

Plate Offsets (X,Y)-- [2:0-3-6,Edge]

LOADING (psf) TCLL 20.0 TCDL 7.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.25 Lumber DOL 1.25 Rep Stress Incr YES	CSI. TC 0.12 BC 0.07 WB 0.00	DEFL. in (loc) l/defl L/d Vert(LL) -0.00 7 >999 240 Vert(CT) -0.00 7 >999 180 Horz(CT) 0.00 4 n/a n/a	PLATES GRIP MT20 244/190
BCDL 10.0	Code FBC2020/TPI2014	Matrix-MP	11012(01) 0.00 4 11/4 11/4	Weight: 8 lb FT = 20%

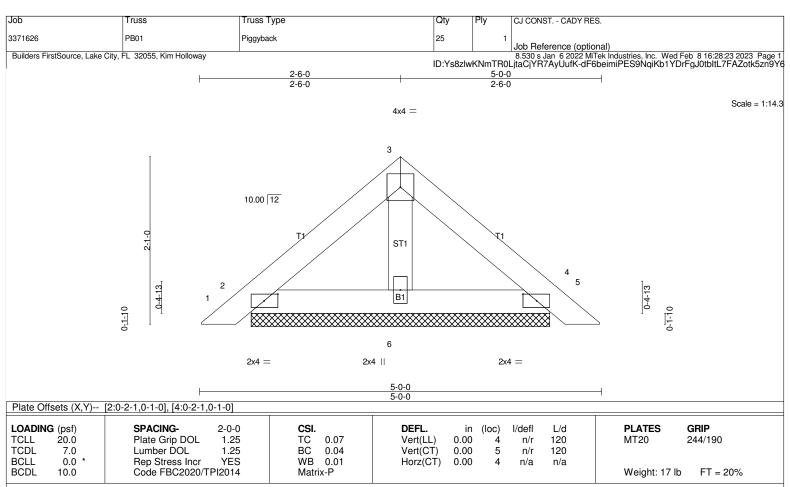
LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BRACING-

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 2-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 2=185/0-3-8, 4=44/Mechanical


Max Horz 2=33(LC 8)

Max Uplift2=-95(LC 8), 4=-14(LC 9) Max Grav 2=185(LC 1), 4=46(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior(1) 1-6-0 to 2-0-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

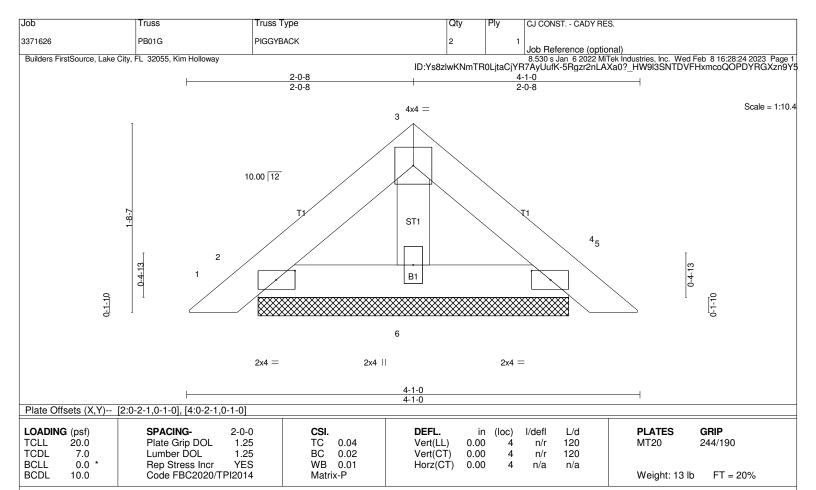
TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 **OTHERS** 2x4 SP No.3 **BRACING-**

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 5-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 2=102/3-8-9, 4=102/3-8-9, 6=115/3-8-9

Max Horz 2=-41(LC 10)


Max Uplift2=-32(LC 12), 4=-37(LC 13), 6=-4(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to
- the use of this truss component.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4, 6.
- 9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

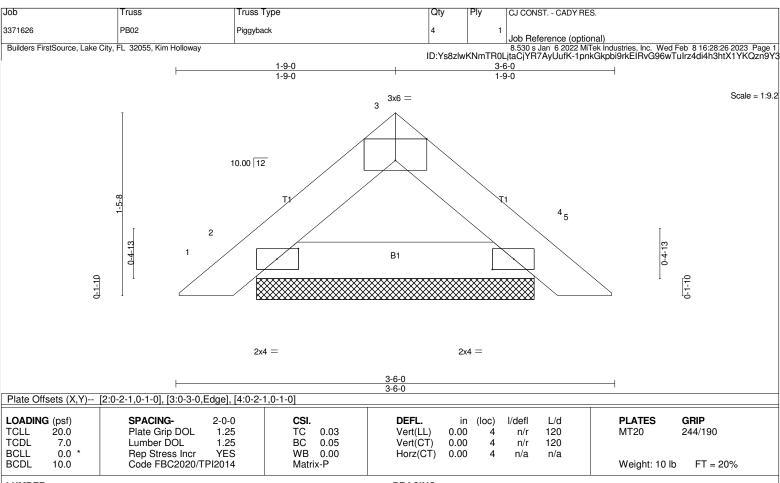
TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 **OTHERS** 2x4 SP No.3 **BRACING-**

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 4-1-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 2=83/2-9-9, 4=83/2-9-9, 6=85/2-9-9

Max Horz 2=-33(LC 10)


Max Uplift2=-27(LC 12), 4=-31(LC 13), 6=-2(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

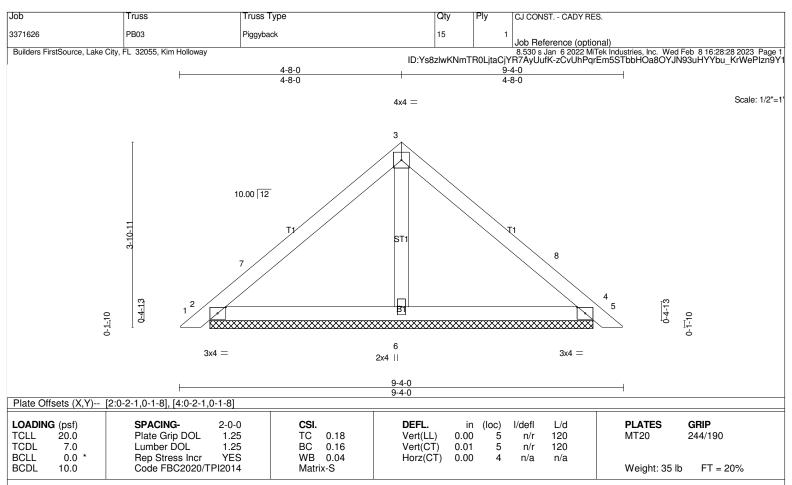
 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to
- the use of this truss component.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4, 6.
- 9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BRACING-

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 3-6-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 2=104/2-2-9, 4=104/2-2-9


Max Horz 2=-28(LC 10)

Max Uplift2=-24(LC 12), 4=-24(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

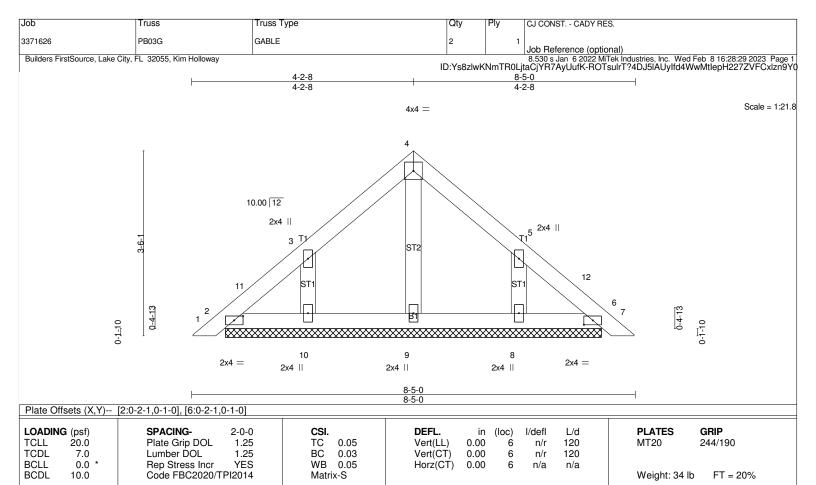
- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- 9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 OTHERS 2x4 SP No.3 BRACING-

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 2=179/8-0-9, 4=179/8-0-9, 6=282/8-0-9


Max Horz 2=-81(LC 10)

Max Uplift2=-45(LC 12), 4=-55(LC 13), 6=-37(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

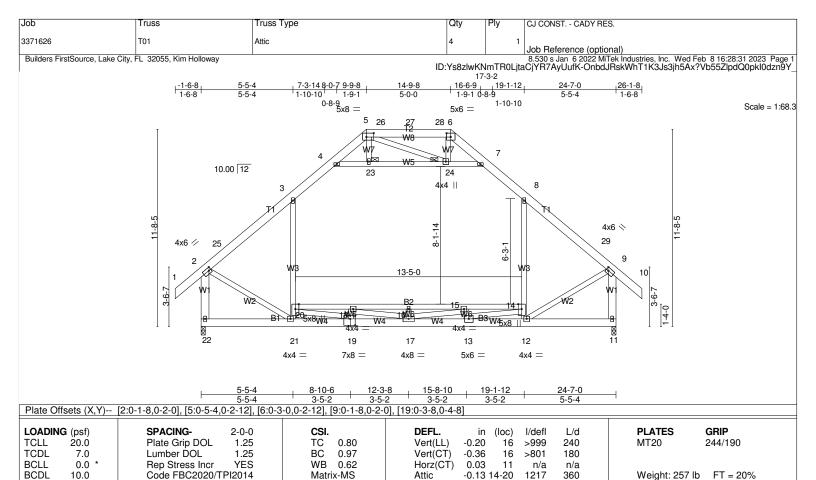
- 1) Unbalanced roof live loads have been considered for this design.
- On the late of the local flow of the late of the late
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4, 6.
 9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building
- See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 **OTHERS** 2x4 SP No.3 **BRACING-**

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 7-1-9.


(lb) - Max Horz 2=-73(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 2, 6, 10, 8 Max Grav All reactions 250 lb or less at joint(s) 2, 6, 9, 10, 8

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-2-14 to 3-2-14, Interior(1) 3-2-14 to 4-2-8, Exterior(2R) 4-2-8 to 7-2-8, Interior(1) 7-2-8 to 8-2-2 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

 9) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6, 10, 8.
- 11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

TOP CHORD 2x6 SP No.2

BOT CHORD 2x6 SP No.2 *Except* B2: 2x4 SP No.1

WEBS 2x4 SP No.3 *Except*

W1: 2x6 SP No.2, W4: 2x4 SP No.2

BRACING-

Attic

TOP CHORD

Structural wood sheathing directly applied or 4-5-2 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 5-6.

