This Permit Must Be Prominent	y Posted on Premises During Co	nstruction 000026688
APPLICANT DAVID SIMQUE	PHONE	755-7787
ADDRESS PO BOX 2962	LAKE CITY	FL 32056
OWNER ISLAMIC CENTER OF LAKE CITY	PHONE	755-1655
ADDRESS 7876 W US HWY 90	LAKE CITY	FL 32055
CONTRACTOR SIMQUE CONSTRUCTION	PHONE	755-7787
LOCATION OF PROPERTY 90 W, ACROSS FROM	CR 135, IT IS ON THE LEFT SID	E OF 90
TYPE DEVELOPMENT CHUECH,UTILITY	ESTIMATED COST OF CO	ONSTRUCTION
HEATED FLOOR AREA 4054.00 TO	TAL AREA 4054.00	HEIGHT 28.00 STORIES 1
FOUNDATION CONCRETE WALLS FRAME	ROOF PITCH FLAT	FLOOR SLAB
LAND USE & ZONING AG-3	MAX	C. HEIGHT 35
Minimum Set Back Requirments: STREET-FRONT	30.00 REAR	25.00 SIDE 25.00
NO. EX.D.U. 0 FLOOD ZONE X	DEVELOPMENT PER	MII NO.
PARCEL ID 30-3S-16-02409-001 SUE	BDIVISION	
LOT BLOCK PHASE	UNIT TOTA	ALACRES 5.00
CBC0561:	i8 //	11/10
Culvert Permit No. Culvert Waiver Contractor's Li		Applicant/Owner/Contractor
DOT PERMIT 07-00060N		IH N
Driveway Connection Septic Tank Number L	U & Zoning checked by App	proved for Issuance New Resident
COMMENTS: MINIMUM FLOOR ELEVATION 146.8',ELI	EVATION LETTER REQUIRD BE	EFORE SLAB,
SRWMD #ERP06-0002,DOT#2006-A-292-0012		
(PERMIT 25549 VOIDED)		Check # or Cash 3399
FOR BUILDING 8	ZONING DEPARTMENT	ONLY (footer/Slab)
Temporary Power Foundati	on	
date/app. by	date/app. by	date/app. by
Under slab rough-in plumbing	Slab	Sheathing/Nailing
date/app. by	date/app. by	date/app. by
Framing Rough-in pl	umbing above slab and below wood	d floordate/app. by
Electrical rough-in Heat & Air	Duct	
date/app. by	date/app. by	Peri. beam (Lintel) date/app. by
Permanent power C.O. Final date/app. by		Culvert
M/H tie downs, blocking, electricity and plumbing	date/app. by	date/app. by
That the downs, blocking, electronty and plumbing	date/app. by	Pooldate/app. by
Reconnection Pump po		le
M/H Pole Travel Trailer	date/app. by	date/app. by Re-roof
date/app. by	date/app. by	date/app. by
BUILDING PERMIT FEE \$ 3000.00 CERTIFICA	TION FEE \$ 20.27	SURCHARGE FEE \$ 20.27
	FIRE FEE \$ 0.00	
FLOOD DEVELOPMENT FEE \$ FLOOD ZONE FE		
1 11	CLERKS OFFICE	
- Var die	CLERKS OF ICE	1100

Columbia County Building Permit

DATE 01/30/2008

PERMIT

NOTICE: IN ADDITION TO THE REQUIREMENTS OF THIS PERMIT, THERE MAY BE ADDITIONAL RESTRICTIONS APPLICABLE TO THIS PROPERTY THAT MAY BE FOUND IN THE PUBLIC RECORDS OF THIS COUNTY. AND THERE MAY BE ADDITIONAL PERMITS REQUIRED FROM OTHER GOVERNMENTAL ENTITIES SUCH AS WATER MANAGEMENT DISTRICTS, STATE AGENCIES, OR FEDERAL AGENCIES.

"WARNING TO OWNER: YOUR FAILURE TO RECORD A NOTICE OF COMMENCEMENT MAY RESULT IN YOUR PAYING TWICE FOR IMPROVEMENTS TO YOUR PROPERTY. IF YOU INTEND TO OBTAIN FINANCING, CONSULT WITH YOUR LENDER OR AN ATTORNEY BEFORE RECORDING YOUR NOTICE OF COMMENCEMENT."

EVERY PERMIT ISSUED SHALL BECOME INVALID UNLESS THE WORK AUTHORIZED BY SUCH PERMIT IS COMMENCED WITHIN 180 DAYS AFTER ITS ISSUANCE, OR IF THE WORK AUTHORIZED BY SUCH PERMIT IS SUSPENDED OR ABANDONED FOR A PERIOD OF 180 DAYS AFTER THE TIME THE WORK IS COMMENCED. A VALID PERMIT RECIEVES AN APPROVED INSPECTION EVERY 180 DAYS. WORK SHALL BE CONSIDERED TO BE IN ACTIVE PROGESS WHEN THE PERMIT HAS RECIEVED AN APPROVED INSPECTION WITHIN 180 DAYS.

AHN& MISSY

NOTICE OF COMMENCEMENT FORM COLUMBIA COUNTY, FLORIDA

THIS DOCUMENT MUST BE RECORDED AT THE COUNTY CLERKS OFFICE BEFORE YOUR FIRST INSPECTION

THE UNDERSIGNED hereby gives notice that improvement will be made to certain real property, and inaccordance with Chapter 713, Florida Statutes, the following information is provided in this Notice of Commencement.

IF YOU INTEND TO OBTAIN FINANCING, CONSULT WITH YOUR LENDER OR AN ATTORNEY BEFORE RECORDING YOUR NOTICE OF COMMENCEMENT.

Tax Parcel ID Number 30-35-16-0240	9-00/ Permit Number 0000 26688
1. Description of property: (legal description of the pr	operty and street address or 911 address)
7876 W US NWY	90 Lake City 32055
2. General description of improvement:	Building
3. Owner Name & Address Islamic Ce P.O Box 1642 Jake City FL 32056	Interest in Property 1001
4. Name & Address of Fee Simple Owner (if other than	owner).
5. Contractor Name David Singut	Phone Number 755-7787
Address P.O. Box 2962	Phone Number 755-2787 LAKE City F1, 32056
6. Surety Holders Name	Phone Number
Address	
Amount of Bond	Inst:200812003402 Date:2/20/2008 Time:12:25 PM
7. Lender Name	DC,P.DeWitt Cason,Columbia County Page 1 of 1
Address	
8. Persons within the State of Florida designated by the	ne Owner upon whom notices or other documents may be
served as provided by section 718.13 (1)(a) 7; Florida Name Islamic Center Of Lake City Clo	Statutes: Wasem Khar Phone Number 3810 755-11055
Address 1.0 DOX 1690, Lake (Ing F	1.32056
In addition to himself/herself the owner designates	
(a) 7. Phone Number of the designee 386-755-16	of the Lien Notice as provided in Section 713.13 (1) -
10. Expiration date of the Notice of Commencement (ti	he expiration date is 1 (one) year from the date of
THE OWNER MUST SIGN THE NOTICE OF COMMENCE IN HIS/HER STEAD.	EMENT AND NO ONE ELSE MAY BE PERMITTED TO SIGN
for 1	
Signature of Own	ier «
Sworn to (or affirmed) and subscribed before day of	CASSIE JONES, Q. Housey Point - Stand of Printing thy Commission Expires Jan 20, 2015 Commission 6 00 762565
WILLY MAIN OF THE PROPERTY OF	

Elevation Confirmation Letter Required (PERMIT 25549 Voided)
Columbia County Building Permit Application Ce# 3399
For Office Use Only Application # 0801 - 127 Date Received 1/24/08 By LH Permit # 26688
Zoning Official Date 30.01.08 Flood Zone FEMA Map #Zoning A-3
Land Use A-3 Elevation N/A MFE/46.8 River N/A Plans Examiner OKTH Date 1-29-05
Comments SRWMD in file, IF ERPO6-OWZ / DOTPUMIT 2006-A-292-OUIZ
□ NOC →EH →Deed or PA □ Site Plan →State Road Info □ Parent Parcel #
□ Dev Permit # □ In Floodway □ Letter of Authorization from Contractor
□ Unincorporated area □ Incorporated area □ Town of Fort White □ Town of Fort White Compliance letter
Septic Permit No. 07-600 leo N
Name Authorized Person Signing Permit David J. SIMBUE Phone 755-7787
Address Pd Box 2962 Coke City, F1, 32056
Owners Name Istanic CENTER of Cake City Phone 755-1655
911 Address 7876 W. U.S. 90 Lake City 32055
Contractors Name Singue Construction Phone 755-7787
Address PO, BDx 2962 Coke (ity, Fl, 32056
Fee Simple Owner Name & Address
Bonding Co. Name & Address
Architect/Engineer Name & Address Nick GIES/ER BLOWN Rd
Mortgage Lenders Name & Address
Circle the correct power company — FL Power & Light — Clay Elec. — Suwannee Valley Elec. — Progress Energy
Property ID Number 30-35-/6-02409-00/ Estimated Cost of Construction 600,000
Subdivision NameLotBlockUnitPhase
Driving Directions Havy 90 WEST TO CR 135 ON LEFT
Number of Existing Dwellings on Property
Construction of Church Total Acreage 5 Lot Size
Do you need a - <u>Culvert Permit</u> or <u>Culvert Waiver</u> or <u>Have an Existing Drive</u> Total Building Height 28
Actual Distance of Structure from Property Lines - Front 200 Side 60 Side 60 Rear 160
Number of Stories Heated Floor Area
application is hereby made to obtain a permit to do work and installations as indicated. I certify that no work or installation has commenced prior to the issuance of a permit and that all work be performed to meet the standards of all laws regulating construction in this jurisdiction.

Revised 11-30-07

Page 1 of 2 (Both Pages must be submitted together.)

Elevation Confirmation Letter Required

WARNING TO OWNER: YOUR FAILURE TO RECORD A NOTICE OF COMMENCMENT MAY RESULT IN YOU PAYING TWICE FOR IMPROVEMENTS TO YOUR PROPERTY. A NOTICE OF COMMENCEMENT MUST BE RECORDED AND POSTED ON THE JOB SITE BEFORE THE FIRST INSPECTION. IF YOU INTEND TO OBTAIN FINANCING, CONSULT WITH YOUR LENDER OR ATTORNEY BEFORE RECORDING YOUR NOTICE OF COMMENCEMENT.

FLORIDA'S CONSTRUCTION LIEN LAW: Protect Yourself and Your Investment

According to Florida Law, those who work on your property or provide materials, and are not paid-in-full, have a right to enforce their claim for payment against your property. This claim is known as a construction lien. If your contractor fails to pay subcontractors or material suppliers or neglects to make other legally required payments, the people who are owed money may look to your property for payment, even if you have paid your contractor in full. This means if a lien is filed against your property, it could be sold against your will to pay for labor, materials or other services which your contractor may have failed to pay.

NOTICE OF RESPONSIBILITY TO BUILDING PERMITEE:

Page 2 of 2 (Both Pages must be submitted together.)

<u>YOU ARE HEREBY NOTIFIED</u> as the recipient of a building permit from Columbia County, Florida, you will be held responsible to the County for any damage to sidewalks and/or road curbs and gutters, concrete features and structures, together with damage to drainage facilities, removal of sod, major changes to lot grades that result in ponding of water, or other damage to roadway and other public infrastructure facilities caused by you or your contractor, subcontractors, agents or representatives in the construction and/or improvement of the building and lot for which this permit is issued. No certificate of occupancy will be issued until all corrective work to these public infrastructures and facilities has been corrected.

OWNERS CERTIFICATION: I hereby certify that all the foregoing information is accurate and all work will be done in compliance with all applicable laws and regulating construction and zoning. I further understand the above written responsibilities in Columbia County for obtaining this Building Permit.

man		
Owners Signature	-	
CONTRACTORS AFFIDAVIT: By my signature I under written statement to the owner of all the above written Building Permit.	rstand an itten resp	d agree that I have informed and provided this onsibilities in Columbia County for obtaining
Contractor's Signature (Permitee)	Con	tractor's License Number_ <u>(BC056/58</u> umbia County upetency Card Number
Affirmed under penalty of perjury to by the <u>Contractor</u> are Personally known or Produced Identification	nd subscri	bed before me this <u>24</u> day of <u>January</u> 20 <u>08</u> .
State of Florida Notary Signature (For the Contractor)	SEAL:	
, and the contractor)		CASSANDRA L. NORRIS MY COMMISSION # DD 283241

EXPIRES: February 3, 2008

nded Thru Notary Public Underwriters

Revised 11-30-07

Void Permit 25549

Columbia County Building Permit Application

For Office Use Only Application # 0761-67 Date Received 1/8/07 By LH Permit # 25549
Application Approved by - Zoning Official Date Date 25.0/107 Plans Examiner Chart Date 2-19-67
Flood Zone Development Permit Zoning A - 3 Land Use Plan Map Category A - 3
Comments Floor Elevation to be 146.8' Elevation Letter Required
NOC FEH Deed or PA Site Plan State Road Info - Parent Parcel # State Plan
Fay 7:5-/347
Name Authorized Person Signing Permit <u>harles beelen</u> Phone 623-4448
Address 2004 5 w DAILY St. Late C.17, Fl. 32024
911 Address 78 76 w us Highway 90, Lake City fr 32055
Contractors Name Charles Seelen Phone 623-4448
Address 2054 Siv DA. 124 St. DAK. P.M. Fl. 32024
Fee Simple Owner Name & Address Islam: C Center of Jak C.M Jac DR. 32024
Bonding Co. Name & Address
Architect/Engineer Name & Address N. ett Gr. sten
Mortgage Lenders Name & Address
Circle the correct power company - FL Power & Light - Clay Elec Suwannee Valley Elec Progressive Energy
Property ID Number 30-35-16-02409-00/ Estimated Cost of Construction #500,000
Subdivision Name N/A Lot Block Unit Phase
Driving Directions 14 my 90 west pppiox 4 miles From J-25 an Lest
Dinectly Actors from Hung 135
Type of Construction New Commercial Number of Existing Dwellings on Property
Total Acreage Lot Size Do you need a - <u>Culvert Permit</u> or <u>Culvert Waiver</u> or <u>Have an Existing Dri</u>
Actual Distance of Structure from Property Lines - Front 200/Side 6 Side 60 Rear 160
Total Building Height Number of Stories Heated Floor Area Hoof Pitch Roof Pitch Color
Application is hereby made to obtain a permit to do work and installations as indicated. I certify that no work or
installation has commenced prior to the issuance of a permit and that all work be performed to meet the standards of all laws regulating construction in this jurisdiction.
OWNERS AFFIDAVIT: I hereby certify that all the foregoing information is accurate and all work will be done in compliance with all applicable laws and regulating construction and zoning.
WARNING TO OWNER: YOUR FAILURE TO RECORD A NOTICE OF COMMENCMENT MAY RESULT IN YOU PAYING
TWICE FOR IMPROVEMENTS TO YOUR PROPERTY. IF YOU INTEND TO OBTAIN FINANCING, CONSULT WITH YOUR LENDER OR ATTORNEY BEFORE RECORDING YOUR NOTICE OF COMMENCEMENT.
DE STE NESSKENS TOOK NOTICE OF COMMENCEMENT.
Owner Builder or Authorized Barrer Is Not 1 11 11
Owner Builder or Authorized Person by Notarized Letter Contractor Signature Contractors License Number FB0064655
STATE OF FLORIDA MY COMMISSION # DD246441 EXPIRES Competency Card Number
October 29, 2007 NOTARY STAMP/SEAL
Sworn to (or affirmed) and subscribed before me
this 18 day of January 2007. Awarda 11. Callens
Personally known or Produced Identification Notary Signature (Revised Sept. 200

ISLAMIC CENTER of LAKE CITY

Columbia County Building Dept Lake City, Florida January 24, 2008

Attn: Jo Haltiwanger

David Simque has been awarded the contract for building the Islamic Center. The plans are owned by the Islamic Center. Simque Construction will be pulling the new permit on the facility, as Charles Peeler is no longer involved in this project.

Sincerely,

Waseem Khan, MD

SUWANNEE RIVER WATER MANAGEMENT DISTRICT

9225 CR 49 LIVE DAK, FLORIDA 32060 TELEPHONE: (386) 362-1001 TELEPHONE: 800-226-1066 FAX (386) 362-1056

GENERAL PERMIT

PERMITTEE:

ISLAMIC CENTER OF LAKE CITY 155 NORTHWEST ENTERPRISE WAY LAKE CITY, FL 32055 PERMIT NUMBER: ERP06-0002

DATE ISSUED: 04/25/2006 **DATE EXPIRES:** 04/25/2009

COUNTY: COLUMBIA TRS: S30/T3S/R16E

PROJECT: ISLAMIC CENTER OF LAKE CITY

Approved entity to whom operation and maintenance may be transferred pursuant to rule 40B-4.1130, Florida Administrative Code (F.A.C.):

DR. MOHAMMED CHOUDHURY ISLAMIC CENTER OF LAKE CITY 155 NORTHWEST ENTERPRISE WAY LAKE CITY, FL 32055

Based on information provided, the Suwannee River Water Management District's (District) rules have been adhered to and an environmental resource general permit is in effect for the permitted activity description below:

Construction and operation of a surfacewater management system serving 0.56 acres of impervious surface on a total project area of acres in a manner consistent with the application package submitted by Chad Williams, P.E. of GTC Design Group certified on April 10, 2006.

It is your responsibility to ensure that adverse off-site impacts do not occur either during or after construction. Any additional construction or alterations not authorized by this permit may result in flood control or water quality problems both on and off site and will be a violation of District rule.

You or any other substantially affected persons are entitled to request an administrative hearing pursuant to ss.120.57(1), Florida Statutes (F.S.), and s.40B-1.511, F.A.C., if they object to the District's actions. Failure to request a hearing within 14 days will constitute a waiver of your right to request such a hearing. In addition, the District will presume that permittee waives Chapter 120,

Project: ISLAMIC CENTER OF LAKE CITY

Page 2 of 7

F.S., rights to object or appeal the action upon commencement of construction authorized by the permit.

This permit is issued under the provisions of chapter 373, F.S., chapter 40B-4, and chapter 40B-400, F.A.C. A general permit authorizes the construction, operation, maintenance, alteration, abandonment, or removal of certain minor surface water management systems. This permit authorizes the permittee to perform the work necessary to construct, operate, and maintain the surface water management system shown on the application and other documents included in the application. This is to notify you of District's agency action concerning Notice Of Intent. This action is taken pursuant to rule 40B-4 and 40B-400, F.A.C.

Standard Conditions for All General Permits:

- 1. The permittee shall perform all construction authorized in a manner so as to minimize adverse impacts to fish, wildlife, natural environmental values, and water quality. The permittee shall institute necessary measures during construction including riprap, reinforcement, or compaction of any fill materials placed around newly installed structures, to minimize erosion, turbidity, nutrient loading, and sedimentation in the receiving waters.
- 2. Water quality data representative of the water discharged from the permitted system, including, but not limited to, the parameters in chapter 62-302, F.A.C., shall be submitted to the District as required. If water quality data are required, the permittee shall provide data as required on the volume and rate of discharge including the total volume discharged during the sampling period. All water quality data shall be in accordance with and reference the specific method of analysis in "Standard Methods for the Examination of Water and Wastewater" by the American Public Health Association or "Methods for Chemical Analysis of Water and Wastes" by the U.S. Environmental Protection Agency.
- 3. The operational and maintenance phase of an environmental resource permit will not become effective until the owner or his authorized agent certifies that all facilities have been constructed in accordance with the design permitted by the District. If required by the District, such as-built certification shall be made by an engineer or surveyor. Within 30 days after the completion of construction of the system, the permittee shall notify the District that the facilities are complete. If appropriate, the permittee shall request transfer of the permit to the responsible entity approved by the District for operation and maintenance. The District may inspect the system and, as necessary, require remedial measures as a condition of transfer of the permit or release for operation and maintenance of the system.
- 4. Off-site discharges during and after construction shall be made only through the facilities authorized by the permit. Water discharged from the project shall be through structures suitable for

Project: ISLAMIC CENTER OF LAKE CITY

Page 3 of 7

regulating upstream stage if so required by the District. Such discharges may be subject to operating schedules established by the District.

