Columbia County Building Permit Application For Office Use Only Application # _ 0710 - 30 Date Received __(O P Permit # 26351 Application Approved by - Zoning Official 615 Date 9.0007 Plans Examiner _____ Date Flood Zone ______ Development Permit _/// Land Use Plan Map Category Zoning 4-3 Comments NOC JEH Doed or PA □ State Road Info □ Parent Parcel # □ Development Per Name Authorized Person Signing Permit Gregory A. Bedenhaugh Phone (386) Address 390 SW Bedenbaugh Lane, Lake City, FL 32055 Owners Name Curtis J. Haynes Phone (386) 758-1935 911 Address 519 NW Crawford Court, White Springs, Fl Contractors Name Top Flight Construction, Inc. Phone (386) 623-1568 Address 🐃 Fee Simple Owner Name & Address 1/1/4 Bonding Co. Name & Address_///A Architect/Engineer Name & Address Pat Haygood/Marty J. Humphries V 79.32 240th St. O'Brien, FL 32071 Mortgage Lenders Name & Address NIA Circle the correct power company - FL Power & Light - Clay Elec. - Suwannee Valley Elec. - Progressive Ene Property ID Number 13-25-16-01603-120 Estimated Cost of Construction 225,000 Subdivision Name_N/A Driving Directions 41-N, turn AH WRYCHEN ON 12 Type of Construction Addition ON SFD Number of Existing Dwellings on Property_1 Total Acreage 10 Lot Size Do you need a - Culvert Permit or Culvert Walver or Have an Existing E Actual Distance of Structure from Property Lines - Front_______ Side_____ Total Building Height $3' 2^{5/8'1}$ Number of Stories 3 Heated Floor Area 3173.84 Roof Pitch 3/2Application is hereby made to obtain a permit to do work and installations as indicated. I certify that no work or installation has commenced prior to the issuance of a permit and that all work be performed to meet the standards all laws regulating construction in this jurisdiction. OWNERS AFFIDAVIT: I hereby certify that all the foregoing information is accurate and all work will be done in compliance with all applicable laws and regulating construction and zoning. WARNING TO OWNER: YOUR FAILURE TO RECORD A NOTICE OF COMMENCMENT MAY RESULT IN YOU PAYING TWICE FOR IMPROVEMENTS TO YOUR PROPERTY. IF YOU INTEND TO OBTAIN FINANCING, CONSULT WITH YOU LENDER OR ATTORNEY BEFORE RECORDING YOUR NOTICE OF COMMENCEMENT. Owner Builder or Authorized Person by Notarized Letter Contractor Signature Contractors License Number ClaC 026998 STATE OF FLORIDA Competency Card Number 10180 **COUNTY OF COLUMBIA** NOTARY STAMP/SEAL Sworn to (or affirmed) and subscribed before me Notary Public State of Piorida _____ day of __

Identification______Notices in DD636480

Personally known____ or Produced Identification_

Joyce L Spradley

(Revised Sept. 20

WARRANTY DEED

This Warranty Beed Made the 8th doy of April A D 1994 by LENVIL H. DICKS, a married man not residing on the property described herein.

hereinafter called the grantor to CURTIS J. HAYNES AND DANA L. HAYNES, his wife

Rt. 1, Box 215 H, Lake City, Florida 32055 whose postollice address is hereinafter called the granter:

[Wherever used herein the terms "granter" and "granter" include all the parties to this instrument and the heirs, legal representatives and assigns of individuals, and the successors and assigns of comporations)

Witnesseth: That the granter, for and in consideration of the sum of \$ 10.00 and other valuable considerations, receipt whereof is hereby acknowledged, hereby grants, bargains, sells, aliens, remises, releases, conveys and confirms unto the grantees all that certain land situate in TOWNSHIP 2 SOUTH, RANGE 16 EAST County Florida viz: Section 13: A part of the West 2 of Section 13, Township 2 South, Range 16 East, being more particularly described as follows: Commence at the NE corner of the NW% of said Section 13 and run S 89°22'20" W, along the North line thereof, 2658.34 feet of the NW corner of said Section 13; thence S 00°58'31" W, along the West line thereof, 331.73 feet for a POINT OF BEGINNING; thence N 89°22'06" E, 1330.22 feet; thence S 00°44'46" W, 331.67 feet; thence S 89°22'06" W, 1331.55 feet to the West line of said Section; thence N 00°58'31" E,331.73 feet to the POINT OF BEGINNING, Columbia County, Florida, containing 10.01 acres, more or less, subject to an existing maintained road right-of-way along the West line thereof. Subject to Restrictions as recorded in Official Records Book 728, Pages

723-724, and subject to Power Line Easement. N.B. Title to the above described property includes such mineral rights as are o.med by the Grantor, but title is given subject to the rights of various third parties who own fractional mineral right interests.

Together with all the tenements, hereditaments and appurtenances thereto belonging or in anywise appertaining.

To Have and to Hold, the same in fee simple forever.

And the grantor hereby covenants with said grantee that the grantor is lawfully seized of said land in fee simple; that the grantor has good right and lawful authority to sell and convey said land; that the grantor hereby fully warrants the title to said land and will defend the same against the lawful claims of all persons whomsoever; and that said land is free of all encumbrances, except taxes accruing subsequent to December 51, 19 93.

EK 0789 FG0779

OFFICIAL RECORDS

DUCUMENTARY STAMP INTANGIBLE TAX P. C.WITT CASON, CLERK OF COURTS, COLIMBIA INITANTY

In Witness Whereof, the said grantor has signed and sealed these presents the first above written.

Signed, sealed and delivered in our presence:

Columbia

Witness STATE OF Florida

COUNTY OF

LENVIL H. DICKS

B L.S

8

I HEREBY CERTIFY that on this day, before me, an officer duly authorized in the State aforesaid and in the County aforesaid to take acknowledgments, personally appeared LENVIL H. DICKS LENVIL H. DICKS -

/personally to me known to be the person $% \left(\frac{1}{2}\right) =0$ described in and who executed the he acknowledged before me that he foregoing instrument and executed the same.

WITNESS my hand and official seal in the County and State last aforesaid this 8th , A. D. 19 94 NOTARY PUBLIC

. . Eva E. Timmons

My Commission Expires FVA ETIMALINE

This Instrument prepared by: Lenvil H. Dicks! ... Address: U. S. 90 West, Lake City, Florida 32055

The LIC STATE OF WY SHOW NO COM IN

STATE OF FLORIDA, COUNTY OF COLUMBI, HEREBY CERTIFY, that the above and foregoing is a true copy of the original filed in this office.

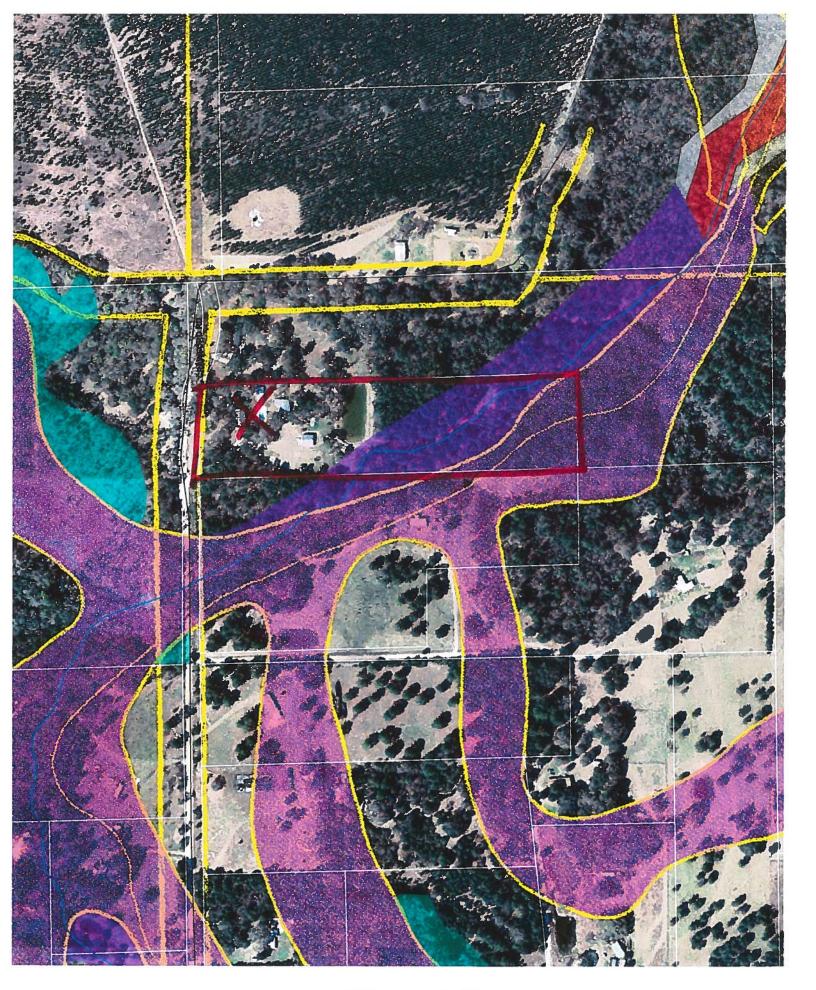
Baltine CASON, CLERK OF COURTS.

07-0791-N 331 STATE OF FLORIDA DEPARTMENT OF HEALTH APPLICATION FOR ONSITE SEWAGE DISPOSAL SYSTEM CONSTRUCTION PERMIT Permit Application Number - PART II - SITEPLAN - - - -Scale: 1 inch = 50 feet. POCL EXIST! 18 לטרו NORTH SLOPK -90 38 90 OTTEN Notes:

ALL CHANGES MUST BE APPROVED BY THE COUNTY HEALTH DEPARTMENT

Not Approved

DH 4015, 10/96 (Replaces HRS-H Form 4016 which may be used) (Stock Number, 5744-002-4015-6)


Site Plan submitted by

Plan Approved

Page 2 of

MASTER CONTRACTOR

County Health Department

07/0-30

NOTICE OF COMMENCEMENT
Tax Parcel Identification Number 13-25-16-01603-120 County Clerk's Office Stamp or Seal
THE UNDERSIGNED hereby gives notice that improvements will be made to certain real property, and in accordance with Section 713.13 of the
1. Description of property (legal description): 13-28-16-01603-120 a) Street (job) Address: 519 NW Crawford Court 2. General description of improvements: 0dd 11100
3. Owner Information a) Name and address: Curtis J. + Dana L. Hounes / 519 Nw Crow ford Ct. b) Name and address of fee simple titleholder (if other than owner) N/A
4. Contractor Information a) Name and address: Top Flight Construction, Inc. 390 Sw Bedenbough Lane b) Telephone No: 386-623-1568 Fax No. (Opt.)
5. Surety Information a) Name and address b) Amount of Bond: c) Telephone No.: Fax No. (Opt.)
6 Lender
b) Phone No
8. In addition to himself, owner designates the following person to receive a copy of the Lienor's Notice as provided in Section 713.13(1)(b). Florida Statutes: a) Name and address: b) Telephone No. Fax No. (Opt.)
9. Expiration date of Notice of Commencement (the expiration date is one year from the date of recording unless a different date is specified):
WARNING TO OWNER: ANY PAYMENTS MADE BY THE OWNER AFTER THE EXPIRATION OF THE NOTICE OF COMMENCEMENT ARE CONSIDERED IMPROPER PAYMENTS UNDER CHAPTER 713, PART I, SECTION 713.13, FLORIDA STATUTES, AND CAN RESULT IN YOUR PAYING TWICE FOR IMPROVEMENTS TO YOUR PROPERTY; A NOTICE OF COMMENCEMENT MUST BE RECORDED AND POSTED ON THE JOB SITE BEFORE THE FIRST INSPECTION, IF YOU INTEND TO OBTAIN FINANCING, CONSULT YOUR LENDER OR AN ATTORNEY BEFORE COMMENCING WORK OR RECORDING YOUR NOTICE OF COMMENCEMENT.
STATE OF FLORIDA COUNTY OF COLUMBIA 10. Signature of Owner or Owner's Authorized Office/Director/Partner/Manager
Dana Haynes Print Name The foregoing instrument was acknowledged before me a Florida Notary, this 12th day of October 20 07 by:
as (type of authority, e.g. officer, trustee, attorney
fact) for(name of party on behalf of whom instrument was executed).
Notary Signature OR Produced Identification Type Notary State of Florida Joyce L Spradley My Commission DD636480 Expires 02/05/2011 11. Verification pursuant to Section 92 525. Florida Statutes. Under penalties of perjury. I declare that I have read the foregoing and that the
facts stated in it are true to the best of my knowledge and belief Signature of Natural Person Signing (in line #10 above.)

BCIS Home | Log In | Hot Topics | Submit Surcharge | Stats & Facts | Publications | FBC Staff | BCIS Site Map | Links | Search |

Product Approval Menu > Product or Application Search > Application List > Application Detail

COMMUNITY PLANNING HOUSING A COMMUNITY DEVELOPMENT

Application Type Code Version Application Status Comments **Archived**

FL728-R1

Revision 2004

Approved

Product Manufacturer Address/Phone/Email

Elk Corporation 4600 Stillman Blvd. Tuscaloosa, AL 35401 (816) 350-1982

bryson.m@sbcglobal.net

Authorized Signature

Daniel DeJarnette

daniel.dejarnette@elkcorp.com

Technical Representative Address/Phone/Email

Daniel DeJarnette 4600 Stillman Blvd Tuscaloosa, AL 35401 (205) 342-0298

daniel.dejarnette@elkcorp.com

Quality Assurance Representative

Address/Phone/Email

Daniel DeJarnette 4600 Stillman Blvd Tuscaloosa, AL 35401 (205) 342-0298

daniel.dejarnette@elkcorp.com

Category Subcategory

Roofing

Asphalt Shingles

Compliance Method

Certification Mark or Listing

Certification Agency

Miami-Dade BCCO - CER

Referenced Standard and Year (of

Standard)

Standard Year ASTM D3462 2001 1995 **TAS 107** 1995 **TAS100**

Equivalence of Product Standards Certified By

Sections from the Code

1523.6.5.1

1523.6.5.1 1523.6.5.1

Product Approval Method

Method 1 Option A

 Date Submitted
 06/01/2005

 Date Validated
 06/13/2005

 Date Pending FBC Approval
 06/14/2005

 Date Approved
 06/29/2005

Summary of Products				
FL#	Model, Number or Name	Description		
728.1 Capstone		Laminated Asphalt Shingle		
Limits of Use (See Other) Approved for use in HVHZ: Approved for use outside HVHZ: Impact Resistant: Design Pressure: +/- Other: Mean roof height should not exceed 33 ft.		Certification Agency Certificate Installation Instructions PTID 728 R1 I Capstone Metro Dade NOA.pdf PTID 728 R1 I CapstoneSpecSh1t.pdf PTID 728 R1 I Prestique 1 Metro Dade NOA.pdf PTID 728 R1 I Prestique Plus and Gallery NOA.pdf PTID 728 R1 I Seal-A-Ridge Metro-Dade NOA.pdf PTID 728 R1 I Starter Strip Metro-Dade NOA.pdf PTID 728 R1 I Starter Strip Metro-Dade NOA.pdf PTID 728 R1 I Tuscaloosa Spec Sheet.pdf Verified By: Laminated Asphalt Shingle		
728.2 Limits of Use (See	Prestique I Other)	Certification Agency Certificate		
Approved for use Approved for use Impact Resistant Design Pressure:	in HVHZ: outside HVHZ: :	Installation Instructions Verified By:		
728.3	Prestique Plus / Gallery Colle	Laminated Asphalt Shingle		
Limits of Use (See Other) Approved for use in HVHZ: Approved for use outside HVHZ: Impact Resistant: Design Pressure: +/- Other: Mean roof height should not exceed 33 ft.		Certification Agency Certificate Installation Instructions Verified By:		
728.4	Seal-A-Ridge "SAR"	Accessory - Ridge Shingle		
Limits of Use (See Approved for use		Certification Agency Certificate		
Approved for use Impact Resistant Design Pressure: Other: Mean roof het.	outside HVHZ: :	Installation Instructions Verified By:		
Impact Resistant Design Pressure: Other: Mean roof h ft.	outside HVHZ: : +/-			

BCIS Home | Log In | Hot Topics | Submit Surcharge | Stats & Facts | Publications | FBC Staff | BCIS Site Map | Links | Search

Product Approval Menu > Product or Application Search > Application List > Application Detail

Application Type Code Version

Application Status

Comments

Archived

Revision

FL1378-R1

2004

Approved

Product Manufacturer

Address/Phone/Email

JORDAN WINDOWS and DOORS

4661 BURBANK ROAD

MEMPHIS, TN 38118 (901) 866-2638

MIKE.DODDS@JORDANCOMPANY.COM

Authorized Signature

Dennis Braddy

dkbraddy@gmail.com

Technical Representative

Address/Phone/Email

MICHAEL DODDS

4661 BURBANK ROAD MEMPHIS, TN 38118

(901) 363-2121

MIKE.DODDS@JORDANCOMPANY.COM

Quality Assurance Representative

Address/Phone/Email

Category Subcategory Windows

Single Hung

Compliance Method

Certification Mark or Listing

Certification Agency

American Architectural Manufacturers Association

Referenced Standard and Year (of

Standard)

Standard

AAMA/NWWDA 101/I.S. 2-97

Year 1997

Equivalence of Product Standards

Certified By

Sections from the Code

1707.4.2.1

Product Approval Method

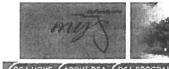
Method 1 Option A

 Date Submitted
 09/16/2005

 Date Validated
 09/16/2005

 Date Pending FBC Approval
 09/23/2005

 Date Approved
 10/11/2005


L #	Model, Number or Name	Description
1378.1	2112	FIN FRAME H-LC35=48"X96"
Limits of Use (See Other) Approved for use in HVHZ: Approved for use outside HVHZ: Impact Resistant: Design Pressure: +/- Other: Per attached manufacturers installation insructions. Not for use HVHZ		Certification Agency Certificate Installation Instructions PTID 1378 R1 I FL1378 Single Hung Windows.pdf Verified By:
1378.2	2312	FIN FRAME H-LC50=48"X84"
Approved for Impact Resis Design Press	use in HVHZ: use outside HVHZ: stant: ure: +/- ached manufacturers installation	Certification Agency Certificate Installation Instructions Verified By:
1378.3	8500	
		FIN FRAME H-R40=44"X81"
Limits of Use Approved for Approved for Impact Resis Design Press Other: Per att	(See Other) use in HVHZ: use outside HVHZ: tant: ure: +/- ached manufacturers installation	Certification Agency Certificate Installation Instructions Verified By:
Limits of Use Approved for Approved for Impact Resis Design Press	(See Other) use in HVHZ: use outside HVHZ: tant: ure: +/- ached manufacturers installation	Certification Agency Certificate Installation Instructions
Limits of Use Approved for Approved for Impact Resis Design Press Other: Per att insructions. Not 1378.4 Limits of Use Approved for Approved for Impact Resis Design Press	(See Other) use in HVHZ: use outside HVHZ: tant: ure: +/- ached manufacturers installation t for use HVHZ 8600 (See Other) use in HVHZ: use outside HVHZ: tant: ure: +/- ached manufacturers installation	Certification Agency Certificate Installation Instructions Verified By:
Limits of Use Approved for Approved for Impact Resis Design Press Other: Per att insructions. No 1378.4 Limits of Use Approved for Approved for Impact Resis Design Press Other: Per att	(See Other) use in HVHZ: use outside HVHZ: tant: ure: +/- ached manufacturers installation t for use HVHZ 8600 (See Other) use in HVHZ: use outside HVHZ: tant: ure: +/- ached manufacturers installation	Certification Agency Certificate Installation Instructions Verified By: FIN FRAME H-R50=44"X72" Certification Agency Certificate Installation Instructions

Back Next

DCA Administration

Department of Community Affairs
Florida Building Code Online
Codes and Standards
2555 Shumard Oak Boulevard
Tallahassee, Florida 32399-2100
(850) 487-1824, Suncom 277-1824, Fax (850) 414-8436
© 2000-2005 The State of Florida. All rights reserved. Copyright and Disclaimer
Product Approval Accepts:

omimunity

BCIS Home | Log In | Hot Topics | Submit Surcharge | Stats & Facts | Publications | FBC Staff | BCIS Site Map | Links | Search |

Product Approvai USER: Public User

Product Approval Menu > Product or Application Search > Application List > Application Detail

FL728-R1 **Application Type** Revision Code Version 2004 **Application Status Approved**

Comments **Archived**

Product Manufacturer Address/Phone/Email **Elk Corporation** 4600 Stillman Blvd. Tuscaloosa, AL 35401 (816) 350-1982 bryson.m@sbcglobal.net

