PHOTOVOLTAIC ROOF MOUNT SYSTEM

25 MODULES-ROOF MOUNTED - 9.625 kW DC, 7.250 kW AC

212 NW DIVIDER TERRACE, LAKE CITY, FL 32055

PROJECT DATA

PROJECT 212 NW DIVIDER TERRACE, ADDRESS LAKE CITY, FL 32055

OWNER: FRANCES D GREENE

CONTRACTOR: LUNEX POWER.

4721 N GRADY AVE TAMPA FL 33614 PHONE: 813-540-8807

DESIGNER: ESR

SCOPE: 9.625 KW DC ROOF MOUNT

SOLAR PV SYSTEM WITH

25 MEYER BURGER: MB_B120AyB_385

385W PV MODULES WITH

25 ENPHASE: IQ8PLUS-72-2-US (240V) MICROINVERTERS (COMPLIANT WITH

RAPID SHUTDOWN)

AUTHORITIES HAVING JURISDICTION: BUILDING: COLUMBIA COUNTY ZONING: COLUMBIA COUNTY

UTILITY: FPL

SHEET INDEX

PV-1 COVER SHEET PV-2 SITE PLAN

PV-3 ROOF PLAN & MODULES PV-4 ELECTRICAL PLAN

PV-5 STRUCTURAL DETAIL

PV-6 ELECTRICAL LINE DIAGRAM PV-7 WIRING CALCULATIONS

PV-8 LABELS PV-9 PLACARD

PV-10 MICRO INVERTER CHART
PV-11+ EQUIPMENT SPECIFICATIONS

PROFESSIONAL ENGINEER SEAL

This item has been digitally signed and sealed by Andrew D. Leone on the date adjacent to the seal.

Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

GENERAL NOTES

- 1. ALL COMPONENTS ARE UL LISTED AND CEC CERTIFIED, WHERE WARRANTED.
- 2. THE SOLAR PV SYSTEM WILL BE INSTALLED IN ACCORDANCE WITH ARTICLE 690 OF THE NEC 2020.
- THE UTILITY INTERCONNECTION APPLICATION MUST BE APPROVED AND PV SYSTEM INSPECTED PRIOR TO PARALLEL OPERATION
- 4. ALL CONDUCTORS OF A CIRCUIT, INCLUDING THE EGC, MUST BE INSTALLED IN THE SAME RACEWAY, OR CABLE, OR OTHERWISE RUN WITH THE PV ARRAY CIRCUIT CONDUCTORS WHEN THEY LEAVE THE VICINITY OF THE PV ARRAY.
- WHERE METALLIC CONDUIT CONTAINING DC CONDUCTORS IS USED INSIDE THE BUILDING, IT SHALL BE IDENTIFIED AS "CAUTION: SOLAR CIRCUIT" EVERY 10FT.
- HEIGHT OF THE AC DISCONNECT SHALL NOT EXCEED 6'-7" PER NEC CODE 240.24.
- 7. A GROUNDING ELECTRODE SYSTEM IN ACCORDANCE WITH NEC 2020 690.47 AND 250.50 THROUGH 60 AND 250-166 SHALL BE PROVIDED. PER NEC GROUNDING ELECTRODE SYSTEM OF EXISTING BUILDING MAY BE USED AND BONDED TO THE SERVICE ENTRANCE. IF EXISTING SYSTEM IS INACCESSIBLE OR INADEQUATE A SUPPLEMENTAL GROUNDING ELECTRODE WILL BE USED AT THE INVERTER LOCATION CONSISTING OF A UL LISTED 8 FT. GROUND ROD WITH ACORN CLAMP. GROUNDING ELECTRODE CONDUCTORS SHALL BE NO LESS THAN #8 AWG AND NO LARGER THAN #6 AWG COPPER AND BONDED TO THE EXISTING GROUNDING ELECTRODE TO PROVIDE FOR A COMPLETE SYSTEM.
- 8. PHOTOVOLTAIC MODULES ARE TO BE CONSIDERED NON-COMBUSTIBLE
- 9. PHOTOVOLTAIC INSTALLATION WILL NOT OBSTRUCT ANY PLUMBING. MECHANICAL, OR BUILDING ROOF VENTS.
- 10. ALL WIRING MUST BE PROPERLY SUPPORTED BY DEVICES OR MECHANICAL MEANS DESIGNED AND LISTED FOR SUCH USE. WIRING MUST BE PERMANENTLY AND COMPLETELY HELD OFF THE ROOF SURFACE.
- 11. ALL SINAGE TO BE PLACED IN ACCORDANCE WITH THE LOCAL BUILDING CODE. IF EXPOSED TO SUNLIGHT, IT SHALL BE UV RESISTANT. ALL PLAQUES AND SINAGE WILL BE INSTALLED AS REQUIRED BY THE NEC AND AHJ.
- 12. INVERTER(S) USED IN UNGROUNDED SYSTEM SHALL BE UL 1741 LISTED.
- 13. THE INSTALLATION OF EQUIPMENT AND ALL ASSOCIATED WIRING AND INTERCONNECTION SHALL BE PERFORMED ONLY BY QUALIFIED PERSONS [NEC 690.4(C)]
- 14. ALL OUTDOOR EQUIPMENT SHALL BE NEMA 3R RATED (OR BETTER), INCLUDING ALL ROOF MOUNTED TRANSITION BOXES AND SWITCHES.
- 15. ALL EQUIPMENT SHALL BE PROPERLY GROUNDED AND BONDED IN ACCORDANCE WITH NEC ARTICLE 250.
- 16. SYSTEM GROUNDING SHALL BE IN ACCORDANCE WITH NEC 690.41
- 17. PV SYSTEM CIRCUITS INSTALLED ON OR IN BUILDINGS SHALL INCLUDE A RAPID SHUTDOWN FUNCTION IN ACCORDANCE WITH NEC 690.12
- 18. DISCONNECTING MEANS SHALL BE LOCATED IN A VISIBLE, READILY ACCESSIBLE LOCATION WITHIN THE PV SYSTEM EQUIPMENT OR A MAXIMUM OF 10 FEET AWAY FROM THE SYSTEM [NEC 690.13(A)]
- 19. ALL WIRING METHODS SHALL BE IN ACCORDANCE WITH NEC 690.31
- 20. WORK CLEARANCES AROUND ELECTRICAL EQUIPMENT WILL BE MAINTAINED PER NEC 110.26(A)(1), 110.26(A)(2) AND 110.26(A)(3).
- 21. ROOFTOP MOUNTED PHOTOVOLTAIC PANELS AND MODULES SHALL BE TESTED, LISTED & IDENTIFIED IN ACCORDANCE WITH UL1703
- 22. ELECTRICAL CONTRACTOR TO PROVIDE CONDUIT EXPANSION JOINTS AND ANCHOR CONDUIT RUNS AS REQUIRED PER NEC.

VICINITY MAP

HOUSE PHOTO

CODE REFERENCES

PROJECT TO COMPLY WITH THE FOLLOWING:

FLORIDA RESIDENTIAL CODE, 8TH EDITION 2023 (FRC) FLORIDA PLUMBING CODE, 8TH EDITION 2023 (FPC) FLORIDA BUILDING CODE, 8TH EDITION 2023 EDITION (FBC) FLORIDA MECHANICAL CODE, 8TH EDITION 2023 (FMC) 2020 NATIONAL ELECTRICAL CODE

FLORIDA FIRE PREVENTION CODE, 8TH EDITION 2023
(FFPC) Andrew D. Leone

D. Leone

Digitally signed by Andrew D. Leone Date: 2024.05.30 05:41:10 -04'00'

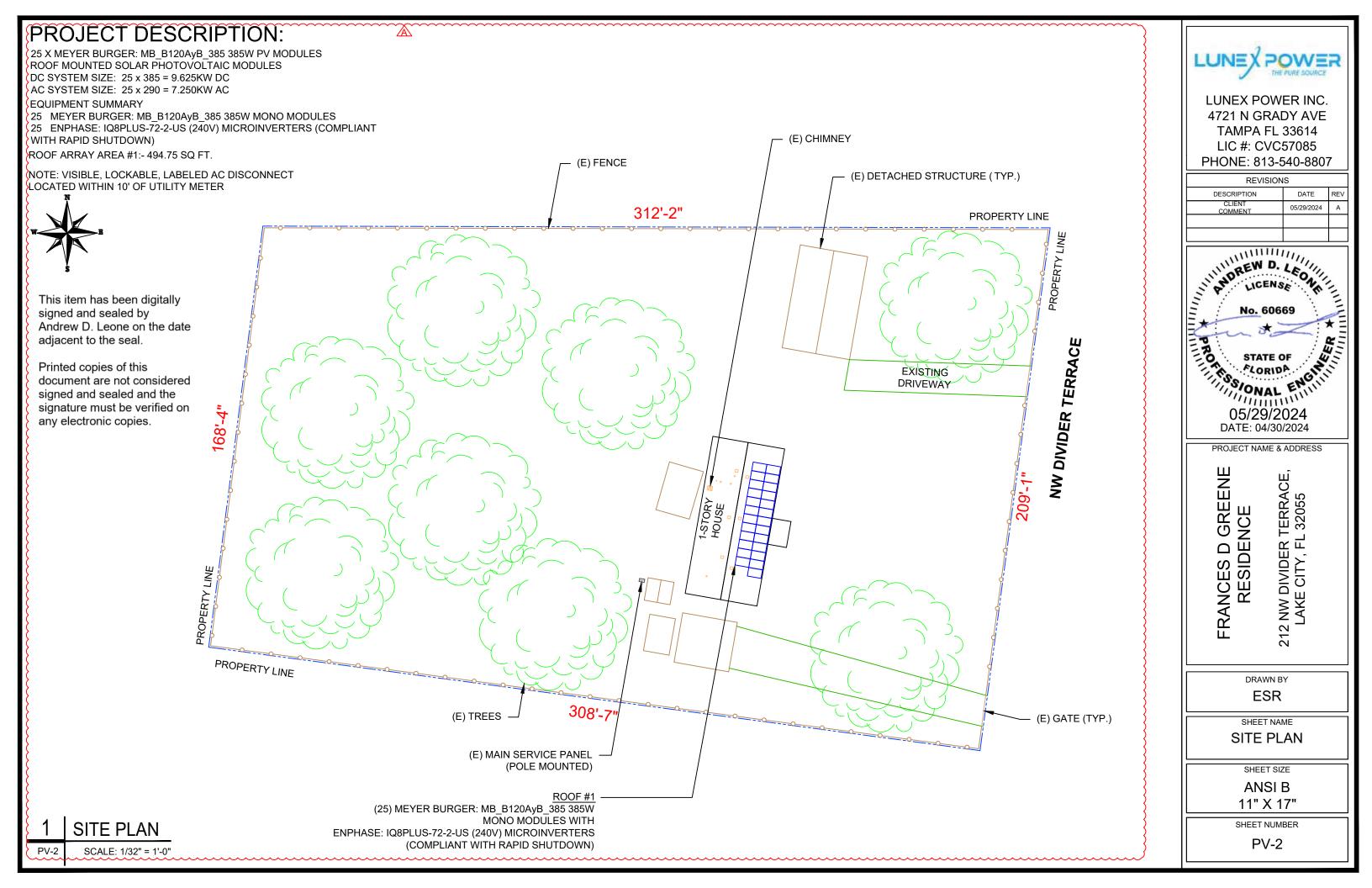
LUNEX POWER INC. 4721 N GRADY AVE TAMPA FL 33614 LIC #: CVC57085 PHONE: 813-540-8807