- 5. The permit does not convey to the permittee any property right nor any rights or privileges other than those specified in the permit and chapter 40B-1, F.A.C.
- 6. The permittee shall hold and save the District harmless from any and all damages, claims, or liabilities which may arise by reason of the construction, operation, maintenance, alteration, abandonment, or development in a Works of the District which is authorized by the permit.
- 7. The permit is issued based on the information submitted by the applicant which reasonably demonstrates that adverse off-site water resource impacts will not be caused by the permitted activity. It is the responsibility of the permittee to insure that such adverse impacts do not in fact occur either during or after construction.
- 8. It is the responsibility of the permittee to obtain all other clearances, permits, or authorizations required by any unit of local, state, or federal government.
- 9. The surfacewater management system shall be constructed prior to or concurrent with the development that the system is intended to serve and the system shall be completed within 30 days of substantial completion of the development which the system is intended to serve.
- 10. Except for General Permits After Notice or permits issued to a unit of government, or unless a different schedule is specified in the permit, the system shall be inspected at least once every third year after transfer of a permit to operation and maintenance by the permittee or his agent to ascertain that the system is being operated and maintained in a manner consistent with the permit. A report of inspection is to be sent to the District within 30 days of the inspection date. If required by chapter 471, F.S., such inspection and report shall be made by an engineer.
- 11. The permittee shall allow reasonable access to District personnel or agents for the purpose of inspecting the system to insure compliance with the permit. The permittee shall allow the District, at its expense, to install equipment or devices to monitor performance of the system authorized by their permit.
- 12. The surfacewater management system shall be operated and maintained in a manner which is consistent with the conditions of the permit and chapter 40B-4.2040, F.A.C.
- 13. The permittee is responsible for the perpetual operation and maintenance of the system unless the operation and maintenance is transferred pursuant to chapter 40B-4.1130, F.A.C., or the permit is modified to authorize a new operation and maintenance entity pursuant to chapter 40B-4.1110,

Project: ISLAMIC CENTER OF LAKE CITY

Page 4 of 7

F.A.C.

- 14. All activities shall be implemented as set forth in the plans, specifications and performance criteria as approved by this permit. Any deviation from the permitted activity and the conditions for undertaking that activity shall constitute a violation of this permit.
- 15. This permit or a copy thereof, complete with all conditions, attachments, exhibits, and modifications, shall be kept at the work site of the permitted activity. The complete permit shall be available for review at the work site upon request by District staff. The permittee shall require the contractor to review the complete permit prior to commencement of the activity authorized by this permit.
- 16. Activities approved by this permit shall be conducted in a manner which do not cause violations of state water quality standards.
- 17. Prior to and during construction, the permittee shall implement and maintain all erosion and sediment control measures (best management practices) required to retain sediment on-site and to prevent violations of state water quality standards. All practices must be in accordance with the guidelines and specifications in the Florida Stormwater, Erosion, and Sedimentation Control Inspector's Manual unless a project specific erosion and sediment control plan is approved as part of the permit, in which case the practices must be in accordance with the plan. If site-specific conditions require additional measures during any phase of construction or operation to prevent erosion or control sediment, beyond those specified in the erosion and sediment control plan, the permittee shall implement additional best management practices as necessary, in accordance with the Florida Stormwater, Erosion, and Sedimentation Control Inspector's Manual. The permittee shall correct any erosion or shoaling that causes adverse impacts to the water resources.
- 18. Stabilization measures shall be initiated for erosion and sediment control on disturbed areas as soon as practicable in portions of the site where construction activities have temporarily or permanently ceased, but in no case more than seven days after the construction activity in that portion of the site has temporarily or permanently ceased.
- 19. At least 48 hours prior to commencement of activity authorized by this permit, the permittee shall submit to the District a Construction Commencement Notice Form No. 40B-1.901(14) indicating the actual start date and the expected completion date.
- 20. When the duration of construction will exceed one year, the permittee shall submit construction status reports to the District on an annual basis utilizing an Annual Status Report Form No. 40B-1.901(15). These forms shall be submitted during June of each following year.

Project: ISLAMIC CENTER OF LAKE CITY

Page 5 of 7

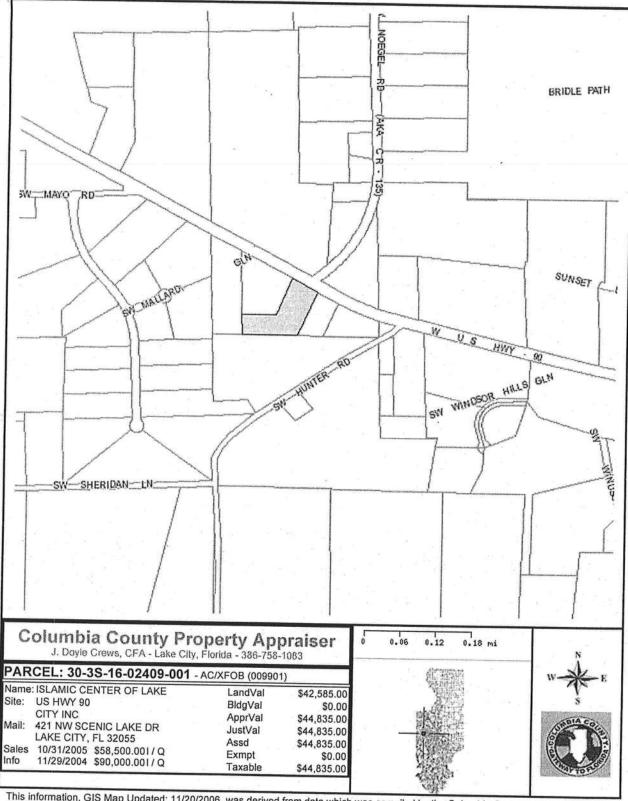
- 21. For those systems which will be operated or maintained by an entity requiring an easement or deed restriction in order to provide that entity with the authority necessary to operate or maintain the system, such easement or deed restriction, together with any other final operation or maintenance system, such easement or deed restriction, together with any other final operation or maintenance system, such easement or deed restriction, together with any other final operation or maintenance system sa are required by Paragraph 40B-4.2030(2)(g), F.A.C., and Rule 40B-4.2035, F.A.C., documents as are required by Paragraph 40B-4.2030(2)(g), F.A.C., and Rule 40B-4.2035, F.A.C., documents of District for approval. Documents meeting the requirements set forth in these subsections of District rules will be approved. Deed restrictions, easements and other operation and maintenance documents which require recordation either with the Secretary of State or Clerk of the Circuit Court must be so recorded prior to lot or unit sales within the project served by the system, or upon completion of construction of the system, whichever occurs first. For those systems which are proposed to be maintained by county or municipal entities, final operation and systems which are proposed to be maintained by county or municipal entities, final operation of the maintenance documents must be received by the District when maintenance and operation of the system is accepted by the local governmental entity. Failure to submit the appropriate final documents referenced in this paragraph will result in the permittee remaining liable for carrying out maintenance and operation of the permitted system.
 - 22. Each phase or independent portion of the permitted system must be completed in accordance with the permitted plans and permit conditions prior to the initiation of the permitted use of site infrastructure located within the area served by that portion or phase of the system. Each phase or independent portion of the system must be completed in accordance with the permitted plans and independent portion of the system for responsibility for operation and maintenance of that phase or portion of the system to a local government or other responsible entity.
 - 23. Within 30 days after completion of construction of the permitted system, or independent portion of the system, the permittee shall submit a written statement of completion and certification by a registered professional engineer or other appropriate individual as authorized by law, using the supplied As-Built Certification Form No. 40B-1.901(16) incorporated by reference in Subsection 40B-1.901(16), F.A.C. When the completed system differs substantially from the permitted plans, any substantial deviations shall be noted and explained and two copies of as-built drawings submitted to the District. Submittal of the completed form shall serve to notify the District that the system is ready for inspection. The statement of completion and certification shall be based on onsite observation of construction (conducted by the registered professional engineer, or other appropriate individual as authorized by law, or under his or her direct supervision) or review of asbuilt drawings for the purpose of determining if the work was completed in compliance with approved plans and specifications. As-built drawings shall be the permitted drawings revised to reflect any changes made during construction. Both the original and any revised specifications must be clearly shown. The plans must be clearly labeled as "as-built" or "record" drawing. All surveyed dimensions and elevations shall be certified by a registered surveyor. The following information, at a minimum, shall be verified on the as-built drawings:
 - a. Dimensions and elevations of all discharge structures including all weirs, slots, gates, pumps,

Project: ISLAMIC CENTER OF LAKE CITY

Page 6 of 7

pipes, and oil and grease skimmers;

- Locations, dimensions, and elevations of all filter, exfiltration, or underdrain systems including cleanouts, pipes, connections to control structures, and points of discharge to the receiving waters;
- c. Dimensions, elevations, contours, or cross-sections of all treatment storage areas sufficient to determine stage-storage relationships of the storage area and the permanent pool depth and volume below the control elevation for normally wet systems, when appropriate;
- d. Dimensions, elevations, contours, final grades, or cross-sections of the system to determine flow directions and conveyance of runoff to the treatment system;
- e. Dimensions, elevations, contours, final grades, or cross-sections of all conveyance systems utilized to convey off-site runoff around the system;
- f. Existing water elevation(s) and the date determined; and
- g. Elevation and location of benchmark(s) for the survey.
- 24. The operation phase of this permit shall not become effective until the permittee has complied with the requirements of the condition in paragraph 23 above, the District determines the system to be in compliance with the permitted plans, and the entity approved by the District in accordance with Rule 40B-4.2035, F.A.C., accepts responsibility for operation and maintenance of the system. The permit may not be transferred to such approved operation and maintenance entity until the operation phase of the permit becomes effective. Following inspection and approval of the permitted system by the District, the permittee shall request transfer of the permit to the approved responsible operation and maintenance operating entity if different from the permittee. Until the permit is transferred pursuant to Rule 40B-4.1130, F.A.C., the permittee shall be liable for compliance with the terms of the permit.
- 25. Should any other regulatory agency require changes to the permitted system, the permittee shall provide written notification to the District of the changes prior to implementation so that a determination can be made whether a permit modification is required.
- 26. This permit does not eliminate the necessity to obtain any required federal, state, local and special District authorizations prior to the start of any activity approved by this permit. This permit does not convey to the permittee or create in the permittee any property right, or any interest in real property, nor does it authorize any entrance upon or activities on property which is not owned or controlled by the permittee, or convey any rights or privileges other than those specified in the permit and in this chapter and Chapter 40B-4, F.A.C.


Project: ISLAMIC CENTER OF LAKE CITY

Page 7 of 7

- 27. The permittee is hereby advised that Section 253.77, F.S., states that a person may not commence any excavation, construction, or other activity involving the use of sovereign or other lands of the state, the title to which is vested in the Board of Trustees of the Internal Improvement Trust Fund without obtaining the required lease, license, easement, or other form of consent authorizing the proposed use. Therefore, the permittee is responsible for obtaining any necessary authorizations from the Board of Trustees prior to commencing activity on sovereignty lands or other state-owned lands.
- 28. Any delineation of the extent of a wetland or other surface water submitted as part of the permit application, including plans or other supporting documentation, shall not be considered specifically approved unless a specific condition of this permit or a formal determination under 40B-400.046, F.A.C., provides otherwise.
- 29. The permittee shall notify the District in writing within 30 days of any sale, conveyance, or other transfer of ownership or control of the permitted system or the real property at which the permitted system is located. All transfers of ownership or transfers of a permit are subject to the requirements of Rule 40B-4.1130, F.A.C. The permittee transferring the permit shall remain liable for any corrective actions that may be required as a result of any permit violations prior to such sale, conveyance or other transfer.
- 30. If historical or archaeological artifacts are discovered at any time on the project site, the permittee shall immediately notify the District.
- 31. The permittee shall immediately notify the District in writing of any previously submitted information that is later discovered to be inaccurate.

WITHIN 30 DAYS AFTER COMPLETION OF THE PROJECT, THE PERMITTEE SHALL NOTIFY THE DISTRICT, IN WRITING, THAT THE FACILITIES ARE COMPLETE.

Date Approved 4-25-06

This information, GIS Map Updated: 11/20/2006, was derived from data which was compiled by the Columbia County Property Appraiser Office solely for the governmental purpose of property assessment. This information should not be relied upon by anyone as a determination of the ownership of property or market value. No warranties, expressed or implied, are provided for the accuracy of the data herein, it's use, or it's interpretation. Although it is periodically updated, this information may not reflect the data currently on file in the Property Appraiser's office. The assessed values are NOT certified values and therefore are subject to change before being finalized for ad valorem assessment purposes.

PAGE 02/04 Doc 409 SE

THIS INSTRUMENT PREPARED BY:

MARLIN M. FEAGLE, ESQUIRE FEAGLE & FEAGLE, ATTORNEYS, P.A. 153 NE Madison Street Post Office Box 1653 Lake City, Florida 32056-1653 Florida Bar No. 0173248

Inst:2005031881 Date:12/22/2005 Time:15:43

Doc Stamp-Deed: 409.50

DC,P.DeWitt Cason,Columbia County B:1069 P:576

WARRANTY DEED

WITNESSETH:

That said grantor, for and in consideration of the sum of TEN AND NO/100 (\$10.00)

DOLLARS, and other good and valuable considerations to said grantor in hand paid by said grantee, the receipt whereof is hereby acknowledged, has granted, bargained and sold to the said grantee, and grantee's heirs, successors and assigns forever, the following described land, situate, lying and being in Columbia County, Florida, to-wit:

A part of the NW 1/4 of the SW 1/4 of Section 30, Township 3 South, Range 16 East, Columbia County, Florida, being more particularly described as follows:

Begin at the SW comer of the NW 1/4 of the SW 1/4 of said Section 30 and run S 88°19'00" E along the South boundary of those lands described in Official Records Book 319, Page 95, a. distance of 760.46 feet to a concrete monument; thence run N 24°27'30" E along the East boundary of said lands a distance of 421.84 feet to a concrete monument on the South right of way line of U.S. Highway 90 (State Road 10); thence run N 60°32'22" W along said South right of way line a distance of 250.96 feet; thence run S 24°27'30" W, a distance of 350.21 feet; thence run N 88°19'00" W, a distance of 569.74 feet to the West line of said Section 30; thence run S 00°33'43" W along said West line a

distance of 183.04 feet to the POINT OF BEGINNING. Containing 5.01 acres, more or less.

SUBJECT TO easement described in Official Records Book 697, Page 713, public records, Columbia County, Florida.

Tax Parcel No.: 30-3S-16-02409-001 (parent parcel)

TOGETHER WITH all the tenements, hereditaments and appurtenances thereto belonging or in anywise appertaining.

TO HAVE AND TO HOLD the same in fee simple forever.

AND the Grantor hereby covenants with said Grantee that the Grantor is lawfully seized of said land in fee simple; that the Grantor has good right and lawful authority to sell and convey said land; that the Grantor hereby fully warrants the title to said land and will defend the same against the lawful claims of all persons whomsoever; and that said land is free of all encumbrances, except taxes accruing subsequent to December 31, 2004.

IN WITNESS WHEREOF, the said Grantor has signed and sealed these presents the day and year first above written.

Signed, sealed and delivered in the presence of:

Witness

Vivian Darley Rowy

- : A C

Witness
DIANE S. EDENFIELD

Print or type name

GK CHOUDHURY (SEAL)

SHAGUFTA A. CHOUDHURY (SEAL

Inst:2005031881 Date:12/22/2005 Time:15:43
Doc Stamp-Deed: 409.50
DC,P.DeWitt Cason,Cclumbia County B:1069 P:577

Signed,	sealed	and	delivered
in the p			

Cira Hove

Witness

Vivian Rowe

Print or type name

Witness

S. EDENFIELD

Print or type name

.

FAISAL FAMILY LIMITED PARTNERSHIP by and through its General Partner,

M. A. FAISAL, M.D., L.L.C

By:

Mohammad A. Faisal Managing Member

STATE OF FLORIDA COUNTY OF COLUMBIA

Diarle S. Edenfield
MY COMMISSION # DD112002 EXP.PT
May 26, 2006
BONDED THEIR PROPERTINGUEANCE, INC.

Notary Public, State of Florida

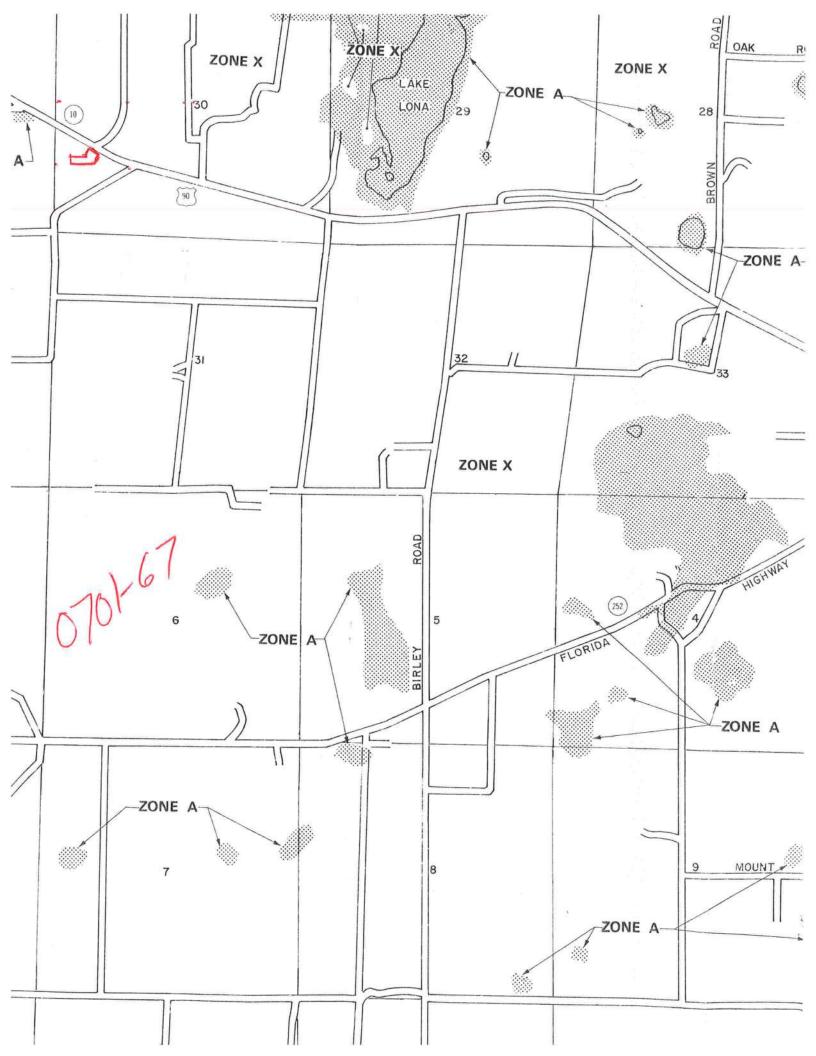
(NOTARIAL SEAL)

My Commission Expires:

STATE OF FLORIDA COUNTY OF COLUMBIA

The foregoing instrument was acknowledged before me this 31 day of WOLDWOL 2005, by MOHAMMAD A. FAISAL, as the Managing Member of M. A. FAISAL, M.D., L.L.C., a Florida limited liability company, the General Partner of FAISAL FAMILY LIMITED PARTNERSHIP, a Florida limited partnership, on behalf of the partnership, who is personally known to me or who has produced a Florida driver's license as identification.

