

Index to Sheets

SHEET A-1 - - - - - - - - - ELEVATION + FLOOR PLN

SHEET A-2 - - - - - - - - - - ELEVATIONS + GENERAL IOTES

SHEET A-3 - - - - - - - - - FOUNDATION + SECTIONS

SHEET A-4 - - - - - - - - ELECTRICAL

SHEET S-1 - - - - - - - WIND LOAD ETAILS

ATTIC VENTILATION

Enclosed attics and enclosed rafter spaces formed where ceilings are applied directly to the underside of roof rafters shall have cross ventilation for each separate space by ventilating openings protected against the entrance of rain. Ventilating openings shall be provided with carrosion—resistant wire mesh, with 1 / 8 inch (3.2 mm) minimum to 1/4 inch (6.4 mm) maximum openings.

The total net free ventilating area shall not be less than 1 to 150 of the area of the space ventilated except that the total area is permitted to be reduced to 1 to 300, provided at least 50 percent and not more than 80) percent of the required ventilating area is provided by ventilators located in the upper portion of the space to be ventilated at least 3 feet (914 mm) above eave or cornice vents with the balance of the required ventilation provided by eave or cornice vents.

FRONT ELEVATION

SCALE: 1/4 IN. = 1 FT.

WINDLOAD ENGINEER: Mark Disosway, PE No.53915, PQB 868, Lake City, FL 32056, 386-754-5419

CERTIFICATION: These plans and "Windload Engineering", Sheet S-1, attached, comply with Florida Building Code Residential 2004, Section R301.2.1 to the best of my knowledge.

LIMITATION: This design is valid for one building, at specified location, permitted within 90 days of signature date. In case of conflict, structural requirements, scope of work, and builder responsibilities on sheet S-1 control.

Location: Columbia County, FL

FILE: 06-021	RESIDENCE	SHEET 1 OF 4
DATE: 4-4-06 -	By Blake Const.	CAD FLE: 06021
DRAWN: T A D	PREPARED BY: TIM DELBENE Drafting + Technical Services	REV:
CHECK: T A D	192 SW Sagewood Gln Lake City, FL 32024 Phone (386) 755-5891	REV:

SEE ATTIC VENT NOTES F.G. SHINGLES FIN. CEILING TYP. 2' VINTL SIDING YINTL SIDING - FIN. FLOOR

REAR ELEVATION SCALE: 1/4 IN. = 1 FT.

SEE ATTIC -VENT NOTES F.G. SHINGLES O'HANG VINTL SIDING 6×6 P.T.

LEFT ELEVATION SCALE: 1/4 IN. = 1 FT.

ATTIC VINTILATION

Enclosed attics nd enclosed rafter spaces formed where ceilings are applied directly the underside of roof rafters shall have cross ventilation for ech separate space by ventilating openings protected against the entrace of rain. Ventilating openings shall be provided with corrosion-resistat wire mesh, wit h 1 / 8 inch (3.2 mm) minimum to 1/4 inch (6.4 mm) raximum openings.

The total net fre ventilating area shall not be less than 1 to 150 of the area of the space ventilated except that the total area is permitted to be reduced to 1 tc300, provided at least 50 percent and not more than 80 percent of the equired ventilating area is provided by ventilators located in the upper pation of the space to be ventilated at least 3 feet (914 mm) above eavi or cornice vents with the balance of the required ventilation provied by eave or cornice vents.

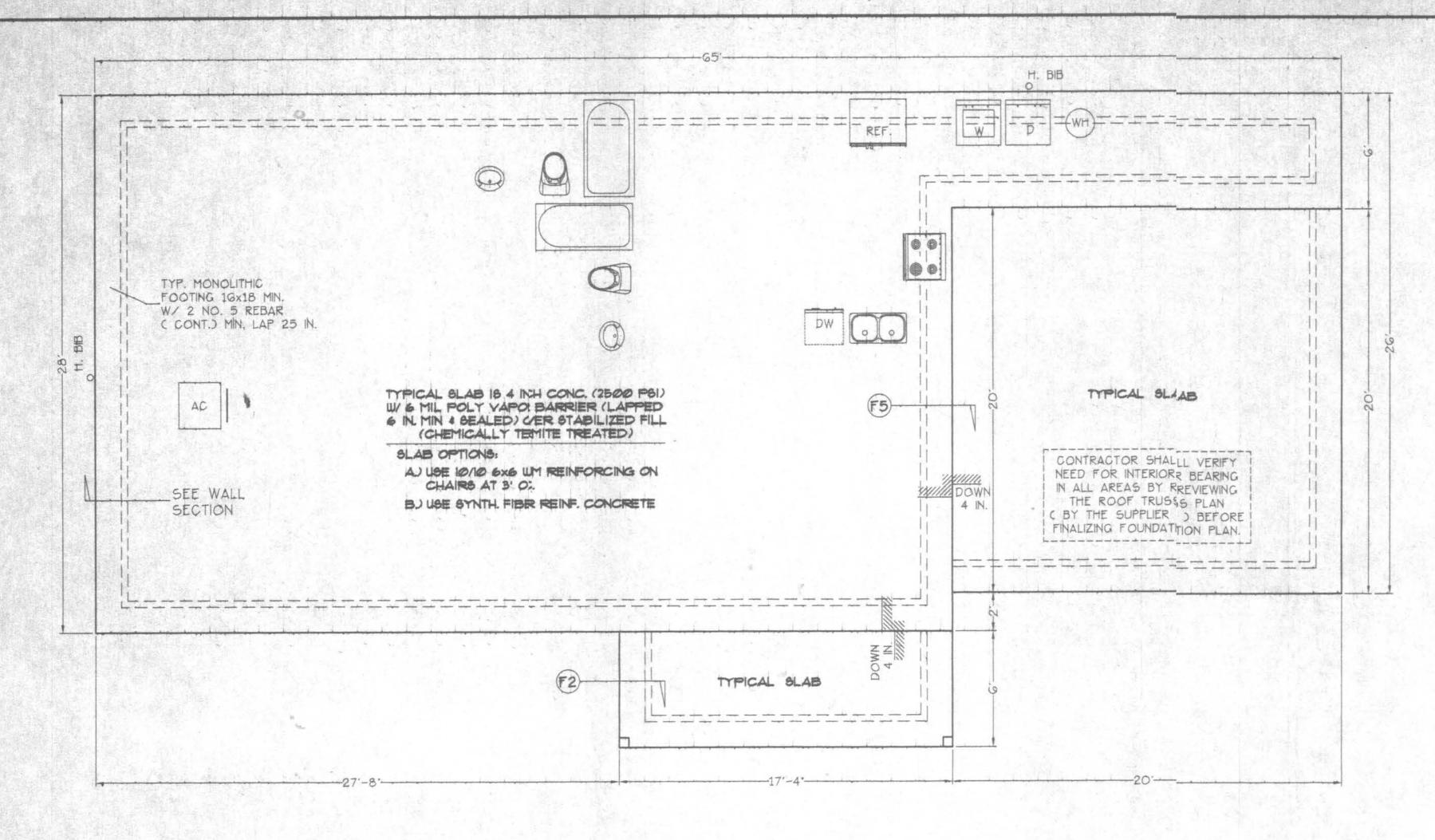
GENERAL NOTES

- 1.) See 'Wind Load Detail Sheet 5-1' and Wind Engineer's Notes for data pertaining to Wind Design and compliance w/ Florida Building Code.
- 2.) All concrete used to be 2500 PSI strength or greater.
- 3.) HVAC duct and unit size/design is by engineered shop drawings from the AC contractor.
- 4.) Windows to be alum. framed and double glazed. Sizes shown are nominal and may vary with manufacturer.
- 5.) Roof Truss design is the responsibility of the supplier.
- 6.) The Truss Manufactuer shall prepare Shop Drawings indicating Truss placement, Girder locations. Truss-to-Truss Connections and any point loads. The Contractor shall notify the Designer of any point loads in excess of 2.0k for Fnd. Modification.
- 7.) Site analysis or preparation information is not a part of this plan and is the responsibility of the owner.
- 8.) Cabinet and millwork detail is not a part of this plan. The plan is a general design and details shall be the responsibility of the owner and/or contractor.