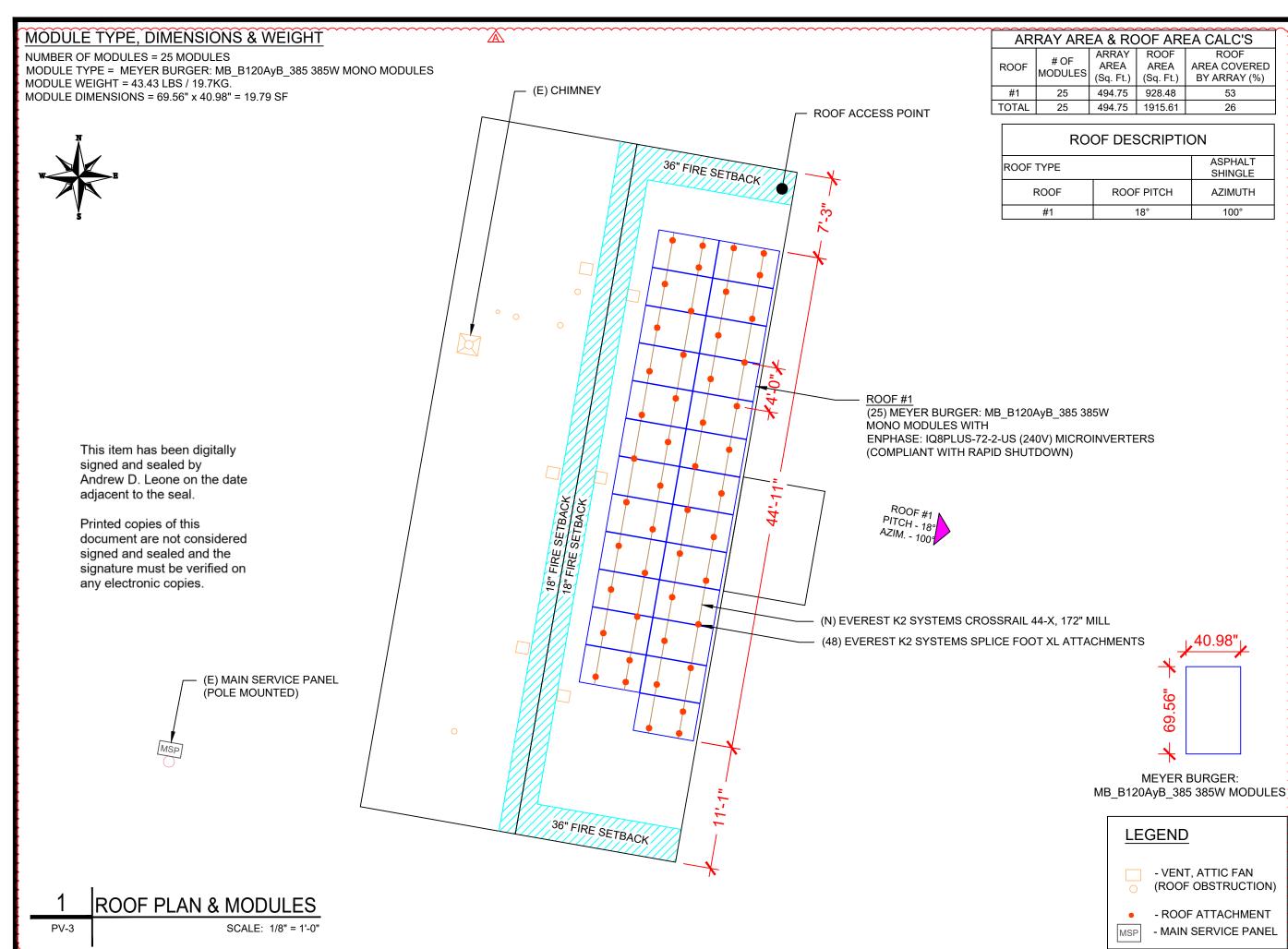
REVISIONS					
DESCRIPTION	DATE	REV			
CLIENT COMMENT	05/29/2024	Α			

PROJECT NAME & ADDRESS

FRANCES D GREENE RESIDENCE 212 NW DIVIDER TERRACE, LAKE CITY, FL 32055

DRAWN BY

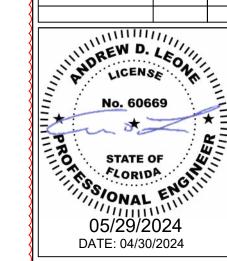

SHEET NAME


COVER SHEET

SHEET SIZE ANSI B

11" X 17"

SHEET NUMBER



LUNEX POWER

LUNEX POWER INC. 4721 N GRADY AVE TAMPA FL 33614 LIC #: CVC57085 PHONE: 813-540-8807

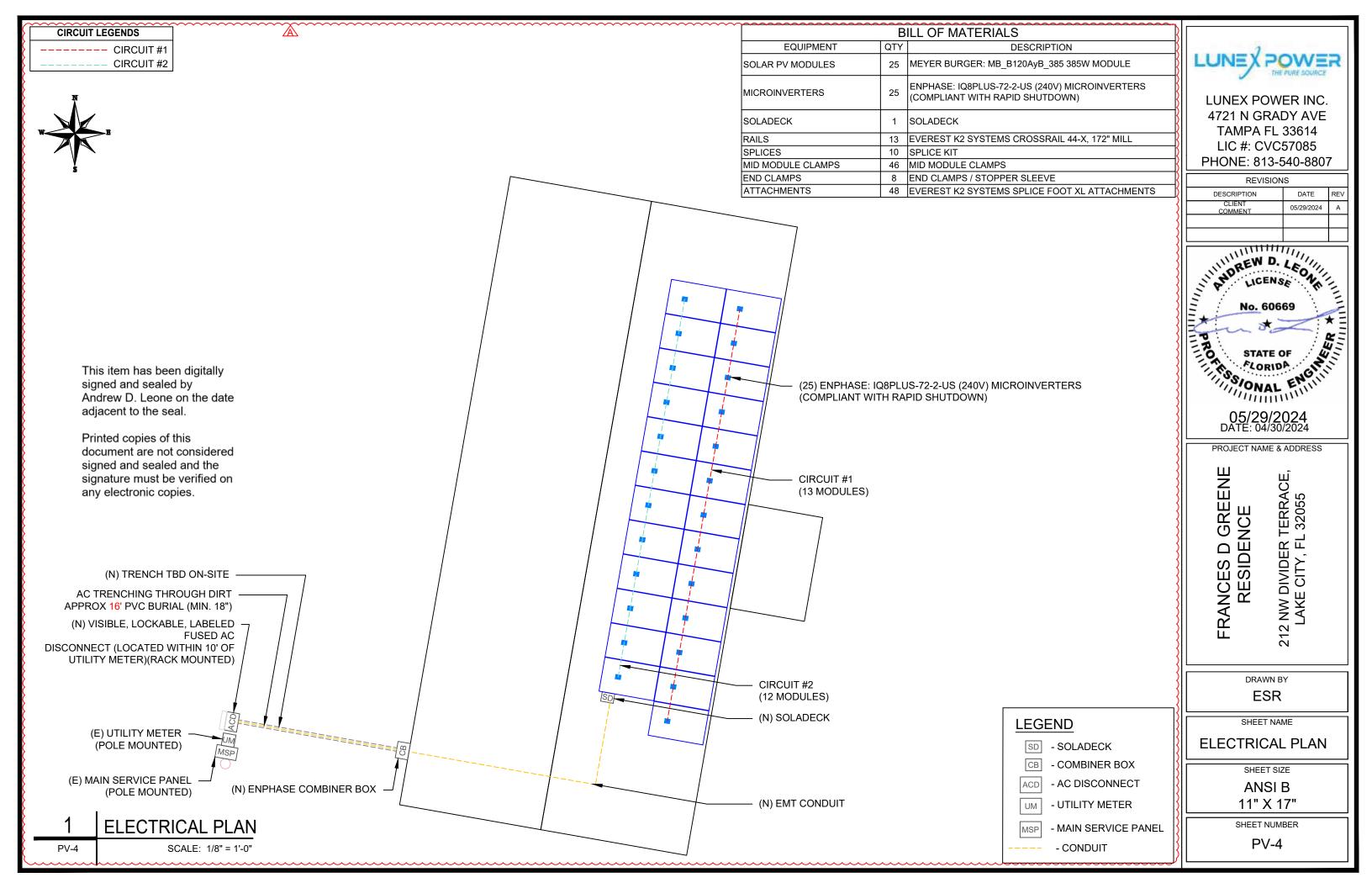
REVISIONS					
DESCRIPTION	DATE	REV			
CLIENT COMMENT	05/29/2024	Α			

