 6-7=-48/20 3-6=-98/28	22, 1-2=0 2 00, 5-6=0/0	//63, 2-3=-70/49,)										JULIUS	
	2x4 SP No 2x4 SP No 2x4 SP No Structural 1-10-11 oc Rigid ceilir bracing. (size) Max Horiz Max Uplift Max Grav (lb) - Maxir Tension 2-7=-125/1 3-4=-57/32 6-7=-48/20 3-6=-98/28	(psf) 20.0 10.0 0.0* 10.0 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood shea 1-10-11 oc purlins, or Rigid ceiling directly bracing. (size) 4= Mecha 6=0-3-0 Max Horiz 6=104 (LC Max Uplift 4=-26 (LC (LC 12) Max Grav 4=12 (LC (LC 1) (lb) - Maximum Com Tension 2-7=-125/122, 1-2=0 3-4=-57/32 6-7=-48/200, 5-6=0/0 3-6=-98/28	$\begin{array}{c} (\mathrm{psf})\\ 20.0\\ 10.0\\ 10.0\\ 0.0^*\\ 10.0 \end{array} \begin{array}{c} \mathrm{Spacing}\\ \mathrm{Plate~Grip~DOL}\\ \mathrm{Lumber~DOL}\\ \mathrm{Rep~Stress~Incr}\\ \mathrm{Code} \end{array}$	(psf) Spacing 2-0-0 20.0 Plate Grip DOL 1.25 10.0 Lumber DOL 1.25 0.0* Rep Stress Incr YES 10.0 Code FBC20 2x4 SP No.2 2x4 SP No.2 4 2x4 SP No.2 5 Structural wood sheathing directly applied or 1-10-11 oc purlins, except end verticals. 6 Rigid ceiling directly applied or 10-0-0 oc bracing. 6=0-3-0 7 Max Horiz 6=104 (LC 12) Max Uplift 4=26 (LC 9), 5=-66 (LC 1), 6=-30 (LC 12) Max Grav 4=12 (LC 10), 5=8 (LC 8), 6=324 (LC 1) 1 1 (lb) - Maximum Compression/Maximum Tension 2-7=-125/122, 1-2=0/63, 2-3=-70/49, 3-4=-57/32 6-7=-48/200, 5-6=0/0 3-6=-98/28 5 5 5	$ \begin{array}{c ccccc} (psf) \\ 20.0 \\ 1$					$ \begin{array}{ c c c c } \begin{array}{ c c c } \begin{array}{ c } \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \\ \begin{array}{ c } \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \\ \begin{array}{ c } \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \\ \begin{array}{ c } \begin{array}{ c } \begin{array}{ c } \begin{array}{ c } \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \\ \begin{array}{ c } \begin{array}{ c } \begin{array}{ c } \begin{array}{ c } \end{array} \\ \begin{array}{ c } \begin{array}{ c } \end{array} \end{array} \end{array} \end{array} \end{array} \\ \begin{array}{ c } \begin{array}{ c } \end{array} \\ \begin{array}{ c } \begin{array}{ c } \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \\ \begin{array}{ c } \end{array} \end{array}$			(psf) Spacing 2-0-0 CSI DEFL in (loc) l/deft L/d PLATES 10.0 Lumber DOL 1.25 BC 0.18 Vert(LL) 0.00 5-6 >999 240 MT20 0.0* Rep Stress Incr YES WB 0.01 Matrix-MP Vert(CT) 0.00 5-6 >999 180 2x4 SP No.2 Stactor FBC2020/TPI2014 Matrix-MP Matrix-MP Weight: 13 lb Weight: 13 lb 2x4 SP No.2 Structural wood sheathing directly applied or 10-0 oc bracing. * This truss has been designed for a live load of 20.0psf + * * * * * * * * * * * (size) 4 Mechanical, 5= Mechanical, 6=-30 Refer to girder(S) for truss to trus to truss to truss to truss to trus to tru

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior (1) 1-6-0 to 1-10-9 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

December 14,2023

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - verify design parameters and READ NOTES ON THIS AND INCLOSED INTERNETING TO THE REFERENCE FOR UNITY TO THE INSTANCE OF THE ADDRESS OF THE ADDRESS

Job	Truss	Truss Type	Qty	Ply	
1023-067	K01	Scissor Structural Gable	1	1	T32352974 Job Reference (optional)

Scale = 1:65.1

NOTES

Run: 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:32 ID:1V?rXm_0p6kMiV5tnmPa7MyOHMX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [16:0-1-4,0-2-14], [21:0-2-12,0-3-8], [26:0-1-4,0-2-13], [30:0-6-0,0-0-8], [34:0-6-0,0-0-12]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	тс	0.17	Vert(LL)	-0.02	22	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.25	BC	0.26	Vert(CT)	-0.05	22	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.15	Horz(CT)	0.03	17	n/a	n/a		
BCDL	10.0	Code	FBC2020/TPI2014	Matrix-AS							Weight: 166 lb	FT = 20%

LUMBER	
TOP CHORD	2x4 SP No.2
BOT CHORD	2x6 SP No.2
WEBS	2x4 SP No.2
OTHERS	2x4 SP No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied.
	except end verticals.
BOT CHORD	Rigid ceiling directly applied.
JOINTS	1 Brace at Jt(s): 26,
	16, 27, 29, 31, 33
REACTIONS	(size) 17=0-3-0, 25=0-3-0
	Max Horiz 25=195 (LC 11)
	Max Uplift 17=-40 (LC 12), 25=-48 (LC 12)
	Max Grav 17=833 (LC 1), 25=835 (LC 1)
FORCES	(Ib) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/58, 2-3=-253/12, 3-5=-219/70.
	5-6=-766/4. 6-7=-682/17. 7-8=-668/78.
	8-9=-670/83. 9-10=-683/33. 10-11=-765/12.
	11-13=-223/67, 13-14=-262/9, 14-15=0/58,
	2-26=-330/52, 14-16=-337/56
BOT CHORD	25-26=0/215, 24-25=0/704, 23-24=0/739,
	22-23=0/710, 21-22=0/748, 20-21=0/674,
	19-20=0/641, 18-19=0/667, 17-18=0/630,
	16-17=0/222
WEBS	8-21=-57/662, 21-31=-194/97,
	31-32=-189/91, 11-32=-161/97,
	5-28=-147/95, 27-28=-179/90,
	21-27=-176/93, 25-30=-715/0, 29-30=-685/0,
	5-29=-768/0, 11-33=-761/0, 33-34=-679/0,
	17-34=-708/7, 7-27=-110/71, 22-27=-116/63,
	6-28=-5/99, 23-28=0/180, 24-29=-113/23,
	3-30=-51/56, 9-31=-115/72, 20-31=-105/57,
	10-32=-4/96, 19-32=0/176, 18-33=-111/24,
	13-34=-51/55

1) Unbalanced roof live loads have been considered for this design

- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-6-0 to 1-4-0, Interior (1) 1-4-0 to 9-4-0, Exterior(2R) 9-4-0 to 12-4-0, Interior (1) 12-4-0 to 20-2-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.
- Building Designer / Project engineer responsible for 4) verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- Truss to be fully sheathed from one face or securely 5) braced against lateral movement (i.e. diagonal web).
- 6) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 7) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 8) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 9) All bearings are assumed to be SP No.2 Bearing at joint(s) 25, 17 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building
- designer should verify capacity of bearing surface. 11) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 25.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 48 lb uplift at joint 25 and 40 lb uplift at joint 17.

13) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

December 14,2023

Job	Truss	Truss Type	Qty	Ply	
1023-067	K02	Scissor	1	1	Job Reference (optional)

Run: 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:33 ID:Q6uHwslb8aYTdD1W?66RgZyOHPP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:64.2

Plate Offsets	(X, Y):	[11:0-2-	12,0-3-8]
---------------	---------	----------	-----------

Building Designer / Project engineer responsible for

verifying applied roof live load shown covers rain loading

requirements specific to the use of this truss component.

3)

Loa	ding	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCI	L (roof)	20.0	Plate Grip DOL	1.25		TC	0.18	Vert(LL)	-0.02	11-12	>999	240	MT20	244/190	
TCI	DL	10.0	Lumber DOL	1.25		BC	0.13	Vert(CT)	-0.04	11-12	>999	180			
BCI	_L	0.0*	Rep Stress Incr	YES		WB	0.44	Horz(CT)	0.03	9	n/a	n/a			
BCI	DL	10.0	Code	FBC202	0/TPI2014	Matrix-AS							Weight: 136 lb	FT = 20%	
LUI TOI BO WE BR TOI BO RE	MBER CHORD T CHORD BS ACING CHORD T CHORD ACTIONS	2x4 SP No.2 2x6 SP No.2 2x4 SP No.2 Structural wood shi except end vertical Rigid ceiling directl (size) 9=0-3-0, Max Horiz 13=180 (Max Uplift 13=-12 (Max Gray 9=734 (L	eathing directly applie s. y applied. 13=0-3-0 LC 11) LC 12) C 1). 13=736 (LC 1)	4) 5) ed, 6) 7) 8)	This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and an All bearings a Bearing at jo using ANSI/T designer sho Provide mect bearing plate	s been designed f ad nonconcurrent v nas been designed n chord in all areas y 2-00-00 wide wil y other members. are assumed to be int(s) 13, 9 conside TPI 1 angle to grair uld verify capacity hanical connection capable of withsta	or a 10.0 with any I for a liv s where II fit betw e SP No. ers para n formula of bearin (by oth anding 1	 b) psf bottom other live load e load of 20. a rectangle veen the bott 2. llel to grain v a. Building ng surface. ers) of truss 2 lb uplift at 	ads. Opsf tom ralue to joint						
FOI	RCES	(lb) - Maximum Cor	npression/Maximum	9)	13. This truss de	sign requires that	a minim	um of 7/16"							
то	P CHORD	Tension 1-2=-79/0, 2-3=-179 4-5=-691/96, 5-6=-4 1-14=-55/0, 7-8=-4	9/88, 3-4=-690/86, 310/55, 6-7=-57/1, 4/0		structural wo chord and 1/2 the bottom cl	od sheathing be a 2" gypsum sheetro hord.	pplied di ock be aj	rectly to the oplied directl	top y to						
$\begin{array}{r} 1.14 = -55/0, \ 7-8 = -44/0 \\ \text{BOT CHORD} & 13-14 = -1/85, \ 12-13 = -16/648, \ 11-12 = -17/657, \\ 10-11 = -3/598, \ 9-10 = -19/70, \ 8-9 = -9/61 \\ \text{WEBS} & 4-11 = -29/505, \ 3-11 = -159/88, \ 3-13 = -765/0, \\ 3-12 = 0/157, \ 5-11 = -177/92, \ 5-10 = -119/47, \\ 0.12 = 0/157, \ 5-11 = -177/92, \ 5-10 = -119/47, \\ 0.12 = 0/157, \ 5-11 = -177/92, \ 5-10 = -119/47, \\ 0.12 = 0/157, \ 5-11 = -177/92, \ 5-10 = -109/47, \\ 0.12 = 0/157, \ 5-11 = -177/92, \ 5-10 = -109/47, \\ 0.12 = 0/157, \ 5-11 = -177/92, \ 5-10 = -109/47, \\ 0.12 = 0/157, \ 5-11 = -177/92, \ 5-10 = -109/47, \\ 0.12 = 0/157, \ 5-11 = -177/92, \ 5-10 = -109/47, \\ 0.12 = 0/157, \ 5-11 = -177/92, \ 5-10 = -109/47, \\ 0.12 = 0/157, \ 5-11 = -177/92, \ 5-10 = -109/47, \\ 0.12 = 0/157, \ 5-11 = -177/92, \ 5-10 = -109/47, \\ 0.12 = 0/157, \ 5-11 = -177/92, \ 5-10 = -109/47, \\ 0.12 = 0/157, \ 5-11 = -177/92, \ 5-10 = -109/47, \\ 0.12 = 0/157, \ 5-11 = -177/92, \ 5-10 = -109/47, \\ 0.12 = 0/157, \ 5-11 = -177/92, \ 5-10 = -109/47, \\ 0.12 = 0/157, \ 5-11 = -177/92, \ 5-10 = -119/47, \\ 0.12 = 0/157, \ 5-11 = -177/92, \ 5-10 = -119/47, \\ 0.12 = 0/157, \ 5-11 = -177/92, \ 5-10 = -119/47, \\ 0.12 = 0/157, \ 5-11 = -177/92, \ 5-10 = -119/47, \\ 0.12 = 0/157, \ 5-11 = -177/92, \ 5-10 = -119/47, \\ 0.12 = 0/157, \ 5-11 = -177/92, \ 5-10 = -119/47, \\ 0.12 = 0/157, \ 5-11 = -177/92, \ 5-10 = -119/47, \\ 0.12 = 0/157, \ 5-11 = -177/92, \ 5-10 = -119/47, \\ 0.12 = 0/157, \ 5-10 = -119/47, \\ 0.12 = 0/157, \ 5-10 = -10/47, \\ 0.12 = 0/157, \ 5-10 = -10/47, \\ 0.12 = 0/157, \ 5-10 = -10/47, \\ 0.12 = 0/157, \ 5-10 = -10/47, \\ 0.12 = 0/157, \ 5-10 = -10/47, \\ 0.12 = 0/157, \ 5-10 = -10/47, \\ 0.12 = 0/157, \ 5-10 = -10/47, \\ 0.12 = 0/157, \ 5-10 = -10/47, \\ 0.12 = 0/157, \ 5-10,$					JAD CASE(S)	Standard						A.M.	JULIUS		
	TEQ	0.0000,000	00,000, 2 10 100, 10									3	1 X	N 18 1 18 1	
1)	Unbalance this design	ed roof live loads have	e been considered for									*	No 34	869	
2)	Wind: ASC Vasd=101 B=45ft; L= MWFRS (i 3-1-12, Int 12-4-0, Int and right e C for mem shown; Lu	CE 7-16; Vult=130mpi mph; TCDL=6.0psf; E :24ft; eave=4ft; Cat. II directional) and C-C E erior (1) 3-1-12 to 9-4 erior (1) 12-4-0 to 18- exposed ; end vertical bers and forces & M mber DOL=1.60 plate	h (3-second gust) 3CDL=6.0psf; h=15ft; ; Exp B; Enclosed; Exterior(2E) 0-1-12 to I-0, Exterior(2R) 9-4-C -6-4 zone; cantilever I left and right expose WFRS for reactions a grip DOL=1.60) to eft d;C-								PRO		P.A.C.	