FT = 20%

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. Except:

3-4-0 oc bracing: 14-20

JOINTS 1 Brace at Jt(s): 23, 24

-0.13 14-20

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 22=1391/0-3-0, 11=1391/0-3-0

Max Horz 22=-313(LC 10)

Max Grav 22=1655(LC 2), 11=1655(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-25=-1373/0, 3-25=-1241/0, 3-4=-962/100, 4-5=-288/153, 5-26=-145/280, 26-27=-145/280,

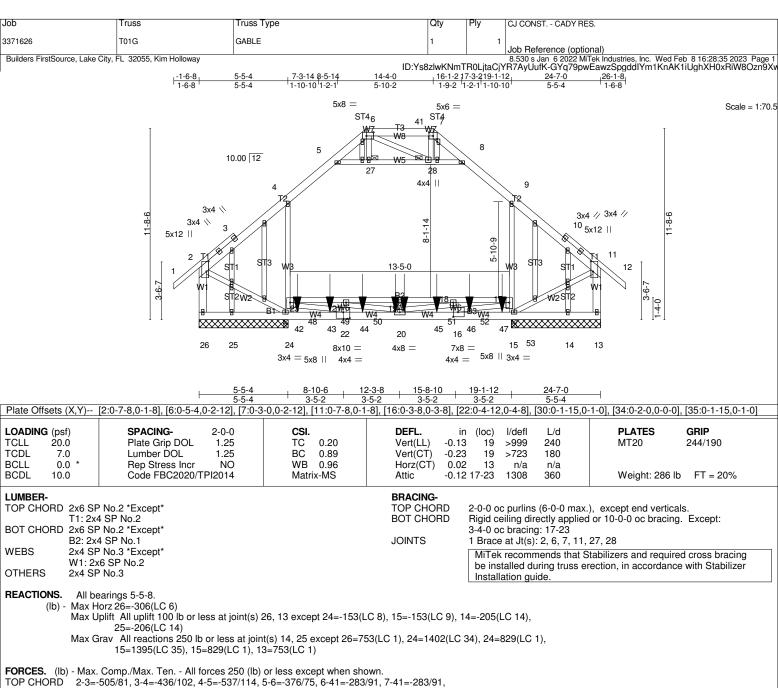
27-28=-145/280, 6-28=-145/280, 6-7=-279/156, 7-8=-962/101, 8-29=-1241/0,

9-29=-1373/0, 2-22=-1637/17, 9-11=-1636/18

BOT CHORD 21-22=-289/350, 19-21=-91/1099, 17-19=0/2994, 13-17=0/2924, 12-13=0/942,

18-20=-2061/0, 16-18=-2903/0, 15-16=-2903/0, 14-15=-2083/0

WEBS 20-21=-346/54, 3-20=0/630, 12-14=-351/58, 8-14=0/628, 4-23=-1136/74, 23-24=-1131/75,


7-24=-1155/76, 2-21=0/1099, 9-12=0/1101, 16-17=-380/0, 18-19=-677/0, 19-20=0/2176, 17-18=-96/922, 13-15=-676/0, 15-17=-111/933, 13-14=0/2195

NOTES-

1) Unbalanced roof live loads have been considered for this design.
2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-Č Exterior(2E) -1-6-8 to 1-5-8, Interior(1) 1-5-8 to 9-9-8, Exterior(2R) 9-9-8 to 14-0-7 Interior(1) 14-0-7 to 14-9-8, Exterior(2R) 14-9-8 to 19-1-12, Interior(1) 19-1-12 to 26-1-8 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Matrix-MS

- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Ceilling dead load (5.0 psf) on member(s). 3-4, 7-8, 4-23, 23-24, 7-24; Wall dead load (5.0 psf) on member(s).3-20, 8-14
 9) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 18-20, 16-18, 15-16, 14-15
- 10) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 12) Attic room checked for L/360 deflection.

7-8=-373/74, 8-9=-537/114, 9-10=-436/95, 10-11=-505/76, 2-26=-678/80, 11-13=-678/74

BOT CHORD 25-26=-282/275, 24-25=-282/275, 24-42=-106/435, 42-43=-106/435, 22-43=-106/435,

22-44=0/2134, 20-44=0/2134, 20-45=0/2128, 16-45=0/2128, 16-46=-64/405, 46-47=-64/405,

15-47=-64/405, 23-48=-1978/0, 48-49=-1978/0, 21-49=-1978/0, 21-50=-2859/0, 19-50=-2859/0. 19-51=-2859/0. 18-51=-2859/0. 18-52=-1997/0. 52-53=-1997/0.

17-53=-1997/0

23-24=-1055/95, 4-23=-419/225, 15-17=-1055/96, 9-17=-415/225, 2-24=-94/369, **WEBS**

11-15=-92/369, 19-20=-369/0, 21-22=-697/0, 22-23=0/1998, 20-21=0/892, 16-18=-697/0,

18-20=0/895, 16-17=0/2017

NOTES-

1) Unbalanced roof live loads have been considered for this design.

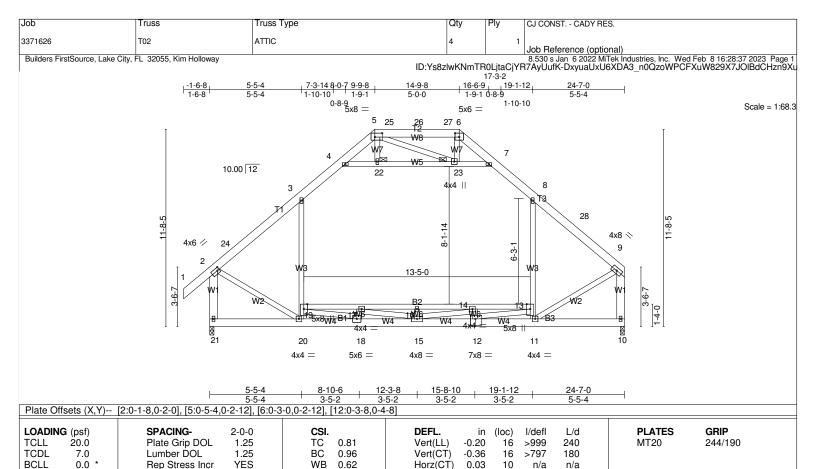
2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

5) Provide adequate drainage to prevent water ponding.

6) All plates are 2x4 MT20 unless otherwise indicated.


7) Gable studs spaced at 2-0-0 oc.

8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

10) Ceiling dead load (5.0 psf) on member(s). 4-5, 8-9, 5-27, 27-28, 8-28; Wall dead load (5.0 psf) on member(s).4-23, 9-17 Continued on page 2

Job	Truss	Truss Type	Qty	Ply	CJ CONST CADY RES.
			Qiy	1 ''y	
3371626	T01G	GABLE]		1 Job Reference (optional)
Builders FirstSource, La	ake City, FL 32055, Kim Ho	lloway	ID:Ys8zlwKNm	TR0Lita0	8.530 s Jan 6 2022 MiTek Industries, Inc. Wed Feb 8 16:28:35 2023 Page 2 CjYR7AyUufK-GYq79pwEawzSpgddIYm1KnAK1iUghXH0xRiW8Ozn9Xw
12) All bearings ar 13) Provide mecha 14) Graphical purli 15) Hanger(s) or o down and 23 lt 16-6-12, and 2 16) Attic room che	e assumed to be SP N unical connection (by on n representation does ther connection device o up at 10-0-4, 26 lb of 6 lb down and 23 lb up cked for L/360 deflect ASE(S) section, loads	not depict the size or the orientation e(s) shall be provided sufficient to su down and 23 lb up at 12-0-4, 26 lb d p at 18-6-12 on bottom chord. The	able of withstanding 100 lb up n of the purlin along the top a upport concentrated load(s) 2 down and 23 lb up at 12-6-12 design/selection of such con	lift at join nd/or bo 6 lb dow , 26 lb do nection o	nt(s) 26, 13 except (jt=lb) 24=153, 15=153, 14=205, 25=206.
Uniform Loads (Vert: 1-2	plf)	Increase=1.25, Plate Increase=1.25 64, 5-6=-54, 6-7=-54, 7-8=-54, 8-9=-		26=-20,	17-23=-40, 5-8=-10
Concentrated Lo Vert: 20		=-24(B) 44=-24(B) 45=-24(B) 46=-24	4(B) 47=-24(B)		
ı					
ı					
ı					
ı					
ı					
ı					
ı					
ı					
ı					

BCDL

TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2 *Except*

B2: 2x4 SP No.1

WEBS 2x4 SP No.3 *Except*

W1: 2x6 SP No.2, W4: 2x4 SP No.2

BRACING-

Attic

TOP CHORD

Structural wood sheathing directly applied or 4-4-9 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 5-6.

Weight: 252 lb

FT = 20%

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. Except:

-0.13 13-19

3-4-0 oc bracing: 13-19

1217

JOINTS 1 Brace at Jt(s): 22, 23

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 21=1394/0-3-0, 10=1292/0-3-0

Max Horz 21=302(LC 9)

Max Grav 21=1658(LC 2), 10=1574(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-24=-1378/0, 3-24=-1246/0, 3-4=-965/97, 4-5=-286/154, 5-25=-137/285, 25-26=-137/285,

26-27=-137/285, 6-27=-137/285, 6-7=-273/158, 7-8=-966/100, 8-28=-1241/0, 9-28=-1373/0,

2-21=-1643/14, 9-10=-1564/0

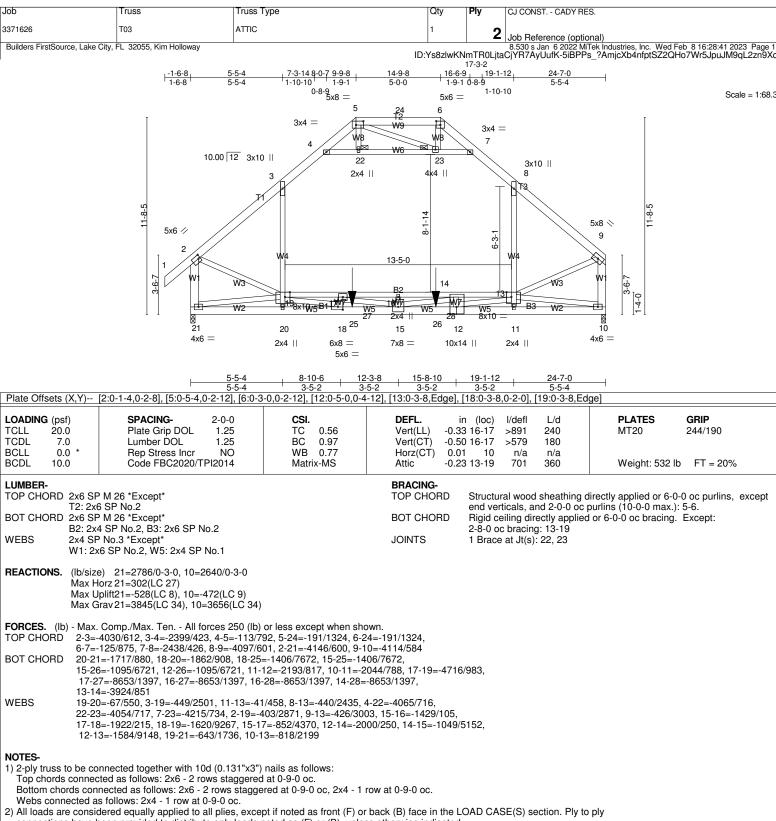
BOT CHORD 20-21=-296/327, 18-20=-104/1082, 15-18=0/2970, 12-15=0/2936, 11-12=0/955,

17-19=-2077/0, 16-17=-2905/0, 14-16=-2905/0, 13-14=-2072/0

Code FBC2020/TPI2014

WEBS 19-20=-339/55, 3-19=0/632, 11-13=-378/70, 8-13=0/615, 4-22=-1148/67, 22-23=-1142/69,

7-23=-1168/74, 2-20=0/1104, 9-11=0/1102, 15-16=-380/0, 17-18=-678/0, 18-19=0/2192,


15-17=-93/938, 12-14=-674/0, 14-15=-116/915, 12-13=0/2180

NOTES-

1) Unbalanced roof live loads have been considered for this design.
2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-Č Exterior(2E) -1-6-8 to 1-5-8, Interior(1) 1-5-8 to 9-9-8, Exterior(2R) 9-9-8 to 14-0-7 Interior(1) 14-0-7 to 14-9-8, Exterior(2R) 14-9-8 to 19-1-12, Interior(1) 19-1-12 to 24-4-4 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Matrix-MS

- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Ceilling dead load (5.0 psf) on member(s). 3-4, 7-8, 4-22, 22-23, 7-23; Wall dead load (5.0psf) on member(s).3-19, 8-13
 9) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 17-19, 16-17, 14-16, 13-14
- 10) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 12) Attic room checked for L/360 deflection.

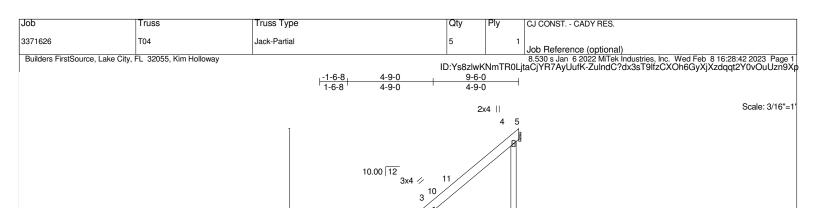
connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Unbalanced roof live loads have been considered for this design.

4) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 5) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to

the use of this truss component.

6) Provide adequate drainage to prevent water ponding.