SCALE: 1/4 IN. = 1 FT.

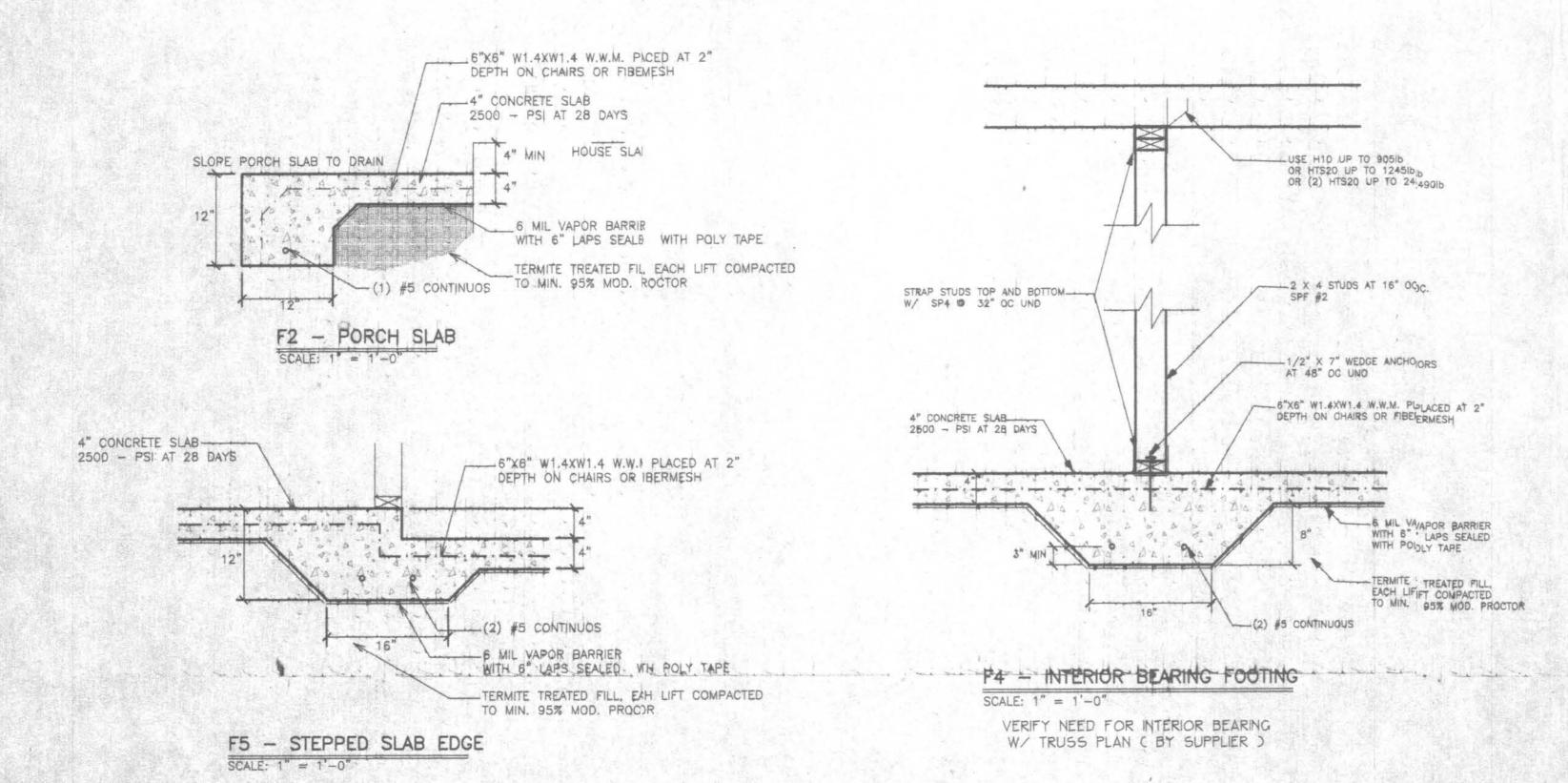
WINDLOAD ENGINEER: Mark Disosway, PE No.53915, POB 868, Lake City, FL 32056, 386-754-5419

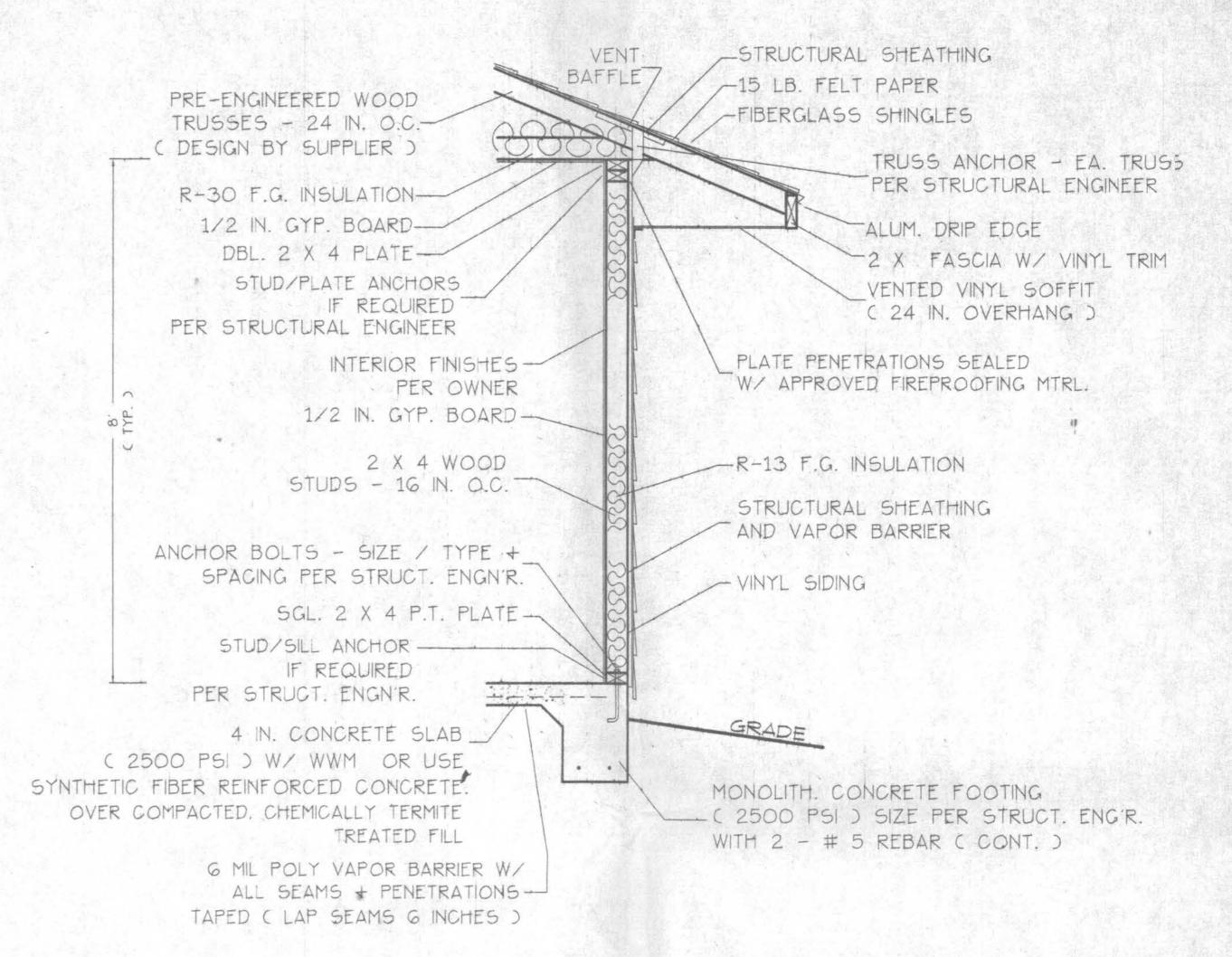
CERTIFICATION: These plans and "Windload Engineering", Sheet S-1, attached, comply with Florida Building Code Residential 2004, Section R301.2.1 to the best of my knowledge.


