Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others. 2762644 - GIEGEIG CONST. - LOT 37 CW MiTek USA, Inc. 6904 Parke East Blvd. Tampa, FL 33610-4115 Site Information: Customer Info: Giebeig Const. Project Name: Spec Hse Model: Custom Subdivision: Crosswinds Lot/Block: 37 Address: TBD, TBD City: Columbia Cty State: FL Name Address and License # of Structural Engineer of Record, If there is one, for the building. License #: Address: City: State: General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions): Design Code: FBC2020/TPI2014 Design Program: MiTek 20/20 8.4 Wind Code: N/A Wind Speed: 130 mph Roof Load: 37.0 psf Floor Load: N/A psf This package includes 25 individual, Truss Design Drawings and 0 Additional Drawings. With my seal affixed to this sheet, I hereby certify that I am the Truss Design Engineer and this index sheet conforms to 61G15-31.003, section 5 of the Florida Board of Professional Engineers Rules. | No. 123456789111234567890112345678901 | Seal# T23628816 T23628817 T23628818 T23628820 T23628821 T23628821 T23628825 T23628825 T23628826 T23628826 T23628827 T23628828 T23628828 T23628830 T23628831 T23628831 T23628834 T23628834 T23628834 T23628834 | Truss Name CJ01 CJ03 CJ05 EJ01 HJ10 T01 T01G T02 T03 T04 T05 T06 T07 T08 T09 T10 T11 T12 T13 T14 T15 | Date 4/20/21 | |---------------------------------------|---|--|--| | 21 | T23628836 | T15 | 4/20/21 | | 22 | T23628837 | T16 | 4/20/21 | | No. | Seal# | Trus | |-----|-----------|------| | 23 | T23628838 | T17 | | 24 | T23628839 | T17G | | 25 | T23628840 | T18 | The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Builders FirstSource-Jacksonville. Truss Design Engineer's Name: Velez, Joaquin My license renewal date for the state of Florida is February 28, 2023. IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these des igns. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2. Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 April 20,2021 Job Truss Truss Type Qty Ply GIEGEIG CONST. - LOT 37 CW T23628816 2762644 **CJ01** Jack-Open 10 Job Reference (optional) 8.430 s Mar 22 2021 MiTek Industries, Inc. Mon Apr 19 13:44:54 2021 Page 1 Builders FirstSource (Jacksonville, FL), Jacksonville, FL - 32244, ID:fRijugoliQj9qlqT_5CiYdzq7NP-47?LftV5_xsARy3DZa6ldy2edR6Yi9x60uGFTFzP85N _____1-0-0 Scale = 1:8.2 | | | | | | | | | |)-0 | | | | |---------|---------|-----------------|--------|-------|------|----------|------|-------|----------|--------|--------------|----------| | LOADING | G (psf) | SPACING- | 2-0-0 | CSI. | | DEFL. | in | (loc) | I/defl | L/d | PLATES | GRIP | | TCLL | 20.0 | Plate Grip DOL | 1.25 | TC | 0.14 | Vert(LL) | 0.00 | 7 | >999 | 240 | MT20 | 244/190 | | TCDL | 7.0 | Lumber DOL | 1.25 | BC | 0.03 | Vert(CT) | 0.00 | 7 | >999 | 180 | | 2111100 | | BCLL | 0.0 | Rep Stress Incr | YES | WB | 0.00 | Horz(CT) | 0.00 | 2 | n/a | n/a | | | | BCDL | 10.0 | Code FBC2020/7 | PI2014 | Matri | x-MP | | (4) | | 1,520,70 | ORMAN) | Weight: 6 lb | FT = 20% | LUMBER- TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 BRACING- TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 1-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. 3=Mechanical, 2=0-3-8, 4=Mechanical Max Horz 2=39(LC 12) Max Uplift 3=-6(LC 1), 2=-67(LC 12), 4=-19(LC 1) Max Grav 3=7(LC 16), 2=179(LC 1), 4=18(LC 16) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. #### NOTES- - Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 - 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component. - 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. - 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. - 5) Refer to girder(s) for truss to truss connections. - 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2, 4. Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date: April 20,2021 🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev, 5/19/2020 BEFORE USE, Design valid for use only with MIT ek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 Job Truss Type GIEGEIG CONST. - LOT 37 CW Truss Qty T23628818 2762644 CJ05 10 Jack-Open Job Reference (optional) 8.430 s Mar 22 2021 MiTek Industries, Inc. Mon Apr 19 13:44:56 2021 Page 1 ID:fRijugoliQj9qlqT_5CiYdzq7NP-0W753ZWLWZ6ugGDbh?8DiN7yuFikA3QOTCILX8zP85L Builders FirstSource (Jacksonville, FL), Jacksonville, FL - 32244. Scale = 1:18.2 6.00 12 0-4-8 LOADING (psf) SPACING-DEFL. 2-0-0 CSI. l/defl L/d PLATES GRIP TCLL 20.0 Plate Grip DOL 1.25 TC 0.28 0.03 244/190 Vert(LL) 4-7 >999 240 MT20 Lumber DOL TCDL 7.0 1.25 BC 0.24 Vert(CT) -0.05 >999 180 BCLL 0.0 Rep Stress Incr YES WB 0.00 Horz(CT) 0.00 n/a LUMBER- BCDL TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 10.0 BRACING- TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 5-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing. Weight: 18 lb FT = 20% REACTIONS. (size) 3=Mechanical, 2=0-3-8, 4=Mechanical Code FBC2020/TPI2014 Max Horz 2=107(LC 12) Max Uplift 3=-67(LC 12), 2=-65(LC 12) Max Grav 3=113(LC 1), 2=276(LC 1), 4=88(LC 3) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. #### NOTES- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior(1) 1-6-0 to 4-11-4 zone; porch right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Matrix-MP - 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component. - 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. - 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. - 5) Refer to girder(s) for truss to truss connections. - 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2. NO 6811 NO 6811 NO 6811 NO 6811 NO 6818 NO 6818 NO 6818 JOAQUIN VE MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date: April 20,2021 ▲ WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for
use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property manage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Ansi/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 WEBS REACTIONS. (size) 4=Mechanical, 2=0-4-9, 5=Mechanical Max Horz 2=149(LC 22) Max Uplift 4=-72(LC 4), 2=-298(LC 4), 5=-148(LC 4) Max Grav 4=141(LC 1), 2=527(LC 1), 5=307(LC 1) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-769/323 BOT CHORD 2-7=-377/698, 6-7=-377/698 2x4 SP No.3 3-7=-63/281, 3-6=-743/402 WEBS - 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., - GCpi=0.18; MWFRS (envelope) gable end zone; porch left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component. - 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. - 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. - 5) Refer to girder(s) for truss to truss connections. - 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 2=298, 5=148. - 7) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 59 lb down and 73 lb up at 1-6-1, 59 lb down and 73 lb up at 1-6-1, 22 lb down and 38 lb up at 4-4-0, 22 lb