7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

9) Ceiling dead load (5.0 psf) on member(s). 3-4, 7-8, 4-22, 22-23, 7-23; Wall dead load (5.0 psf) on member(s).3-19, 8-13

10) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 17-19, 16-17, 14-16, 13-14 Continued on page 2

				-	
Job	Truss	Truss Type	Qty	Ply	CJ CONST CADY RES.
3371626	T03	ATTIC	1	2	Job Reference (optional)
12) Provide mechanical 13) Graphical purlin repr 14) Hanger(s) or other co	umed to be SP No.2 crushin connection (by others) of tr esentation does not depict onnection device(s) shall bord. The design/selection of	ng capacity of 565 psi. uss to bearing plate capable of withstanding the size or the orientation of the purlin along	100 lb upli the top an load(s) 54	lmTR0Ljta0 ft at joint(d/or botto 7 lb down	c)303 3 3 an 6 2022 Mirek Mudshies, Inc. Wed Petrol 6 16,26,41 2025 Page 2 CjYR7AyUufK-5iBPPs_?AmjcXb4nfptSZ2QHo7Wr5JpuJM9qL2zn9Xq s) except (jt=lb) 21=528, 10=472.
LOAD CASE(S) Standar 1) Dead + Roof Live (bai Uniform Loads (plf) Vert: 1-2=-54, Drag: 3-19=-1 Concentrated Loads (d anced): Lumber Increase= 2-3=-54, 3-4=-64, 4-5=-54, 0, 8-13=-10		-20, 25-26	=-195, 10	-26=-20, 19-27=-40, 27-28=-215, 13-28=-40, 4-7=-10

2 12 76 5x6 = 6x8 =

9-6-0

Plate Offsets (X,Y)-- [7:0-3-8,0-3-0]

LOADING (psf) TCLL 20.0 TCDL 7.0	SPACING- 2-0-0 Plate Grip DOL 1.25 Lumber DOL 1.25	CSI. TC 0.23 BC 0.49	DEFL. in (loc) I/defl L/d Vert(LL) -0.12 7-8 >895 240 Vert(CT) -0.20 7-8 >551 180	PLATES GRIP MT20 244/190
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code FBC2020/TPI2014	WB 0.46 Matrix-MS	Horz(CT) -0.01 5 n/a n/a	Weight: 102 lb FT = 20%

LUMBER-

REACTIONS.

TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2

2x4 SP No.3 *Except* WFBS

W1: 2x6 SP No.2

BRACING-

TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals

BOT CHORD WFBS

Rigid ceiling directly applied or 10-0-0 oc bracing.

1 Row at midpt

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

(lb/size) 5=-3/Mechanical, 8=437/0-3-0, 7=344/Mechanical

Max Horz 8=240(LC 12)

Max Uplift5=-7(LC 12), 7=-234(LC 12)

Max Grav 5=2(LC 10), 8=467(LC 2), 7=506(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-8=-306/222

WEBS 3-8=-369/199. 3-7=-251/358

NOTES-

1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-8 to 1-5-8, Interior(1) 1-5-8 to 9-5-4 zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2x4 ||

- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) This truss is not designed to support a ceiling and is not intended for use where aesthetics are a consideration.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 6) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5 except (jt=lb) 7=234.

Job	Truss	Truss Type			Qty	Ply	CJ CONS	ST CADY RES	i.	
3371626	T05	Jack-Closed			2	1		. , ,	D.	
Builders FirstSource,	Lake City, FL 32055, Kim Hollowa	y					8.530 s	erence (option Jan 6 2022 MiTe	ial) ek Industries, Inc. Wed F	Feb
			4-	9-0	10-0-0	lmTR0Ljta)	aCjYR7Ay	/UufK-VHtX2u	1tTh6BO3pMKxQ9Br	n2rjLe1lmiL?KOVyNzn9Xi
			4-	9-0	5-3-0					
					2x	4				Scale = 1:65.6
		Ţ				3 4				
			10	.00 12						
				3x4 // g	//					
				2 71						
		7-		8						
		11-10-7		//// \\	\	₩ 4				
			2x4 1	///	//w3					
		т	'//	Ma	1					
			1 1 1	yw2		\ 0- <u>3</u> ⊦	-8			
		3-6-7	W1 //		,		•			
				B1		\mathcal{A}				
		1 1	<u> </u>	10	11					
			4x8 =							
						6x8 =	=			
			<u> </u>	10-0-0 10-0-0						
LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.		, (loo)	I/dofl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	C 0.33	Vert(LI		5 `6-Ź	l/defl >758	240	MT20	244/190
TCDL 7.0 BCLL 0.0	Lumber DOL Rep Stress Incr		3C 0.56 VB 0.31	Vert(C Horz(C			>453 n/a	180 n/a		
BCDL 10.0	Code FBC2020		/latrix-MS		., 0.00			,	Weight: 100 ll	b FT = 20%
LUMBER-				BRACIN						
TOP CHORD 2x BOT CHORD 2x				TOP CH	HORD	Structure end ver		sheathing di	rectly applied or 6-0	0-0 oc purlins, except

2x6 SP No.2 2x4 SP No.3 *Except* **WEBS**

W1: 2x6 SP No.2

end verticals.

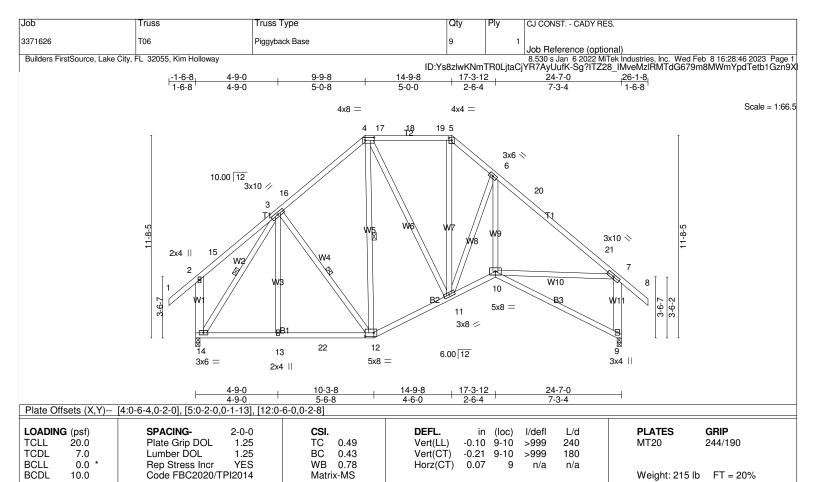
Rigid ceiling directly applied or 10-0-0 oc bracing. **BOT CHORD** WEBS

1 Row at midpt 3-6, 2-6

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 5=363/Mechanical, 7=359/0-3-0

Max Horz 7=241(LC 12) Max Uplift5=-233(LC 12)


Max Grav 5=512(LC 19), 7=423(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 2-6=-254/326

NOTES-

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-2-12 to 3-2-12, Interior(1) 3-2-12 to 10-0-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 5=233.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

2x4 SP No.3 *Except* WFBS

W1,W11: 2x6 SP No.2

BRACING-

WFBS

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 4-11-10 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 4-5.

Rigid ceiling directly applied or 10-0-0 oc bracing.

3-12, 4-12, 3-14 1 Row at midnt

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 14=988/0-3-0, 9=988/0-3-0

Max Horz 14=-318(LC 10)

Max Uplift14=-203(LC 12), 9=-203(LC 13) Max Grav 14=1059(LC 2), 9=1040(LC 2)

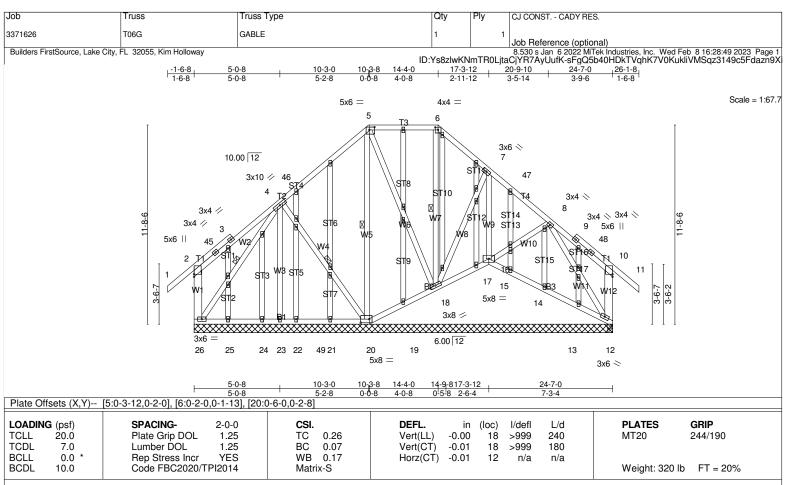
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 3-16=-717/215, 4-16=-643/240, 4-17=-609/228, 17-18=-609/228, 18-19=-609/228,

5-19=-609/228, 5-6=-849/292, 6-20=-1075/236, 20-21=-1118/218, 7-21=-1225/202,

2-14=-261/159, 7-9=-945/259

BOT CHORD 13-14=-208/670, 13-22=-208/670, 12-22=-208/670, 11-12=-166/676, 10-11=-124/1042 WEBS


4-11=-35/282, 5-11=-138/414, 6-11=-725/250, 6-10=-26/677, 3-14=-967/91, 7-10=-107/840,

3-13=0/273

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-8 to 1-5-8, Interior(1) 1-5-8 to 9-9-8, Exterior(2R) 9-9-8 to 14-0-7 Interior(1) 14-0-7 to 14-9-8, Exterior(2R) 14-9-8 to 19-0-7, Interior(1) 19-0-7 to 26-1-8 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to
- the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 8) Bearing at joint(s) 9 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 14=203,
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

WEBS 2x4 SP No.3 *Except* W1.W12: 2x6 SP No.2

OTHERS 2x4 SP No.3 **BRACING-**

WEBS

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 5-6.

Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

6-0-0 oc bracing: 16-17.

1 Row at midpt

4-20, 6-18, 4-26, 5-20

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

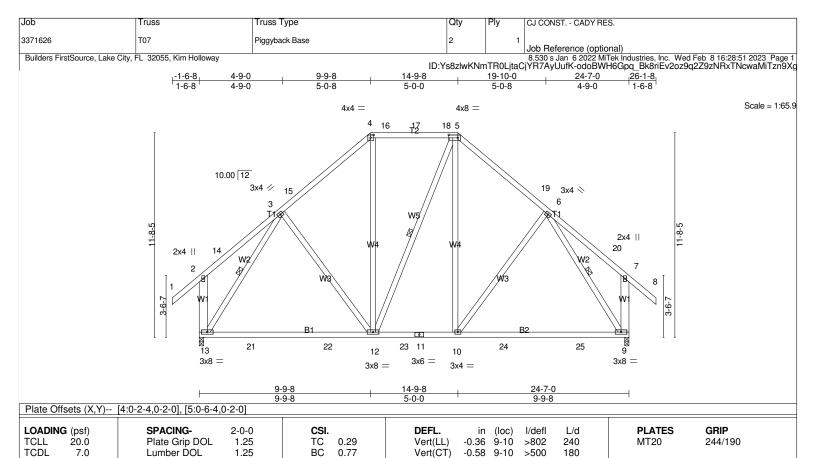
REACTIONS. All bearings 24-7-0.

Max Horz 26=-312(LC 10) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 23, 26 except 20=-179(LC 12), 16=-106(LC

13), 12=-111(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 23, 19, 13, 14, 15, 17, 25, 24, 22,


21 except 20=310(LC 19), 16=389(LC 1), 26=352(LC 23), 12=336(LC 20), 12=326(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-26=-256/158

WEBS 7-16=-315/78, 5-20=-254/39

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-8 to 1-5-8, Interior(1) 1-5-8 to 10-3-8, Exterior(2E) 10-3-8 to 14-4-0, Exterior(2R) 14-4-0 to 18-6-15, Interior(1) 18-6-15 to 26-1-8 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) Provide adequate drainage to prevent water ponding.
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 10) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 23, 26 except (jt=lb) 20=179, 16=106, 12=111.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

BCLL

BCDL

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.1 2x4 SP No.3 *Except* WFBS

0.0

W1: 2x6 SP No.2

BRACING-

WFBS

Horz(CT)

TOP CHORD

BOT CHORD

0.02

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 4-5. Rigid ceiling directly applied or 10-0-0 oc bracing.

n/a

1 Row at midpt

n/a

5-12, 3-13, 6-9

Weight: 203 lb

FT = 20%

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 13=988/0-3-0, 9=988/0-3-0

Max Horz 13=318(LC 11)

Max Uplift13=-203(LC 12), 9=-203(LC 13) Max Grav 13=1118(LC 2), 9=1121(LC 2)

Rep Stress Incr

Code FBC2020/TPI2014

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 3-15=-794/212, 4-15=-719/237, 4-16=-553/238, 16-17=-553/238, 17-18=-553/238,

YES

5-18=-553/238. 5-19=-722/237. 6-19=-798/212. 2-13=-303/147. 7-9=-303/147

13-21=-216/646, 21-22=-216/646, 12-22=-216/646, 12-23=-96/604, 11-23=-96/604, 10-11=-96/604, 10-24=-70/520, 24-25=-70/520, 9-25=-70/520 **BOT CHORD**

4-12=-84/288, 5-10=-95/338, 3-13=-827/122, 6-9=-831/122

WEBS NOTES-

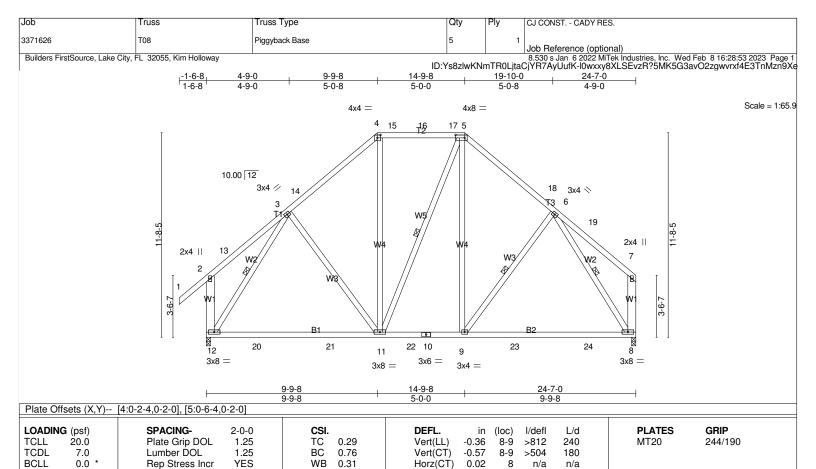
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-8 to 1-5-8, Interior(1) 1-5-8 to 9-9-8, Exterior(2R) 9-9-8 to 14-0-7 Interior(1) 14-0-7 to 14-9-8, Exterior(2R) 14-9-8 to 19-0-7, Interior(1) 19-0-7 to 26-1-8 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WB

Matrix-MS

0.31


3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

4) Provide adequate drainage to prevent water ponding.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.

- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 13=203, 9 = 203
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

BCDL

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.1

WEBS 2x4 SP No.3 *Except*

W1: 2x6 SP No.2

BRACING-

TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 4-5. Rigid ceiling directly applied or 10-0-0 oc bracing.

BOT CHORD Rigid ceiling directl
WEBS 1 Row at midpt

5-11, 6-9, 3-12, 6-8

Weight: 200 lb

FT = 20%

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 12=992/0-3-0, 8=889/0-3-0

Max Horz 12=307(LC 9)

Max Uplift12=-201(LC 12), 8=-169(LC 13) Max Grav 12=1118(LC 2), 8=1038(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Code FBC2020/TPI2014

TOP CHORD 3-14=-795/209, 4-14=-719/234, 4-15=-553/237, 15-16=-553/237, 16-17=-

5-17=-553/237, 5-18=-723/234, 6-18=-801/209, 2-12=-302/147

BOT CHORD 12-20=-229/630, 20-21=-229/630, 11-21=-229/630, 11-22=-108/591, 10-22=-108/591,

9-10=-108/591, 9-23=-122/514, 23-24=-122/514, 8-24=-122/514

WEBS 4-11=-81/287, 5-9=-90/343, 3-12=-827/120, 6-8=-820/179

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-8 to 1-5-8, Interior(1) 1-5-8 to 9-9-8, Exterior(2R) 9-9-8 to 14-0-7, Interior(1) 14-0-7 to 14-9-8, Exterior(2R) 14-9-8 to 19-0-7, Interior(1) 19-0-7 to 24-4-4 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Matrix-MS

- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 12=201, 8=169.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

3371626	T09	MONOPITCH GIRDER	1	1	Job Reference (optional)
Builders FirstSource,	Lake City, FL 32055, Kim Holl	oway	ID:Vc0zlwKN	mTD0Lita	Job Reference (optional) 8.530 s Jan 6 2022 MiTek Industries, Inc. Wed Feb 8 16:28:55 2023 Page 1 CjYR7AyUufK-hP2hLe9nt3UdDI9TTI7k8??kpmUsNmkyXYYarEzn9Xo
		4-9-0	10-0-0	пп посда	OJTH/Ayoulk-IIF2IILeetiloodbleTTI/ko::kpiilosiviikyXTTalLziiekk
		4-9-0	5-3-0	ı	
			2x-	4	Scale = 1:66.4
		10.00 12 3x6	_//	3 W5 W5 5 4 6x8 =	
		4-9-0	8-11-12	1 ₀ -0-0 1-0-4	
Plate Offsets (X	Y) [4:0-4-0,0-4-0]	4-9-0	4-2-12	1-0-4	
: init billette (74)	., [: 5,0 : 0]				

LOADING (psf) SPACING-CSI. 4-0-0 **TCLL** 20.0 Plate Grip DOL 1.25 TC 0.27 **TCDL** 7.0 Lumber DOL 1.25 BC 0.16 **BCLL** 0.0 Rep Stress Incr NO WB 0.22 BCDL Code FBC2020/TPI2014 Matrix-MS

DEFL. in (loc) I/defl I/d Vert(LL) -0.01 6-7 >999 240 Vert(CT) -0.02 6-7 >999 180 Horz(CT) -0.00 n/a n/a

1 Row at midpt

BRACING-

WFBS

TOP CHORD

BOT CHORD

CJ CONST. - CADY RES.

PLATES GRIP MT20 244/190

2-0-0 oc purlins (6-0-0 max.), except end verticals (Switched from sheeted: Spacing > 2-0-0).

3-4 2-4

Rigid ceiling directly applied or 9-5-7 oc bracing.

Weight: 116 lb FT = 20%

LUMBER-

Job

TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2 2x4 SP No.3 *Except* **WEBS**

W5,W1: 2x6 SP No.2

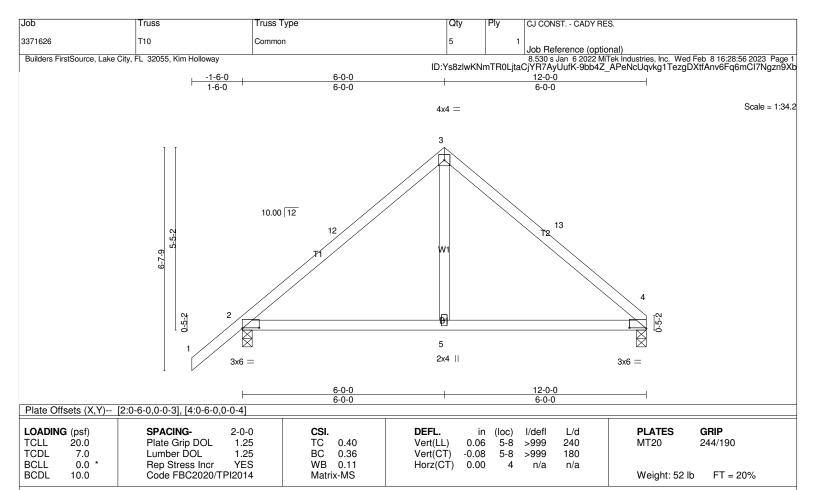
Truss

Truss Type

REACTIONS. (lb/size) 7=691/0-3-0, 4=535/1-2-0, 5=186/0-3-8

Max Horz 7=547(LC 12)

Max Uplift4=-635(LC 12)


Max Grav 7=691(LC 1), 4=638(LC 19), 5=340(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1-2=-487/0, 1-7=-602/0 TOP CHORD

BOT CHORD 6-7=-615/392, 5-6=-346/364, 4-5=-346/364 **WFBS** 2-6=-119/255, 2-4=-613/583, 1-6=-35/391

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-2-12 to 3-2-12, Interior(1) 3-2-12 to 9-9-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
 5) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 4=635.
- 7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 WFBS

BRACING-

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 4=439/0-3-8, 2=530/0-3-8

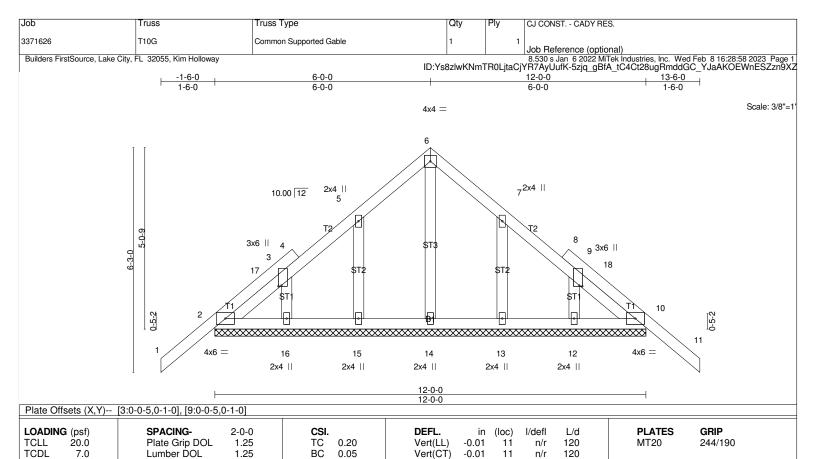
Max Horz 2=128(LC 9)

Max Uplift4=-80(LC 13), 2=-117(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-12=-489/147, 3-12=-391/163, 3-13=-391/166, 4-13=-486/150

BOT CHORD 2-5=-28/303, 4-5=-28/303


WEBS 3-5=-21/280

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior(1) 1-6-0 to 6-0-0, Exterior(2R) 6-0-0 to 9-0-0, Interior(1) 9-0-0 to 12-0-0 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

 6) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 2=117.

BCLL

BCDL

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 **OTHERS**

0.0

BRACING-

Horz(CT)

0.00

10

TOP CHORD **BOT CHORD** 2-0-0 oc purlins (6-0-0 max.).

n/a

n/a

Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

Weight: 73 lb

FT = 20%

REACTIONS. All bearings 12-0-0.

(lb) - Max Horz 2=129(LC 11)

Max Uplift All uplift 100 lb or less at joint(s) 2, 10, 15, 16, 13, 12 Max Grav All reactions 250 lb or less at joint(s) 2, 10, 14, 15, 16, 13, 12

YES

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1) Unbalanced roof live loads have been considered for this design.

Rep Stress Incr

Code FBC2020/TPI2014

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Corner(3E) -1-6-0 to 1-6-0, Exterior(2N) 1-6-0 to 6-0-0, Corner(3R) 6-0-0 to 9-0-0, Exterior(2N) 9-0-0 to 13-6-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WB

Matrix-S

0.04

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

 9) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10, 15, 16, 13, 12.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

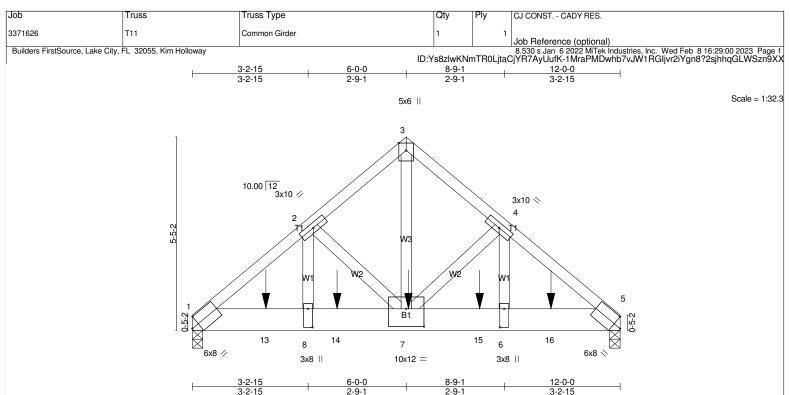


Plate Offsets (X,Y)-- [1:Edge,0-3-2], [5:Edge,0-3-2], [6:0-6-4,0-1-8], [7:0-6-0,0-6-0], [8:0-6-4,0-1-8]

LOADING (psf) TCLL 20.0 TCDL 7.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.25 Lumber DOL 1.25 Rep Stress Incr NO	CSI. TC 0.46 BC 0.42 WB 0.94	DEFL. in (loc) l/defl L/d Vert(LL) -0.08 7 >999 240 Vert(CT) -0.13 7 >999 180 Horz(CT) 0.03 5 n/a n/a	PLATES GRIP MT20 244/190
BCDL 10.0	Code FBC2020/TPI2014	Matrix-MS	. ,	Weight: 84 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 2-5-9 oc purlins.

MiTek recommends that Stabilizers and required cross bracing

be installed during truss erection, in accordance with Stabilizer

Rigid ceiling directly applied or 10-0-0 oc bracing.

Installation guide.

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x8 SP 2400F 2.0E WEBS 2x4 SP No.3 *Except*

W3: 2x4 SP No.2

REACTIONS. (lb/size) 1=3145/0-3-8 (req. 0-4-3), 5=3191/0-3-8 (req. 0-4-4)

Max Horz 1=-110(LC 23)

Max Uplift1=-673(LC 8), 5=-683(LC 9) Max Grav 1=3531(LC 2), 5=3584(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-4710/905, 2-3=-3395/698, 3-4=-3396/699, 4-5=-4707/906

BOT CHORD 1-13=-710/3596, 8-13=-710/3596, 8-14=-710/3596, 7-14=-710/3596, 7-15=-659/3595,

6-15=-659/3595, 6-16=-659/3595, 5-16=-659/3595

WEBS 3-7=-822/4155, 4-7=-1386/348, 4-6=-308/1696, 2-7=-1387/348, 2-8=-309/1700

NOTES-

1) Unbalanced roof live loads have been considered for this design.