Authorized Signature

Daniel DeJamette

daniel.dejarnette@elkcorp.com

Technical Representative Address/Phone/Email

Daniel DeJarnette 4600 Stillman Blvd Tuscaloosa, AL 35401 (205) 342-0298

daniel.dejarnette@elkcorp.com

Quality Assurance Representative

Address/Phone/Email

Daniel DeJamette 4600 Stillman Blvd Tuscaloosa, AL 35401 (205) 342-0298

daniel.dejarnette@elkcorp.com

Category

Subcategory

Roofing

Asphalt Shingles

Compliance Method

Certification Mark or Listing

Certification Agency

Miami-Dade BCCO - CER

Referenced Standard and Year (of

Standard)

Standard Year ASTM D3462 2001 **TAS 107** 1995 TAS100 1995

Equivalence of Product Standards

Certified By

Sections from the Code

1523.6.5.1

1523.6.5.1 1523.6.5.1

Product Approval Method

Method 1 Option A

 Date Submitted
 06/01/2005

 Date Validated
 06/13/2005

 Date Pending FBC Approval
 06/14/2005

 Date Approved
 06/29/2005

Summary of Produ	cts	
FL#	Model, Number or Name	Description
728.1	Capstone	Laminated Asphalt Shingle
Limits of Use (See Approved for use Approved for use Impact Resistant Design Pressure: Other: Mean roof i	in HVHZ: outside HVHZ: ::	Certification Agency Certificate Installation Instructions PTID 728 R1 I Capstone Metro Dade NOA.pdf PTID 728 R1 I CapstoneSpecSh1t.pdf PTID 728 R1 I Prestique 1 Metro Dade NOA.pdf PTID 728 R1 I Prestique Plus and Gallery NOA.pdf PTID 728 R1 I Seal-A-Ridge Metro-Dade NOA.pdf PTID 728 R1 I Starter Strip Metro-Dade NOA.pdf PTID 728 R1 I Starter Strip Metro-Dade NOA.pdf PTID 728 R1 I Tuscaloosa Spec Sheet.pdf Verified By:
728.2	Prestique I	Laminated Asphalt Shingle
Limits of Use (See Approved for use Approved for use Impact Resistant Design Pressure: Other: Mean roof h	in HVHZ: outside HVHZ: :	Certification Agency Certificate Installation Instructions Verified By:
728.3	Prestique Plus / Gallery Colle	Laminated Asphalt Shingle
Limits of Use (See Approved for use Approved for use Impact Resistant Design Pressure:	Other) in HVHZ: outside HVHZ:	Certification Agency Certificate Installation Instructions Verified By:
728.4	Seal-A-Ridge "SAR"	Accessory - Ridge Shingle
Limits of Use (See Approved for use Approved for use Impact Resistant: Design Pressure:	Other) in HVHZ: outside HVHZ:	Certification Agency Certificate Installation Instructions Verified By:
728.5	Starter Strip	Accessory - Starter Course
Limits of Use (See Approved for use Approved for use Impact Resistant: Design Pressure:	Other) in HVHZ: outside HVHZ:	Certification Agency Certificate Installation Instructions Verified By:

Afffairs 1 4 1

BCIS Home | Log In | Hot Topics | Submit Surcharge | Stats & Facts | Publications | FBC Staff | BCIS Site Map | Links | Search

Product Approval Menu > Product or Application Search > Application List > Application Detail

DOMMUNETY PLANNING
) HOUSING & COMMUNITY DEVELOPMENT
NAMAGEMENT
DEPICE OF THE SECRET

FL4904-R1 FL# Revision **Application Type** Code Version 2004 Approved **Application Status** Comments

Product Manufacturer Address/Phone/Email

Archived

Masonite International One North Dale Mabry

Suite 950 Tampa, FL 33609 (615) 441-4258

sschreiber@masonite.com

Authorized Signature

Steve Schreiber

sschreiber@masonite.com

Technical Representative Address/Phone/Email

Quality Assurance Representative Address/Phone/Email

Category Subcategory **Exterior Doors**

Swinging Exterior Door Assemblies

Compliance Method

Certification Mark or Listing

Certification Agency

National Accreditation & Management Institute,

Referenced Standard and Year (of

Standard)

<u>Standard</u>	<u>Year</u>
ASTM E1300	2002
ASTM E1300	1998
TAS 201	1994
TAS 202	1994
TAS 203	1994

Equivalence of Product Standards Certified By

Product Approval Method

Method 1 Option A

 Date Submitted
 08/02/2007

 Date Validated
 09/11/2007

 Date Pending FBC Approval
 09/14/2007

 Date Approved
 10/03/2007

FL # Model, Number or Name		Description		
4904.1	Wood-edge Steel Side-	6'-8" Opaque I/S and O/S Single Door		
Hinged Door Units Limits of Use Approved for use in HVHZ: Yes Approved for use outside HVHZ: Yes Impact Resistant: Yes Design Pressure: +76.0 /-76.0 Other: Evaluated for use in locations adhering to the Florida Building Code including the High Velocity Hurricane Zone, and where pressure requirements as determined by ASCE 7, Minimum Design Loads for Buildings and Other Structures, does not exceed the design pressures listed. 3'- 0" x 6'-8" max nominal size. When large missile impact resistance is required, hurricane protective system is NOT required. See DWG-MA- FL0128-05 for details.				
4904.2	Wood-edge Steel Side- Hinged Door Units	8'-0" Opaque I/S and O/S Single Door		
Limits of Use Approved for use in HVHZ: Yes Approved for use outside HVHZ: Yes Impact Resistant: Yes Design Pressure: +70.0 /-70.0 Other: Evaluated for use in locations adhering to the Florida Building Code including the High Velocity Hurricane Zone, and where pressure requirements as determined by ASCE 7, Minimum Design Loads for Buildings and Other Structures, does not exceed the design pressures listed. 3'-0" x 8'-0" max nominal size. When large missile impact resistance is required, hurricane protective system is NOT required. See DWG-MA-FL0129-05 for details.				
4904.3	Wood-edge Steel Side- Hinged Door Units	6'-8" Opaque I/S and O/S Door w/ or w/o Sidelites		
Limits of Use Approved for use in HVHZ: Yes Approved for use outside HVHZ: Yes Impact Resistant: Yes Design Pressure: +55.0 /-55.0 Other: Evaluated for use in locations adhering to the Florida Building Code including the High Velocity Hurricane Zone, and where pressure requirements as determined by ASCE 7, Minimum Design Loads for Buildings and Other Structures, does not exceed the design pressures listed. 12'-0" x 6'-8" max nominal size. When large missile impact resistance is required, hurricane protective system is NOT required on opaque panels, but is required on glazed panels. See DWG-MA-FL0128-05 for details.		Certification Agency Certificate FL4904 R1 C CAC NI006110-R2.pdf Installation Instructions FL4904 R1 II Anchor Detail 68 WE Opaque.pdf Verified By: National Accreditation & Management Institute,		
DWG-MA-FLU12				

Limits of Use

Approved for use in HVHZ: Yes Approved for use outside HVHZ: Yes

Impact Resistant: Yes
Design Pressure: +45.0 /-50.0

Other: Evaluated for use in locations adhering to the Florida Building Code including the High Velocity Hurricane Zone, and where pressure requirements as determined by ASCE 7, Minimum Design Loads for Buildings and Other Structures, does not exceed the design pressures listed. 12'-0" x 8'-0" max nominal size. When large missile impact resistance is required, hurricane protective system is NOT required on opaque

panels, but is required on glazed panels. See

Certification Agency Certificate FL4904 R1 C CAC NI006110-R2.pdf Installation Instructions

FL4904 R1 II Anchor Detail 80 WE Opaque.pdf Verified By: National Accreditation & Management Institute,

4904.5

Wood-edge Steel Side-Hinged Door Units 8'-0" Opaque O/S w/ or w/o Sidelites

Limits of Use

Approved for use in HVHZ: Yes
Approved for use outside HVHZ: Yes

Impact Resistant: Yes

DWG-MA-FL0129-05 for details.

Design Pressure: +50.0 /-45.0

Other: Evaluated for use in locations adhering to the Florida Building Code including the High Velocity Hurricane Zone, and where pressure requirements as determined by ASCE 7, Minimum Design Loads for Buildings and Other Structures, does not exceed the design pressures listed. 12'-0" x 8'-0" max nominal size. When large missile impact resistance is required, hurricane protective system is NOT required on opaque panels, but is required on glazed panels. See DWG-MA-FL0129-05 for details.

Certification Agency Certificate

FL4904 R1 C CAC NI006110-R2.pdf
Installation Instructions

FL4904 R1 II Anchor Detail 80 WE Opaque.pdf Verified By: National Accreditation & Management Institute,

4904.6

Wood-edge Steel Side-Hinged Door Units 6'-8" Glazed I/S and O/S Door w/ or w/o Sidelites

Limits of Use

Approved for use in HVHZ: Yes
Approved for use outside HVHZ: Yes

Impact Resistant: No

Design Pressure: +50.5 /-50.5

Other: Evaluated for use in locations adhering to the Florida Building Code including the High Velocity Hurricane Zone, and where pressure requirements as determined by ASCE 7, Minimum Design Loads for Buildings and Other Structures, does not exceed the design pressures listed. 12'-0" x 6'-8" max nominal size. When large missile impact resistance is required, hurricane protective system is required. See DWG-MA-FL0130-05 for details.

Certification Agency Certificate FL4904 R1 C CAC NI006110-R2.pdf Installation Instructions

FL4904 R1 II Anchor Detail 68 WE Glazed.pdf Verified By: National Accreditation & Management Institute,

4904.7

Wood-edge Steel Side-Hinged Door Units 8'-0" Glazed I/S Door w/ or w/o Sidelites

Limits of Use

Approved for use in HVHZ: Yes
Approved for use outside HVHZ: Yes

Impact Resistant: No Design Pressure: +40.0 /-45.0

Other: Evaluated for use in locations adhering to the Florida Building Code including the High Velocity Hurricane Zone, and where pressure requirements as determined by ASCE 7, Minimum Design Loads for Buildings and Other Structures, does not exceed the design pressures listed. 12'-

0" x 8'-0" max nominal size. When large missile

Certification Agency Certificate

FL4904 R1 C CAC NI006110-R2.pdf
Installation Instructions

FL4904 R1 II Anchor Detail 80 WE Glazed.pdf Verified By: National Accreditation & Management Institute, impact resistance is required, hurricane protective system is required. See DWG-MA-FL0131-05 for details. 8'-0" Glazed O/S Door w/ or w/o Sidelites 4904.8 Wood-edge Steel Side-Hinged Door Units **Certification Agency Certificate** Limits of Use FL4904 R1 C CAC NI006110-R2.pdf Approved for use in HVHZ: Yes Approved for use outside HVHZ: Yes **Installation Instructions** FL4904 R1 II Anchor Detail 80 WE Glazed.pdf **Impact Resistant: No** Verified By: National Accreditation & **Design Pressure:** +45.0 /-40.0 Other: Evaluated for use in locations adhering Management Institute, to the Florida Building Code including the High Velocity Hurricane Zone, and where pressure requirements as determined by ASCE 7, Minimum Design Loads for Buildings and Other Structures, does not exceed the design pressures listed. 12'-0" x 8'-0" max nominal size. When large missile impact resistance is required, hurricane protective system is required. See DWG-MA-FL0131-05 for details.

Back

Next

DCA Administration

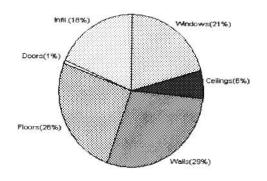
Department of Community Affairs
Florida Building Code Online
Codes and Standards
2555 Shumard Oak Boulevard
Tallahassee, Florida 32399-2100
(850) 487-1824, Suncom 277-1824, Fax (850) 414-8436
© 2000-2005 The State of Florida. All rights reserved. Copyright and Disclaimer
Product Approval Accepts:

Residential System Sizing Calculation

Summary Project Title:

Haynes Curtis & Dana Addition 519 NW Crawford Court, White Springs, FL Project Title: 710053TopFlightConstruction

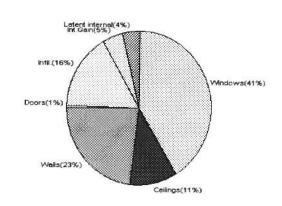
Class 3 Rating Registration No. 0 Climate: North


10/5/2007

10/3/2007						
Location for weather data: Gainesville - Defaults: Latitude(29) Altitude(152 ft.) Temp Range(M)						
Humidity data: Interior RH (50%) Outdoor wet bulb (77F) Humidity difference(54gr.)						
Winter design temperature	33		Summer design temperature	92	F	
Winter setpoint	70	F	Summer setpoint	75	F	
Winter temperature difference	37	F	Summer temperature difference	17	F	
Total bacting land adjusted a specific control of the second seco					Btuh	
Submitted heating capacity	% of calc	Btuh	Submitted cooling capacity	% of calc	Btuh	
Total (Electric Heat Pump)	114.9	44000	Sensible (SHR = 0.75)		33000	
Heat Pump + Auxiliary(0.0kW)	114.9	44000	Latent		11000	
			Total (Electric Heat Pump)		44000	

WINTER CALCULATIONS

Winter Heating Load (for 3174 sqft)


Load component			Load	
Window total	246	sqft	7922	Btuh
Wall total	3352	sqft	11008	Btuh
Door total	20	sqft	259	Btuh
Ceiling total	1972	sqft	2324	Btuh
Floor total	See detail rep	ort	9823	Btuh
Infiltration	172	cfm	6949	Btuh
Duct loss			0	Btuh
Subtotal			38285	Btuh
Ventilation	0	cfm	0	Btuh
TOTAL HEAT LOSS			38285	Btuh

SUMMER CALCULATIONS

Summer Cooling Load (for 3174 sqft)

Load component			Load	
Window total	246	sqft	12532	Btuh
Wall total	3352	sqft	6991	Btuh
Door total	20	sqft	196	Btuh
Ceiling total	1972	sqft	3266	Btuh
Floor total			0	Btuh
Infiltration	89	cfm	1651	Btuh
Internal gain			1380	Btuh
Duct gain			0	Btuh
Sens. Ventilation	0	cfm	0	Btuh
Total sensible gain			26016	Btuh
Latent gain(ducts)			0	Btuh
Latent gain(infiltration)			3243	Btuh
Latent gain(ventilation)			0	Btuh
Latent gain(internal/occupants/other)			1200	Btuh
Total latent gain			4443	Btuh
TOTAL HEAT GAIN			30459	Btuh

For Florida residences only

EnergyGauge® System Sizing
PREPARED BY:
DATE:

EnergyGauge® FLR2PB v4.1

System Sizing Calculations - Winter

Residential Load - Whole House Component Details

Haynes Curtis & Dana Addition 519 NW Crawford Court, White Springs, FL Project Title: 710053TopFlightConstruction

Class 3 Rating Registration No. 0 Climate: North

Reference City: Gainesville (Defaults) Winter Temperature Difference: 37.0 F

10/5/2007

This calculation is for Worst Case. The house has been rotated 315 degrees.

Component Loads for Whole House

Window	Panes/SHGC/Frame/U	Orientation	Area(sqft) X	HTM=	Load
1	2, Clear, Metal, 0.87	NW	10.0	32.2	322 Btuh
2	2, Clear, Metal, 0.87	sw	15.0	32.2	483 Btuh
3	2, Clear, Metal, 0.87	NW	30.0	32.2	966 Btuh
4	2, Clear, Metal, 0.87	NW	11.1	32.2	357 Btuh
5	2, Clear, Metal, 0.87	SE	15.0	32.2	483 Btuh
6	2, Clear, Metal, 0.87	SE	45.0	32.2	1449 Btuh
7	2, Clear, Metal, 0.87	SE	10.0	32.2	322 Btuh
8	2, Clear, Metal, 0.87	S	10.0	32.2	322 Btuh
9	2, Clear, Metal, 0.87	W	10.0	32.2	322 Btuh
10	2, Clear, Metal, 0.87	NW	45.0	32.2	1449 Btuh
11	2, Clear, Metal, 0.87	SE	15.0	32.2	483 Btuh
12	2, Clear, Metal, 0.87	SW	15.0	32.2	483 Btuh
13	2, Clear, Metal, 0.87	SE	15.0	32.2	483 Btuh
	Window Total		246(sqft)		7922 Btuh
Walls	Туре	R-Value	Area X	HTM=	Load
1	Frame - Wood - Ext(0.09)	13.0	2950	3.3	9688 Btuh
2	Frame - Wood - Ext(0.09)	13.0	402	3.3	1320 Btuh
	Wall Total		3352		11008 Btuh
Doors	Туре		Area X	HTM=	Load
1	Insulated - Exterior		20	12.9	259 Btuh
	Door Total		20		259Btuh
Ceilings	Type/Color/Surface	R-Value	Area X	HTM=	Load
1	Vented Attic/D/Shin)	30.0	450	1.2	530 Btuh
2	Vented Attic/D/Shin)	30.0	1522	1.2	1793 Btuh
	Ceiling Total		1972		2324Btuh
Floors	Туре	R-Value	Size X	HTM=	Load
1	Slab On Grade	0	48.0 ft(p)	43.7	2096 Btuh
2	Slab On Grade	0	177.0 ft(p)	43.7	7728 Btuh
	Floor Total		225		9824 Btuh
		Z	one Envelope S	ubtotal:	31336 Btuh
Infiltration	Туре	ACH X	Zone Volume	CFM=	
	Natural	0.58	13697	171.6	6949 Btuh
Ductload	Average sealed, R6.0, Supp	oly(Attic), Retu	ırn(Attic)	(DLM of 0.00)	0 Btuh
Zone #1		Sen	sible Zone Sub	total	38285 Btuh

Manual J Winter Calculations

Residential Load - Component Details (continued)

Haynes Curtis & Dana Addition 519 NW Crawford Court, White Springs, FL Project Title: 710053TopFlightConstruction

Class 3 Rating Registration No. 0 Climate: North

WHOLE HOUSE TOTALS	•	10/5/2007
	Subtotal Sensible Ventilation Sensible Total Btuh Loss	38285 Btuh 0 Btuh 38285 Btuh

Key: Window types (SHGC - Shading coefficient of glass as SHGC numerical value or as clear or tint) (Frame types - metal, wood or insulated metal)

(U - Window U-Factor or 'DEF' for default)

(HTM - ManualJ Heat Transfer Multiplier)

Key: Floor size (perimeter(p) for slab-on-grade or area for all other floor types)

For Florida residences only

System Sizing Calculations - Winter

Residential Load - Room by Room Component Details

Haynes Curtis & Dana Addition 519 NW Crawford Court, White Springs, FL Project Title: 710053TopFlightConstruction

Class 3 Rating Registration No. 0 Climate: North

Reference City: Gainesville (Defaults) Winter Temperature Difference: 37.0 F This calculation is for Worst Case. The house has been rotated 315 degrees.