LIMITATION: This design is valid for one building, at specified location, permitted within 90 days of signature date. In case of conflict, structural requirements, scope of work, and builder responsibilities on sheet S-1 control.

LOTS 1 or 2, 341 ESTATES

Location: Columbia County, FL


FILE: 06-021 DATE:	RESIDENCE By Blake Const.	SHEET: 2 CF 4 CAD FILE: - OG021
DRAWN: T A D	PREPARED BY: TIM DELBENE Drafting + Technical Services	REV:
CHECK: T A D	192 SW Sagewood Gln Lake City, FL 32024 Phone (386) 755-5891	REV:



NOTES:

- CONTRACTOR SHALL EXAMINE ROF TRUSS PLAN
 (BY SUPPLIER) TO DETERMINE INY ADDITIONAL
 BEARING REQUIREMENTS BEFORE INALIZING THE
 FOUNDATION PLAN
- ALL CONCRETE IS 2500 PSI STENGTH (MIN.)
- VERIFY DIMENSIONS W/ FLOOR PAN.
- SITE ANALYSIS AND PREPARATION DATA IS NOT A PART OF THIS PLAN AND IS THE RESPONSIBLITY OF THE CONTRACTOR / OWNER.
- DESIGN SOIL BEARING PRESSURE IS 2000 PSF W/ SOIL COMPACTION OF 95 % MODIFIED PROCTOR MINIMUM.

FOUNDATION PLAN SCALE: 1/4 IN. = 1 FT.

WALL SECTION NOTES:

- This Typical Wall Section is for Estimating purposes only.
- All data shown in this Wall Section shall be subject to review and final input by the Structural Engineer.
- See Sheet S-1 for Engineer's structural Wall Section.

DESIGN WALL SECTION

NON-STRUCTURAL DATA

SCALE: 3/4 IN. = 1 FT.

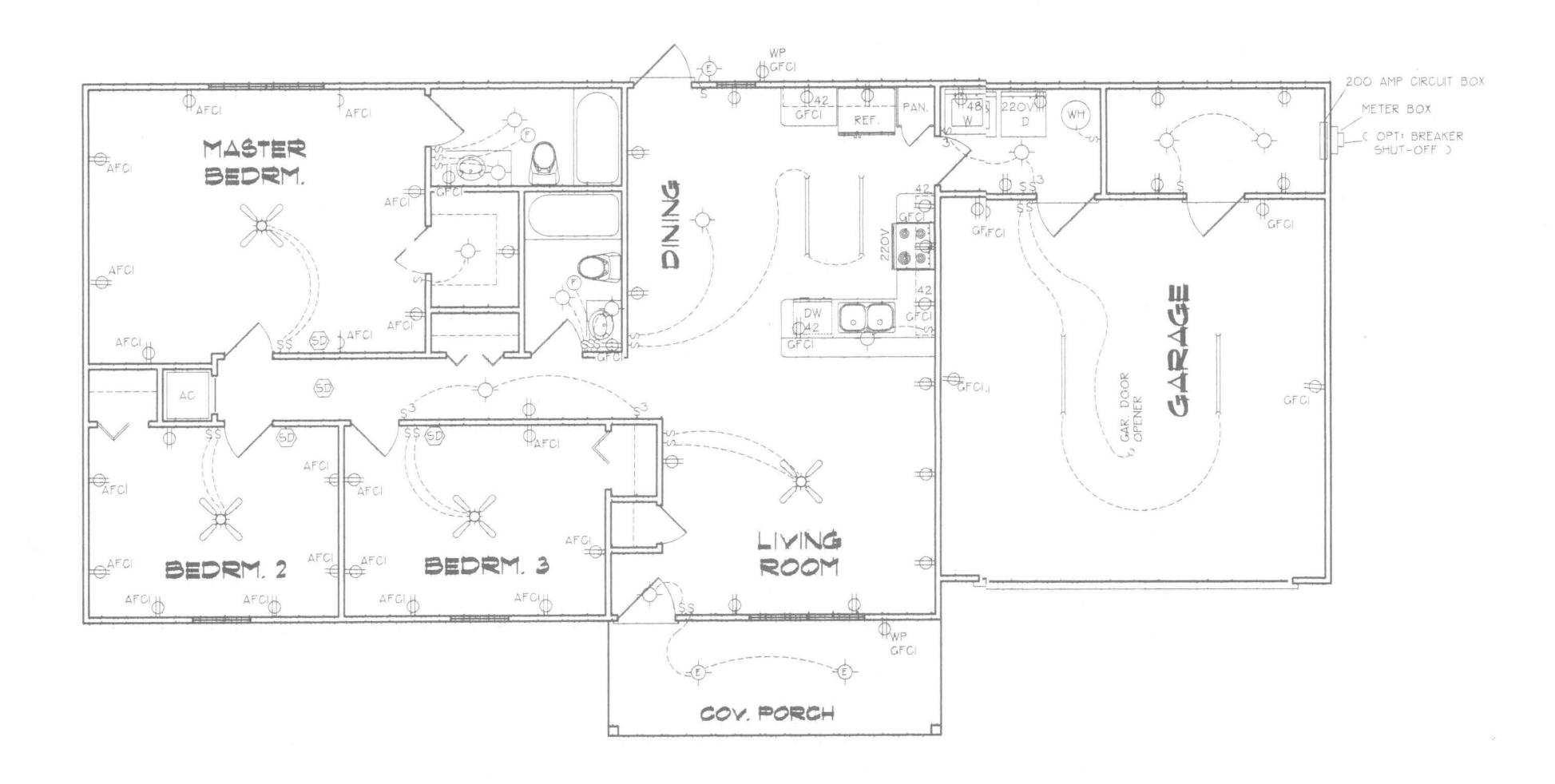
WINDLOAD ENGINEER: Mark Disosway, PE No.53915, POB 868, Lake City, FL 32056, 386-754-5419

CERTIFICATION: These plans and "Windload Engineering", Sheet S-1, attached, comply with Florida Building Code Residential 2004, Section R301.2.1 to the best of my knowledge.