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

December 14,2023

Job	Truss	Truss Type	Qty	Ply	
1023-067	K03	Scissor	1	1	T32352976 Job Reference (optional)

Run; 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:34 ID:TefpEwvhe4kPETg3vPr0qoyOHQV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:64.3

2

Plate Offsets (X, Y): [11:0-2-12,0-3-8]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES FBC2020)/TPI2014	CSI TC BC WB Matrix-AS	0.20 0.13 0.13	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.04 0.03	(loc) 11-12 11-12 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 133 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x6 SP No.2 2x4 SP No.2 Structural wood shea except end verticals. Rigid ceiling directly (size) 8=0-3-0, 1 Max Horiz 13=-183 (I Max Grav 8=763 (LC	athing directly applied applied. 3= Mechanical _C 10) ; 1), 13=707 (LC 1)	4) 5) 4, 6) 7) 8) 9)	This truss has chord live loa * This truss h on the bottom 3-06-00 tall b chord and an Bearings are Refer to girde Bearing at joi using ANSI/T designer shou This truss des	s been designed for d nonconcurrent wi as been designed f n chord in all areas y 2-00-00 wide will y other members. assumed to be: , du er(s) for truss to trus nt(s) 8 considers pa PI 1 angle to grain uld verify capacity of sign requires that a	r a 10.0 th any or a liv where fit betw bint 8 S ss conr arallel t formula of beari minim) psf bottom other live loa e load of 20.0 a rectangle even the botto SP No.2 . lections. o grain value a. Building ng surface. um of 7/16"	ds.)psf om					
FORCES	(lb) - Maximum Com Tension 1-2=-956/55, 2-3=-74 4-5=-846/57, 5-6=-55 6-7=-42/0	pression/Maximum 40/91, 3-4=-739/99, 5/2, 1-13=-678/50,	LO	structural woo chord and 1/2 the bottom ch AD CASE(S)	od sheathing be ap " gypsum sheetroo ord. Standard	plied di k be ap	rectly to the t oplied directly	op ⁄ to					
BOT CHORD WEBS	12-13=-151/256, 11- 10-11=-4/627, 9-10= 7-8=-9/60 3-11=-36/574, 4-11= 1-12=0/563, 4-10=-1 5-8=-697/89, 5-9=0/5	12=-21/760, 0/573, 8-9=-19/69, -169/92, 2-11=-237/9 32/48, 2-12=-49/90, 553	91,									JULIUS	
NOTES 1) Unbalance this design 2) Wind: ASC Vasd=101 B=45ft; L=: MWFRS (c 3-1-12, Inte 12-4-0, Inte and right e C for memi shown; Lur	d roof live loads have E 7-16; Vult=130mph mph; TCDL=6.0psf; BC 24ft; eave=4ft; Cat. II; lirectional) and C-C Ex erior (1) 3-1-12 to 9-4- erior (1) 3-1-12 to 9-4- erior (1) 12-4-0 to 18-6 exposed ; end vertical le bers and forces & MW mber DOL=1.60 plate s	been considered for (3-second gust) CDL=6.0psf; h=15ft; Exp B; Enclosed; tterior(2E) 0-1-12 to 0, Exterior(2R) 9-4-0 -4 zone; cantilever le eft and right exposed FRS for reactions grip DOL=1.60	to ft ;C-								* PROVINI		DALL HUNN

Building Designer / Project engineer responsible for 3) verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

December 14,2023

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

Julius Lee PE No. 34869

Date:

Job	Truss	Truss Type	Qty	Ply		050077
1023-067	K04	Piggyback Base Girder	1	2	Job Reference (optional)	352977

Run: 8.73 S Nov 13 2023 Print: 8.73 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:35

Plate Offsets (late Offsets (X, Y): [1:Edge,0-0-5], [5:0-2-8,0-3-0], [9:0-3-4,0-2-0], [11:0-3-4,0-2-0], [13:0-2-12,Edge], [19:0-2-12,0-3-8], [28:0-4-8,0-2-0], [32:0-2-12,0-1-4]														
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 NO FBC20)20/TPI2014	CSI TC BC WB Matrix-MS	0.30 0.33 0.41	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.11 -0.15 0.03	(loc 25-2) 25-2 1)) l/defl 5 >999 5 >999 5 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 529 lb	GRIP 244/190 FT = 20%		
LUMBER TOP CHORD BOT CHORD WEBS OTHERS WEDGE BRACING TOP CHORD	2x4 SP No.2 2x6 SP No.2 2x4 SP No.2 2x4 SP No.2 Left: 2x4 SP No.2 Structural wood shea 6-0-0 oc purlins, exc	athing directly applie	V ed or nd	VEBS	5-25=-123/104, 31-32=-827/132 28-29=-680/363 13-30=-743/307 20-28=-72/104, 12-30=-303/77, 9-31=-66/548, 8 6-24=-120/55, 4 3-27=-273/126, 20-32=-46/464,	22-32=-89! 4, 28-31=-{ 7, 29-30=-69 10-28=-10 11-29=-58/ 14-18=-228 -32=-107/1 -26=-172/1 21-32=-17' 13-19=-12	5/1726, 5/1726, 360/970, 32/190, 07/447, '516, 3/50, 04, 7-23=-259 04, 1/95, 7/650,	9/85,	6) 1 o s o 7) B v re 8) P 9) A 10) G	russ designly. For si ee Standa r consult q uilding De erifying ap equiremen rovide ade Il plates an able studs	gned fo tuds ex rd Indu jualified signer plied ro space equate re 1.5x s space	br wind loads in the posed to wind (n stry Gable End E d building designe / Project enginee pof live load show sific to the use of drainage to preve 4 MT20 unless ot ed at 2-0-0 oc.	the plane of the truss ormal to the face), betails as applicable, er as per ANSI/TPI 1. r responsible for <i>r</i> covers rain loading this truss component. ent water ponding. herwise indicated.		
BOT CHORD	2-0-0 oc purlins (6-0- Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 16-	-0 max.): 9-11. applied or 10-0-0 oc -17	c 1	19-28=-159/965, 14-19=-139/140, 15-18=0/1130 NOTES					 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 12) * This truss has been designed for a live load of 20.0psf 						
JOINTS REACTIONS	1 Brace at Jt(s): 17, 28, 29, 31, 32 (size) 1=0-3-0, 1 Max Horiz 1=224 (LC	6=0-3-0	1) 2-ply truss t (0.131"x3") Top chords oc.	to be connected t nails as follows: connected as fol	ogether wi	th 10d 1 row at 0-9-	0	0 3 c 13) A	n the botto -06-00 tall nord and a Il bearings	om cho by 2-0 any oth s are as	rd in all areas wh 0-00 wide will fit l er members. ssumed to be SP	ere a rectangle between the bottom No.2 .		
FORCES	Max Honz 1=224 (LC Max Uplift 1=-50 (LC Max Grav 1=1432 (L (Ib) - Maximum Com	8) .C 14), 16=1165 (LC pression/Maximum	2 14)	Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc.											
TOP CHORD	 Tension 1-3=-1552/0, 3-4=-1608/0, 4-6=-1589/44, 6-7=-1526/90, 7-8=-1589/160, 8-9=-1526/202, 9-10=-1190/172, 10-11=-1190/172, 13-14=-1617/40, 14-15=-1641/11, 15-17=-1133/11. 			 All loads are considered equally applied to all piles, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. N/A 											
BOT CHORD	11-12=-1529/199, 12 1-27=0/1338, 26-27= 24-25=0/1256, 23-24 21-22=-332/834, 20- 19-20=-59/883, 18-1 16-17=-351/0	2-13=-1376/157 =0/1257, 25-26=0/12 =0/1256, 22-23=0/1 21=-352/878, 9=0/1261, 16-18=-1	257, 1256, ₅ /88,	 Unbalanced this design. Wind: ASCI Vasd=101n B=45ft; L=2 MWFRS (d end vertical plate grip D 	d roof live loads h E 7-16; Vult=130 nph; TCDL=6.0ps 28ft; eave=4ft; Ca irectional); cantile I left and right exp 0DL=1.60	nave been o mph (3-sec sf; BCDL=6 t. II; Exp B ever left and bosed; Lum	considered for ond gust) .0psf; h=15ft; ; Enclosed; d right expose iber DOL=1.6	- ed ; 0							

December 14,2023

Page: 1

	Job	Truss	Truss Type	Qty Ply					
	1023-067	K04	Piggyback Base Girder 1		2	Job Reference (optional)	T32352977		
Mayo Truss Company, Inc., Mayo, FL - 32066,			Run: 8.73 S Nov 13 2	Run: 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries. Inc. Wed Dec 13 08:11:35					

ID:8gk25MEtf96p_34v5wd_dhyOHAa-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Mayo Truss Company, Inc., Mayo, FL - 32066,

- 14) Bearing at joint(s) 16 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 15) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 1.
- 16) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 50 lb uplift at joint
- 17) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 18) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 19) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 53 lb down and 40 lb up at 1-2-6 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

- Dead + Roof Live (balanced): Lumber Increase=1.25, 1) Plate Increase=1.25
 - Uniform Loads (lb/ft) Vert: 1-9=-60, 9-11=-60, 12-15=-60, 1-21=-20, 19-21=-20, 16-19=-20, 11-12=-60

Concentrated Loads (lb)

Vert: 25=39 (F), 33=59 (F), 34=39 (F), 37=-46 (F), 39=39 (F), 41=-171 (F), 42=39 (F)

Job	Truss	Truss Type	Qty	Ply	
1023-067	K05	Piggyback Base	2	1	T32352978 Job Reference (optional)

Run: 8 73 S. Nov 13 2023 Print: 8 730 S. Nov 13 2023 MiTek Industries. Inc. Wed Dec 13 08:11:35 ID:2_s_Ke29MGnTDZIQF?4NSqyOHRc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:79.2

Plate Offsets (X, Y): [4:0-6-4,0-2-0], [5:0-2-0,0-1-13], [16:0-6-0,0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	тс	0.26	Vert(LL)	-0.04	13	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.25	BC	0.33	Vert(CT)	-0.08	13	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.61	Horz(CT)	0.05	11	n/a	n/a		
BCDL	10.0	Code	FBC2020/TPI2014	Matrix-AS							Weight: 245 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 *Except* 13-10:2x6 SP No.2 2x4 SP No.2 2x4 SP No.2			7-16; Vult=130 bh; TCDL=6.0ps ft; eave=4ft; Ca ectional) and C- or (1) 3-1-12 to erior (1) 16-0-1	mph (3-sec sf; BCDL=6 t. II; Exp B; C Exterior(11-9-2, Ex to 16-6-13	ond gust) .0psf; h=15ft Enclosed; 2E) 0-1-12 to terior(2R) 11- Exterior(2R)	; -9-2					

TOF CHORD	Siluciulal wood sheathing difectly applied,
	except end verticals, and 2-0-0 oc purlins
	(6-0-0 max.): 4-5.
BOT CHORD	Rigid ceiling directly applied.
WEBS	1 Row at midpt 3-16, 3-15
REACTIONS	(size) 11=0-3-0, 18=0-3-0
	Max Horiz 18=-226 (LC 10)
	Max Grav 11=1149 (LC 1), 18=1094 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=-1269/46, 2-3=-1070/121, 3-4=-960/178,
	4-5=-790/119, 5-6=-1064/138, 6-7=-1371/91,
	7-8=-1401/42, 8-9=-89/0, 1-18=-1041/37,
	9-10=-71/0
BOT CHORD	17-18=-164/306, 16-17=-10/949,
	15-16=0/787, 14-15=0/759, 13-14=0/1000,
	12-13=0/1050, 11-12=-21/84, 10-11=-8/88
WEBS	2-17=-32/122, 2-16=-279/83, 3-16=-50/91,
	3-15=-246/141, 4-15=-112/320, 4-14=0/241,
	5-14=-36/441, 6-14=-592/62, 6-13=0/543,
	1-17=0/776, 8-11=-1051/89, 7-12=-228/45,
	7-13=-102/77, 8-12=0/945

NOTES

Unbalanced roof live loads have been considered for 1) this design.

- 16-6-13 to 20-9-11, Interior (1) 20-9-11 to 28-2-3 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for 3) verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component. 4) Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom 5)
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 6)
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 7) Bearings are assumed to be: Joint 18 SP No.2 , Joint 11 SP No.2
- 8) Bearing at joint(s) 11 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- This truss design requires that a minimum of 7/16" 9) structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

December 14,2023

Page: 1

👠 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only using the mathematical network of the intervention of the in

Job	Truss	Truss Type	Qty	Ply		
1023-067	M01	Common Supported Gable	1	1	Job Reference (optional)	132352979

Run: 8 73 S. Nov 13 2023 Print: 8 730 S. Nov 13 2023 MiTek Industries. Inc. Wed Dec 13 08:11:36 ID:s?P3cVjP?zbIVRkfdbXstyyPEul-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-1-6-0	1-6-7	4-0-8	6-6-9	8-1-0	9-7-0
1-6-0	1-6-7	2-6-1	2-6-1	1-6-7	1-6-0

8-1-0

Scale = 1:33.9	
Plate Offsets (X, Y):	[3:0-2-11,0-2-4], [5:0-2-11,0-2-4

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.25	ТС	0.22	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL	10.0	Lumber DOL	1.25	BC	0.03	Vert(CT)	n/a	-	n/a	999			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.03	Horz(CT)	0.00	8	n/a	n/a			
BCDL	10.0	Code	FBC2020/TPI2014	Matrix-AS							Weight: 53 lb	FT = 20%	
LUMBER TOP CHORD	3) Truss designed for wind loads in the plane of the truss NRD 2x4 SP No.2 only. For studs exposed to wind (normal to the face),												

TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
WERS	2x4 OF N	0.2
OTHERS	2x4 SP N	0.2
BRACING		
TOP CHORD	Structura	wood sheathing directly applied.
	except er	id verticals.
BOT CHORD	Rigid ceil	ing directly applied.
REACTIONS	(size)	8=8-1-0, 9=8-1-0, 10=8-1-0,
		11=8-1-0, 12=8-1-0
	Max Horiz	12=107 (LC 11)
	Max Uplift	8=-78 (LC 12), 9=-19 (LC 8),
		11=-22 (LC 9), 12=-78 (LC 12)
	Max Grav	8=196 (LC 24), 9=160 (LC 18),
		10=172 (LC 1), 11=166 (LC 17),
		12=196 (LC 23)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	2-12=-178	8/226, 1-2=0/58, 2-3=-66/93,
	3-4=-75/1	62, 4-5=-75/162, 5-6=-55/93,
	6-7=0/58,	6-8=-178/226
BOT CHORD	11-12=-50	0/71, 10-11=-50/71, 9-10=-50/71,
	8-9=-50/7	'1
WEBS	4-10=-132	2/0, 3-11=-128/104, 5-9=-128/104
NOTES		
 I labolation at 		and the second second second states of the second