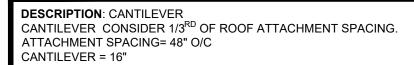
PROJECT NAME & ADDRESS

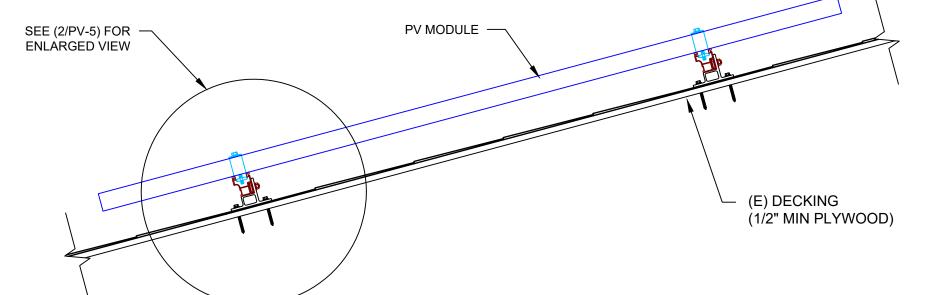
FRANCES D GREENE RESIDENCE

212 NW DIVIDER TERRACE LAKE CITY, FL 32055

DRAWN BY

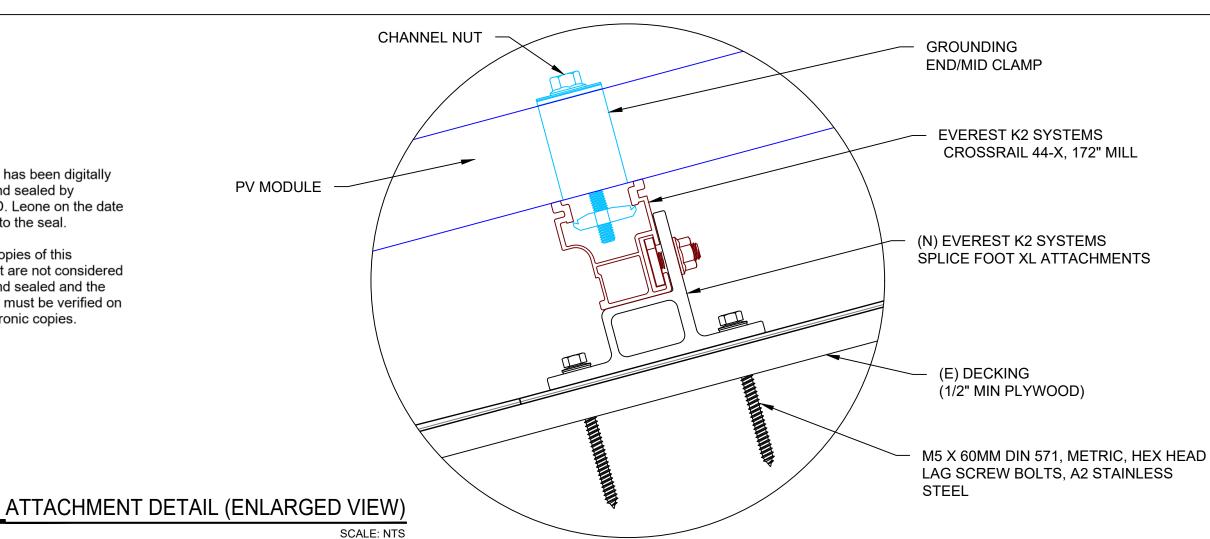

ESR


ROOF PLAN & MODULES


SHEET SIZE

ANSI B 11" X 17"

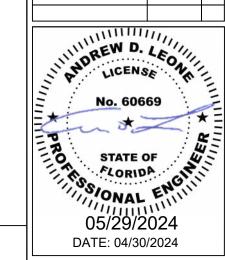
SHEET NUMBER


ATTACHMENT DETAIL

SCALE: NTS PV-5

This item has been digitally signed and sealed by Andrew D. Leone on the date adjacent to the seal.

Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.


PV-5

LUNEX POWER INC. 4721 N GRADY AVE **TAMPA FL 33614** LIC #: CVC57085 PHONE: 813-540-8807

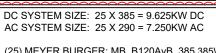
REVISIONS						
DESCRIPTION	DATE	REV				
CLIENT COMMENT	05/29/2024	Α				

PROJECT NAME & ADDRESS

FRANCES D GREENE RESIDENCE 212 NW DIVIDER TERRACE LAKE CITY, FL 32055

DRAWN BY

ESR


SHEET NAME

STRUCTURAL DETAIL

SHEET SIZE ANSI B

11" X 17"

SHEET NUMBER

(25) MEYER BURGER: MB_B120AyB_385 385W MONO MODULES WITH (25) ENPHASE: IQ8PLUS-72-2-US (240V) MICROINVERTERS (COMPLIANT WITH RAPID SHUTDOWN)

- (1) BRANCH CIRCUITS OF 13 MODULES AND
- (1) BRANCH CIRCUIT OF 12 MODULES ARE CONNECTED IN PARALLEL

INTERCONNECTION NOTES:

- 1. INTERCONNECTION SIZING, LIMITATIONS AND COMPLIANCE DETERMINED IN ACCORDANCE WITH [NEC 705.12], AND [NEC 690.59].
 2. GROUND FAULT PROTECTION IN ACCORDANCE WITH [NEC 215.9], INFC 230.95]
- 3. ALL EQUIPMENT TO BE RATED FOR BACKFEEDING.
- 4. PV BREAKER TO BE POSITIONED AT THE OPPOSITE END OF THE BUSBAR RELATIVE TO THE MAIN BREAKER.

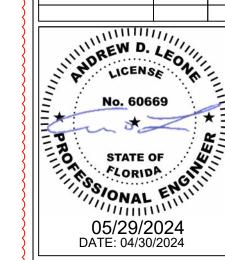
DISCONNECT NOTES:

- 1. DISCONNECTING SWITCHES SHALL BE WIRED SUCH THAT WHEN THE SWITCH IS OPENED THE CONDUCTORS REMAINING LIVE ARE CONNECTED TO THE TERMINALS MARKED "LINE SIDE" (TYPICALLY THE UPPER TERMINALS)
- 2. AC DISCONNECT MUST BE ACCESSIBLE TO QUALIFIED UTILITY PERSONNEL, BE LOCKABLE, AND BE A VISIBLE-BREAK SWITCH 3. DISCONNECT MEANS AND THEIR LOCATION SHALL BE IN ACCORDANCE WITH [NEC 225.31] AND [NEC 225.32].

RACKING NOTES

1. BOND EVERY OTHER RAIL WITH #6 BARE COPPER

GROUNDING & GENERAL NOTES:


- 1. **GROUNDING ELECTRODES AND GROUNDING ELECTRODE CONDUCTORS.**ADDITIONAL GROUNDING ELECTRODES SHALL BE PERMITTED TO BE
 INSTALLED IN ACCORDANCE WITH 250.52 AND 250.54.GROUNDING ELECTRODES
 SHALL BE PERMITTED TO BE CONNECTED DIRECTLY TO THE PV MODULE
 FRAME(S) OR SUPPORT STRUCTURE PER [NEC 690.47(B)]
- 2. PV INVERTER IS UNGROUNDED, TRANSFORMER-LESS TYPE.
- 3. DC GEC AND AC EGC TO REMAIN UNSPLICED, OR SPLICED TO EXISTING ELECTRODE
- 4. ANY EXISTING WIRING INVOLVED WITH PV SYSTEM CONNECTION THAT IS FOUND TO BE INADEQUATE PER CODE SHALL BE CORRECTED PRIOR TO FINAL INSPECTION.
- 5. SOLADECK QUANTITIES, AND PLACEMENT SUBJECT TO CHANGE IN THE FIELD SOLADECK DEPICTED ON ELECTRICAL DIAGRAM REPRESENT WIRE TYPE TRANSITIONS.
- 6. AC DISCONNECT NOTED IN EQUIPMENT SCHEDULE OPTIONAL IF OTHER AC DISCONNECTING MEANS IS LOCATED WITHIN 10' OF SERVICE DISCONNECT. 7. RACEWAYS AND CABLES EXPOSED TO SUNLIGHT ON ROOFTOPS SHOULD BE INSTALLED MORE THAN 7/8" ABOVE THE ROOF USING CONDUIT SUPPORTS.

LIC #: CVC57085

PHONE: 813-540-8807

REVISIONS					
DESCRIPTION DATE REV					
CLIENT COMMENT	05/29/2024	Α			

PROJECT NAME & ADDRESS

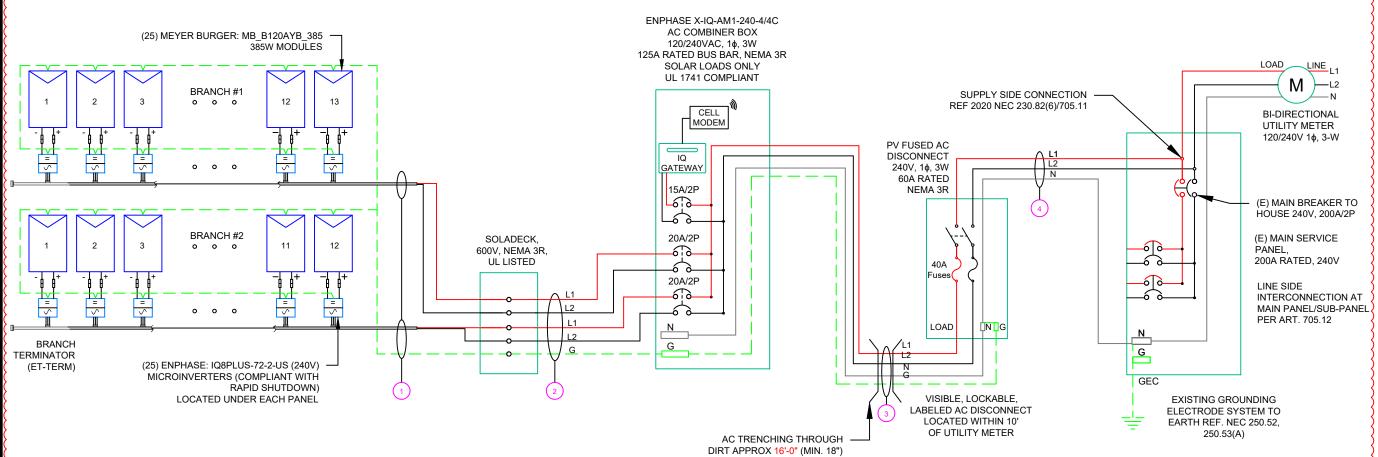
FRANCES D GREENE RESIDENCE

RESIDENCE 212 NW DIVIDER TERRACE LAKE CITY, FL 32055

DRAWN BY

ESR

SHEET NAME


ELECTRICAL LINE DIAGRAM

SHEET SIZE

ANSI B

11" X 17"

SHEET NUMBER PV-6

This item has been digitally signed and sealed by Andrew D. Leone on the date adjacent to the seal.

Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

CONDUIT CONDUCTOR INFORMATION CONDUIT TYPE QTY SIZE Q CABLE (4) CU#12AWG 1 & L2 NO NEUTRAL) N/A N/A (1) CU#6AWG -BARE COPPER IN FREE AIR (4) CU#10AWG THWN-2 (L1,L2) (EXTERIOR)/#10/2 ROMEX EMT OR LFMC IN ATTIC 3/4" (1) CU#10AWG THWN-2 GND ΓHWN-2 (L1,L2) (2) CU#6AWG -3/4" PVC BURIAL (MIN. 18") (1) CU#6AWG -THWN-2 N CU#6AWG -THWN-2 GND (1) THWN-2 (L1,L2) CU#6AWG -3/4" EMT, LFMC OR LFNC (1) CU#6AWG - THWN-2 N

ELECTRICAL LINE DIAGRAM
SCALE: NTS

INVERTER SPECIFICATIONS									
MANUFACTURER / MODEL #	ENPHASE: IQ8PLUS-72-2-US (240V) MICROINVERTERS (COMPLIANT WITH RAPID SHUTDOWN)								
MIN/MAX DC VOLT RATING	22V MIN/ 58V MAX								
MAX INPUT POWER	235W-440W								
NOMINAL AC VOLTAGE RATING	240V/ 211-264V								
MAX AC CURRENT	1.21A								
MAX MODULES PER CIRCUIT	13 (SINGLE PHASE)								
MAX OUTPUT POWER	290 VA								

$\overline{}$		
	SOLAR MOD	<u>ÚLE SPECIFICATIONS</u>
	MANUFACTURER / MODEL #	MEYER BURGER: MB_B120AyB_385 385W MODULE
	VMP	38.5V
	IMP	10.0A
	VOC	44.6V
	ISC	10.6A
	TEMP. COEFF. VOC	-0.234%/K
	MODULE DIMENSION	69.56"L x 40.98"W x 1.37"D (In Inch)

AMBIENT TEMPERATURE SPECS						
RECORD LOW TEMP	-6°					
AMBIENT TEMP (HIGH TEMP 2%)	35°					
MODULE TEMPERATURE COEFFICIENT OF Voc	-0.234%/K					

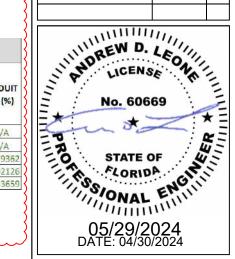
PERCENT OF	NUMBER OF CURRENT
VALUES	CARRYING CONDUCTORS IN EMT
.80	4-6
.70	7-9
.50	10-20

	AC CALCULATIONS																					
CIRCUIT ORIGIN	CIRCIUT DESTINATION	VOLTAGE (V)	FULL LOAD AMPS "FLA" (A)	FLA*1.25 (A)	OCPD SIZE (A)	NEUTRAL SIZE	GROUND SIZE	CONDUCTOR SIZE	75°C AMPACITY (A)		AMBIENT TEMP. (°C)	TOTAL CC CONDUCTORS IN RACEWAY	90°C AMPACITY (A)	DERATION FACTOR FOR AMBIENT TEMPERATURE NEC 310.15(B)(2)(a)	FOR CONDUCTORS	AMPACITY	AMPACITY CHECK #2	FEEDER LENGTH (FEET)	CONDUCTO R RESISTANCE (OHM/KFT)	VOLTAGE DROP AT FLA (%)	CONDUIT	CONDUIT FILL (%)
CIRCUIT 1	SOLADECK	240	15.73	19.6625	20	N/A	BARE COPPER #6 AWG	CU #12 AWG	25	PASS	35	2	30	0.96	1	28.8	PASS			0.76	N/A	#N/A
CIRCUIT 2	SOLADECK	240	14.52	18.15	20	N/A	BARE COPPER #6 AWG	CU #12 AWG	25	PASS	35	2	30	0.96	1	28.8	PASS			0.65	N/A	#N/A
SOLADECK	COMBINER BOX	240	15.73	19.6625	20	N/A	CU #10 AWG	CU #10 AWG	35	PASS	35	4	40	0.96	0.8	30.72	PASS	39	1.24	0.634	3/4" EMT	19.79362
COMBINER BOX	AC DISCONNECT	240	30.25	37.8125	40	CU #6 AWG	CU #6 AWG	CU #6 AWG	65	PASS	35	2	75	0.96	1	72	PASS	16	0.491	0.198	3/4" PVC	39.92126
AC DISCONNECT	POI	240	30.25	37.8125	40	CU #6 AWG	N/A	CU #6 AWG	65	PASS	35	2	75	0.96	1	72	PASS	5	0.491	0.062	3/4" EMT	28.53659

Circuit 1 Voltage Drop 1.654
Circuit 2 Voltage Drop 1.544

This item has been digitally signed and sealed by Andrew D. Leone on the date adjacent to the seal.

Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.


ELECTRICAL NOTES

- 1. ALL EQUIPMENT TO BE LISTED BY UL OR OTHER NRTL, AND LABELED FOR ITS APPLICATION.
- 2. ALL CONDUCTORS SHALL BE COPPER, RATED FOR 600 V AND 90 DEGREE C WET ENVIRONMENT.
- 3. WIRING, CONDUIT, AND RACEWAYS MOUNTED ON ROOFTOPS SHALL BE ROUTED DIRECTLY TO, AND LOCATED AS CLOSE AS POSSIBLE TO THE NEAREST RIDGE, HIP, OR VALLEY.
- WORKING CLEARANCES AROUND ALL NEW AND EXISTING ELECTRICAL EQUIPMENT SHALL COMPLY WITH NEC 110.26.
- 5. DRAWINGS INDICATE THE GENERAL ARRANGEMENT OF SYSTEMS. CONTRACTOR SHALL FURNISH ALL NECESSARY OUTLETS, SUPPORTS, FITTINGS AND ACCESSORIES TO FULFILL APPLICABLE CODES AND STANDARDS.
- 6. WHERE SIZES OF SOLADECK, RACEWAYS, AND CONDUITS ARE NOT SPECIFIED, THE CONTRACTOR SHALL SIZE THEM ACCORDINGLY.
- 7. ALL WIRE TERMINATIONS SHALL BE APPROPRIATELY LABELED AND READILY VISIBLE.
- 8. MODULE GROUNDING CLIPS TO BE INSTALLED BETWEEN MODULE FRAME AND MODULE SUPPORT RAIL, PER THE GROUNDING CLIP MANUFACTURER'S INSTRUCTION.
- 9. MODULE SUPPORT RAIL TO BE BONDED TO CONTINUOUS COPPER G.E.C. VIA WEEB LUG OR ILSCO GBL-4DBT LAY-IN LUG.
- 10. TEMPERATURE RATINGS OF ALL CONDUCTORS, TERMINATIONS, BREAKERS, OR OTHER DEVICES ASSOCIATED WITH THE SOLAR PV SYSTEM SHALL BE RATED FOR AT LEAST 75 DEGREE C.

LUNEX POWER INC. 4721 N GRADY AVE TAMPA FL 33614 LIC #: CVC57085 PHONE: 813-540-8807

REVISIONS					
DESCRIPTION	DATE	REV			
CLIENT COMMENT	05/29/2024	Α			

PROJECT NAME & ADDRESS

TERRACE, L 32055

212 NW DIVIDER 1 LAKE CITY, FL

FRANCES D GREENE RESIDENCE

DRAWN BY

ESR

SHEET NAME

WIRING CALCULATIONS

SHEET SIZE

ANSI B 11" X 17"

SHEET NUMBER

CAUTION: AUTHORIZED SOLAR PERSONNEL ONLY!

LABEL-1: LABEL LOCATION: AC DISCONNECT

⚠ WARNING

ELECTRICAL SHOCK HAZARD

TERMINALS ON THE LINE AND LOAD SIDES MAY BE ENERGIZED IN THE OPEN POSITION

LABEL- 2:
LABEL LOCATION:
AC DISCONNECT
COMBINER
MAIN SERVICE PANEL
SUBPANEL
MAIN SERVICE DISCONNECT
CODE REF: NEC 690.13(B)

⚠WARNING DUAL POWER SOURCE SECOND SOURCE IS PHOTOVOLTAIC SYSTEM

LABEL- 3: LABEL LOCATION: PRODUCTION METER UTILITY METER MAIN SERVICE PANEL SUBPANEL CODE REF: NEC 705.12(C) & NEC 690.59

⚠ WARNING

TURN OFF PHOTOVOLTAIC AC DISCONNECT PRIOR TO WORKING INSIDE PANEL

LABEL- 4:

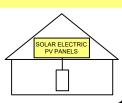
<u>LABEL LOCATION:</u>
MAIN SERVICE PANEL
SUBPANEL
MAIN SERVICE DISCONNECT
COMBINER

⚠ CAUTION

PHOTOVOLTAIC SYSTEM CIRCUIT IS
BACKFEED

CODE REF: NEC 110.27(C) & OSHA 1910.145 (f) (7)

LABEL- 5: LABEL LOCATION: MAIN SERVICE PANEL (ONLY IF SOLAR IS BACK-FED) SUBPANEL (ONLY IF SOLAR IS BACK-FED) CODE REF: NEC 705.12(D) & NEC 690.59