down and 38 lb up at 4-4-0, and 43 lb down and 78 lb up at 7-1-15, and 43 lb down and 78 lb up at 7-1-15 on top chord, and 41 lb down and 43 lb up at 1-6-1, 41 lb down and 43 lb up at 1-6-1, 19 lb down and 24 lb up at 4-4-0, 19 lb down and 24 lb up at 4-4-0, and 64 lb down at 7-1-15, and 64 lb down at 7-1-15 on bottom chord. The design/selection of such connection device(s) is the responsibility of others. - 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). #### LOAD CASE(S) Standard 1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf) Vert: 1-4=-54, 5-8=-20 Concentrated Loads (lb) Vert: 13=-73(F=-36, B=-36) 16=-6(F=-3, B=-3) 17=-59(F=-29, B=-29) Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 April 20,2021 MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITEK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **AMSITPH Quality Criteria, DSB-89 and BCSI Building Comp Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 6904 Parke East Blvd | Job | Truss | Truss Type | Qty | Ply | GIEGEIG CONST LOT 37 CW | | |----------------------|-----------------------------|--|------------|------------------|---|---------------| | 2762644 | T01G | Common Supported Gable | 1 | 1 | | T23628822 | | | | | 100 | | Job Reference (optional) | | | Builders FirstSource | ce (Jacksonville, FL), Jack | ksonville, FL - 32244, | | | r 22 2021 MiTek Industries, Inc. Mon Apr 19 13:45:0 | | | 1000 | 200 | 70 TO TO THE TOTAL THE TOTAL TO TOTAL TO THE TO | ID:fRijugo | oliQj9qlqT_5 | CiYdzq7NP-uHMcvwZsandJ9tWNwrD9sDlgFs8m6t | j_OpjZgvzP85H | | -1-6- | | 10-0-0 | | Service (Messes) | 20-0-0 | 21-6-0 | | 1-6-6 | 0 ' | 10-0-0 | | | 10-0-0 | 1-6-0 | Scale = 1:38.1 | | | <u></u> | | | | 20-0-0 | | | | | | | |-----------|-------------|-----------------------------|-----------------|-----------|------|------------------|-------|-------|--------|-----|--|----------| | | | | | | | 20-0-0 | | | | | | | | Plate Off | sets (X,Y)- | [2:0-4-0,0-2-1], [12:0-4-0, | 0-2-1], [18:0-3 | -0,0-3-0] | | | | | | | | | | LOADING | G (psf) | SPACING- | 2-0-0 | CSI. | | DEFL. | in | (loc) | l/defl | L/d | PLATES | GRIP | | TCLL | 20.0 | Plate Grip DOL | 1.25 | TC | 0.13 | Vert(LL) | -0.00 | 13 | n/r | 120 | MT20 | 244/190 | | TCDL | 7.0 | Lumber DOL | 1.25 | BC | 0.10 | Vert(CT) | -0.00 | 13 | n/r | 120 | S CONTRACTOR OF THE PARTY TH | | | BCLL | 0.0 * | Rep Stress Incr | YES | WB | 0.05 | Horz(CT) | 0.00 | 12 | n/a | n/a | | | | BCDL | 10.0 | Code FBC2020/TI | PI2014 | Matri | c-S | AL-2004. 1000.09 | | | | | Weight: 105 lb | FT = 20% | LUMBER- TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 **OTHERS** 2x4 SP No.3 BRACING-
TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS. All bearings 20-0-0. Max Horz 2=-81(LC 17) (lb) - Max Uplift All uplift 100 lb or less at joint(s) 2, 12, 18, 19, 20, 16, 15, 14 Max Grav All reactions 250 lb or less at joint(s) 2, 12, 17, 18, 19, 20, 16, 15, 14 FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. #### NOTES- 1) Unbalanced roof live loads have been considered for this design. - 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Corner(3E) -1-6-0 to 1-6-0, Exterior(2N) 1-6-0 to 10-0-0, Corner(3R) 10-0-0 to 13-0-0, Exterior(2N) 13-0-0 to 21-6-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 - 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component. - 5) All plates are 2x4 MT20 unless otherwise indicated. 6) Gable requires continuous bottom chord bearing. - 7) Gable studs spaced at 2-0-0 oc. - 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. - 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. - 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 12, 18, 19, 20, 16, 15, 14. - 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2, 12. Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 April 20,2021 🚵 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev, 5/19/2020 BEFORE USE. Design valid for use only with MTEK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss with the property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of truss systems, see ANSI/TH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 | Job | Truss | Truss Type | Qty | Ply | GIEGEIG CONST LOT 37 CW | | |---------|-------|-----------------|-----|-----|--------------------------|-----------| | 2762644 | T02 | Half Hip Girder | 1 | 1 | | T23628823 | | | | | | | Job Reference (optional) | | Builders FirstSource (Jacksonville, FL), Jacksonville, FL - 32244, 8.430 s Mar 22 2021 MiTek Industries, Inc. Mon Apr 19 13:45:02 2021 Page 2 ID:fRijugoliQj9qlqT_5CiYdzq7NP-rgUMKcb66Pt10Bgl1GFdxeNqVgnVaaJHs7CglozP85F LOAD CASE(S) Standard 1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf) Vert: 1-4=-54, 4-9=-54, 2-10=-20 Concentrated Loads (lb) Vert: 4=-110(F) 7=-110(F) 9=-139(F) 13=-64(F) 15=-344(F) 14=-64(F) 5=-110(F) 18=-110(F) 19=-110(F) 20=-110(F) 21=-110(F) 22=-110(F) 23=-110(F) 24=-110(F) 25=-110(F) 26=-113(F) 27=-64(F) 28=-64(F) 30=-64(F) 31=-64(F) 32=-64(F) 33=-64(F) 35=-66(F) | OT 37 CW | GIEGEIG CONST LO | Ply | Qty | | | Truss Type | Truss | | |---|-------------------------|----------|--------|--------|------|---------------------------|---------------|---------------------------| | T236288 | | 1 | 1 | | | Hip | T04 | 2644 | | | Job Reference (optional | | - N | | | | - W- ELS | ildan Finite (Ind. | | ies, Inc. Mon Apr 19 13:45:04 2021 Page 1
07leUq89hH513TJVTMk2cqaJRhmpqzP85D | | | | | | Jacksonville, FL - 32244, | onville, FL), | ilders FirstSource (Jacks | | 30-1-0 | 24-5-1 | i pipela | 19-1-0 | 15-0-8 | | 11-0-0 | -7-15 | | | 5-7-15 | 5-4-1 | | 4-0-8 | 4-0-8 | 10.7 | 5-4-1 | -7-15 | 1-6-0 | Scale = 1:53.0 | | - | 5-7-15
5-7-15 | 11-0-0 | | 19-1-0 | | | 4-5-1 | 30-1-0 | | |-------------|------------|------------------|--------|-----------|--|-------------|-----------|---------------|----------------|----------| | Plate Offse | ets (X,Y)- | [8:0-2-15,Edge] | 5-4-1 | | 8-1-0 | | | 5-4-1 | 5-7-15 | | | LOADING | (psf) | SPACING- | 2-0-0 | CSI. | DEFL. | in (loc) | l/defl | L/d | PLATES | GRIP | | TCLL | 20.0 | Plate Grip DOL | 1.25 | TC 0.30 | Vert(LL) | -0.20 10-12 | >999 | 240 | MT20 | 244/190 | | TCDL | 7.0 | Lumber DOL | 1.25 | BC 0.74 | Vert(CT) | -0.35 10-12 | >999 | 180 | (CATOCHER) | | | BCLL | 0.0 * | Rep Stress Incr | YES | WB 0.36 | Horz(CT) | 0.09 8 | n/a | n/a | U G | | | BCDL | 10.0 | Code FBC2020/T | PI2014 | Matrix-MS | 04:000000 .0 00000. 