LIMITATION: This design is valid for one building, at specified location, permitted within 30 days of signature date. In case of conflict, structural requirements, scope of work, and builder responsibilities on sheet S-1 control.

LOTS 1 or 2, 341 ESTATES

Location: Columbia County, FL

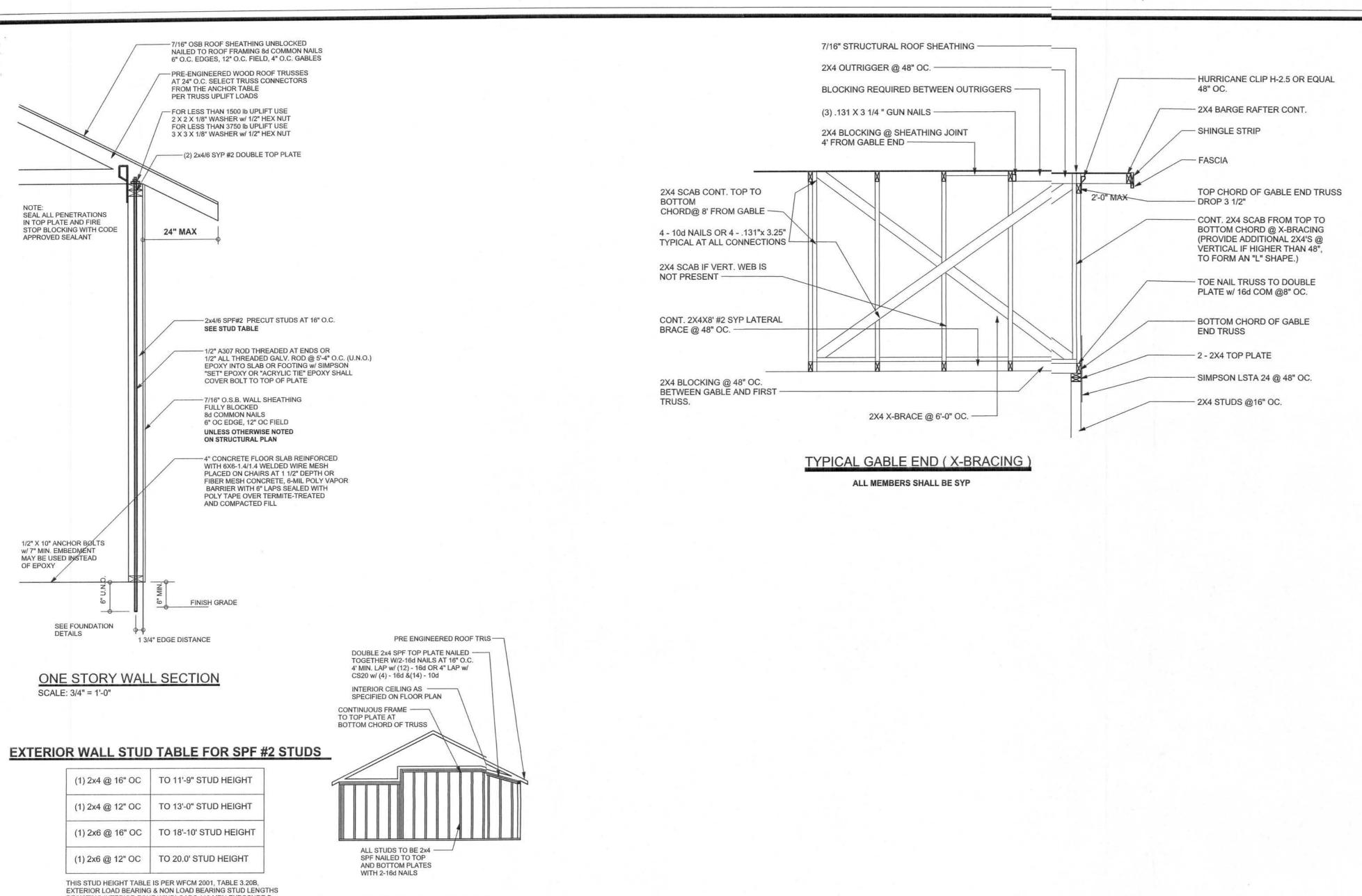

ation: Columbia County, FL Job No.:

FILE: 06-021	RESIDENCE	SHEET 3 OF 4
DATE:	By Blake Conet.	CAD FLE: 06021
DRAWN: T A D	PREPARED BY: TIM DELBENE Drafting + Technical Services	REV:
CHECK:	192 SW Sagewood Gin. Lake City, FL 32024 Phone (386) 755-5891	REV:

ELECTRICAL PLAN NOTES

- -WIRE ALL APPLIANCES, HVAC UNITS AND OTHER EQUIPMENT PER MANUF. SPECIFICATIONS.
- -CONSULT THE OWNER FOR THE NUMBER OF SEPERATE TELEPHONE LINES TO BE INSTALLED.
- -ALL INSTALLATIONS SHALL BE PER NAT'L. ELECTRIC CODE.
- -ALL SMOKE DETECTORS SHALL BE 120V W/ BATTERY BACKUP OF THE PHOTOELECTRIC TYPE, AND SHALL BE INTERLOCKED TOGETHER. INSTALL INSIDE AND NEAR ALL BEDROOMS.
- -TELEPHONE. TELEVISION AND OTHER LOW VOLTAGE DEVICES OR OUTLETS SHALL BE AS PER THE OWNER'S DIRECTIONS. + IN ACCORDANCE W/ APPLICABLE SECTIONS OF NEC-LATEST EDITION.
- -ELECTRICAL CONT'R SHALL BE RESPONSIBLE FOR THE DESIGN + SIZING OF ELECTRICAL SERVICE AND CIRCUITS.
- -ENTRY OF SERVICE (UNDERGROUND OR OVERHEAD)
 TO BE DETERMINED BY POWER COMPANY.

ELECTRICAL	SYMBOL LEGEND
)	= FLOURESCENT LIGHTING FIXTURE.
	= CEILING LIGHT FIXTURE
-(1)-	= EXTERIOR LIGHTING FIXTURE
\$	= LIGHT SWITCH.
\$ ₃	= THREE-WAY SWITCH.
Ф	= 110 V. DUPLEX OUTLET.
4 2	= SPECIAL HEIGHT 110 V. DUPLEX OUTLET
\$\phi^GFCI\$	= GROUNDED OUTLET
€220V	= 220 VOLT OUTLET (4 WIRE)
X	= FAN LOCATION (CEILING)
F	= FAN LOCATION (EXHAUST)
5 D	= SMOKE DETECTOR


CONSULT OWNER PER LOCATION + SWITCHING OF ANY ADDITIONAL EXTERIOR SECURITY AND ACCENT LIGHTING.

ELECTRICAL PLAN

NOT TO SCALE

FILE: 06-021	RESIDENCE	SHEET: 4 OF 4
DATE: 4-4-06	By Blake Const.	CAD FILE: - 06021
DRAWN: T A D	PREPARED BY: TIM DELBENE Drafting + Technical Services	REV:
CHECK:	192 SW Sagewood Gin., Lake City, FL 32024 Phone (386) 755-5891	REV:

ANCHOR TABLE OBTAIN UPLIFT REQUIREMENTS FROM TRUSS MANUFACTURER'S ENGINEERING

< 2300

< 2320

< 2320

< 3335 HPAHD22 16-16d < 2200 < 2200 ABU44 12-16d

ABU66

ABU88

12-16d

18 - 16d

UPLIFT LBS. SYP UPLIFT LBS. SPF TRUSS CONNECTOR* TO PLATES TO RAFTER/TRUSS

	0. 2 200. 0	THOSE COMMECTOR	TOTERIES	TO KALIENTRUSS	10 31003
< 420	< 245	H5A	3-8d	3-8d	
< 455	< 265	H5	4-8d	4-8d	
< 360	< 235	H4	4-8d	4-8d	
< 455	< 320	НЗ	4-8d	4-8d	
< 415	< 365	H2.5	5-8d	5-8d	
< 600	< 535	H2.5A	5-8d	5-8d	
< 950	< 820	H6	8-8d	8-8d	
< 745	< 565	H8	5-10d, 1 1/2"	5-10d, 1 1/2"	
< 1465	< 1050	H14-1	13-8d	12-8d, 1 1/2"	
< 1465	< 1050	H14-2	15-8d	12-8d, 1 1/2"	
< 990	< 850	H10-1	8-8d, 1 1/2"	8-8d, 1 1/2"	
< 760	< 655	H10-2	6-10d	6-10d	
< 1470	< 1265	H16-1	10-10d, 1 1/2"	2-10d, 1 1/2"	
< 1470	< 1265	H16-2	10-10d, 1 1/2"	2-10d, 1 1/2"	
< 1000	< 860	MTS24C	7-10d 1 1/2"	7-10d 1 1/2"	
< 1450	< 1245	HTS24	12-10d 1 1/2"	12-10d 1 1/2"	
< 2900	< 2490	2 - HTS24			
< 2050	< 1785	LGT2	14 -16d	14 -16d	
		HEAVY GIRDER TIEDOWNS*			TO FOUNDATION
< 3965	< 3330	MGT		22 -10d	1-5/8" THREADED RO 12" EMBEDMENT
< 10980	< 6485	HGT-2		16 -10d	2-5/8" THREADED RO 12" EMBEDMENT
< 10530	< 9035	HGT-3		16 -10d	2-5/8" THREADED RO 12" EMBEDMENT
< 9250	< 9250	HGT-4		16 -10d	2-5/8" THREADED RO 12" EMBEDMENT
		STUD STRAP CONNECTOR*			TO STUDS
< 435	< 435	SSP DOUBLE TOP PLATE	3 -10d		4 -10d
< 455	< 420	SSP SINGLE SILL PLATE	1 -10d		4 -10d
< 825	< 825	DSP DOUBLE TOP PLATE	6 -10d		8 -10d
< 825	< 600	DSP SINGLE SILL PLATE	2 -10d		8 -10d
< 885	< 760	SP4			6-10d, 1 1/2"
< 1240	< 1065	SPH4			10-10d, 1 1/2"
< 885	< 760	SP6			6-10d, 1 1/2"
< 1240	< 1065	SPH6			10-10d, 1 1/2"
< 1235	< 1165	LSTA18	14-10d		
< 1235	< 1235	LSTA21	16-10d		
< 1030	< 1030	CS20	18-8d		
< 1705	< 1705	CS16	28-8d		
11-11-11		STUD ANCHORS*	TO STUDS		TO FOUNDATION
< 1350	< 1305	LTT19	8-16d		1/2" AB
< 2310	< 2310	LTTI31	18-10d, 1 1/2"		1/2" AB
< 2775	< 2570	HD2A	2-5/8" BOLTS		5/8" AB
< 4175	< 3695	HTT16	18 - 16d		5/8" AB
< 1400	< 1400	PAHD42	16-16d		

GENERAL NOTES:

TRUSSES: TRUSSES SHALL BE DESIGNED BY A FLORIDA LICENSED ENGINEER IN ACCORDANCE WITH THE FBCR 2004. TRUSS ENGINEERING SHALL INCLUDE TRUSS DESIGN, PLACEMENT PLANS, TEMPORARY AND PERMANENT BRACING DETAILS, TRUSS-TO-TRUSS CONNECTIONS, AND UPLIFT AND REACTION LOADS FOR ALL BEARING LOCATIONS. TRUSS ENGINEERING IS THE RESPONSIBILITY OF THE TRUSS MANUFACTURER AND SHALL BE SIGNED & SEALED BY THE MANUFACTURER'S DESIGN ENGINEER. IT IS THE BUILDER'S RESPONSIBILITY VERIFY THE TRUSS DESIGNER FULLY SATISFIED ALL THE ABOVE REQUIREMENTS AND TO SELECT UPLIFT CONNECTIONS BASED ON TRUSS ENGINEERING UPLIFT AND PROVIDE FOOTINGS FOR INTERIOR BEARING WALLS. BUILDER IS TO FURNISH TRUSS ENGINEERING TO WIND LOAD ENGINEER FOR REVIEW OF TRUSS REACTIONS ON THE BUILDING STRUCTURE. STRAP 2X6 RAFTERS WITH MIN UPLIFT CONNECTION 415LB EACH END; 2X8 RAFTERS 700 LB EACH END.

SITE PREPARATION: SITE ANALYSIS AND PREPARATION IS NOT PART OF THIS PLAN FOUNDATION: CONFIRM THAT THE FOUNDATION DESIGN & SITE CONDITIONS MEET

GRAVITY LOAD REQUIREMENTS (ASSUME 1000 PSF BEARING CAPACITY UNLESS VISUAL OBSERVATION OR SOILS TEST PROVES OTHERWISE

CONCRETE: MINIMUM COMPRESSIVE STRENGTH OF CONCRETE AT 28 DAYS, F'c = 3000 PSI. WELDED WIRE REINFORCED SLAB: 6" × 6" × 0" W1.4 × W1.4, FB = 85KSI, WELDED WIRE REINFORCEMENT FABRIC (W.W.M.) CONFORMING TO ASTM A185; LOCATED IN MIDDLE OF THE SLAB; SUPPORTED WITH APPROVED MATERIALS OR SUPPORTS AT SPACINGS NOT TO EXCEED 3'.

FIBER CONCRETE SLAB: CONCRETE SLABS ON GROUND CONTAINING SYNTHETIC FIBER REINFORCEMENT. FIBER LENGTH 1/2 INCH TO 2 INCHES. DOSAGE AMOUNTS FROM 0.75 TO 1.5 POUNDS PER CUBIC YARD PER THE MANUFACTURER'S RECOMMENDATIONS. FIBERS TO COMPLY WITH ASTM C 1116. SUPPLIER TO PROVIDE ASTM C 1116 CERTIFICATION OF COMPLIANCE WHEN REQUESTED BY BUILDING OFFICIAL

CONTROL JOINTS: WHERE SPECIFIED, SAWN CONTROL JOINTS IN SLAB-ON-GRADE SHALL BE CUT IN ACCORDANCE WITH ACI 302. JOINTS SHALL BE CUT WITHIN 12 HOURS OF SLAB PLACEMENT. THE LENGTH WIDTH RATIOS OF SLAB AREAS SHALL NOT EXCEED 1.5 AND TYPICAL SPACING OF CUTS TO BE 12FT. DO NOT CUT WWM OR REINFORCING STEEL. (RECOMMENDED LOCATION OF CONTROL JOINTS IS SUBJECT TO OWNER AND CONTRACTOR'S APPROVAL. THE CONTROL JOINTS ARE NOT INTENDED TO PREVENT CRACKS BUT RATHER TO ENCOURAGE THE SLAB TO CRACK ON A GIVEN LINE.)

REBAR: ASTM A 615, GRADE 60, DEFORMED BARS, FY = 60 KSI. ALL LAP SPLICES 40 * DB (25" FOR #5 BARS); UNO. ALL REINFORCEMENT SHALL BE DETAILED AND PLACED IN ACCORDANCE WITH ACI 315-96, U.N.O.

GLULAM BEAM, GLB, 24F-V3SP, Fb = 2.4ksi, E = 1800ksi; UNO. SUPPLIER MAY SUPPLY AN ALTERNATE BEAM WITH EQUAL PROPERTIES OR MAY SUBMIT THEIR OWN SIZING CALCS. ROOF SHEATHING: ALL ROOFS ARE HORIZONTAL DIAPHRAGMS; 7/16" OSB SHEATHING, UNBLOCKED. APPLIED PERPENDICULAR TO FRAMING, OVER A MINIMUM OF 3 FRAMING MEMBERS, WITH PANEL EDGES STAGGERED, FASTENED WITH 8d COMMON NAILS (.131), 6"OC PANEL EDGES, 12"OC INTERMEDIATE MEMBERS, GABLE ENDS AND DIAPHRAGM BOUNDARY; 4"OC, UNO.

STRUCTURAL CONNECTORS: MANUFACTURERS AND PRODUCT NUMBER FOR CONNECTORS, ANCHORS, AND REINFORCEMENT ARE LISTED FOR EXAMPLE NOT ENDORSEMENT. AN EQUIVALENT DEVICE OF THE SAME OR OTHER MANUFACTURER CAN BE SUBSTITUTED FOR ANY DEVICES LISTED IN THE EXAMPLE TABLES AS LONG AS IT MEETS THE REQUIRED LOAD CAPACITIES. MANUFACTURER'S INSTALLATION INSTRUCTIONS MUST BE FOLLOWED TO ACHIEVE RATED LOADS.

ANCHOR BOLTS: A-307 ANCHOR BOLTS WITH MINIMUM EMBEDMENT AS SPECIFIED IN DRAWINGS BUT NO LESS THAN 7" IN CONCRETE OR REINFORCED BOND BEAM OR 15" IN GROUTED CMU.

WASHERS: WASHERS USED WITH 1/2" BOLTS TO BE 2" \times 2" \times 9/64"; WITH 5/8" BOLTS TO BE 3" \times 3" \times 9/64"; WITH 3/4" BOLTS TO BE 3" \times 3" \times 9/64"; WITH 7/8" BOLTS TO BE 3" \times 3" \times 5/16"; UNO.

NAILS: ALL NAILS ARE COMMON NAILS UNLESS OTHERWISE SPECIFIED OR ACCEPTED BY FBC TEST REPORTS AS HAVING EQUAL STRUCTURAL VALUES.

BUILDER'S RESPONSIBILITY

THE BUILDER AND OWNER ARE RESPONSIBLE FOR THE FOLLOWING, WHICH ARE SPECIFICALLY NOT PART OF THE WIND LOAD ENGINEER'S SCOPE OF WORK.

CONFIRM SITE CONDITIONS, FOUNDATION BEARING CAPACITY, GRADE AND BACKFILL HEIGHT, WIND SPEED AND DEBRIS ZONE, AND FLOOD ZONE. PROVIDE MATERIALS AND CONSTRUCTION TECHNIQUES, WHICH COMPLY WITH FBCR 2004

REQUIREMENTS FOR THE STATED WIND VELOCITY AND DESIGN PRESSURES. PROVIDE A CONTINUOUS LOAD PATH FROM TRUSSES TO FOUNDATION. IF YOU BELIEVE THE PLAN OMITS A CONTINUOUS LOAD PATH CONNECTION, CALL

THE WIND LOAD ENGINEER IMMEDIATELY. VERIFY THE TRUSS MANUFACTURER'S SEALED ENGINEERING INCLUDES TRUSS DESIGN, PLACEMENT PLANS, TEMPORARY AND PERMANENT BRACING DETAILS, TRUSS-TO-TRUSS CONNECTIONS, AND UPLIFT AND REACTION LOADS FOR ALL

ROOF SYSTEM DESIGN

BEARING LOCATIONS.

THE SEAL ON THESE PLANS FOR COMPLIANCE WITH FBCR 2004, SECTION R301.2.1 IS BASED ON REACTIONS, UPLIFTS, AND BEARING LOCATIONS IN TRUSS ENGINEERING SUBMITTED TO THE WIND LOAD ENGINEER. IT IS THE RESPONSIBILITY OF THE BUILDER TO CHECK ALL DETAILS OF THE COMPLETE ROOF SYSTEM DESIGN SUBMITTED BY THE TRUSS MANUFACTURER AND HAVE IT SIGNED, AND SEALED BY A DESIGN. PROFESSIONAL FOR CORRECT APPLICATION OF FRC 2001 REQUIRE LOADS AND ANY SPECIAL LOADS. THE BUILDER IS RESPONSIBLE TO REVIEW EACH INDIVIDUAL TRUSS MEMBER AND THE TRUSS ROOF SYSTEM AS A WHOLE AND TO PROVIDE RESTRAINT FOR ANY LATERAL BRACING. THE BUILDER SHOULD USE CARE CHECKING THE ROOF DESIGN BECAUSE THE WIND LOAD ENGINEER IS SPECIFICALLY NOT RESPONSIBLE FOR THE TRUSS LAYOUT WHICH WAS CREATED BY THE TRUSS MANUFACTURER AND THE TRUSS DESIGNER ALSO DENIES RESPONSIBILITY FOR THE LAYOUT PER NOTES ON THEIR SEALED TRUSS SHEETS.

DESIGN DATA

1/2" AB

1/2" AB

2-5/8" AB

WIND LOADS PER FLORIDA BUILDING CODE 2004 RESIDENTIAL, SECTION R301.2.1 (ENCLOSED SIMPLE DIAPHRAGM BUILDINGS WITH FLAT, HIPPED, OR GABLE ROOFS: MEAN ROOF HEIGHT NOT EXCEEDING LEAST HORIZONTAL DIMENSION OR 60 FT; NOT ON UPPER HALF OF HILL OR ESCARPMENT 60FT IN EXP. B, 30FT IN EXP. C AND >10% SLOPE AND UNOBSTRUCTED UPWIND FOR 50x HEIGHT OR 1 MILE WHICHEVER IS LESS.) BUILDING IS NOT IN THE HIGH VELOCITY HURRICANE ZONE

BUILDING IS NOT IN THE WIND-BORNE DEBRIS REGION

BASIC WIND SPEED = 110 MPH

2.) WIND EXPOSURE = B

3.) WIND IMPORTANCE FACTOR = 1.0

4.) BUILDING CATEGORY = II ROOF ANGLE = 10-45 DEGREES

6.) MEAN ROOF HEIGHT = <30 FT

INTERNAL PRESSURE COEFFICIENT = N/A (ENCLOSED BUILDING)

8.) COMPONENTS AND CLADDING DESIGN WIND PRESSURES (TABLE R301.2(2))

Zone Effective Wind Area (ft2) 1 | 19.9 | -21.8 | 18.1 | -18.1 2 19.9 -25.5 18.1 -21.8 2 O'hg -40.6 3 19.9 -25.5 18.1 -21.8 3 O'hg -68.3 -42.4 4 21.8 -23.6 18.5 -20.4 5 21.8 -29.1 18.5 -22.6 Doors & Windows 21.8 -29.1 Worst Case (Zone 5, 10 ft2) 8x7 Garage Door 19.5 -22.9