Notary Public, State of Florida


(NOTARIAL SEAL)

My Commission Expires:

Inst: 2005031881 Date: 12/22/2005 Time: 15:43

Doc Stamp-Deed : 309.50

DC,P.DeWitt Cason,Columbia County B:1069 P:578

COLUMBIA COUNTY 9-1-1 ADDRESSING

P. O. Box 1787, Lake City, FL 32056-1787 PHONE: (386) 758-1125 * FAX: (386) 758-1365 * Email: ron croft@columbiacountyfla.com

Addressing Maintenance

To maintain the Countywide Addressing Policy you must make application for a 9-1-1 Address at the time you apply for a building permit. The established standards for assigning and posting numbers to all principal buildings, dwellings, businesses and industries are contained in Columbia County Ordinance 2001-9. The addressing system is to enable Emergency Service Agencies to locate you in an emergency, and to assist the United States Postal Service and the public in the timely and efficient provision of services to residents and businesses of Columbia County.

DATE REQUESTED:

11/20/2006

DATE ISSUED:

11/27/2006

ENHANCED 9-1-1 ADDRESS:

7876

W

US HIGHWAY 90

LAKE CITY

FL 32055

PROPERTY APPRAISER PARCEL NUMBER:

30-3S-16-02409-001

Remarks:

Address Issued By:

Columbia County 9-1-1 Addressing / GIS Department

NOTICE: THIS ADDRESS WAS ISSUED BASED ON LOCATION INFORMATION RECEIVED FROM THE REQUESTER. SHOULD, AT A LATER DATE, THE LOCATION INFORMATION BE FOUND TO BE IN ERROR, THIS ADDRESS IS SUBJECT TO CHANGE.

503

COLUMBIA COUNTY 9-1-1 ADDRESSING APPROVED

Florida Department of Transportation

JEB BUSH GOVERNOR JOSE ABREU SECRETARY

FDOT - Lake City Maintenance Permits Department Post Office Box 1415 Lake City, Fl. 32056-1415

Date: 4-25-06

GTC Design Group, Inc. Mr. Chad Williams, P. E. P. O. Box 187 Live Oak, Fl. 32064

RE: Approved FDOT Commercial Access Connection Permit Project Name: The Islamic Center of Lake City

Permittee: Islamic Center of Lake City Access Permit No: Access 2006-A-292-0012 State Highway No: 10 / Permit Category: B

State Section No: 29010 / State Mile Post: 2.280 + -

Mr. Williams:

This will acknowledge your request on behalf of your client, Islamic Center of Lake City, Dr. Mohammed Choudhury, Responsible Representative; in making proposed Access and Roadway Improvements to State Highway No. 10 in Columbia County, Florida. Your client is hereby granted permission by State Access Permit to make the following described Access and Roadway Improvements for the permitted development.

Access Connection Details

Proposed for Construction is a new twenty-four foot (24') wide sidedrain piped commercial access connection. The newly permitted connection shall be built as a rural commercial access connection with sidedrain pipe required. The two twelve foot wide asphalt paved main travel lanes of the new connection shall be built on a 0.02% slope from the crowned centerline, with double thirty-five (35') wide asphalt paved turnout radii. All new asphalt paved shoulders shall be required to be reconstructed as shown on Sheet No. 6 of the approved site plan with the existing paved shoulders being removed within the limits of permitted improvements. New 150 LF asphalt paved Deceleration Taper is to be built onto the right in turn movement of the connection and throughout the full turn movement of the driveway turnout radii. All new paved shoulders are to be constructed on a 0.06% grade slope and must match the existing width. A minimum of 81 LF of 18 inch round diameter CMP is to be constructed and placed into the ditch line 6 inches below existing flow grade. Page 2 of 5 Legal Permit Cover Letter Permit No. 2006-A-292-0012

Permittee: The Islamic Center of Lake City, Dr. Mohammed Choudhury, Responsible Representative

In addition to the 81 LF of round BCCMP, two eight foot long F Sections (see attached MES detail) are to be attached to each end of the pipe. These F Sections shall require MES Slope Cuts of 1:4. The new sidedrain CMP shall be centered within the existing FDOT ditch line. Both turn radii shall have minimum five foot wide or greater earthen stabilized shoulders on a maximum1:4 slope. Both of the sloped shoulders and ditch slopes shall require to be stabilized throughout the full turn movements of both turnout radii with grass sod coverage over all. **Required Grass Sod shall on site before paving can commence.**

Pavement Design Details

The new commercial access shall be constructed with a minimum twelve (12") inch depth Stabilized earth subgrade (LBR 40 required), 8 inches of compacted crushed FDOT Certified Limerock Base Material Course with a 0.1 gal./S.Y. Prime Coat and a minimum two (2") inches compacted finished asphalt surface course of FDOT Type FC-12.5.

Testing Requirements

All subgrade, base and or structural materials used shall require proof of passing density testing in accordance with those found in the most current FDOT Standard Specifications for Road & Bridge Construction Manual. A total of six density tests (3 on the main driveway and 3 on the 150 taper) shall be required. Each density test must achieve or exceed a minimum of 98% compaction density.

Proof of passing density shall be forwarded to the local FDOT Permits Inspector at Lake City Maintenance a minimum of 48 hours in advance of any planned concurrent paving commencement. The Permittee, his/her General Contractor shall contact the FDOT Permits Office for directions from FDOT Permits Office as to the location of these tests sites. No paving can commence without proof of passing density tests. Failure on the Permittees' behalf to provide the necessary density tests results is reason to suspend the Permittee's FDOT issued permit or ongoing construction upon FDOT R/W.

Pavement Striping and Signage Requirements

The new asphalt connections finished surface course shall be striped with a twenty-four inch wide stop bar and thirty minimum LF of double yellow lane separation striping as shown on the approved plans. The main two 12 foot wide travel lanes and their radii shall be separated from the proposed new paved five foot shoulders by the construction of six inch wide white separator striping. The new deceleration taper shall require 6/10′ foot skip, six inch wide white stripes. Per the approved permit and site plan all required pavement striping shall be with a certified "Lead Free", Thermoplastic marking and striping material for those areas lying both on and off FDOT R/W that pertain to the approved permitted driveway attaching to SR-10. All new Thermoplastic Striping as well as aboveground signage shall conform to the State FDOT Indexes 17302, 17346 and /or 11860 for aboveground signs. All thermoplastic marking materials shall be "Certified Lead Free" Materials.

Page 3 of 5 Legal Permit Cover Letter Permit No. 2006-A-292-0012

Permittee: The Islamic Center of Lake City, Dr. Mohammed Choudhury, Responsible Representative

A single FDOT Series 600, 30 inch by 30 inch, R1-1 aboveground STOP SIGN is required. All aboveground signs proposed to be constructed upon FDOT Right-of way shall be constructed per approved site plan and per FDOT Index No. 17302, Sheet 1 of 1. All metal posts on FDOT shall be aluminum two inch or greater in diameter and set at a minimum height of 7 feet from EOP grade with brackets per FDOT Index No. 11860.

All aboveground signs required under this approved permit shall have been constructed in place and according to FDOT Index requirements before final driveway asphalt paving or concreting can commence.

Notice: A 21-Day Asphalt Cure-out period shall be required of the newly constructed asphalt surface course before any thermoplastic markings may be placed down. The new connection shall not be utilized at any time before the FDOT Permits Office has made their final inspection with a passing grade inspection being received, with evidence of same to the Permittee.

Roadway, Ditch/Slope Area, Grass Sodding Requirements & R/W Restoration

All areas of the ditch line its slopes; radii and other areas that fall within the limits of the permitted Access turning radii shall receive a complete coverage of Certified Coastal Bermuda Grass Sod. All other areas outside this particular area shall require a complete coverage of hulled Bermuda grass and millet seed with copious amounts of Straw Mulch covering all. All areas upon FDOT R/W shall be made clean and acceptable.

Notice of Final Approved Plans Interpretation

The Local Permits Office having jurisdiction over the approved permit shall have final determination over all approved plans/ construction concepts and method details that could affect the FDOT Rightof-Way Property.

Notice of Pre-Construction Meeting (Mandatory)

The Permittee and his/her construction supervisor(s) shall meet a minimum of 48 hours in advance of activation of this permit, so that all parties will have an opportunity to read in detail this attached cover letter, review its plans and be provided the opportunity to ask any questions he or she may have in regards to this permit. It shall be the Permittee's responsibility to contact the local Permits Office no later than 48 hours in advance of the planned activation/construction commencement date, so that this provision can be completed satisfactory to all parties involved. THIS IS A MANDATORY PERMIT PROVISION!!

Stormwater Erosion Control Plan

The approved Permittee shall be solely responsible for the control of stormwater and it's affects during the complete pre-planning and full construction phase of approved permitted improvements under this FDOT Access Permit No. 2006-A-292-0012. Under no conditions shall any work commence upon FDOT R/W before all required Stormwater and/or Erosion Control plans has been put in place and received an inspection through the Permits Office.

۳.

Page 4 of 5

Legal Permit Cover Letter Permit No. 2006-A-292-0012

Permittee: The Islamic Center of Lake City, Dr. Mohammed Choudhury, Responsible Representative

STATE FDOT MAINTENANCE OF TRAFFIC REQUIREMENTS

Under no circumstances shall the permittee, his general contractor nor any subcontractor commence work within the limits of the permitted limits of this proposed project until all State Advanced warning Maintenance of Traffic Plan has been installed and have received an inspection for compliance with this legal permit cover letter provision.

Grass Sod Requirement Details

All slopes, shoulders, ditches, and any disturbed areas within the limits of the proposed paved turnout radii, shall be completely grass sodded with Certified Coastal Bermuda grass. Note: all grass shall be installed, watered and inspected for evidence of growth, before any paving can commence under this permit. Failure to complete this provision can be reason for temporary suspension of this permit. NOTICE: ALL R/W RESTORATION AND REQUIRED GRASS SOD SHALL BE PLACED DOWN AND INSPECTED BEFORE ANY ASPHALT PAVING CAN COMMENCE UNDER THIS APPROVED PERMIT.

All construction shall be to the most current F.D.O.T. Roadway and Traffic Design Standards and F.D.O.T. Standard Specifications for Road and Bridge Construction. All construction shall be per approved permit, cover letter, special provisions, and signed and sealed site plans and shall conform to all current F.D.O.T. Specifications and Inspections. No work can commence on F.D.O.T. right-of-way before the approved Maintenance of Traffic Plan is in place. The FDOT Permits Staff shall have final say as to any conflicts of interest that may occur, before, during or after the construction phase.

Save Harmless Clause

Please refer to the approved permit, site plan drawings and if attached addendum and/or Survey Plat for Access type, location and construction details. Refer to the approved connection permit for additional **General and Special Provisions** that could alter construction design plans as shown on the attached site plan sheet. A copy of the approved site plan and the permit itself shall be on site at all times. Construction on the Department of Transportation's Right-of-Way shall meet all of the Department's Standard Construction Specifications and Safety Criteria.

This Permit is issued with the understanding that a Department approved contractor shall perform all construction in accordance with F.D.O.T. Specifications and that all costs of construction shall be borne by the applicant.

It is also understood and agreed that the rights and privileges herein set out, are granted only to the extent of the State's Right, Title and Interest in the land to be entered upon and used by the holder, and the holder will at all times, assume all risk of and indemnify, defend, and save harmless the State of Florida and the Department from and against any and all loss, damage, cost or expense arising in any manner on account of the exercise or attempted exercise by said holder of the aforesaid rights and privileges.

Page 5 of 5 Legal Permit Cover Letter Permit No. 2006-A-292-0012

Permittee: The Islamic Center of Lake City, Dr. Mohammed Choudhury, Responsible Representative

OFFICIAL PERMIT ACTIVATION REQUIRED

As a provision of the approved permit the Permittee's legal representative and or his/her project engineer/manager shall make advanced contact with the Access Permits Coordinator, Neil E. Miles, located at Lake City Maintenance located at 710 NW Lake Jeffery Road, Suite No. 101, Lake City, Florida, 32055-2621, Phone Number (904) 961-7193 or if no answer 961-7180, a minimum of 48 hours prior to your planned start/commencement date. Legal 2-way verbal contact is required.

Sincerely,

Neil E. Miles

Access Permits Coordinator

JUU JUL UIU

STATE OF FLORIDA DEPARTMENT OF TRANSPORTATION

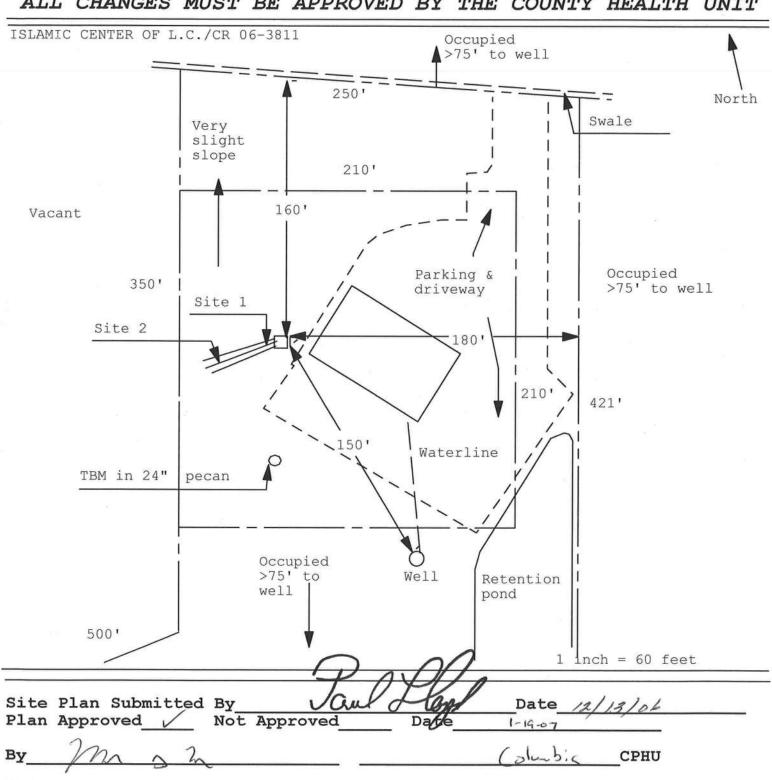
DRIVEWAY CONNECTION PERMIT FOR ALL CATEGORIES

850-040-18 SYSTEMS FLANNING C4/03 Page 1 of 3

PART 1: PERMIT INFORMATION
APPLICATION NUMBER: 06-A-292-12
Permit Category: B Access Classification: 10
Project: 24' ASPH DRIVEWAY WITH DOUBLE 35' TURN RADII, ALSO 150' DECEL TAPER.
Permittee: ISLAMIC CENTER OF LAKE CITY
Section/Mile Post: 29010 / 2.280+- State Road: 10 (W)
Section/Mile Post: State Road:
PART 2: PERMITTEE INFORMATION
Permittee Name: ISLAMIC CENTER OF LAKE CITY.
Permittee Mailing Address: 412 NW SCENIC DR.
City, State, Zip: 1 AKE CITY EL 22055
Telephone: (386)755-9457
Engineer/Consultant/or Project Manager: GTC DESIGN GROUP
Engineer responsible for construction inspection: CHAD WILLIAMS
Mailing Address: 176 SW LAKE JEFFREY ROAD
City, State, Zip: LAKE CITY,, FL.32055
Telephone: (386)754-3677 FAX
PART 3: PERMIT APPROVAL
The above application has been reviewed and is hereby approved subject to all Provisions as attached.
Permit Number: 06-A-292-12 Department of Transportation
Signature: New Title: PERMITS COORDINATOR
Department Representative's Printed Name NEIL E. MILES
Temporary Permit O YES O NO (If temporary, this permit is only valid for 6 months)
Special provisions attached
Date of Issuance: APR 2 5 2006
If this is a normal (non-temporary) permit it authorizes construction for one year from the date of issurance. This can only be extended by the Department as specified in 14-96 007/6)

850-C40-18 SYSTEMS PLANNING 04/02 Page 2 of 3

PART 4: GENERAL PROVISIONS


- Notify the Department of Transportation Maintenance Office at least 48 hours in advance of starting proposed work.
 Phone: 386-961-7180 , Attention: NEIL E. MILES, PERMITS COORDINATOR
- A copy of the approved permit must be displayed in a prominent location in the immediate vicinity of the connection construction.
- Comply with Rule 14-96.008(1), F.A.C., Disruption of Traffic.

JOH CE UT IESTIM


- Comply with Rule 14-96.008(7), F.A.C., on Utility Notification Requirements.
- All work performed in the Department's right of way shall be done in accordance with the most current Department standards, specifications and the permit provisions.
- The permittee shall not commence use of the connection prior to a final inspection and acceptance by the Department.
- 7. Comply with Rule 14-96.003(3)(a), F.A.C., Cost of Construction.
- If a Significant Change of the permittee's land use, as defined in Section 335.182, Florida Statutes, occurs, the Permittee must contact the Department.
- Medians may be added and median openings may be changed by the Department as part of a
 Construction Project or Safety Project. The provision for a median might change the operation of the connection to
 be for right turns only.
- 10. All conditions in NOTICE OF INTENT WILL APPLY unless specifically changed by the Department.
- 11. All approved connection(s) and turning movements are subject to the Department's continuing authority to modify such connection(s) or turning movements in order to protect safety and traffic operations on the state highway or State Highway System.
- 12. Transportation Control Features and Devices in the State Right of Way. Transportation control features and devices in the Department's right of way, including, but not limited to, traffic signals, medians, median openings, or any other transportation control features or devices in the state right of way, are operational and safety characteristics of the State Highway and are not means of access. The Department may install, remove or modify any present or future transportation control feature or device in the state right of way to make changes to promote safety in the right of way or efficient traffic operations on the highway.
- 13. The Permittee for him/herself, his/her heirs, his/her assigns and successors in interest, binds and is bound and obligated to save and hold the State of Florida, and the Department, its agents and employees harmless from any and all damages, claims, expense, or injuries arising out of any act, neglect, or omission by the applicant, his/her heirs, assigns and successors in interest that may occur by reason of this facility design, construction, maintenance, or continuing existence of the connection facility, except that the applicant shall not be liable under this provision for damages arising from the sole negligence of the Department.
- 14. The Permittee shall be responsible for determining and notify all other users of the right of way.
- 15. Starting work on the State Right of Way means that I am accepting all conditions on the Permit.