0 00 | | 1353000.1 | Description . | Weight: 157 lb | FT = 20% | **BRACING-** TOP CHORD BOT CHORD LUMBER- TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD WEBS 2x4 SP No.3 REACTIONS. (size) 8=0-3-8, 2=0-3-8 Max Horz 2=104(LC 12) Max Uplift 8=-237(LC 13), 2=-270(LC 12) Max Grav 8=1202(LC 2), 2=1271(LC 2) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-232/430, 3-4=-1783/368, 4-5=-1556/362, 5-6=-1558/358, 6-7=-1785/370, **BOT CHORD** 2-13=-408/1957, 12-13=-408/1957, 10-12=-232/1620, 9-10=-337/1972, 8-9=-337/1972 **WEBS** 3-12=-476/195, 4-12=-79/581, 6-10=-79/584, 7-10=-489/205 #### NOTES- 1) Unbalanced roof live loads have been considered for this design. - 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-6-2, Interior(1) 1-6-2 to 11-0-0, Exterior(2R) 11-0-0 to 15-0-8, Interior(1) 15-0-8 to 19-1-0, Exterior(2R) 19-1-0 to 23-4-1, Interior(1) 23-4-1 to 30-1-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 - 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component. 4) Provide adequate drainage to prevent water ponding. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. - 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. - 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (it=lb) 8=237, 2=270. Structural wood sheathing directly applied or 3-8-7 oc purlins. Rigid ceiling directly applied or 9-2-9 oc bracing. Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 April 20,2021 🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MTTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 WEBS REACTIONS. (size) 2=0-3-8, 6=0-3-8 Max Horz 2=134(LC 12) Max Uplift 2=-264(LC 12), 6=-231(LC 13) Max Grav 2=1196(LC 1), 6=1111(LC 1) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1984/390, 3-4=-1352/330, 4-5=-1353/336, 5-6=-1994/401 BOT CHORD 2-9=-381/1704, 8-9=-382/1701, 7-8=-286/1712, 6-7=-286/1715 WEBS 4-8=-142/792, 5-8=-692/281, 5-7=0/320, 3-8=-679/274, 3-9=0/318 #### NOTES Unbalanced roof live loads have been considered for this design. - 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-6-2, Interior(1) 1-6-2 to 15-0-8, Exterior(2R) 15-0-8 to 18-0-10, Interior(1) 18-0-10 to 30-1-0 zone; C-C for members and forces & MWFRS
for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 - Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=264, 6=231. Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date: April 20,2021 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design personerers and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, cerction and bracing of trusses and truss systems, see ANS/ITP19 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 Job Truss Truss Type Qty Ply GIEGEIG CONST. - LOT 37 CW T23628829 2762644 T08 Roof Special | Job Reference (optional) 8.430 s Mar 22 2021 MiTek Industries, Inc. Mon Apr 19 13:45:08 2021 Page 1 Builders FirstSource (Jacksonville, FL), Jacksonville, FL - 32244, ID:fRijugoliQj9qlqT_5CiYdzq7NP-fqrebfgthFdB668vOWM1BvdwY5jO_IK9E3f_yRzP859 30-1-0 5-6-15 | — | 6-0-0 | 7-10-10 | 15-0-8 | 19-5-0 | | 24-6-1 | | 30-1-0 | | |----------------------|--------------------------|--------------------|-----------|--------------|-------------|--------|-----|----------------|----------| | | 6-0-0 | 1-10-10 | 7-1-14 | 4-4-8 | | 5-1-1 | | 5-6-15 | | | Plate Offsets (X,Y)- | [2:0-2-4,0-2-0], [4:0-3- | 0,0-3-0], [9:0-2-1 | 5,Edge] | | | | | | R | | LOADING (psf) | SPACING- | 2-0-0 | CSI. | DEFL. | in (loc) | I/defl | L/d | PLATES | GRIP | | TCLL 20.0 | Plate Grip DOL | 1.25 | TC 0.62 | Vert(LL) | -0.17 15 | >999 | 240 | MT20 | 244/190 | | TCDL 7.0 | Lumber DOL | 1.25 | BC 0.76 | Vert(CT) | -0.35 14-15 | >999 | 180 | NOT CHECKELLY | | | BCLL 0.0 * | Rep Stress Incr | YES | WB 0.84 | Horz(CT) | 0.17 9 | n/a | n/a | | | | BCDL 10.0 | Code FBC2020 | /TPI2014 | Matrix-MS | 0.555.355.35 | | | | Weight: 172 lb | FT = 20% | BRACING- WEBS TOP CHORD **BOT CHORD** LUMBER- TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 *Except* 6-12: 2x4 SP No.3 WEBS 2x4 SP No.3 REACTIONS. (size) 1=0-3-8, 9=0-3-8 Max Horz 1=-134(LC 17) Max Uplift 1=-231(LC 12), 9=-264(LC 13) Max Grav 1=1111(LC 1), 9=1196(LC 1) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-2148/458, 2-3=-2778/593, 3-4=-2467/525, 4-5=-1541/351, 5-6=-1501/353, 6-8=-2033/414, 8-9=-2076/411 **BOT CHORD** 1-17=-472/1886, 16-17=-235/979, 3-16=-112/399, 15-16=-553/2519, 14-15=-480/2225, 1-17--4/2/1006, 10-17--23/3/9, 3-10--12/399, 13-10--353/2519, 14-15--400/ 13-14--24/01/1773, 6-13--75/445, 9-11--287/1804 2-17--1822/489, 2-16--510/2198, 3-15--396/101, 4-15--45/521, 4-14--1012/352, 5-14=-180/993, 6-14=-661/232, 11-13=-281/1727 #### NOTES- WEBS 1) Unbalanced roof live loads have been considered for this design. - 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-0-0 to 3-1-1, Interior(1) 3-1-1 to 15-0-8, Exterior(2R) 15-0-8 to 18-0-10, Interior(1) 18-0-10 to 31-7-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 - 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. - * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. - 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=231, 9=264, Structural wood sheathing directly applied or 3-2-10 oc purlins. Rigid ceiling directly applied or 7-11-0 oc bracing. 1 Row at midpt Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 April 20,2021 Marning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MTTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer, Deracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent uclings with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/PH Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 Job GIEGEIG CONST. - LOT 37 CW Truss Type Qty Ply T23628831 2762644 T10 Common Job Reference (optional) Builders FirstSource (Jacksonville, FL), Jacksonville, FL - 32244. 8.430 s Mar 22 2021 MiTek Industries, Inc. Mon Apr 19 13:45:10 2021 Page 1 ID:fRijugoliQj9qlqT_5CiYdzq7NP-cCzO0Lh7DstuMPHIVxOVGKiFfuQLSKYShN851KzP857 4x6 = Scale = 1:47.3 6.00 12 5x8 = 3x4 > 3x4 > 5 2-8-8 9 10 8 7 3x6 = 2x4 || 2x4 || 3x8 = 3x4 = 3x6 = Plate Offsets (X,Y)--[2:0-4-0,0-3-0] LOADING (psf) SPACING-CSI. DEFL. 2-0-0 in (loc) l/defi 1/d PLATES GRIP 20.0 Plate Grip DOL 1.25 TCLL TC 0.64 Vert(LL) 0.11 10-13 >999 240 244/190 MT20 TCDL 7.0 Lumber DOL 1.25 BC 0.66 Vert(CT) -0.23 10-13 >999 180 BCLL 00 Rep Stress Incr YES WB 0.34 Horz(CT) 0.04 Code FBC2020/TPI2014 BCDL 10.0 Matrix-MS Weight: 134 lb FT = 20% LUMBER-BRACING-TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 3-9-0 oc purlins, **BOT CHORD** 2x4 SP No.2 except end verticals 2x4 SP No.3 **BOT CHORD** WEBS Rigid ceiling directly applied or 6-0-0 oc bracing. WEBS 1 Row at midpt 2-8, 4-8 REACTIONS. (size) 1=0-3-8, 6=0-3-8 Max Horz 1=159(LC 12) Max Uplift 1=-203(LC 12), 6=-174(LC 13) Max Grav 1=935(LC 1), 6=935(LC 1) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-1608/361, 2-3=-966/281, 3-4=-961/278, 4-5=-781/195, 5-6=-924/220 BOT CHORD 1-10=-381/1370, 8-10=-381/1367, 7-8=-159/698 # WEBS 1) Unbalanced roof live loads have been considered for this design. - 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 15-0-8, Exterior(2R) 15-0-8 to 18-0-8, Interior(1) 18-0-8 to 25-3-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 - Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 2-10=0/318, 2-8=-693/281, 3-8=-79/487, 4-7=-444/166, 5-7=-207/900 - 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. - Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=203, 6=174. Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date: April 20,2021 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITEK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 | Job | Truss | Truss Type | Qty | Ply | GIEGEIG CONST LOT 37 CW | Transfer for an