- Unbalanced roof live loads have been considered for 1) this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) -1-6-0 to 1-6-0, Exterior(2N) 1-6-0 to 4-0-8, Corner(3R) 4-0-8 to 7-0-8, Exterior(2N) 7-0-8 to 9-7-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Building Designer / Project engineer responsible for
- verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component. 5) Gable requires continuous bottom chord bearing.
- Truss to be fully sheathed from one face or securely 6)
- braced against lateral movement (i.e. diagonal web). Gable studs spaced at 2-0-0 oc. 7)
- 8)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf
- 9) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) All bearings are assumed to be SP No.2 .
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 78 lb uplift at joint 12, 78 lb uplift at joint 8, 22 lb uplift at joint 11 and 19 lb uplift at joint 9.
- 12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

December 14,2023

Page: 1

👠 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only using the mathematical network of the intervention of the in

Job	Truss	Truss Type	Qty	Ply	
1023-067	M02	Common	2	1	Job Reference (optional)

Run; 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:37 ID:O4N6zzvREucUQuykZypcWKyPEuV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:35.5

			_			_							
oading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	20.0	Plate Grip DOL	1.25		тс	0.21	Vert(LL)	-0.01	6-7	>999	240	MT20	244/190
FCDL	10.0	Lumber DOL	1.25		BC	0.15	Vert(CT)	-0.01	6-7	>999	180		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.03	Horz(CT)	0.00	6	n/a	n/a		
BCDL	10.0	Code	FBC202	0/TPI2014	Matrix-AS							Weight: 53 lb	FT = 20%
	6) All bearings are assumed to be SP No.2.												
	2x4 SP No.2		7)	Provide mec	hanical connection	on (by oth standing 4	ers) of truss	t0 ioint					
VEBS	2x4 SP No.2 8 and 40 lb			8 and 40 lb t	40 lb uplift at joint 6.								
BRACING	8) This truss d				design requires that a minimum of 7/16"								
TOP CHORD	D Structural wood sheathing directly applied, structural wood and				I wood sheathing be applied directly to the top								

except end verticals. BOT CHORD Rigid ceiling directly applied. **REACTIONS** (size) 6=0-5-8, 8=0-5-8 Max Horiz 8=119 (LC 11)

	Max Uplift	6=-40 (LC 12), 8=-40 (LC 12)
	Max Grav	6=410 (LC 1), 8=410 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=0/63,	2-3=-261/88, 3-4=-261/88,
	4-5=0/63,	2-8=-380/175, 4-6=-380/175
BOT CHORD	7-8=-116/	109, 6-7=-15/16
	27 0/12	0 7 0/405 4 7 0/405

WEBS 3-7=0/134, 2-7=0/165, 4-7=0/165 NOTES

1) Unbalanced roof live loads have been considered for this design

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior (1) 1-6-0 to 4-0-8, Exterior(2R) 4-0-8 to 7-0-8, Interior (1) 7-0-8 to 9-7-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component. This truss has been designed for a 10.0 psf bottom 4)
- chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

December 14,2023

👠 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only using the mathematical network of the intervention of the in

Job	Truss	Truss Type	Qty	Ply	
1023-067	PB01	Piggyback	1	1	Job Reference (optional)

3-5-12

3-5-12

3-7-8

3-7-8

Mayo Truss Company, Inc., Mayo, FL - 32066,

Run; 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:37 ID:Q4FYEdL1ZHp6qShCyNUj?8yPFUg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

11-5-11 7-0-11 10-6-6 0-11-5 3-6-15 3-5-12 2-11-15 4x4 = 4 17

10-6-6

3-7-8

-0-11-5

0-11-5

6-10-15

3-3-7

Scale = 1:30.4

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES FBC202	20/TPI2014	CSI TC BC WB Matrix-AS	0.10 0.09 0.02	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 13	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 40 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N Structura Rigid ceil (size) Max Horiz Max Uplift Max Grav	0.2 lo.2 lo.2 lo.2 2=10-6-6, 8=10-6-6, 2=34 (LC 2=-23 (LC 2=-23 (LC 2=-177 (LC (LC 24), 8 1), 13=17	athing directly applied applied. 5=10-6-6, 7=10-6-6, 9=10-6-6, 13=10-6-6 11), 9=34 (LC 11) 12), 5=-23 (LC 12), 12), 13=-23 (LC 12), 21), 5=177 (LC 1), 7= =294 (LC 23), 9=177 7 (LC 1)	4) 5) 7) 8) 9) 294 1(LC 11	Building Des verifying app requirements Provide adec Gable requir Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar) Provide mec bearing plate 2 23 b unifit	igner / Project eng lied roof live load s s specific to the use quate drainage to p es continuous bott spaced at 4-0-0 oc is been designed f ad nonconcurrent v has been designed in chord in all areas by 2-00-00 wide wi by other members. are assumed to be hanical connection e capable of withst at inits 2 32 h ur	ineer re shown c e of this prevent to om chor om chor or a 10.0 vith any for a liv s where I fit betw SP No. (by oth anding 2	sponsible for overs rain loa truss compor water ponding d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the botto 2. ers) of truss t i3 lb uplift at j t 2 and 23 lb	ding ient. j. ds. opsf om opint					
FORCES	(lb) - Max Tension	kimum Com	pression/Maximum	12	uplift at joint	5. 5.	a minim	um of 7/16"	,					
TOP CHORD BOT CHORD WEBS	1-2=0/17 4-5=-65/5 2-8=-2/43 3-8=-206	, 2-3=-65/5 50, 5-6=0/1 3, 7-8=-1/29 /94, 4-7=-2	1, 3-4=-36/61, 7 9, 5-7=-2/40 06/94	13	structural wo chord and 1/ the bottom c	od sheathing be a 2" gypsum sheetro hord. d Industry Piggyba	pplied d ock be a	irectly to the t pplied directly	op ' to				IN LIUS	

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-3-15 to 3-3-15, Interior (1) 3-3-15 to 4-5-1, Exterior(2E) 4-5-1 to 12-1-2 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

13) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

December 14,2023

Job	Truss	Truss Type	Qty	Ply	
1023-067	PB02	Piggyback	16	1	T32352982 Job Reference (optional)

Run; 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:38 ID:7?sKK2TICL4i1?S7XUg3PFyPFUW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

10-6-6

Scale = 1:30

Loading TCLL (roof) TCDL BCLL	(psf) 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.25 1.25 YES	CSI TC BC WB	0.25 0.26 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 11	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	Code	FBC2020/TPI2014	Matrix-AS							Weight: 40 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she Rigid ceiling directly (size) 2=10-6-6, 7=10-6-6, Max Horiz 2=-49 (LC Max Uplift 2=-27 (LC 7=-27 (LC 7=-27 (LC 2=249 (LC (LC 1), 7= 1)	eathing directly applied y applied. , 4=10-6-6, 6=10-6-6 11=10-6-6 2 10), 7=-49 (LC 10) 2 12), 4=-27 (LC 12), 2 12), 11=-27 (LC 12), C 1), 4=249 (LC 1), 6 =249 (LC 1), 11=249	 4) Building Desverifying apprequirement: 5) Gable requir 6) Gable studs 7) This truss ha chord live load 8) * This truss live load 8) * This truss live load 8) * This truss live load 9) All bearings 10) Provide means 11) Provide means 12) Provide means 13) Provide means 141 141<td>igner / Project er ligder cof live load s specific to the u es continuous bo spaced at 4-0-0 so been designed ad nonconcurren has been designed n chord in all are by 2-00-00 wide hanical connective e capable of withs t at joint 4, 27 lb i 4.</td><td>ngineer re d shown c isse of this stom chor oc. d for a 10.1 t with any ed for a liv as where will fit betv s. De SP No. on (by oth standing 2 uplift at joi</td><td>sponsible for overs rain loa truss compo d bearing. 0 psf bottom other live loa e load of 20. a rectangle veen the bott 2. ers) of truss 27 lb uplift at nt 2 and 27 l</td><td>ading nent. ads. Opsf com to joint b</td><td></td><td></td><td></td><td></td><td></td>	igner / Project er ligder cof live load s specific to the u es continuous bo spaced at 4-0-0 so been designed ad nonconcurren has been designed n chord in all are by 2-00-00 wide hanical connective e capable of withs t at joint 4, 27 lb i 4.	ngineer re d shown c isse of this stom chor oc. d for a 10.1 t with any ed for a liv as where will fit betv s. De SP No. on (by oth standing 2 uplift at joi	sponsible for overs rain loa truss compo d bearing. 0 psf bottom other live loa e load of 20. a rectangle veen the bott 2. ers) of truss 27 lb uplift at nt 2 and 27 l	ading nent. ads. Opsf com to joint b					
TOP CHORD	(ib) - Maximum Con Tension 1-2=0/17, 2-3=-134/	/92, 3-4=-134/89,	11) This truss de structural wo chord and 1/	esign requires that ood sheathing be '2" gypsum sheet	at a minim applied d trock be a	um of 7/16" irectly to the pplied directly	top y to					
BOT CHORD	4-5=0/17 2-6=-18/85 4-6=-16	/85	the bottom c	hord.	I. T						annun.	1111.
WEBS	3-6=-245/102		12) See Standar Detail for Co	a industry Piggyi	truss as a	s Connectior	1 r				ILIUS	LE
NOTES			consult quali	fied building desi	igner.					1	JOEA	1. S. M.
1) Unbalance	ed roof live loads have	been considered for	LOAD CASE(S)	Standard	0					5	. UCEN	SE
this design 2) Wind: ASC Vasd=1011 B=45ft; L= MWFRS (c 3-3-15, Int 9-2-8, Inte and right e C for mem shown; Lu	n. CE 7-16; Vult=130mph mph; TCDL=6.0psf; B 24ft; eave=4ft; Cat. II; directional) and C-C E erior (1) 3-3-15 to 6-2- rior (1) 9-2-8 to 12-1-2 exposed ; end vertical bers and forces & MW mber DOL=1.60 plate	(3-second gust) CDL=6.0psf; h=15ft; Exp B; Enclosed; xterior(2E) 0-3-15 to -8, Exterior(2R) 6-2-8 2 zone; cantilever left left and right expose VFRS for reactions grip DOL=1.60	8 to d;C-						A STATE OF ST	* PROVINI		B69

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

December 14,2023

ONAL 40000

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

Date:

Julius Lee PE No. 34869

Job	Truss	Truss Type	Qty	Ply	
1023-067	PB03	Piggyback	1	1	Job Reference (optional)

2-7-9

0-7-4

Mayo Truss Company, Inc., Mayo, FL - 32066,

Run; 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:38 ID:8A4ItY6cB8CPLusGV26zwxyPFSO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-3-2

5-10-7

Scale = 1:27.6

Loading		(psf)	Spacing	2-0-0)		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.25			TC	0.11	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL		10.0	Lumber DOL	1.25			BC	0.10	Vert(TL)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES			WB	0.02	Horiz(TL)	0.00	5	n/a	n/a		
BCDL		10.0	Code	FBC	2020)/TPI2014	Matrix-AS							Weight: 23 lb	FT = 20%
LUMBER					4)	Building Des	signer / Project e	enaineer re	sponsible for						
TOP CHORD	2x4 SP N	0.2			.,	verifving app	blied roof live loa	ad shown c	overs rain loa	dina					
BOT CHORD	2x4 SP N	0.2				requirement	s specific to the	use of this	truss compoi	nent.					
OTHERS	2x4 SP N	0.2			5)	Gable requir	es continuous t	oottom chor	d bearing.						
BRACING					6)	Gable studs	spaced at 2-0-0) oc.	-						
TOP CHORD	Structura	l wood she	athing directly applie	ed	7)	This truss ha	as been designe	ed for a 10.0) psf bottom						
BOT CHORD	Rigid ceil	ing directly	applied	ou.		chord live lo	ad nonconcurre	nt with any	other live loa	ds.					
REACTIONS	(size)	1_6_1_8	2-6-1-8 1-6-1-8 5-	-6-1-8	8)	* This truss	has been desigi	ned for a liv	e load of 20.0	Opsf					
REACTIONS	(3126)	6-6-1-8	2-6-1-8, 4-0-1-0, 3- 7-6-1-8, 13-6-1-8	-0-1-0,		on the botto	m chord in all a	reas where	a rectangle						
		0-0 1 0,	-0 1 0, 10-0 1 0			3-06-00 tall	by 2-00-00 wide	e will fit betw	veen the botte	om					
	Max Horiz	1=50 (I C	11)			chord and a	ny other membe	ers.							
	Max Uplift	1=-139 (1	C(17) = 26(1C9)		9)	All bearings	are assumed to	be SP No.	2.						
	max opint	7=-26 (L0	2 9)	,	10)	Provide med	chanical connec	tion (by oth	ers) of truss t	0					
	Max Grav	1=37 (LC	9), 2=260 (LC 17), 4	4=3		bearing plate	e capable of wit	hstanding 2	6 lb uplift at j	oint					
		(LC 18).	5=88 (LC 1), 6=284 ((LC		2, 139 lb up	ift at joint 1 and	26 lb uplift	at joint 2.						
		1). 7=260	(LC 17), 13=3 (LC 1	18)	11)	This truss de	esign requires the	nat a minim	um of 7/16"						
FORCES	(lb) - Max	imum Con	pression/Maximum	-,		structural wo	bod sneatning b	e applied d	irectly to the i	op					
	Tension		.procolor, maximum			the bettern of	2 gypsum sne	etrock be a	pplied directly	/ 10					
TOP CHORD	1-2=-77/1	36. 2-3=-7	0/72.3-4=-29/88.		12)		noru. rd Inductry Diag	vback Truc	Connection						
	4-5=-54/2	24	,,		12)	Detail for Co	numertion to bas	yuaun 1105	s connection					minin	11111
BOT CHORD	2-6=-69/8	32, 4-6=-69	/82			consult qual	ified building de	eianor	applicable, 01					IN JUS	LEMA
WEBS	3-6=-180	/73						Signer.							E 11.