6x7 Garage Door 18.5 -21.0

DESIGN LOADS

FLOOR 40 PSF (ALL OTHER DWELLING ROOMS)

30 PSF (SLEEPING ROOMS) 30 PSF (ATTICS WITH STORAGE)

10 PSF (ATTICS WITHOUT STORAGE, <3:12) ROOF 20 PSF (FLAT OR <4:12) 16 PSF (4:12 TO <12:12) 12 PSF (12:12 AND GREATER)

STAIRS 40 PSF (ONE & TWO FAMILY DWELLINGS) SOIL BEARING CAPACITY 1000PSF NOT IN FLOOD ZONE (BUILDER TO VERIFY

Blake Construction Spec House

PE No53915, POB 868, Lake City, FL

ateddimensions supercede scaled

limensons. Refer all questions to

notproceed without clarification

COPYLIGHTS AND PROPERTY RIGHTS:

Mark Esosway, P.E. hereby expressly reser

its conmon law copyrights and property right in

ese istruments of service. This document i

orm o manner without first the express writte permision and consent of Mark Disosway.

not to le reproduced, altered or copied in any

CERTFICATION: I hereby certify that I have

xamired this plan, and that the applicable

rtion of the plan, relating to wind engine

omplywith section R301.2.1, florida buildi

code risidential 2004, to the best of my

LIMIT/TION: This design is valid for one

P.E. 53915

uildin, at specified location.

Mark Dsosway, P.E. for resolution

32056.386-754-5419

FEVISIONS

ADDRESS: Lot 1 341 Estates S/D Columbia County, Florida

Lot 1 341 Estates S/D

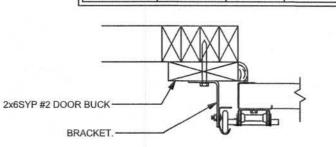
Mark Disosway P.E. P.O. Box 868 Like City, Florida 32056 Phone: (386) 754 - 5419 Fax: (386) 269 - 4871

PRINTED DATE:

June 07, 2006 DRAWN BY: STRUCTURAL BY David Disosway

FINALS DATE:

JOB NUMBER: 604052 DRAWING NUMBER


OF 2 SHEETS

GRADE & SPECIES TABLE

		Fb (psi)	E (10 ⁶ psi)
2x8	SYP #2	1200	1.6
2x10	SYP #2	1050	1.6
2x12	SYP #2	975	1.6
GLB	24F-V3 SP	2400	1.8
LSL	TIMBERSTRAND	1700	1.7
LVL	MICROLAM	2900	2.0
PSL	PARALAM	2900	2.0

2x6 SYP #2 GARAGE DOOR BUCK ATTACHMENT ATTACH GARAGE DOOR BUCK TO STUD PACK AT EACH SIDE OF DOOR OPENING WITH 3/8"x4" LAG SCREWS w/ 1" WASHER LAG SCREWS MAY BE COUNTERSUNK, HORIZONTAL JAMBS DO NOT RANSFER LOAD, CENTER LAG SCREWS OR STAGGER 16d NAILS OR (2) ROWS OF .131 x 3 1/4" GN PER TABLE BELOW:

DOOR WIDTH	3/8" x 4" LAG	16d STAGGER	(2) ROWS OF .131 x 3 1/4" GN
8' - 10'	24" O.C.	5" O.C.	5" O.C.
11' - 15'	18" O.C.	4" O.C.	4" O.C.
16' - 18'	16" O.C.	3" O.C.	3" O.C.

GARAGE DOOR BUCK INSTALLATION DETAIL

FOR LESS THAN 1500 Ib UPLIFT USE

FOR LESS THAN 3750 Ib UPLIFT USE

-NAIL SHEATHING TO HEADER AND TOP

PLATE WITH 8d AT 3" O.C. FOR UPLIFT

—SP4/6 @ 48" O.C. (U.N.O.) /——(7) .131 x 3 1/4" GUN NAILS

TOE NAILED THRU HEADER

INTO KING STUD

2 X 2 X 1/8" WASHER

3 X 3 X 1/8" WASHER

4-SIMPSON LSTA18 --(2-ONE SIDE.2-ON

SIMPSON H2.5A U.N.O.-

SEE STRUCTURAL PLAN

CONTINUOUS FRAME O

SUPPORTIVE

3 SIMPSON LSTA18'S

(1-ONE SIDE, 2-ON -

OPPOSITE SIDE) EA.

NAILED WITH 14-10d

SCALE: N.T.S.

IF BEAM JOINT IS AT -POST CONNECTION,

INSTALL ONE SIMPSON LSTA18 ON ONE SIDE

SUPPORTIVE POST TO BEM

DETAIL FOR SINGLE BEAM

SUPPORTIVE BEAM ----

SUPPORTIVE CENTER POST TO EAM DETAIL

CEILING DIAPHRAGM ETAIL

- NON-SUPPORTIV

2X4 LADDER BEA

STUD SPACINGS SHALL BE MULTIPLIED BY 0.85 FOR FRAMING

EXAMPLE 16" O.C. x 0.85 = 13.6" O.C.

(2) 2X12 SYP #2 MIN. -SEE STRUCTURAL PLAN

SEE STRUCTURAL PLAN

SCALE: N.T.S.

SEE STRUCTURAL PLAN

SCALE: N.T.S.

BEAM MAY BE ATTACHED IN

BEAM CORNER CONNECTION. DETAIL

LOCATED WITHIN 4 FEET OF CORNERS FOR END ZONE LOADING.

(4)-2x4 SPF #2 NAILED

MIN. (SEE STRUCTURAL PLAN)

-(2) 2X12 SYP #2 MIN. ------SEE STRUCTURAL PLAN

TOGETHER W/2-16d

NAILS AT 16" O.C

BEAM MID-WALL CONNECTION DETAIL

(2) SIMPSON LSTA21w/ (8) -16d TO HEADER AND (8) -16d TO POST -6X6 SYP #2 POST -SIMPSON ABU POST BASE ANCHOR BOLT

TYPICAL PORCH POST DETAIL

SEE FOOTING DETAILS

(2) 2X10 SYP #2 U.N.O.