external remarks | |--------------|-------|----------------|-----|-----|--------------------------|----------------------------------| | 2762644 | T11 | Hip Girder | 1 | 1 | | T23628832 | | 171.000.000. | | E-1100-1100-11 | | 7.1 | Job Reference (optional) | | Builders FirstSource (Jacksonville, FL), Jacksonville, FL - 32244, 8.430 s Mar 22 2021 MiTek Industries, Inc. Mon Apr 19 13:45:12 2021 Page 2 ID:fRijugoliQj9qlqT_5CiYdzq7NP-Yb58Q1jOIT7cbjRgdMQzLloaUiByw8Ll9hdC5CzP855 #### LOAD CASE(S) Standard 1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf) Vert: 1-4=-54, 4-9=-54, 9-12=-54, 2-11=-20 Concentrated Loads (lb) Vert: 4=-110(B) 7=-110(B) 9=-174(B) 17=-344(B) 16=-64(B) 6=-110(B) 14=-64(B) 13=-344(B) 22=-110(B) 23=-110(B) 24=-110(B) 25=-110(B) 26=-110(B) 27=-64(B) 28=-64(B) 29=-64(B) 30=-64(B) 31=-64(B) WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **AMSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 | Job | Truss | Truss Type | | Qty | Ply | GIEGEIG CONST. | - LOT 37 CW | | |----------------------|-----------------------|---------------------------|--------|-------|------------|--|--|-----------------| | 2762644 | T13 | Hip | | 1 | 1 | | | T23628834 | | Builders FirstSource | e (Jacksonville, FL), | Jacksonville, FL - 32244, | | | 8.430 s Ma | Job Reference (opt
r 22 2021 MiTek Indu | ional)
istries, Inc. Mon Apr 19 13:45 | :15 2021 Page 1 | | , -1-6-0 , | 5-7-15 | . 11-0-0 | 15-0-8 | | | | BIG2OWBSBAFIV_gzOQBxv6 | | | 1-6-0 | 5-7-15 | 5-4-1 | 4-0-8 | 4-0-8 | - | 5-4-1 | 5-7-15 | 1-6-0 | Scale = 1:53.9 | | | 5-7-15 | 11-0-0 | - 1 | 19-1-0 | 1 | 24-5 | 5-1 | 30-1-0 | | |-------------|------------|-----------------|--------|-----------|----------------|-------------|--------|-----|----------------|----------| | | | 5-7-15 | 5-4-1 | | 8-1-0 | | 5-4 | -1 | 5-7-15 | | | Plate Offse | ets (X,Y)- | [8:0-2-15,Edge] | | | | | | | | | | LOADING | (psf) | SPACING- | 2-0-0 | CSI. | DEFL. | in (loc) | l/defl | L/d | PLATES | GRIP | | TCLL | 20.0 | Plate Grip DOL | 1.25 | TC 0.29 | Vert(LL) | -0.20 11-13 | >999 | 240 | MT20 | 244/190 | | TCDL | 7.0 | Lumber DOL | 1.25 | BC 0.74 | Vert(CT) | -0.35 11-13 | >999 | 180 | | | | BCLL | 0.0 * | Rep Stress Incr | YES | WB 0.35 | Horz(CT) | 0.09 8 | n/a | n/a | | | | BCDL | 10.0 | Code FBC2020/T | PI2014 | Matrix-MS | CHOSCOMOTOCAL. | | | | Weight: 159 lb | FT = 20% | BRACING- TOP CHORD **BOT CHORD** LUMBER- REACTIONS. TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 WEBS (size) 2=0-3-8, 8=0-3-8 Max Horz 2=93(LC 16) Max Uplift 2=-270(LC 12), 8=-270(LC 13) Max Grav 2=1270(LC 2), 8=1270(LC 2) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-2229/429, 3-4=-1779/362, 4-5=-1553/356, 5-6=-1553/356, 6-7=-1779/362, 7-8=-2229/429 **BOT CHORD** 2-14=-396/1953, 13-14=-396/1953, 11-13=-215/1615, 10-11=-307/1954, 8-10=-307/1954 WEBS 3-13=-476/195, 4-13=-78/579, 6-11=-78/580, 7-11=-476/196 #### NOTES- - 1) Unbalanced roof live loads have been considered for this design. - 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., 2) Wild. ASCE 7-16, Volte-Torriph (2-second gast) vasar-16 miph, 1-60.1.4.2pst, BCDL=3.0pst; n=20it, Cat. n, Exp. 5, Enc., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-6-2, Interior(1) 1-6-2 to 11-0-0, Exterior(2R) 11-0-0 to 15-0-8, Interior(1) 15-0-8 to 19-1-0, Exterior(2R) 19-1-0 to 23-4-1, Interior(1) 23-4-1 to 31-7-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific - to the use of this truss component. - 4) Provide adequate drainage to prevent water ponding. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. - 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. - 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (it=lb) 2=270, 8=270. Structural wood sheathing directly applied or 3-9-8 oc purlins. Rigid ceiling directly applied or 9-4-3 oc bracing. Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 April 20,2021 MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTe&0 connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design is into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPH Quality Criteria, DSB-89 and BCSI Building Composite of the property damage. For general guidance regarding the fabrication available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 6904 Parke East Blvd. Tampa, FL 36610 Job GIEGEIG CONST. - LOT 37 CW Truss Truss Type Qty Ply T23628836 2762644 T15 QUEENPOST Job Reference (optional) 8.430 s Mar 22 2021 MiTek Industries, Inc. Mon Apr 19 13:45:17 2021 Page 1 Builders FirstSource (Jacksonville, FL), Jacksonville, FL - 32244, ID:fRijugoliQj9qlqT_5CiYdzq7NP-uZu1UkmWZ0mvhUKePv082pVZgjt_bU8UIzLynQzP850 7-0-0 14-0-0 15-6-0 | | | | 7-0-0
7-0-0 | | | | | | | 4-0-0
7-0-0 | | | |--------|---------|-----------------|----------------|-------|------|---|-------|-------|--------|----------------|----------------|----------| | LOADIN | G (psf) | SPACING- | 2-0-0 | CSI. | | DEFL. | in | (loc) | l/defl | L/d | PLATES | GRIP | | TCLL | 20.0 | Plate Grip DOL | 1.25 | TC | 0.15 | Vert(LL) | 0.04 | 8-10 | >999 | 240 | MT20 | 244/190 | | TCDL | 7.0 | Lumber DOL | 1.25 | BC | 0.34 | Vert(CT) | -0.07 | 8-10 | >999 | 180 | =0001(00000/// | | | BCLL | 0.0 | Rep Stress Incr | NO | WB | 0.35 | Horz(CT) | 0.02 | 6 | n/a | n/a | | | | BCDL | 10.0 | Code FBC2020/T | PI2014 | Matri | x-MS | 100000000000000000000000000000000000000 | | | | 5.00/70/11 | Weight: 76 lb | FT = 20% | BRACING- TOP CHORD BOT CHORD LUMBER- TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x6 SP No.2 2x4 SP No.3 (size) 2=0-3-8, 6=0-3-8 Max Horz 2=-63(LC 28) Max Uplift 2=-324(LC 8), 6=-324(LC 9) Max Grav 2=910(LC 1), 6=910(LC 1) REACTIONS. FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1508/580, 3-4=-1335/552, 4-5=-1335/552, 5-6=-1508/580 BOT CHORD 2-8=-516/1329, 6-8=-473/1329 4-8=-400/923 ### NOTES- 1) Unbalanced roof live loads have been considered for this design. - 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone; porch left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 - 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. - 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. - 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=324, 6=324, - 7) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 93 lb down and 84 lb up at 7-0-0 on top chord, and 558 lb down and 362 lb up at 7-0-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others. - 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard 1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf) Vert: 2-6=-20, 1-4=-54, 4-7=-54 Concentrated Loads (lb) Vert: 4=-64(B) 8=-558(B) Structural wood sheathing directly applied or 4-8-8 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing. Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 April 20,2021 MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED
MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MIT ek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer, Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of fusses and truss systems, see ANSI/TH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 Job Truss Type Truss Qty Ply GIEGEIG CONST. - LOT 37 CW T23628838 2762644 T17 Common | Job Reference (optional) 8.430 s Mar 22 2021 MiTek Industries, Inc. Mon Apr 19 13:45:18 2021 Page 1 Builders FirstSource (Jacksonville, FL), Jacksonville, FL - 32244, ID:fRijugoliQj9qlqT_5CiYdzq7NP-NISQh4n8KJumJevqzdXNb02jw7GnK?peXd4WJszP85? 9-10-0 Scale = 1:20.9 | | | <u> </u> | | 4-2-0
4-2-0 | | | | | 8-4-0
4-2-0 | | | | |---------|--|------------------------------|--------------|----------------|--------------|----------------------|-------|------------|----------------|------------|---------------|----------| | LOADING | 1 M. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | SPACING- | 2-0-0 | CSI. | 201 | DEFL. | | (loc) | Vdefl | L/d | PLATES | GRIP | | TCLL | 20.0
7.0 | Plate Grip DOL
Lumber DOL | 1.25
1.25 | TC
BC | 0.24
0.18 | Vert(LL)
Vert(CT) | -0.02 | 6-9
6-9 | >999
>999 | 240
180 | MT20 | 244/190 | | BCLL | 0.0 | Rep Stress Incr | YES | WB | 0.10 | Horz(CT) | -0.02 | 4 | n/a | n/a | , | | | BCDL | 10.0 | Code FBC2020/T | PI2014 | Matri | k-MS | | | | | | Weight: 34 lb | FT = 20% | BRACING- TOP CHORD **BOT CHORD** LUMBER- TOP CHORD 2x4 SP No.2 2x4 SP No.2 **BOT CHORD** WEBS 2x4 SP No.3 REACTIONS. (size) 2=0-3-8, 4=0-3-8 Max Horz 2=42(LC 12) Max Uplift 2=-98(LC 12), 4=-98(LC 13) Max Grav 2=389(LC 1), 4=389(LC 1) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-390/544, 3-4=-390/544 BOT CHORD 2-6=-378/310, 4-6=-378/310 3-6=-286/180 WEBS #### NOTES- 1) Unbalanced roof live loads have been considered for this design. - 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl. GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior(1) 1-6-0 to 4-2-0, Exterior(2R) 4-2-0 to 7-2-0, Interior(1) 7-2-0 to 9-10-0 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 - 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4. No 68182 No 68182 No 68182 No 68182 Daguin Velez PE No.68182 68182 ENGIN Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 9-2-14 oc bracing. Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 April 20,2021 MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/for chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSUTPI1 Quality Criteria, DSB-89 and BCSI Building Composately Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 REACTIONS. WEBS (size) 1=0-3-8, 3=0-3-8 Max Horz 1=-31(LC 13) Max Uplift 1=-82(LC 9), 3=-82(LC 8) Max Grav 1=308(LC 1), 3=308(LC 1) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-430/601, 2-3=-430/601 **BOT CHORD** 1-4=-479/349, 3-4=-479/349 2x4 SP No.3 WEBS 2-4=-321/186 #### NOTES- 1) Unbalanced roof live loads have been considered for this design. - 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 4-2-0, Exterior(2R) 4-2-0 to 7-2-0, Interior(1) 7-2-0 to 8-4-0 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 - 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3. Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 April 20,2021 🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REPERRICE PAGE MITERATIVE. STRICE DESCRIPTION OF THIS AND INCLUDED MITER REPERRICE PAGE MITERATIVE. STRICE DESCRIPTION OF THIS AND INCLUDED MITER REPERRICE PAGE MITERATIVE DESCRIPTION OF THIS AND INCLUDED THE MITERATIVE DESCRIPTION OF THIS AND INCLUDED MITERATIVE DESCRIPTION OF THE # AUGUST 1, 2016 # T-BRACE / I-BRACE DETAIL WITH 2X BRACE ONLY MII-T-BRACE 2 MiTek USA, Inc. Page 1 of 1 MiTek USA, Inc. Web Nails- Note: T-Bracing / I-Bracing to be used when continuous lateral bracing is impractical. T-Brace / I-Brace must cover 90% of web length. Note: This detail NOT to be used to convert T-Brace / I-Brace webs to continuous lateral braced webs. | ١ | Nailing Pattern | | |-------------------|-------------------|--------------| | T-Brace size | Nail Size | Nail Spacing | | 2x4 or 2x6 or 2x8 | 10d (0.131" X 3") | 6" o.c. | Note: Nail along entire length of T-Brace / I-Brace (On Two-Ply's Nail to Both Plies) | | Brace Size
for One-Ply Truss | | | | | | |------------|---------------------------------|------------------------------|--|--|--|--| | | Specified
Rows of La | Continuous
iteral Bracing | | | | | | Web Size | 1 | 2 | | | | | | 2x3 or 2x4 | 2x4 T-Brace | 2x4 I-Brace | | | | | | 2x6 | 2x6 T-Brace | 2x6 I-Brace | | | | | | 2x8 | 2x8 T-Brace | 2x8 I-Brace | | | | | | | | e Size
-Ply Truss | | | |------------|-------------------------|------------------------------|--|--| | | Specified
Rows of La | Continuous
iteral Bracing | | | | Web Size | 1 | 2 | | | | 2x3 or 2x4 | 2x4 T-Brace | 2x4 I-Brace | | | | 2x6 | 2x6 T-Brace | 2x6 I-Brace | | | | 2x8 | 2x8 T-Brace | 2x8 I-Brace | | | T-Brace / I-Brace must be same species and grade (or better) as web member. I-Brace 39380 Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 AUGUST 1, 2016 # STANDARD REPAIR TO REMOVE END VERTICAL (RIBBON NOTCH VERTICAL) MII-REP05 MiTek USA, Inc. Page 1 of 1 MiTek USA, Inc. - 1. THIS IS A SPECIFIC REPAIR DETAIL TO BE USED ONLY FOR ITS ORIGINAL INTENTION. THIS REPAIR DETAIL TO BE USED ONLY FOR ITS CHIGHNAL INTENTION. THIS REPAIR DOES NOT IMPLY THAT THE REMAINING PORTION OF THE TRUSS IS UNDAMAGED. THE ENTIRE TRUSS SHALL BE INSPECTED TO VERIFY THAT NO FURTHER REPAIRS ARE REQUIRED. WHEN THE REQUIRED REPAIRS ARE PROPERLY APPLIED, THE TRUSS WILL BE CAPABLE OF SUPPORTING REPAIRS ARE PROPERLY APPLIED, THE TRUSS WILL BE CAPABLE OF SUPPORTING THE LOADS INDICATED. 2. ALL MEMBERS MUST BE RETURNED TO THEIR ORIGINAL POSITIONS BEFORE APPLYING REPAIR AND HELD IN PLACE DURING APPLICATION OF REPAIR. 3. THE END DISTANCE, EDGE DISTANCE, AND SPACING OF NAILS SHALL BE SUCH AS TO AVOID SPLITTING OF THE WOOD. 4. LUMBER MUST BE CUT CLEANLY AND ACCURATELY AND THE REMAINING WOOD MUST BE UNDAMAGED. 5. THIS REPAIR IS TO BE USED FOR SINGLE PLYTRUSSES IN THE 4X_ORIENTATION ONLY. 6. CONNECTOR PLATES MUST BE FULLY IMBEDDED AND UNDISTURBED. ATTACH 2x4 SQUASH BLOCK (CUT TO FIT TIGHTLY) TO BOTH SIDES OF THE TRUSS AS SHOWN WITH 10d (0.131" X 3") NAILS SPACED 3" O.C. TRUSSES BUILT WITH 4x2 MEMBERS Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd.