NOTES

1) Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; 2) B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. LOAD CASE(S) Standard

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

December 14,2023

Job	Truss	Truss Type	Qty	Ply	
1023-067	PB04	Piggyback	16	1	Job Reference (optional)

Run: 8,73 S Nov 13 2023 Print: 8,730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:39 ID: viZmZHCdlbDGI7TozjFrFdyPFSG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff

Page: 1

Scale = 1:28.8

Plate Offsets (X, Y): [2:0-2-1,0-1-0], [4:0-2-1,0-1-0]

oading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
CLL (roof)	20.0	Plate Grip DOL	1.25		TC	0.10	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
FCDL	10.0	Lumber DOL	1.25		BC	0.11	Vert(CT)	n/a	-	n/a	999			
BCLL	0.0*	Rep Stress Incr	YES		WB	0.01	Horz(CT)	0.00	4	n/a	n/a			
BCDL	10.0	Code	FBC20	20/TPI2014	Matrix-AS							Weight: 27 lb	FT = 20%	
			1		ignor / Project one	ainoor ro	sponsible for							
	2v4 SD No 2		-	verifying and	lied roof live load	shown c	overs rain loa	ndina						
	2x4 SF N0.2			requirement	s specific to the us	e of this	truss compor	nent						
	2x4 SF N0.2 2x4 SP No.2		5) Gable requir	es continuous bott	tom chor	d bearing.	iont.						
	274 01 110.2		6) Gable studs	spaced at 4-0-0 o	C.	5							
	Structural wood she	athing directly applied	н 7) This truss ha	Is been designed f	for a 10.0) psf bottom							
SOT CHORD	Rigid ceiling directly	annlied	u.	chord live loa	ad nonconcurrent	with any	other live loa	ds.						
REACTIONS	(size) 2-6-1-8 4	4-6-1-8 6-6-1-8 7-6	3-1-8 8) * This truss h	nas been designed	d for a liv	e load of 20.0	Opsf						
LACHONO	(3)20) 2=010, -	-0 1 0, 0=0 1 0, 7=0	510,	on the bottor	n chord in all area	s where	a rectangle							
	Max Horiz 2=-57 (LC	2 10), 7=-57 (LC 10)		3-06-00 tall t	by 2-00-00 wide wi	ill fit betv	veen the botto	om						
	Max Uplift 2=-24 (LC	(LC 12), 4=-24 (LC 12),	0	chord and ar	ly other members.		•							
	7=-24 (LC	C 12), 11=-24 (LC 12)	9) All bearings :	are assumed to be	e SP NO. n (by oth	∠. oro) of truco t	~						
	Max Grav 2=174 (LC	C 1), 4=174 (LC 1), 6=	=191 '	bearing plate	canable of withst	tanding 2	4 lb unlift at i	oint						
	(LC 1), 7=	=174 (LC 1), 11=174 ((LC	2 24 lb unlift	at joint 4 24 lb ur	nlift at ini	nt 2 and 24 lb	טוווג ר						
	1)			uplift at joint	4.	pint at joi		5						
ORCES	(lb) - Maximum Com	pression/Maximum	1	1) This truss de	sign requires that	a minim	um of 7/16"							
	Tension			structural wo	od sheathing be a	applied d	irectly to the t	top						
FOP CHORD	1-2=0/15, 2-3=-118/	88, 3-4=-118/87, 4-5=	=0/15	chord and 1/	2" gypsum sheetro	ock be a	oplied directly	/ to				annun.	1111.	
	0.0.00/50.4.0.40	150		the bottom c	hord.							W UIUS	15.11	
	2-6=-20/58, 4-6=-18	/58	1	2) See Standar	d Industry Piggyba	ack Trus	s Connection					JUL	TEE III	
VEDO	3-0=-71/0			Detail for Co	nnection to base t	russ as a	applicable, or				5	CEN	SA. 1	
NOTES				consult quali	fied building desig	ner.				6	2			
 Unbalance 	ed roof live loads have	been considered for	L	OAD CASE(S)	Standard							No 34	869 🕻 🗧	
	1. CE 7 16: \/ult_120mph	(2 cocond quet)									*			4
Vasd-101	mph: TCDI -6 0psf: B(CDI = 6 Onsf b = 15ft								-	7:	/ +		:
B=45ft ⁻ L =	24ft eave=4ft Cat II	Exp B: Enclosed:									-1-2	to At 7		÷
MWFRS (directional) and C-C E	xterior(2E) 0-2-12 to								-	5		red Muis	
3-2-12, Int	erior (1) 3-2-12 to 3-8-	5, Exterior(2R) 3-8-5	to								-6	uen		
6-5-2, Inte	rior (1) 6-5-2 to 7-1-14	zone; cantilever left									-	· · · /	0 P 70	
and right e	exposed ; end vertical I	left and right exposed	l;C-								(1)	COR.	GA	
C for mem	bers and forces & MW	/FRS for reactions									U	SONIA	ENIN	
shown; Lu	mber DOL=1.60 plate	grip DOL=1.60										THE REAL	in the second se	
	ianed for wind loads in	the plane of the true	20							1	ulius I e	e PE No 34869		
			~ ~								and the second second			

Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

December 14,2023

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

Julius Lee PE No. 34869

Date:

Job	Truss	Truss Type	Qty	Ply	
1023-067	PB05	Piggyback	2	2	Job Reference (optional)

3-0-12

3-0-12

12 10 Г

-0-7-9

0-7-9

Mayo Truss Company, Inc., Mayo, FL - 32066,

Run: 8,73 S Nov 13 2023 Print: 8,730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:39 ID:Y0HJ4OL9THkZIzO6gFTfk9yPFS4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4x4 = 3

6-1-8

3-0-12

6-9-1

0-7-9

2 4 0 5 \sim 6 2x4 = 1.5x4 u 2x4 = 6-1-8

Scale = 1:28.8

Plate Offsets (X, Y): [2:0-2-1,0-1-0], [4:0-2-1,0-1-0]

2-11-7

0-4-13

3-0-15

Loa	ading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
тс	LL (roof)	20.0	Plate Grip DOL	1.25		TC	0.05	Vert(LL)	n/a	-	n/a	999	MT20	244/190
тс	DL	10.0	Lumber DOL	1.25		BC	0.05	Vert(CT)	n/a	-	n/a	999		
BC	LL	0.0*	Rep Stress Incr	YES		WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BC	DL	10.0 Code FBC2020/TPI2014 Matrix-AS											Weight: 54 lb	FT = 20%
LU TO BO OT BR TO BO RE	MBER P CHORD T CHORD HERS ACING P CHORD T CHORD ACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood sh Rigid ceiling directl (size) 2=6-1-8, 11=6-1-6	eathing directly applie y applied. 4=6-1-8, 6=6-1-8, 7= 3	4 ed. :6-1-8,) Wind: ASCE Vasd=101m B=45ft; L=24 MWFRS (dir 3-2-12, Inter 6-5-2, Interic and right ext C for membe shown; Luml	7-16; Vult=130r oh; TCDL=6.0ps lift; eave=4ft; Ca ectional) and C- ior (1) 3-2-12 to or (1) 6-5-2 to 7- bosed ; end verti ers and forces & ber DOL=1.60 p	mph (3-sec f; BCDL=6 t. II; Exp B C Exterior(3-8-5, Exte 1-14 zone; cal left and MWFRS f late grip D	cond gust) .0psf; h=15ft; ; Enclosed; (2E) 0-2-12 to erior(2R) 3-8- cantilever lef d right expose or reactions OL=1.60	5 to t ed;C-					
		Max Horiz 2=-57 (L Max Uplift 2=-24 (L 7=-24 (L Max Grav 2=173 (L (LC 1), 7 1)	C 10), 7=-57 (LC 10) C 12), 4=-24 (LC 12), C 12), 11=-24 (LC 12 C 1), 4=173 (LC 1), 6 =173 (LC 1), 11=173	5)) (LC 6	 Truss desig only. For stu see Standard or consult qu Building Des 	ned for wind loa uds exposed to v d Industry Gable ualified building o igner / Project e	ds in the p vind (norm End Deta designer as ngineer re	lane of the tru al to the face ils as applical s per ANSI/TF sponsible for	uss), ble, Pl 1.					
FO	RCES	(lb) - Maximum Cor	mpression/Maximum		veritying app	lied root live loa	d shown c	overs rain loa	iding Sent					
		Tension		7) Gable requir	es continuous h	ottom chor	d bearing	ioni.					
то	P CHORD	1-2=0/15, 2-3=-118	/89, 3-4=-118/88, 4-5	5=0/15 8) Gable studs	spaced at 4-0-0	00.	a boaring.					milli	IIII.
BO WE	T CHORD	2-6=-23/69, 4-6=-2 3-6=-72/0	1/57	9) This truss ha chord live loa 0) * This truss h	as been designe ad nonconcurrer nas been design	d for a 10.0 nt with any ed for a liv	0 psf bottom other live loa e load of 20.0	ds.)psf				JULIUS	LEE
NO	TES				on the bottor	m chord in all are	eas where	a rectangle				5		
1) 2)	2-ply truss Top chord follows: 2> Bottom ch follows: 2> All loads a except if n CASE(S) provided t unless oth	s to be connected tog s connected with 10d x4 - 1 row at 0-9-0 oc. ords connected with x4 - 1 row at 0-9-0 oc. are considered equally toted as front (F) or bi- section. Ply to ply cor- o distribute only loads herwise indicated.	1 as 1 DAD 1	 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 11) All bearings are assumed to be SP No.2. 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 24 lb uplift at joint 4, 24 lb uplift at joint 4, 24 lb uplift at joint 4. 13) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" avosum sheetrock be applied directly to the top 								10 A.C.N.		
3)	Unbalance this design	ed roof live loads have n.	e been considered for	r 1	the bottom c 4) See Standar	nora. d Industry Piggy	back Trus	s Connection					111111	mm

Unbalanced roof live loads have been considered for 3) this design.

14) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

December 14,2023

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

Julius Lee PE No. 34869

Date:

Job	Truss	Truss Type	Qty	Ply	
1023-067	PB06	Piggyback	1	1	Job Reference (optional)

2-7-9

-0-7-4

Mayo Truss Company, Inc., Mayo, FL - 32066,

Run: 8,73 S Nov 13 2023 Print: 8,730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:40 ID:kPzuyyhjtuFb5GXUJ7zDs3yPFRe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-3-2

5-10-7

Scale = 1:27.6

Loading TCLL (roof) TCDL BCLL	(psf) 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.25 1.25 YES		CSI TC BC WB	0.11 0.05 0.01	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	Code	FBC202	20/TPI2014	Matrix-AS							Weight: 23 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood sh Rigid ceiling direct (size) 1=6-1-8 6=6-1-8 Max Horiz 1=50 (L Max Uplift 1=-147 4=-42 (L 7=-35 (L (LC 18), 1), 7=31 (lb) - Maximum Co	reathing directly applied ly applied. , 2=6-1-8, 4=6-1-8, 5=6 , 7=6-1-8, 10=6-1-8 C 11) (LC 17), 2=-35 (LC 12) .C 12), 5=-117 (LC 18) .C 12), 10=-42 (LC 12) C 9), 2=310 (LC 17), 4 5=31 (LC 12), 6=151 (0 (LC 17), 10=278 (LC mpression/Maximum	4) 5) 6) 7) 3-1-8, 8) 3-1-8, 8) 3-1-8, 8) 7, 10 -278 278 278 278 210 10 11	Building Des verifying app requirements Gable requir Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall h chord and ar All bearing plate 2, 42 lb uplifi at joint 5, 35 I) This truss de structural wo chord and 1/	igner / Project en lied roof live load s specific to the u es continuous bo spaced at 2-0-0 d s been designed ad nonconcurrent nas been designed n chord in all area by 2-00-00 wide w ny other members are assumed to hanical connectic c capable of withs t at joint 4, 147 lb lb uplift at joint 2 usign requires tha nod sheathing be 2" ovosum sheet	rigineer re d shown c isse of this ittom chor oc. 1 for a 10.1 t with any ad for a liv as where will fit betw s. De SP No. Do (by oth standing 3 uplift at ji and 42 lit at a minim applied d rock be a	sponsible for overs rain loz truss compo d bearing. D psf bottom other live loz e load of 20.0 a rectangle veen the bott 2. ers) of truss f 55 lb uplift at j bint 1, 117 lb o uplift at joint um of 7/16" irrectly to the i pobled directly	ading nent. dds. Dpsf om to oint uplift : 4. top					
TOP CHORD	Tension 1-2=-81/141, 2-3=- 4-5=-61/93	83/57, 3-4=-82/60,	12	the bottom c 2) See Standar Detail for Co	hord. d Industry Piggyb nnection to base	back Trus truss as a	s Connection applicable, or					ILIUS	
WEBS NOTES 1) Unbalance	2-6=-36/46, 4-6=-3 3-6=-76/9 ed roof live loads hav	e been considered for	LC	consult quali DAD CASE(S)	fied building desi Standard	gner.						No 34	869
2) Wind AS	∩. ∩E 7 16: \/ult_120mr	b (2 second quet)											

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; 2) B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

December 14,2023

ONAL

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

minim

Julius Lee PE No. 34869

Date:

Job	Truss	Truss Type	Qty	Ply	
1023-067	PB07	Piggyback	1	1	Job Reference (optional)

Run: 9.04 E 8 73 Nov 16 2023 Print: 8 730 E Nov 16 2023 MiTek Industries, Inc. Thu Dec 14 11:57:00 Page: 1 ID:hbgw44KzOAx3yQ4gwlQeWEyPFQp-y3WRTbFV8Tg6r4hvnvSoAjL6zE4snwgGJK895ny9ERX

1-2-3

1-7-9

12 10 Г

Scale = 1:27.5

Plate Offsets (X, Y): [3:0-2-0,Edge]

Loading TCLL (roof) TCDL 3CLL 3CDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES FBC202	20/TPI2014	CSI TC BC WB Matrix-MP	0.04 0.02 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 8 lb	GRIP 244/190 FT = 20%	
LUMBER FOP CHORD 30T CHORD 3RACING FOP CHORD 30T CHORD REACTIONS (lb) -	2x4 SP No.2 2x4 SP No.2 Structural wood shea 3-9-1 oc purlins. Rigid ceiling directly bracing. All bearings 2-5-15. Max Horiz 1=20 (LC Max Uplift All uplift 1 Max Grav All reactio (s) 1, 2, 5,	athing directly applie applied or 10-0-0 or 11) 00 (lb) or less at joir ns 250 (lb) or less a 6	8) ed or 9) c 10 nt(s) 1 L0 t joint	* This truss I on the bottor 3-06-00 tall I chord and an Provide mec bearing plate (s) 1.)) See Standar Detail for Co consult quali DAD CASE(S)	has been designe m chord in all are by 2-00-00 wide 'n hy other member chanical connecti e capable of with d Industry Piggy nection to base fied building des Standard	ed for a live eas where will fit betw rs. on (by othe standing 1 back Truss e truss as a igner.	e load of 20.0 a rectangle veen the botto ers) of truss to 00 lb uplift at s Connection pplicable, or	Dpsf om o joint						
FORCES	(lb) - Max. Comp./Ma (lb) or less except wi	ax. Ten All forces : hen shown.	250											
NOTES I) Unbalance this design 2) Wind: ASC	ed roof live loads have CE 7-16; Vult=130mph	been considered for	r									ILIUS		

- Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

Gable requires continuous bottom chord bearing. 5)

Gable studs spaced at 2-0-0 oc. 6)

This truss has been designed for a 10.0 psf bottom 7) chord live load nonconcurrent with any other live loads.