10/5/2007

Component Loads for Zone #1: Left Side

Window	Panes/SHGC/Frame/U	Orientation	Area(sqft) X	HTM=	Load
1	2, Clear, Metal, 0.87	NW	10.0	32.2	322 Btuh
2	2, Clear, Metal, 0.87	SW	15.0	32.2	483 Btuh
3	2, Clear, Metal, 0.87	NW	30.0	32.2	966 Btuh
4	2, Clear, Metal, 0.87	NW	11.1	32.2	357 Btuh
5	2, Clear, Metal, 0.87	SE	15.0	32.2	483 Btuh
6	2, Clear, Metal, 0.87	SE	45.0	32.2	1449 Btuh
7	2, Clear, Metal, 0.87	SE	10.0	32.2	322 Btuh
8	2, Clear, Metal, 0.87	S	10.0	32.2	322 Btuh
9	2, Clear, Metal, 0.87	W	10.0	32.2	322 Btuh
10	2, Clear, Metal, 0.87	NW	45.0	32.2	1449 Btuh
11	2, Clear, Metal, 0.87	SE	15.0	32.2	483 Btuh
	Window Total		216(sqft)		6956 Btuh
Walls	Туре	R-Value	Area X	HTM=	Load
1	Frame - Wood - Ext(0.09)	13.0	2950	3.3	9688 Btuh
	Wall Total		2950		9688 Btuh
Doors	Туре		Area X	HTM≕	Load
1	Insulated - Exterior		20	12.9	259 Btuh
	Door Total		20		259Btuh
Ceilings	Type/Color/Surface	R-Value	Area X	HTM=	Load
1	Vented Attic/D/Shin)	30.0	1522	1.2	1793 Btuh
	Ceiling Total		1522		1793Btuh
Floors	Туре	R-Value	Size X	HTM=	Load
1	Slab On Grade	0	177.0 ft(p)	43.7	7728 Btuh
	Floor Total		177		7728 Btuh
		z	one Envelope S	Subtotal:	26424 Btuh
Infiltration	Type Natural	ACH X 0.58	Zone Volume 13697	CFM= 171.6	6116 Btuh
Ductload	Average sealed, R6.0, Supp	oly(Attic), Retu	ırn(Attic)	(DLM of 0.00)	0 Btuh
Zone #1		Sen	sible Zone Sub	total	32540 Btuh

Component Loads for Zone #2: Right Side

Window	Panes/SHGC/Frame/U	Orientation	Area(sqft) X	HTM=	Load
2	2, Clear, Metal, 0.87	SW	15.0	32.2	483 Btuh
3	2, Clear, Metal, 0.87	SE	15.0	32.2	483 Btuh
	Window Total		30(sqft)		966 Btuh

Manual J Winter Calculations

Residential Load - Component Details (continued)

Project Title: Class 3 Rating

Haynes Curtis & Dana Addition 519 NW Crawford Court, White Springs, FL

710053TopFlightConstruction

Registration No. 0 Climate: North

10/5/2007

Walls	Туре	R-Value	Area X	HTM=	Load
1	Frame - Wood - Ext(0.09)	13.0	402	3.3	1320 Btuh
	Wall Total		402		1320 Btuh
Ceilings	Type/Color/Surface	R-Value	Area X	HTM=	Load
1	Vented Attic/D/Shin)	30.0	450	1.2	530 Btuh
	Ceiling Total		450		530Btuh
Floors	Туре	R-Value	Size X	HTM=	Load
1	Slab On Grade	0	48.0 ft(p)	43.7	2096 Btuh
	Floor Total		48		2096 Btuh
			Zone Envelope S	ubtotal:	4912 Btuh
Infiltration	Туре	ACH X	Zone Volume	CFM=	
	Natural	0.58	4050	171.6	833 Btuh
Ductioad	Average sealed, R6.0, Supp	oly(Attic), Ret	turn(Attic)	(DLM of 0.00)	0 Btuh
Zone #2		Ser	nsible Zone Sub	total	5745 Btuh

GROUPS (BLOCK LO	ADS)	
Heating Loads For System(s):1 Serving Zones: 1	Block load	32540
Heating Loads		

Manual J Winter Calculations

Residential Load - Component Details (continued) Project Title: Class

Haynes Curtis & Dana Addition 519 NW Crawford Court, White Springs, FL

Project Title: 710053TopFlightConstruction

Class 3 Rating Registration No. 0 Climate: North

	• •	10/5/2007
WHOLE HOUSE TOTA		
	Subtotal Sensible	38285 Btuh
	Ventilation Sensible	0 Btuh
	Total Btuh Loss	38285 Btuh
	!	1

Key: Window types (SHGC - Shading coefficient of glass as SHGC numerical value or as clear or tint)

(Frame types - metal, wood or insulated metal)

(U - Window U-Factor or 'DEF' for default)

(HTM - ManualJ Heat Transfer Multiplier)

Key: Floor size (perimeter(p) for slab-on-grade or area for all other floor types)

For Florida residences only

System Sizing Calculations - Summer

Residential Load - Whole House Component Details

Haynes Curtis & Dana Addition 519 NW Crawford Court, White Springs, FL Project Title: 710053TopFlightConstruction

Class 3 Rating Registration No. 0 Climate: North

Reference City: Gainesville (Defaults)

Summer Temperature Difference: 17.0 F

10/5/2007

This calculation is for Worst Case. The house has been rotated 315 degrees.

Component Loads for Whole House

	Type*		Over	hang	Win	dow Area	a(sqft)	Н	ITM	Load	
Window	Pn/SHGC/U/InSh/ExSh/IS	Ornt	Len	Hgt	Gross	Shaded	Unshaded	Shaded	Unshaded	270 2000 200	
1	2, Clear, 0.87, None,N,N	NW	1.5ft.	5.5ft.	10.0	0.0	10.0	29	60	600	Btuh
2	2, Clear, 0.87, None, N, N	sw	1.5ft.	5.5ft.	15.0	6.1	8.9	29	63	734	Btuh
3	2, Clear, 0.87, None, N, N	NW	1.5ft.	Oft.	30.0	0.0	30.0	29	60	1801	Btuh
4	2, Clear, 0.87, None, N, N	NW	1.5ft.	7.33	11.1	0.0	11.1	29	60	666	Btuh
5	2, Clear, 0.87, None,N,N	SE	1.5ft.	Oft.	15.0	15.0	0.0	29	63	434	Btuh
6	2, Clear, 0.87, None,N,N	SE	1.5ft.	Oft.	45.0	45.0	0.0	29	63	1303	Btuh
7	2, Clear, 0.87, None,N,N	SE	1.5ft.	5.5ft.	10.0	4.0	6.0	29	63	489	
8	2, Clear, 0.87, None,N,N	S	1.5ft.	5.5ft.	10.0	10.0	0.0	29	34	290	
9	2, Clear, 0.87, None,N,N	W	1.5ft.	5.5ft.	10.0	1.5	8.5	29	80	720	
10	2, Clear, 0.87, None,N,N	NW	1.5ft.	5.5ft.	45.0	0.0	45.0	29	60	2702	
11	2, Clear, 0.87, None,N,N	SE	1.5ft.	5.5ft.	15.0	6.1	8.9	29	63	734	
12	2, Clear, 0.87, None,N,N	SW	1.5ft.	Oft.	15.0	15.0	0.0	29	63	434	
13	2, Clear, 0.87, None,N,N	SE	1.5ft.	5.5ft.	15.0	6.1	8.9	29	63	734	
	Excursion									888	
	Window Total				246 ((60			12532	Btun
Walls	Туре		R-Va		-Value	Area			MTH	Load	
1	Frame Wood - Ext			13.0/0			9.9	••	2.1	6153	
2	Frame - Wood - Ext			13.0/0	0.09	402			2.1	838	Btuh
	Wall Total					335	2 (sqft)			6991	Btuh
Doors	Туре					Area	(sqft)		HTM	Load	
1	Insulated - Exterior					20	0.0		9.8	196	Btuh
	Door Total					2	0 (sqft)			196	Btuh
Ceilings	Type/Color/Surface		R-Va	alue		Area	(sqft)		НТМ	Load	
1	Vented Attic/DarkShingle			30.0		450	0.0		1.7	745	Btuh
2	Vented Attic/DarkShingle			30.0		152	1.9		1.7	2520	Btuh
	Ceiling Total					197	2 (sqft)			3266	Btuh
Floors	Туре		R-Va	alue		Si	ze		HTM	Load	
1	Slab On Grade			0.0		4	8 (ft(p))		0.0	0	Btuh
2	Slab On Grade			0.0		17	77 (ft(p))		0.0	0	Btuh
	Floor Total					225.	0 (sqft)			0	Btuh
						Z	one Env	elope Sı	ubtotal:	22985	Btuh
Infiltration	Туре		A	CH		Volum			CFM=	Load	
	SensibleNatural			0.30		136			88.7	1651	Btuh
Internal		(Occup	pants		Btuh/oc		P	\ppliance	Load	
gain				6		X 23	0 +		0	1380	
Duct load	Average sealed, R6.0,	Supply	(Attic)	, Retu	ırn(Atti	c)		DGM	= 0.00	0.0	Btuh
							Sensib	le Zone	Load	26016	Btuh

Residential Load - Component Details (continued)

Haynes Curtis & Dana Addition 519 NW Crawford Court, White Springs, FL Project Title: 710053TopFlightConstruction

Class 3 Rating Registration No. 0 Climate: North

10/5/2007

WHOLE HOUSE TOTALS

	Sensible Envelope Load All Zones	26016	Btuh
	Sensible Duct Load	0	Btuh
	Total Sensible Zone Loads	26016	Btuh
	Sensible ventilation	0	Btuh
	Blower	0	Btuh
Whole House	Total sensible gain	26016	Btuh
Totals for Cooling	Latent infiltration gain (for 54 gr. humidity difference)	3243	Btuh
	Latent ventilation gain	0	Btuh
	Latent duct gain	0	Btuh
	Latent occupant gain (6 people @ 200 Btuh per person)	1200	Btuh
i i i i i i i i i i i i i i i i i i i	Latent other gain	0	Btuh
	Latent total gain	4443	Btuh
	TOTAL GAIN	30459	Btuh

*Key: Window types (Pn - Number of panes of glass)

(SHGC - Shading coefficient of glass as SHGC numerical value or as clear or tint)

(U - Window U-Factor or 'DEF' for default)

(InSh - Interior shading device: none(N), Blinds(B), Draperies(D) or Roller Shades(R))

(ExSh - Exterior shading device: none(N) or numerical value)

(BS - Insect screen: none(N), Full(F) or Half(H))

(Ornt - compass orientation)

For Florida residences only

System Sizing Calculations - Summer

Residential Load - Room by Room Component Details

Haynes Curtis & Dana Addition 519 NW Crawford Court, White Springs, FL Project Title: 710053TopFlightConstruction

Class 3 Rating Registration No. 0 Climate: North

Reference City: Gainesville (Defaults) Summer Temperature Difference: 17.0 F This calculation is for Worst Case. The house has been rotated 315 degrees.

10/5/2007

Component Loads for Zone #1: Left Side

	Type*	_	Ove	hang	Wind	dow Area	a(sqft)	Н	ITM	Load	
Window	Pn/SHGC/U/InSh/ExSh/IS	Ornt	Len	Hgt	Gross	Shaded	Unshaded	Shaded	Unshaded		
1	2, Clear, 0.87, None, N, N	NW	1.5ft.	5.5ft.	10.0	0.0	10.0	29	60	600	Btuh
2	2, Clear, 0.87, None, N, N	SW	1.5ft.	5.5ft.	15.0	6.1	8.9	29	63	734	Btuh
3	2, Clear, 0.87, None,N,N	NW	1.5ft.	Oft.	30.0	0.0	30.0	29	60	1801	Btuh
4	2, Clear, 0.87, None,N,N	NW	1.5ft.	7.33	11.1	0.0	11.1	29	60	666	Btuh
5	2, Clear, 0.87, None,N,N	SE		Oft.	15.0	15.0	0.0	29	63	434	Btuh
6	2, Clear, 0.87, None,N,N	SE	1.5ft.	Oft.	45.0	45.0	0.0	29	63	1303	Btuh
7	2, Clear, 0.87, None,N,N	SE	1.5ft.		10.0	4.0	6.0	29	63	489	
8	2, Clear, 0.87, None,N,N	S	1.5ft.		10.0	10.0	0.0	29	34	290	
9	2, Clear, 0.87, None,N,N	W	1.5ft.		10.0	1.5	8.5	29	80	720	
10	2, Clear, 0.87, None,N,N	NW	1.5ft.	5.5ft.	45.0	0.0	45.0	29	60	2702	
11	2, Clear, 0.87, None,N,N	SE	1.5ft.	5.5ft.	15.0	6.1	8.9	29	63	734	
	Window Total				216 (sqft)				10475	Btuh
Walls	Туре		R-Va	alue/U	-Value	Area	(sqft)		HTM	Load	
1	Frame - Wood - Ext			13.0/0	0.09	294	9.9		2.1	6153	Btuh
	Wall Total					295	0 (sqft)			6153	Btuh
Doors	Type					Area	(sqft)		НТМ	Load	
1	Insulated - Exterior					20	0.0		- 9.8	196	Btuh
	Door Total					2	0 (sqft)			196	Btuh
Ceilings	Type/Color/Surface		R-Va	alue		Area	(sqft)		НТМ	Load	
1	Vented Attic/DarkShingle			30.0		152	1.9		1.7	2520	Btuh
	Ceiling Total					152	2 (sqft)			2520	
Floors	Туре		R-Va	lue		Siz			НТМ	Load	
1	Slab On Grade			0.0		17	77 (ft(p))		0.0	0	Btuh
	Floor Total						0 (sqft)			_	Btuh
7						Zo	one Enve	elope Su	ıbtotal:	19344	Btuh
Infiltration	Type SensibleNatural		Α	CH 0.30		Volume 136			CFM= 88.7	Load 1453	Btuh
Internal		(Occup	ants		Btuh/oc	cupant	Α	ppliance	Load	
gain				6		(23		,	0	1380	Btuh
Duct load	Average sealed, R6.0,	Supply	(Attic)	, Retu	rn(Attio			DGM :	= 0.00		Btuh
	-1,						Sensib	le Zone	Load	22177	Btuh

Component Loads for Zone #2: Right Side

	Type*		Over	hang	Wine	dow Are	a(sqft)	Н	TM	Load	
Window	Pn/SHGC/U/InSh/ExSh/IS	Ornt	Len	Hgt	Gross	Shaded	Unshaded	Shaded	Unshaded		
1	2, Clear, 0.87, None,N,N	SW	1.5ft.	Oft.	15.0	15.0	0.0	29	63	434	Btuh
2	2, Clear, 0.87, None, N, N	SE	1.5ft.	5.5ft.	15.0	6.1	8.9	29	63	734	Btuh
	Window Total				30 (9	qft)				1169	Btuh

Residential Load - Component Details (continued) Project Title: Class

Haynes Curtis & Dana Addition 519 NW Crawford Court, White Springs, FL

Project Title: 710053TopFlightConstruction

Class 3 Rating Registration No. 0 Climate: North

10/5/2007

Walls	Туре	R-Value/U-Value	Area(sqft)	HTM	Load
1	Frame - Wood - Ext	13.0/0.09	402.0	2.1	838 Btuh
	Wall Total		402 (sqft)		838 Btuh
Ceilings	Type/Color/Surface	R-Value	Area(sqft)	HTM	Load
1	Vented Attic/DarkShingle	30.0	450.0	1.7	745 Btuh
	Ceiling Total		450 (sqft)		745 Btuh
Floors	Type	R-Value	Size	HTM	Load
1	Slab On Grade	0.0	48 (ft(p))	0.0	0 Btuh
	Floor Total		48.0 (sqft)		0 Btuh
			Zone Enve	elope Subtotal:	2752 Btuh
Infiltration	Туре	ACH	Volume(cuft)	CFM=	Load
	SensibleNatural	0.30	4050	88.7	198 Btuh
Internal		Occupants	Btuh/occupant	Appliance	Load
gain		0 >	(230 +	0	0 Btuh
Duct load	Average sealed, R6.0, S	upply(Attic), Return(Attic	;)	DGM = 0.00	0.0 Btuh
			Sensibl	e Zone Load	2950 Btuh

The following window Excursion will be assigned to the whole house.	

		Sensible Zone Load	888 Btuh
Duct load	Average sealed, R6.0, Supply(Attic), Return(Attic)	DGM = 0.00	0.0 Btuh
		Excursion Subtotal:	888 Btuh

Residential Load - Component Details (continued) Dana Addition Project Title: Class

Haynes Curtis & Dana Addition 519 NW Crawford Court, White Springs, FL

710053TopFlightConstruction

Class 3 Rating Registration No. 0 Climate: North

10/5/2007

SYSTEM GROUPS (BLOCK LOADS)

19.1	Sensible Envelope Load	23066 Btuh
Cooling Loads	Sensible Duct Load (duct gain multiplier of 0.00)	0 Btuh
	Sensible ventilation	0 Btuh
For System(s):2	Zone Sensible gain	23066 Btuh
Serving Zones:	Latent infiltration/ventilation gain	2854 Btuh
1	Latent occupant gain	1200 Btuh
	Latent duct gain	0 Btuh
	Latent other gain	0 Btuh
	Total block load	27120 Btu

	Sensible Envelope Load	3839 Btuh
Cooling Loads	Sensible Duct Load (duct gain multiplier of 0.00)	0 Btuh
	Sensible ventilation	0 Btuh
For System(s):1	Zone Sensible gain	3839 Btuh
Serving Zones:	Latent infiltration/ventilation gain	389 Btuh
2	Latent occupant gain	0 Btuh
	Latent duct gain	0 Btuh
	Latent other gain	0 Btuh
	Total block load	4228 Btu

Residential Load - Component Details (continued)
Project Title: Class

Haynes Curtis & Dana Addition 519 NW Crawford Court, White Springs, FL

710053TopFlightConstruction

Class 3 Rating Registration No. 0 Climate: North

10/5/2007

WHOLE HOUSE TOTALS

	Sensible Envelope Load All Zones	26016	Btuh
	Sensible Duct Load	0	Btuh
	Total Sensible Zone Loads	26016	Btuh
	Sensible ventilation	0	Btuh
	Blower	0	Btuh
Whole House	Total sensible gain	26016	Btuh
Totals for Cooling	Latent infiltration gain (for 54 gr. humidity difference)	3243	Btuh
	Latent ventilation gain	0	Btuh
	Latent duct gain	0	Btuh
	Latent occupant gain (6 people @ 200 Btuh per person)	1200	Btuh
	Latent other gain	0	Btuh
	Latent total gain	4443	Btuh
	TOTAL GAIN	30459	Btuh

*Key: Window types (Pn - Number of panes of glass)

(SHGC - Shading coefficient of glass as SHGC numerical value or as clear or tint)
(U - Window U-Factor or 'DEF' for default)

(InSh - Interior shading device: none(N), Blinds(B), Draperies(D) or Roller Shades(R))

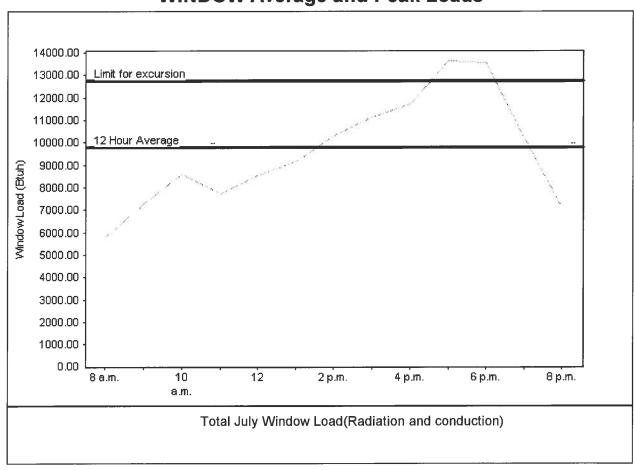
(ExSh - Exterior shading device: none(N) or numerical value)
(BS - Insect screen: none(N), Full(F) or Half(H))

(Ornt - compass orientation)

For Florida residences only

Residential Window Diversity

MidSummer


Haynes Curtis & Dana Addition 519 NW Crawford Court, White Springs, FL Project Title: 710053TopFlightConstruction

Class 3 Rating Registration No. 0 Climate: North

10/5/2007

Weather data for: Gainesville - Def	aults		
Summer design temperature	92 F	Average window load for July	9797 Btuh
Summer setpoint	75 F	Peak window load for July	13624 Btu
Summer temperature difference	17 F	Excusion limit(130% of Ave.)	12736 Btu
Latitude	29 North	Window excursion (July)	888 Btuh

WINDOW Average and Peak Loads

Warning: This application has glass areas that produce relatively large heat gains for part of the day. Variable air volume devices may be required to overcome spikes in solar gain for one or more rooms. A zoned system may be required or some rooms may require zone control.

EnergyGauge® System Sizing for Florida residences only

PREPARED BY:

DATE:

EnergyGauge® FLR2PB v4.1

FLORIDA ENERGY EFFICIENCY CODE FOR BUILDING CONSTRUCTION

Florida Department of Community Affairs Residential Whole Building Performance Method A

Project Name: Address: City, State: Owner: Climate Zone:	710053TopFlightCon 519 NW Crawford Co White Springs, FL Haynes Curtis & Dan North	ourt,		Builder: Permitting Office: Permit Number: Jurisdiction Number:		
a. U-factor:	ulti-family f multi-family ms ser carea (ft²) ea: (Label reqd. by 13-104.4.5 Descrip ble DEFAULT) 7a. (Dble Def DEFAULT) 7b. (C ge Insulation Rege Insulation Recrior Recrio	tion Area	a. Ce b. Ce c. N/A 13. He a. Ele b. Ele c. N/A 14. Ho a. Ele b. N/A c. Co (HI DI 15. HV (CI HI PT	ating systems cetric Heat Pump cetric Heat Pump A t water systems cetric Resistance	Cap: 22.0 kBtu/hr	
Glas	s/Floor Area: 0.08	Total as-built pe				
•	he plans and specification	/ /*		v of the plans and cations covered by this	OF THE STATE	<u>.</u>

PREPARED BY:

DATE: 10-5-

I hereby certify that this building, as designed, is in compliance with the Florida Energy Code.