Tampa FL 33610 Date: AUGUST 1, 2016 Standard Gable End Detail MII-GE130-SP R MiTek USA, Inc. Typical x4 L-Brace Nailed To Verticals W/10d Nails spaced 6" o.c. Vertical Stud Vertical Stud (4) - 16d Nails MiTek USA, Inc. SECTION B-B (2) - 10d Nails into 2x6 DIAGONAL BRACE 4'-0" O.C. MAX TRUSS GEOMETRY AND CONDITIONS SHOWN ARE FOR ILLUSTRATION ONLY. Typical Horizontal Brace Nailed To 2x_ Verticals w/(4)-10d Nails SECTION A-A PROVIDE 2x4 BLOCKING BETWEEN THE FIRST Varies to Common Truss TWO TRUSSES AS NOTED. TOENAIL BLOCKING TO TRUSSES WITH (2) - 10d NAILS AT EACH END. ATTACH DIAGONAL BRACE TO BLOCKING WITH SEE INDIVIDUAL MITEK ENGINEERING DRAWINGS FOR DESIGN CRITERIA (5) - 10d NAILS. (4) - 8d (0.131" X2.5") NAILS MINIMUM, PLYWOOD SHEATHING TO 2x4 STD SPF BLOCK 3x4 =Roof Sheathing - Diagonal Bracing - L-Bracing Refer Refer to Section A-A to Section B-B 24" Max 1. MINIMUM GRADE OF #2 MATERIAL IN THE TOP AND BOTTOM CHORDS. 2. CONNECTION BETWEEN BOTTOM CHORD OF GABLE END TRUSS AND 1'-3" - 10d WALL TO BE PROVIDED BY PROJECT ENGINEER OR ARCHITECT. Max. NAILS 3. BRACING SHOWN IS FOR INDIVIDUAL TRUSS ONLY, CONSULT BLDG. ARCHITECT OR ENGINEER FOR TEMPORARY AND PERMANENT BRACING OF ROOF SYSTEM. 4. "L" BRACES SPECIFIED ARE TO BE FULL LENGTH, GRADES: 1x4 SRB OR 2x4 STUD OR BETTER WITH ONE ROW OF 10d NAILS SPACED 6" O.C. 5. DIAGONAL BRACE TO BE APPROXIMATELY 45 DEGREES TO ROOF Trusses @ 24" o.c. Diag. Brace at 1/3 points End Wall if needed DIAPHRAM AT 4'-0" O.C. 6. CONSTRUCT HORIZONTAL BRACE CONNECTING A 2x6 STUD AND A 2x4 STUD AS SHOWN WITH 18d NAILS SPACED 6* O.C. HORIZONTAL BRACE TO BE LOCATED AT THE MIDSPAN OF THE LONGEST STUD. ATTACH TO VERTICAL STUDS WITH (4) 10d NAILS THROUGH 2x4. (REFER TO SECTION A-A) GABLE STUD DEFLECTION MEETS OR EXCEEDS L/240. THIS DETAIL DOES NOT APPLY TO STRUCTURAL GABLES. DO NOT USE FLAT BOTTOM CHORD GABLES NEXT TO SCISSOR TYPE TRUSSES. 10. SOUTHERN PINE LUMBER DESIGN VALUES ARE THOSE EFFECTIVE 06-01-13 BY SPIB/ALSC. NAILS DESIGNATED 10d ARE (0.131" X 3") AND NAILS DESIGNATED 16d ARE (0.131" X 3.5") | Minimum
Stud Size
Species | Stud
Spacing | Without IA4 ZA4 | | DIAGONAL
BRACE | 2 DIAGONAL
BRACES AT
1/3 POINTS | | | | | |---------------------------------|-----------------|---------------------|--------|-------------------|---------------------------------------|--------|--|--|--| | and Grade | | Maximum Stud Length | | | | | | | | | 2x4 SP No. 3 / Stud | 12" O.C. | 4-0-7 | 4-5-6 | 6-3-8 | 8-0-15 | 12-1-6 | | | | | 2x4 SP No. 3 / Stud | 16" O.C. | 3-8-0 | 3-10-4 | 5-5-6 | 7-4-1 | 11-0-1 | | | | | 2x4 SP No. 3 / Stud | 24" O.C. | 3-0-10 | 3-1-12 | 4-5-6 | 6-1-5 | 9-1-15 | | | | Diagonal braces over 6'-3" require a 2x4 T-Brace attached to one edge. Diagonal braces over 12-6" require 2x4 I-braces attached to both edges. Fasten T and I braces to narrow edge of diagonal brace with 10d nails 8" o.c., with 3" minimum end distance. Brace must cover 90% of diagonal length. MAX MEAN ROOF HEIGHT = 30 FEET CATEGORY II BUILDING EXPOSURE B or C ASCE 7-98, ASCE 7-02, ASCE 7-05 130 MPH ASCE 7-10 160 MPH DURATION OF LOAD INCREASE : 1.60 STUD DESIGN IS BASED ON COMPONENTS AND CLADDING. CONNECTION OF BRACING IS BASED ON MWFRS. 2x6 DIAGONAL BRACE SPACED 48" O.C. ATTACHED TO VERTICAL WITH (4) -16d NAILS AND ATTACHED HORIZONTAL BRACE (SEE SECTION A-A) TO BLOCKING WITH (5) - 10d NAILS. Page 1 of 2 DIAGONAL BRACE 2x6 Stud or 2x4 No.2 of better (2) - 10d NAILS 16d Nails Spaced 6" o.c. Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 MAX MEAN ROOF HEIGHT = 30 FEET EXPOSURE D ASCE 7-10 170 MPH DURATION OF LOAD INCREASE : 1.60 STUD DESIGN IS BASED ON COMPONENTS AND CLADDING. CONNECTION OF BRACING IS BASED ON MWFRS. Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date: MiTek USA, Inc. Page 1 of 1 MiTek USA, Inc. ENGINEERED BY MAXIMUM WIND SPEED = REFER TO NOTES D AND OR E MAX MEAN ROOF HEIGHT = 30 FEET MAX TRUSS SPACING = 24 " O.C. CATEGORY II BUILDING EXPOSURE B or C ASCE 7-10 DURATION OF LOAD INCREASE : 1.60 DETAIL IS NOT APPLICABLE FOR TRUSSES TRANSFERING DRAG LOADS (SHEAR TRUSSES). ADDITIONAL CONSIDERATIONS BY BUILDING ENGINEER/DESIGNER ARE REQUIRED. A - PIGGBACK TRUSS, REFER TO MITEK TRUSS DESIGN DRAWING. SHALL BE CONNECTED TO EACH PURLIN WITH (2) (0.131" X 3.5") TOE-NAILED. B - BASE TRUSS, REFER TO MITEK TRUSS DESIGN DRAWING. C - PURLINS AT EACH BASE TRUSS JOINT AND A MAXIMUM 24" O.C. UNLESS SPECIFIED CLOSER ON MITEK TRUSS DESIGN DRAWING. CONNECT TO BASE TRUSS WITH (2) (0.131" X 3.5") NAILS EACH. D - 2 X _ X 4"-0" SCAB, SIZE TO MATCH TOP CHORD OF PIGGYBACK TRUSS, MIN GRADE #2, ATTACHED TO ONE FACE, CENTERED. ON INTERSECTION, WITH (2) ROWS OF (0.131" X 3") NAILS @ 4" O.C. SCAB MAY BE OMITTED PROVIDED THE TOP CHORD SHEATHING IS CONTINUOUS OVER INTERSECTION AT LEAST 1 FT. IN BOTH DIRECTIONS AND: 1. WIND SPEED OF 115 MPH OR LESS FOR ANY PIGGYBACK SPAN, OR 2. WIND SPEED OF 116 MPH TO 160 MPH WITH A MAXIMUM PIGGYBACK SPAN OF 12 ft. E - FOR WIND SPEEDS BETWEEN 126 AND 160 MPH, ATTACH MITEK 3X8 20 GA Nail-On PLATES TO EACH FACE OF TRUSSES AT 72" O.C. W/ (4) (0.131" X 1.5") NAILS PER MEMBER, STAGGER NAILS FROM OPPOSING FACES. ENSURE 0.5" EDGE DISTANCE. (MIN, 2 PAIRS OF PLATES REQ. REGARDLESS OF SPAN) #### WHEN NO GAP BETWEEN PIGGYBACK AND BASE TRUSS EXISTS: REPLACE TOE NAILING OF PIGGYBACK TRUSS TO PURLINS WITH Nail-On PLATES AS SHOWN, AND INSTALL PURLINS TO BOTTOM EDGE OF BASE TRUSS TOP CHORD AT SPECIFIED SPACING SHOWN