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - verify design parameters and READ NOTES ON THIS AND INCLOSED INTERNETING TO THE REFERENCE FOR UNITY TO THE INSTANCE OF THE ADDRESS OF THE ADDRESS

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

December 14,2023

Job	Truss	Truss Type	Qty	Ply	
1023-067	PB08	Piggyback	15	1	T32352988 Job Reference (optional)

Run; 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:40 ID:OdTq6yPvvIDEE1XX0QLD5ByPFCW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4

5

Page: 1

2x4 =

2-5-15

Scale = 1:28.9

Plate Offsets (X, Y): [2:0-2-1,0-1-0], [3:0-2-0,Edge], [4:0-2-1,0-1-0]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.25		TC	0.03	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL	10.0	Lumber DOL	1.25		BC	0.04	Vert(CT)	n/a	-	n/a	999			
BCLL	0.0*	Rep Stress Incr	YES		WB	0.00	Horz(CT)	0.00	10	n/a	n/a			
BCDL	10.0	Code	FBC202	0/TPI2014	Matrix-MP							Weight: 11 lb	FT = 20%	
LUMBER			6)	Gable studs	spaced at 4-0-0 c	DC.								
TOP CHORD	2x4 SP No.2		7)	This truss ha	s been designed	for a 10.0) psf bottom							
BOT CHORD	2x4 SP No.2			chord live loa	ad nonconcurrent	with any	other live loa	ds.						
BRACING			8)	* This truss h	nas been designe	d for a liv	e load of 20.0	Opsf						
TOP CHORD	Structural wood she	athing directly applie	ed or	on the bottor	n chord in all area	as where	a rectangle							
	3-9-1 oc purlins.	0 7 11		3-06-00 tall b	oy 2-00-00 wide w	vill fit betw	een the botto	om						
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	0	chord and ar	ny other members	S.	-							
	bracing.		9)	All bearings	are assumed to b	e SP No.	2.							
REACTIONS	(size) 2=2-5-15	, 4=2-5-15, 6=2-5-15	, 10 ,) Provide mec	nanical connectio	on (by othe	ers) of truss t	0						
	10=2-5-1	5		2 6 lb uplift	e capable of withs	lift at join	U ID UPIIIT AL J	oint						
	Max Horiz 2=27 (LC	11), 6=27 (LC 11)		2, 0 ib upint a		nint at joint	1 2 and 0 lb u	pint						
	Max Uplift 2=-10 (LC	C 12), 4=-6 (LC 12),	6=-10 ₁₁) See Standar	d Industry Piagyh	ack Truss								
	(LC 12), 1	10=-6 (LC 12)		Detail for Co	nnection to base	truss as a	policable, or							
	Max Grav 2=124 (L	C 1), 4=130 (LC 1), 6	5=124	consult quali	fied building desig	gner.								
	(LC 1), 10	J=130 (LC 1)	LC	DAD CASE(S)	Standard	•								
FORCES	(lb) - Maximum Con Tension	pression/Maximum												
TOP CHORD	1-2=0/15. 2-3=-66/3	8. 3-4=-66/39. 4-5=0)/15											
BOT CHORD	2-4=0/49	-,,											1111	
NOTES												IL ULIUS	LEFU	
1) Unbalanc	ed roof live loads have	been considered fo	r								Nº.	CEA		
this desig	n		1								3		S.F	
2) Wind: AS	 CE 7-16: Vult=130mph	(3-second aust)									5			
Vasd=101	Imph; TCDL=6.0psf; B	CDL=6.0psf; h=15ft;								-		NO 34	869	2
B=45ft; L=	=24ft; eave=4ft; Cat. II;	Exp B; Enclosed;									*:		· · · · ·	3
MWFRS (directional) and C-C E	xterior(2E) zone;								=		Doa *	AV. M.	
cantilever	left and right exposed	; end vertical left an	d								7:	FALLA H	SUNCE	-
right expo	sed;C-C for members	and forces & MWFR	S								J	USALE	OF 4	-
for reaction	ons shown; Lumber DC	0L=1.60 plate grip									=A		:41	
DOL=1.60) ,										11	A Lon	01.55	
3) Iruss de	signed for wind loads i	n the plane of the tru	ISS									SOUT	On	
Unity. FOr	sidus exposed to wind	d Dotaile as applicat), alo									1, ONA	LEIN	
or concult	and mousify Gable En	aner as ner ANSI/TE	JIE, DI 1									1111	mm	
	quanieu bunung desi	gilei as pei Aivol/Tr								035				

- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- Gable requires continuous bottom chord bearing. 5)

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 December 14,2023

Julius Lee PE No. 34869

Date:

Job	Truss	Truss Type	Qty	Ply	
1023-067	PB8A	Piggyback	1	1	T32352989 Job Reference (optional)

Run; 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:37 ID:GoHB0CE40Rf3ps1HhwW833yOIma-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-0-7-9 3-1-8 1-2-15 2-5-15 1-2-15 1-2-15 0-7-9 0-7-9

10 L

1.5x4 🛚

 1-2-15
 2-5-15

 1-2-15
 1-2-15

Scale = 1:34.5

Plate Offsets (X, Y): [2:0-2-1,0-1-0], [4:0-2-1,0-1-0]

-		1			1		-						
Loading	(psf)	Spacing	3-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25		TC	0.03	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.25		BC	0.03	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.01	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	FBC202	20/TPI2014	Matrix-MP							Weight: 12 lb	FT = 20%
LUMBER			4)	Building Des	igner / Project en	gineer re	sponsible for						
TOP CHORD	2x4 SP No.2			verifying app	lied roof live load	shown c	overs rain loa	ading					
BOT CHORD	2x4 SP No.2			requirements	s specific to the us	se of this	truss compoi	nent.					
WEBS	2x4 SP No.2		5)	Gable require	es continuous bot	ttom chor	d bearing.						
BRACING			6)	Gable studs	spaced at 4-0-0 o	C.							
TOP CHORD	2-0-0 oc purlins		7)	This truss ha	is been designed	for a 10.0) psf bottom						
	(Switched from she	eted: Spacing > 2-0-	0).	chord live loa	ad nonconcurrent	with any	other live loa	ds.					
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	c ^{′8)}	* This truss h	has been designe	d for a liv	e load of 20.0	Opsf					
	bracing.			on the bottor	n chord in all area	as where	a rectangle						
REACTIONS	(size) 2=2-5-15	, 4=2-5-15, 6=2-5-15	5,	3-06-00 tall t	by 2-00-00 wide w	/III fit betv	veen the botto	om					
	7=2-5-15	, 11=2-5-15	0)	All boorings	iy other members		2						
	Max Horiz 2=41 (LC	11), 7=41 (LC 11)	9)	All bearings a	henical connectio	e or NU.	Z. ara) of truca t	~					
	Max Uplift 2=-24 (L0	C 12), 4=-24 (LC 12)	, 10	bearing plate	canable of withe	tanding 2	unlift at i	oint					
	7=-24 (L0	C 12), 11=-24 (LC 12	2)	2 24 lb unlift	at joint 4 24 lb u	nlift at ioi	nt 2 and 24 l	01111 2					
	Max Grav 2=123 (L	C 1), 4=123 (LC 1), 6	6=126	unlift at joint	4 Joint 4, 24 10 u	ipint at joi	ni z anu z4 ii	5					
	(LC 1), 7	=123 (LC 1), 11=123	1) (LC	1) See Standar	n. d Industry Piaavh	ack Trus	s Connection						
	1)			Detail for Co	nnection to base t	truss as a	applicable, or						
FORCES	(lb) - Maximum Con	npression/Maximum		consult quali	fied building desig	aner.							111.
	Tension		12	2) Graphical pu	rlin representation	n does no	ot depict the s	size				ALL HIS	1.111
TOP CHORD	1-2=0/23, 2-3=-52/4	4, 3-4=-49/49, 4-5=0)/23	or the orienta	ation of the purlin	along the	top and/or					ULIOU	LEE
BOT CHORD	2-6=-14/53, 4-6=-14	1/53		bottom chord	i. '	Ũ					1	CEA	10 4
WEBS	3-6=-51/1		L	DAD CASE(S)	Standard						2		E.
NOTES				(-)								No. 24	000
1) Unbalance	ed roof live loads have	been considered fo	r								1.1	34	009
this desig	ın.										*:		// :*=
2) Wind: AS	CE 7-16; Vult=130mpl	n (3-second gust)								-	:		
Vasd=10	1mph; TCDL=6.0psf; B	CDL=6.0psf; h=15ft;								-	D		
B=45ft; L	=24ft; eave=4ft; Cat. II	Exp B; Enclosed;									D	withe	OF
MWFRS	(directional) and C-C E	xterior(2E) zone;									20	· A	:415
cantileve	r left and right exposed	; end vertical left an	a								3	ALLOP.	DIST
right expo	osed;C-C for members	and forces & MWFR	S								11	SI VI	
for reaction	ons snown; Lumber DC	JL=1.60 plate grip										1. W/ONA	FILL

DOL=1.60 Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

December 14,2023

Page: 1

Job	Truss	Truss Type	Qty	Ply	
1023-067	PB09	Piggyback	1	2	Job Reference (optional)

Run: 8 73 S. Nov 13 2023 Print: 8 730 S. Nov 13 2023 MiTek Industries. Inc. Wed Dec 13 08:11:41 ID:W7IIrOZ3rIsOI101Hf3G7xyPFCJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

12 10 Г

2-5-15

2x4 =

Scale = 1:28.9

Plate Offsets (X, Y): [2:0-2-1,0-1-0], [3:0-2-0,Edge], [4:0-2-1,0-1-0]

_oading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
FCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.01	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
FCDL	10.0	Lumber DOL	1.25	BC	0.02	Vert(CT)	n/a	-	n/a	999			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	10	n/a	n/a			
BCDL	10.0	Code	FBC2020/TPI2014	Matrix-MP							Weight: 22 lb	FT = 20%	
-UMBER FOP CHORD BOT CHORD BRACING FOP CHORD	2x4 SP No.2 2x4 SP No.2 Structural wood she	athing directly appli	4) Wind: ASC Vasd=101 B=45ft; L= MWFRS (ed or cantilever	CE 7-16; Vult=130 mph; TCDL=6.0ps 24ft; eave=4ft; Ca directional) and C- left and right expo	mph (3-sec sf; BCDL=6 it. II; Exp B C Exterior(ised ; end v	ond gust) .0psf; h=15ft; ; Enclosed; 2E) zone; rertical left an	; id						

	3-9-1 oc purlins.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.

- **REACTIONS** (size) 2=2-5-15, 4=2-5-15, 6=2-5-15, 10=2-5-15 Max Horiz 2=27 (LC 11), 6=27 (LC 11)
- Max Uplift 2=-10 (LC 12), 4=-6 (LC 12), 6=-10 (LC 12), 10=-6 (LC 12) 2=124 (LC 1), 4=130 (LC 1), 6=124 Max Grav (LC 1), 10=130 (LC 1)
- FORCES (lb) - Maximum Compression/Maximum Tension
- TOP CHORD 1-2=0/15, 2-3=-65/38, 3-4=-66/39, 4-5=0/15 BOT CHORD 2-4=-1/49
- NOTES
- 2-ply truss to be connected together as follows: 1) Top chords connected with 10d (0.131"x3") nails as follows: 2x4 - 1 row at 0-9-0 oc. Bottom chords connected with 10d (0.131"x3") nails as follows: 2x4 - 1 row at 0-9-0 oc.
- All loads are considered equally applied to all plies, 2) except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.

- right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 5) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Building Designer / Project engineer responsible for 6) verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- Gable requires continuous bottom chord bearing. 7)
- Gable studs spaced at 4-0-0 oc. 8)
- This truss has been designed for a 10.0 psf bottom 9)
- chord live load nonconcurrent with any other live loads. 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) All bearings are assumed to be SP No.2.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 10 lb uplift at joint 2, 6 lb uplift at joint 4, 10 lb uplift at joint 2 and 6 lb uplift at joint 4.
- 13) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

December 14,2023

Job	Truss	Truss Type	Qty	Ply	
1023-067	PB10	Piggyback	1	2	Job Reference (optional)

-0-7-4

0-7-4

1-4-1

1-4-1

Mayo Truss Company, Inc., Mayo, FL - 32066,

Run: 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:41 ID:wFUkc20H8fW8EjL8ywEx7kyPFBk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-8-3

1-4-1

3-3-7

0-7-4

Page: 1

Scale = 1:26.1

Loa TCL TCC BCL	ding .L (roof))L .L		(psf) 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.25 1.25 YES		CSI TC BC WB	0.01 0.01 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCD	DL		10.0	Code	FBC20	20/TPI2014	Matrix-MP	0.00		0.00				Weight: 25 lb	FT = 20%
LUN TOF BOT OTF BRA TOF	MBER CHORD CHORD HERS ACING CHORD	2x4 SP N 2x4 SP N 2x4 SP N Structural 4-9-10 oc Rigid ceili bracing	0.2 0.2 0.2 wood shea purlins. ng directly	athing directly applie	4 ed or c 5) Wind: ASCE Vasd=101mp B=45ft; L=24 MWFRS (dirr cantilever lef right expose for reactions DOL=1.60) Truss design	7-16; Vult=130m; 7-16; Vult=130m; h; TCDL=6.0psf; ft; eave=4ft; Cat. I ectional) and C-C t and right expose d;C-C for member shown; Lumber D ned for wind loads	oh (3-seo BCDL=6 II; Exp B Exterior(d; end v s and foi OL=1.60	cond gust) .0psf; h=15ft ; Enclosed; (2E) zone; vertical left ar ces & MWFF) plate grip lane of the tru	; nd RS uss					
REA	ACTIONS	(size) Max Horiz Max Uplift Max Grav	1=3-6-8, 2 6=3-6-8, 7 1=-28 (LC 1=-27 (LC (LC 12), 5 12), 10=-7 1=21 (LC 4=100 (LC (LC 1), 7=	2=3-6-8, 4=3-6-8, 5= 7=3-6-8, 10=3-6-8 : 10) :=-7 (LC 18), 7=-1 (LC (LC 12) 11), 2=120 (LC 17), C 1), 5=4 (LC 12), 6= :120 (LC 17), 10=10	-3-6-8, 6 4=-7 -C 9 =91 0 (LC 1	only. For stu see Standard or consult qu Building Des verifying app requirements Gable requir Gable studs This truss ha chord live loa 0) * This truss h	Ids exposed to wir d Industry Gable E alified building de igner / Project eng lied roof live load s specific to the us es continuous bott spaced at 4-0-0 o s been designed t ad nonconcurrent t has been designed	nd (norm and Deta signer as gineer re shown c e of this tom chor c. for a 10.0 with any d for a liv	al to the face ils as applica s per ANSI/T sponsible for overs rain loa truss compo d bearing. 0 psf bottom other live loa e load of 20.	e), ble, PI 1. ading nent. ads. 0psf					
FOR	RCES	(lb) - Max	imum Com	pression/Maximum		on the bottor 3-06-00 tall b	n chord in all area by 2-00-00 wide wi	s where ill fit betv	a rectangle veen the bott	om				11 ULIUS	LEDIN
TOF BOT	CHORD	Tension 1-2=-34/5 4-5=-5/25 2-6=-13/3	0, 2-3=-32/ 6, 4-6=-13/	/32, 3-4=-33/34, /36	1 1	chord and ar 1) All bearings 2) Provide mec	y other members. are assumed to be hanical connection	e SP No. n (by oth	2 . ers) of truss t	to int 2			S. S		869
WE	BS	3-6=-40/5				7 lb uplift at j	oint 4, 27 lb uplift	at joint 1	, 7 lb uplift at	joint			*		*
NOT 1) 2) 3)	FES 2-ply truss Top chord follows: 2x Bottom ch follows: 2x All loads a except if n CASE(S) s provided tr unless oth Unbalance this design	s to be conn- ls connected (4 - 1 row at ords connec (4 - 1 row at are consider loted as fror section. Ply o distribute erwise indic ed roof live I 1.	ected toget d with 10d (0-9-0 oc. cted with 10 0-9-0 oc. ed equally it (F) or bac to ply conn only loads cated. oads have	ther as follows: (0.131"x3") nails as 0d (0.131"x3") nails applied to all plies, ck (B) face in the LO tections have been noted as (F) or (B), been considered for	1 as L DAD	5, 1 lb uplift a 3) See Standar Detail for Co consult quali OAD CASE(S)	at joint 2 and 7 lb (d Industry Piggyba nnection to base t fied building desig Standard	uplift at ju ack Trus russ as a ner.	bint 4. s Connection applicable, or			Ju Ju Ju D	alius Le tiTek In 5023 Sw ate:	e PE No. 34869 c. DBA MiTck US/ ingley Ridge Rd. C	A FL Cert 6634 hesterfield, MO 63017