Application for Onsite Sewage Disposal System Construction Permit. Part II Site Plan Permit Application Number: 07-00060N

ALL CHANGES MUST BE APPROVED BY THE COUNTY HEALTH UNIT

Notes:

SUWANNEE RIVER WATER MANAGEMENT DISTRICT

LIVE DAK, FLORIDA 32060 TELEPHONE: (386) 362-1001 TELEPHONE: 800-226-1066 FAX (386) 362-1056

GENERAL PERMIT

PERMITTEE: ISLAMIC CENTER OF LAKE CITY 155 NORTHWEST ENTERPRISE WAY LAKE CITY, FL 32055

PERMIT NUMBER: ERP06-0002 **DATE ISSUED: 04/25/2006 DATE EXPIRES: 04/25/2009** COUNTY: COLUMBIA

TRS: S30/T3S/R16E

PROJECT: ISLAMIC CENTER OF LAKE CITY

Approved entity to whom operation and maintenance may be transferred pursuant to rule 40B-4.1130, Florida Administrative Code (F.A.C.):

DR. MOHAMMED CHOUDHURY ISLAMIC CENTER OF LAKE CITY 155 NORTHWEST ENTERPRISE WAY LAKE CITY, FL 32055

Based on information provided, the Suwannee River Water Management District's (District) rules have been adhered to and an environmental resource general permit is in effect for the permitted activity description below:

Construction and operation of a surfacewater management system serving 0.56 acres of impervious surface on a total project area of acres in a manner consistent with the application package submitted by Chad Williams, P.E. of GTC Design Group certified on April 10, 2006.

It is your responsibility to ensure that adverse off-site impacts do not occur either during or after construction. Any additional construction or alterations not authorized by this permit may result in flood control or water quality problems both on and off site and will be a violation of District rule.

You or any other substantially affected persons are entitled to request an administrative hearing pursuant to ss.120.57(1), Florida Statutes (F.S.), and s.40B-1.511, F.A.C., if they object to the District's actions. Failure to request a hearing within 14 days will constitute a waiver of your right to request such a hearing. In addition, the District will presume that permittee waives Chapter 120,

Project: ISLAMIC CENTER OF LAKE CITY

Page 2 of 7

F.S., rights to object or appeal the action upon commencement of construction authorized by the permit.

This permit is issued under the provisions of chapter 373, F.S., chapter 40B-4, and chapter 40B-400, F.A.C. A general permit authorizes the construction, operation, maintenance, alteration, abandonment, or removal of certain minor surface water management systems. This permit authorizes the permittee to perform the work necessary to construct, operate, and maintain the surface water management system shown on the application and other documents included in the application. This is to notify you of District's agency action concerning Notice Of Intent. This action is taken pursuant to rule 40B-4 and 40B-400, F.A.C.

Standard Conditions for All General Permits:

- 1. The permittee shall perform all construction authorized in a manner so as to minimize adverse impacts to fish, wildlife, natural environmental values, and water quality. The permittee shall institute necessary measures during construction including riprap, reinforcement, or compaction of any fill materials placed around newly installed structures, to minimize erosion, turbidity, nutrient loading, and sedimentation in the receiving waters.
- 2. Water quality data representative of the water discharged from the permitted system, including, but not limited to, the parameters in chapter 62-302, F.A.C., shall be submitted to the District as required. If water quality data are required, the permittee shall provide data as required on the volume and rate of discharge including the total volume discharged during the sampling period. All water quality data shall be in accordance with and reference the specific method of analysis in "Standard Methods for the Examination of Water and Wastewater" by the American Public Health Association or "Methods for Chemical Analysis of Water and Wastes" by the U.S. Environmental Protection Agency.
- 3. The operational and maintenance phase of an environmental resource permit will not become effective until the owner or his authorized agent certifies that all facilities have been constructed in accordance with the design permitted by the District. If required by the District, such as-built certification shall be made by an engineer or surveyor. Within 30 days after the completion of construction of the system, the permittee shall notify the District that the facilities are complete. If appropriate, the permittee shall request transfer of the permit to the responsible entity approved by the District for operation and maintenance. The District may inspect the system and, as necessary, require remedial measures as a condition of transfer of the permit or release for operation and maintenance of the system.
- 4. Off-site discharges during and after construction shall be made only through the facilities authorized by the permit. Water discharged from the project shall be through structures suitable for

Project: ISLAMIC CENTER OF LAKE CITY

Page 3 of 7

regulating upstream stage if so required by the District. Such discharges may be subject to operating schedules established by the District.

- 5. The permit does not convey to the permittee any property right nor any rights or privileges other than those specified in the permit and chapter 40B-1, F.A.C.
- 6. The permittee shall hold and save the District harmless from any and all damages, claims, or liabilities which may arise by reason of the construction, operation, maintenance, alteration, abandonment, or development in a Works of the District which is authorized by the permit.
- 7. The permit is issued based on the information submitted by the applicant which reasonably demonstrates that adverse off-site water resource impacts will not be caused by the permitted activity. It is the responsibility of the permittee to insure that such adverse impacts do not in fact occur either during or after construction.
- 8. It is the responsibility of the permittee to obtain all other clearances, permits, or authorizations required by any unit of local, state, or federal government.
- 9. The surfacewater management system shall be constructed prior to or concurrent with the development that the system is intended to serve and the system shall be completed within 30 days of substantial completion of the development which the system is intended to serve.
- 10. Except for General Permits After Notice or permits issued to a unit of government, or unless a different schedule is specified in the permit, the system shall be inspected at least once every third year after transfer of a permit to operation and maintenance by the permittee or his agent to ascertain that the system is being operated and maintained in a manner consistent with the permit. A report of inspection is to be sent to the District within 30 days of the inspection date. If required by chapter 471, F.S., such inspection and report shall be made by an engineer.
- 11. The permittee shall allow reasonable access to District personnel or agents for the purpose of inspecting the system to insure compliance with the permit. The permittee shall allow the District, at its expense, to install equipment or devices to monitor performance of the system authorized by their permit.
- 12. The surfacewater management system shall be operated and maintained in a manner which is consistent with the conditions of the permit and chapter 40B-4.2040, F.A.C.
- 13. The permittee is responsible for the perpetual operation and maintenance of the system unless the operation and maintenance is transferred pursuant to chapter 40B-4.1130, F.A.C., or the permit is modified to authorize a new operation and maintenance entity pursuant to chapter 40B-4.1110,

Project: ISLAMIC CENTER OF LAKE CITY

Page 4 of 7

F.A.C.

- 14. All activities shall be implemented as set forth in the plans, specifications and performance criteria as approved by this permit. Any deviation from the permitted activity and the conditions for undertaking that activity shall constitute a violation of this permit.
- 15. This permit or a copy thereof, complete with all conditions, attachments, exhibits, and modifications, shall be kept at the work site of the permitted activity. The complete permit shall be available for review at the work site upon request by District staff. The permittee shall require the contractor to review the complete permit prior to commencement of the activity authorized by this permit.
- 16. Activities approved by this permit shall be conducted in a manner which do not cause violations of state water quality standards.
- 17. Prior to and during construction, the permittee shall implement and maintain all erosion and sediment control measures (best management practices) required to retain sediment on-site and to prevent violations of state water quality standards. All practices must be in accordance with the guidelines and specifications in the Florida Stormwater, Erosion, and Sedimentation Control Inspector's Manual unless a project specific erosion and sediment control plan is approved as part of the permit, in which case the practices must be in accordance with the plan. If site-specific conditions require additional measures during any phase of construction or operation to prevent erosion or control sediment, beyond those specified in the erosion and sediment control plan, the permittee shall implement additional best management practices as necessary, in accordance with the Florida Stormwater, Erosion, and Sedimentation Control Inspector's Manual. The permittee shall correct any erosion or shoaling that causes adverse impacts to the water resources.
- 18. Stabilization measures shall be initiated for erosion and sediment control on disturbed areas as soon as practicable in portions of the site where construction activities have temporarily or permanently ceased, but in no case more than seven days after the construction activity in that portion of the site has temporarily or permanently ceased.
- 19. At least 48 hours prior to commencement of activity authorized by this permit, the permittee shall submit to the District a Construction Commencement Notice Form No. 40B-1.901(14) indicating the actual start date and the expected completion date.
- 20. When the duration of construction will exceed one year, the permittee shall submit construction status reports to the District on an annual basis utilizing an Annual Status Report Form No. 40B-1.901(15). These forms shall be submitted during June of each following year.

Nov 08 06 02:44p

Project: ISLAMIC CENTER OF LAKE CITY

Page 5 of 7

- 21. For those systems which will be operated or maintained by an entity requiring an easement or deed restriction in order to provide that entity with the authority necessary to operate or maintain the system, such easement or deed restriction, together with any other final operation or maintenance documents as are required by Paragraph 40B-4.2030(2)(g), F.A.C., and Rule 40B-4.2035, F.A.C., must be submitted to the District for approval. Documents meeting the requirements set forth in these subsections of District rules will be approved. Deed restrictions, easements and other operation and maintenance documents which require recordation either with the Secretary of State or Clerk of the Circuit Court must be so recorded prior to lot or unit sales within the project served by the system, or upon completion of construction of the system, whichever occurs first. For those systems which are proposed to be maintained by county or municipal entities, final operation and maintenance documents must be received by the District when maintenance and operation of the system is accepted by the local governmental entity. Failure to submit the appropriate final documents referenced in this paragraph will result in the permittee remaining liable for carrying out maintenance and operation of the permitted system.
 - 22. Each phase or independent portion of the permitted system must be completed in accordance with the permitted plans and permit conditions prior to the initiation of the permitted use of site infrastructure located within the area served by that portion or phase of the system. Each phase or independent portion of the system must be completed in accordance with the permitted plans and permit conditions prior to transfer of responsibility for operation and maintenance of that phase or portion of the system to a local government or other responsible entity.
 - 23. Within 30 days after completion of construction of the permitted system, or independent portion of the system, the permittee shall submit a written statement of completion and certification by a registered professional engineer or other appropriate individual as authorized by law, using the supplied As-Built Certification Form No. 40B-1.901(16) incorporated by reference in Subsection 40B-1.901(16), F.A.C. When the completed system differs substantially from the permitted plans, any substantial deviations shall be noted and explained and two copies of as-built drawings submitted to the District. Submittal of the completed form shall serve to notify the District that the system is ready for inspection. The statement of completion and certification shall be based on onsite observation of construction (conducted by the registered professional engineer, or other appropriate individual as authorized by law, or under his or her direct supervision) or review of asbuilt drawings for the purpose of determining if the work was completed in compliance with approved plans and specifications. As-built drawings shall be the permitted drawings revised to reflect any changes made during construction. Both the original and any revised specifications must be clearly shown. The plans must be clearly labeled as "as-built" or "record" drawing. All surveyed dimensions and elevations shall be certified by a registered surveyor. The following information, at a minimum, shall be verified on the as-built drawings:
 - a. Dimensions and elevations of all discharge structures including all weirs, slots, gates, pumps,

Project: ISLAMIC CENTER OF LAKE CITY

Page 6 of 7

pipes, and oil and grease skimmers;

- b. Locations, dimensions, and elevations of all filter, exfiltration, or underdrain systems including cleanouts, pipes, connections to control structures, and points of discharge to the receiving waters;
- c. Dimensions, elevations, contours, or cross-sections of all treatment storage areas sufficient to determine stage-storage relationships of the storage area and the permanent pool depth and volume below the control elevation for normally wet systems, when appropriate;
- d. Dimensions, elevations, contours, final grades, or cross-sections of the system to determine flow directions and conveyance of runoff to the treatment system;
- e. Dimensions, elevations, contours, final grades, or cross-sections of all conveyance systems utilized to convey off-site runoff around the system;
- f. Existing water elevation(s) and the date determined; and
- g. Elevation and location of benchmark(s) for the survey.
- 24. The operation phase of this permit shall not become effective until the permittee has complied with the requirements of the condition in paragraph 23 above, the District determines the system to be in compliance with the permitted plans, and the entity approved by the District in accordance with Rule 40B-4.2035, F.A.C., accepts responsibility for operation and maintenance of the system. The permit may not be transferred to such approved operation and maintenance entity until the operation phase of the permit becomes effective. Following inspection and approval of the permitted system by the District, the permittee shall request transfer of the permit to the approved responsible operation and maintenance operating entity if different from the permittee. Until the permit is transferred pursuant to Rule 40B-4.1130, F.A.C., the permittee shall be liable for compliance with the terms of the permit.
- 25. Should any other regulatory agency require changes to the permitted system, the permittee shall provide written notification to the District of the changes prior to implementation so that a determination can be made whether a permit modification is required.
- 26. This permit does not eliminate the necessity to obtain any required federal, state, local and special District authorizations prior to the start of any activity approved by this permit. This permit does not convey to the permittee or create in the permittee any property right, or any interest in real property, nor does it authorize any entrance upon or activities on property which is not owned or controlled by the permittee, or convey any rights or privileges other than those specified in the permit and in this chapter and Chapter 40B-4, F.A.C.

Project: ISLAMIC CENTER OF LAKE CITY

Page 7 of 7

- 27. The permittee is hereby advised that Section 253.77, F.S., states that a person may not commence any excavation, construction, or other activity involving the use of sovereign or other lands of the state, the title to which is vested in the Board of Trustees of the Internal Improvement Trust Fund without obtaining the required lease, license, easement, or other form of consent authorizing the proposed use. Therefore, the permittee is responsible for obtaining any necessary authorizations from the Board of Trustees prior to commencing activity on sovereignty lands or other state-owned lands.
- 28. Any delineation of the extent of a wetland or other surface water submitted as part of the permit application, including plans or other supporting documentation, shall not be considered specifically approved unless a specific condition of this permit or a formal determination under 40B-400.046, F.A.C., provides otherwise.
- 29. The permittee shall notify the District in writing within 30 days of any sale, conveyance, or other transfer of ownership or control of the permitted system or the real property at which the permitted system is located. All transfers of ownership or transfers of a permit are subject to the requirements of Rule 40B-4.1130, F.A.C. The permittee transferring the permit shall remain liable for any corrective actions that may be required as a result of any permit violations prior to such sale, conveyance or other transfer.
- 30. If historical or archaeological artifacts are discovered at any time on the project site, the permittee shall immediately notify the District.
- 31. The permittee shall immediately notify the District in writing of any previously submitted information that is later discovered to be inaccurate.

WITHIN 30 DAYS AFTER COMPLETION OF THE PROJECT, THE PERMITTEE SHALL NOTIFY THE DISTRICT, IN WRITING, THAT THE FACILITIES ARE COMPLETE.

Date Approved 4-25-06

STATE OF FLORIDA DEPARTMENT OF HEALTH ONSITE SEWAGE DISPOS APPLICATION FOR CONS Authority: Chapter	SAL SYSTEM	мтт	CES DATE	PAID \$	1
APPLICATION FOR: [X] New System [] Existing [] Repair [] Abandonm	System [] Holding Tar] Other(Speci	nk [] 1	emporary/Experime	ental System
APPLICANT: ISLAMIC CENTER OF LA					
AGENT: CHARLES PEELER CONSTRU		i i	4		7
MAILING ADDRESS: 2218 US HIGHWA					
TO BE COMPLETED BY APPLICANT OSITE PLAN SHOWING PERTINENT FE	R APPLICANT'S ATURES REOUIR	AUTHORIZED A	GENT. ATTAC	H BUILDING PLAN A	AND TO-SCALE
PROPERTY INFORMATION [IF LOT I	S NOT IN A RE	CORDED SUBDIV	ISION, ATTAC	 H LEGAL DESCRIPTI	ON OR DEED
LOT:BLOCK:					
PROPERTY ID #: 30-3S-16-02					
PROPERTY SIZE: 5.0 ACRES [S					
PROPERTY STREET ADDRESS: 7870 US				7 ,	
DIRECTIONS TO PROPERTY: HIGHW				25	
		on our monitor	ONT NOAD I		
				, Y . A .	
BUILDING INFORMATION []	RESIDENTIAL	[X] COMMERCIAL		
Unit Type of	No. of	Building	# Persons	Business Activ	
No Establishment	Bedrooms	Area Sqft	Served	For Commercial	
1 CHURCH	0	4054	227	CHURCH	11.
2					
3					
4					24
					A
N] Garbage Grinders/Disposals N] Ultra-low Volume Flush Toil		[N] Spas/Hot 7 [N] Other (Spe		[N] Floor/Equipm	ment Drains
APPLICANT'S SIGNATURE:	<u> </u>	i ii i		DATE:	

HRS-H Form 4015 March 1992 (Obsoletes Previous Editions Which May Not Be Used)

Page 1 of 3

STATE OF FLORIDA
DEPARTMENT OF HEALTH AND REHABILITATIVE SERVICES
ONSITE SEWAGE DISPOSAL SYSTEM
SITE EVALUATION AND SYSTEM SPECIFICATIONS

PERMIT #	
CR #	06-3811

APPLICANT: ISLAMIC CENTER OF LAKE CITY AGEN	NT: CHARLES PEELER CONSTRUCTION
LOT:BLOCK:SUBDIVISION:_MEETS	S & BOUNDS
PROPERTY ID #: 30-3S-16-02409-001 [SECTION/	TOWNSHIP/RANGE/PARCEL NO. OR TAX ID NUMBER]
TO BE COMPLETED BY ENGINEER, HEALTH UNIT EMPLOYEE OR PROVIDE REGISTRATION NO. AND SIGN AND SEAL EACH PAGE	OF SUBMITTAL. COMPLETE ALL TTEMS
AUTHORIZED SEWAGE FLOW: 12,500 GALLONS PER	NET USABLE AREA AVAILABLE: 5.0 ACRES R DAY [RESIDENCES-TABLE-1 / OTHER-TABLE-2] R DAY [1500 GPD/ACRE OR 2500 GPD/ACRE] ROBSTRUCTED AREA REQUIRED: 1514 SQFT
BENCHMARK/REFERENCE POINT LOCATION: 24" PECAN TREE SO	
ELEVATION OF PROPOSED SYSTEM SITE IS 36 INCHES	BELOW] BENCHMARK/REFERENCE POINT.
THE MINIMUM SETBACK WHICH CAN BE MAINTAINED FROM THE SURFACE WATER: N/A FT DITCHES/SWALES: WELLS: PUBLIC: N/A FT LIMITED USE: N/A FT BUILDING FOUNDATIONS: 5 FT PROPERTY LINES:	160 FT NORMALLY WETS IN VES IX NO
SITE SUBJECT TO FREQUENT FLOODING: [] YES [X] NO 10 YEAR FLOOD ELEVATION FOR SITE: N/A FT MSL/N	10 YEAR FLOODING? [] YES [X] NO GVD SITE ELEVATION: N/A FT MSL/NGVD
SOIL PROFILE INFORMATION SITE 1 SO	IL PROFILE INFORMATION SITE 2
10YR 4/2 FS 0 to 16 10YR 5/4 FS 16 to 23 10YR 6/4 FS 23 to 47	Junsell #/Color Texture Depth 10YR 4/2 FS 0 to 15 10YR 5/4 FS 15 to 27 10YR 6/4 FS 27 to 58
to	10YR 7/3 FS 58 to 72
to	to
to	to
	SDA SOIL SERIES: LAKELAND LIKE
SOIL TEXTURE/LOADING RATE FOR SYSTEM SIZING: FS / DRAINFIELD CONFIGURATION: [X] TRENCH [] BED [INCHES [ABOVE / BELOW] EXISTING GRADE. LING: [] YES [X] NO DEPTH: INCHES
REMARKS/ADDITIONAL CRITERIA:	
Pann	
SITE EVALUATED BY:	DATE: December 13 2006
HRS-H Form 4015 March 1992 (Obsoletes Previous Edition	ns Which May Not Be Used) Page 3 of 3