POWER SOURCE OUTPUT CONNECTION. DO NOT RELOCATE THIS OVERCURRENT DEVICE

LABEL- 6:
LABEL LOCATION:
MAIN SERVICE PANEL (ONLY IF SOLAR IS BACK-FED)
SUBPANEL (ONLY IF SOLAR IS BACK-FED)
CODE REF: NEC 705.12(B)(3)(2)

SOLAR PV SYSTEM EQUIPPED WITH RAPID SHUTDOWN

TURN RAPID SHUTDOWN
SWITCH TO THE
"OFF" POSITION TO
SHUT DOWN PV SYSTEM
AND REDUCE
SHOCK HAZARD
IN THE ARRAY

LABEL-7: LABEL LOCATION: AC DISCONNECT CODE REF: IFC 605.11.3.1(1) & NEC 690.56(C)

RAPID SHUTDOWN SWITCH FOR SOLAR PV SYSTEM

LABEL- 8: LABEL LOCATION: AC DISCONNECT CODE REF: NEC 690.56(C)(2)

PHOTOVOLTAIC

AC DISCONNECT

LABEL - 9:

LABEL LOCATION:
AC DISCONNECT
CODE REF: NEC 690.13(B)

PHOTOVOLTAIC AC DISCONNECT

NOMINAL OPERATING AC VOLATGE

240 V 30.25 A

RATED AC OUTPUT CURRENT

LABEL- 10:

LABEL LOCATION:
MAIN SERVICE PANEL
SUBPANEL
AC DISCONNECT
CODE REF: NEC 690.54

MAIN PHOTOVOLTAIC SYSTEM DISCONNECT

LABEL-11:

LABEL LOCATION:

MAIN SERVICE DISCONNECT (ONLY IF MAIN SERVICE DISCONNECT IS PRESENT)

CODE PEE: NEC 600 13/B)

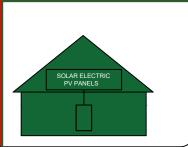
PRODUCTION METER

LABEL- 12:

LABEL LOCATION:
PRODUCTION METER (ONLY IF PRODUCTION METER IS USED)

CAUTION: PHOTOVOLTAIC SYSTEM FOR SERVICE: LUNEX POWER 813-540-8807

LABEL-13:


WARNING: PHOTOVOLTAIC POWER SOURCE

LABEL-14:

LABEL LOCATION:
EMT/CONDUIT RACEWAY
SOLADECK/JUNCTION BOX
CODE REF: NEC 690.31 (D) (14)

EMERGENCY RESPONDER THIS SOLAR PV SYSTEM EQUIPPED WITH RAPID SHUTDOWN

TURN RAPID SHUTDOWN SWITCH TO THE 'OFF' POSITION TO SHUTDOWN ENTIRE PV SYSTEM.

THE LABEL SHALL BE REFLECTIVE, WITH ALL LETTERS CAPITALIZED AND HAVING A MINIMUM HEIGHT OF 3/8 IN. (9.5 MM), IN WHITE ON A RED BACKGROUND.

LABEL- 15: LABEL LOCATION: AC DISCONNECT CODE REF:NFPA 1 (11.12.2.1.1.1.1)

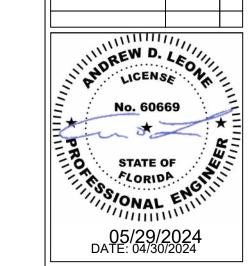
THE RAPID SHUTDOWN LABEL SHALL BE LOCATED ON OR NO MORE

THAN A ST (AN) SPON THE SERVICE BISCONNECTION AND AND A STANDARD

THE RAPID SHUTDOWN LABEL SHALL BE LOCATED ON OR NO MORE

THAN A ST (AN) SPON THE SERVICE BISCONNECTION AND AND ADDRESS OF THE SERVICE BISCONNECTION ADDRESS OF THE SERVICE BISCONNECTION ADDRESS OF THE SERVICE BISCONNECTION ADDRESS OF THE

THAN 3 FT (1 M) FROM THE SERVICE DISCONNECTING MEANS
2. (HEIGHT OF LABEL IS 3/8 IN. (9.5 MM), IN WHITE ON A RED BACKGROUND)


This item has been digitally signed and sealed by Andrew D. Leone on the date adjacent to the seal.

Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

LUNEX POWER INC. 4721 N GRADY AVE TAMPA FL 33614 LIC #: CVC57085 PHONE: 813-540-8807

REVISIONS					
DESCRIPTION	DATE	REV			
CLIENT COMMENT	05/29/2024	Α			

PROJECT NAME & ADDRESS

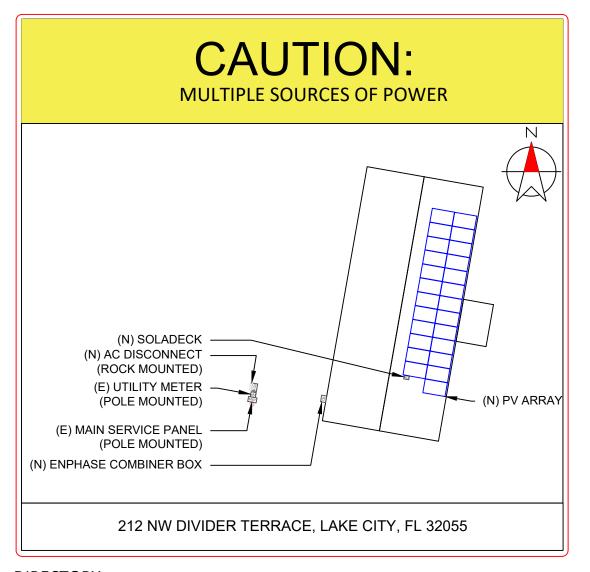
DIVIDER TERRACE E CITY, FL 32055

212 NW DI LAKE (

FRANCES D GREENE RESIDENCE

DRAWN BY

SHEET NAME


LABELS

SHEET SIZE

ANSI B

11" X 17"

SHEET NUMBER

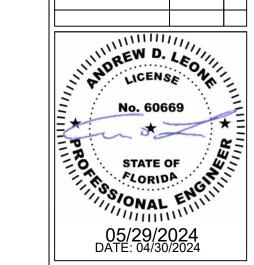
This item has been digitally signed and sealed by Andrew D. Leone on the date adjacent to the seal.

Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

DIRECTORY

PERMANENT PLAQUE OR DIRECTORY PROVIDING THE LOCATION OF THE SERVICE DISCONNECTING MEANS AND THE PHOTOVOLTAIC SYSTEM.

(ALL PLAQUES AND SIGNAGE WILL BE INSTALLED AS OUTLINED WITHIN: NEC 690.56(B)&(C), [NEC 705.10])


LABELING NOTES:

- 1. LABELS CALLED OUT ACCORDING TO ALL COMMON CONFIGURATIONS. ELECTRICIAN TO DETERMINE EXACT REQUIREMENTS IN THE FIELD PER CURRENT NEC AND LOCAL CODES AND MAKE APPROPRIATE ADJUSTMENTS.
- 2. LABELING REQUIREMENTS BASED ON THE 2020 NATIONAL ELECTRIC CODE, OSHA STANDARD 19010.145, ANSI Z535.
- 3. MATERIAL BASED ON THE REQUIREMENTS OF THE AUTHORITY HAVING JURISDICTION.
- 4. LABELS TO BE OF SUFFICIENT DURABILITY TO WITHSTAND THE ENVIRONMENT INVOLVED [NEC 110.21]
- 5. LABELS TO BE A MINIMUM LETTER HEIGHT OF 3/8", WHITE ON RED BACKGROUND; REFLECTIVE, AND PERMANENTLY AFFIXED [IFC 605.11.1.1]