ON BASE TRUSS MITEK DESIGN DRAWING. FOR ALL WIND SPEEDS, ATTACH MITEK 3X6 20 GA Nail-On PLATES TO EACH FACE OF TRUSSES AT 48" O.C. W/ (4) (0.131" X 1.5") PER MEMBER. STAGGER NAILS FROM OPPOSING FACES ENSURE 0.5" EDGE DISTANCE. VERTICAL WEB TO EXTEND THROUGH BOTTOM CHORD OF PIGGYBACK FOR LARGE CONCENTRATED LOADS APPLIED TO CAP TRUSS REQUIRING A VERTICAL WEB: VERTICAL WEBS OF PIGGYBACK AND BASE TRUSS MUST MATCH IN SIZE, GRADE, AND MUST LINE UP AS SHOWN IN DETAIL. AS SHOWN IN DETAIL. ATTACH 2 x ___ x 4'-0" SCAB TO EACH FACE OF TRUSS ASSEMBLY WITH 2 ROWS OF 10d (0.131" X 3") NAILS SPACED 4" O.C. FROM EACH FACE. (SIZE AND GRADE TO MATCH VERTICAL WEBS OF PIGGYBACK AND BASE TRUSS.) VEHTICAL WEBS OF FIGGTBACK AND BASE TRUSS., (MINIMUM 2X4) THIS CONNECTION IS ONLY VALID FOR A MAXIMUM CONCENTRATED LOAD OF 4000 LBS (@1.15). REVIEW BY A QUALIFIED ENGINEER IS REQUIRED FOR LOADS BY A QUALIFIED ENGINEER IS REQUIRED FOR LOADS GREATER THAN 4000 LBS. FOR PIGGYBACK TRUSSES CARRYING GIRDER LOADS, NUMBER OF PLYS OF PIGGYBACK TRUSS TO MATCH BASE TRUSS. CONCENTRATED LOAD MUST BE APPLIED TO BOTH THE PIGGYBACK AND THE BASE TRUSS DESIGN. No 39380 STATE OF THE SOLUTION SOLUTIO Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 AUGUST 1, 2016 ### STANDARD REPAIR DETAIL FOR BROKEN CHORDS, WEBS AND DAMAGED OR MISSING CHORD SPLICE PLATES # MII-REP01A1 Page 1 of 1 MiTek USA, Inc. | TOTAL NUMBER OF
NAILS EACH SIDE
OF BREAK * | | | | MAX | IMUM FO | RCE (lbs) | 15% LOA | D DURAT | ION | | |--|-----|-----|------|------|---------|-----------|---------|---------|------|------| | | | X | SP | | DF | | SPF | | HF | | | 2x4 | 2x6 | | 2x4 | 2x6 | 2x4 | 2x6 | 2x4 | 2x6 | 2x4 | 2x6 | | 20 | 30 | 24" | 1706 | 2559 | 1561 | 2342 | 1320 | 1980 | 1352 | 2028 | | 26 | 39 | 30" | 2194 | 3291 | 2007 | 3011 | 1697 | 2546 | 1738 | 2608 | | 32 | 48 | 36" | 2681 | 4022 | 2454 | 3681 | 2074 | 3111 | 2125 | 3187 | | 38 | 57 | 42" | 3169 | 4754 | 2900 | 4350 | 2451 | 3677 | 2511 | 3767 | | 44 | 66 | 48" | 3657 | 5485 | 3346 | 5019 | 2829 | 4243 | 2898 | 4347 | * DIVIDE EQUALLY FRONT AND BACK ATTACH 2x_SCAB OF THE SAME SIZE AND GRADE AS THE BROKEN MEMBER TO EACH FACE OF THE TRUSS (CENTER ON BREAK OR SPLICE) WITH 10d (0.131" X 3") NAILS (TWO ROWS FOR 2x4, THREE ROWS FOR 2x6) SPACED 4" O.C. AS SHOWN. STAGGER NAIL SPACING FROM FRONT FACE AND BACK FACE FOR A NET 0-2-0 O.C. SPACING IN THE MAIN MEMBER. USE A MIN. 0-3-0 MEMBER END DISTANCE. THE LENGTH OF THE BREAK (C) SHALL NOT EXCEED 12". (C=PLATE LENGTH FOR SPLICE REPAIRS) THE LOCATION OF THE BREAK MUST BE GREATER THAN OR EQUAL TO THE REQUIRED X DIMENSION FROM ANY PERIMETER BREAK OR HEEL JOINT AND A MINIMUM OF 6" FROM ANY INTERIOR JOINT (SEE SKETCH ABOVE) # DO NOT USE REPAIR FOR JOINT SPLICES #### NOTES: - NOTES: 1. THIS REPAIR DETAIL IS TO BE USED ONLY FOR THE APPLICATION SHOWN. THIS REPAIR DOES NOT IMPLY THAT THE REMAINING PORTION OF THE TRUSS IS UNDAMAGED. THE ENTIRE TRUSS SHALL BE INSPECTED TO VERIFY THAT NO FURTHER REPAIRS ARE REQUIRED. WHEN THE REQUIRED REPAIRS ARE PROPERLY APPLIED, THE TRUSS WILL BE CAPABLE OF SUPPORTING THE LOADS INDICATED. 2. ALL MEMBERS MUST BE RETURNED TO THEIR ORIGINAL POSITIONS BEFORE APPLING REPAIR AND HELD IN PLACE DURING APPLICATION OF REPAIR. 3. THE END DISTANCE, EDGE DISTANCE AND SPACING OF NAILS SHALL BE SUCH AS TO AVOID INVISIAL SPILITING OF THE WOOD. - UNUSUAL SPLITTING OF THE WOOD. WHEN NAILING THE SCABS, THE USE OF A BACKUP WEIGHT IS RECOMMENDED TO AVOID - LOOSENING OF THE CONNECTOR PLATES AT THE JOINTS OR SPLICES. 5. THIS REPAIR IS TO BE USED FOR SINGLE PLY TRUSSES IN THE 2x_ORIENTATION ONLY. 6. THIS REPAIR IS LIMITED TO TRUSSES WITH NO MORE THAN THREE BROKEN MEMBERS. Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 January 19, 2018 TRUSSED VALLEY SET DETAIL MII-VALLEY HIGH WIND1 AUGUST 1, 2016 R MiTek USA, Inc. Page 1 of 1 GENERAL SPECIFICATIONS 1. NAIL SIZE 10d (0.131" X 3") 2. WOOD SCREW = 3" WS3 USP OR EQUIVALENT DO NOT USE DRYWALL OR DECKING TYPE SCREW MiTek USA, Inc. 3. INSTALL VALLEY TRUSSES (24" O.C. MAXIMUM) AND ENGINEERED BY SECURE PER DETAIL A 別割 4. BRACE VALLEY WEBS IN ACCORDANCE WITH THE INDIVIDUAL DESIGN DRAWINGS. 5. BASE TRUSS SHALL BE DESIGNED WITH A PURLIN SPACING GABLE END, COMMON TRUSS OR GIRDER TRUSS EQUILIVANT TO THE RAKE DIMENSION OF THE VALLEY TRUSS SPACING. 6. NAILING DONE PER NDS - 01 7. VALLEY STUD
SPACING NOT TO EXCEED 48" O.C. **BASE TRUSSES** VALLEY TRUSS TYPICAL GABLE END. COMMON TRUSS VALLEY TRUSS TYPICAL OR GIRDER TRUSS 12 P SEE DETAIL A BELOW (TYP.) SECURE VALLEY TRUSS WIND DESIGN PER ASCE 7-98, ASCE 7-02, ASCE 7-05 146 MPH WIND DESIGN PER ASCE 7-10 160 MPH MAX MEAN ROOF HEIGHT = 30 FEET W/ ONE ROW OF 10d NAILS 6" O.C. ROOF PITCH = MINIMUM 3/12 MAXIMUM 6/12 ATTACH 2x4 CONTINUOUS NO.2 SP CATEGORY II BUILDING EXPOSURE C TO THE ROOF W/ TWO USP WS3 (1/4" X 3") WOOD SCREWS INTO EACH BASE TRUSS. WIND DURATION OF LOAD INCREASE: 1.60 MAX TOP CHORD TOTAL LOAD = 50 PSF MAX SPACING = 24" O.C. (BASE AND VALLEY) MINIMUM REDUCED DEAD LOAD OF 6 PSF ON THE TRUSSES No 39380 STATE OF THE DETAIL A N.T.S. (NO SHEATHING) Thomas A. Albani PF No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 January 19, 2018 AUGUST 1, 2016 # TRUSSED VALLEY SET DETAIL MII-VALLEY SP MiTek USA, Inc. Page 1 of 1 MiTek USA, Inc. ENGINEERED BY GABLE END, COMMON TRUSS OR GIRDER TRUSS #### **GENERAL SPECIFICATIONS** - NAIL SIZE 16d (0.131" X 3.5") INSTALL VALLEY TRUSSES (24" O.C. MAXIMUM) AND SECURE PER DETAIL A - 3. BRACE VALLEY WEBS IN ACCORDANCE WITH THE INDIVIDUAL DESIGN DRAWINGS. 