	STATE OF FI DEPARTMENT	ORIDA OF HEALTH AND REHABI AGE DISPOSAL SYSTEM			
	CONSTRUCTION	ON PERMIT		FEE PAID \$ RECEIPT #	
	Authority:	Chapter 381, FS & C	Chapter 10D-6, FAG	CR #	06-3811
	CONSTRUCTION PERMIT FOR X New System [] For [] Repair [] For [] Repair [] Re] Holding Tank] Other(Specify)	[] Temporary/	Experimental System
A	PPLICANT: ISLAMIC CENTE	R OF LAKE CITY	AGENT: CHAR	ES PEELER CONSTR	UCTION
P	ROPERTY STREET ADDRESS	: 7870 US HIGHWAY 90 V	VEST	***	
L	OT:BLOCK:_	SUBDIVISI	ON: MEETS & BOUND	os .	***************************************
	ROPERTY ID #:30		OR TAX ID NUMBE	:R1	
EX PI BI MO	YSTEM MUST BE CONSTRUCE PAIR PERMITS AND HOLD XPIRE 18 MONTHS FROM TERFORMANCE FOR ANY SPEASIS FOR ISSUANCE OF TERFORMANIES MAY RESULE TO THE PARKED TO THE	HE DATE OF ISSUE. HE CIFIC PERIOD OF TIME HIS PERMIT, REQUIRE TO IN THIS PERMIT BEINT.	IRE 90 DAYS FROM RS APPROVAL OF SY . ANY CHANGE IN THE APPLICANT TO NG MADE NULL AND	THE DATE OF ISSUE STEM DOES NOT GUA MATERIAL FACTS WH MODIFY THE PERMIT VOID.	. ALL OTHER PERMITS RANTEE SATISFACTORY ICH SERVED AS A APPLICATION. SUCH
	YSTEM DESIGN AND SPECI				
	[1,500] [GALLONS / [] [GALLONS / [0] GALLONS G	GPDI	CADACTT	V MIIT TIT CUANT	DEDED /TH GEDTER
K	[] GALLONS PE	R DOSE DOSING TANK	CAPACITY DOSE RA	TE [N] PER 24 HRS	NO. OF PUMPS: [N]
D R	[756.7] SQUARE FEET	PRIMARY DRAINFIELD S	SYSTEM		
I	TYPE SYSTEM: CONFIGURATION:	[Y] CTANDARD [1 FILLED C 1	MOUND []	
N F	LOCATION OF BENCHMAR				
I E	ELEVATION OF PROPOSEI BOTTOM OF DRAINFIELD	O SYSTEM SITE IS [36	6 1 INCHES REI	OW BENCHMARK / E	REFERENCE POINT
D	FILL REQUIRED: [0				
0				*	
Н					
E R	-				
SP	ECIFICATIONS BY:		TITLE:	Soil Scientis	f
AP	PROVED BY:	* * * * * * * * * * * * * * * * * * *			COLUMBIA CPHU
	TE ISSUED:				ON DATE:
HR:	S-H Form 4016 March 19	92 (Obsoletes Previo	us Editions Which		

PRIVATE SOIL EVALUATION ACKNOWLEDGEMENT

Paul Lloyd, Soil Scientist

Ph. (904) 752-3571

I hereby acknowledge that COLUMBIA COUNTY HEALTH UNIT has no first-hand knowledge of the Soil Characteristics or Seasonal Water Table at this proposed onsite sewage treatment and disposal site (Permit #).
They are accepting the written evaluation of the Approved Private Soil Evaluator hired by myself or my approved agent(s). The system will be designed in accordance with the Private Evaluator's soil analysis and the information we have provided concerning flow rates, type of facility, and proposed usage.
I understand that a complete and accurate site plan is necessary to show the exact location of all pertinent facilities and features and other items that would affect location of this OSTDS. I also acknowledge that <u>any deviation</u> from the exact site plan <u>would require another site evaluation</u> by the private soil evaluator. Any system failure due to the incorrect soil evaluation, site plan or application information is not the responsibility of the COLUMBIA COUNTY PUBLIC HEALTH UNIT.
Signature Date
Homeowner / Agent P 000
Signature Private Soil Evaluato Date December 13 2006
Control Number 06-3811

Florida Energy Efficiency Code For Building Construction Florida Department of Community Affairs

EnergyGauge FlaCom v 2.11 FORM 400A-2004 Whole Building Performance Method for Commercial Buildings

Jurisdiction: COLUMBIA COUNTY, COLUMBIA COUNTY, FL (221000)

Short Desc: New Prj

Project: LAKE CITY ISLAMIC CENTER

Owner: LAKE CITY ISLAMIC CENTER

Address: WEST HWY 90

City: LAKE CITY

State: FLORIDA

Zip: 0

PermitNo: 0 Storeys: 1

Type: Religious Building **Class:** New Finished building

*Conditioned Area: 4054 *Cond + UnCond Area: 4054 * denotes lighted area. Does not include wall crosection areas

Max Tonnage: 4.5 (if different, write in)

Compliance Summary										
Component	Design	Criteria	Result							
Gross Energy Use	8,716.14	10,809.97	PASSES							
LIGHTING CONTROLS			PASSES							
EXTERNAL LIGHTING			PASSES							
HVAC SYSTEM			PASSES							
PLANT			None Entered							
WATER HEATING SYSTEMS			PASSES							
PIPING SYSTEMS			PASSES							
Met all required compliance from Check List?			Yes/No/NA							

IMPORTANT NOTE: An input report Print-Out from EnergyGauge Com of this design building must be submitted along with this Compliance Report.

COMPLIANCE CERTIFICATION:	
I hereby certify that the plans and specifications covered by this calculation are in compliance with the Florida Energy Efficiency Code. PREPARED BY: NICHOLAS GEISLER DATE:	Review of the plans and specifications covered by this calculation indicates compliance with the Florida Energy Code. Before construction is completed, this building will be inspected for compliance in accordance with Section 553.908, F.S. BUILDING OFFICIAL: DATE:
I hereby certify that this building is in compliance with the Florida Energy Efficiency Code. OWNER AGENT:	
DATE:	
If required by Florida law, I hereby certify (*) compliance with the Florida Energy Code.	that the system design is in REGISTRATION No.
ARCHITECT:	NICHOLAS GEISLER AN 7000
ELECTRICAL SYSTEM DESIGNER	15Feb2K7
LIGHTING SYSTEM DESIGNER:	
MECHANICAL SYSTEM DESIGNER:	
PLUMBING SYSTEM DESIGNER:	La

^(*) Signature is required where Florida Law requires design to be performed by registered design professionals. Typed names and registration numbers may be used where all relevant information is contained on signed/sealed plans.

Project: New Prj

Title: LAKE CITY ISLAMIC CENTER
Type: Religious Building
(WEA File: JACKSONVILLE.TMY)

Whole Building Compliance

	Design	Reference
	81.11	100.00
	\$8,716.14	\$10,809.97
LECTRICITY(MBtu/kWh/\$	81.11	100.00
and and industrial for the properties of the ■ defendence and the defendance of the defendance of the least of the defendance of the least of the defendance of the least o	176,798.00	217,943.00
	\$8,716.14	\$10,809.97
AREA LIGHTS	6.88 15,007.00	9.65 21,032.00
	\$739.85	\$1,043.19
MISC EQUIPMT	2.73	2.73
	5,939.00	5,939.00
	\$292.79	\$294.57
PUMPS & MISC		70 E0
	13.00	9.00
	\$0.64	\$0.45
SPACE COOL	18.07	26.44 57,640.00
	39,365.00 \$1,940.69	\$2,858.94
SPACE HEAT	9.71	11.98
SPACE HEAT	21,160.00	26,097.00
	\$1,043.19	\$1,294.41
VENT FANS	43.73	49.20
	95,314.00	107,226.00
	\$4,698.98	\$5,318.41

Project: New Prj

Title: LAKE CITY ISLAMIC CENTER

Type: Religious Building

(WEA File: JACKSONVILLE.TMY)

Description	Category	Allowance (W/Unit)		(W)	
Ext Light 1	Building entrance without canopy	33.00	18.0	594	60
Ext Light 2	Building exit	20.00	3.0	60	60

Design: 300 (W) PASSES

Allowance: 654 (W)

Project: New Prj

Title: LAKE CITY ISLAMIC CENTER

Type: Religious Building

(WEA File: JACKSONVILLE.TMY)

Lighting Controls Compliance

Acronym	Ashrae ID	Description	Area (sq.ft)	No. of Tasks	Design CP	Min CP	Compli- ance
Pr0Zo1Sp1	,001	Worship-Pulpit, Choir	1,032	1	7	1	PASSES
Pr0Zo2Sp1	,001	Worship-Pulpit, Choir	1,115	1	5	1	PASSES
Pr0Zo3Sp1	,002	Fellowship Hall	370	1	2	1	PASSES
Pr0Zo4Sp1	,002	Fellowship Hall	848	1	10	1	PASSES
Pr0Zo5Sp1	,002	Fellowship Hall	689	1	2	1	PASSES

PASSES

Project: New Prj

Title: LAKE CITY ISLAMIC CENTER

Type: Religious Building

(WEA File: JACKSONVILLE.TMY)

System Report Compliance

Pr0Sy1

System 1

Constant Volume Air Cooled

No. of Units

Split System < 65000 Btu/hr

Component	Category	Capacity	Design Eff	Eff Criteria	Design IPLV	IPLV Criteria	Comp- liance
Cooling System	Air Cooled < 65000 Btu/h		13.50	10.00	8.00		PASSES
	Cooling Capacity		0 00	0.00			
Heating System	Air Cooled HP < 65000		8.00	6.80			PASSES
	Btu/h Cooling Capacity						
Air Handling	Air Handler (Supply) -		0.80	0.90			PASSES
System -Supply	Constant Volume						
Air Handling	Air Handler (Return) -		0.80	0.90			PASSES
System - Return	Constant Volume						
Air Distribution	ADS System		6.00	6.00			PASSES
System							

Pr0Sy2 System 2

Constant Volume Air Cooled Split System < 65000 Btu/hr No. of Units

Component	Category	Capacity	Design Eff	Eff Criteria	Design IPLV	IPLV Criteria	Comp- liance
Cooling System	Air Cooled < 65000 Btu/h		14.00	10.00	8.00		PASSES
	Cooling Capacity						
Heating System	Air Cooled HP < 65000		8.00	6.80			PASSES
	Btu/h Cooling Capacity						
Air Handling	Air Handler (Supply) -		0.80	0.90			PASSES
System -Supply	Constant Volume						
Air Handling	Air Handler (Return) -		0.80	0.90			PASSES
System - Return	Constant Volume						
Air Distribution	ADS System		6.00	6.00			PASSES
System							

PASSES

Plant Compliance									
Description	Installed No	Size	Design Eff	Min Eff	Design IPLV	Min IPLV	Category		Comp liance
								None	

Project: New Prj
Title: LAKE CITY ISLAMIC CENTER
Type: Religious Building
(WEA File: JACKSONVILLE.TMY)

Water Heater Compliance										
Description	Туре	Category	Design Eff	Min Eff	Design Loss	Max Loss	Comp liance			
Water Heater 1	Electric water heater	<= 12 [kW]	0.91	0.86			PASSES			
	****					J	PASSES			

Project: New Prj Fitle: LAKE CITY ISLAMIC CENTER Type: Religious Building (WEA File: JACKSONVILLE Piping System Compliance											
Category	Pipe Dia [inches]	Is Runout?		Ins Cond [Btu-in/hr .SF.F]	Ins Thick [in]		Compliance				
Domestic and Service Hot Water Systems	0.75	False	125.00	0.28	0.75	0.50	PASSES				
					P	ASSES					

Project: New Prj
Title: LAKE CITY ISLAMIC CENTER
Type: Religious Building
(WEA File: JACKSONVILLE

Other Required Compliance

Category	Section	Requirement (write N/A in box if not applicable)	Check
Infiltration	406.1	Infiltration Criteria have been met	
System	407.1	HVAC Load sizing has been performed	
Ventilation	409.1	Ventilation criteria have been met	
ADS	410.1	Duct sizing and Design have been performed	
T & B	410.1	Testing and Balancing will be performed	
Motors	414.1	Motor efficiency criteria have been met	
Lighting	415.1	Lighting criteria have been met	
O & M	102.1	Operation/maintenance manual will be provided to owner	
Roof/Ceil	404.1	R-19 for Roof Deck with supply plenums beneath it	
Report	101	Input Report Print-Out from EnergyGauge FlaCom attached?	一

Project Information

Project Name: New Prj

Orientation: NorthEast

Building Classification: New Finished building Building Type: Religious Building

Address: WEST HWY 90

Project Title: LAKE CITY ISLAMIC CENTER

No.of Storeys: 1

State: FLORIDA

GrossArea: 4054

Zip: 0

Owner: LAKE CITY ISLAMIC CENTER

			Zones				
N _o	No Acronym	Description	Type	Area [sf]	Multiplier	Total Area [sf]	
-	Pr0Zo1	Zone 1	CONDITIONED	1031.5	-	1031.5	
7	Pr0Zo2	Zone 2	CONDITIONED	1114.8	-	1114.8	
Э	Pr0Zo3	Zone 3	CONDITIONED	369.9	-	369.9	
4	Pr0Zo4	Zone 4	CONDITIONED	848.5	1	848.5	
5	Pr0Zo5	Zone 5	CONDITIONED	6.889	-	6889	

-
7.2.1
FlaCom
rgyGauge
Ene

2/15/2007

e	•	ą	
•			

		S	Spaces						
No Acronym	Description	Type	Depth [ft]	Width [ft]	Height [ft]	Multi plier	Total Area [sf]	Total Volume [cf]	
In Zone: Pr0Zo1	1 Zo0Sp1	Worship-Pulpit, Choir	50.00	20.63	10.00	-	1031.5	10315.0	
In Zone: Pr0Zo2 1 Pr0Zo2Sp1	2 Zo0Sp1	Worship-Pulpit, Choir	43.58	25.58	16.00	-	1114.8	17836.4	
In Zone: Pr0Zo3 1 Pr0Zo3Sp1	3 Zo0Sp1	Fellowship Hall	8.67	42.67	10.00	-	369.9	3699.5	
In Zone: Pr0Zo4	4 Zo0Sp1	Fellowship Hall	90.00	16.97	10.00	_	848.5	8485.0	
In Zone: Pr0Zo5 1 Pr0Zo5Sp1	SooSp1	Fellowship Hall	39.75	17.33	10.00	1	688.9	6888.7	
			Lighting		3				
No	Type	Category	No. of Luminaires	Watts per Luminaire	Power [W]	S	Control Type	No.of Ctrl pts	
In Zone: Pr0Zo1 In Space: Pr0Zo1Sp1 1 Inca	0Zo1Sp1 Incandescent	General Lighting	32	09	1920	Man	Manual On/Off	7	
2	Incandescent	Display/Accent Lighting	3	300	006	Man	Manual On/Off		
In Zone: Pr0Zo2 In Space: Pr0Zo2Sp1	2 0Zo2Sp1 Incandescent	General Lighting	34	40	1360	Man	Manual On/Off	89	
2	Incandescent	Display/Accent Lighting	3	75	225	Man	Manual On/Off	1	
3	Incandescent	Display/Accent Lighting	7	300	2100	Man	Manual On/Off	5	
In Zone: Pr0Zo3 In Space: Pr0Zo3Sp1 1 Com	3 0Zo3Sp1 Compact Fluorescent	General Lighting	7	80	160	Man	Manual On/Off	1	

	2	Incandescent	General Lighting	ac	5		09	300	Manual On/Off	n/Off	1	Ц	
	3	Incandescent	Display/Accent Lighting	Lighting	3	No. 4	300	006	Manual On/Off	n/Off	1	Ц	
In Zone: In Sp	ne: Pr0Zo4 In Space: Pr0Zo4Sp1 1 Com	54Sp1 Compact Fluorescent	General Lighting	0.0	9		49	384	Manual On/Off	n/Off	8	Ц	
	. ,	Incandescent	General Lighting	0.0	5		40	200	Manual On/Off	n/Off	5	Ц	
	3	Incandescent	Display/Accent Lighting	Lighting	3		09	180	Manual On/Off	n/Off	2	Ц	
In Zone: In Sp	ne: Pr0Zo5 In Space: Pr0Zo5Sp1 1 Inca	o5Sp1 Incandescent	Display/Accent Lighting	Lighting	ю		240	720	Manual On/Off	n/Off	2	Ц	
	2	Compact Fluorescent	General Lighting	ao	9		96	576	Manual On/Off	'n/Off	2		
					Walls								
No De	Description	Type	Width [ft]	Width H (Effec) Multi [ft] [ft] plier	Multi plier	Area [sf]	Directi	onCon [Btu	DirectionConductance [Btu/hr. sf. F]	Heat Capacity [Btu/sf.F]	Dens. I [lb/cf] [h	R-Value [h.sf.F/Btu]	
In Zone:	one: Pr0Zo1 Pr0Zo1Wa1		20.63 TISO c/.5"	10.00	1	206.3	NorthEast		0.2180	17.6952	80.01	4.59	
2 Pr0	Pr0Zo1Wa2	Gyp 4" Brick /8"CMU/3/4"ISO BTWN24" oc/ 5"	50.00 TSO 5/2"	10.00	1	500.0	SouthEast		0.2180	17.6952	80.01	4.59	
3 Pr0	Pr0Zo1Wa3	Gyp 4" Brick /8"CMU/3/4"ISO BTWN24" oc./5"	20.63 TISO c/.5"	10.00	-	206.3	South Wes t		0.2180	17.6952	80.01	4.59	
In Zone: 1 Pr05	Zo2Wa1	Gyp 4" Brick /8"CMU/3/4"ISO BTWN24" oc/.5" Gyp	4.00 c/.5"	16.00	-	64.0	NorthWes t		0.2180	17.6952	80.01	4.59	

4.59	4.59	8.94	8.94	8.94	4.59	4.59	4.59	4.59	4.59
80.01	80.01	14.94	14.94	14.94	80.01	80.01	80.01	80.01	80.01
17.6952	17.6952	1.1829	1.1829	1.1829	17.6952	17.6952	17.6952	17.6952	17.6952
0.2180	0.2180	0.1118	0.1118	0.1118	0.2180	0.2180	0.2180	0.2180	0.2180
NorthEast	SouthEast	SouthEast	SouthWes t	NorthWes t	SouthWes t	SouthWes t	NorthWes t	NorthEast	NorthEast
426.7	64.0	158.3	106.7	158.3	426.7	169.7	500.0	169.7	173.3
1	-	-	-	-	-	-	-	-	-
16.00	16.00	4.00	4.00	4.00	10.00	10.00	10.00	10.00	10.00
26.67	4.00	39.58	26.67	39.58	42.67	16.97	50.00	16.97	17.33
4" Brick /8"CMU/3/4"ISO BTWN24" oc/.5" Gvn	4" Brick /8"CMU/3/4"ISO BTWN24" oc/.5"	0.75 in. stucco, 2x4x16" oc, R11Batt. 0.5 in. gvp	0.75 in. stucco, 2x4x16" oc, R11Batt. 0.5 in. gvp	0.75 in. stucco, 2x4x16" oc, R11Batt, 0.5 in. gyp	4" Brick /8"CMU/3/4"ISO BTWN24" oc/.5" Gyp	4" Brick /8"CMU/3/4"ISO BTWN24" oc/.5" Gvn	4" Brick /8"CMU/3/4"ISO BTWN24" oc/.5"	4" Brick /8"CMU/3/4"ISO BTWN24" oc/.5" Gyp	4" Brick /8"CMU/3/4"ISO BTWN24" oc/.5" Gyp
2 Pr0Zo2Wa2	3 Pr0Zo2Wa3	4 Pr0Zo2Wa4	5 Pr0Zo2Wa5	6 Pr0Zo2Wa6 In Zone: Pr0Zo3	o3Wal	Zo4Wa1	2 Pr0Zo4Wa2	3 Pr0Zo4Wa3	Zo5Wa1