LUNEX POWER INC. 4721 N GRADY AVE TAMPA FL 33614 LIC #: CVC57085 PHONE: 813-540-8807

REVISION	IS	
DESCRIPTION	DATE	REV
CLIENT COMMENT	05/29/2024	Α

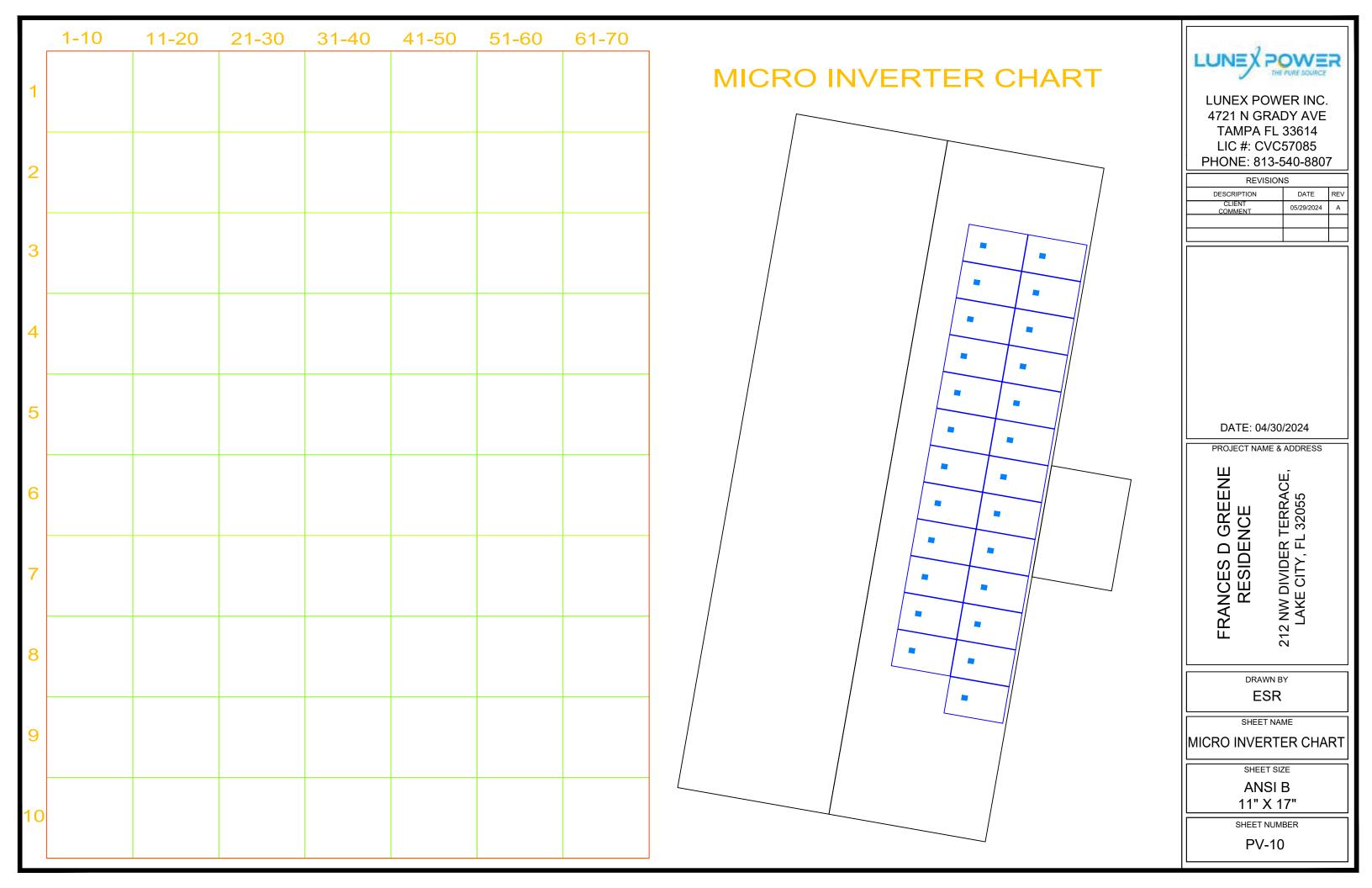
PROJECT NAME & ADDRESS

FRANCES D GREENE RESIDENCE

212 NW DIVIDER TERRACE, LAKE CITY, FL 32055

DRAWN BY

ESR


SHEET NAME

PLACARD

SHEET SIZE

ANSI B 11" X 17"

SHEET NUMBER

ΜEYER BURGER

Meyer Burger Black

375 - 395 Wp

For maximum yields combined with outstanding design: Heterojunction high-performance solar module with SmartWire Connection Technology (SWCT®).

Made in Germany. Designed in Switzerland.

Production and development according to the highest quality standards.

Highly profitable

More or More energy yield over the same area even on cloudy or hot days.

Extremely durable

Outstanding cell stability and high breakage resistance thanks to patented SmartWire Connection Technology.

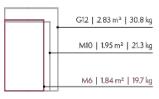
Consistently sustainable

Regional value creation, made without lead and PFAS, produced using 100% renewable energy.

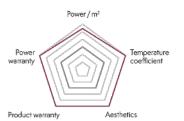
Guaranteed reliability

Industry-leading 25-year product and performance

Extremely aesthetic


Elegant Swiss design suitable for all roof shapes and sophisticated architecture.

Extremely practical


Convenient handling, maximum layout flexibility and maximum system performance thanks to compact


*Size formats compared

O Meyer Burger O Market average

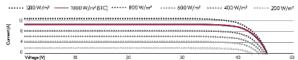
Mechanical specification

1767 x 1041 x 35			
19.7	19.7		
Tempered solar glass, 3.2 mm, with anti-reflective surface	Tempered solar glass, 3.2 mm, with anti-reflective surface		
Black water-barrier backsheet			
Black anodized aluminum			
Il type 120 half-cells, mono n-Si, HJT with SWCT®			
unction baxes 3 diodes, IP68 rated in accordance with IEC 62790			
PV cable 4 mm², 1.2 m length in accordance with EN 50618			
1: MC4; 2: MC4-Evo2; 3: UKT Energy PV-CO02; 4: TE Connectivity PV4-SI in accordance with IEC 62852, IP68 rated only when connected			
	Tempered solar glass, 3.2 mm, with anti-reflective surface Black water-barrier backsheet Black anodized aluminum 120 half-cells, mono n-Si, HJT with SWCT® 3 diodes, IP68 rated in accordance with IEC 62790 PV cable 4 mm², 1.2 m length in accordance with EN 50618 1: MC4: 2: MC4-Evo2: 3: UKT Energy PV-CO02: 4: TE Connectivity PV4-S1		

Packages

1	4
80	1050
ım	mm

Electrical specification¹ Product type: MB_B120AyB_XXX°


Efficiency	Power	r"°	Short cire	uit current	Open cir	cuit voltage	Current	at MPP	Voltage	e at MPP
η	P _{mex}			l _{sc}		V _∞	I,	pp		mpp
[%]	[W]		i	A]		[V]	[/	\]	ľ	[V]
STC ²	NMOT ³	STC	NMOT	STC	NMOT	STC	NMOT	STC	NMOT	STC
20.4	283	375	8.5	10.6	42.2	44.4	7.9	9.9	35.7	37.8
20.7	287	380	8.5	10.6	42.2	44.5	8.0	10.0	36.1	38.2
20.9	291	385	8.5	10.6	42.3	44.6	8.0	10.0	36.4	38.5
21,2	294	390	8.5	10.6	42.4	44.6	9.0	10,1	35./	38.9
21.5	298	395	8.5	10.6	42.4	44.7	8.1	10.1	37.0	39.2
	n [%] STC ² 20.4 20.7 20.9	n P _{nee} [%] [W] STC ² NMOT ³ 20.4 283 20.7 287 20.9 291 21,2 494	n P _{mex} % W STC² NMOT³ STC 20.4 283 375 20.7 287 380 20.9 291 385 21,2 294 390	n P _{mex} [%] [W] [[W] [[STC² NMOT³ STC NMOT 20.4 283 375 8.5 20.7 287 380 8.5 20.9 291 385 8.5 21.2 274 390 8.5	n P _{mee} I _e [%] [W] [A] STC² NMOT³ STC NMOT STC 20.4 283 375 8.5 10.6 20,7 287 380 8.5 10.6 20,9 291 385 8.5 10.6 21,2 274 390 8.5 10.6	η P _{max} I _s [%] [W] [A] STC² NMOT³ STC NMOT STC NMOT 20.4 283 375 8.5 10.6 42.2 20.7 287 380 8.5 10.6 42.2 20.9 291 385 8.5 10.6 42.3 21.2 294 390 8.5 10.6 42.4	1 P _{max} I _{sc} V _{sc} % [W] [A] STC² NMOT³ STC NMOT STC NMOT STC 20.4 283 375 8.5 10.6 42.2 44.4 20.7 287 380 8.5 10.6 42.2 44.5 20.9 291 385 8.5 10.6 42.3 44.6 21.2 274 390 8.5 10.6 42.4 44.6	P _{mes} V _e V _e N _m N _m	P _{met} I _e V _{oc} I _{mpt} % [W]	1 P _{mes} I _{sc} V _{oc} I _{mep} V [N] [W] [W] [N] [V] [V] [M] [V] [M] [V] [M] [V] [M] [V] [M] [V] [M] [M

* XXX = power class, y = connector type | "* Power tolerance -0 W / +5 W for STC

Temperature coefficient of I _{sc}	a	[%/K]	+0.033
Temperature coefficient of V _{cc}	β	[%/K]	-0.234
Temperature coefficient of P _{MPP}	γ	[%/K]	-0.259
Nominal Module Operating Temperature	NMOT ³	[°C]	44±2

The temperature coefficients stated are linear values.

I-V curves at different irradiations

Properties for system design

Max. system voltage	[V]	1000
Overcurrent protection rating	[A]	20
Max. test lcad +/- (Safety factor for test load = 1.5)	[Pa]	6000/4000
Max. design load +/-	[Pa]	4000/2666
Safety class		ı
Fire class (EN 13501-1 / EN 13501-5)		E/B _{ROOF} [t1]
Operation remperature	[°C]	-40 to +85

Certificates

IEC 61215:2016, IEC 61730:2016, PID (IEC 62804), Salt Mist (IEC 61701), MCS 010 & MCS 005

Certification pending: Ammonia Resistance (IEC 62716), Dust & Sand (IEC 60068)

Test procedure according to IEC standard

Notice: All data and specifications are preliminary and subject to change without notice.

LUNEX POWER

LUNEX POWER INC. 4721 N GRADY AVE **TAMPA FL 33614** LIC #: CVC57085 PHONE: 813-540-8807

REVISION	S	
DESCRIPTION	DATE	REV
CLIENT COMMENT	05/29/2024	Α

DATE: 04/30/2024

PROJECT NAME & ADDRESS

FRANCES D GREENE RESIDENCE TERRACE, L 32055 DIVIDER T E CITY, FL (212 NW D LAKE (

> DRAWN BY **ESR**

SHEET NAME **EQUIPMENT SPECIFICATION**

SHEET SIZE

ANSI B 11" X 17"

SHEET NUMBER

IQ8 and IQ8+ Microinverters

Our newest IQ8 Microinverters are the industry's first microgrid-forming, software-defined microinverters with split-phase power conversion capability to convert DC power to AC power efficiently. The brain of the semiconductor-based microinverter is our proprietary application-specific integrated circuit (ASIC), which enables the microinverter to operate in grid-tied or off-grid modes. This chip is built using advanced 55-nm technology with high-speed digital logic and has superfast response times to changing loads and grid events, alleviating constraints on battery sizing for home energy systems.

Part of the Enphase Energy System, IQ8 Series Microinverters integrate with the IQ Battery, IQ Gateway, and the Enphase App monitoring and analysis

Connect PV modules quickly and easily to IQ8 Series Microinverters using the included Q-DCC-2 adapter cable with plug-and-play MC4 connectors.

IQ8 Series Microinverters redefine reliability standards with more than one million cumulative hours of power-on testing, enabling an industry-leading limited warranty of up to 25 years.

IQ8 Series Microinverters are UL Listed as PV rapid shutdown equipment and conform with various regulations, when installed according to the manufacturer's

"Meets UL 1741 only when installed with IO System Controller 2. **IQ8 and IQ8+ support split-phase, 240 V installations only.

@ 2023 Enphase Energy. All rights reserved. Enphase, the e and CC logos, IQ, and certain other marks listed at https://enphase.com/trademark-usage-guidelines are trademarks of Enphase Energy, Inc. in the US and other countries. Data subject to change.