OWNER/AGENT:	
DATE:	

specifications covered by this calculation indicates compliance with the Florida Energy Code. Before construction is completed this building will be inspected for compliance with Section 553.908 Florida Statutes.

BUILDING OFFICIAL: ___

DATE:

SUMMER CALCULATIONS

Residential Whole Building Performance Method A - Details

ADDRESS: 519 NW Crawford Court,, White Springs, FL,

PERMIT #:

	BASE					AS-	BUI	LT				
GLASS TYPES .18 X Conditio Floor Ar		SPM =	Points	Type/SC	Ove Ornt	erhang Len	Hgt	Area X	SPI	и×	SOF	= Points
.18 3173.	8 :	20.04	11448.7	Double, Clear	N	1.5	5.5	10.0	19.2		0.93	178.2
				Double, Clear	W	1.5	5.5	15.0	38.5	2	0.90	518.3
				Double, Clear	N	1.5	0.0	30.0	19.2		0.59	341.6
				Double, Clear	N	1.5	7.3	11.1	19.2	20	0.96	204.5
				Double, Clear	S	1.5	0.0	15.0	35.8	37	0.43	232.4
				Double, Clear	S	1.5	0.0	45.0	35.8	37	0.43	697.1
				Double, Clear	S	1.5	5.5	10.0	35.8	37	0.83	298.5
				Double, Clear	SW	1.5	5.5	10.0	40.1	6	0.86	346.6
				Double, Clear	NW	1.5	5.5	10.0	25.9	97	0.91	236.8
				Double, Clear	N	1.5	5.5	45.0	19.2	20	0.93	802.0
				Double, Clear	S	1.5	5.5	15.0	35.8	37	0.83	447.7
				Double, Clear	W	1.5	0.0	15.0	38.5	52	0.37	216.5
				Double, Clear	S	1.5	5.5	15.0	35.8	37	0.83	447.7
				As-Built Total:		<u></u>		246.1				4967.9
WALL TYPES	Area X	BSPM	= Points	Туре		R-1	Value	Area	Х	SPN	/I =	Points
A diament	0.0	0.00	0.0	Frame, Wood, Exterior			13.0	2949.9		1.50	·	4424.8
Adjacent	3351.9	1.70	5698.2	Frame, Wood, Exterior			13.0	402.0		1.50)	603.0
Exterior	3331.9	1.70	3030.2	Trainio, viola, amono								
Base Total:	3351.9		5698.2	As-Built Total:	_			3351.9				5027.8
DOOR TYPES	Area X	BSPM	= Points	Туре				Area	Х	SP	vi =	Points
Adjacent	0.0	0.00	0.0	Exterior Insulated				20.0		4.10)	82.0
Exterior	20.0	4.10	82.0									
Base Total:	20.0		82.0	As-Built Total:				20.0				82.0
CEILING TYPE	S Area X	BSPM	= Points	Туре		R-Valu	ıe ,	Area X	SPM	X S	CM =	Points
Lindor Attic	1971.9	1.73	3411.4	Under Attic			30.0	1521.9	1.73	X 1.00)	2632.9
Under Attic	19/1.9	1.73	J411.4	Under Attic			30.0	450.0		X 1.00		778.5
Base Total:	1971.9		3411.4	As-Built Total:				1971.9				3411.4
FLOOR TYPES	Area X	BSPM	= Points	Туре		R-	Value	Area	X	SPI	M =	Points
Slah	225.0(p)	-37.0	-8325.0	Slab-On-Grade Edge Insulation	on		0.0	177.0(p		-41.20)	-7292.4
Slab Raised	0.0	0.00	0.0	Slab-On-Grade Edge Insulation			0.0	48.0(p)		-41.20)	-1977.6
Base Total:			-8325.0	As-Built Total:				225.0				-9270.0

SUMMER CALCULATIONS

Residential Whole Building Performance Method A - Details

ADDRESS: 519 NW Crawford Court,, White Springs, FL, PERMIT #:

BASE		AS-BUILT
INFILTRATION Area X	BSPM = Points	Area X SPM = Points
3173.8	10.21 32404.9	3173.8 10.21 32404.9
Summer Base Points	s: 44720.2	Summer As-Built Points: 36624.1
Total Summer X Syster Points Multipli		Total X Cap X Duct X System X Credit = Cooling Component Ratio Multiplier Multiplier Multiplier Points (System - Points) (DM x DSM x AHU)
44720.2 0.426	6 19077.7	(sys 1: Central Unit 22000 btuh ,SEER/EFF(13.0) Ducts:Unc(S),Unc(R),Int(AH),R6.0(INS) 36624

WINTER CALCULATIONS

Residential Whole Building Performance Method A - Details

ADDRESS: 519 NW Crawford Court,, White Springs, FL, PERMIT #:

	BASE					AS-	BU	LT				
GLASS TYPES .18 X Condition Floor A	oned X B	BWPM =	Points	Type/SC C	Ove Ornt	rhang Len	Hgt	Area X	WF	м х	WO	F = Point
.18 3173	3.8	12.74	7278.3	Double, Clear	N	1.5	5.5	10.0	24.	58	1.00	246.5
				Double, Clear	W	1.5	5.5	15.0	20.	73	1.03	319.7
				Double, Clear	N	1.5	0.0	30.0	24.	58	1.03	757.5
				Double, Clear	N	1.5	7.3	11.1	24.	58	1.00	273.2
				Double, Clear	S	1.5	0.0	15.0	13.3	30	3.66	730.0
ĺ				Double, Clear	S	1.5	0.0	45.0	13.	30	3.66	2190.1
				Double, Clear	S	1.5	5.5	10.0	13.3	30	1.15	152.5
				Double, Clear	SW	1.5	5.5	10.0	16.	74	1.07	179.5
				Double, Clear	NW	1.5	5.5	10.0	24.3	30	1.00	244.0
				Double, Clear	N	1.5	5.5	45.0	24.	58	1.00	1109.3
				Double, Clear	S	1.5	5.5	15.0	13.3	30	1.15	228.8
				Double, Clear	W	1.5	0.0	15.0	20.	73	1.24	384.8
				Double, Clear	S	1.5	5.5	15.0	13.3	30	1.15	228.8
	**			As-Built Total:			••	246.1				7044.6
WALL TYPES	Area X	BWPM	= Points	Туре		R-V	/alue	Area	Χ	WPN	1 =	Points
Adjacent	0.0	0.00	0.0	Frame, Wood, Exterior			13.0	2949.9		3.40		10029.7
Exterior	3351.9	3.70	12402.0	Frame, Wood, Exterior			13.0	402.0		3.40		1366.8
Base Total:	3351.9		12402.0	As-Built Total:				3351.9				11396.5
DOOR TYPES	Area X	BWPM	= Points	Туре				Area	Χ	WPN	1 =	Points
Adjacent	0.0	0.00	0.0	Exterior Insulated				20.0		8.40		168.0
Exterior	20.0	8.40	168.0									
Base Total:	20.0		168.0	As-Built Total:				20.0				168.0
CEILING TYPE	S Area X	BWPM	= Points	Туре	R-	Value	Ar	ea X W	/PM :	x wc	:M =	Points
Under Attic	1971.9	2.05	4042.4	Under Attic		:	30.0	1521.9	2.05	< 1.00		3119.9
				Under Attic			30.0	450.0		(1.00		922.5
Base Total:	1971.9		4042.4	As-Built Total:			-	1971.9				4042.4
FLOOR TYPES		BWPM	= Points	Туре		R-V	′alue	Area	X	WPN	=	Points
Slab	225.0(p)	8.9	2002.5	Slab-On-Grade Edge Insulation			0.0	177.0(p		18.80		3327.6
Raised	0.0	0.00	0.0	Slab-On-Grade Edge Insulation			0.0	48.0(p)		18.80		902.4
, (41004	3.0	5.55	0.0	Sas-Off-Grade Lage modiation			0,0	λ.υ(μ)		. 0.00		502.4
Base Total:			2002.5	As-Built Total:				225.0				4230.0

WINTER CALCULATIONS

Residential Whole Building Performance Method A - Details

ADDRESS: 519 NW Crawford Court,, White Springs, FL, PERMIT #:

BASE	AS-BUILT							
INFILTRATION Area X BWPM = Points	Area X WPM = Points							
3173.8 -0.59 -1872.0	3173.8 -0.59 -1872.6							
Winter Base Points: 24020.7	Winter As-Built Points: 25009.0							
Total Winter X System = Heating Points Multiplier Points	Total X Cap X Duct X System X Credit = Heating Component Ratio Multiplier Multiplier Multiplier Points (System - Points) (DM x DSM x AHU)							
24020.7 0.6274 15070.6	(sys 1: Electric Heat Pump 22000 btuh ,EFF(7.9) Ducts:Unc(S),Unc(R),Int(AH),R6.0 25009.0 0.500 (1.069 x 1.169 x 0.93) 0.432 1.000 6272.9 (sys 2: Electric Heat Pump 22000 btuh ,EFF(7.9) Ducts:Unc(S),Unc(R),Int(AH),R6.0 25009.0 0.500 (1.069 x 1.169 x 0.93) 0.432 1.000 6272.9 25009.0 1.00 1.162 0.432 1.000 12545.8							

WATER HEATING & CODE COMPLIANCE STATUS

Residential Whole Building Performance Method A - Details

ADDRESS: 519 NW Crawford Court,, White Springs, FL, PERMIT #:

	В	ASE		AS-BUILT								
WATER HEA Number of Bedrooms	TING X	Multiplier	= Total	Tank Volume	EF	Number of Bedrooms	X	Tank X Ratio	Multiplier X	Credit = Multiplier		
3		2635.00	7905.0	40.0	0.93	3		1.00	2606.67	1.00	7820.0	
				As-Built To	tal:						7820.0	

	CODE COMPLIANCE STATUS											
	BAS			AS-BUILT								
Cooling + Heating + Hot Water = Total Cooling + Heating + Hot Water = Points Points Points Points Points									Total Points			
19078 15071 7905 42053 10939 12546 7820 313											31305	

PASS

Code Compliance Checklist

Residential Whole Building Performance Method A - Details

ADDRESS: 519 NW Crawford Court,, White Springs, FL, PERMIT #:

6A-21 INFILTRATION REDUCTION COMPLIANCE CHECKLIST

COMPONENTS	SECTION	REQUIREMENTS FOR EACH PRACTICE	CHECK	
Exterior Windows & Doors	606.1.ABC.1.1	Maximum: 3 cfm/sq.ft. window area; .5 cfm/sq.ft. door area.		
Exterior & Adjacent Walls 606.1.ABC.1.2.1		Caulk, gasket, weatherstrip or seal between: windows/doors & frames, surrounding wall;		
		foundation & wall sole or sill plate; joints between exterior wall panels at corners; utility		
		penetrations; between wall panels & top/bottom plates; between walls and floor.		
		EXCEPTION: Frame walls where a continuous infiltration barrier is installed that extends		
		from, and is sealed to, the foundation to the top plate.		
Floors 606.1.ABC.1.2.2		Penetrations/openings >1/8" sealed unless backed by truss or joint members.		
		EXCEPTION: Frame floors where a continuous infiltration barrier is installed that is sealed		
		to the perimeter, penetrations and seams.		
Ceilings	606.1.ABC.1.2.3	Between walls & ceilings; penetrations of ceiling plane of top floor; around shafts, chases,		
		soffits, chimneys, cabinets sealed to continuous air barrier; gaps in gyp board & top plate;		
		attic access. EXCEPTION: Frame ceilings where a continuous infiltration barrier is		
		installed that is sealed at the perimeter, at penetrations and seams.	<u> </u>	
Recessed Lighting Fixtures	606.1.ABC.1.2.4	Type IC rated with no penetrations, sealed; or Type IC or non-IC rated, installed inside a		
		sealed box with 1/2" clearance & 3" from insulation; or Type IC rated with < 2.0 cfm from		
		conditioned space, tested.		
Multi-story Houses	606.1.ABC.1.2.5	Air barrier on perimeter of floor cavity between floors.		
Additional Infiltration reqts	606.1.ABC.1.3	Exhaust fans vented to outdoors, dampers; combustion space heaters comply with NFPA,		
		have combustion air.		

6A-22 OTHER PRESCRIPTIVE MEASURES (must be met or exceeded by all residences.)

COMPONENTS	SECTION	REQUIREMENTS	CHECK
Water Heaters	612.1	Comply with efficiency requirements in Table 612.1.ABC.3.2. Switch or clearly marked circuit	
		breaker (electric) or cutoff (gas) must be provided. External or built-in heat trap required.	
Swimming Pools & Spas	612.1	Spas & heated pools must have covers (except solar heated). Non-commercial pools	
		must have a pump timer. Gas spa & pool heaters must have a minimum thermal	
		efficiency of 78%.	
Shower heads	612.1	Water flow must be restricted to no more than 2.5 gallons per minute at 80 PSIG.	
Air Distribution Systems	610.1	All ducts, fittings, mechanical equipment and plenum chambers shall be mechanically	
		attached, sealed, insulated, and installed in accordance with the criteria of Section 610.	
		Ducts in unconditioned attics: R-6 min. insulation.	
HVAC Controls	607.1	Separate readily accessible manual or automatic thermostat for each system.	
Insulation	604.1, 602.1	Ceilings-Min. R-19. Common walls-Frame R-11 or CBS R-3 both sides.	
		Common ceiling & floors R-11.	

ENERGY PERFORMANCE LEVEL (EPL) DISPLAY CARD

ESTIMATED ENERGY PERFORMANCE SCORE* = 87.8

The higher the score, the more efficient the home.

Haynes Curtis & Dana Addition, 519 NW Crawford Court,, White Springs, FL,

1.	New construction or existing	Addition	_ 12	. Cooling systems		
2.	Single family or multi-family	Single family	(<u></u>)	a. Central Unit	Cap: 22.0 kBtu/hr	
3.	Number of units, if multi-family	1			SEER: 13.00	
4.	Number of Bedrooms	3		b. Central Unit	Cap: 22.0 kBtu/hr	
5.	Is this a worst case?	Yes			SEER: 13.00	680
6.	Conditioned floor area (ft²)	3173.84 ft²		c. N/A		7.3
7.	Glass type 1 and area: (Label reqd.	by 13-104.4.5 if not default)				5145
a	U-factor:	Description Area	13	Heating systems		
	(or Single or Double DEFAULT)		_	a. Electric Heat Pump	Cap: 22.0 kBtu/hr	
b	SHGC:				HSPF: 7.90	
	(or Clear or Tint DEFAULT)	7b. (Clear) 246.1 ft ²	_	b. Electric Heat Pump	Cap: 22.0 kBtu/hr	=
8.	Floor types				HSPF: 7.90	_
	Slab-On-Grade Edge Insulation	R=0.0, 177.0(p) ft	_	c. N/A		_
	Slab-On-Grade Edge Insulation	R=0.0, 48.0(p) ft	_			_
C	N/A		-	Hot water systems		
9.	Wall types			a. Electric Resistance	Cap: 40.0 gallons	_
a	Frame, Wood, Exterior	R=13.0, 2949.9 ft ²	_		EF: 0.93	
	Frame, Wood, Exterior	$R=13.0, 402.0 \text{ ft}^2$		b. N/A		_
C.	N/A		_			
d	N/A		_	c. Conservation credits		
	N/A			(HR-Heat recovery, Solar		
10.	Ceiling types			DHP-Dedicated heat pump)		
a	Under Attic	R=30.0, 1521.9 ft ²	15	HVAC credits		
Ь	Under Attic	$R=30.0, 450.0 \text{ ft}^2$	_	(CF-Ceiling fan, CV-Cross ventilation,		
C.	N/A			HF-Whole house fan,		
11.	Ducts			PT-Programmable Thermostat,		
a.	Sup: Unc. Ret: Unc. AH: Interior	Sup. R=6.0, 178.0 ft	_	MZ-C-Multizone cooling,		
b	Sup: Unc. Ret: Unc. AH: Interior	Sup. R=6.0, 50.0 ft	_	MZ-H-Multizone heating)		
	rtify that this home has compl				THE STAD	
Cor	struction through the above e	nergy saving teatures which	h will be	installed (or exceeded)	A CONTRACTOR OF THE CONTRACTOR	Ø.

in this home before final inspection. Otherwise, a new EPL Display Card will be completed based on installed Code compliant features.

Builder Signature: _______ Date: _______

Address of New Home: _____ City/FL Zip: _____

*NOTE: The home's estimated energy performance score is only available through the FLA/RES computer program. This is not a Building Energy Rating. If your score is 80 or greater (or 86 for a US EPA/DOE EnergyStd^M designation), your home may qualify for energy efficiency mortgage (EEM) incentives if you obtain a Florida Energy Gauge Rating. Contact the Energy Gauge Hotline at 321/638-1492 or see the Energy Gauge web site at www.fsec.ucf.edu for information and a list of certified Raters. For information about Florida's Energy Efficiency Code For Building Construction, contact the Department of Community Affairs at 850/487-1824.

Haynes Residence Additions, Columbia County FL

Wind Load Analysis Requirements

(In Compliance with the 2004 Florida Building Code and Amendments)

Prepared By: Marty J. Humphries, P.E. # 51976 7932 240th St., O'Brien, FL 32071 (386)935-2406

Description of Additions:

Footprint: Right side single-story addition is 27'8" wide x 28'10" deep overall. Left side two-story addition is 41'6" wide by 44'6" deep overall. (see plan 0704 by Haygood Homes Inc.)

Walls: 2x4-16" O.C. with 7/16" OSB sheathing minimum with hardiboard lap siding and gypsum wall-board interior.

Roof Structure: Pre-engineered roof trusses and 7/16" OSB sheathing minimum

Roof Type: Primarily gable construction with small hips at ends (analyzed for 1'4" eave overhang)

Foundation: footer with stemwall, with slab construction

Windload Data and Exposure:

Basic Wind Speed = 100 mph

Importance Factor = 1.0

Exposure category = B

Height and Exposure Adjustment Coefficient = 1.0

Residential Occupancy = Group R3

Analysis Method = FBC 1609.6 - Simplified Provisions for Low Rise Buildings (see tables 1609.6A, 1609.6B, 1609.6C and 1609.6E for wind pressure values)

Mean roof height = 26'

Roof Cross Slope = 12:12 primarily with 8:12 at ends

Eave Overhang= (Analyzed for 1'4" overhang)

Wall Height = 9'-1st floor, 9'-2nd floor

Shear Wall locations = exterior walls only(all walls 3' in length or greater

Bracing method for gable locations = framing from wall to roof diaphragm(see attached detail)

Nailing Pattern Requirements:

Wall sheathing: Shall be 7/16" Oriented Strand Board(OSB) minimum nailed with 8d

common nails 3" on center around edges(including around doors and windows) and 6" on center interior. Full depth blocking shall be installed

At horizontal joints in sheathing.

Roof sheathing: Shall be 7/16" OSB minimum nailed with 8d common nails 3" on center at

panel ends and eave overhang areas and 6" on center elsewhere.

Top wall plates: Nail with 1-16d common nail 12" O.C.(average)

Monty J. Duft

1 of 2

Strapping and Anchor Requirements:

truss to top wall plate

Install one Simpson model H10 hurricane anchor at each truss. At first 4 trusses at gable ends install a Simpson model H5 hurricane anchor in addition to the H10 anchor..

wall strap tie requirements:

At bottom of 1st story wall and top of 2nd story wall - install one Simpson model SP4 at each side of each door and window 4' or less in width, for windows or doors over 4' but less than or equal to 6'6" install 2- SP4's. Mirror top and bottom SP4 straps with 1-CS18 strap connecting 1st floor wall studs to 2nd floor wall studs(strap to span floor truss system). At all other wall locations install 1—SP4 at the top of the second story wall, the bottom of the first story wall and a CS18 strap connecting the 1st story wall studs to the 2nd story wall studs 32" on center. For single story areas install SP4 straps as indicated above but omit CS18 strap(spacing of straps may be increased to 4' on center) and each side of doors/windows shall be strapped as indicated above..

Lookouts:

Install one Simpson model H5 where lookouts connect to end gable truss(see

detail).

Gable end:

Install one LSTA18 - 4' on center connecting gable end truss to wall framing.