December 14,2023

Job	Truss	Truss Type	Qty	Ply	
1023-067	PB11	Piggyback	3	1	Job Reference (optional)

Run: 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:42 ID:hnzmHn6IF7W0BxygQcNpSQyPFBc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:25.5

Plate Offsets (X, Y): [2:0-2-1,0-1-0], [4:0-2-1,0-1-0]

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.25		CSI TC	0.03	DEFL Vert(LL)	in n/a	(loc) -	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
TCDL	10.0	Lumber DOL	1.25		BC	0.04	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0^	Rep Stress Incr	YES		WB	0.01	Horz(CT)	0.00	4	n/a	n/a		FT 000/
BCDL	10.0	Code	FBC20	20/1912014	Matrix-AS							Weight: 16 lb	FT = 20%
BCLL BCDL LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=1011 B=45ft; L= MWFRS (c cantilever I right expos for reaction DOL=1.60 3) Truss des only. For s see Standa 4) Building Du verifying al requirement	0.0* 10.0 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she Rigid ceiling directly (size) 2=3-6-8, 11=3-6-8 Max Uplift 2=-17 (LC 7=-17 (LC Max Grav 2=106 (L (LC 1), 7: 1) (lb) - Maximum Con Tension 1-2=0/15, 2-3=-56/4 2-6=-6/38, 4-6=-6/3 3-6=-48/1 ed roof live loads have CE 7-16; Vult=130mpt mph; TCDL=6.0psf; E 24ft; eave=4ft; Cat. II directional) and C-C E left and right exposed sed;C-C for members ns shown; Lumber DC igned for wind loads i studs exposed to wind ard Industry Gable Er qualified building des esigner / Project engi pplied roof live load s nts specific to the use	Rep Stress Incr Code code code code code code code code c	YES FBC202 5) 6) 7) 8) d. 3-6-8, 9) 1(20/TPI2014 Gable requiri Gable studs This truss ha chord live loa * This truss f on the bottor 3-06-00 tall b chord and ar All bearings i D Provide mec bearing plate 2, 17 lb upliff upliff at joint 1) This truss de structural wo chord and 1// the bottom cl 2) See Standar Detail for Co consult quali	WB Matrix-AS es continuous botto spaced at 4-0-0 oc, s been designed for ad nonconcurrent w nas been designed n chord in all areas by 2-00-00 wide will y other members. are assumed to be hanical connection to capable of withsta at joint 4, 17 lb upl 4. sign requires that a od sheathing be ap 2" gypsum sheetron hord. d Industry Piggyban nection to base tru- fied building design Standard	0.01 m chor ith any for a liv where fit betw SP No. (by oth nding 1 ift at joi minim plied di ck be ap uss as a er.	Horz(CT) d bearing. 0 psf bottom other live loa e load of 20.0 a rectangle veen the botto 2. ers) of truss t 7 lb uplift at junt t 2 and 17 lb um of 7/16" rectly to the t oplied directly s Connection applicable, or	0.00 ds.)psf om oint o r to	4	n/a Ju Ju 16 Di	n/a	Weight: 16 lb	FT = 20%
												D	ecember 14,2023
I													

Job	Truss	Truss Type	Qty	Ply	
1023-067	V01	Valley	1	1	T32352993 Job Reference (optional)

Run: 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:42 ID:x8AjakSw6DVG0?y0QQtrSqyPF9t-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:70.1

Plate Offsets (X, Y): [2:0-2-8,0-3-0], [6:0-2-8,0-3-0], [11:0-2-8,0-3-0]

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.25		TC	0.16	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL		10.0	Lumber DOL	1.25		BC	0.17	Vert(TL)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.29	Horiz(TL)	0.01	8	n/a	n/a		
BCDL		10.0	Code	FBC202	0/TPI2014	Matrix-AS							Weight: 139 lb	FT = 20%
LUMBER				2)	Wind: ASCE	7-16; Vult=130m	nph (3-sec	ond gust)						
TOP CHORD	2x4 SP N	lo.2			Vasd=101mp	oh; TCDL=6.0psf	f; BCDL=6	.0psf; h=15ft;						
BOT CHORD	2x4 SP N	lo.2			B=45ft; L=24	ft; eave=4ft; Cat	. II; Exp B;	Enclosed;						
WEBS	2x4 SP N	lo.2			MWFRS (dire	ectional) and C-0	C Exterior(2E) 0-1-12 to)					
OTHERS	2x4 SP N	lo.2			3-1-12, Interi	or (1) 3-1-12 to 1	12-2-2, Ex	terior(2R) 12-	2-2					
BRACING					to 15-2-2, Int	erior (1) 15-2-2 t	to 24-2-9 z	one; cantilev	er					
TOP CHORD	Structura	I wood she	athing directly applie	d,	left and right	exposed ; end v	ertical left	and right						
	except er	nd verticals			exposed;C-C	tor members ar	nd forces a	MWFRS for						
BOT CHORD	Rigid ceil	ling directly	applied.		reactions sho	own; Lumber DO	DL=1.60 pla	ate grip						
WEBS	1 Row at	midpt	4-11	2)	DOL=1.60	and for wind loop	da in tha nl	one of the tru						
REACTIONS	(size)	8=24-4-5,	9=24-4-5, 10=24-4-5	5, ³⁾	only For stu	ide exposed to w	ind (norm	al to the face	155					
		11=24-4-{	5, 12=24-4-5, 13=24-	4-5,	see Standard	1 Industry Gable	End Detai	Is as applical), hle					
		14=24-4-5	5		or consult au	alified building d	lesigner as	per ANSI/TF	PI 1.					
	Max Horiz	14=-234 (LC 10)	4)	Building Des	igner / Project er	naineer res	sponsible for						
	Max Uplift	8=-28 (LC	\$ 9), 9=-81 (LC 12),	,	verifying app	lied roof live load	d shown co	overs rain loa	ding					
		10=-65 (L	C 12), 12=-65 (LC 12	2),	requirements	s specific to the u	use of this	truss compor	nent.					
		13=-81 (L	C 12), 14=-35 (LC 8)	5)	All plates are	e 1.5x4 MT20 unl	less otherv	vise indicated	d.					
	Max Grav	8=265 (LC	(LC 18)	, 6)	Gable require	es continuous bo	ottom chore	d bearing.						1111.
		10=464 (L	C 18), 11=326 (LC 1	(2), (7)	Truss to be f	ully sheathed fro	om one fac	e or securely					W UIUS	15.11.
		12=403 (L	C 19)	<i>()</i> ,	braced again	nst lateral mover	nent (i.e. d	iagonal web)					JUL	-SE 11
FORCES	(lb) Max	14=274 (L		8)	Gable studs	spaced at 4-0-0	OC.					S	CEN	Si. 1
FURGES	(ID) - IVIA)	dimum Com	pression/waximum	9)	This truss ha	is been designed	d for a 10.0) psf bottom				5	· · · ·	
	1_1/10	5/51 1-3	221/173 3-1-216/2	80	chord live loa	ad nonconcurren	t with any	other live loa	ds.				No 34	869
	7-8=-187	/48 4-5=-2	46/276 5-7=-213/16	9, 10 9) * This truss h	has been designe	ed for a liv	e load of 20.0)pst		-	1.4	(
BOT CHORD	13-14=-9	/10, 10 <u>= 2</u> 6/132 12-1	3=-96/128	0	On the botton	n chord in all are	eas where	a rectangle				1:		<u>/:^ =</u>
201 01.01.2	10-12=-9	6/128.9-10)=-96/128. 8-9=-92/12	28	s-00-00 tail t	by 2-00-00 wide v			200		-	-:	1/.7	
WEBS	4-11=-27	9/138, 3-12	2=-267/130,	- 11	11) All baseness resourced to be SP No 2									
	2-13=-28	9/136, 5-10	=-268/130, 6-9=-287	287/135 12) Provide mechanical connection (by others) of truss to								all have		
NOTES				12	bearing plate	canable of with	standing 3	5 lb unlift at i	oint			-0	A.	A:25
1) Unbalance	ed roof live	loads have	been considered for		14. 28 lb upli	ft at joint 8. 65 lb	o uplift at ic	oint 12. 81 lb	uplift			1	OR	D. Charles
this design	n.				at joint 13, 65	5 lb uplift at joint	10 and 81	lb uplift at jo	int			11	0.0	ENIN
0					9.	,,		, .					ONA	Lun
				13) This truss de	sign requires that	at a minim	um of 7/16"					- minin	III
					structural wo	od sheathing be	applied di	rectly to the t	op		J	ilius Le	e PE No. 34869	

LOAD CASE(S) Standard

13) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top

chord and 1/2" gypsum sheetrock be applied directly to

December 14,2023

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

Julius Lee PE No. 34869

Date:

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

the bottom chord.

Job	Truss	Truss Type	Qty	Ply	
1023-067	V02	Valley	1	1	Job Reference (optional)

10-7-2

0-11-5

 \times

13

Run: 8,73 S Nov 13 2023 Print: 8,730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:43 ID:INV2CGjjx_H8eOdEi1G0LTyPF9X-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

9

10

Page: 1

11

5x5= 23-1-14

12

Scale = 1:65.5

Plate Offsets (X, Y): [11:0-2-8,0-3-0]

		-											
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25		TC	0.15	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.25		BC	0.17	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.22	Horiz(TL)	0.00	8	n/a	n/a		
BCDL	10.0	Code	FBC202	0/TPI2014	Matrix-AS							Weight: 126 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she except end verticals Rigid ceiling directly 1 Row at midpt (size) 8=23-1-14 11=23-1-1	athing directly applied applied. 4-11 4, 9=23-1-14, 10=23-1 14, 12=23-1-14,	2) d, 1-14, ³⁾	Wind: ASCE Vasd=101mp B=45ft; L=24 MWFRS (dir 3-1-12, Interi 11-6-15 to 14 cantilever lef right expose for reactions DOL=1.60 Truss desig only. For stu see Standard	7-16; Vult=130m ph; TCDL=6.0psf lft; eave=4ft; Cat. ectional) and C-C ior (1) 3-1-12 to 1 4-6-15, Interior (1 ft and right expos d;C-C for membe shown; Lumber I ned for wind load dds exposed to w d Industry Gable	ph (3-sec BCDL=6 II; Exp B Exteriori 1-6-15, E) 14-6-15 ed; end v rs and foo DOL=1.60 s in the p ind (norm End Deta	cond gust) .0psf; h=15ft; ; Enclosed; (2E) 0-1-12 to xterior(2R) to 23-0-2 com vertical left and ces & MWFR) plate grip lane of the tru al to the face) ils as applicat	ne; d S S ss					
	13=23-1-1 Max Horiz 14=-210 (Max Uplift 8=-6 (LC 9 (LC 12), 1 (LC 12), 1 Max Grav 8=218 (LC 10=473 (L 12=472 (L 14=235 (L	14, 14=23-1-14 LC 10) 9), 9=-82 (LC 12), 10: 2=-64 (LC 12), 13=-8 4=-19 (LC 8) C 17), 9=446 (LC 18), LC 18), 11=306 (LC 1 .C 17), 13=451 (LC 1 .C 18)	=-64 ⁴⁾ 32 ⁵⁾ 7), ⁶⁾ 7), ⁷⁾	 see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component. All plates are 1.5x4 MT20 unless otherwise indicated. Gable requires continuous bottom chord bearing. Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 								JULIUS	
FORCES	(lb) - Maximum Com Tension	pression/Maximum	8) 9)	Gable studs This truss ha	spaced at 4-0-0 o as been designed	for a 10.0) psf bottom	de		6	S.S.	LICEN	SE
TOP CHORD	1-14=-176/31, 1-2=- 3-4=-217/235, 4-5=- 6-7=-189/93, 7-8=-1	211/122, 2-3=-192/12 217/228, 5-6=-172/12 61/19	27, 10 21, 10) * This truss h on the bottor 3-06-00 tall h	nas been designe m chord in all area	d for a liv as where	e load of 20.0 a rectangle	us. Ipsf			*	No 34	869
BOT CHORD	13-14=-77/116, 12-1 10-12=-77/116, 9-10	3=-77/116,)=-77/116, 8-9=-77/11	16 11	chord and any other members, with BCDL = 10.0psf.								hel 5	
WEBS	4-11=-216/102, 3-12 2-13=-265/126, 5-10	2=-271/132,)=-271/132, 6-9=-263,	12) Provide mechanical connection (by others) of truss to hearing plate capable of withstanding 19 lb unlift at joint										
NOTES		14. 6 lb uplift	t at joint 8, 64 lb u	uplift at ioi	nt 12. 82 lb ut	olift			1	CALLOR!	D. CNN		
 Unbalance this design 	ed roof live loads have n.	13	at joint 13, 64 lb uplift at joint 10 and 82 lb uplift at joint 9. 13) This truss design requires that a minimum of 7/16"								LENGIN		

structural wood sheathing be applied directly to the top

chord and 1/2" gypsum sheetrock be applied directly to

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

8

December 14,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

the bottom chord.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	
1023-067	V03	Valley	1	1	T32352995 Job Reference (optional)

Run: 8 73 S. Nov 13 2023 Print: 8 730 S. Nov 13 2023 MiTek Industries. Inc. Wed Dec 13 08:11:43 ID:0ZeFsV2faHhJOXBQnCFLx9yPF96-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:60.9