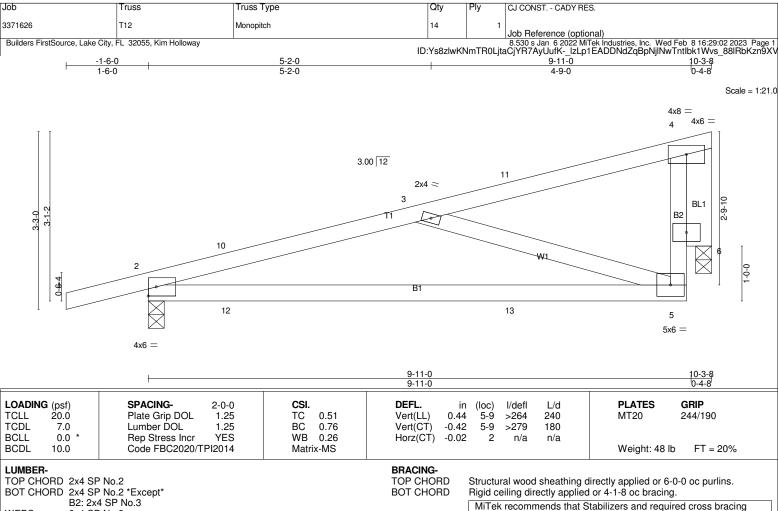
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) WARNING: Required bearing size at joint(s) 1, 5 greater than input bearing size.

7) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.

- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=673, 5=683.
- 9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1269 lb down and 252 lb up at 2-0-12, 1269 lb down and 252 lb up at 4-0-12, 1269 lb down and 252 lb up at 8-0-12, and 1269 lb down and 252 lb up at 10-0-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).


LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)

Vert: 1-3=-54, 3-5=-54, 1-5=-20

Continued on page 2

lob	Truss	Truss Type	Qty	Ply	CJ CONST CADY RES.
3371626	T11	Common Girder	1		1
Builders FirstSource, La	ake City, FL 32055, Kim Holloway		ID:Vo9-lus/A	ImTD0Lit	Job Reference (optional) 8.530 s Jan 6 2022 MTek Industries, Inc. Wed Feb 8 16:29:00 2023 Page 2 aCjYR7AyUufK-1MraPMDwhb7vJW1RGljvr2iYgn8?2sjhhqGLWSzn9X)
LOAD CASE(S) St Concentrated Lo Vert: 7=	oads (lb)	9(F) 15=-1089(F) 16=-1089(F)	ID:YS8ZIWAN	ım I KULJI	racjykr/Ayourk-i mrapmidwnb/vow i RGijvrzi y gn8 /2sjinnqGLw5zn9X/

be installed during truss erection, in accordance with Stabilizer

Installation guide.

B2: 2x4 SP No.3

WEBS 2x4 SP No 3 2x6 SP No.2 **OTHERS**

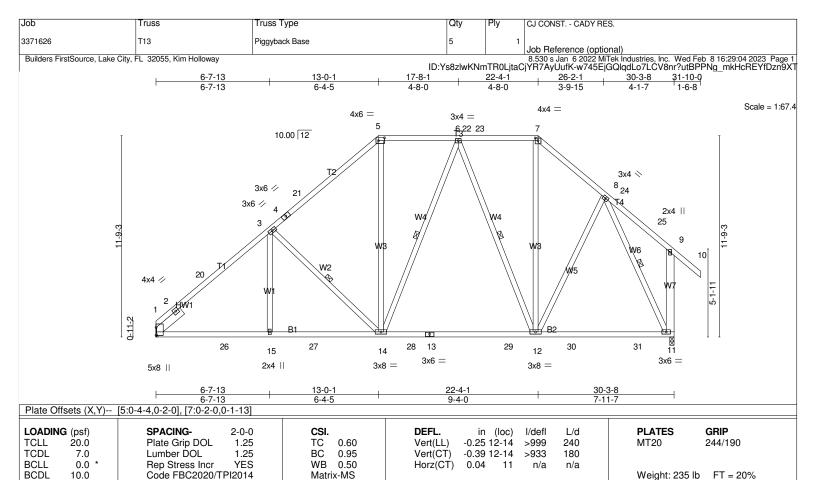
REACTIONS. (lb/size) 2=446/0-3-8, 6=352/0-3-8

Max Horz 2=144(LC 8)

Max Uplift2=-219(LC 8), 6=-190(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-10=-624/538, 3-10=-606/547


BOT CHORD 5-6=-414/262, 2-12=-703/588, 12-13=-703/588, 5-13=-703/588

WFBS 3-5=-562/601

NOTES-

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior(1) 1-6-0 to 9-8-4 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit
- between the bottom chord and any other members.

 5) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 6) Bearing at joint(s) 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=219, 6=190.

REACTIONS.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

2x4 SP No.3 *Except* WFBS W4: 2x4 SP No.2, W7: 2x6 SP No.2

SLIDER Left 2x6 SP No.2 1-11-8 **BRACING-**

WFBS

TOP CHORD

Structural wood sheathing directly applied or 3-6-12 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 5-7.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

2-2-0 oc bracing: 12-14.

1 Row at midpt

3-14, 6-14, 6-12, 8-11

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

(lb/size) 1=1109/Mechanical, 11=1211/0-3-0

Max Horz 1=316(LC 11)

Max Uplift1=-232(LC 12), 11=-242(LC 13) Max Grav 1=1289(LC 2), 11=1386(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

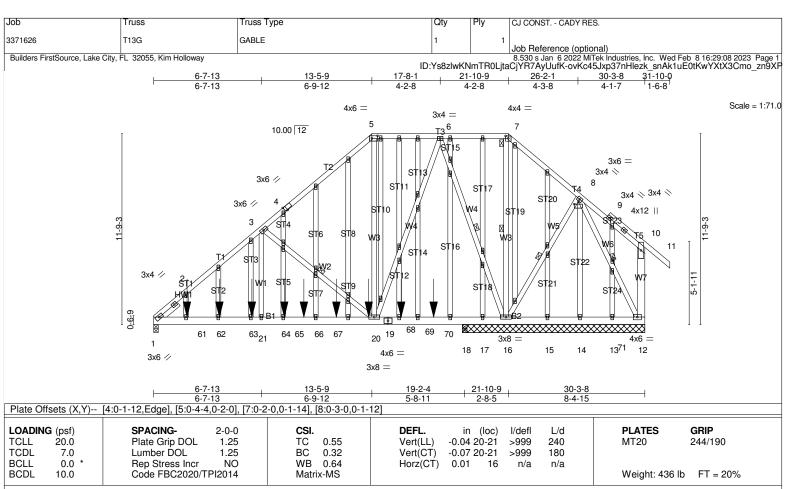
1-2=-483/0, 2-20=-1560/285, 3-20=-1423/304, 3-4=-1215/289, 4-21=-1157/297, TOP CHORD

5-21=-1122/320, 5-22=-865/314, 6-22=-865/314, 6-23=-689/252, 7-23=-689/252,

7-8=-950/274, 9-11=-277/147

 $1 - 26 = -301/1265,\ 15 - 26 = -301/1265,\ 15 - 27 = -301/1265,\ 14 - 27 = -301/1265,\ 14 - 28 = -203/830,$ **BOT CHORD**

13-28=-203/830, 13-29=-203/830, 12-29=-203/830, 12-30=-87/517, 30-31=-87/517,


WEBS 3-15=0/282, 3-14=-483/259, 5-14=-94/486, 6-12=-403/184, 7-12=-123/403, 8-12=-107/406,

8-11=-1164/141

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-0-0 to 3-0-6, Interior(1) 3-0-6 to 13-0-1, Exterior(2R) 13-0-1 to 17-3-8, Interior(1) 17-3-8 to 22-4-1, Exterior(2R) 22-4-1 to 26-7-8, Interior(1) 26-7-8 to 31-10-0 zone; end vertical right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 7) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=232,
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2 2x4 SP No.3 *Except* **WEBS**

W7: 2x6 SP No.2 2x4 SP No.3 **OTHERS** Left 2x4 SP No.3 1-5-5

SLIDER

BRACING-

TOP CHORD BOT CHORD WFBS

2-0-0 oc purlins (5-3-6 max.), except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing. 3-20, 6-16, 7-16, 8-16, 8-12 1 Row at midpt

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 11-3-0 except (jt=length) 1=0-3-8, 18=0-3-8.

(lb) - Max Horz 1=313(LC 26)

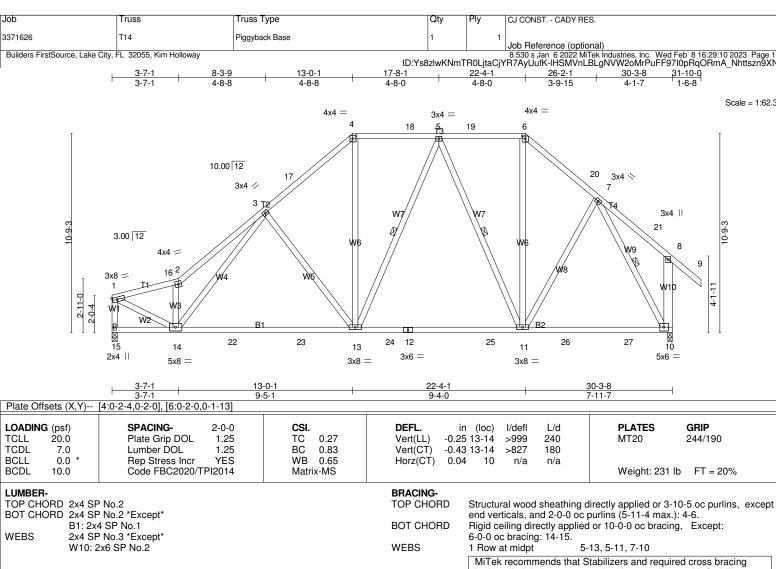
Max Uplift All uplift 100 lb or less at joint(s) 13, 18 except 1=-254(LC 8), 16=-371(LC 9), 12=-108(LC 28),

17=-182(LC 21)

Max Grav All reactions 250 lb or less at joint(s) 13, 14, 15, 17 except 1=908(LC 21), 16=1241(LC 2), 12=266(LC

20), 18=382(LC 21)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-602/102, 2-3=-1077/329, 3-4=-592/225, 4-5=-482/259, 5-6=-369/273


BOT CHORD 1-61=-343/920, 61-62=-343/920, 62-63=-343/920, 21-63=-343/920, 21-64=-343/920,

64-65=-343/920, 65-66=-343/920, 66-67=-343/920, 67-68=-343/920, 20-68=-343/920

WEBS 3-21=-68/368, 3-20=-620/335, 6-20=-228/660, 6-16=-789/294, 7-16=-281/64

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone; end vertical right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) Provide adequate drainage to prevent water ponding.
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 10) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 13, 18 except (jt=lb) 1=254, 16=371, 12=108, 17=182.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 13) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 24 lb down and 23 lb up at 2-0-12, 24 lb down and 23 lb up at 4-0-12, 24 lb down and 23 lb up at 6-0-12, 24 lb down and 23 lb up at 8-0-12, 24 lb down and 23 lb up at 9-3-4, 24 lb down and 23 lb up at 11-3-4, 24 lb down and 23 lb up at 13-3-4, and 24 lb down and 23 lb up at 15-3-4, and 24 lb down and 23 lb up at 17-3-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others. Continued on page 2

Job	Truss	Truss Type	Qty	Ply	CJ CONST CADY RES.
3371626	T13G	GABLE	1	1	
Builders FirstSource, Lake City		1	D.V-0 1 10	In-TDOL "	Job Reference (optional) 8.530 s Jan 6 2022 MTek Industries, Inc. Wed Feb 8 16:29:08 2023 Page 2 CjYR7AyUufK-ovKc45Jxp37nHlezk_snAk1uE0tKwYXtX3Cmo_zn9XP
NOTES-		lthe face of the truss are noted as front (F) or			ι∪j⊻H7Ay∪utK-ovKc45Jxp37nHlezk_snAk1uE0tKwYXtX3Cmo_zn9XP
Uniform Loads (plf) Vert: 5-58=-54 Concentrated Loads (lanced): Lumber Increase=1 4, 5-7=-54, 7-10=-54, 10-11: lb)		4(F) 70=-2	24(F)	

be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 15=1104/0-3-8, 10=1205/0-3-0

Max Horz 15=273(LC 11)

Max Uplift15=-203(LC 12), 10=-195(LC 13) Max Grav 15=1260(LC 2), 10=1369(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

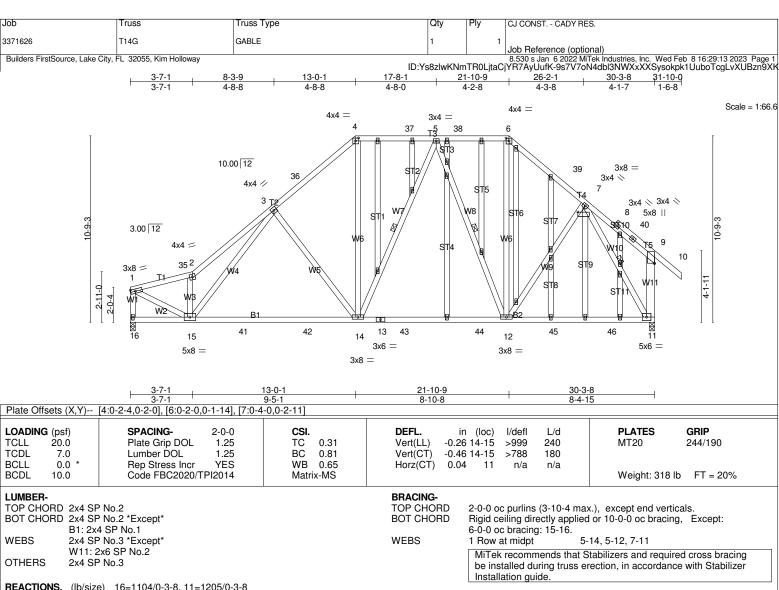
1-16=-1594/357, 2-16=-1562/361, 2-3=-2098/579, 3-17=-1293/423, 4-17=-1217/446, TOP CHORD

4-18=-939/390, 5-18=-939/390, 5-19=-741/356, 6-19=-741/356, 6-20=-962/394,

7-20=-1017/375, 1-15=-1271/299, 8-10=-273/216

 $14 - 15 = -272/197,\ 14 - 22 = -296/1222,\ 22 - 23 = -296/1222,\ 13 - 23 = -296/1222,\ 13 - 24 = -195/889,$ **BOT CHORD**

12-24=-195/889, 12-25=-195/889, 11-25=-195/889, 11-26=-119/579, 26-27=-119/579,


10-27=-119/579

WEBS 2-14=-1082/369, 3-14=-177/726, 3-13=-436/255, 4-13=-161/602, 5-11=-413/174,

6-11=-138/444, 7-11=-95/370, 1-14=-361/1714, 7-10=-1166/230

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-Č Exterior(2E) 0-1-12 to 3-2-2, Interior(1) 3-2-2 to 13-0-1, Exterior(2R) 13-0-1 to 16-0-7, Interior(1) 16-0-7 to 22-4-1, Exterior(2R) 22-4-1 to 25-4-7, Interior(1) 25-4-7 to 31-10-0 zone; end vertical right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 7) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 15=203, 10 = 195
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

REACTIONS. (lb/size) 16=1104/0-3-8, 11=1205/0-3-8

Max Horz 16=270(LC 11)

Max Uplift16=-203(LC 12), 11=-199(LC 13) Max Grav 16=1259(LC 2), 11=1366(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1-35=-1596/356, 2-35=-1564/360, 2-3=-2100/578, 3-36=-1288/423, 4-36=-1212/446, TOP CHORD

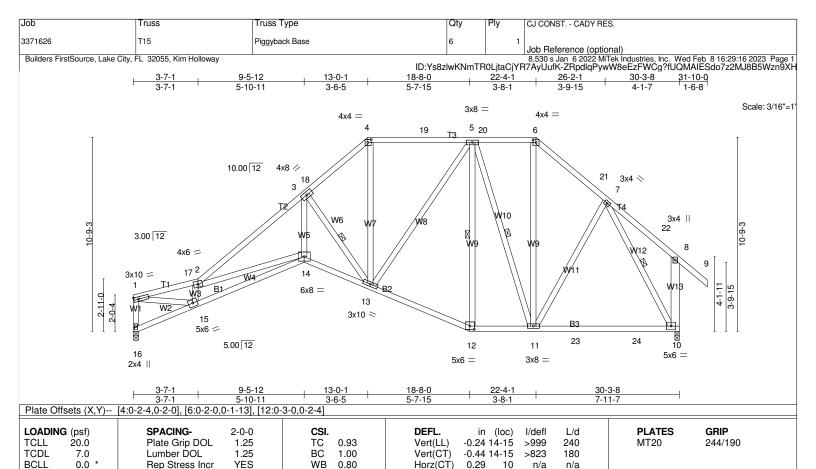
4-37=-935/390, 5-37=-935/390, 5-38=-765/362, 6-38=-765/362, 6-39=-992/393,

7-39=-1055/377, 1-16=-1273/299, 9-11=-286/206

15-16=-269/195, 15-41=-299/1219, 41-42=-299/1219, 14-42=-299/1219, 13-14=-187/889, **BOT CHORD** 13-43=-187/889, 43-44=-187/889, 12-44=-187/889, 12-45=-136/605, 45-46=-136/605,

11-46=-136/605

WEBS 2-15=-1083/369, 3-15=-176/734, 3-14=-437/255, 4-14=-159/595, 5-12=-393/173,


6-12=-133/466, 7-12=-90/333, 1-15=-360/1717, 7-11=-1139/246

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-1-12 to 3-2-2, Interior(1) 3-2-2 to 13-0-1, Exterior(2R) 13-0-1 to 16-0-7, Interior(1) 16-0-7 to 21-10-9, Exterior(2R) 21-10-9 to 24-10-15, Interior(1) 24-10-15 to 31-10-0 zone; end vertical right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) Provide adequate drainage to prevent water ponding.
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 16=203
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. Continued on page 2

Job	Truss	Truss Type	Qty	Ply	CJ CONST CADY RES.
		GARLE	4	1	
Builders FirstSource, Lake City, F		ID.	المالمالحوا	TROU HOO	Job Reference (optional) 8.530 s Jan 6 2022 MiTek Industries, Inc. Wed Feb 8 16:29:13 2023 Page 2 jYR7AyUufk-9s7V7oN4dbl3NWXxXXSysokpk1UuboTcgLvXUBzn9XK
LOAD CASE(S) Otandaria		ID:	i 207IMKINW	INULJIAC	g r nzayouin-957 v zoiv4duloivvaxaa5ysukpk i Uubo i cgLvaUBzn9XK
LOAD CASE(S) Standard					

BCDL

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

10.0

WEBS 2x4 SP No.3 *Except*

W2: 2x4 SP No.2, W13: 2x6 SP No.2

Code FBC2020/TPI2014

BRACING-

TOP CHORD

Structural wood sheathing directly applied, except end verticals, and 2-0-0 oc purlins (5-1-15 max.): 4-6.

3-13, 5-12, 5-11, 7-10

Weight: 240 lb

FT = 20%

Rigid ceiling directly applied.

BOT CHORD Rigid ceiling directly WEBS 1 Row at midpt

EBS 1 Row at midp

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 16=1104/0-3-8, 10=1205/0-3-0

Max Horz 16=178(LC 11)

Max Uplift16=-198(LC 12), 10=-191(LC 13)

Max Grav 16=1186(LC 2), 10=1306(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-16=-1142/304, 1-17=-2897/736, 2-17=-2865/736, 2-3=-2814/705, 3-18=-1466/484,

4-18=-1452/501, 4-19=-1087/418, 5-19=-1087/418, 5-20=-685/341, 6-20=-685/341,

6-21=-888/388, 7-21=-946/369

BOT CHORD 14-15=-862/3317, 13-14=-505/2409, 12-13=-151/919, 11-12=-135/812, 11-23=-106/541,

23-24=-106/541, 10-24=-106/541

WEBS 1-15=-695/2783, 2-15=-1426/450, 2-14=-844/332, 3-14=-430/2164, 3-13=-1946/555,

4-13=-208/728, 5-13=-123/565, 5-12=-252/75, 5-11=-481/182, 6-11=-155/441,

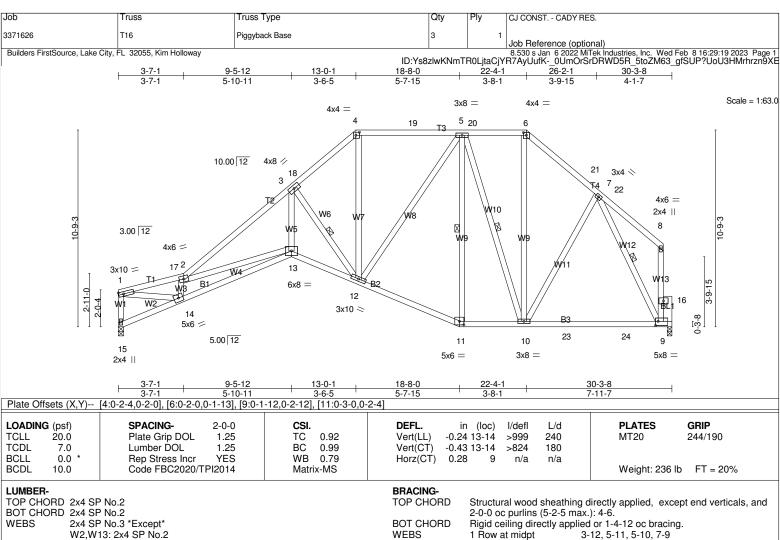
7-11=-82/345, 7-10=-1076/238

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-1-12 to 3-2-2, Interior(1) 3-2-2 to 13-0-1, Exterior(2R) 13-0-1 to 16-0-7, Interior(1) 16-0-7 to 22-4-1, Exterior(2R) 22-4-1 to 25-4-7, Interior(1) 25-4-7 to 31-10-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Matrix-MS


3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

4) Provide adequate drainage to prevent water ponding.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.

- 8) Bearing at joint(s) 16 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 16=198, 10=191
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer

Installation guide.

W2.W13: 2x4 SP No.2

OTHERS 2x6 SP No.2

REACTIONS.

(lb/size) 15=1098/0-3-8, 9=1091/0-3-0 Max Horz 15=266(LC 11)

Max Uplift15=-200(LC 12), 9=-154(LC 13) Max Grav 15=1179(LC 2), 9=1209(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-15=-1135/339, 1-17=-2878/839, 2-17=-2846/840, 2-3=-2791/850, 3-18=-1451/504,

4-18=-1437/521, 4-19=-1075/441, 5-19=-1075/441, 5-20=-668/345, 6-20=-668/345,

6-21=-867/380, 7-21=-926/361

BOT CHORD 14-15=-289/202, 13-14=-1114/3315, 12-13=-770/2408, 11-12=-240/905, 10-11=-218/799,

10-23=-182/517, 23-24=-182/517, 9-24=-182/517 1-14=-797/2765, 2-14=-1416/510, 2-13=-843/330, 3-13=-631/2163, 3-12=-1945/710,

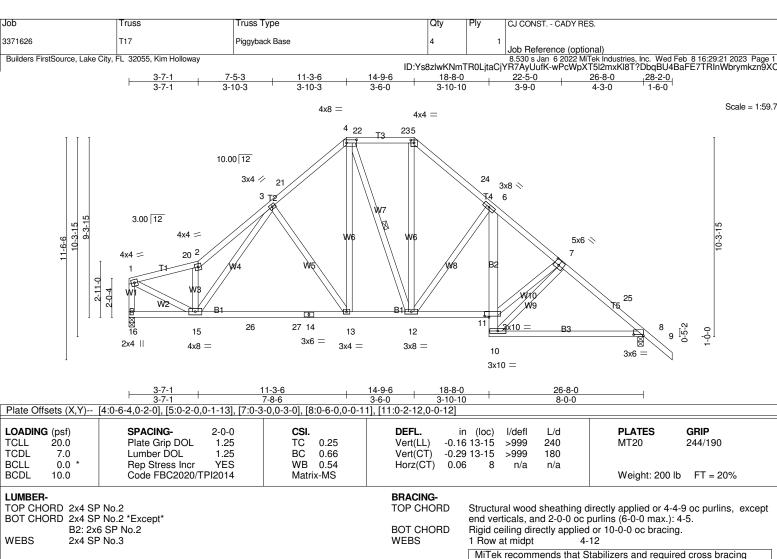
4-12=-226/718, 5-12=-156/571, 5-10=-489/189, 6-10=-153/429, 7-10=-100/333,

7-9=-1069/331

NOTES-

WEBS

1) Unbalanced roof live loads have been considered for this design.


- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-1-12 to 3-2-2, Interior(1) 3-2-2 to 13-0-1, Exterior(2R) 13-0-1 to 16-0-7, Interior(1) 16-0-7 to 22-4-1, Exterior(2R) 22-4-1 to 25-4-7, Interior(1) 25-4-7 to 29-8-4 zone; end vertical right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

4) Provide adequate drainage to prevent water ponding.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.

- 8) Bearing at joint(s) 15 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 15=200, 9 = 154
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 16=979/0-3-8, 8=1065/0-3-8

Max Horz 16=-237(LC 13)

Max Uplift16=-177(LC 12), 8=-217(LC 13)

Max Grav 16=1072(LC 2), 8=1146(LC 20)

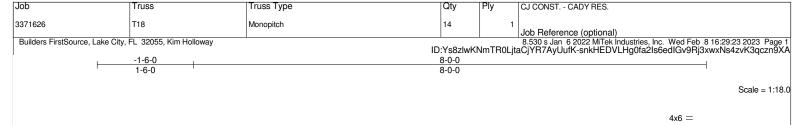
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

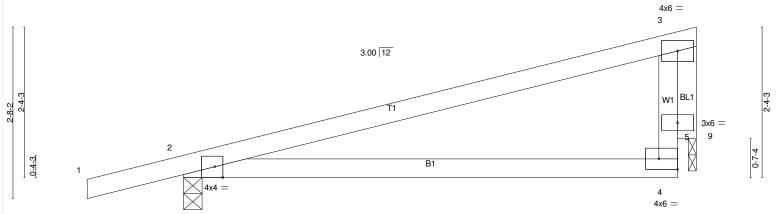
1-20=-1320/317, 2-20=-1288/321, 2-3=-1730/509, 3-21=-1083/383, 4-21=-1020/402. TOP CHORD

4-22=-778/358, 22-23=-778/358, 5-23=-778/358, 5-24=-1008/395, 6-24=-1071/375,

6-7=-1360/393, 7-25=-1319/374, 8-25=-1347/354, 1-16=-1062/272

BOT CHORD $15 - 26 = -137/1051, \ 26 - 27 = -137/1051, \ 14 - 27 = -137/1051, \ 13 - 14 = -137/1051, \ 12 - 13 = -67/844, \ 12 - 13 = -67/844, \ 13 - 14 = -137/1051, \ 14 - 14 = -137/1051, \ 1$


11-12=-112/1049, 10-11=-119/820, 6-11=-64/417, 8-10=-178/1013


WEBS 2-15=-900/323, 3-15=-152/602, 3-13=-382/219, 4-13=-141/578, 5-12=-149/503,

6-12=-530/220, 7-11=-65/814, 7-10=-948/191, 1-15=-316/1407

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 11-3-6, Exterior(2R) 11-3-6 to 14-3-6, Interior(1) 14-3-6 to 14-9-6, Exterior(2R) 14-9-6 to 17-9-6, Interior(1) 17-9-6 to 28-2-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 7) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 16=177,
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Plate Offsets (X,Y)	Plate Offsets (X,Y) [2:0-1-8,Edge], [4:Edge,0-2-0]							
LOADING (psf) TCLL 20.0 TCDL 7.0	SPACING- 2-0-0 Plate Grip DOL 1.25 Lumber DOL 1.25	CSI. TC 0.60 BC 0.64	DEFL. in (loc) l/defl L/d Vert(LL) 0.29 4-8 >330 240 Vert(CT) 0.25 4-8 >386 180	PLATES GRIP MT20 244/190				
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code FBC2020/TPI2014	WB 0.40 Matrix-MR	Horz(CT) -0.01 2 n/a n/a	Weight: 31 lb FT = 20%				

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 WFBS 2x4 SP No.3 **OTHERS**

BRACING-

TOP CHORD

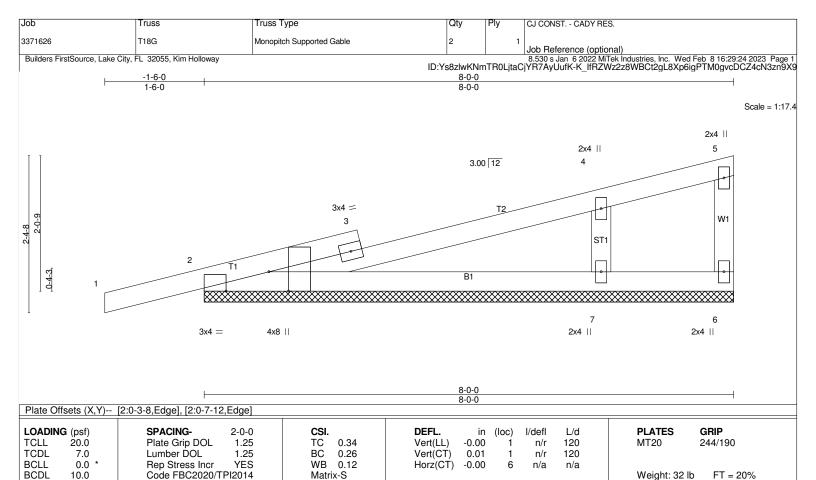
Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals

BOT CHORD Rigid ceiling directly applied or 7-5-13 oc bracing.

> MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 2=382/0-3-8, 9=259/0-1-8

Max Horz 2=82(LC 8)


Max Uplift2=-198(LC 8), 9=-134(LC 8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2-3=-225/257, 4-5=-255/151, 3-5=-255/151

BOT CHORD 2-4=-303/190 WFBS 3-9=-280/438

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior(1) 1-6-0 to 7-6-12 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

 5) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 6) Bearing at joint(s) 9 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 9.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=198, 9=134.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 WFBS **OTHERS** 2x4 SP No.3 **BRACING-**

TOP CHORD

Structural wood sheathing directly applied or 8-0-0 oc purlins, except end verticals

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.

> MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 2=270/8-0-0, 6=-71/8-0-0, 7=463/8-0-0

Max Horz 2=74(LC 8)

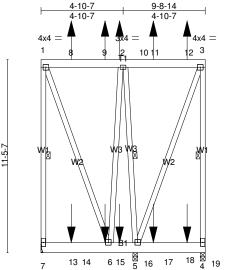
Max Uplift2=-106(LC 8), 6=-71(LC 1), 7=-129(LC 12)

Max Grav 2=270(LC 1), 6=17(LC 12), 7=463(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 4-7=-321/391

NOTES-


- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-Č Corner(3E) -1-6-0 to 1-6-0, Exterior(2N) 1-6-0 to 7-10-4 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6 except (jt=lb) 2=106,

Builders FirstSource, Lake City, FL 32055, Kim Holloway

8.530 s Jan 6 2022 MiTek Industries, Inc. Wed Feb 8 16:29:27 2023 Page 1 ID:Ys8zlwKNmTR0LjtaCjYR7AyUufK-IZzo3bYsKuW42gbdLTiERIKFDgPbtEEguXIGzNzn9X6

Scale = 1:68.3

ı	4-1-12	5-7-2	9-8-14	
Г	4-1-12	1-5-6	4-1-12	

4x4 = 4x4 =

LOADING (psf) TCLL 20.0 TCDL 7.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.25 Lumber DOL 1.25 Rep Stress Incr NO	CSI. TC 0.11 BC 0.14 WB 0.25	DEFL. in (loc) l/defl L/d Vert(LL) -0.01 6-7 >999 240 Vert(CT) -0.02 6-7 >999 180 Horz(CT) 0.00 4 n/a n/a	PLATES GRIP MT20 244/190
BCDL 10.0	Code FBC2020/TPI2014	Matrix-MS	H012(C1) 0.00 4 11/a 11/a	Weight: 147 lb FT = 20%

LUMBER-

TOP CHORD 2x6 SP No.2 BOT CHORD 2x8 SP 2400F 2.0E WFBS 2x4 SP No.3

BRACING-

3x6 ||

TOP CHORD

BOT CHORD WFBS

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

1 Row at midpt 1-7, 3-4, 2-5

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 7=492/Mechanical, 4=355/0-3-8, 5=1400/0-3-8

Max Uplift7=-304(LC 8), 4=-231(LC 9), 5=-910(LC 4) Max Grav 7=588(LC 35), 4=440(LC 34), 5=1567(LC 35)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. **WEBS**

2-6=-114/282, 2-5=-411/276

NOTES-

1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone; Lumber DOL=1.60 plate grip DOL=1.60

3x6 ||

- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (it=lb) 7=304, 4=231, 5=910
- 9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 30 lb down and 57 lb up at 1-9-10, 30 lb down and 57 lb up at 3-9-10, 30 lb down and 57 lb up at 4-8-0, and 30 lb down and 57 lb up at 6-8-0, and 29 lb down and 55 lb up at 8-8-0 on top chord, and 398 lb down and 254 lb up at 1-9-10, 412 lb down and 254 lb up at 3-9-10, 412 lb down and 254 lb up at 4-8-0, and 408 lb down and 254 lb up at 6-8-0, and 398 lb down and 253 lb up at 8-8-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

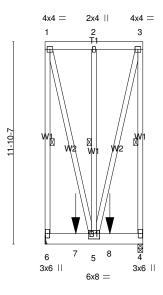
LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

Vert: 1-3=-54, 4-7=-20

Concentrated Loads (lb)


Vert: 2=15(F) 8=15(F) 9=15(F) 11=15(F) 12=14(F) 13=-324(F) 15=-324(F) 16=-324(F) 17=-324(F) 19=-325(F)

Job	Truss	Truss Type	Qty	Ply	CJ CONST CADY RES.
3371626	TG02	Flat Girder	1	1	.loh Reference (ontional)

Builders FirstSource, Lake City, FL 32055, Kim Holloway

| Job Neterior (optional) 8.530 s Jan 6 2022 MtTek Industries, Inc. Wed Feb 8 16:29:29 2023 Page 1 ID:Ys8zlwKNmTR0LjtaCjYR7AyUufK-hx5YUGZ6sWnoIzl0TukiWAPZuU65L5IzMqnN2Gzn9X4

Scale = 1:67.6

2-10-7

DI-1- Off1-	()/)/\	[5:0-4-0 0-3-1:	01

LOADING (psf) TCLL 20.0 TCDL 7.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.25 Lumber DOL 1.25 Rep Stress Incr NO	CSI. TC 0.23 BC 0.08 WB 0.41	DEFL. in (loc) l/defl L/d Vert(LL) -0.01 5 >999 240 Vert(CT) -0.01 5 >999 180 Horz(CT) -0.00 4 n/a n/a	PLATES GRIP MT20 244/190
BCDL 10.0	Code FBC2020/TPI2014	WB 0.41 Matrix-MP	Horz(CT) -0.00 4 n/a n/a	Weight: 112 lb FT = 20%

LUMBER-

TOP CHORD 2x6 SP No.2 BOT CHORD 2x8 SP 2400F 2.0E 2x4 SP No.3 WFBS

BRACING-

TOP CHORD

Structural wood sheathing directly applied or 5-8-14 oc purlins, except

end verticals

BOT CHORD WFBS

Rigid ceiling directly applied or 10-0-0 oc bracing. 1 Row at midpt

1-6, 3-4, 2-5

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

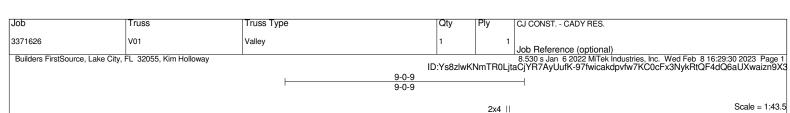
REACTIONS. (lb/size) 6=553/Mechanical, 4=536/0-3-8

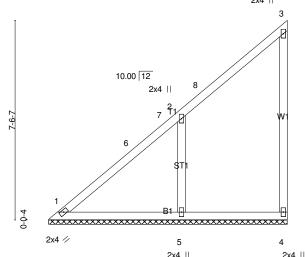
Max Uplift6=-299(LC 4), 4=-288(LC 4) Max Grav 6=577(LC 2), 4=557(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1-6=-364/197, 3-4=-364/197 1-5=-163/310, 3-5=-163/310 TOP CHORD WEBS

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


 6) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=299, 4=288.
- 9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 430 lb down and 253 lb up at 1-9-10 , and 430 lb down and 253 lb up at 3-9-10 on bottom chord. The design/selection of such connection device(s) is the responsibility of
- 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).


LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)

Vert: 1-3=-54, 4-6=-20

Concentrated Loads (lb) Vert: 7=-343(B) 8=-343(B)

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.25	TC 0.24	Vert(LL) n/a - n/a 999	MT20 244/190
TCDL 7.0	Lumber DOL 1.25	BC 0.21	Vert(CT) n/a - n/a 999	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.10	Horz(CT) 0.00 4 n/a n/a	
BCDL 10.0	Code FBC2020/TPI2014	Matrix-S	, ,	Weight: 46 lb FT = 20%

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 WFBS **OTHERS** 2x4 SP No.3 **BRACING-**

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing. **BOT CHORD**

> MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 1=138/9-0-4, 4=101/9-0-4, 5=390/9-0-4

Max Horz 1=219(LC 12)

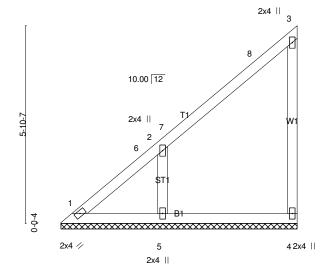
Max Uplift4=-36(LC 14), 5=-208(LC 12)

Max Grav 1=178(LC 21), 4=156(LC 19), 5=532(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD $\,$ 1-6=-319/131, 6-7=-296/151, 2-7=-294/155

2-5=-307/321 **WEBS**

NOTES-


- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-4-13 to 3-4-13, Interior(1) 3-4-13 to 8-10-13 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 6) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 5=208.

Job	Truss	Truss Type	Qty	Ply	CJ CONST CADY RES.
3371626	V02	Valley	1	1	Job Reference (optional)

Builders FirstSource, Lake City, FL 32055, Kim Holloway

8.530 s Jan 6 2022 MiTek Industries, Inc. Wed Feb 8 16:29:31 2023 Page 1 ID:Ys8zlwKNmTR0LjtaCjYR7AyUufK-dKDIvybMO71WXHvOaJmAbbUwMHo2p4lFp8GU69zn9X2

Scale = 1:34.2

LOADING (psf) TCLL 20.0 TCDL 7.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.25 Lumber DOL 1.25 Rep Stress Incr YES	CSI. TC 0.17 BC 0.11 WB 0.09	DEFL. in (loc) l/defl L/d Vert(LL) n/a - n/a 999 Vert(CT) n/a - n/a 999 Horz(CT) 0.00 4 n/a n/a	PLATES GRIP MT20 244/190
BCDL 10.0	Code FBC2020/TPI2014	Matrix-S		Weight: 34 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 WFBS **OTHERS** 2x4 SP No.3 **BRACING-**

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

> MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 1=64/7-0-4, 4=120/7-0-4, 5=297/7-0-4

Max Horz 1=179(LC 12)

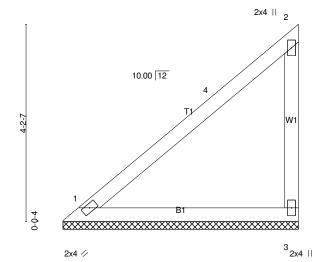
Max Uplift1=-8(LC 10), 4=-58(LC 12), 5=-173(LC 12) Max Grav 1=110(LC 12), 4=129(LC 19), 5=320(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD $\,$ 1-6=-309/134, 2-6=-298/138

2-5=-238/304 **WEBS**

NOTES-

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-Č Exterior(2E) 0-4-13 to 3-4-13, Interior(1) 3-4-13 to 6-10-13 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
 6) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 4 except (jt=lb) 5 = 173.


Job	Truss	Truss Type	Qty	Ply	CJ CONST CADY RES.
3371626	V03	Valley	1	1	Job Reference (optional)

Builders FirstSource, Lake City, FL 32055, Kim Holloway

8.530 s Jan 6 2022 MiTek Industries, Inc. Wed Feb 8 16:29:33 2023 Page 1 ID:Ys8zlwKNmTR0LjtaCjYR7AyUufK-aiL3KecdwkHEnb3nikpeg0ZCV5RMH?eYHSlaB1zn9X0

5-0-9

Scale = 1:24.6

LOADING (psf) TCLL 20.0 TCDL 7.0	SPACING- 2-0-0 Plate Grip DOL 1.25 Lumber DOL 1.25	CSI. TC 0.45 BC 0.25	DEFL. in (loc) I/defl L/d Vert(LL) n/a - n/a 999 Vert(CT) n/a - n/a 999	PLATES GRIP MT20 244/190
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code FBC2020/TPI2014	WB 0.00 Matrix-P	Horz(CT) 0.00 n/a n/a	Weight: 22 lb FT = 20%

LUMBER-

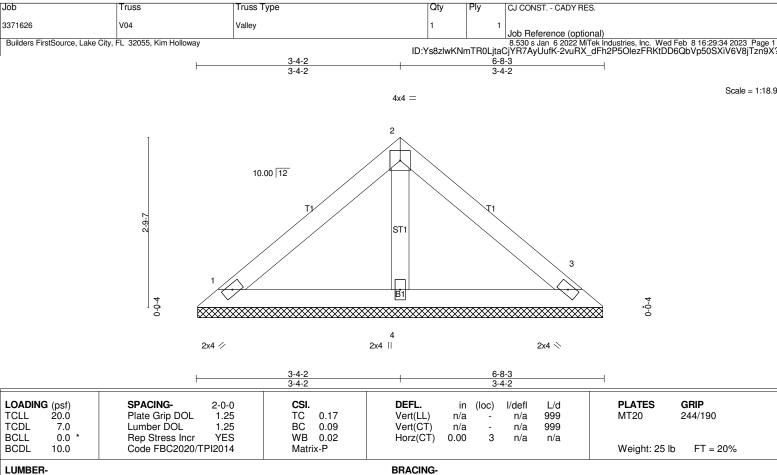
TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 WFBS

BRACING-

TOP CHORD Structural wood sheathing directly applied or 5-0-9 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

> MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.


REACTIONS. (lb/size) 1=166/5-0-4, 3=166/5-0-4

Max Horz 1=129(LC 12) Max Uplift3=-99(LC 12)

Max Grav 1=166(LC 1), 3=179(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-4-13 to 3-4-13, Interior(1) 3-4-13 to 4-10-13 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 **OTHERS** 2x4 SP No.3

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

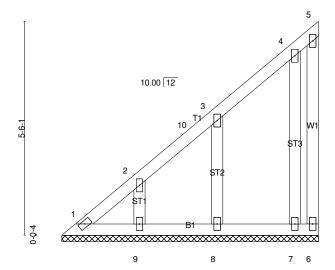
MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 1=124/6-7-10, 3=124/6-7-10, 4=188/6-7-10

Max Horz 1=54(LC 11)

Max Uplift1=-35(LC 13), 3=-41(LC 13), 4=-12(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.

Job	Truss	Truss Type	Qty	Ply	CJ CONST CADY RES.
3371626	V05	GABLE	2	1	Job Reference (optional)

Builders FirstSource, Lake City, FL 32055, Kim Holloway

8.530 s Jan 6 2022 MTek Industries, Inc. Wed Feb 8 16:29:35 2023 Page 1 ID:Ys8zlwKNmTR0LjtaCjYR7AyUufK-W5SplKetSMXy0uC9p9r6mRfdEuAFlvIrkmEhGwzn9X

Scale = 1:29.7

LOADING (psf) TCLL 20.0	SPACING- 2-0-0 Plate Grip DOL 1.25	CSI. TC 0.05	DEFL. in (loc) I/defl L/d Vert(LL) n/a - n/a 999	PLATES GRIP MT20 244/190
TCDL 7.0	Lumber DOL 1.25	BC 0.03	Vert(CT) n/a - n/a 999	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.05	Horz(CT) 0.00 n/a n/a	
BCDL 10.0	Code FBC2020/TPI2014	Matrix-P		Weight: 41 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 WFBS **OTHERS** 2x4 SP No.3 **BRACING-**

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

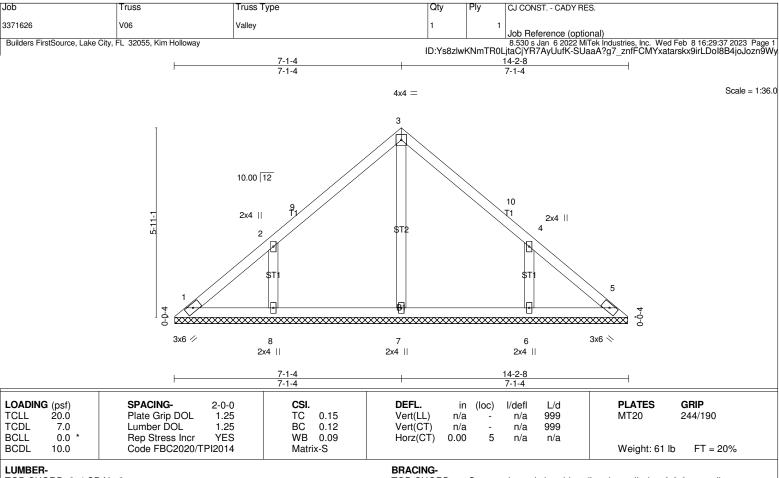
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

> MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 6-7-4.

(lb) - Max Horz 1=170(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 1, 6, 9, 8, 7 Max Grav All reactions 250 lb or less at joint(s) 1, 6, 9, 8, 7


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-315/135

NOTES-

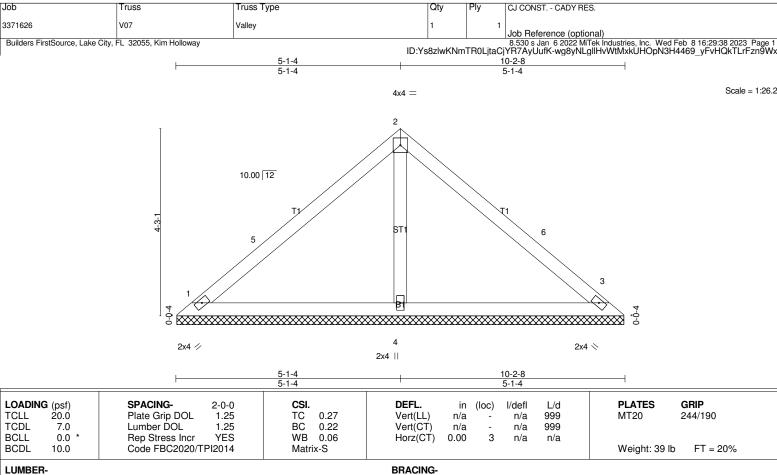
- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-4-13 to 3-4-13, Interior(1) 3-4-13 to 6-5-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) All plates are 2x4 MT20 unless otherwise indicated.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

 7) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 6, 9, 8, 7.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 OTHERS 2x4 SP No.3 TOP CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 14-1-15.


(lb) - Max Horz 1=123(LC 9)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 8=-180(LC 12), 6=-180(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7 except 8=317(LC 19), 6=316(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

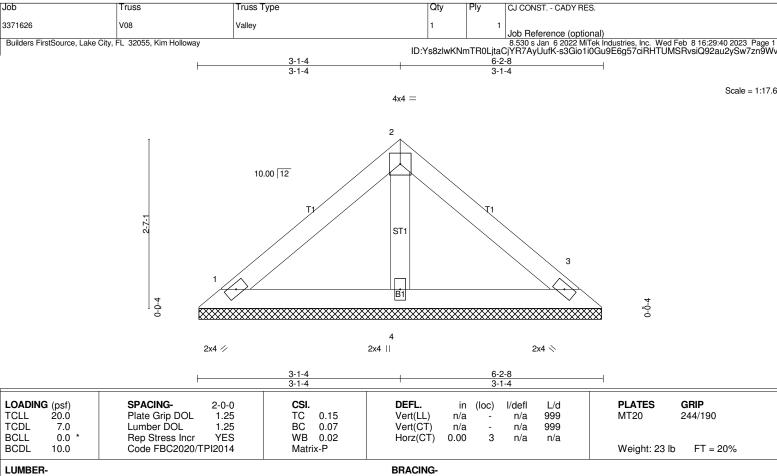
NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-4-13 to 3-1-4, Interior(1) 3-1-4 to 7-1-4, Exterior(2R) 7-1-4 to 10-1-4, Interior(1) 10-1-4 to 13-9-11 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=180, 6=180.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 **OTHERS** 2x4 SP No.3

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.


REACTIONS. (lb/size) 1=183/10-1-15, 3=183/10-1-15, 4=330/10-1-15

Max Horz 1=86(LC 9)

Max Uplift1=-44(LC 13), 3=-54(LC 13), 4=-42(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-4-13 to 3-4-13, Interior(1) 3-4-13 to 5-1-4, Exterior(2R) 5-1-4 to 8-1-4, Interior(1) 8-1-4 to 9-9-11 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 OTHERS 2x4 SP No.3 TOP CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 1=114/6-1-15, 3=114/6-1-15, 4=173/6-1-15

Max Horz 1=-50(LC 8)

Max Uplift1=-32(LC 13), 3=-38(LC 13), 4=-11(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.