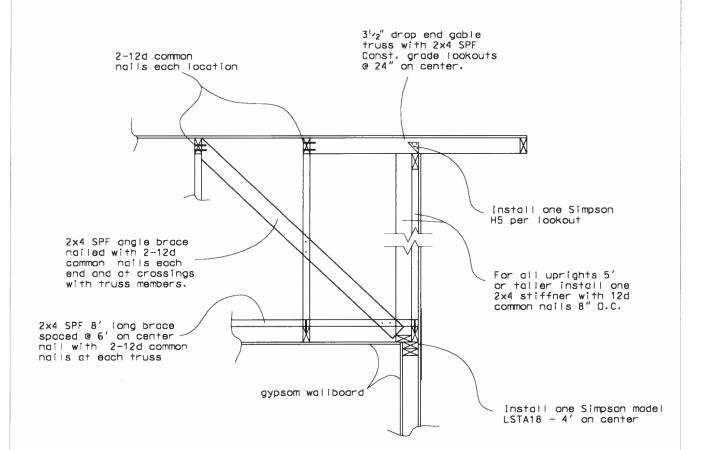
Gable End Bracing Requirements:

At each gable end install one 2x4 SPF 8' stud spaced 6' on center horizontal along top of bottom chord of trusses, nail with 2-12d nails at each truss including end truss. In addition, install a 2x4 brace extending from this stud at the gable end truss approx. 45 degrees to truss at roof sheathing, nail with 2-12d nails where it crosses truss members and at ends. Gable end trusses shall be built to receive sheathing with vertical members 2' on center. Vertical members of gable end truss greater than 5' in height shall be stiffened with one 2x4 SPF nailed with 12d nails 8" on center to back of vertical member. (See attached detail)

Foundation Requirements:

Stemwall:

For two-story areas minimum size of footer shall be 10" x 24" wide with 3-#5 rebar continuous and 1-#5 vertical rebar 48" on center. All cells shall be filled with concrete. ½" anchor bolts with 2" washers shall be installed 3' on center and 9" from corners each way and at each side of door openings. (3000 psi concrete min) For single-story areas minimum size of the footer shall be 10" x 20" wide with 2-#5 rebar continuous with all other requirements the same as above.


Header Requirements:

Windows & Doors:

Header shall be 2 - #2 SYP 2x12's with ½" plywood/OSB between for openings less than or equal to 7' 6".

Note: Equivalent capacity anchors may be substituted, installed in accordance with the manufacturers requirements.

Muitz J. Hay -

GABLE END BRACING DETAIL (N.T.S.)

Marty 7.24

Haynes Additions Columbia County, FL DETAIL PREPARED BY:
MARTY J. HUMPHRIES P.E. # 51976
7932 240TH ST.. O'BRIEN. FL 32071

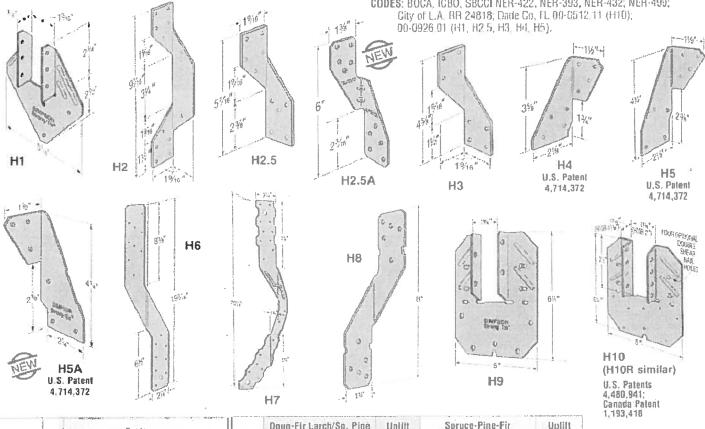
NEW! The H2.5A is symetrically designed for easy installation, with higher uplift loads to meet new code requirements. A placement mark allows easy installation on double top plates.

NEW! The H5A has an installed cost benefit, as it only requires 6 nails, to meet lower uplift requirements.

The H connector series provides wind and seismic ties for trusses and rafters.

Allowable loads for more than one direction for a single connection cannot be added together. A design load which can be divided into components in the directions given must be evaluated as follows:

Design Shear/Allowable Shear + Design Tension/Allowable Tension < 1.0


MATERIAL: See table

FINISH: Galvanized; H10-2, H11Z-Z-MAX. Other models available in stainless steel or Z-MAX; see Corrosion-Resistance, page 5

INSTALLATION: . Use all specified fasteners. See General Notes.

- · H1 can be installed with flanges facing outwards (reverse of drawing number 1). When installed inside a wall, a birdsmouth cut is required.
- . H2.5, H3. H4. H5 and H6 ties are shipped in equal quantities of rights and lefts.
- . Bend the H7 over the top of the truss. Install a minimum of four 8d nails into the truss, including two into the truss side
- · Hurricane Ties do not replace solid blocking.

CODES: BOCA, ICBO, SBCCI NER-422, NER-393, NER-432; NER-499; Gity of L.A. RR 24818; Dade Go, FL 00-0512-11 (H10);

		100 Y 100 C 10 C 10 C 10 C 10 C 10 C 10	Fasieners	n. 19-536-47-1-0-	Uplilt		-Fir Lai			Uplift Load with			·Pine-F le Load		Uplift Load with	1,193,418
Model No.	Ga	To Rafters/	To	To	Avg Uli	Up	lift		leral 1/160)	8dx1); Nails ; (133 &	Up	litt		eral /160)	8dx1// Nails (133 &	
	deter-celly	Truss	Plates	Studs		(133)	(160)	F ₁	F ₂	160)	(133)	(160)	Fi	FZ	160)	3
1	18	6-8dx1½	4-8d		1958	490	585	485	165	455	400	400	415	140	370	100
H2	18	5-8d		5-80	1040	335	335		_	335	230	230	-	-	230	
H2.5	18	5-8d	5-80		1300	415	415	150	150	415	365	365	130	130	365	The state of
H2.5A	18	5-94	5-80		1793	600	500	110	110	480	520	535	110	110	480	
НЗ	18	4-8d	4-8d		1433	455	455	125	160	415	320	320	105	140	290	75
H4	50	4-81	4-80	minerous	1144	360	360	165	160	360	235	235	140	135	235	H10-2
H5	18	4-8d	4-8d	-	1485	455	465	115	500	455	265	265	100	170	265	
H5A	18	3:30	3-80	-	1500	350	420	115	180	290	245	245	100	120	170	199
H6	16		8-8d	8-8d	3983	915	950	650		Stablished	785	820	560			
H7	16	4-8d	2-8d	8-8d	2991	930	985	400		7	800	845	345			3. 3
HB	18	5-10dx1%	5-10dx1/2		2422	620	745		4	2	530	565			laman.a	
нэкт	18	4-\$DS//x1//	5-SDS/ ₄ x1/ ₂		2812	875	875	680	125	framework of state 4 that 1 that the	755	755	680	125		a second
HIO	18	8-8dx13/	8-8dx1%		3135	905	990	585	525		780	850	505	450		Name of the last o
HIOR	18	8-8dx1%	8-8dx1,%		3135	905	990	585	525	district.	.780	850	505	450	-	
H10-2	18	6-10d	6-10d	name.	2447	7G0	760	455	395	***************************************	655	655	390	340	- commence	71/4
HIIZ	18	6-16dx2X	6-16dx2/2		5097	830	830	525	760	4880hc	715	715	450	655		H11Z

- 1. Loads have been increased 33% and 60% for earthquake or wind leading with no turther increase allowed. 4, The H9KT is sold in 20 piece packs with screws.
- 2. Allowable toads are for one anchor. A minimum rafter thickness of 21/5' must be used when framing anchors are installed on each side of the joist and on the same side of the plate.
- 3. Allowable ophit lead for stud to bottom plate installation is 400 lbs (H2.5), 390 lbs (H2.5A). 360 lbs (H4) and 310 lbs (H8)
- 5. When cross-grain bending or cross-grain tension cannot be avoided. mechanical reinforcement to resist such forces should be considered
- 6. Hurricane Ties are shown installed on the outside of the wall for clarity Installation on the inside of the wall is acceptable. For a Continuous Load Path, connections must be on some side of the wall

RPS/ST/FHA/PS/HST/LSTA/LSTI/MST/MSTA/MSTC/MSTI

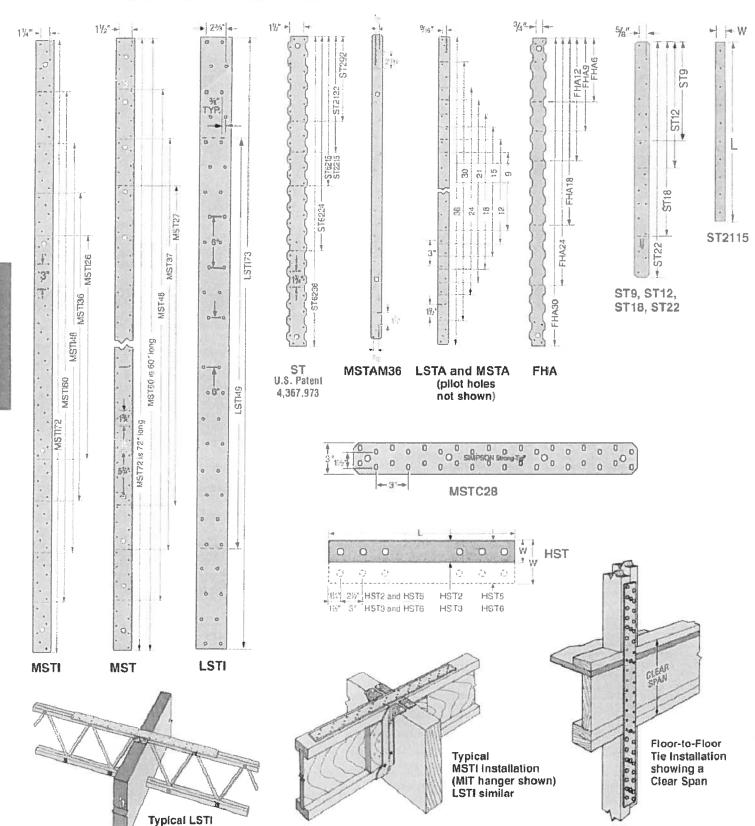
SIMPSON StrongeTte

The MSTC series has countersunk nail slots for a lower nailing profile. Coined edges ensure safer handling, The RPS meets UBC and City of Los Angeles code requirements for notching plates where plumbing, heating or other piges are placed in partitions.

Install Strap Ties where plates or soles are cut, at wall intersections, and as ridge ties. LSTA and MSTA straps are engineered for use on 1½" members. The 3" center-to-center nail spacing reduces the possibility of splitting. For the MST, this may be a problem on lumber narrower than 3½"; either fill every nail hole with 10dx1½" nails or fill every other nail hole with 16d commons. Reduce the allowable load based on the size and

Installation

quantity of fasteners used. The LSTI light strap ties are suitable where gun-nailing is necessary through diaphragm decking and wood chord open web trusses.


FINISH HST-Simpson gray paint; PS-HDG; all others-galvanized. Some products

are available in stainless steel or Z-MAX; see Corrosion-Resistance, page 5.

INSTALLATION: Use all specified tasteners. See General Notes.

INSTALLATION: Use all specified fasteners. See General Notes OPTIONS: Special sizes can be made to order, See also HCST,

CODES: BOCA, ICBO, SBCCI NER-413, NER-443; ICBO 4935, 5357; Dade County, FL. 00-1023.05 (MSTA30, MSTA36, ST12, ST18, S122); City of L.A. RR 25119, RR 25149, RR 25281.

FHA24

FHA30

MST126

MSTI36

MST148

MSTI60

MSTI72

1%, 23%

30

48

72

1/15

2ka 26

2% 36

24

2Kg 60

21/2

12

8-16d

8-16d

26-10dx1/5

36-10dx14

48-10dx15

60-10dx1%

72-10dx1%

550

550

1130

1565

2135

2760

3310

735

735

1510

2090

2850

3680

4415

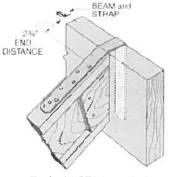
885

885

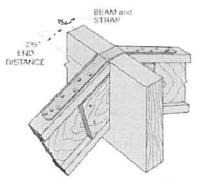
1810

2505

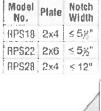
3420


4415

4725

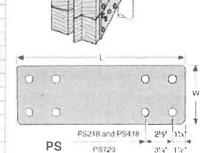

RPS/ST/FHA/PS/HST/LSTA/LSTI/MST/MSTA/MSTC/MSTI

TRAP TIES


Model		Dime	nsions	Fasteners (Total)	Allowat	le Tensi	on Loads	
No.	Ga	W	L	Nails	Floor (100)	(133)	(160)	
RPS18		1,72	18%	12-16d	810	1080	1295	
RPS22	16	1,15	22 1/15		905	1205	1445	A decide have
RPS28		1);	28%	12-16d	810	1080	1295	************
LSTA9		1%	9	8-10d	450	605	725	, married
LSTA12		174	12	10-10d	565	755	905	
LSTA15		17	15	12-10d	680	905	1085	MWWW.
LSTA18		1%	18	14-10d	790	1055	1265	
LSTA21	20	134	21	16-10d	905	1205	1295	The same of
LSTA24	20	11%	24	18-10d	1015	1295	1295	A Minney have
ST292		21/0	95%	12-16d	790	1055	1130	and the mile
ST2122		2%	121%	16-16d	1070	1425	1505	and decree
ST2115	- 1	34	16%	10-16d	450	600	600	-
ST2215		240	16%	20-16d	1270	1695	1695	A. 1000. A.
LSTA30		1/4		22-10d	1255	1670	1715	***
LSTA36		13%	36	26-10d	1480	1715	1715	
LSTI49		3%	49	32-10dx1%	1455	1940	2330	
LSTI73		33%	73	48-10dx1/4	2185	2910	3495	
MSTA9	422	174	9	8-10d	455	610	730	
MSTA12	18	1)/4	12	10-10d	570	760	910	
MSTA15		1/4	1.5	12-10d	685	910	1095	
MSTA18		1%	18	14-10d	800	1065	1275	
MSTA21		134	21	16-10d	910	1215	1460	ļ
MSTA24		1,74	24	18-10d	1025	1370	1640	
MSTA30		1%	30	22-10d	1265	1685	2025	
MSTA36		1%	36	26-10d	1495	1995	2135	
ST6215		2%	16%	20-16d	1330	1775	2130	
ST6224		216	23%	28-16d	1890	2520	2630	
ST9		13%	9	8-16d	530	705	850	
ST12	16	1%	11%	10-16d	665	885	1065	
STI8		134	17%	14-16d	900	1200	1200	
ST22		11%	215/	18-16d	1025	1370	1370	
MSTC28		3	28%	36-16d sinkers	2070	2760	3310	
MSTC40		3	40%	52-16d sinkers	2990	3985	4740	
MSTC52		3	52%	62-16d sinkers	3555	4740	4740	
MSTC66		3	65)4	76-16d sinkers	4390	5855	5855	l
MSTC78	14	3	77%	76-16d sinkers	4390	5855	5855	
ST6236			331%	40-16d	2575	3430	3430	
FHA6		1%	635	8-16d	550	735	885	
FHA9		1%		8-16d	550	735	885	
FHA12		1%		8-16d	550	735	885	
FHA18		1%c		8-16d	550	735	885	
PLIAGA		455	000	0.104	556	ツカビ	200	

Typical LSTA Installation (hanger not shown)

Typical LSTA Installation (hanger not shown)



RPS

Floor-to-Floor Clear Span Table

Model	0	Dimei	nsions	Bolts		
No.	Ga	W	L	Qly	Dia	
PS218 ⁴		2	18	4	%	
PS418 ⁹	7	Ą	18	4	94	
PS720		6%	20	8	1/2	

Model No.	Clear		Allov Tensio	
NU.	Span	(Total)	(133)	(160)
MCTODO	18	12-16d sinker	920	1105
MSTC28	16	16-16d sinker	1225	1470
MOTOLO	18	28-16d sinker	2145	2575
MSTC40	16	36-16d sinker	2455	2945
	18	44-16d sinker	3375	4050
MSTC52	16	48-16d sinker	3680	4415
	18	64-16d sinker	5035	5855
MSTC66	16	68-16d sinker	5350	5855
	18	80-16d sinker	5855	5855
MSTC78	16	80-16d sinker	5855	5855
. remen	18	20-16d	1905	2285
MST37	16	22-16d	2100	2515
MST48	18	32-16d	3135	3765
MOINO	16	34-16d	3330	4000
MSTGO	18	46-16d	4785	5740
MOIGN	16	48-16d	4990	5800
MST72	18	56-16d	5800	5800
M9172	16	56-16d	5800	5800
MSTI36	18	14-10dx1%	810	975
WEST 130	16	16-10dx1%	930	1115
LECTION	18	26-10dx13/2	1545	1855
MSTH8	16	28-10dx11/5	1660	1990
A CTUCO	18	38-10dx11/2	2330	2800
MST160	16	40±10dx11/2	2455	2945
LACTIZO	18	50-10dx1%	3065	3680
MSTI72	16	52-10dx1%	3190	3830

		Dime	nsions	Fastene	rs (Ti	otal)		All	owable 1	ension l	oads	
Model	Ga	1			Bo	Its		Nails			Bolts ⁵	
No.	Ua	W	L	Nalls	Qty	Dia	Floor (100)	(133)	(160)	Floor (100)	(133)	(160)
MST27		2%	27	30-16d	4	Y_k	2070	2760	2790	1295	1725	2070
MST37	12	21/6	37%	42-16d	6	Υ,	2860	3815	3815	1825	2435	2920
MST48		2%	48	46-16d	8	Y.	3345	4460	4460	2225	2970	3560
MST60	m m	2 X 5	60	56-16d	10	3%	4350	5800	5800	2670	3565	4275
MST72	10	2%	72	56-16d	10	V_2	4350	5800	5800	2670	3565	4275
HST2	7	21/2	21%	-	6	%			-	3130	4175	5005
HST5	1	5	21%	-	12	5/4	-	and the	-	6385	8510	10210
HST3		3	25%	-	6	3/4			_	4645	6195	7435
HST6	3	6	25)		12	32		_	untime	9350	12465	14955

- Loads have been increased 33% and 60% for earthquake or wind loading with no further increase allowed. Floor loads may not be increased for other load durations.
- 10dx1%* nails may be substituted where 16d sinkers are specified at 0.80 of the table loads.
- 3 10d commons may be substituted where 16d sinkers are specified at 100% of table toads.
- 4.16d sinkers (9 gauge x 3½") or 10d commons may be substituted where 16d commons are specified at 0.84 of the table loads.
- 5 Allowable bolt loads are based on parallel-to-grain loading and these minimum member thicknesses: MST-2½"; HST2 and HST5-4"; HST3 and HST6-4½".
- 6 PS strap design loads must be determined by the building designer for each installation. Bolts are Installed both perpendicular and parallel-to-grain.
- 7. Use half of the nails at each member being connected to achieve the fisted loads.

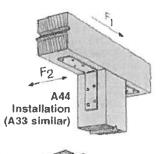
Straps & Ties

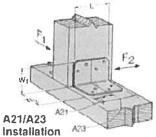
A ANGLES AND Z CLIPS

Z2 clips secure 2x4 flat blocking between joists or trusses to support sheathing MATERIAL: Z clips-see table. A21 and A23-18 ga.; all other A angles-12 ga.

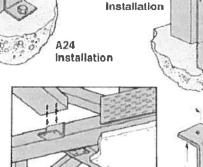
FINISH: Galvanized

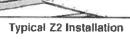
INSTALLATION: • Use all specified fasteners. See General Notes.

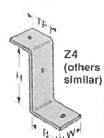

· 2 clips do not provide lateral stability. Do not walk on stiffeners or apply load until diaphragm is installed and nailed to stiffeners.


CODES: BOCA, ICBO, SBCCI NER-421 (except A33, A44). City of L.A. RR 25076 (except A33, A44); Dade Co. FL 99-0623.04 (A21 and A23).

		mensi	ons		Faste	eners		Ava	Allowable Loads' DF/SP				
Madel No.		181			Base		Post	Uli	(1:	33)	(160)		
(AN)	Wi	W2	L	Bolls	Nails	Balls	Nails	F ₂	Fi	F ₂	Fi	Fz	
A21	2	15	136	0.00	2-10dx1 //		2-10dx1%	540	245	175	290	175	
A23	2	1,55	2%	_	4-10dx1/2	_	4-10dx1%	1767	485	485	585	565	
A33	3	3	1%		4-10d	_	4-10d	2635	625	330	750	330	
A44	4%	4%	1%		4-10d	-	4-10d	2490	625	295	750	295	
A66	51/4	5%	11/2	2-1/2		2-%	-	N/A	N/A	N/A	N/A	N/A	
A88	8	8	2	3-14	-	3-34	_	N/A	N/A	N/A	N/A	N/A	
A24	3%	2	2%	1-1/2	-	1-1/2	2-10d	N/A	N/A	N/A	N/A	N/A	
A311	11	3%	2	1-%		1-1/2	4-10d	N/A	N/A	N/A	N/A	N/A	

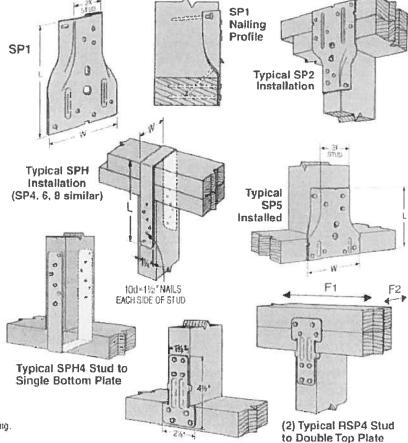

Model			Dimer	sions		Fasteners'	Avu	Allowable ¹	
No.	Ga	W	Н	8	TF	(Total)	Uli	Download (125)	
22	20	2%	14	1%	13%	4-10dx1%	1507	465	
74	12	13%	3)	278	194	2-16d	1450	465	
Z6	12	1월	5%	2	13%	2-16d	1517	485	
Z28	28	2%	110	1%	13%	10dx1 /5 1	-	-	
Z38	28	2%	2%	1%	146	10dx1 ½	-	_	
Z44	12	2%	31	2	1%	4-16d	2800	865	


- 1 Z28 and Z38 (to not have nail holes Fastener quantities are as required
- Z. Allowable loads have been increased 25% for roof loading (Z clips), 33% and 60% for earthquake or wind loading (A angles), no further increase allowed; reduce for other load durations according to the code
- 3. Z4 and Z6 loads apply with a nail into the top and a unil into the seat.



A311

SP/SPH/RSP4


The RSP4 is a reversible stud plate tie with locating tabs, which aid placement on double top plates or a single bottom plate MATERIAL: SPH-18 gauge, all others-20 gauge FINISH: Galvanized INSTALLATION: • Use all specified fasteners, see General Notes

 SP-one of the 10d common stud nails is driven at a 45° angle through the stud into the plate.

CODES: BOCA, ICBO, SBCCI NER-432, NER-443, NER-499; SBCCI 9603A; City of LA RR 25318 (RSP4); Dade Co. FL 90-0623.04 (SP1, SP2, SP4, SP6, SP8).

44 - 454	Dimer	sions	Faste	ners		Allowable Uplift Loads		
Model No.	W	L	Stud'	Plate	Avg UII	-	/SP	
						(133)2	(160)	
SPI	3,15	5 % c	6-10d	4-10d	1950	585	585	
SP2	34	6%	6-10d	6-10d	3300	890	1065	
SP3	41/2	6%	6-10d	6-10d	3467	890	1065	
SP4	3%	734	6-10dx1½	_	2917	735	885	
SP5	4%	53%	6-10d	4-10d	1950	585	585	
SP6	5% ₆	734	6-10dx11/	-	2917	735	885	
SP8	7%	8%	6-10dx1);	_	2917	735	885	
SPH4	3%	84	10-10dx1%		3993	1240	1240	
OFN4	Y210	034	12-10dx1%	enalpse	4470	1360	1360	
SPH6	536	9,1	10-10dx1%	-	3993	1240	1240	
Sriio	J.916	27,54	12-10dx1x	-	4470	1360	1360	
SPHB	26	8%	10-10dx1%	****	3993	1240	1240	
arrio	Zyn	D39	12-10dx1/2	-	4470	1360	1360	
RSP4 (1)	2%	4%	4-8dx1%	4-8dx1%	1032	315	315	
RSP4 (2)	2%	4 ×	4-8dx1%	4-8dx1%	1445	450	450	

- 1 SP1, 2, 3 and SP5; drive one stud nail at an angle through the stud into the plate to achieve the table load (see illustration)
- 2 Allowable loads have been increased 33% and 60% for earthquake or wind loading, no further increase allowed, Reduce by 33% and 60% for normal loading. 3. RSP4-see Installation details (1) and (2) for reference.
- 4. RSP4 F2 is 280 lbs (installation 1) and 305 lbs (installation 2). F1 lbad is 210 lbs for both installations
- 5 Maximum tood for SPH in Southern Yallow Pine is 1490 lbs.
- 6. When cross-grain bending or cross-grain tension cannot be avoided, mechanical reinforcement

(1) Typical RSP4 Stud

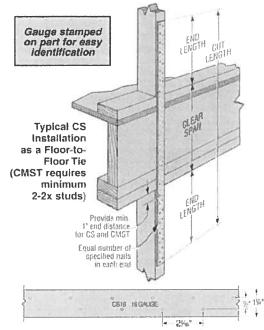
(see foomute 4)

CMSTC provides nail slots for easy installation and coined edges for safe handling

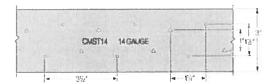
CS are continuous utility straps which can be cut to length on the job site Packaged in a fightweight (about 40 pounds) cartons.

FINISH Galvanized, Some products available in Z-MAX, contact factory, INSTALLATION: * Use all specified fasteners. See General Notes.

- Wood shrinkage after strap installation across horizontal wood members may cause strap to buckle outward.
- Refer to the applicable code for minimum nail penetration and minimum wood edge and end distances
- The table shows the maximum allowable loads and the nails required to obtain them. Fewer nails may be used: reduce the allowable load by the code lateral load for each nail subtracted from each end.
- CMST only-Use every other triangle hole if the wood tends to split. Use round and triangle holes for comparable MST loads, providing wood does not tend to split.


CODES, BOCA, ICBO, SBCCI NER-413; City of LA RR 25293 (CMST12 and CMST14), Dade Co. 99-8623.84 (CS18 only),

Model	Total L	End	Ga	Cut Length	Fastenors		owable on Loads	Nail Spacing	
No.	(Length of Roll)	L	de	our Longin	(Total)	(100) ¹	(133/160) ²	(In a Row)	
DARTITAD	4+14	45	12	clear span + 90"	100-16d	7230	9640	13/1"	
CMST12	40'	105 "	15	clear span + 210"	118-100	7230	9640	3.5"	
the second a	52%	34"	4.4	clear span + 68"	74-16d	5095	6795	13/7	
CMST14	DEF.	78"	14	clear span + 156"	88-10d	5095	6795	3.16"	
CHICIOIO	r st	25"	16	clear span + 50*	64-16d sinkers	3520	4690	13//"	
CMSTC16	54	49"	10	clear span + 98"	64-16d sinkers	3520	4690	3 *	
CS16	150"	14"	16	clear span + 30"	28-8d	1235	1650		
CS16-R	25'	11"	10	clear span + 24"	22-10d	1235	1650		
CS18S CS18 CS18-R	100° 200′ 25°	11" 9" 9"	18	clear span + 24" clear span + 20" clear span + 20"	22-8d 18-10d 18-10d	950	1270	2.%"	
C520	250"	9"	20	clear span + 20"	18-8d	750	1005		
CS20-R	25'	7*	20	clear span + 16"	14-10d	750	1005		
CS22	300°	7*	22	clear span + 16"	14-8d	620	825		
C\$22-R	25"	5,4"	22	clear span + 13"	12-10d	620	825		


Allowable loads 100% value is the maximum steel capacity and may not be increased for other load duratiens unless otherwise indicated.

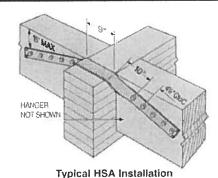
CARAGO C-2002 CO COSTANTA 2501 SIMPSON STRONG-TIE CC.

- 2 133% and 160% value may be used for earthquake or wind loading.
- 3. Use half of the nails at each member being connected to achieve the listed toads.

CS16 Hole Pattern (all other CS straps similar)

CMST14 Hole Pattern (CMST12 similar)

CMSTC16 Hole Pattern


SA/HSA STRAP CONNECTORS

A high value seismic tie for horizontal ties across intervening members FINISH. SA36-galvanized; all others-Simpson gray paint INSTALLATION • Use all specified tasteners, See General Notes.

May not be suitable for floor diaphragins which protrude above beams.
 CODES: BOCA, ICBO, SBCCI NER-413; City of L.A. RR 25119.

Model	Strap		Total F	aste	ners	Avq	Allowable Horizontal Loads				
No.	Section	L	M-M-	Be	oits	Üit	Nails	В	olts		
2.000			Nails	Qty	Dia		(133 & 160)	(133)	(160)		
SA36	12 ga x 2 Kg	36	22-16d	4	35	6767	1900	1605	1900		
HSA32	3 ga x 3	32	_	2	84	13600		1910	2290		
HSA41	3 ga x 3	41	-	4	94	17600	2014	3770	4520		
HSA50	3 ga x 3	50	_	6	Y.	21600	departe	5470	6400		
HSA59	3 ga x 3	59		8	3/4	30100	_	6940	8330		
HSA68	3 ga x 3 %	68		10	34	34200		8350	10020		

- Altowable loads have been increased 33% and 60% for earthquake or wind loading with no further increase allowed.
- Allowable loads assume a restrained member of 3½" min, thickness with bolts in single shear.
- 3. Bolt and nail values may not be combined
- Only SA36 can be field bent for other intermediate beam widths.

SACREIWIGH Typical SA Installation with Saddle Hanger

Haynes Residence Additions, Columbia County FL

Wind Load Analysis Requirements

(In Compliance with the 2004 Florida Building Code and Amendments)

Prepared By: Marty J. Humphries, P.E. # 51976 7932 240th St., O'Brien, FL 32071 (386)935-2406

Description of Additions:

Footprint: Right side single-story addition is 27'8" wide x 28'10" deep overall. Left side two-story addition is 41'6" wide by 44'6" deep overall. (see plan 0704 by Haygood Homes Inc.)

Walls: 2x4-16" O.C. with 7/16" OSB sheathing minimum with hardiboard lap siding and gypsum wall-board interior.

Roof Structure: Pre-engineered roof trusses and 7/16" OSB sheathing minimum

Roof Type: Primarily gable construction with small hips at ends (analyzed for 1'4" eave

overhang)

Foundation: footer with stemwall, with slab construction

Windload Data and Exposure:

Basic Wind Speed = 100 mph

Importance Factor = 1.0

Exposure category = B

Height and Exposure Adjustment Coefficient = 1.0

Residential Occupancy = Group R3

Analysis Method = FBC 1609.6 - Simplified Provisions for Low Rise Buildings (see tables 1609.6A, 1609.6B, 1609.6C and 1609.6E for wind pressure values)

Mean roof height = 26'

Roof Cross Slope = 12:12 primarily with 8:12 at ends

Eave Overhang= (Analyzed for 1'4" overhang)

Wall Height = $9'-1^{st}$ floor, $9'-2^{nd}$ floor

Shear Wall locations = exterior walls only(all walls 3' in length or greater

Bracing method for gable locations = framing from wall to roof diaphragm(see attached detail)

Nailing Pattern Requirements:

Wall sheathing: Shall be 7/16" Oriented Strand Board(OSB) minimum nailed with 8d

common nails 3" on center around edges(including around doors and windows) and 6" on center interior. Full depth blocking shall be installed

At horizontal joints in sheathing.

Roof sheathing: Shall be 7/16" OSB minimum nailed with 8d common nails 3" on center at

panel ends and eave overhang areas and 6" on center elsewhere.

Top wall plates: Nail with 1-16d common nail 12" O.C.(average)

Muity 3. My 9-23-07

Strapping and Anchor Requirements:

truss to top wall plate

Install one Simpson model H10 hurricane anchor at each truss. At first 4 trusses at gable ends install a Simpson model H5 hurricane anchor in addition to the H10 anchor..

wall strap tie requirements:

At bottom of 1st story wall and top of 2nd story wall - install one Simpson model SP4 at each side of each door and window 4' or less in width, for windows or doors over 4' but less than or equal to 6'6" install 2- SP4's. Mirror top and bottom SP4 straps with 1-CS18 strap connecting 1st floor wall studs to 2nd floor wall studs(strap to span floor truss system). At all other wall locations install 1 –SP4 at the top of the second story wall, the bottom of the first story wall and a CS18 strap connecting the 1st story wall studs to the 2nd story wall studs 32" on center. For single story areas install SP4 straps as indicated above but omit CS18 strap(spacing of straps may be increased to 4' on center) and each side of doors/windows shall be strapped as indicated above..

Lookouts:

Install one Simpson model H5 where lookouts connect to end gable truss(see

detail).

Gable end:

Install one LSTA18 - 4' on center connecting gable end truss to wall framing.

Gable End Bracing Requirements:

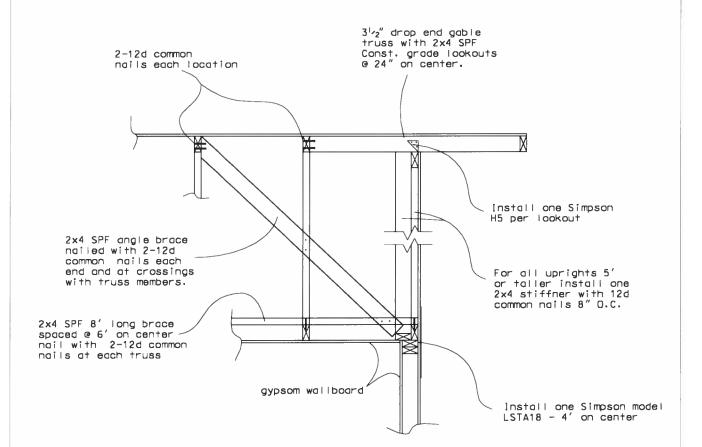
At each gable end install one 2x4 SPF 8' stud spaced 6' on center horizontal along top of bottom chord of trusses, nail with 2-12d nails at each truss including end truss. In addition, install a 2x4 brace extending from this stud at the gable end truss approx. 45 degrees to truss at roof sheathing, nail with 2-12d nails where it crosses truss members and at ends. Gable end trusses shall be built to receive sheathing with vertical members 2' on center. Vertical members of gable end truss greater than 5' in height shall be stiffened with one 2x4 SPF nailed with 12d nails 8" on center to back of vertical member. (See attached detail)

Foundation Requirements:

Stemwall:

For two-story areas minimum size of footer shall be 10" x 24" wide with 3-#5 rebar continuous and 1-#5 vertical rebar 48" on center. All cells shall be filled with concrete. ½" anchor bolts with 2" washers shall be installed 3' on center and 9" from corners each way and at each side of door openings. (3000 psi concrete min) For single-story areas minimum size of the footer shall be 10" x 20" wide with 2-#5 rebar continuous with all other requirements the same as above.

Header Requirements:


Windows & Doors:

Header shall be 2 - #2 SYP 2x12's with ½" plywood/OSB between for openings less than or equal to 7' 6".

Note: Equivalent capacity anchors may be substituted, installed in accordance with the manufacturers requirements.

Musty 3. Hyl

2 of 2

GABLE END BRACING DETAIL (N.T.S.)

Muty 5. My (-9-23-07

Haynes Additions Columbia County, FL DETAIL PREPARED BY:
MARTY J. HUMPHRIES P.E. # 51976
7932 240TH ST., O'BRIEN, FL 32071

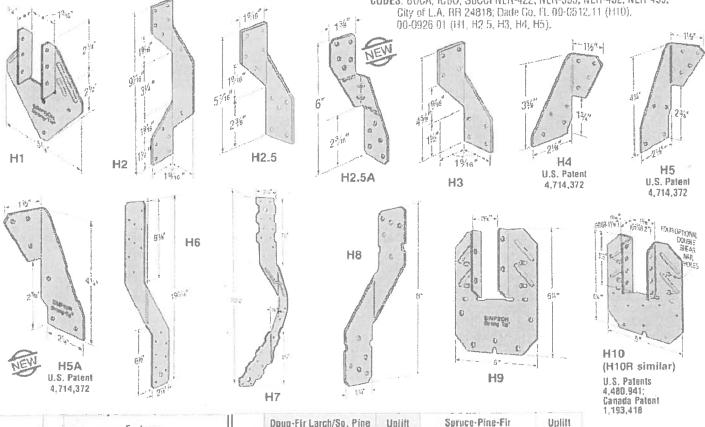
NEW! The H2.5A is symetrically designed for easy installation, with higher uplift loads to meet new code requirements. A placement mark allows easy installation on double top plates.

NEW! The H5A has an installed cost benefit, as if only requires 6 nails, to meet lower uplift requirements.

The Hiconnector series provides wind and seismic ties for trusses and rafters

Allowable loads for more than one direction for a single connection cannot be added together. A design load which can be divided into components in the directions given must be evaluated as inflows:

Design Shear/Allowable Shear + Dasign Tension/Allowable Tension < 1.0.


MATERIAL| See table

FINISH: Galvanized, H10-2, H11Z-Z-MAX, Other models available in stainless steel or Z-MAX; see Corrosion-Resistance, page 5

INSTALLATION: . Use all specified fasteners. See General Notes.

- . HI can be installed with flanges facing outwards (reverse of drawing number 1). When installed inside a wall, a birdsmouth cut is required
- . H2.5, H3, H4, H5 and H6 ties are shipped in equal quantities of rights and lefts.
- . Bend the H7 over the top of the truss. Install a minimum of four 8d nails into the truss, including two into the truss side.
- · Hurricane Ties do not replace solid blocking.

CODES: BOCA, IGBO, SBCCI NER-422, NER-393, NER-432; NER-499; Gity of L.A. RR 24818; Dade Go., FL 00-0512, 11 (H10).

A personal and a second			Fasteners		 Uplift	Doug	Fir Lai	ch/So Load	. Pine	Uplift Load with		Spruce Howabl	Pine-F e Load	ir Is ^{1,2}	Uplift Load with	1, 130, 410
Model No.	Ga	To Rafters/	To	To	Avg Ult	Up	lift		leral 1/160)	8dx1 / ₇ Nails (133 &	Up	litt		eral /160)	8dx1); Nails (133 &	100
	1	Truss	Plates	Sluds		(133)	(160)	F ₁	F ₂	160)	(133)	(160)	Fi	F2	150)	3. 6 6
and	18	6-8dx1%	4-8(1		1958	490	585	485	165	455	400	400	415	140	370	
H2	18	5-81		5-80	1040	335	335	-		335	230	530	-	-	230	Main
H2 5	18	5-80	5-8d		1300	415	415	150	150	415	365	365	130	130	365	O Design
H2 5A	18	5-84	5-8d		1793	600	600	110	110	480	520	535	110	110	480	
H3	18	4-81	4-8d		1433	455	455	125	160	415	320	320	105	140	290	The same of the same
H4	20	4-81	4-8d	-	1144	360	360	165	160	360	235	235	14()	135	235	H10-2
H5	18	4-8d	4-8d		1485	455	465	115	200	455	265	265	100	170	265	
H5A	18	3-80	3-8d	by dynamics.	1500	350	420	115	180	290	245	245	100	120	170	196
H6	116	, , , , , , , , , , , , , , , , , , , ,	8-8d	8-8d	3983	915	950	650	±	-	785	820	560	dife	ļ.,	
H7	16	4-80	2-8d	8-84	2991	930	985	400			800	845	345			3.
НВ	18	5-10dx1//	5-10dx15		2422	620	745	~			530	565	~~~~	ARRAM.		
нэкт	18	4-\$D\$;/x1//	5-SDS/4x1,4	Address 1	2812	875	875	680	125		755	755	680	125		The same
HIO	18	8-8dx1 ½	8-8dx1%		3135	905	990	585	525	-	780	850	505	450		Januar .
HIOR	18	8-8dx1%	8-8dx1%	Character .	3135	905	990	585	525	terms.	780	850	505	450		1 0/
H10-2	18	6-10d	6-10d	- Annual - A	2447	760	760	455	395		655	655	390	340	toursees:	714
H117	18	6-16dx2, <u>x</u>	6-16dx2½		5097	830	830	525	760		715	715	450	655	- Andreadon	H11Z

- 1. Loads have been increased 33% and 60% for earthquake or wind loading with no further increase allowed
- 2. Allowable toads are for one anghor. A minimum rafter thickness of 215' must be used when framing arichors are installed on each side of the joist and on the same side of the plate
- 3. Allowable uplift load for stud to bottom plate installation is 400 lbs (HZ 5), 390 lbs (HZ 5A). 360 lbs (H4) and 310 lbs (H8).
- 4. The H9KT is sold in 20 piece packs with screws
- 5. When cross-grain bending or cross-grain tension cannot be avoided, mechanical reinforcement to resist such forces should be considered.
- 6. Humicane Ties are shown installed on the outside of the wall for clarity Installation on the inside of the wall is acceptable. For a Continuous Load Path connections must be on same side of the wall

愈

RPS/ST/FHA/PS/HST/LSTA/LSTI/MST/MSTA/MSTC/MSTI

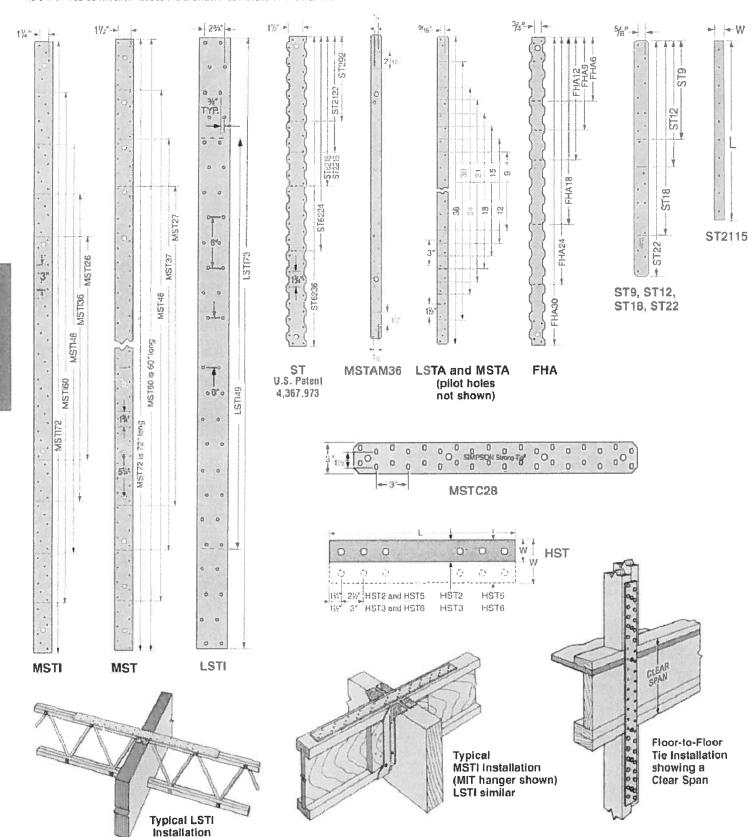
SIMPSON Strong Tie

The MSTC series has countersunk half slots for a lower nailing profile. Coined edges ensure safer handling. The RPS meets UBC and City of Los Angeles code requirements for notching plates where plumbing, heating or other pipes are placed in partitions.

Install Strap Ties where plates or soles are cut, at wall intersections, and as ridge ties. LSTA and MSTA straps are engineered for use on 1½" members. The 3" center-to-center nail spacing reduces the possibility of splitting. For the MST, this may be a problem on lumber narrower than 3½", either fill every nail hole with 10dx1½" nails or fill every other nail hole with 16d commons. Reduce the allowable load based on the size and

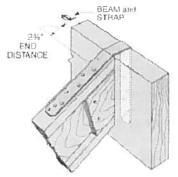
quantity of fasteners used. The LSTI light strap fies are suitable where gun-nailing is necessary through diaphragm decking and wood chord open web trusses.

FINISH, HST-Simpson gray paint; PS-HDG; all others-galvanized. Some products are available in stainless steel or Z-MAX; see Corrosion-Resistance, page 5.

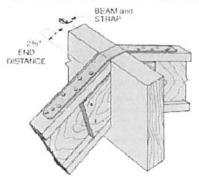

INSTALLATION: Use all specified fasteners. See General Notes

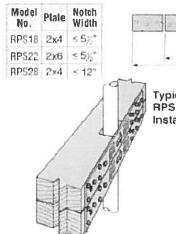
OPTIONS: Special sizes can be made to order. See also HCST.

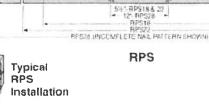
CODES: BOCA, ICBO, SBCCI NER-413, NER-443; ICBO 4935, 5357;


Didde County, FL. 00-1023.05 (MSTA30, MSTA36, ST12, ST18, ST22):

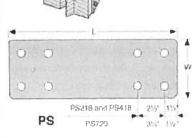
City of L.A. RR 25119, RR 25149, RR 25281.




Madel		Dime	nsions	Fasteners (Total)	1	le Tensi	on Loads
No.	Ga	W	L	Nails	Floor (100)	(133)	(160)
RPS18		1,72	18%	12-16d	810	1080	1295
RPS22	16	1,6	22%	16-10d	905	1205	1445
RPS28		1)5	28%	12-16d	810	1080	1295
LSTA9		1%	9	8-10d	450	605	725
LSTA12		1%	12	10-10d	565	755	905
LSTA15		15	15	12-10d	680	905	1085
LSTA18		1%	18	14-10d	790	1055	1265
LSTA21	-00	1)%	21	16-10d	905	1205	1295
LSTA24	20	1,74	24	18-10d	1015	1295	1295
ST292		2%	9%	12-16d	790	1055	1130
ST2122		2%	1213/10	16-16d	1070	1425	1505
ST2115		74	16%	10-16d	450	600	600
S12215		21/0	16%	20-16d	1270	1695	1695
LSTA30		1%	30	22-10d	1255	1670	1715
LSTA36		1%	36	26-10d	1480	1715	1715
LSTI49		334	49	32-10dx1%	1455	1940	2330
LSTI73		3%	73	48-10dx1%	2185	2910	3495
MSTA9		1/4	9	8-10d	455	610	730
MSTA12	18	1)/4	12	10-10d	570	760	910
MSTA15		135	15	12-100	685	910	1095
MSTA18		1,4	18	14-10d	800	1065	1275
MSTA21		1%	21	16-10d	910	1215	1460
MSTA24		133	24	18-100	1025	1370	1640
MSTA30		1%	30	22-10d	1265	1685	2025
MSTA36		11%	36	26-10d	1495	1995	2135
ST6215		25	16%	The state of the s	1330	1775	2130
ST6224		2 Ke	23%	28-16d	1890	2520	2630
ST9		134	9	8-1Gd	530	705	850
ST12	16	1%	11%	10-16d	665	885	1065
ST18		132	17%	14-16d	900	1200	1200
ST22		11%	21%	18-16d	1025	1370	1370
MSTC28		3	28%	36-16d sinkers	2070	2760	3310
MSTC40		3	40%	52-16d sinkers	2990	3985	4740
MSTC52		3	52%	62-16d sinkers	3555	4740	4740
MSTC66		3	65%		4390	5855	5855
MSTC78	14	3	77%	76-16d sinkers	4390	5855	5855
ST6236		2 Xa	33%		2575	3430	3430
FHA6	7	130	634	8-16d	550	735	885
FHA9		1748	9	8-16d	550	735	885
FHA12		17/0	\$100 YARABININ	8-16d	550	735	885
FMA18		1740	17%	8-16d	550	735	885
FHA24		1346	23%	8-16d	550	735	885
FHA30	12	1%	30	8-16d	550	735	885
MSTI26		24	26	26-10dx15	1130	1510	1810
MSTI36		21/6	36	36-10dx13	1565	2090	2505
MSTI48		210	48	48-10dx15	2135	2850	3420
MSTI60		2/6	60	50-10dx1/5	2760	3680	4415
MSTI72		2)/6	72	72-10dx1/5	3310	4415	4725



Typical LSTA Installation (hanger not shown)




Typical LSTA Installation (hanger not shown)

Floor-to-Floor Clear Span Table

Model	Ga	Dimei	nsions	80	ilts
No.	Ga	W	L	Qty	Dia
PS218 ⁸		2	18	4	21
PS418 ^t	7	4	18	4	94
P5720		6%	20	8	15

Model	Clear	Fasteners		vable n Load
No.	Span	(Total)	(133)	(160)
MCTORO	18	12-16d sinker	920	1105
MSTC28	16	16-16d sinker	1225	1470
	18	28-16d sinker	2145	2575
MSTC40	16	36-16d sinker	2455	2945
	18	44-16d sinker	3375	4050
MSTC52	16	48-16d sinker	3680	4415
	18	64-16d sinker	5035	5855
MSTC66	16	68-16d sinker	5350	5855
	18	80-16d sinker	5855	5855
MSTC78	16	80-16d sinker	5855	5855
	18	20-16d	1905	2285
MST37	16	22-16d	2100	2515
MST48	18	32-16d	3135	3765
M2140	16	34-16d	3330	4000
MST60	18	46-16d	4785	5740
M2100	16	48-16d	4990	5800
110770	18	56-16d	5800	5800
MST72	16	56-16d	5800	5800
MOTION	18	14-10dx1%	810	975
MSTI36	16	16-10dx132	930	1115
A & C T 4 C	18	26-10dx11/2	1545	1855
MSTI48	16	28-10dx11/4	1660	1990
*******	18	38-10dx1%	2330	2800
MSTI60	16	40-10dx1%	2455	2945
NATION	18	50-10dx11/2	3065	3680
MST172	16	52-10dx1%	3190	3830

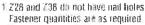
		Dime	nsions	Fastene	rs (To	otal)		All	owable 1	ension L	.oads		
Model	Ga				Bo	ils		Nails			Bolts ⁵		
No.	ua	W	L	Nails	Qty	Dia	Floor (100)	(133)	(160)	Floor (100)	(133)	(160)	
MST27		2×0	27	30-16d	4	1/2	2070	2760	2790	1295	1725	2070	
MST37	12	216	37%	42-16d	6	<i>Y</i> ₂	2860	3815	3815	1825	2435	2920	
MST48		2×4	48	46-16d	8	У,	3345	4460	4460	2225	2970	3560	
MST60	45	2%	60	56-16d	10	3/2	4350	5800	5800	2670	3565	4275	
MST72	10	2%	72	56-16d	10	1/2	4350	5800	5800	2670	3565	4275	
HST2	_	21/2	21%	-	6	34		===	-	3130	4175	5005	
HST5	7	5	21%	_	12	14		-		6385	8510	10210	
HST3		3	25%	_	6	3/4			_	4645	6195	7435	
HSTG	3	6	25%	-	12	31	-	-	-	9350	12465	14955	

- 1. Loads have been increased 33% and 60% for earthquake or wind loading with no further increase allowed. Floor loads may not be increased for other load durations.
- 2. (Odx11// mails may be substituted where 16d sinkers are specified at 0.80 of the table loads.
- 3 10d commons may be substituted where 16d sinkers are specified at 100% of table loads.
- 4.16d sinkers (9 gauge x 3½") or 10d commons may be substituted where 16d commons are specified at 0.84 of the table loads.
- 5. Allowable bolt loads are based on parallel-to-grain loading and these minimum member thicknesses: MST-21/2"; HST2 and HST5-4"; HST3 and HST6-41/6"
- 6 PS strap design loads must be determined by the building designer for each installation. Bolts are installed both perpendicular and parallel-to-grain.
- 7. Use half of the nails at each member being connected to achieve the listed loads.

Z2 clips secure 2x4 flat blocking between joists or trusses to support sheathing

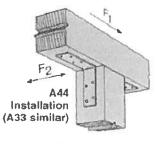
MATERIAL Z clips-see table, A21 and A23-18 ga.; all other A angles-12 ga.

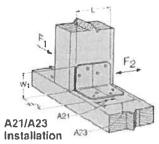
FINISH: Galvanized

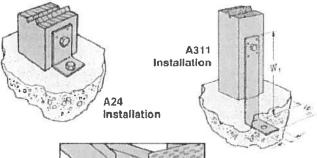

INSTALLATION: • Use all specified fasteners. See General Notes.

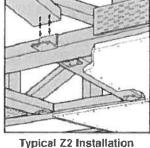
· Z clips do not provide lateral stability. Do not walk on stiffeners or apply load until diaphragm is installed and nailed to stilleners.

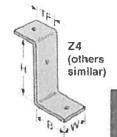
CODES: BOCA, ICBO, SBCCI NER-421 (except A33, A44); City of L.A. RR 25076 (except A33, A44); Dade Co. FL 99-0623.04 (A21 and A23).


	Di	mensi	ans	1	Faste	eners		Ava	Allow	able L	oads'	DF/SP
Model No.	***	141	194.5	1	Base		Post		(1)	33)	(160)	
tan.	W:	W ₂	L	Bolls	Nails	Bolls	Nails	F ₂	ř,	F ₂	F ₁ .	F2
A21	2	1,5	136]	2-10dx1//		2-10dx1%	540	245	175	290	175
A23	2	1,/2	2%	1 - 1	4-10dx1/2	_	4-10dx1%	1767	485	485	585	565
A33	3	3	1%		4-10d		4-10d	2635	625	330	750	330
A44	4%	4%	1,15	1-	4-10d	-	4-10d	2490	625	295	750	295
A66	5%	5%	136	2-1/2		2-1/6	-	N/A	N/A	N/A	N/A	N/A
A88	В	8	2	3-36	-	3-%	-	N/A	N/A	N/A	N/A	N/A
A24	31	2	21/2	1-%		1-1/2	2-10d	N/A	N/A	N/A	N/A	N/A
A311	11	3%	2	1-1/2		1-5	4-10d	N/A	N/A	N/A	N/A	N/A

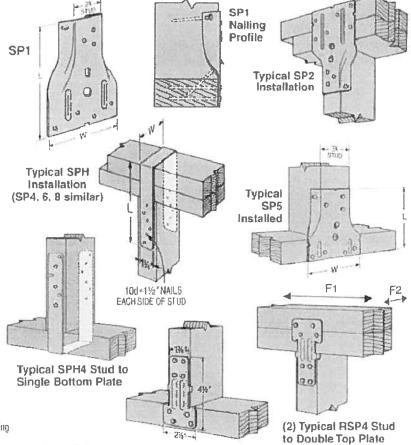

Model			Dimer	stons		Fasteners'	Aun	Allowable ³
No.	Ga	W	Н	8	ŤF	(Total)	1507 1450	Download (125)
22	20	2%	1%	1%	13/8	4-10dx1%	1507	465
74	12	13%	3)	2%	134	2-16d	1450	465
26	12	132	5%	2	13%	2-16d	1517	485
Z28	28	2%	175	1%	196	10dx1尺 ³	-	
Z38	28	2%	24	13%	15%	10dx1%	_	_
Z44	12	2%	312	2	134	4-16d	2800	865




2. Allowable loads have been increased 25% for roof loading (Z clips), 33% and 60% for earthquake or wind loading (A angles); no further increase allowed; reduce for other load durations according to the code.


3. Z4 and Z6 loads apply with a nall into the top and a nail into the seat.

SP/SPH/RSP4


The RSP4 is a reversible stud plate tie with locating tabs, which aid placement on double top plates or a single bottom plate. MATERIAL: SPH-18 gauge, all others-20 gauge FINISH Galvanized INSTALLATION: • Use all specified fasteners; see General Notes.

 SP-one of the 10d common stud nails is driven at a 45° angle through the stud into the plate.

CODES: BOCA, ICBO, SBCCI NER-432, NER-443, NER-499, SBCCI 9603A; Gily of LA RR 25318 (RSP4); Dade Co. FL 99-0623.04 (SP1, SP2, SP4, SP6, SP8)

Rendel	Dimer	sions	Faste	ners		Allowable bead HillqU		
Model No.	W	1	Stud*	Plate	Avg	DF	/SP	
THIS.	W	L	Siuu	FIAIQ		(133)2	(160)	
SPI	3.4	536	6-10d	4-10d	1950	585	585	
SP2	3%	6%	6-10d	6-10d	3300	890	1065	
SP3	dy	6%	6-10d	6-10d	3467	890	1065	
SP4	3%	734	6-10dx1/	-	2917	735	885	
SP5	4%	51/10	6-10d	4-10d	1950	585	585	
SP6	5)/ ₆	71/4	6-10dx18	-	2917	735	885	
SP8	7%	85%	6-10dx1%		2917	735	885	
Critia	3xe	8%	10-10dx1/5	_	3993	1240	1240	
SPH4	One	693	12-10dx15		4470	1360	1360	
SPH6	5%	91	10-10dx1½	-	3993	1240	1240	
Srmu	J716	214	12-10dx1%	-	4470	1360	1360	
SPH8	7%	8%	10-10dx1%	district.	3993	1240	1240	
SPTIO	766	Uya	12-10dx1/2	-	4470	1360	1360	
RSP4 (1)	2%	43%	4-8dx1%	4-8dx1/2	1032	315	315	
RSP4 (2)	2%	4%	4-8dx1%	4-8dx1%	1445	450	450	

- 1 SP1, 2, 3 and SP5; drive one studinal at an angle through the stud into the plate to achieve the table load (see illustration)
- 2 Allowable loads have been increased 33% and 60% for earthquake or wind feading, no further increase allowed. Reduce by 33% and 60% for normal loading 3 RSP4-see Installation details (1) and (2) for reference
- 4. RSP4 F2 is 280 lbs (installation 1) and 305 lbs (installation 2). F1 foad is 210 lbs for both installations
- 5. Maximum load for SPH in Southern Yallow Pine is 1490 lbs.
- 6. When cross-grain bending or cross-grain tension cannot be avoided, mechanical reinforcement

(1) Typical RSP4 Stud

to Single Bottom Plate

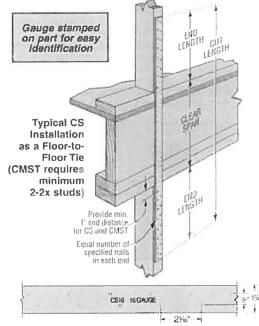
(see footrible 4)

CMSTC provides nail slots for easy installation and coined edges for safe handling

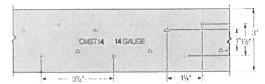
CS are continuous utility straps which can be cut to length on the job site Packaged in a lightweight (about 40 pounds) cartons.

FINISH Galvanized. Some products available in Z-MAX, contact factory.

- INSTALLATION . Use all specified fasteners. See General Notes.
 - · Wood shrinkage after strap installation across horizontal wood members may cause strap to buckle outward.
 - · Refer to the applicable code for minimum nail penetration and minimum wood edge and end distances
 - The table shows the maximum allowable loads and the nails required to obtain. them. Fewer nails may be used; reduce the allowable load by the code lateral load for each nail subtracted from each ond.
 - · CMST only-Use every other triangle hole if the wood tends to split. Use round and triangle holes for comparable MST loads, providing wood does not tend to split


CODES BOCA, ICBO, SBCCI NER-413; City of LA RR 25293 (CMST12 and CMST14). Dade Co. 99-0623.04 (CS18 only).

Model	Total	End	Ga	Cut Length	Fasteners		owable on Loads	Nail Spacing	
No.	(Length of Roll)	L	ua	i ilkititi i		(100) ⁴	(133/160) ²	(In a Row)	
CARDY + D	401	45"		clear span + 90"	100-164	7230	9640	132"	
CMST12	40'	105	12	clear span + 210°	118-100	7230	9640	3.5	
	E0324	34"		.clear span + 68*	74-16d	5095	6795	134"	
CMST14	52X,	78"	14	clear span + 156"	88-10d	5095	6795	3.8"	
Chiciaic	r 41	25 "	16	clear span + 50"	64-16d sinkers	3520	4690	136"	
CMSTC15	54'	49"	10	clear span + 98"	64-16d sinkers	3520	4690	3 "	
CS16	150'	14"	16	clear span + 30"	28-8d	1235	1650		
CS16-R	25'	11"	10	clear span + 24"	22-10d	1235	1650		
CS18S CS18 CS18-R	100° 200° 25°	11" 9" 9"	18	clear span + 24° clear span + 20° clear span + 20°	22 #d 18-10d 18-10d	950	1270	2%"	
C520	250'	9"	20	clear span + 20"	18-8d	750	1005		
CS20-R	25°	7 10	1 20	clear span + 16"	14-10d	750	1005		
CS22	300	7"	22	clear span + 16"	14-8d	620	825		
CS22-R	25'	5)/"	22	clear span + 13"	12-10d	620	825		


1 Allowable loads 100% value is the maximum steel capacity and may not be increased for other load durations unless otherwise indicated

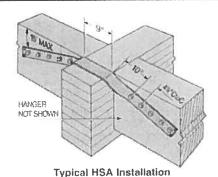
JAINES C-2002 © COPYMBIN 2001 SIMPSON STRONG-TIE CO.

- 2 133% and 160% value may be used for earthquake or wind loading
- 3 Use half of the nails at each member being connected to achieve the listed loads.

CS16 Hole Pattern (all other CS straps similar)

CMST14 Hole Pattern (CMST12 similar)

CMSTC16 Hole Pattern


SA/HSA STRAP CONNECTORS

A high value seismic tie for horizontal ties across intervening members FINISH, SA36-galvanized; all others-Simpson gray paint INSTALLATION: • Use all specified fasteners, See General Notes

 May ript be suitable for floor diaphragms which protrude above beams. CODES: BOCA, ICBO, SBCCI NER-413: City of L.A. RR 25119.

Model	Strap		Total F	aste	ners	Avq		owable ntal Loa	ds
No.	Section	L	Matte	Bo	Bolts Uit Nails		В	olts	
			Nails	Qly	Dia		(133 & 160)	(133)	(160)
SA36	12 ga x 2 X ₀	36	22-16d	4	馬	6767	1900	1605	1900
HSA32	3 ga x 3	32	-	2	郭	13600	_	1910	2290
HSA41	3 ga x 3	41	-	4	34	17600		3770	4520
HSA50	3 ga x 3	50	_	6	3/	21600	-	5470	6400
HSA59	3 ga x 3	59		8	34	30100		6940	8330
HSA68	3 ga x 3 %	68		10	3/4	34200	A. s. s.	8350	10020

- L. Allowable loads have been increased 33% and 60% for earthquake or wind loading with no further increase allowed.
- 2. Allowable loads assume a restrained member of 31/2" min, thickness with bolts in single shear.
- 3 Bolt and nail values may not be combined
- 4. Only SA36 can be field bent for other intermediate beam widths

CATAN F HARRETT Typical SA Installation with Saddle Hanger

Project Name:

Address:

City, State:

Builder: Top Flight
Permitting Office: Countel®

Permit Number:

FLORIDA ENERGY EFFICIENCY CODE FOR BUILDING CONSTRUCTION

Florida Department of Community Affairs
Residential Whole Building Performance Method A

710053TopFlightConstruction

519 NW Crawford Court,

White Springs, FL

Owner: Haynes Co Climate Zone: North	urtis & Dana Addition	Jurisdiction Number: 2	21 000
New construction or existing	Addition	12. Cooling systems	
2. Single family or multi-family	Single family	a. Central Unit	Cap: 22.0 kBtu/hr
3. Number of units, if multi-family	1		SEER: 13.00
4. Number of Bedrooms	3	b. Central Unit	Cap: 22.0 kBtu/hr
5. Is this a worst case?	Yes		SEER: 13.00
6. Conditioned floor area (ft²)	3173.84 ft²	c. N/A	
7. Glass type 1 and area: (Label reqd.	by 13-104.4.5 if not default)		=
a. U-factor:	Description Area	13. Heating systems	
(or Single or Double DEFAULT) b. SHGC:		a. Electric Heat Pump	Cap: 22.0 kBtu/hr HSPF: 7.90
(or Clear or Tint DEFAULT) 8. Floor types	7b. (Clear) 246.1 ft ²	b. Electric Heat Pump	Cap: 22.0 kBtu/hr HSPF: 7.90
 a. Slab-On-Grade Edge Insulation 	R=0.0, 177.0(p) ft	c. N/A	
b. Slab-On-Grade Edge Insulation	R=0.0, 48.0(p) ft		
c. N/A		14. Hot water systems	
9. Wall types		a. Electric Resistance	Cap: 40.0 gallons
a. Frame, Wood, Exterior	R=13.0, 2949.9 ft ²		EF: 0.93
b. Frame, Wood, Exterior	R=13.0, 402.0 ft ²	b. N/A	
c. N/A	_		_
d. N/A	_	c. Conservation credits	_
e. N/A	-	(HR-Heat recovery, Solar	
Ceiling types		DHP-Dedicated heat pump)	
a. Under Attic	R=30.0, 1521.9 ft ²	15. HVAC credits	
b. Under Attic	R=30.0, 450.0 ft ²	(CF-Ceiling fan, CV-Cross ventilation,	
c. N/A	_	HF-Whole house fan,	
11. Ducts	_	PT-Programmable Thermostat,	
a. Sup: Unc. Ret: Unc. AH: Interior	Sup. R=6.0, 178.0 ft	MZ-C-Multizone cooling,	
b. Sup: Unc. Ret: Unc. AH: Interior	Sup. R=6.0, 50.0 ft	MZ-H-Multizone heating)	
	===		
	Total as-built p	oints: 31305	

Total base points: 42053

I hereby certify that the plans and specifications covered by this calculation are in compliance with the Florida Energy Code

Glass/Floor Area: 0.08

PREPARED BY

I hereby certify that this building, as designed, is in compliance with the Florida Energy Code.

OWNER/AGENT: ______

Review of the plans and specifications covered by this calculation indicates compliance with the Florida Energy Code. Before construction is completed this building will be inspected for compliance with Section 553.908 Florida Statutes.

PASS

BUILDING OFFICIAL: ____

DATE:

SUMMER CALCULATIONS

Residential Whole Building Performance Method A - Details

BASE				AS-	BUI	LT				_
GLASS TYPES .18 X Conditioned X BSPM = Floor Area	Points	Type/SC (erhang Len	Hgt	Area X	SP	мх	SOF	= Points
.18 3173.8 20.04	11448.7	Double, Clear	N	1.5	5.5	10.0	19.:	20	0.93	178.2
		Double, Clear	W	1.5	5.5	15.0	38.	52	0.90	518.3
		Double, Clear	N	1.5	0.0	30.0	19.	20	0.59	341.6
		Double, Clear	N	1.5	7.3	11.1	19.	20	0.96	204.5
		Double, Clear	s	1.5	0.0	15.0	35.8	87	0.43	232.4
		Double, Clear	s	1.5	0.0	45.0	35.8	87	0.43	697.1
		Double, Clear	s	1.5	5.5	10.0	35.8	87	0.83	298.5
		Double, Clear	sw	1.5	5.5	10.0	40.	16	0.86	346.6
		Double, Clear	NW	1.5	5.5	10.0	25.9		0.91	236.8
		Double, Clear	N	1.5	5.5	45.0	19.		0.93	802.0
		Double, Clear	s	1.5	5.5	15.0	35.8		0.83	447.7
		Double, Clear	w	1.5	0.0	15.0	38.		0.37	216.5
		Double, Clear	S	1.5	5.5	15.0	35.8		0.83	447.7
		As-Built Total:				246.1				4967.9
WALL TYPES Area X BSPM	1 = Points	Туре		R-\	/alue	Area	X	SPN	1 =	Points
Adjacent 0.0 0.00	0.0	Frame, Wood, Exterior			13.0	2949.9		1.50		4424.8
Exterior 3351.9 1.70	5698.2	Frame, Wood, Exterior			13.0	402.0		1.50		603.0
Base Total: 3351.9	5698.2	As-Built Total:				3351.9				5027.8
DOOR TYPES Area X BSPM	l = Points	Туре				Area	Х	SPN	1 =	Points
Adjacent 0.0 0.00	0.0	Exterior Insulated				20.0		4.10		82.0
Exterior 20.0 4.10	82.0									
Base Total: 20.0	82.0	As-Built Total:				20.0				82.0
CEILING TYPES Area X BSPM	I = Points	Туре	F	R-Valu	e A	Area X S	SPM	x sc	:M =	Points
Under Attic 1971.9 1.73	3411.4	Under Attic			30.0	1521.9	1.73	X 1.00		2632.9
	3,,,,,	Under Attic			30.0			X 1.00		778.5
Base Total: 1971.9	3411.4	As-Built Total:		<u> </u>	•	1971.9	/			3411.4
FLOOR TYPES Area X BSPM	I = Points	Туре		R-\	/alue	Area	Х	SPN	l =	Points
Slab 225.0(p) -37.0	-8325.0	Slab-On-Grade Edge Insulation	1		0.0	177.0(p		-41.20		-7292.4
Raised 0.0 0.00	0.0	Slab-On-Grade Edge Insulation			0.0	48.0(p)		-41.20		-1977.6
Base Total:	-8325.0	As-Built Tota <u>l:</u>				225.0				-9270.0

SUMMER CALCULATIONS

Residential Whole Building Performance Method A - Details

BASE		AS-BUILT
INFILTRATION Area X BSPM =	Points	Area X SPM = Points
3173.8 10.21	32404.9	3173.8 10.21 32404.9
Summer Base Points: 44720.	.2	Summer As-Built Points: 36624.1
•	oling pints	Total X Cap X Duct X System X Credit = Cooling Component Ratio Multiplier Multiplier Multiplier Points (System - Points) (DM x DSM x AHU)
		(sys 1: Central Unit 22000 btuh ,SEER/EFF(13.0) Ducts:Unc(S),Unc(R),Int(AH),R6.0(INS) 36624
44720.2 0.4266 196	077.7	36624 0.50 (1.09 x 1.147 x 0.91) 0.263 1.000 5469.7 36624.1 1.00 1.138 0.263 1.000 10939.3

WINTER CALCULATIONS

Residential Whole Building Performance Method A - Details

	BASE					AS-	BU	ILT				
GLASS TYPES .18 X Condition Floor Are		WPM =	Points	Type/SC C	Ove Ornt	rhang Len	Hgt	Area X	WF	PM X	Wo	= Point
.18 3173.8	3	12.74	7278.3	Double, Clear	N	1.5	5.5	10.0	24.	58	1.00	246.5
				Double, Clear	W	1.5	5.5	15.0	20.		1.03	319.7
				Double, Clear	N	1.5	0.0	30.0	24.		1.03	757.5
				Double, Clear	N	1.5	7.3	11.1	24.		1.00	273.2
				Double, Clear	s	1.5	0.0	15.0	13.		3.66	730.0
				Double, Clear	s	1.5	0.0	45.0	13.		3,66	2190.1
				Double, Clear	s	1.5	5.5	10.0	13.		1.15	152.5
				· ·	sw	1.5	5.5	10.0	16.		1.07	179.5
					NW	1.5	5.5	10.0	24.		1.00	244.0
				Double, Clear	N	1.5	5.5	45.0	24.		1.00	1109.3
				Double, Clear	S	1.5	5.5	15.0	13.		1.15	228.8
				Double, Clear	w	1.5	0.0	15.0	20.		1.13	384.8
				Double, Clear	S	1.5	5.5	15.0	13.		1.15	228.8
				Double, Cleal	3	1.5	5.5	15.0	13.	30	1.15	220.0
			••	As-Built Total:				246.1		••		7044.6
WALL TYPES	Area X	BWPM	= Points	Туре		R-V	/alue	Area	X	WPN	1 =	Points
Adjacent	0.0	0.00	0.0	Frame, Wood, Exterior			13.0	2949.9		3.40		10029.7
Exterior	3351.9	3.70	12402.0	Frame, Wood, Exterior			13.0	402.0		3.40		1366.8
LACTION	0.1000	0.70	12-102.0	Traine, Wood, Exterior			10.0	402.0		0.40		1000.0
Base Total:	3351.9		12402.0	As-Built Total:				3351.9				11396.5
DOOR TYPES	Area X	BWPM	= Points	Туре				Area	Х	WPN	1 =	Points
Adjacent	0.0	0.00	0.0	Exterior Insulated				20.0		8.40		168.0
Exterior	20.0	8.40	168.0	Exterior moduled				20.0		0.40		100.0
		00	100.0									
Base Total:	20.0		168.0	As-Built Total:				20.0				168.0
CEILING TYPES	Area X	BWPM	= Points	Type	R-	Value	Ar	ea X W	PM:	x wc	CM =	Points
Under Attic	1971.9	2.05	4042.4	Under Attic			30.0	1521.9	2.05	X 1.00		3119.9
		2.00	13-121	Under Attic			30.0			X 1.00		922.5
Base Total:	1971.9		4042.4	As-Built Total:		`		1971.9				4042.4
FLOOR TYPES		BWPM		Type		R-V	′alue	Area	Х	WPN	1 =	Points
Ol-la -	05.0(.)		0000 5				0.0					
	25.0(p)	8.9	2002.5	Slab-On-Grade Edge Insulation				177.0(p		18.80		3327.6
Raised	0.0	0.00	0.0	Slab-On-Grade Edge Insulation			0.0	48.0(p)		18.80		902.4.
Base Total:			2002.5	As-Built Total:				225.0				4230.0

WINTER CALCULATIONS

Residential Whole Building Performance Method A - Details

BASE	AS-BUILT				
INFILTRATION Area X BWPM = Point	Area X WPM = Points				
3173.8 -0.59 -1872.	3173.8 -0.59 -1872.6				
Winter Base Points: 24020.7	Winter As-Built Points: 25009.0				
Total Winter X System = Heating Points Multiplier Points	Total X Cap X Duct X System X Credit = Heating Component Ratio Multiplier Multiplier Multiplier Points (System - Points) (DM x DSM x AHU)				
	(sys 1: Electric Heat Pump 22000 btuh ,EFF(7.9) Ducts:Unc(S),Unc(R),Int(AH),R6.0 25009.0 0.500 (1.069 x 1.169 x 0.93) 0.432 1.000 6272.9 (sys 2: Electric Heat Pump 22000 btuh ,EFF(7.9) Ducts:Unc(S),Unc(R),Int(AH),R6.0 25009.0 0.500 (1.069 x 1.169 x 0.93) 0.432 1.000 6272.9				
24020.7 0.6274 15070.6					

WATER HEATING & CODE COMPLIANCE STATUS

Residential Whole Building Performance Method A - Details

ADDRESS: 519 NW Crawford Court,, White Springs, FL, PERMIT #:

BASE			AS-BUILT							
WATER HEA Number of Bedrooms	TING X	Multiplier	= Total	Tank Volume	EF	Number of Bedrooms	X Tank X Ratio	Multiplier X	Credit Multipli	
3		2635.00	7905.0	40.0	0.93	3	1.00	2606.67	1.00	7820.0
				As-Built Total:			7820.0			

CODE COMPLIANCE STATUS						
BASE	AS-BUILT					
Cooling + Heating + Hot Water = Total Points Points Points Points	Cooling + Heating + Hot Water = Total Points Points Points Points					
19078 15071 7905 4205	10939 12546 7820 31305					

PASS

Code Compliance Checklist

Residential Whole Building Performance Method A - Details

ADDRESS: 519 NW Crawford Court,, White Springs, FL,

PERMIT #:

6A-21 INFILTRATION REDUCTION COMPLIANCE CHECKLIST

COMPONENTS	SECTION	REQUIREMENTS FOR EACH PRACTICE	CHECK
Exterior Windows & Doors	606.1.ABC.1.1	Maximum:.3 cfm/sq.ft. window area; .5 cfm/sq.ft. door area.	
Exterior & Adjacent Walls	606.1.ABC.1.2.1	ABC.1.2.1 Caulk, gasket, weatherstrip or seal between: windows/doors & frames, surrounding w	
		foundation & wall sole or sill plate; joints between exterior wall panels at corners; utility	
		penetrations; between wall panels & top/bottom plates; between walls and floor.	
		EXCEPTION: Frame walls where a continuous infiltration barrier is installed that extends	
		from, and is sealed to, the foundation to the top plate.	
Floors	606.1.ABC.1.2.2	Penetrations/openings >1/8" sealed unless backed by truss or joint members.	
		EXCEPTION: Frame floors where a continuous infiltration barrier is installed that is sealed	
		to the perimeter, penetrations and seams.	
Ceilings 606.1.ABC.1.2.3 Between walls &		Between walls & ceilings; penetrations of ceiling plane of top floor; around shafts, chases,	
		soffits, chimneys, cabinets sealed to continuous air barrier; gaps in gyp board & top plate;	
		attic access. EXCEPTION: Frame ceilings where a continuous infiltration barrier is	
		installed that is sealed at the perimeter, at penetrations and seams.	
Recessed Lighting Fixtures	606.1.ABC.1.2.4	Type IC rated with no penetrations, sealed; or Type IC or non-IC rated, installed inside a	
1		sealed box with 1/2" clearance & 3" from insulation; or Type IC rated with < 2.0 cfm from	
		conditioned space, tested.	
Multi-story Houses	606.1.ABC.1.2.5	Air barrier on perimeter of floor cavity between floors.	
Additional Infiltration reqts 606.1.ABC.1.3 Exhaust fans vented to outdoors, dampers; combustion space heaters compl		Exhaust fans vented to outdoors, dampers; combustion space heaters comply with NFPA,	
		have combustion air.	

6A-22 OTHER PRESCRIPTIVE MEASURES (must be met or exceeded by all residences.)

COMPONENTS	SECTION	REQUIREMENTS	CHECK		
Water Heaters	612.1	Comply with efficiency requirements in Table 612.1.ABC.3.2. Switch or clearly marked circuit			
		breaker (electric) or cutoff (gas) must be provided. External or built-in heat trap required.			
Swimming Pools & Spas	612.1	Spas & heated pools must have covers (except solar heated). Non-commercial pools			
		must have a pump timer. Gas spa & pool heaters must have a minimum thermal			
		efficiency of 78%.			
Shower heads	612.1	Water flow must be restricted to no more than 2.5 gallons per minute at 80 PSIG.			
Air Distribution Systems	610.1	All ducts, fittings, mechanical equipment and plenum chambers shall be mechanically			
		attached, sealed, insulated, and installed in accordance with the criteria of Section 610.			
		Ducts in unconditioned attics: R-6 min. insulation.			
HVAC Controls	607.1	Separate readily accessible manual or automatic thermostat for each system.			
Insulation	604.1, 602.1	Ceilings-Min. R-19. Common walls-Frame R-11 or CBS R-3 both sides.			
		Common ceiling & floors R-11.			

ENERGY PERFORMANCE LEVEL (EPL) DISPLAY CARD

ESTIMATED ENERGY PERFORMANCE SCORE* = 87.8

The higher the score, the more efficient the home.

Haynes Curtis & Dana Addition, 519 NW Crawford Court,, White Springs, FL,

1.	New construction or existing	Addition		12. Cooling systems	
2.	Single family or multi-family	Single family		a. Central Unit	Cap: 22.0 kBtu/hr
3.	Number of units, if multi-family	1			SEER: 13.00
4.	Number of Bedrooms	3		b. Central Unit	Cap: 22.0 kBtu/hr
5.	Is this a worst case?	Yes			SEER: 13.00
6.	Conditioned floor area (ft²)	3173.84 ft²		c. N/A	_
7.	Glass type 1 and area: (Label reqd.	by 13-104.4.5 if not default)			<u>=</u>
a	U-factor:	Description Area		13. Heating systems	
Ь	(or Single or Double DEFAULT) SHGC:	7a. (Dble Default) 246.1 ft ²	_	a. Electric Heat Pump	Cap: 22.0 kBtu/hr _ HSPF: 7.90 _
8.	(or Clear or Tint DEFAULT) Floor types	7b. (Clear) 246.1 ft ²	_	b. Electric Heat Pump	Cap: 22.0 kBtu/hr _ HSPF: 7.90 _
a	Slab-On-Grade Edge Insulation	R=0.0, 177.0(p) ft		c. N/A	
b	Slab-On-Grade Edge Insulation	R=0.0, 48.0(p) ft	8		_
C.	N/A			14. Hot water systems	
9.	Wall types			a. Electric Resistance	Cap: 40.0 gallons
a.	Frame, Wood, Exterior	R=13.0, 2949.9 ft ²	2-0		EF: 0.93
Ь	Frame, Wood, Exterior	R=13.0, 402.0 ft ²	=0	b. N/A	
C.	N/A				
d	N/A		_	c. Conservation credits	
e.	N/A			(HR-Heat recovery, Solar	
10.	Ceiling types			DHP-Dedicated heat pump)	
a.	Under Attic	R=30.0, 1521.9 ft ²	=	15. HVAC credits	<u></u>
b	Under Attic	R=30.0, 450.0 ft ²	_	(CF-Ceiling fan, CV-Cross ventilation,	
c.	N/A		_	HF-Whole house fan,	
11.	Ducts			PT-Programmable Thermostat,	
a.	Sup: Unc. Ret: Unc. AH: Interior	Sup. R=6.0, 178.0 ft	_	MZ-C-Multizone cooling,	
b	Sup: Unc. Ret: Unc. AH: Interior	Sup. R=6.0, 50.0 ft	_	MZ-H-Multizone heating)	
Lce	rtify that this home has compl	ied with the Florida Energ	v Effic	ciency Code For Building	
	estruction through the above e		•	•	OF THE STATE

I certify that this home has complied with the Florida Energy Efficiency Code For Building Construction through the above energy saving features which will be installed (or exceeded) in this home before final inspection. Otherwise, a new EPL Display Card will be completed based on installed Code compliant features.

Address of New Home: _____ City/FL Zip: _____

*NOTE: The home's estimated energy performance score is only available through the FLA/RES computer program. This is not a Building Energy Rating. If your score is 80 or greater (or 86 for a US EPA/DOE EnergyStd^M designation), your home may qualify for energy efficiency mortgage (EEM) incentives if you obtain a Florida Energy Gauge Rating. Contact the Energy Gauge Hotline at 321/638-1492 or see the Energy Gauge web site at www.fsec.ucf.edu for information and a list of certified Raters. For information about Florida's Energy Efficiency Code For Building Construction, contact the Department of Community Affairs at 850/487-1824.