4. BASE TRUSS SHALL BE DESIGNED WITH A PURLIN SPACING EQUILIVANT TO THE RAKE DIMENSION OF THE VALLEY TRUSS SPACING. - 5. NAILING DONE PER NDS 01 - 6. VALLEY STUD SPACING NOT TO EXCEED 48" O.C. - 7. ALL LUMBER SPECIES TO BE SP. GABLE END, COMMON TRUSS 12 OR GIRDER TRUSS SEE DETAIL A BELOW (TYP.) SECURE VALLEY TRUSS W/ ONE ROW OF 16d (MAXIMUM 1" SHEATHING) N.T.S. WIND DESIGN PER ASCE 7-98, ASCE 7-02, ASCE 7-05 120 MPH WIND DESIGN PER ASCE 7-10 150 MPH MAX MEAN ROOF HEIGHT = 30 FEET ROOF PITCH = MINIMUM 3/12 MAXIMUM 10/12 CATEGORY II BUILDING EXPOSURE C OR B WIND DURATION OF LOAD INCREASE: 1.60 MAX TOP CHORD TOTAL LOAD = 60 PSF MAX SPACING = 24* O.C. (BASE AND VALLEY) MINIMUM REDUCED DEAD LOAD OF 4.2 PSF ON THE TRUSSES Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 # Standard Gable End Detail AUGUST 1, 2016 R Typical _x4 L-Brace Nailed To Verticals W/10d Nails spaced 6" o.c. Vertical Stud Vertical Stud (4) - 16d Nails MiTek USA, Inc. SECTION B-B (2) - 10d Nails into 2x6 DIAGONAL BRACE 4'-0" O.C. MAX TRUSS GEOMETRY AND CONDITIONS SHOWN ARE FOR ILLUSTRATION ONLY. SECTION A-A Varies to Common Truss SEE INDIVIDUAL MITEK ENGINEERING DRAWINGS FOR DESIGN CRITERIA MiTek USA, Inc. Page 1 of 2 DIAGONAL BRACE 16d Nails Spaced 6" o.c. 2x6 Stud or 2x4 No.2 of better > Typical Horizontal Brace Nailed To 2x_ Verticals w/(4)-10d Nails > > (2) - 10d NAILS Trusses @ 24" o.c. 2x6 DIAGONAL BRACE SPACED 48" O.C. ATTACHED TO VERTICAL WITH (4) -16d NAILS AND ATTACHED HORIZONTAL BRACE (SEE SECTION A-A) TO BLOCKING WITH (5) - 10d NAILS. MII-GE146-001 PROVIDE 2x4 BLOCKING BETWEEN THE FIRST TWO TRUSSES AS NOTED. TOENAIL BLOCKING TO TRUSSES WITH (2) - 10d NAILS AT EACH END. ATTACH DIAGONAL BRACE TO BLOCKING WITH (5) - 10d NAILS. (4) - 8d (0.131" X 2.5") NAILS MINIMUM, PLYWOOD SHEATHING TO 2x4 STD SP BLOCK - 10d NAILS Roof Sheathing 1'-3" Max. 3x4 = 24" Max Diag. Brace at 1/3 points End Wall if needed NOTE: * - Diagonal Bracing Refer to Section A-A OTE. MINIMUM GRADE OF #2 MATERIAL IN THE TOP AND BOTTOM CHORDS. CONNECTION BETWEEN BOTTOM CHORD OF GABLE END TRUSS AND WALL TO BE PROVIDED BY PROJECT ENGINEER OR ARCHITECT. 3. BRACING SHOWN IS FOR INDIVIDUAL TRUSS ONLY, CONSULT BLDG. 3. BHACING SHOWN IS FOR INDIVIDUAL THUSS ONLY, CONSULT BLDG, ARCHITECT OR ENGINEER FOR TEMPORARY AND PERMANENT BRACING OF ROOF SYSTEM. 4. "L" BRACES SPECIFIED ARE TO BE FULL LENGTH. GRADES: 2x4 No 3/STUD SP OR BETTER WITH ONE ROW OF 10d NAILS SPACED 6" O.C. 5. DIAGONAL BRACE TO BE APPROXIMATELY 45 DEGREES TO ROOF DIAPHRAM AT 4"-0" O.C. - L-Bracing Refer to Section B-B 6. CONSTRUCT HORIZONTAL BRACE CONNECTING A 2x6 STUD AND A 2x4 STUD AS SHOWN WITH 16d NAILS SPACED 6" O.C. HORIZONTAL BRACE TO BE LOCATED AT THE MIDSPAN OF THE LONGEST STUD. ATTACH TO VERTICAL STUDS WITH (4) 10d NAILS THROUGH 2x4. (REFER TO SECTION A-A) GABLE STUD DEFLECTION MEETS OR EXCEEDS L/240. THIS DETAIL DOES NOT APPLY TO STRUCTURAL GABLES. DO NOT USE FLAT BOTTOM CHORD GABLES NEXT TO SCISSOR TYPE TRUSSES 10. NAILS DESIGNATED 10d ARE (0.131" X 3") AND NAILS DESIGNATED 16d ARE (0.131" X 3.5") | Minimum
Stud Size
Species | Stud
Spacing | Without
Brace | 2x4
L-Brace | DIAGONAL
BRACE | 2 DIAGONAL
BRACES AT
1/3 POINTS | | | | |---------------------------------|-----------------|---------------------|----------------|-------------------|---------------------------------------|--|--|--| | and Grade | | Maximum Stud Length | | | | | | | | 2x4 SP No 3/Stud | 12" O.C. | 3-11-3 | 6-8-0 | 7-2-14 | 11-9-10 | | | | | 2x4 SP No 3/Stud | 16" O.C. | 3-6-14 | 5-9-5 | 7-1-13 | 10-8-11 | | | | | 2x4 SP No 3/Stud | 24" O.C. | 3-1-8 | 4-8-9 | 6-2-15 | 9-4-7 | | | | Diagonal braces over 6'-3" require a 2x4 T-Brace attached to one edge. Diagonal braces over 12'-6" require 2x4 I-braces attached to both edges. Fasten T and I braces to narrow edge of web with 10d nails 8" o.c., with 3" minimum end distance. Brace must cover 90% of diagonal length. MAXIMUM WIND SPEED = 146 MPH MAX MEAN ROOF HEIGHT = 30 FEET CATEGORY II BUILDING EXPOSURE B or C ASCE 7-98, ASCE 7-02, ASCE 7-05 DURATION OF LOAD INCREASE: 1.60 STUD DESIGN IS BASED ON COMPONENTS AND CLADDING. CONNECTION OF BRACING IS BASED ON MWFRS. MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd, Tampa FL 33610 January 19, 2018 **AUGUST 1, 2016** # LATERAL BRACING RECOMMENDATIONS MII-STRGBCK MiTek USA, Inc. Page 1 of 1 ® TO MINIMIZE VIBRATION COMMON TO ALL SHALLOW FRAMING SYSTEMS, 2x6 "STRONGBACK" IS RECOMMENDED, LOCATED EVERY 8 TO 10 FEET ALONG A FLOOR TRUSS. NOTE 1: 2X6 STRONGBACK ORIENTED VERTICALLY MAY BE POSITIONED DIRECTLY UNDER THE TOP CHORD OR DIRECTLY ABOVE THE BOTTOM CHORD. SECURELY FASTENED TO THE TRUSS USING ANY OF THE METHODS ILLUSTRATED BELOW. NOTE 2: STRONGBACK BRACING ALSO SATISFIES THE LATERAL BRACING REQUIREMENTS FOR THE BOTTOM CHORD OF THE TRUSS WHEN IT IS PLACED ON TOP OF THE BOTTOM CHORD, IS CONTINUOUS FROM END TO END, CONNECTED WITH A METHOD OTHER THAN METAL FRAMING ANCHOR, AND PROPERLY CONNECTED, BY OTHERS, AT THE ENDS. ALTERNATE METHOD OF SPLICING: OVERLAP STRONGBACK MEMBERS A MINIMUM OF 4'-0" AND FASTEN WITH (12) - 10d (0.131" X 3") NAILS STAGGERED AND EQUALLY SPACED. (TO BE USED ONLY WHEN STRONGBACK IS NOT ALIGNED WITH A VERTICAL) No 39380 STATE OF THE Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date: Original Ref#: 2762644 Roof Job #: