FEBRUARY 8, 2008 ### LATERAL BRACING RECOMMENDATIONS ### ST-STRGBCK MiTek Industries, Inc. MiTek Industries, Chesterfield, MO Page 1 of 1 TO MINIMIZE VIBRATION COMMON TO ALL SHALLOW FRAMING SYSTEMS. 2x6 "STRONGBACK" IS RECOMMENDED, LOCATED EVERY 8 TO 10 FEET ALONG A FLOOR TRUSS. NOTE 1: 2X6 STRONGBACK ORIENTED VERTICALLY MAY BE POSITIONED DIRECTLY UNDER THE TOP CHORD OR DIRECTLY ABOVE THE BOTTOM CHORD. SECURELY FASTENED TO THE TRUSS USING ANY OF THE METHODS ILLUSTRATED BELOW. NOTE 2: STRONGBACK BRACING ALSO SATISFIES THE LATERAL BRACING REQUIREMENTS FOR THE BOTTOM CHORD OF ### August 10, 2010 ### T-BRACE / I-BRACE DETAIL WITH 2X BRACE ONLY ST - T-BRACE 2 Brace Size MiTek Industries, Chesterfield, MO Page 1 of 1 Note: T-Bracing / I-Bracing to be used when continuous lateral bracing is impractical. T-Brace / I-Brace must cover 90% of web length. Note: This detail NOT to be used to convert T-Brace / I-Brace webs to continuous lateral braced webs. | Nailing Pattern | | | | | |-------------------|-----------|--------------|--|--| | T-Brace size | Nail Size | Nail Spacing | | | | 2x4 or 2x6 or 2x8 | 10d | 6" o.c. | | | Note: Nail along entire length of T-Brace / I-Brace (On Two-Ply's Nail to Both Plies) | | for One-Ply Truss | | | |------------|---|-------------|--| | Web Size | Specified Continuous
Rows of Lateral Bracing | | | | | 1 | 2 | | | 2x3 or 2x4 | 2x4 T-Brace | 2x4 I-Brace | | | 2x6 | 2x6 T-Brace | 2x6 I-Brace | | | 2x8 | 2x8 T-Brace | 2x8 I-Brace | | | | for Two-Ply Truss | | | |------------|---|-------------|--| | | Specified Continuous
Rows of Lateral Bracing | | | | Web Size | 1 | 2 | | | 2x3 or 2x4 | 2x4 T-Brace | 2x4 I-Brace | | | 2x6 | 2x6 T-Brace | 2x6 I-Brace | | | 2x8 | 2x8 T-Brace | 2x8 I-Brace | | T-Brace / I-Brace must be same species and grade (or better) as web member. 1109 COASTAL BAY BOYNTON BC,FL 33435 ### Symbols # PLATE LOCATION AND ORIENTATION Center plate on joint unless x, y offsets are indicated. Dimensions are in ft-in-sixteenths. Apply plates to both sides of truss and fully embed teeth. For 4 x 2 orientation, locate plates 0- $\frac{1}{200}$ %" from outside edge of truss. || This symbol indicates the required direction of slots in connector plates. *Plate location details available in MiTek 20/20 software or upon request. ### PLATE SIZE The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots. ## LATERAL BRACING LOCATION indicated by symbol shown and/or by text in the bracing section of the output. Use T, I or Eliminator bracing if indicated. ### BEARING Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number where bearings occur. ## Industry Standards: ANSI/TPI1: DSB-89: National Design Specification for Metal Plate Connected Wood Truss Construction. Design Standard for Bracing. Building Component Safety Information. building Component Safety Information, Building Component Safety Information, Guide to Good Practice for Handling, Installing & Bracing of Metal Plate # Numbering System 6-4-8 dimensions shown in ft-in-sixteenths (Drawings not to scale) JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT. CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS. ## PRODUCT CODE APPROVALS ICC-ES Reports: ESR-1311, ESR-1352, ER-5243, 9604B, 9730, 95-43, 96-31, 9667A NER-487, NER-561 95110, 84-32, 96-67, ER-3907, 9432A © 2006 MiTek® All Rights Reserved Julius Lee 1109 Coastal Bay Blvd. Boynton, FL 33435 # General Safety Notes ## Failure to Follow Could Cause Property Damage or Personal Injury - Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSII. - Truss bracing must be designed by on engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative T, I, or Eliminator bracing should be considered. - Never exceed the design loading shown and never stack materials on inadequately braced trusses. - Provide copies of this truss design to the building designer, erection supervisor, properly owner and all other interested parties. - Cut members to bear tightly against each other. - Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANS/JTP11. - Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1. - Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of tabrication. - Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber. - Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection. - Plate