				Windows	WS							
No	o Description	Type	Shaded	U [Btu/hr sf F]	SHG	Vis.Tr	w [ft]	H (Effec) [ft]	Multi plier	Total Area [sf]	rea	
In Zone: Pr0Zo1 In Wall: Pr0Zo1Wa1	oZo1Wa1 Pr0Zo1Wa1Wil	User Defined	Š	0.9000	0.50	0.40	3.33	7.17	-	23	23.9	
In Wall: Pr0Zo1Wa3	r0Zo1Wa3 1 Pr0Zo1Wa3Wi1	User Defined	No	0.9000	0.50	0.40	2.00	7.17	-	14	14.3	
In Zone: Pr0Zo3 In Wall: Pr0Zo3Wa1 1 Pr0Zc	0Zo3Wa1 Pr0Zo3Wa1Wil	User Defined	No	0.9000	0.50	0.40	2.00	7.17	9	8	0.98	
In Zone: Pr0Zo4 In Wall: Pr0Zo4Wa1 1 Pr0Zc	r0Zo4Wa1 1 Pr0Zo4Wa1Wi1	User Defined	%	0.9000	0.50	0.40	2.00	7.17	-	14	14.3	
In Zone: Pr0Zo5 In Wall: Pr0Zo5Wa1 1 Pr0Zc	205 r0Zo5Wa1 1 Pr0Zo5Wa1Wi1	User Defined	N _o	0.9000	0.50	0.40	3.33	7.17	2	47	47.8	
				Doors	ည							
No	No Description	Type	Shaded? Width [ft]	Width [ft]	H (Effec) Multi [ft] plier	124	Area [sf] [B	Cond. [Btu/hr. sf. F]	Dens. Hea F] [lb/cf] [Bto	Heat Cap. [Btu/sf. F]	R-Value [h.sf.F/Btu]	
In Zone: Pr0Zo1 In Wall:	Pr0Zo1Wa1 Pr0Zo1Wa1Dr1	Panel with 1-1/8"	ž	3.00	7.00	-	21.0	0.5834	00.00	0.00	1.71	
In Wall:	Pr0Zo1Wa2 Pr0Zo1Wa2Dr1	panels Panel with 1-1/8"	N _o	3.00	7.00	4	21.0	0.5834	0.00	0.00	1.71	
In Zone: Pr0Zo2 In Wall:	Pr0Zo2Wa2 Pr0Zo2Wa2Dr1	Panel with 1-1/8"	No	3.00	7.00	7	21.0	0.5834	0.00	0.00	1.71	
In Zone: Pr0Zo3 In Wall:	Pr0Zo3Wa1 Pr0Zo3Wa1Dr1	Panel with 1-1/8" panels	No	3.00	7.00	2	21.0	0.5834	0.00	0.00	1.71	

EnergyGauge FlaCom v 2.11

In Zone: Pr0Zo4 In Wall:		Pr0Zo4Wa2 Pr0Zo4Wa2Dr1		No	3.00	7.00	-	21.0	0.5834	0.00	0.00	1.71	
In Zone: Pr0Zo5 In Wall:		Pr0Zo5Wa1 Pr0Zo5Wa1Dr1	Panels Panel with 1-1/8"	No	3.00	7.00	п	21.0	0.5834	0.00	0.00	1.71	
					Roofs	દુ							
N _O		Description	Туре	Width [ft]	H (Effec) [ft]	Multi plier	Area [sf]	Tilt [deg] [Cond. [Btu/hr. Sf. F]	Heat Cap [Btu/sf. F]	Dens. [lb/cf]	R-Value [h.sf.F/Btu]	
In Zone: Pr0Zo1	Pr0Zo1 Pr0Zo1Rf1		Shngl/1/2"WD Deck/WD Truss/9" Batt/Gyp Brd	20.63	50.00	-1	1031.5	0.00	0.0320	1.50	8.22	31.24	
In Zone: Pr0Zo2 1 Pr0Z	Pr0Zo2 Pr0Zo2Rf1	o2Rf1	Shngl/1/2"WD Deck/WD Truss/9" Batt/Gvn Brd	25.58	43.58	-	1114.8	0.00	0.0320	1.50	8.22	31.24	
In Zone:	Pr0Zo3 Pr0Zo	o3Rf1	Shngl/1/2"WD Deck/WD Truss/9" Batt/Gvn Brd	42.67	8.67	1	369.9	0.00	0.0320	1.50	8.22	31.24	
In Zone:	Pr0Zo4	o4Rfi	Shngl/1/2"WD Deck/WD Truss/9" Batt/Gyp Brd	16.97	50.00	1	848.5	0.00	0.0320	1.50	8.22	31.24	
In Zone: Pr0ZoS	Pr0Zo5 Pr0Zo5Rf1	55Rf1	Shngl/1/2"WD Deck/WD Truss/9" Batt/Gyp Brd	17.33	39.75	-	688.9	0.00	0.0320	1.50	8.22	31.24	

	-
	-
•	7.7
- 3	>
- 3	E O
- 3	=
-2	ų
C	_)
-	LINC
- 4	70
F	_
	-
- 6	**
- 3	۳.
- 5	agn
- 1	n
- 7	7
-	×
	•
0	5
- 1	
- 3	Ş
- 3	-
- 3	v
-	
1	3
- 62	ы

Systems

-			
-	1	-	

No Description Type U [Btu/hr In Zone: In Roof:	Skyllgills							
In Zone: In Roof:	U SHGC [Btu/hr sf F]	C Vis.Trans		W H(E)	H (Effec) Multiplier [ft]		Area Total Area [Sf] [Sf]	ea
	Floors							
No Description Type Width [ft]	h H (Effec) Multi [ft] plier		Area ([sf] [Btu	Cond.] u/hr. sf. F]	Cond. Heat Cap. [Btu/hr. sf. F] [Btu/sf. F]	Dens. [lb/cf]	R-Value [h.sf.F/Btu]	
In Zone: Pr0Zo1 1 Pr0Zo1Fil Concrete floor, 20.63 carpet and rubber pad	3 50.00	1	1031.5	0.5987	9.33	140.00	1.67	
In Zone: Pr0Zo2 1 Pr0Zo2F11 Concrete floor, 25.58 carpet and rubber	88 43.58	-	1114.8	0.5987	9.33	140.00	1.67	
In Zone: Pr0Zo3 Concrete floor, 42.67 carpet and rubber	79.8	-	369.9	0.5987	9.33	140.00	1.67	
In Zone: Pr0Zo4 I Pr0Zo4F11 Concrete floor, 16.97 carpet and rubber pad	77 50.00	-	848.5	0.5987	9.33	140.00	1.67	
In Zone: Pr0Zo5 1 Pr0Zo5F11 Concrete floor, 17.33 carpet and rubber pad	39.75	-	688.9	0.5987	9.33	140.00	1.67	

Pr0Sy1	System 1	Constant Vo	Constant Volume Air Cooled Split	Split	No. Of Units	3
		System < 65000 Btu/hr	000 Btu/hr			
Component	Category	Capacity	Efficiency	IPLV		
1	Cooling System (Air Cooled < 65000 Btu/h Cooling Capacity)	53500.00	13.50	8.00		
2	Heating System (Air Cooled HP < 65000 Btu/h	53500.00	8.00			
ю	Cooning Capacity) Air Handling System -Supply (Air Handler (Supply) - Constant Volume)	2000.00	08.0			
4	Air Handling System - Return (Air Handler (Return) -	2000.00	0.80			
5	Constant Volume) Air Distribution System (ADS System)		00.9			
Pr0Sy2	System 2	Constant Volume Air C System < 65000 Btu/hr	Constant Volume Air Cooled Split System < 65000 Btu/hr	Split	No. Of Units	1
Component	Category	Capacity	Efficiency	IPLV		
-	Cooling System (Air Cooled < 65000 Btu/h Cooling	19000.00	14.00	8.00		
2	Capacity) Heating System (Air Cooled HP < 65000 Btu/h	19000.00	8.00			
3	Air Handling System -Supply (Air Handler (Supply) -	800.00	0.80			
4	Constant volume) Air Handling System - Return (Air Handler (Return) -	800.00	0.80			
5	Air Distribution System (ADS System)		00.9			
		ta clo				
		riaiit				
Equipment	nent Category	Size	Inst.No	Eff.	IF	IPLV
	Wa	Water Heaters				
W-Hea	W-Heater Description Capacit Cap.Unit	I/P Rt.	Efficienc		Loss	
1 Electric v	Electric water heater 50 [Gal]	5 [kW]	0.9100	[Ef]	[Btu/h]	

			Ext-Lighting	ıting				
	Description	Category	No. of Luminaires	Watts per Luminaire	Area/Len/No. of u [sf/ft/No]	Area/Len/No. of units Control Type [sf/ft/No]	Wattage [W]	
-	Ext Light 1	Building entrance without	4	09	18.00	Photo Sensor control	1 240.00	
2	Ext Light 2	canopy Building exit	1	09	3.00	Photo Sensor control	1 60.00	
			Piping					
	No Type	Op Tem	Operating Temperature [F]	Insulation Conductivity [Btu-in/h.sf.F]	Nomonal pipe Diameter		Insulation Is Runout? Thickness [in]	

			Fenestra	Fenestration Used		
Name	Glass Type	No. of Panes	Glass Conductance [Btu/h.sf.F]	SHGC	VLT	
ASHULDblTntM User Defined tl-Oth frm	User Defined	2	0.9000	0.5000	0.4000	

%

0.75

0.28

125.00

Domestic and Service Hot Water Systems

			Mate	Materials Used	pe				
Mat No	Mat No Acronym	Description	Only R-Value Used	RValue [h.sf.F/Btu]	Thickness [ft]	Conductivity [Btu/h.ft.F]	Density [lb/cf]	SpecificHeat [Btu/lb.F]	2012
187	187 Matl187	GYP OR PLAS BOARD,1/2IN	No	0.4533	0.0417	0.0920	50.00	0.2000	

								_			\neg
0.2000		0.2000	0.2000	0.2000	0.3000	0.2000	0.2000	0.2000			0.2900
140.00		16.00	9.70	00.69	4.19	120.00	2.00	5.70			34.00
0.7570		0.4000	0.0350	0.6060	0.0280	0.4160	0.0250	0.0250			0.0660
0.3333		0.0625	0.2917	0.6667	0.0625	0.3333	0.2500	0.5000			0.0417
0.4403	1.2300	0.1563	8.3343	1.1002	2.2321	0.8012	10.0000	20.0000	0.1500		0.6318
No	Yes	No	No	No	No	No	No	No	Yes		No
151 Matl151 CONC HW, DRD, 140LB, 4IN	CARPET W/RUBBER PAD	0.75" stucco	2x4@16" oc + R11 Batt	CONC BLK HW, 8IN, HOLLOW	.75" ISO BTWN24" oc	BRICK, COMMON, 4IN	3 in. Insulation	6 in. Insulation	ASPHALT-ROOFING,	ROLL	PLYWOOD, 1/2IN
Mat[15]	Matl178	Mat1267	Mat1266	Matl105	Matl269	Matl86	Matl12	Matl23	Matl81		Matl244
151	178	267	266	105	269	98	12	23	81		244

				Cons	Constructs Used	sed				
No	No Name			Simple Construct	Massless Construct	Conductance [Btu/h.sf.F]	Heat Capacity [Btu/sf.F]	Density [lb/cf]	Density RValue [lb/cf] [h.sf.F/Btu]	
1004	1004 Concrete floor, carpet and rubber pad	arpet and ru	bber pad	No	No	09.0	9.33	140.00	1.6703	
	Layer	Material Material No.	Material		Thie	Thickness F	Framing Factor			
	1	151	CONC HW, DRD, 140LB, 4IN	140LB, 4IN	0.3	0.3333	0.00			
	2	178	CARPET W/RUBBER PAD	BER PAD			0.00			

N _o	Name			Simple Construct	Massless Construct	Conductance [Btu/h.sf.F]	No Name Simple Massless Conductance Heat Capacity Density RValue Construct Construct [Btu/h.sf.F] [Btu/sf.F] [lb/cf] [h.sf.F/Btu]	Density [lb/cf]	RValue [h.sf.F/Btu]	
1009		2x4x16" oc,]	0.75 in. stucco, 2x4x16" oc, R11Batt, 0.5 in. gyp	No	No	0.11	1.18	14.94	8.9438	
	Layer	Material No.	Material		Thic	Thickness F	Framing Factor			
	1	267	0.75" stucco		0.0	0.0625	0.00			
	2	266	2x4@16" oc + R11	R11 Batt	0.2917	917	0.00			
	3	187	GYP OR PLAS BOARD,1/2IN	JARD,1/2IN	0.0	0.0417	0.00			
No	Name			Simple Construct	Massless Construct	Conductance [Btu/h.sf.F]	Heat Capacity [Btu/sf.F]	Density [lb/cf]	RValue [h.sf.F/Btu]	
1013		MU/3/4"ISO F	4" Brick /8"CMU/3/4"ISO BTWN24" oc/.5" 3yp	No	No	0.22	17.70	80.01	4.5868	
	Layer	Material No.	Material Material No.		Thic I	Thickness F	Framing Factor			
	-	98	BRICK, COMMON, 4IN	N, 4IN	0.3	0.3333	0.00			
	2	105	CONC BLK HW, 8IN, HOLLOW	8IN, HOLLOW	9.0	0.6667	0.00			
	3	569	.75" ISO BTWN24" oc	t" oc	0.0	0.0625	0.00			
	4	187	GYP OR PLAS BOARD,1/2IN	OARD,1/2IN	0.0	0.0417	0.00			
No	Name			Simple Construct	Massless Construct	Conductance [Btu/h.sf.F]	Heat Capacity [Btu/sf.F]	Density [lb/cf]	RValue [h.sf.F/Btu]	
1026	Panel with 1-1/8" panels	'8" panels		No	Yes	0.58			1.7141	
	Layer	Material No.	Material		Thic [Thickness F	Framing Factor			
	1	277	Panel with 1-1/8" panels (1.75")	panels (1.75")			0.00			

1038 SI	No Name			Simple Construct	Massless Construct	Conductance [Btu/h.sf.F]	Heat Capacity [Btu/sf.F]	Density [lb/cf]	RValue [h.sf.F/Btu]	
R	1038 Shngl/1/2"WD Deck/WD Truss/9" Batt/Gyp Brd	eck/WD Tn	uss/9" Batt/Gyp	No	No	0.03	1.50	8.22	31.2351	
	Layer	Material Material No.	Material		Thic	Thickness F	Framing Factor	_ ==		
	1	81	ASPHALT-ROOFING, ROLL	ING, ROLL			0.00			
	2	244	PLYWOOD, 1/2IN	7	0.0	0.0417	0.00			
	3	12	3 in. Insulation		0.2:	0.2500	0.00			
	4	23	6 in. Insulation		0.5000	000	0.00			
	5	187	GYP OR PLAS BOARD,1/2IN	JARD,1/2IN	0.0417	417	0.00			

From: The Columbia County Building & Zoning Department

Plan Review

135 NE Hernando Av.

P.O. Box 1529

Lake City Florida 32056-1529

Reference to a building permit application Number: 0701-67

Applicant: Charles Peeler/ Charles Peeler Construction, Owner: Islamic Center of Lake City Property ID 30-3s-16-02409-001

On the date of January 18, 2007 application 0701-67 and plans for construction of a group A3, Assembly structure uses intended for worship, was reviewed and the following information or alteration to the plans will be required to continue processing this application. If you should have any question please contact the above address, or contact phone number (386) 758-1163 or fax any information to (386) 754-7088.

Please include application number 0701-67 and when making reference to this application.

This is a plan review for compliance with the Florida Building Code 2004 only and doesn't make any consideration toward the land use and zoning requirements.

Recived 7

 Sheet 3 of GTC project # PF05-330 show an access driveway to the property parking lot from US Highway 90 west. Please provide an approval permit for a driveway entry to this property from the Florida Department of Transportation (Mr. Neal Miles)

- 2. Please provide a copy of a signed released site plan from the Columbia County Environmental Health Department which confirms approval of the waste water disposal system.
- Please submit a letter from the potable water well contractor which will describe the equipment to be used to supply potable water to this structure, Include the size of pump motor, size of pressure tank and cycle stop valve if used.

4. On sheets A16 & A17 of the structural plans are show details of the lower and upper roof framing plans which require pre engineered trusses please submit two set of engineered truss plans.

- 5. Please show the hardware detail for the egress doors in the two foyer entry areas, along with the gathering hall egress doors. These doors should be equipped with panic hardware door-latching assembly incorporating a device that releases the latch upon the application of a force in the direction of egress travel.
- **6.** Please provide on additional emergency light in the cultural hall to provide emergency lighting to illumination an egress path to the three exit doors into male and female worship areas.
- 7. The Florida Building Code 2004 section 106.3.5 Minimum plan review criterion for commercial buildings requires a soil conditions/analysis be preformed. Therefore please follow the prescribed testing methods of chapter 18 to reveal the soil load bearing capacities. Please have a registered professional conduct subsurface explorations at the project site upon which foundations are to be constructed, a sufficient number (not less than four, one boring on each corner of the building foundation) borings shall be made to a depth of not less than 10 feet (3048 mm) below the level of the foundations to provide assurance of the soundness of the foundation bed and its load-bearing capacity.
- Please have Mr. Geisler on the foundation plan declare the required soil bearing capacity to support the foundations.
- 9. Please submit the shop drawing or manufactures engineered drawing of the roof domes, which certify that the roof domes attachments method's to the truss system and the structural design of this dome will withstand a 3 sec. 110 wind gust. Also submit certification from the truss engineer that the truss system will support the dome dead load.
- 10. Please submit the forms required by chapter13 (energy effiency) sections 13-400.0: General. The provisions of this chapter apply to all new commercial occupancy buildings, additions to existing commercial occupancy buildings, and multiple-family residential buildings over three stories in height. Building type classifications shall be those defined in Subchapter 13-2 of this code under "occupancy classification." This subchapter provides three methods by which commercial buildings may be brought into compliance with this code. Submit a certified compliance summary form for this structure.