Easy to install

- · Lightweight and compact with plugand-play connectors
- · Power line communication (PLC) between components
- · Faster installation with simple two-wire cabling

High productivity and reliability

- · Produce power even when the grid is down*
- · More than one million cumulative hours of testing
- · Class II double-insulated enclosure
- · Optimized for the latest high-powered

Microgrid-forming

- · Compliant with the latest advanced grid support**
- · Remote automatic updates for the latest grid requirements
- · Configurable to support a wide range of grid profiles
- Meet CA Rule 21 (UL 1741-SA) and IEEE® 1547:2018 (UL 1741-SB 3rd Ed.)

NOTE:

- IQ8 Microinverters cannot be mixed with previous generations of Enphase microinverters (IQ7 Series, IQ6 Series, and so on) in the same
- IQ Gateway is required to change the default grid profile at the time of installation to meet local Authority Having Jurisdiction (AHJ)

IQ8SP-12A-DSH-00207-2.0-EN-US-2023-10-13

IQ8 and IQ8+ Microinverters

INPUT DATA (DC)	UNITS	IQ8-60-2-U\$	108PLUS-72-2-US	
Commonly used module pairings ¹	W	235-350	235-440	
Module compatibility	-	To meet compatibility, PV modules must be within maximum in Module compatibility can be checked at https://enpha		
MPPT voltage range	V	27-37	27–45	
Operating range	٧	16-48	16-58	
Minimum/Maximum start voltage	V	22/48	22/58	
Maximum input DC voltage	٧	50	60	
Maximum continuous input DC current	А	10	12	
Maximum input DC short-circuit current	А	25		
Maximum module I _{sc}	А	20		
Overvoltage class DC port	_	II .		
DC port backfeed current	mA	0		
PV array configuration	- 1	1 × 1 ungrounded array; no additional DC side protection required; AC side protection requires maximum 20 A per branch circuit		

OUTPUT DATA (AC)	UNITS	IQ8-60-2-US	10.8PLUS-72-2-US	
Peak output power	VA	245	300	
Maximum continuous output power	VA	240	290	
Nominal grid voltage (L-L)	V	240, split-	phase (L-L), 180°	
Minimum and Maximum grid voltage ²	ν	2	211-264	
Maximum continuous output current	Δ	1.0	1.21	
Nominal frequency	Hz		60	
Extended frequency range	Hz	47-68		
AC short-circuit fault current over three cycles	Arms	2		
Maximum units per 20 A (L-L) branch circuit ³	-	16	13	
Total harmonic distortion	%		<5	
Overvoltage class AC port	-	Ш		
AC port backfeed current	mA		30	
Power factor setting	=		1.0	
Grid-tied power factor (adjustable)	_	0.85 leading 0.85 lagging		
Peak efficiency	%	97.7		
CEC weighted efficiency	%		97	
Nighttime power consumption	mW	23	25	

MECHANICAL DATA	
Ambient temperature range	-40°C to 60°C (-40°F to 140°F)
Relative humidity range	4% to 100% (condensing)
DC connector type	MC4
Dimensions (H × W × D)	212 mm (8.3 in) × 175 mm (6.9 in) × 30.2 mm (1.2 in)
Weight	1.08 kg (2.38 lbs)
Cooling	Natural convection-no fans
Approved for wet locations	Yes
Pollution degree	PD3
Enclosure	Class II double-insulated, corrosion-resistant polymeric enclosure
Environmental category/UV exposure rating	NEMA Type 6/Outdoor

(1) No enforced DC/AC ratio.
(2) Nominal voltage range can be extended beyond nominal if required by the utility.
(3) Limits may very, fieler to local requirements to define the number of microinverters per branch in your area.

IQ8SP-12A-DSH-00207-2.0-EN-US-2023-10-13

IQ8 and IQ8+ Microinverters

10 10 10	
Certification	S

CA Rule 21 (UL 1741-SA), UL 62109-1, IEEE 1547:2018 (UL 1741-SB 3" Ed.), FCC Part 15 Class B, ICES-0003 Class B, CAN/CSA-C22, 2 NO, 107.1-01 This product is UL Listed as PV rapid shutdown equipment and conforms with NEC 2014, NEC 2017, NEC 2020, and NEC 2023 section 690.12 and C22.1-2018 Rule 64-218 rapid shutdown of PV Systems, for AC and DC conductors, when installed according to the manufacturer's instructions.

LUNEX POWER INC. 4721 N GRADY AVE **TAMPA FL 33614** LIC #: CVC57085 PHONE: 813-540-8807

REVISION	IS	
DESCRIPTION	DATE	REV
CLIENT COMMENT	05/29/2024	Α

DATE: 04/30/2024

PROJECT NAME & ADDRESS

FRANCES D GREENE RESIDENCE

TERRACE, L 32055 DIVIDER T E CITY, FL (212 NW D LAKE

DRAWN BY

ESR

SHEET NAME **EQUIPMENT SPECIFICATION**

SHEET SIZE

ANSI B 11" X 17"

SHEET NUMBER

Data Sheet **Enphase Networking**

Enphase IQ Combiner 4/4C

X-IQ-AM1-240-4 X-IQ-AM1-240-4C

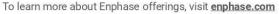
To learn more about Enphase offerings, visit enphase.com

The Enphase IQ Combiner 4/4C with Enphase IQ Gateway and integrated LTE-M1 cell modem (included only with IQ Combiner 4C) consolidates interconnection equipment into a single enclosure and streamlines IQ microinverters and storage installations by providing a consistent, pre-wired solution for residential applications. It offers up to four 2-pole input circuits and Eaton BR series busbar assembly.

Smart

- · Includes IQ Gateway for communication and control
- Includes Enphase Mobile Connect cellular modem (CELLMODEM-M1-06-SP-05), included only with IQ Combiner 4C
- · Includes solar shield to match Enphase IQ Battery aesthetics and deflect heat
- · Flexible networking supports Wi-Fi, Ethernet, or cellular
- · Optional AC receptacle available for PLC bridge
- · Provides production metering and consumption monitoring

Simple


- · Centered mounting brackets support single stud mounting
- · Supports bottom, back and side conduit entry
- · Up to four 2-pole branch circuits for 240 VAC plug-in breakers (not included)
- · 80A total PV or storage branch circuits

- · Durable NRTL-certified NEMA type 3R enclosure
- · Five-year limited warranty
- Two years labor reimbursement program coverage included for both the IQ Combiner SKU's
- UL listed

Ennhase IO Combiner 4/4C

MODEL NUMBER	
IQ Combiner 4 (X-IQ-AM1-240-4)	IQ Combiner 4 with Enphase IQ Gateway printed circuit board for integrated revenue grade PV production metering (ANS C12.20 +/-0.5%) and consumption monitoring (+/-2.5%). Includes a silver solar shield to match the IQ Battery system an IQ System Controller 2 and to deflect heat.
IQ Combiner 4C (X-IQ-AM1-240-4C)	IQ Combiner 4C with Enphase IQ Gateway printed circuit board for integrated revenue grade PV production metering (ANSI C12.20 +/- 0.5%) and consumption monitoring (+/- 2.5%). Includes Enphase Mobile Connect cellular modem (CELLMODEM-MT-06-SP-05), a plug-and-play industrial-grade cell modem for systems up to 60 microinverters. (Available in the US, Canada, Mexico, Puerto Rico, and the US Virgin Islands, where there is adequate cellular service in the installation area.) Includes a silver solar shield to match the IQ Battery and IQ System Controller and to deflect heat
ACCESSORIES AND REPLACEMENT PARTS	(not included, order separately)
Ensemble Communications Kit COMMS-CELLMODEM-M1-06 CELLMODEM-M1-06-SP-05 CELLMODEM-M1-06-AT-05	- Includes COMMS-KIT-01 and CELLMODEM-M1-06-SP-05 with 5-year Sprint data plan for Ensemble sites - 4G based LTE-M1 cellular modem with 5-year Sprint data plan - 4G based LTE-M1 cellular modem with 5-year AT&T data plan
Circuit Breakers BRK-10A-2-240V BRK-15A-2-240V BRK-20A-2P-240V BRK-15A-2P-240V-B BRK-20A-2P-240V-B	Supports Eaton BR210, BR215, BR220, BR230, BR240, BR250, and BR260 circuit breakers. Circuit breaker, 2 pole, 10A, Eaton BR210 Circuit breaker, 2 pole, 15A, Eaton BR215 Circuit breaker, 2 pole, 20A, Eaton BR220 Circuit breaker, 2 pole, 15A, Eaton BR215B with hold down kit support Circuit breaker, 2 pole, 20A, Eaton BR220B with hold down kit support
EPLC-01	Power line carrier (communication bridge pair), quantity - one pair
XA-SOLARSHIELD-ES	Replacement solar shield for IQ Combiner 4/4C
XA-PLUG-120-3	Accessory receptacle for Power Line Carrier in IQ Combiner 4/4C (required for EPLC-01)
XA-ENV-PCBA-3	Replacement IQ Gateway printed circuit board (PCB) for Combiner 4/4C
X-IQ-NA-HD-125A	Hold down kit for Eaton circuit breaker with screws.
ELECTRICAL SPECIFICATIONS	
Rating	Continuous duty
System voltage	120/240 VAC, 60 Hz
Eaton BR series busbar rating	125 A
Max. continuous current rating	65 A
Max. continuous current rating (input from PV/storage)	64 A
Max. fuse/circuit rating (output)	90 A
Branch circuits (solar and/or storage)	Up to four 2-pole Eaton BR series Distributed Generation (DG) breakers only (not included)
Max. total branch circuit breaker rating (input) Envoy breaker	80A of distributed generation / 95A with IQ Gateway breaker included 10A or 15A rating GE/Siemens/Eaton included
Production metering CT	200 A solid core pre-installed and wired to IQ Gateway
Consumption monitoring CT (CT-200-SPLIT)	A pair of 200 A split core current transformers
MECHANICAL DATA	
Dimensions (WxHxD)	37.5 x 49.5 x 16.8 cm (14.75" x 19.5" x 6.63"). Height is 21.06" (53.5 cm) with mounting brackets.
Weight	7.5 kg (16.5 lbs)
Ambient temperature range	-40° C to +46° C (-40° to 115° F)
Cooling	Natural convection, plus heat shield
Enclosure environmental rating	Outdoor, NRTL-certified, NEMA type 3R, polycarbonate construction
Wire sizes	20 A to 50 A breaker inputs: 14 to 4 AWG copper conductors 60 A breaker branch input: 4 to 1/0 AWG copper conductors Main lug combined output: 10 to 2/0 AWG copper conductors Neutral and ground: 14 to 1/0 copper conductors Always follow local code requirements for conductors
Altitude	To 2000 meters (6,560 feet)
INTERNET CONNECTION OPTIONS	
Integrated Wi-Fi	802.11b/g/n
Cellular	CELLMODEM-M1-06-SP-05, CELLMODEM-M1-06-AT-05 (4G based LTE-M1 cellular modem). Note that an Enphase Mobile Connect cellular modem is required for all Ensemble installations.
Ethernet	Optional, 802.3, CatSE (or Cat 6) UTP Ethernet cable (not included)
COMPLIANCE	
Compliance, IQ Combiner	UL 1741, CAN/CSA C22.2 No. 107.1, 47 CFR, Part 15, Class B, ICES 003 Production metering: ANSI C12.20 accuracy class 0.5 (PV production) Consumption metering: accuracy class 2.5
Compliance, IQ Gateway	UL 60601-1/CANCSA 22.2 No. 61010-1