Plate Offsets (X, Y): [1:0-1-10,0-1-8], [7:0-1-10,0-1-8], [10:0-2-8,0-3-0]

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.25		TC	0.16	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL		10.0	Lumber DOL	1.25		BC	0.17	Vert(TL)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.17	Horiz(TL)	0.00	7	n/a	n/a		
3CDL		10.0	Code	FBC202	0/TPI2014	Matrix-AS							Weight: 113 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N Structural Rigid ceili 1 Row at (size) Max Horiz Max Uplift Max Grav	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	athing directly applied applied. 4-10 , 7=22-0-11, 8=22-0- 1, 10=22-0-11, 1, 16=22-0-11, 1, 16=22-0-11, 10), 8=-67 (LC 12), 12), 11=-69 (LC 12), 12), 13=-22 (LC 17), 2, 18), 7=152 (LC 17), 2, 18), 9=474 (LC 18), C 17), 11=477 (LC 1 C 17), 13=180 (LC 1	2) d. -11, 3) (0) , 4) (0) , 5) (7), (6) (7), (7) (8), 8) (8)	Wind: ASCE Vasd=101mp B=45ft; L=24 MWFRS (dir 2-11-12, Inte 10-11-12 to zone; cantile and right exp MWFRS for 1 grip DOL=1.0 Truss design only. For stu see Standard or consult que Building Des verifying app requirements All plates are Gable requin Gable studs This truss ha	7-16; Vult=130mph bh; TCDL=6.0psf; Bl ft; eave=4ft; Cat. II; ectional) and C-C E rior (1) 2-11-12 to 1 13-11-12, Interior (1 ver left and right ex, toosed;C-C for memt reactions shown; Lu 50 and for wind loads in dis exposed to wind d Industry Gable En alified building desi igner / Project engit iled roof live load st s specific to the use s continuous botto spaced at 4-0-0 oc. s been designed fo	(3-sec CDL=6 Exp B xterior(0-11-1)) 13-11 posed bers an umber I n the p I (norm d Deta gner as neer re nown c of this s other m chor r a 10.0	cond gust) .0psf; h=15ft; ; Enclosed; 2E) -0-0-10 tt 2, Exterior(2R end vertical I d forces & DOL=1.60 pla lane of the tru al to the face) ils as applicat s per ANSI/TF sponsible for overs rain loa truss compor wise indicated d bearing. D psf bottom	b) left te ss ble, ple, ple, plent. l.				JULIUS	

- FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-161/143, 2-3=-179/100, 3-4=-153/141, 4-5=-135/138, 5-6=-137/50, 6-7=-120/89 BOT CHORD 1-12=-62/104, 11-12=-62/104, 9-11=-62/104, 8-9=-62/104, 7-8=-62/104 4-10=-155/16, 3-11=-277/138, 2-12=-240/110, WFBS
- 5-9=-277/138, 6-8=-240/110 NOTES

1) Unbalanced roof live loads have been considered for this design.

- chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 9) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 10) All bearings are assumed to be SP No.2 .
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 22 lb uplift at joint 1, 69 lb uplift at joint 11, 67 lb uplift at joint 12, 69 lb uplift at joint 9, 67 lb uplift at joint 8 and 22 lb uplift at joint 1.
- 12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord

LOAD CASE(S) Standard

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

December 14,2023

Job	Truss	Truss Type	Qty	Ply	
1023-067	V04	Valley	1	1	Job Reference (optional)

Run: 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:44 ID:MozZU0JSO2SB1wtf4qeVqoyPF8m-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:60.1

Plate Offsets (X, Y): [10:0-2-8.0-3-0]

	[10.0 2 0,0 0 0	1											
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.16	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL	10.0	Lumber DOL	1.25	BC	0.17	Vert(TL)	n/a	-	n/a	999			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.12	Horiz(TL)	0.00	7	n/a	n/a			
BCDL	10.0	Code	FBC2020/TPI2014	Matrix-AS							Weight: 99 lb	FT = 20%	
LUMBER			2) Wind: ASCI	E 7-16; Vult=130r	mph (3-sec	cond gust)							

TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
OTHERS	2x4 SP N	0.2
BRACING		
TOP CHORD	Structural	wood sheathing directly applied.
BOT CHORD	Rigid ceili	ng directly applied.
WEBS	1 Row at	midpt 4-10
REACTIONS	(size)	1=20-6-14, 7=20-6-14, 8=20-6-14, 9=20-6-14, 10=20-6-14, 11=20-6-14, 12=20-6-14
	Max Horiz	1=-167 (I C 10)
	Max Uplift	1=-39 (I C 10) $8=-42$ (I C 12)
		9=-73 (LC 12), 11=-73 (LC 12).
		12=-42 (LC 12)
	Max Grav	1=120 (LC 18), 7=90 (LC 17),
		8=334 (LC 18), 9=455 (LC 18),
		10=371 (LC 17), 11=454 (LC 17), 12=338 (LC 17)
FORCES	(lb) - Max Tension	imum Compression/Maximum
TOP CHORD	1-2=-152/	140, 2-3=-164/108, 3-4=-141/134,
	4-5=-123/	130, 5-6=-124/65, 6-7=-114/85
BOT CHORD	1-12=-58/	112, 11-12=-58/90, 9-11=-58/90,
	8-9=-58/9	0, 7-8=-58/90
WEBS	4-10=-170	0/3, 3-11=-281/141, 2-12=-218/97,
	5-9=-281/	141, 6-8=-216/97
NOTES		

1) Unbalanced roof live loads have been considered for this design

- Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 10-3-12, Exterior(2R) 10-3-12 to 13-3-12, Interior (1) 13-3-12 to 20-7-2 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading
- requirements specific to the use of this truss component. All plates are 1.5x4 MT20 unless otherwise indicated. 5)
- Gable requires continuous bottom chord bearing. 6)
- Gable studs spaced at 4-0-0 oc. 7)
- This truss has been designed for a 10.0 psf bottom 8) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 9) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) All bearings are assumed to be SP No.2 .
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 39 lb uplift at joint 1, 73 lb uplift at joint 11, 42 lb uplift at joint 12, 73 lb uplift at joint 9 and 42 lb uplift at joint 8.
- 12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord

LOAD CASE(S) Standard

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

December 14,2023

Job	Truss	Truss Type	Qty	Ply	
1023-067	V05	Valley	1	1	T32352997 Job Reference (optional)

Run: 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:44 ID:nfA7hsY?hBzLQ_PVF1?Be0yPF8S-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

C 1

Scale = 1:50.3

Plate Offsets (X, Y): [7:0-2-8,0-3-0]

Loading TCLL (roof) TCDL BCLL BCDL	(p 20 10 0 10	osf) 0.0 0.0 0.0* 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES FBC2)20/TPI2014	CSI TC BC WB Matrix-AS	0.26 0.20 0.33	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 82 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BRACING TOP CHORD Structural wood sheathing directly applied. ReACTIONS (size) 1=18-2-1, 5=18-2-1, 6=18-2-1, 7=18-2-1, 8=18-2-1 Max Horiz 1=-147 (LC 10) Max Uplift 1=-4 (LC 10), 6=-83 (LC 12), 8=-6 (LC 12) Max Grav 1=112 (LC 18), 5=104 (LC 24), 6=562 (LC 18), 7=540 (LC 17), 8=565 (LC 17) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=121/307 2-3=3/222 3-4=0/198				83	 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component. 5) Gable requires continuous bottom chord bearing. 6) Gable studs spaced at 4-0-0 oc. 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 9) All bearings are assumed to be SP No.2. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 4 lb uplift at joint 1, 83 lb uplift at joint 8 and 83 lb uplift at joint 6. 									
8=565 (LC 17) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-121/307, 2-3=-3/222, 3-4=0/198, 4-5=-102/268 BOT CHORD 1-8=-155/97, 5-6=-155/97					 This trues design requires that a minimum of 7/16° structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. LOAD CASE(S) Standard 									
WEBS	3-7=-366/0, 2-8	8=-334	/147, 4-6=-332/146									S.S.S.	CEN	Sp. III
 Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 9-1-5, Exterior(2R) 9-1-5 to 12-1-5, Interior (1) 12-1-5 to 18-2-6 zone; cantilever left and right exposed; end vertical left and right exposed;C- C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 												* PROK	NO 34	

 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com) December 14,2023

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

Julius Lee PE No. 34869

Date:

Job	Truss	Truss Type	Qty	Ply	
1023-067	V06	Valley	1	1	T32352998 Job Reference (optional)

4x4 =

7-10-10

7-10-10

2

8

1<u>2</u> 10 Г

3x4 🖌

2-0-0

1.25

1 25

YES

FBC2020/TPI2014

0-0-4

Spacing

Code

Plate Grip DOL

Rep Stress Incr

Lumber DOL

Mayo Truss Company, Inc., Mayo, FL - 32066,

6-7-2 6-3-7

(psf)

20.0

10.0

10.0

0.0*

Run: 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:44 ID:tgbvdQe041ZOzxES203SKIyPF3A-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

15-5-2

7-6-8

Page: 1

15-9-4

3 1.5x4 II 1.5x4 u 13 14 4 5 ********** 15 16 6 1.5x4 u 1.5x4 u 1.5x4 u 3x4、 15-9-4 CSI DEFL l/defl L/d PLATES GRIP in (loc) тс 0.19 Vert(LL) n/a 999 MT20 244/190 n/a BC 0.16 Vert(TL) n/a n/a 999 WB 0.18 Horiz(TL) 0.00 5 n/a n/a Matrix-AS Weight: 69 lb FT = 20% 4) Building Designer / Project engineer responsible for * This truss has been designed for a live load of 20.0psf

> Martin * PRO ON

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

December 14,2023

NO	TES
1)	Unbalanced roof live loads have been considered for this design.
2)	Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 7-10-15, Exterior(2R) 7-10-15 to 10-10-15, Interior (1) 10-10-15 to 15-9-9 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip
3)	Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face),

🗥 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTeKe connectors. This design is based only ucon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

BCDL

TCLL (roof)

TCDI

BCLL

Scale = 1:45.9 Loading

LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP N 2x4 SP N 2x4 SP N Structural Rigid ceili	o.2 o.2 o.2 I wood sheathing directly applied. ing directly applied.
REACTIONS	(size)	1=15-9-4, 5=15-9-4, 6=15-9-4,
	Max Hariz	/=15-9-4, 8=15-9-4
	Max Holiz	I = -127 (LC + 10)
	Max Opinit	0=-09 (LC 12), $0=-09$ (LC 12)
	Max Grav	I = I22 (LC 18), $S = I01$ (LC 24), 6-461 (LC 18), $7-456$ (LC 17)
		8=463 (LC 17)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=-145/	/185, 2-3=-56/131, 3-4=-54/110,
	4-5=-116/	(151
BOT CHORD	1-8=-79/1	25, 7-8=-79/78, 6-7=-79/78,
	5-6=-79/8	
WEBS	3-7=-270/	0, 2-8=-284/143, 4-6=-282/143

3

see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component. Gable requires continuous bottom chord bearing. 5) Gable studs spaced at 4-0-0 oc. 6)

- 7) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 8)
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) All bearings are assumed to be SP No.2.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 69 lb uplift at joint 8 and 69 lb uplift at joint 6.
- 11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	
1023-067	V07	Valley	1	1	T32352999 Job Reference (optional)

Run: 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:45 ID:3om3wBnwUQxqodaaBqm1HcyPF3?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:41.5

Loading	(psf	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.25		тс	0.15	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL	10.0	Lumber DOL	1.25		BC	0.12	Vert(TL)	n/a	-	n/a	999			
BCLL	0.0	* Rep Stress Incr	YES		WB	0.09	Horiz(TL)	0.00	5	n/a	n/a			
BCDL	10.0	Code	FBC202	20/TPI2014	Matrix-AS							Weight: 57 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood s Rigid ceiling dire (size) 1=13-4 7=13-4 Max Horiz 1=107 Max Horit 1=-20	heathing directly applied. -7, 5=13-4-7, 6=13-4-7 -7, 8=13-4-7 (LC 11) C 10) 657 (I C 12)	4) 5) 6) ed. 7) , 8) 857	Building Des verifying app requirements Gable requir Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar	igner / Project e lied roof live loa a specific to the i es continuous be spaced at 4-0-0 s been designe d nonconcurrer nas been design n chord in all are by 2-00-00 wide by other member	ngineer res d shown co use of this ottom chorn oc. d for a 10.0 t with any ed for a live eas where will fit betw rs.	sponsible for overs rain loa truss compor d bearing. 0 psf bottom other live loa e load of 20.0 a rectangle reen the botto	ading nent. ods. Opsf om						
FORCES TOP CHORD BOT CHORD	(LC 12 Max Grav 1=106 6=326 8=329 (lb) - Maximum C Tension 1-2=-131/100, 2- 4-5=-106/68 1-8=-38/101 7-8) (LC 18), 5=87 (LC 17), (LC 18), 7=279 (LC 17), (LC 18), 7=279 (LC 1), (LC 17) ompression/Maximum 3=-118/100, 3-4=-107/s 38/61 6-7=-38/61	9) 10 11 96, LC	All bearings i)) Provide mec bearing plate 57 lb uplift at 1) This truss de structural wo chord and 1/ the bottom c CAD CASE(S)	are assumed to hanical connecti e capable of with joint 8 and 57 lt sign requires thi od sheathing be 2" gypsum shee hord. Standard	be SP No.: ion (by othe istanding 2 b uplift at jc at a minimu applied di trock be ap	2 . ers) of truss t Ib uplift at jo pint 6. um of 7/16" rectly to the t oplied directly	to int 1, top y to					11m.	
WEBS	5-6=-38/80 3-7=-198/0, 2-8=	-249/155, 4-6=-248/154	ł									JULIUS	LEE	

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 6-8-8, Exterior(2R) 6-8-8 to 9-8-8, Interior (1) 9-8-8 to 13-4-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - verify design parameters and READ NOTES ON THIS AND INCLOSED INTERNETING TO THE REFERENCE FOR UNITY TO THE INSTANCE OF THE ADDRESS OF THE ADDRESS

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

December 14,2023

Job	Truss	Truss Type	Qty	Ply	
1023-067	V08	Valley	1	1	T32353000 Job Reference (optional)

Run: 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:45 ID:xZ?amZqQYeSGHEuLQfqzRSyPF2x-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:39.9