- 11. Submit product approval specification as required by Fla. Statute 553.842 and Fla. Administrative Code 9B-72 for all of the building components which will be used to construct the commercial building which are required to have Florida product approval. Any product which is subject to wind gust shear or any product which is attached or part of the shear walls of roof system will be required to have a Florida product approval number.
- 12. Please submit on the site plan a detail which shows a sidewalk access ramp for handicap accessibility from the parking area to the building entry point.
- 13. Toilet facilities requirements: See attached table of the Florida Plumbing code table 403.1 minimum number of required plumbing fixtures: Also refer to section 419.2 of this code: Substitution for water closets: In each bathroom or toilet room, urinals shall not be substituted for more than 67 percent of the required water closets. Please correct the plan to comply with section 419.2 of this code.
- **14.** The 2" floor drains shown on the plumbing plans will require to have trap primers to prevent the trap from becoming dry due to water evaporation.
- 15. Walls within the structure as shown on the plan indicate that textile materials may be used as wall covering. Section 803.6.1 of the building code regulates the type and amount of textile wall coverings which can be installed within a structure. Please certify that the textile wall coverings will comply with the requirements of a Class A flame spread index in accordance with ASTM E 84 and be protected by automatic sprinklers installed in accordance with Section 903.3.1.1 or 903.3.1.2 or the covering shall meet the criteria of Section 803.6.1.1 or 803.6.1.2 when tested in the manner intended for use in accordance with NFPA 265 using the product mounting system, including adhesive. Also certify that all decoration and trim described in section 805 of the building code are to comply with this code section.
- 16. On the electrical riser diagram indicate that an electrical service disconnecting device, E-stop switch or main disconnect switching device shall be located on the exterior of the structure at or near the service entry location (meter base) will be installed. This device shall be installed to serve as an emergency disconnecting means from the utility company electrical service. Conductors used from the exterior disconnecting means to a panel or sub panel shall have four-wire conductors, of which one conductor shall be used as an equipment ground.
- 17. Please have the plumbing Waste water risers lines sized along with the water supply lines to all fixtures.
- **18.**A stove appliance is shown within a kitchen area, specify the BTU of the cooking range and verify with the fire department the size and type exhaust hood system which will be required for this appliance.

- **19.** Show on the plan the size and route of the bathroom ventilation fans exhausts system.
- 20. Show the method of draftstopping interior walls and areas as required by section 717.3.3 of the building code: Other groups. In other groups, draftstopping shall be installed so that horizontal floor areas do not exceed 1,000 square feet (93 m2). Also show the method to be used to comply with section 717.4 Draftstopping in attics. In combustible construction, draftstopping shall be installed to subdivide attic spaces and concealed roof spaces in the locations prescribed in Sections 717.4.2 and 717.4.3. Ventilation of concealed roof spaces shall be maintained in accordance with Section 1203.2. 717.4.3: Other groups. Draftstopping shall be installed in attics and concealed roof spaces, such that any horizontal area does not exceed 3,000 square feet (279 m2).
- **21.** Show on the plans smoke alarm and draftstopping devices for the HVAC system.

Thank You:

fre Millingt

Joe Haltiwanger Plan Examiner

Columbia County Building

Department

CHAPTER 4

FIXTURES, FAUCETS AND FIXTURE FITTINGS

SECTION 401 GENERAL

- **401.1** Scope. This chapter shall govern the materials, design and installation of plumbing fixtures, faucets and fixture fittings in accordance with the type of occupancy, and shall provide for the minimum number of fixtures for various types of occupancies.
- 401.2 Prohibited fixtures and connections. Water closets having a concealed trap seal or an unventilated space or having walls that are not thoroughly washed at each discharge in accordance with ASME A112.19.2M shall be prohibited. Any water closet that permits siphonage of the contents of the bowl back into the tank shall be prohibited. Trough urinals shall be prohibited.
- **401.3 Water conservation.** The maximum water flow rates and flush volume for plumbing fixtures and fixture fittings shall comply with Section 604.4.

SECTION 402 FIXTURE MATERIALS

402.1 Quality of fixtures. Plumbing fixtures shall be constructed of approved materials, with smooth, impervious surfaces, free from defects and concealed fouling surfaces, and shall conform to standards cited in this code. All porcelain enameled surfaces on plumbing fixtures shall be acid resistant.

- 402.2 Materials for specialty fixtures. Materials for specialty fixtures not otherwise covered in this code shall be of stainless steel, soapstone, chemical stoneware or plastic, or shall be lined with lead, copper-base alloy, nickel-copper alloy, corrosion-resistant steel or other material especially suited to the application for which the fixture is intended.
- **402.3** Sheet copper. Sheet copper for general applications shall conform to ASTM B 152 and shall not weigh less than 12 ounces per square foot (3.7 kg/m²).
- **402.4** Sheet lead. Sheet lead for pans shall not weigh less than 4 pounds per square foot (19.5 kg/m²) coated with an asphalt paint or other approved coating.

SECTION 403 MINIMUM PLUMBING FACILITIES

403.1 Minimum number of fixtures. Plumbing fixtures shall be provided for the type of occupancy and in the minimum number shown in Table 403.1. Types of occupancies not shown in Table 403.1 shall be considered individually by the code official. The number of occupants shall be determined by the Florida Building Code, Building. Occupancy classification shall be determined in accordance with the Florida Building Code, Building.

TABLE 403.1
MINIMUM NUMBER OF REQUIRED PLUMBING FIXTURES
(See Sections 403.2 and 403.3)

	9			(URINALS S	CLOSETS SEE SECTION 9.2)	LAVA	TORIES		DRINKING FOUNTAIN (SEE	
NO.	CLASSIFICATION	OCCUPANCY	DESCRIPTION	MALE	FEMALE	MALE	FEMALE	BATHTUBS/ SHOWERS	SECTION 410.1)	OTHER
1	Assembly (see Sections 403.2, 403.5 and 403.6)	A-1	Theaters usually with fixed seats and other buildings for the performing arts and motion pictures	1 per 125	l per 65	1 pe	r 200	-	1 per 500	1 service sinl
		1.2	Nightclubs, bars, tav- erns, dance halls and buildings for similar purposes	1 per 40	1 per 40	I pe	er 75	_	1 per 500	1 service sink
			Restaurants, banquet halls and food courts	1 per 75	l per 75	1 pe	200	_	— 1 per 500	1 service sink
			Auditoriums without permanent seating, art galleries, exhibition halls, museums, lecture halls, libraries, arcades and gymnasiums	1 per 125	1 per 65	1 per	200		1 per 500	I service sink
			Passenger terminals and transportation facilities	1 per 500	1 per 500	l per	750	-1	1 per 1,000	I service sink
		1	Places of worship and other religious services. Churches without assembly halls	1 per 150	1 per 75	l per	200	-	1 per 1,000	l service sink

(continued)

SECTION 419: URINALS

419.1 Approval.

Urinals shall conform to ASME A112.19.2M, CSA B45.1 or CSA B45.5. Urinals shall conform to the water consumption requirements of Section 604.4. Urinals shall conform to the hydraulic performance requirements of ASME A112.19.6, CSA B45.1 or CSA B45.5.

419.2 Substitution for water closets.

In each bathroom or toilet room, urinals shall not be substituted for more than 67 percent of the required water closets.

[B] 419.3 :Surrounding material wall and floor space to a point 2 feet (610 mm) in front of a urinal lip and 4 feet (1219 mm) above the floor and at least 2 feet (610 mm) to each side of the urinal shall be waterproofed with a smooth, readily cleanable, nonabsorbent material.

From: The Columbia County Building & Zoning Department

Plan Review

135 NE Hernando Av.

P.O. Box 1529

Lake City Florida 32056-1529

Reference to a building permit application Number: 0701-67

Applicant: Charles Peeler/ Charles Peeler Construction, Owner: Islamic Center of Lake City Property ID 30-3s-16-02409-001

On the date of January 18, 2007 application 0701-67 and plans for construction of a group A3, Assembly structure uses intended for worship, was reviewed and the following information or alteration to the plans will be required to continue processing this application. If you should have any question please contact the above address, or contact phone number (386) 758-1163 or fax any information to (386) 754-7088.

Please include application number 0701-67 and when making reference to this application.

This is a plan review for compliance with the Florida Building Code 2004 only and doesn't make any consideration toward the land use and zoning requirements.

B.O. 1. Sheet 3 of GTC project # PF05-330 show an access driveway to the property parking lot from US Highway 90 west. Please provide an approval permit for a driveway entry to this property from the Florida Department of Transportation (Mr. Neal Miles)

- 8.0. 2. Please provide a copy of a signed released site plan from the Columbia County Environmental Health Department which confirms approval of the waste water disposal system.
- 8.0. 3. Please submit a letter from the potable water well contractor which will describe the equipment to be used to supply potable water to this structure, include the size of pump motor, size of pressure tank and cycle stop valve if used.

6.0. 4. On sheets A16 & A17 of the structural plans are show details of the lower and upper roof framing plans which require pre engineered trusses please submit two set of engineered truss plans.

- 5. Please show the hardware detail for the egress doors in the two foyer entry areas, along with the gathering hall egress doors. These doors should be equipped with panic hardware door-latching assembly incorporating a device that releases the latch upon the application of a force in the direction of egress travel.
- → 6. Please provide on additional emergency light in the cultural hall to provide emergency lighting to illumination an egress path to the three exit doors into male and female worship areas.
- 6.0. 7. The Florida Building Code 2004 section 106.3.5 Minimum plan review criterion for commercial buildings requires a soil conditions/analysis be preformed. Therefore please follow the prescribed testing methods of chapter 18 to reveal the soil load bearing capacities. Please have a registered professional conduct subsurface explorations at the project site upon which foundations are to be constructed, a sufficient number (not less than four, one boring on each corner of the building foundation) borings shall be made to a depth of not less than 10 feet (3048 mm) below the level of the foundations to provide assurance of the soundness of the foundation bed and its load-bearing capacity.

8. Please have Mr. Geisler on the foundation plan declare the required soil bearing capacity to support the foundations.

6.0. 9. Please submit the shop drawing or manufactures engineered drawing of the roof domes, which certify that the roof domes attachments method's to the truss system and the structural design of this dome will withstand a 3 sec. 110 wind gust. Also submit certification from the truss engineer that the truss system will support the dome dead load.

>10. Please submit the forms required by chapter 13 (energy efficiency) sections 13-400.0: General. The provisions of this chapter apply to all new commercial occupancy buildings, additions to existing commercial occupancy buildings, and multiple-family residential buildings over three stories in height. Building type classifications shall be those defined in Subchapter 13-2 of this code under "occupancy classification." This subchapter provides three methods by which commercial buildings may be brought into compliance with this code. Submit a certified compliance summary form for this structure.

B.O. 11. Submit product approval specification as required by Fla. Statute 553.842 and Fla. Administrative Code 9B-72 for all of the building components which will be used to construct the commercial building which are required to have Florida product approval. Any product which is subject to wind gust shear or any product which is attached or part of the shear walls of roof system will be required to have a Florida product approval number.

B.O. 12. Please submit on the site plan a detail which shows a sidewalk access ramp for handicap accessibility from the parking area to the building

entry point.

3. Toilet facilities requirements: See attached table of the Florida Plumbing code table 403.1 minimum number of required plumbing fixtures: Also refer to section 419.2 of this code: Substitution for water closets: In each bathroom or toilet room, urinals shall not be Please correct the plan to comply with section 419.2 of this code.

14. The 2" floor drains shown on the plumbing plans will require to have trap primers to prevent the trap from becoming day does not be required. substituted for more than 67 percent of the required water closets.

evaporation.

15. Walls within the structure as shown on the plan indicate that textile materials may be used as wall covering. Section 803.6.1 of the building code regulates the type and amount of textile wall coverings which can be installed within a structure. Please certify that the textile wall coverings will comply with the requirements of a Class A flame spread index in accordance with ASTM E 84 and be protected by automatic sprinklers installed in accordance with Section 903.3.1.1 or 903.3.1.2 or the covering shall meet the criteria of Section 803.6.1.1 or 803.6.1.2 when tested in the manner intended for use in accordance with NFPA 265 using the product mounting system, including adhesive. Also certify that all decoration and trim described in section 805 of the building code are to comply with this code section.

NO COUKING

allowed -

16. On the electrical riser diagram indicate that an electrical service disconnecting device, E-stop switch or main disconnect switching device shall be located on the exterior of the structure at or near the service entry location (meter base) will be installed. This device shall be installed to serve as an emergency disconnecting means from the utility company electrical service. Conductors used from the exterior disconnecting means to a panel or sub panel shall have four-wire conductors, of which one conductor shall be used as an equipment ground.

→ 17. Please have the plumbing Waste water risers lines sized along with the Serving area - NO COOKING alowed water supply lines to all fixtures.

→18.A stove appliance is shown within a kitchen area, specify the BTU of the cooking range and verify with the fire department the size and type exhaust hood system which will be required for this appliance. heat osewe only

19. Show on the plan the size and route of the bathroom ventilation fans

exhausts system.

20. Show the method of draftstopping interior walls and areas as required by section 717.3.3 of the building code: Other groups. In other groups, draftstopping shall be installed so that horizontal floor areas do not exceed 1,000 square feet (93 m2). Also show the method to be used to comply with section 717.4 Draftstopping in attics. In combustible construction, draftstopping shall be installed to subdivide attic spaces and concealed roof spaces in the locations prescribed in Sections 717.4.2 and 717.4.3. Ventilation of concealed roof spaces shall be maintained in accordance with Section 1203.2. 717.4.3: Other groups. Draftstopping shall be installed in attics and concealed roof spaces, such that any horizontal area does not exceed 3,000 square feet (279 m2).

21. Show on the plans smoke alarm and draftstopping devices for the

HVAC system.

Thank You: In puttings

Joe Haltiwanger Plan Examiner

Columbia County Building

Department

CHAPTER 4

FIXTURES, FAUCETS AND FIXTURE FITTINGS

SECTION 401 GENERAL

- 401.1 Scope. This chapter shall govern the materials, design and installation of plumbing fixtures, faucets and fixture fittings in accordance with the type of occupancy, and shall provide for the minimum number of fixtures for various types of occupancies.
- 401.2 Prohibited fixtures and connections. Water closets having a concealed trap seal or an unventilated space or having walls that are not thoroughly washed at each discharge in accordance with ASME A112.19.2M shall be prohibited. Any water closet that permits siphonage of the contents of the bowl back into the tank shall be prohibited. Trough urinals shall be prohibited.
- 401.3 Water conservation. The maximum water flow rates and flush volume for plumbing fixtures and fixture fittings shall comply with Section 604.4.

SECTION 402 FIXTURE MATERIALS

402.1 Quality of fixtures. Plumbing fixtures shall be constructed of approved materials, with smooth, impervious surfaces, free from defects and concealed fouling surfaces, and shall conform to standards cited in this code. All porcelain enameled surfaces on plumbing fixtures shall be acid resistant.

- 402.2 Materials for specialty fixtures. Materials for specialty fixtures not otherwise covered in this code shall be of stainless steel, soapstone, chemical stoneware or plastic, or shall be lined with lead, copper-base alloy, nickel-copper alloy, corrosion-resistant steel or other material especially suited to the application for which the fixture is intended.
- 402.3 Sheet copper. Sheet copper for general applications shall conform to ASTM B 152 and shall not weigh less than 12 ounces per square foot (3.7 kg/m²).
- 402.4 Sheet lead. Sheet lead for pans shall not weigh less than 4 pounds per square foot (19.5 kg/m²) coated with an asphalt paint or other approved coating.

SECTION 403 MINIMUM PLUMBING FACILITIES

403.1 Minimum number of fixtures. Plumbing fixtures shall be provided for the type of occupancy and in the minimum number shown in Table 403.1. Types of occupancies not shown in Table 403.1 shall be considered individually by the code official. The number of occupants shall be determined by the Florida Building Code, Building. Occupancy classification shall be determined in accordance with the Florida Building Code, Building.

TABLE 403.1
MINIMUM NUMBER OF REQUIRED PLUMBING FIXTURES
(See Sections 403.2 and 403.3)

				(URINALS S	CLOSETS EE SECTION 9.2)	LAVA	TORIES		DRINKING FOUNTAIN (SEE	
NO.	CLASSIFICATION	OCCUPANCY	DESCRIPTION	MALE	FEMALE	MALE	FEMALE	SHOWERS	SECTION 410.1)	OTHER
1	Assembly (see Sections 403.2, 403.5 and 403.6)	A-1	Theaters usually with fixed seats and other buildings for the performing arts and motion pictures	1 per 125	1 per 65	1 p	er 20 0	_	1 per 500	1 service sink
		A-2	Nightclubs, hars, tav- erns, dance halls and buildings for similar purposes	l per 40	! per 40	ſp	er 75	_	1 per 500	l service sink
			Restaurants, banquet halls and food courts	1 per 75	J per 75	1 per 200		_	1 per 500) service sink
			Auditoriums without permanent seating, ort gatleries, exhibition halls, museums, lecture halls, libraries, arcades and gymnasiums	I per 125	1 per 65	1 pe	er 200	_	l per 500	l service sink
		A-3	Passenger terminals and transportation facilities	1 per 500	J per 500	I pe	r 750	_	1 per 1,000	1 service sink
			Places of worship and other religious services. Churches without assembly halls	J per 150	1 per 75	l pe	r 200	-	1 per 1,000	1 service sink

(continued)

SECTION 419: URINALS

419.1 Approval.

Urinals shall conform to ASME A112.19.2M, CSA B45.1 or CSA B45.5. Urinals shall conform to the water consumption requirements of Section 604.4. Urinals shall conform to the hydraulic performance requirements of ASME A112.19.6, CSA B45.1 or CSA B45.5.

419.2 Substitution for water closets.

In each bathroom or toilet room, urinals shall not be substituted for more than 67 percent of the required water closets.

[B] 419.3 :Surrounding material wall and floor space to a point 2 feet (610 mm) in front of a urinal lip and 4 feet (1219 mm) above the floor and at least 2 feet (610 mm) to each side of the urinal shall be waterproofed with a smooth, readily cleanable, nonabsorbent material.

Columbia County minimum plan review criteria for commercial building as required by the Florida Building Codes Sections 106.3.5

Project Name: Islamic Center of Lake City 911 address: 7876 West US Highway 90

Contractor: Charles Peeler Phone Number: 623-4448

Fax:

Date reviewed: 1-18-07

106.3.5 Minimum plan review criteria for buildings.

The examination of the documents by the building official shall include the following minimum criteria and documents:

A floor plan; Floor area of structure is 4050 sq. ft.

Site plan; By GTC Project # PF05-330. Foundation plan; Sheet A12 & A13

Floor/roof framing plan or truss layout; No roof Pre-engineered truss plan 1/18/07

All exterior elevations:

1. Site requirements:

Parking 29 spaces 2 handicap spaces occupancy load of structure = 227

Fire access: none shown Vehicle loading N/A

Driving/turning radius: 24' drive way

Fire hydrant/water supply/post indicator valve (PIV)

Set back/separation (assumed property lines)

Front 130': Church is 5 acres

Side 86' Side130' Rear

Location of specific tanks, water lines and sewer lines None shown on site plans

2. Occupancy group and special occupancy requirements shall be determined. A-3 Assembly uses intended for worship, recreation or amusement and other assembly uses not classified elsewhere in Group A including, but not limited to: Churches

3. Minimum type of construction shall be determined (see Table 503). 602.3 Type III.

Type III construction is that type of construction in which the exterior walls are of noncombustible materials and the interior building elements are of any material permitted by this code. Fire-retardant-treated wood framing complying with Section 2303.2 shall be permitted within exterior wall assemblies of a 2-hour rating or less.

4. Fire-resistant construction requirements shall include the following components:

Fire-resistant separations :TABLE 602

FIRE-RESISTANCE RATING REQUIREMENTS FOR EXTERIOR

WALLS BASED ON FIRE SEPARATION DISTANCE

Fire-resistant protection for type of construction

Protection of openings and penetrations of rated walls

Fire blocking and draftstopping and calculated fire resistance> 30 Ft.

No Fire-resistant construction requirements

5. Fire suppression systems shall include:

Early warning smoke evacuation systems Schematic fire sprinklers Standpipes

Pre-engineered systems

Riser diagram: 903.2.1.3 Group A-3.