type, size, orientation and location dimensions indicated are minimum plating requirements. - Lumber used shall be of the species and size, and in all respects, equal to or better than that specified. - Top chords must be sheathed or purlins provided at spacing indicated on design. - 14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted. - Connections not shown are the responsibility of others. - Do not cut or alter truss member or plate without prior approval of an engineer. - Install and load vertically unless indicated otherwise. - Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use. - Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient. - Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE. Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designers than is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult. AMSI/TPI Quality Criteria, DSB-89 and BCSI1 Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE. Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not frus designer. Bracing shown is for lateral support of individual was members only. Additional temporary bracing to inset stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding labrication, qualify control, storage, delivery, erection and bracing, consult. AMSI/ITI Qualify Criteria, DSB-89 and BCS11 Building Component Safety Information available from Truss Plate Institute. 583 D'Onofrio Drive, Madison, WI 53719. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE. Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design paramenters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for taleral support of Individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult. AMS/ITI Quality Criteria, DSB-89 and BCS11 Building Component Safety Information available from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-74-73 BEFORE USE. Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult "AMSI/ITI" ANSI/ITI" and DSB-89 and BCS11 Building Component Safety Information available from Truss Plate Institute. 583 D'Onofrio Drive, Madison. WI 53719. Job Truss Truss Type SIMQUE - LOT 125 The Preserve Qty 16332599 463946 EJ01 Jack-Partial Truss 1 Job Reference (optional) 7.350 s Jul 31 2012 MiTek Industries, Inc. Thu Jan 24 16:29:52 2013 Page 1 Builders FirstSource, Lake City, FL 32055 ID:LDuQIKe7UdHpVgx54zfFR2zsAGo-2uiFHQIWU6iTAOgO1JHHjUZP9ScXkXINjFKdjuzs52T -1-6-0 7-0-0 7-0-0 1-6-0 Scale + 1 31 5 8 00 112 Plate Offsets (X,Y): [2:0-2-0,0-1-8] LOADING (psf) 2-0-0 SPACING CSI DEFL PLATES GRIP TCLL 20.0 Plates Increase 1.25 1.25 TC BC 0.67 Vert(LL) -0.06 >999 240 244/190 MT20 TCDL 7.0 Lumber Increase 0.43 Vert(TL) -0.12 4-7 >718 180 BCLL 0.0 Rep Stress Incr YES WB 0.00 0.01 Horz(TL) n/a n/a BCDL 5.0 Code FBC2010/TPI2007 (Matrix-M) FT = 20% Weight: 27 lb LUMBER BRACING TOP CHORD 2x4 SP No 2 TOP CHORD Structural wood sheathing directly applied or 5-0-3 oc purlins. BOT CHORD 2x4 SP No.2 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEDGE MiTek recommends that Stabilizers and required cross bracing be installed Left: 2x4 SYP No.3 during truss erection, in accordance with Stabilizer Installation guide. REACTIONS (lb/size) 3=115/Mechanical, 2=294/0-3-8 (min. 0-1-8), 4=32/Mechanical IS S.K. Max Horz 2=183(LC 12) Max Uplift3=-104(LC 12), 2=-68(LC 12) Max Grav 3=158(LC 21), 2=351(LC 2), 4=80(LC 3) FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD BOT CHORD 2-4=-1306/2274 NOTES NOTES (7-9) 1) Wind: ASCE 7-10; 130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the D bottom chord and any other members. 4) All bearings are assumed to be SP No.2 crushing capacity of 565 psi. 0 STATE OF 4) All bearings are assumed to be SP No.2 crushing capacity of 305 pst. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 104 lb uplift at joint 3 and 68 lb uplift at joint 2. 6) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss. 7) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code. 8) Note: Visually graded lumber designation SPp, represents new lumber design values as per SPIB. 9) Truss Design Engineer: Julius Lee, PE: Florida P.E. License No. 34869: Address: 1109 Coastal Bay Blvd. Boynton Beach, FL 33435 FLORIDA .. SIONAL LOAD CASE(S) Standard