© 2022 Enphase Energy, All rights reserved. Enphase, the Enphase logo, IQ Combiner 4/4C, and other names are trademarks of Enphase Energy, Inc. Data subject to change. 02-14-2022

LUNEX POWER INC. 4721 N GRADY AVE **TAMPA FL 33614** LIC #: CVC57085 PHONE: 813-540-8807

REVISION	IS	
DESCRIPTION	DATE	REV
CLIENT COMMENT	05/29/2024	Α

DATE: 04/30/2024

PROJECT NAME & ADDRESS

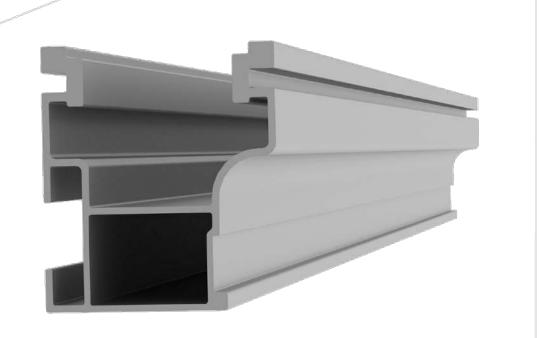
FRANCES D GREENE RESIDENCE

212 NW DIVIDER TERRACE LAKE CITY, FL 32055

DRAWN BY **ESR**

SHEET NAME **EQUIPMENT** SPECIFICATION

SHEET SIZE


ANSI B 11" X 17"

SHEET NUMBER

CrossRail 44-X

Part Number	Description
4000019	CrossRail 44-X 166", Mill
4000020	CrossRail 44-X 166", Dark
4000021	CrossRail 44-X 180", Mill
4000022	CrossRail 44-X 180", Dark
4000719	CrossRail 44-X 172", Mill
4000720	CrossRail 44-X 172", Dark
4000721	CrossRail 44-X 185", Mill
4000722	CrossRail 44-X 185", Dark
4000143	SPO CrossRail 44-X 86", Mill

TECHNICAL DATA

Mechanical Properties

	CrossRait 44-X	
Material	6000 Series Aluminum	
Ultimate Tensile Strength	37.7 ksi (260 MPa)	
Yield Strength	34.8 ksi (240 MPa)	
Weight	.47 lbs/ft (0.699 kg/m)	

Sectional Properties

	CrossRail 44-X
Sx	0.149 in3 (0.3785 cm3)
Sy	0.145 in3 (0.3683 cm3)
A (X-Section)	0.405 ln2 (1.0287 cm2)

LOAD		RAIL SPAN								
SNOW (psf)	WIND (mph)	32"	4'	64"	6'	80"	8,	112"	10'	12'
0	120									
0	140									
0	160									
10.	120									
10	140									
10	160									
.20	140									
20	160									
30	160									
40	160							i.		
80	160									
100	160					,				

Units: [mm] in

[39] 1.54 [44] 1.73

Notes

- > Structural values and span charts determined in accordance with Aluminum Design Manual and ASCE 7-16
- UL2703 Listed System for Fire and Bonding

LUNEX POWER

LUNEX POWER INC. 4721 N GRADY AVE TAMPA FL 33614 LIC #: CVC57085 PHONE: 813-540-8807

REVISIONS					
DESCRIPTION	DATE	REV			
CLIENT COMMENT	05/29/2024	Α			

DATE: 04/30/2024

212 NW DIVIDER TERRACE, LAKE CITY, FL 32055

PROJECT NAME & ADDRESS

FRANCES D GREENE RESIDENCE

DRAWN BY

SHEET NAME EQUIPMENT SPECIFICATION

SHEET SIZE

ANSI B

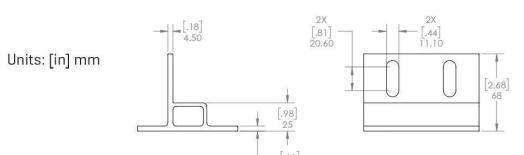
11" X 17"

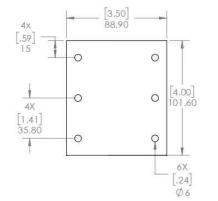
SHEET NUMBER PV-14

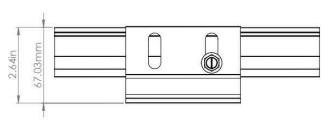
We support PV systems Formerly Everest Solar Systems

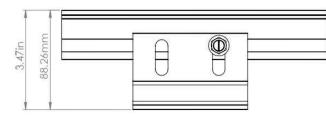
Splice Foot XL

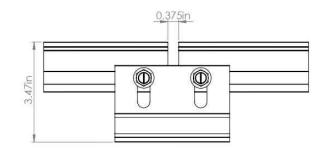
TECHNICAL SHEET


Item Number	Description	Part Number
1	Splice Foot XL	4000162 Splice Foot XL Kit, Mill
2	K2 EverSeal	
3	M5 x 60 lag screws	
4	T-Bolt & Hex Nut Set	


Technical Data


	Splice Foot XL
RoofType	Composition shingle
Material	Aluminum with stainless steel hardware
Finish	Mill
Roof Connection	M5 x 60 lag screws
Code Compliance	UL 2703
Compatibility	CrossRail 44-X, 48-X, 48-XL, 80


We support PV systems Formerly Everest Solar Systems



LUNEX POWER

LUNEX POWER INC. 4721 N GRADY AVE **TAMPA FL 33614** LIC #: CVC57085 PHONE: 813-540-8807

REVISIONS				
DESCRIPTION	DATE	REV		
CLIENT COMMENT	05/29/2024	Α		

DATE: 04/30/2024

PROJECT NAME & ADDRESS

FRANCES D GREENE RESIDENCE

212 NW DIVIDER TERRACE, LAKE CITY, FL 32055

DRAWN BY

ESR

SHEET NAME **EQUIPMENT SPECIFICATION**

> SHEET SIZE ANSI B

11" X 17"

SHEET NUMBER

PV-15

k2-systems.com

k2-systems.com

Basic Features

- Stamped Seamless Construction
- 18 Gauge Galvanized Steel
- Powder Coated Surfaces
- · Flashes into the roof deck
- 3 Roof deck knockouts .5", .75", 1"
- 5 Centering dimples for entry/exit fittings or conduit
- · 2 Position Ground lug installed
- Mounting Hardware Included

SolaDeck Model SD 0783

SolaDeck UL50 Type 3R Enclosures

Available Models: Model SD 0783 - (3" fixed Din Rail) Model SD 0786 - (6" slotted Din Rail)

SolaDeck UL 1741 Combiner/Enclosures

Models SD 0783-41 and SD 0786-41 $\,$ are labeled and ETL listed UL STD 1741 according to the UL STD 1741 for photovoltaic combiner enclosures.

Max Rated - 600VDC, 120AMPS

Model SD 0783-41 3" Fixed Din Rail fastened using Norlock System

- **Typical System Configuration
- 4- Din Rail Mounted Fuse Holders 600VDC 30 AMP
- 1- Power Distribution Block 600VDC 175AMP
- 1- Bus Bar with UL lug

Model SD 0786-41 6" Slotted Din Rail fastened using steel studs

- **Typical System Configuration
- 4- Din Rail Mounted Fuse Holders 600VDC 30 AMP
- 4- Din Rail Mounted Terminal Blocks Bus Bars with UL lug

**Fuse holders and terminal blocks added in the field must be UL listed or recognized and meet 600 VDC 30 AMP 110C for fuse holders, 600V 50 AMP 90C for rail mounted terminal blocks and 600 V 175 AMP 90C for Power Distribution Blocks. Use Copper Wire Conductors.

Cover is trimmed to allow conduit or fittings, base is center dimpled for fitting locations.

Model SD 0783-41, wired with Din Rail mounted fuse holders, bus bar and power distribution block.

Model SD 0786-41, wired with Din Rail mounted fuse holders, terminal blocks and bus bars.

RSTC Enterprises, Inc • 2219 Heimstead Road • Eau Cliare, WI 54703 For product information call 1(866) 367-7782

LUNEX POWER INC. 4721 N GRADY AVE TAMPA FL 33614 LIC #: CVC57085 PHONE: 813-540-8807

REVISIONS				
DESCRIPTION	DATE	REV		
CLIENT COMMENT	05/29/2024	Α		

DATE: 04/30/2024

PROJECT NAME & ADDRESS

FRANCES D GREENE RESIDENCE 212 NW DIVIDER TERRACE, LAKE CITY, FL 32055

DRAWN BY

ESR

SHEET NAME
EQUIPMENT
SPECIFICATION

SHEET SIZE

ANSI B 11" X 17"

SHEET NUMBER