SEE STRUCTURAL PLAN

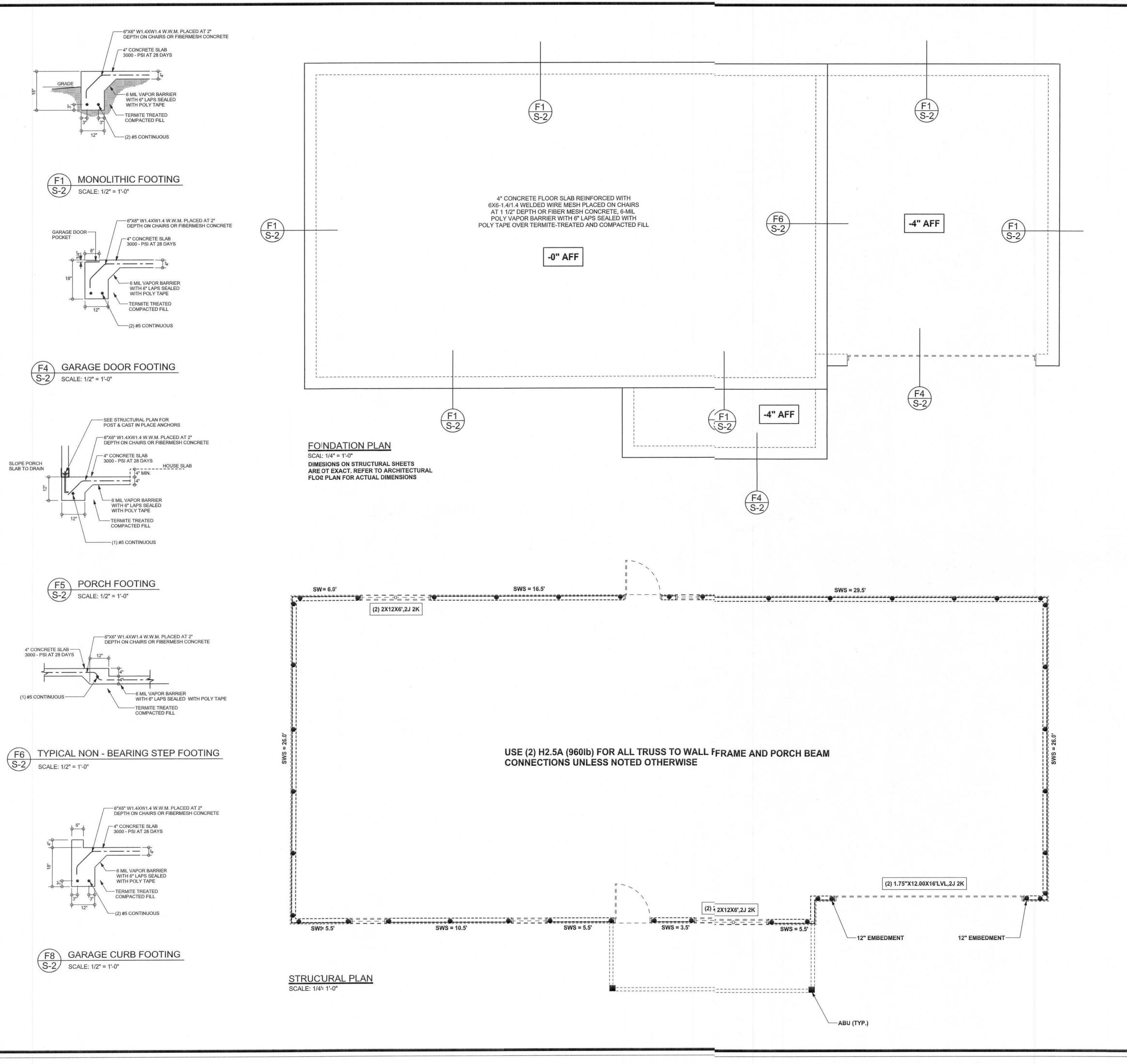
IF TRUSS TO WALL STRAPS ARE NAAILED

TO THE HEADER THE SP4/6 @ 48" CO.C.

ARE NOT REQUIRED

(7) .131 x 3 1/4" GUN NAILS -

INTO KING STUD


TOE NAILED THRU HEADER

CRIPPLES IF REQUIRED (5) .131 x 3 1/4" GUN NAILS

TOE NAILED THRU SILL-INTO JACK STUD U.N.O. TYPICAL STRAPPING (U.N.O.) (SEE STRUCTURAL PLAN)

> (1) 2X6 SPF #2 SILL UP TO 7'-6" U.N.O. (2) 2X4 SPF #2 SILL UP TO 7'-8" U.N.O. (1) 2X4 SPF #2 SILL UP TO 5'-1" U.N.O (FOR: 120 MPH, 10'-0" WALL HEIGHT U.N.O.)

TYPICALL 1 STORY HEADER STRAPING DETAIL
SCALE: 1/2"!" = 1'-0"

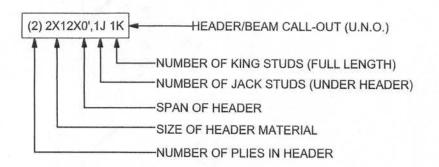
STRUCTURAL PLAN NOTES

ALL LOAD BEARING FRAME WALL & PORCH HEADERS SHALL BE A MINIMUM OF (2) 2X12 SYP#2 (U.N.O.)

ALL LOAD BEARING FRAME WALL HEADERS SN-2 SHALL HAVE (1) JACK STUD & (1) KING STUD EACH SIDE (U.N.O.)

DIMENSIONS ON STRUCTURAL SHEETS SN-3 ARE NOT EXACT. REFER TO ARCHITECTURAL FLOOR PLAN FOR ACTUAL DIMENSIONS

PERMANENT TRUSS BRACING IS TO BE INSTALLED AT LOCATIONS AS SHOWN ON THE SEALED TRUSS DRAWINGS. LATERAL BRACING IS TO BE RESTRAINED PER BCSI1-03, BCSI-B1, BCSI-B2, & BCSI-B3. BCSI-B1, BCSI-B2, & BCSI-B3 ARE FURNISHED BY THE TRUSS SUPPLIER, WITH THE SEALED TRUSS PACKAGE


WALL LEGEND

SMS = 0.0,	1ST FLOOR EXTERIOR WALL
SWS = 0.0'	2ND FLOOR EXTERIOR
IBW	1ST FLOOR INTERIOR BEARING WALLS SEE DETAILS ON SHEET S-1
IBW	2ND FLOOR INTERIOR BEARING WALLS SEE DETAILS ON SHEET S-1

THREADED ROD LEGEND

•	INDICATES LOCATION OF: 1ST FLOOR 1/2" A307 ALL THREADED ROD
®	INDICATES LOCATION OF: 2ND FLOOR 1/2" A307 ALL THREADED ROD

HEADER LEGEND

TOTAL SHEAR WALL SEGMENTS

SWS = 0.0' INDICATES SHEAR WALL SEGMENTS

	REQUIRED	ACTUAL	
RANSVERSE	36.2'	52.0'	
ONGITUDINAL	35.3'	77 O'	

REVISIONS

SOFTPIAN

VINDIDAD ENGINEER: Mark Disosway, PE No33915, POB 868, Lake City, FL dimensons. Refer all questions to Mark Csosway, P.E. for resolution. o notoroceed without clarification.

COPYLIGHTS AND PROPERTY RIGHTS: Mark Csosway, P.E. hereby expressly reserve its common law copyrights and property right in these istruments of service. This document is not to be reproduced, altered or copied in any form ormanner without first the express written ermision and consent of Mark Disosway. CERTFICATION: I hereby certify that I have examined this plan, and that the applicable

portion of the plan, relating to wind engineering complywith section R301.2.1, florida building code reidential 2004, to the best of my

LIMITATION: This design is valid for one building at specified location.

P.E. 53915

Blake Construction

Spec House Lot 1 341 Estates S/D

ADDRESS: Lot 1 341 Estates S/D Columbia County, Florida Mark Disosway P.E.

P.O. Box 868 Lake City, Florida 32056 Prone: (386) 754 - 5419 Fax: (386) 269 - 4871

David Disosway

PRINTED DATE: June 07, 2006 DRAWN BY: STRUCTURAL BY

FINALS DATE: 07 Jun / 06

CONNECTIONS, WALL, & HEADER DESIGN IS BASED ON REACTIONS & UPLIFTS FROM TRUSS ENGINEERING

FURNISHED BY BUILDER. BUILDERS FIRST SOURCE

JOB #L157307

JOB NUMBER: 604052 DRAWING NUMBER

> **S-2** OF 2 SHEETS