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.25		TC	0.16	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL		10.0	Lumber DOL	1.25		BC	0.12	Vert(TL)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.05	Horiz(TL)	0.00	5	n/a	n/a		
BCDL		10.0	Code	-BC202	20/TPI2014	Matrix-AS							Weight: 44 lb	FT = 20%
LUMBER				3)	Truss desig	ned for wind load	ds in the p	lane of the tru	ISS					
TOP CHORD	2x4 SP No.	2		,	only. For stu	ids exposed to w	vind (norm	al to the face),					
BOT CHORD	2x4 SP No.	2			see Standard	d Industry Gable	End Deta	ils as applical	ole,					
OTHERS	2x4 SP No.	2			or consult qu	alified building c	designer a	s per ANSI/TF	기 1.					
BRACING				4)	Building Des	igner / Project e	ngineer re	sponsible for						
TOP CHORD	Structural v	vood shea	athing directly applied.		verifying app	lied roof live loa	d shown c	overs rain loa	ding					
BOT CHORD	Rigid ceiline	a directly	applied.		requirements	s specific to the u	use of this	truss compor	nent.					
REACTIONS	(size) 1	l=10-11-1	0. 5=10-11-10.	5)	Gable require	es continuous bo	ottom chor	d bearing.						
	6	6=10-11-1	0, 7=10-11-10,	6)	Gable studs	spaced at 4-0-0	00.							
	8	3=10-11-1	0	()	I his truss ha	is been designed	d for a 10.	J pst bottom	40					
	Max Horiz 1	I=-88 (LC	10)	0)	chord live loa	ad nonconcurren	it with any	other live loa	as.					
	Max Uplift 1	I=-37 (LC	10), 5=-15 (LC 11),	8)	an the better	has been design	ed for a liv		psi					
	6	6=-52 (LC	12), 8=-52 (LC 12)		3-06-00 tall b	2-00-00 wide	will fit het	a reclarigie	m					
	Max Grav 1	I=60 (LC	18), 5=43 (LC 17), 6=3	04	chord and ar	v other member	re	veen me boll						
	(LC 18), 7	=241 (LC 1), 8=308 (L0	C al		are assumed to	he SP No.	2						
	1	17)		10)) Provide mec	hanical connecti	ion (by oth	ers) of truss t	0					
FORCES	(lb) - Maxim	num Com	pression/Maximum		bearing plate	capable of with	standing 3	87 lb uplift at i	oint					
	Tension				1. 15 lb uplift	at joint 5. 52 lb	uplift at ioi	nt 8 and 52 lb)					
TOP CHORD	1-2=-90/86,	, 2-3=-144	4/96, 3-4=-141/92,		uplift at joint	6.								100
	4-5=-85/57			11	1) This truss de	sign requires the	at a minim	um of 7/16"						1111
BOT CHORD	1-8=-29/64,	, 7-8=-17/	/64, 6-7=-17/64,		structural wo	od sheathing be	applied d	irectly to the t	ор				IN ULIUS	LEFU
	5-6=-36/64				chord and 1/	2" gypsum shee	trock be a	pplied directly	/ to				CEA	1.5 14
WEBS	3-7=-154/6,	, 2-8=-27 ⁻	1/215, 4-6=-270/215		the bottom cl	hord.						3	. UEA	SF.
NOTES				L	DAD CASE(S)	Standard						5	A here an	
1) Unbalance	ed roof live loa	ads have	been considered for										· Ng 34	869
this design	٦.										-			· · · · · ·

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 5-6-2, Exterior(2R) 5-6-2 to 8-6-2, Interior (1) 8-6-2 to 10-11-15 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

December 14,2023

Job	Truss	Truss Type	Qty	Ply	
1023-067	V09	Valley	1	1	T32353001 Job Reference (optional)

Run: 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:45 ID:IWpTpGuZNB4YN?mIDDQ88WyPF2s-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

8-6-14 4-3-7 8-2-12 4-3-7 3-11-5 4x4 =2 3-3-7 3-7-2 12 10 Г 9 10 3 0-0-4 4 1.5x4 u 2x4 🧳 2x4 💊 8-6-14

Scale = 1:31.4

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.25		TC	0.21	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL	10.0	Lumber DOL	1.25		BC	0.20	Vert(TL)	n/a	-	n/a	999			
BCLL	0.0*	Rep Stress Incr	YES		WB	0.09	Horiz(TL)	0.00	3	n/a	n/a			
BCDL	10.0	Code	FBC202	0/TPI2014	Matrix-AS							Weight: 32 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she Rigid ceiling directly (size) 1=8-6-14, Max Horiz 1=-68 (LC Max Uplift 1=-22 (LC 4=-41 (LC Max Grav 1=64 (LC (LC 1)	athing directly applie applied. 3=8-6-14, 4=8-6-14 10) 24), 3=-22 (LC 23), 12) 23), 3=64 (LC 24), 4	6) 7) 8) d. 9) 10 =630	Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall t chord and ar All bearings) Provide mec bearing plate 1, 22 lb upliff) This truss de structural wc chord and 11	spaced at 4-0- spaced at 4-0- space designs ad nonconcurre has been design n chord in all ar yy 2-00-00 wide hy other member are assumed to hanical connec e capable of with t at joint 3 and 4 spign requires th hod sheathing b 2" gynysum sheat	0 oc. ed for a 10.0 nt with any ned for a liv reas where e will fit betw ers. b be SP No. tion (by oth hstanding 2 11 lb uplift a nat a minim e applied d) psf bottom other live loa e load of 20.0 a rectangle veen the botto 2. ers) of truss t z lb uplift at j t joint 4. um of 7/16" rectly to the i polied directly	ids. Opsf om io oint top						
FORCES	(lb) - Maximum Com	pression/Maximum		the bottom c	hord.			,						
	Tension		LC	DAD CASE(S)	Standard									
TOP CHORD	1-2=-110/261, 2-3=-	106/261												
BOT CHORD	1-4=-193/162, 3-4=-	193/162												
WFBS	2-4=-467/209													

NOTES

1) Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 4-3-12, Exterior(2R) 4-3-12 to 7-3-12, Interior (1) 7-3-12 to 8-7-2 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Building Designer / Project engineer responsible for 4) verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) Gable requires continuous bottom chord bearing.

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

December 14,2023

Job	Truss	Truss Type	Qty	Ply	
1023-067	V10	Valley	1	1	T32353002 Job Reference (optional)

2-7-2

Run: 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:46 ID:Al2zfex4RPa_sd44S2V4JMyPF2o-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-2-1

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES FBC2020/TPI2014	CSI TC BC WB Matrix-AS	0.10 0.11 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 23 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she Rigid ceiling directly (size) 1=6-2-1, 3 Max Horiz 1=-48 (LC Max Uplift 4=-16 (LC Max Grav 1=66 (LC (LC 1)	eathing directly applied 7 applied. 3=6-2-1, 4=6-2-1 2 10) 2 12) 23), 3=66 (LC 24), 4=	 8) * This truss h on the bottor 3-06-00 tall b chord and ar 9) All bearings 10) Provide mec bearing plate 4. 11) This truss de structural wo chord and 1/ the bottom c 	has been designed in chord in all area by 2-00-00 wide w y other members are assumed to b hanical connectio e capable of withs esign requires that hord sheathing be a 2" gypsum sheetr hord.	d for a liv as where vill fit betw s. e SP No. n (by oth tanding 1 t a minim applied d rock be a	re load of 20.0 a rectangle veen the botto 2. ers) of truss t 6 lb uplift at j um of 7/16" irectly to the t pplied directly	Dpsf om oint top y to					
FORCES	(lb) - Maximum Com Tension	npression/Maximum	LOAD CASE(S)	Stanuaru								
TOP CHORD BOT CHORD WEBS	1-2=-58/141, 2-3=-5 1-4=-112/107, 3-4=- 2-4=-270/136	6/141 112/107										
NOTES 1) Unbalance this design	d roof live loads have	been considered for									MILIUS	

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent oblapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Uaulity Criteria and DSE-22 available from Truss Plate Institute (www.tpinst.org)
and BCSI Building Component Safety Information
available from the Structural Building Component Association (www.sbcscomponents.com)

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

December 14,2023

Page: 1

Job	Truss	Truss Type	Qty	Ply	
1023-067	V11	Valley	1	1	T32353003 Job Reference (optional)

Run: 8,73 S Nov 13 2023 Print: 8,730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:46 ID:33IUV?_aUe4QKENrhuZ0TCyPF2k-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

		3-	9-4		
Scale = 1:24.4					
Plate Offsets (X, Y): [2:0-2-0,Edge]					

Loading	((psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	2	20.0	Plate Grip DOL	1.25		тс	0.09	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	1	10.0	Lumber DOL	1.25		BC	0.08	Vert(TL)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	1	10.0	Code	FBC202	0/TPI2014	Matrix-MP							Weight: 12 lb	FT = 20%
LUMBER				8)	* This truss h	as been designed	for a liv	e load of 20.0)psf					
TOP CHORD	2x4 SP No.2			,	on the botton	n chord in all areas	s where	a rectangle						
BOT CHORD 2x4 SP No.2 3-06-00 tall by 2-00-00 wide will fit between the bottom														
BRACING					chord and an	y other members.								
TOP CHORD	Structural wo	od shea	athing directly applie	dor 9)	All bearings a	are assumed to be	SP No.	2.						
	3-9-4 oc purli	ns.	3	LC	DAD CASE(S)	Standard								
BOT CHORD	Rigid ceiling o bracing.	directly	applied or 10-0-0 oc											
REACTIONS	(size) 1=3	3-9-4, 3	3=3-9-4											
	Max Horiz 1=2	28 (LC	11)											
	Max Grav 1=	151 (LC	C 1), 3=151 (LC 1)											
FORCES	(lb) - Maximu Tension	m Com	pression/Maximum											
TOP CHORD	1-2=-201/74,	2-3=-20	01/73											
BOT CHORD	1-3=-52/152													
NOTES														
1) Unbalanc	ed roof live load	s have	been considered for											
this desig	n.													
2) Wind: AS	CE 7-16; Vult=1:	30mph	(3-second gust)										11 JLIUS	LEDU
Vasd=101	1mph; TCDL=6.0	Opsf; BC	CDL=6.0psf; h=15ft;									11	JOEA	1. S. M.
	=24ft; eave=4ft; ((directional) and	Cat. II;	Exp B; Enclosed;									5	I UEN	SA
IVIVERS ((unectional) and	C-C EX	cienci (ZE) Zone,	i								S	1 C	
right expo	sed C-C for mer	mhers a	and forces & MWFRS	\$							-	1	• No 34	869
for reaction	for reactions shown: Lumber DOI =1 60 plate aris													
3) Truss designed for wind loads in the plane of the truss									SUNNY:					
only. For studs exposed to wind (normal to the face),									OF WE					
see Standard Industry Gable End Details as applicable,											=A	•	:413	
or consult qualified building designer as per ANSI/TPI 1.									01:53					
4) Building E	Building Designer / Project engineer responsible for								Gin					
verifying a	applied roof live l	load sh	own covers rain load	ling									IN ONA	LEIN
requirements specific to the use of this truss component.												111111	inni,	

5) Gable requires continuous bottom chord bearing. 6)

Gable studs spaced at 4-0-0 oc.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

December 14,2023

Page: 1

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

Julius Lee PE No. 34869

Date:

Job	Truss	Truss Type	Qty	Ply	
1023-067	V12	Valley	1	1	T32353004 Job Reference (optional)

Run: 8.73 S Nov 13 2023 Print: 8.730 S Nov 13 2023 MiTek Industries, Inc. Wed Dec 13 08:11:47 ID:FjWVxOXpuTi1E9KUqrtZohyPF21-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

C?f

Scale = 1:65.4

Plate Offsets (X, Y): [2:0-2-1,0-0-12], [3:0-2-1,0-0-12], [4:0-2-1,0-0-12], [5:0-2-0,0-1-13], [7:0-2-0,0-1-13], [16:0-2-8,0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.19	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.25	BC	0.17	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.15	Horiz(TL)	0.00	12	n/a	n/a		
BCDL	10.0	Code	FBC2020/TPI2014	Matrix-AS							Weight: 153 lb	FT = 20%

LUMBER									
TOP CHORD	2x4 SP N	0.2							
BOT CHORD	2x4 SP N	0.2							
WEBS	2x4 SP N	0.2							
OTHERS	2x4 SP N	0.2							
BRACING		0.E							
TODOLODD	0	lease of the state is a strength of the state							
TOP CHORD	Structural	wood sheatning directly applied,							
DOT OUODD	except en	d verticals.							
BOICHORD	Rigia celli	ing directly applied.							
WEBS	1 Row at	midpt 6-16, 8-15, 4-17							
REACTIONS	(size)	12=25-6-11, 13=25-6-11,							
		14=25-6-11, 15=25-6-11,							
		16=25-6-11, 17=25-6-11,							
		18=25-6-11, 19=25-6-11,							
		20=25-6-11							
	Max Horiz	20=220 (LC 11)							
	Max Uplift	12=-400 (LC 11), 13=-247 (LC 8),							
		14=-86 (LC 12), 18=-86 (LC 12),							
		19=-267 (LC 9), 20=-440 (LC 10)							
	Max Grav	12=311 (LC 10), 13=531 (LC 18),							
		14=444 (LC 18), 15=434 (LC 18),							
		16=387 (LC 19), 17=437 (LC 17),							
		18=443 (LC 17), 19=555 (LC 17),							
		20=349 (LC 11)							
FORCES	(lb) - Max	imum Compression/Maximum							
	Tension	·							
TOP CHORD	1-20=-213	3/244, 1-2=-213/227, 2-3=-161/103,							
	3-4=-138/169, 4-5=-155/209, 5-6=-123/202								
	6-7=-123/	202, 7-8=-155/209, 8-9=-128/169,							
	9-10=-15	1/94, 10-11=-192/206,							
	11-12=-19	94/222							
BOT CHORD	19-20=-1 <i>°</i>	10/124, 18-19=-110/124,							
	17-18=-11	10/124, 15-17=-110/124,							
	14-15=-11	10/124, 13-14=-110/124,							
	12-13=-11	10/124							
WEBS	6-16=-222	2/0, 8-15=-230/40, 9-14=-272/187,							
	10-13=-31	10/242, 4-17=-234/42,							
	3-18=-272	2/187, 2-19=-321/249							

NOTES

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=26ft; eave=2tf; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) 0-1-12 to 3-1-12, Exterior(2N) 3-1-12 to 10-4-8, Corner(3R) 10-4-8 to 13-4-8, Exterior(2N) 13-4-8 to 15-2-3, Corner(3R) 15-2-3 to 18-2-3, Exterior(2N) 18-2-3 to 25-4-15 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding.
 All plates are 1.5x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
 Gable studs spaced at 4-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
 2) All between the back and the CD big 2.
- 12) All bearings are assumed to be SP No.2.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 440 lb uplift at joint 20, 400 lb uplift at joint 12, 86 lb uplift at joint 14, 247 lb uplift at joint 13, 86 lb uplift at joint 18 and 267 lb uplift at joint 19.

14) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

December 14,2023

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- 1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor1 bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- 5. Cut members to bear tightly against each other
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- 12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- 14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.