An automatic sprinkler system shall be provided for Group A-3 occupancies where one of the following conditions exists:

- 1. The fire area exceeds 12,000 square feet (1115 m2). 4053 SQ.
- 2. The fire area has an occupant load of 300 or more. Total occupancy load equal 227
- The fire area is located on a floor other than the level of exit discharge. Occupancy load ground floor second floor roof dome only

Exceptions:

- 1. Areas used exclusively as participant sports areas where the main floor area is located at the same level as the level of exit discharge of the main entrance and exit. N/A
- 2. Assembly occupancies used primarily for worship with fixed seating and not part of a mixed occupancy. No fixed seating

6. Life safety systems shall be determined and shall include the following requirements:

Occupant load and egress capacities

Early warning

Smoke control

Stair pressurization

Fire department approval needed

Systems schematic

7. Occupancy load/egress requirements shall include:

Occupancy load 227

Gross 4053 SQ. Ft.

Net 4032

Means of egress Total width for 227 = 45" Provide = main entrance two 6070 doors other exits doors = six

Exit access eight doors

Exit Provide Information on exit doors hardware detail PANIC HARDWARE. A door-latching assembly incorporating a device that releases the latch upon the application of a force in the direction of egress travel.

Stairs construction/geometry and protection N/A

Doors

Emergency lighting and exit signs 10 exit signs Emergency lights = 6 one additional emergency light is needed in the cultural hall wall which is the corridor wall (see plans)

Specific occupancy requirements: Smoke alarms

Construction requirements N/A

Horizontal exits/exit passageways: One corridor 60" wide not a dead end corridor exits on both ends

8. Structural requirements shall include:

Soll conditions/analysis: None submitted with plans

Termite protection: Shown on foundation plan

Design loads

Wind requirements 110MPH

Building envelope

Structural calculations (if required)

Foundation Load bearing capacity of foundation design is not

disclosed on foundation plan

Wall systems: Load bearing concrete block walls

Floor systems: 4" concrete

Roof systems: pre engineered trusses. See note to Mr. Peeler in

regards to the roof dome.

Threshold inspection plan N/A

Stair systems N/A

9. Materials shall be reviewed and shall at a minimum include the following:

Wood

Steel

Aluminum

Concrete

Plastic

Glass

Masonry

Gypsum board and plaster

Insulating (mechanical)

Roofing

Insulation Need a commercial energy effiency form.

10. Accessibility requirements shall include the following:

Site requirements 2 Handicap parking spaces shown two required Accessible route: Need to show a sidewalk curb cut for wheelchair accessibility

Vertical accessibility N/A
Drinking fountains two shown
Equipment
Special occupancy requirements N/A
Fair housing requirements N/A

11. Interior requirements shall include the following:

Interior finishes (flame spread/smoke development) See note 15 of letter to contractor.

Light and ventilation N/A

Sanitation N/A

12. Special systems: N/A

Elevators

Escalators

Lifts

13. Swimming pools: N/A

Barrier requirements Spas

Wading pools Electrical

1. Electrical:

Wiring

Services 400 AMP

Feeders and branch circuits: two panels

Overcurrent protection: See note 16 of letter to contractor.

Grounding Wiring methods and materials GFCIs

- 2. Equipment N/A
- 3. Special occupancies N/A
- 4. Emergency systems N/A
- 5. Communication systems: Intercom shown on plans
- 6. Low voltage
- 7. Load calculations Shown

Plumbing:

- 1. Minimum plumbing facilities Toilet and bathing facilities: see section 419.2 Substitution for water closets. In each bathroom or toilet room, urinals shall not be substituted for more than 67 percent of the required water closets.
- 2. Fixture requirements
- 3. Water supply piping
- 4. Sanitary drainage: Also see floor drain trap primers
- 5. Water heaters One
- 6. Vents Exhaust fans shown in all bath rooms
- 7. Roof drainage N/A

- 8. Back flow prevention None shown required on all hose bibs
- 9. Irrigation
- 10. Location of water supply line; Not shown
- 11. Grease traps May be required for kitchen area talk to health dept.
- 12. Environmental requirements No permit issued by health dept as of 1-19-
- 07
- 13. Plumbing riser Not sized:

Mechanical

- 1. Energy calculations: Needed to be provided address above
- 2. Exhaust systems:

Clothes dryer exhaust N/A

Kitchen equipment exhaust: A stove appliance is shown within a kitchen area specify the BTU of the cooking range and verify with the fire department the size and type exhaust hood system which will be required for this appliance.

Specialty exhaust systems

- 3. Equipment
- 4. Equipment location
- 5. Make-up air
- 6. Roof-mounted equipment
- 7. Duct systems
- 8. Ventilation
- 9. Combustion air
- 10. Chimneys, fireplaces and vents
- 11. Appliances
- 12. Bollers
- 13. Refrigeration
- 14. Bathroom ventilation Shown on plans exhausts ducts not shown
- 15. Laboratory

Gas

- 1. Gas piping
- 2. Venting

- 3. Combustion air
- 4. Chimneys and vents
- 5. Appliances
- 6. Type of gas 7. Fireplaces
- 8. LP tank location
- 9. Riser diagram/shutoffs

Suwannee River Water Management District: **General Permit Number:** State of Florida Department of Transportation: **Driveway Permit:**

01 FEBRUARY 2007

JOE HALTIWANGER, BUILDING OFFICIAL COLUMBIA COUNTY, BUILDING DEPT. COLUMBIA COUNTY COURTHOUSE ANNEX LAKE CITY, FLORIDA 32055

RE: LAKE CITY ISLAMIC CENTER PLAN REVIEW Nr.: 0701-67

DEAR SIR:

WITH REGARD TO THE PLAN REVIEW COMMENTS FOR THE ABOVE REFERENCED PROJECT, PLEASE REVIEW THE FOLLOWING CLARIFICATIONS:

ITEMS 1, 2, 3, 4, 7, 9, 11 AND 12 SHALL BE ADDRESSED BY OTHERS. THE REMAINING ITEMS ARE ADDRESSED, BELOW.

ITEM 5

PLEASE REFER TO THE ATTACHED DRAWINGS FOR ADDITIONAL INFORMATION.

ADDED TO THE ELECTRICAL PLANS.

ITEM 8

ON PLANS - SEE NOTES ON SHEET A.8

REFER TO ATTACHED ENERGY CODE FORMS.

ITEM 13

OCCUPANCY AS LISTED ON PLANS IS 227, 1/2 MALE, 1/2 FEMALE = 113.5 EACH (OR 114) DIVIDED BY 15 OCCUPANTS PER FIXTURE = 1.51 FIXTURES PER SEX REQUIRED. 3 FIXTURES PER SEX PROVIDED. URINALS ARE OPTIONAL AND NONE ARE PLANED AS ALL REST ROOMS ARE DESIGNED AS SINGLE OCCUPANT ONLY.

ITEM 14

REFER TO NOTE ON PLUMBING PLAN REQUIRING TRAP PRIMERS.

ITEM 15

ALL WALL COVERINGS SHALL MEET OR EXCEED THE REQUIREMENTS OF FBI 803.6.1.1 OR 803.6.1.2, OTHER TRIM ITEMS LISTED IN FBC 805 SHALL MEET OR EXCEED THE REQUIREMENTS OF FBI 805.

ITEM 16

ON PLANS - REFER TO SHEET A.22

ITEM IT

PLUMBING DRAINAGE LINES ARE SIZED ON THE PLAN. A WATER DISTRIBUTION PLAN IS ATTACHED HERETO.

ITEM 18

THE AREA YOU ARE REFERRING TO IS A "SERVING AREA", NOT A KITCHEN. THE EQUIPMENT INDICATED IS FOR THE WARMING AND SERVING OF FOODS PREPARED AND COOKED OFF-SITE. FOOD IS NOT PREPARED OR COOKED AT THIS FACILITY. THE RANGE/HOOD ARE STANDARD RESIDENTIAL GRADE UNITS.

ITEM 19

REFER TO REVISED PLAN.

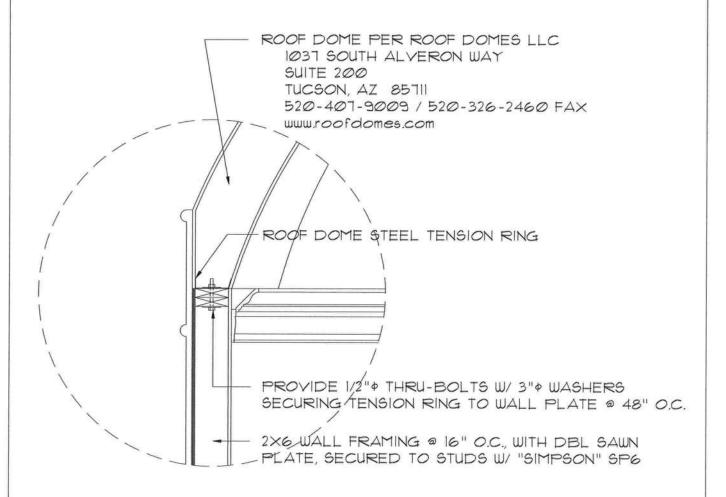
ITEM 20

REFER TO DETAILS ATTACHED - SECTION 117.3.3 DOES NOT APPLY AS IT IS A REFERENCE TO A FLOOR/CEILING ASSEMBLY AND THE REQUIREMENTS OF DRAFT STOPPING SUCH AN ASSEMBLY. THE ATTIC IS DIVIDED NATURALLY AT THE PRAYER ROOM AS THE ROOF STRUCTURE IS ABOVE THE MAIN ROOF AND THUS LIMITS THE MAXIMUM AREA TO LESS THAN 3000 SF. REFER TO THE ATTACHED DETAIL FOR ROOF CAVITY VENTILATION.

ITEM 21

REFER TO REVISED PLAN.

ITEM 9 - PARTIAL


THE CONTRACT FOR PURCHASE OF THE ROOF DOME HAS NOT BEEN LET AS OF THIS DATE, THUS SPECIFICS OF THE WIND ENGINEERING AND CONSTRUCTION DETAILS ARE NOT AVAILABLE. UPON REACHING AN AGREEMENT FOR PURCHASE OF THIS ITEM, THE REQUESTED DOCUMENTS WILL BE SUBMITTED FOR REVIEW AND CONCURRENCE. UNTIL SUCH TIME, PLEASE REVIEW THE ATTACHED DETAIL FOR THE METHOD OF ATTACHMENT OF THE DOME TO THE WALL STRUCTURE.

SHOULD YOU HAVE ANY FURTHER QUESTIONS WITH THIS, PLEASE CALL FOR ASSISTANCE.

YOURS TRULY,

NICHOLAS PAUL GEISLER, ARCHITECT AROOOTOOS

Dome Anchor DETAIL

SCALE: 3/4" = 1'-0"

NEW MOSQUE FOR:

NEW MOSQUE FOR:

NEW MOSQUE FOR:

COLUMBIA COUNTY, FLORIDA

Columbia County minimum plan review criteria for commercial building as required by the Florida Building Codes Sections 106.3.5

Project Name: Islamic Center of Lake City 911 address: 7876 West US Highway 90

Contractor: Charles Peeler Phone Number: 623-4448

Fax:

Date reviewed: 1-18-07

106.3.5 Minimum plan review criteria for buildings.

The examination of the documents by the building official shall include the following minimum criteria and documents:

A floor plan; Floor area of structure is 4050 sq. ft.

Site plan; By GTC Project # PF05-330. Foundation plan; Sheet A12 & A13

Floor/roof framing plan or truss layout; No roof Pre-engineered truss plan 1/18/07

All exterior elevations:

1. Site requirements:

Parking 29 spaces 2 handicap spaces occupancy load of structure = 227

Fire access: none shown

Vehicle loading N/A

Driving/turning radius: 24' drive way

Fire hydrant/water supply/post indicator valve (PIV)

Set back/separation (assumed property lines)

Front 130': Church is 5 acres

Side 86' Side130' Rear

Location of specific tanks, water lines and sewer lines None shown on site plans

2. Occupancy group and special occupancy requirements shall be determined. A-3 Assembly uses intended for worship, recreation or amusement and other assembly uses not classified elsewhere in Group A including, but not limited to: Churches

3. Minimum type of construction shall be determined (see Table 503). 602.3 Type III.

Type III construction is that type of construction in which the exterior walls are of noncombustible materials and the interior building elements are of any material permitted by this code. Fire-retardant-treated wood framing complying with Section 2303.2 shall be permitted within exterior wall assemblies of a 2-hour rating or less.

4. Fire-resistant construction requirements shall include the following components:

Fire-resistant separations :TABLE 602

FIRE-RESISTANCE RATING REQUIREMENTS FOR EXTERIOR

WALLS BASED ON FIRE SEPARATION DISTANCE

Fire-resistant protection for type of construction

Protection of openings and penetrations of rated walls

Fire blocking and draftstopping and calculated fire resistance> 30 Ft.

No Fire-resistant construction requirements

5. Fire suppression systems shall include:

Early warning smoke evacuation systems Schematic fire sprinklers Standpipes

Pre-engineered systems

Riser diagram: 903.2.1.3 Group A-3.

An automatic sprinkler system shall be provided for Group A-3 occupancies where one of the following conditions exists:

- 1. The fire area exceeds 12,000 square feet (1115 m2). 4053 SQ.
- 2. The fire area has an occupant load of 300 or more. Total occupancy load equal 227
- 3. The fire area is located on a floor other than the level of exit discharge. Occupancy load ground floor second floor roof dome only

Exceptions:

- 1. Areas used exclusively as participant sports areas where the main floor area is located at the same level as the level of exit discharge of the main entrance and exit. N/A
- 2. Assembly occupancies used primarily for worship with fixed seating and not part of a mixed occupancy. No fixed seating

6. Life safety systems shall be determined and shall include the following requirements:

Occupant load and egress capacities

Early warning

Smoke control Stair pressurization

Fire department approval needed

Systems schematic

7. Occupancy load/egress requirements shall include:

Occupancy load 227

Gross 4053 SQ. Ft.

Net 4032

Means of egress Total width for 227 = 45" Provide = main entrance two 6070 doors other exits doors = six

Exit access eight doors

Exit Provide information on exit doors hardware detail PANIC

HARDWARE. A door-latching assembly incorporating a device that releases the latch upon the application of a force in the direction of egress travel.

Stairs construction/geometry and protection N/A

Doors

Emergency lighting and exit signs 10 exit signs Emergency lights = 6 one additional emergency light is needed in the cultural hall wall which is the corridor wall (see plans)

Specific occupancy requirements: Smoke alarms

Construction requirements N/A

Horizontal exits/exit passageways: One corridor 60" wide not a dead end corridor exits on both ends

8. Structural requirements shall include:

Soil conditions/analysis: None submitted with plans

Termite protection: Shown on foundation plan

Design loads

Wind requirements 110MPH

Building envelope

Structural calculations (if required)

Foundation Load bearing capacity of foundation design is not disclosed on foundation plan

Wall systems: Load bearing concrete block walls

Floor systems: 4" concrete

Roof systems: pre engineered trusses. See note to Mr. Peeler in

regards to the roof dome.

Threshold inspection plan N/A

Stair systems N/A

9. Materials shall be reviewed and shall at a minimum include the following:

Wood

Steel

Aluminum

Concrete

Plastic

Glass

Masonry

Gypsum board and plaster

Insulating (mechanical)

Roofing

Insulation Need a commercial energy effiency form.

10. Accessibility requirements shall include the following:

Site requirements 2 Handicap parking spaces shown two required Accessible route: Need to show a sidewalk curb cut for wheelchair accessibility

Vertical accessibility N/A
Drinking fountains two shown
Equipment
Special occupancy requirements N/A
Fair housing requirements N/A

11. Interior requirements shall include the following:

Interior finishes (flame spread/smoke development) See note 15 of letter to contractor.

Light and ventilation N/A
Sanitation N/A

12. Special systems: N/A

Elevators Escalators Lifts

13. Swimming pools: N/A

Barrier requirements Spas

Wading pools Electrical

1. Electrical:

Wiring

Services 400 AMP

Feeders and branch circuits: two panels

Overcurrent protection: See note 16 of letter to contractor.

Grounding Wiring methods and materials GFCIs

- 2. Equipment N/A
- 3. Special occupancies N/A
- 4. Emergency systems N/A
- 5. Communication systems: Intercom shown on plans
- 6. Low voltage
- 7. Load calculations Shown

Plumbing:

- 1. Minimum plumbing facilities Toilet and bathing facilities: see section 419.2 Substitution for water closets. In each bathroom or toilet room, urinals shall not be substituted for more than 67 percent of the required water closets.
- 2. Fixture requirements
- 3. Water supply piping
- 4. Sanitary drainage: Also see floor drain trap primers
- 5. Water heaters One
- 6. Vents Exhaust fans shown in all bath rooms
- 7. Roof drainage N/A

- 8. Back flow prevention None shown required on all hose bibs
- 9. Irrigation
- 10. Location of water supply line: Not shown
- 11. Grease traps May be required for kitchen area talk to health dept.
- 12. Environmental requirements No permit issued by health dept as of 1-19-
- 13. Plumbing riser Not sized:

Mechanical

- 1. Energy calculations: Needed to be provided address above
- 2. Exhaust systems:

Clothes dryer exhaust N/A

Kitchen equipment exhaust: A stove appliance is shown within a kitchen area specify the BTU of the cooking range and verify with the fire department the size and type exhaust hood system which will be required for this appliance.

Specialty exhaust systems

- 3. Equipment
- 4. Equipment location
- 5. Make-up air
- 6. Roof-mounted equipment
- 7. Duct systems
- 8. Ventilation
- 9. Combustion air
- 10. Chimneys, fireplaces and vents
- 11. Appliances
- 12. Boilers
- 13. Refrigeration
- 14. Bathroom ventilation Shown on plans exhausts ducts not shown
- 15. Laboratory

Gas

- 1. Gas piping
- 2. Venting

- 3. Combustion air
- 4. Chimneys and vents
- 5. Appliances
- 6. Type of gas
- 7. Fireplaces
- 8. LP tank location
- 9. Riser diagram/shutoffs

Suwannee River Water Management District:
General Permit Number:
State of Florida Department of Transportation:
Driveway Permit:

01 JULY 2008

JOHNNY KEARSE, BUILDING OFFICIAL COLUMBIA COUNTY, BUILDING DEPT. COLUMBIA COUNTY COURTHOUSE ANNEX LAKE CITY, FLORIDA 32055

RE: LAKE CITY ISLAMIC CENTER PERMIT Nr.:

DEAR SIR:

PER YOUR REQUEST, I HAVE VISITED THE PROJECT SITE TO REVIEW THE STRUCTURAL FRAMING AS IT IS PRESENTLY CONSTITUTED, FOR THE PURPOSE OF DETERMINING THE CONFORMANCE WITH THE CONSTRUCTION DOCUMENTS FOR THE PROJECT.

IN REVIEWING THE CONSTRUCTION OF THE MOSQUE, I NOTE THREE SIGNIFICANT DEPARTURES FROM THE CONSTRUCTION DOCUMENTS AS FAR AS THE STRUCTURE IS CONCERNED:

- I. THE PLATE HEIGHT OF THE CMU WALLS HAS BEEN SET TO ONE LEVEL, PRINCIPALLY THE MAIN LEVEL OF BEARING FOR THE ROOF TRUSSES. THIS VARIES FROM THE CONDOCS WHERE SEVERAL HEIGHTS WERE INDICATED. THIS CHANGE IS APPROVED AS IT SAVED SIGNIFICANT COSTS OF CONSTRUCTION AND WAS FULLY DEALT WITH THE ENGINEERED TRUSS SHOP DRAWINGS FOR THIS PROJECT. ALL DESIGN REQUIREMENTS HAVE BEE MET OR EXCEEDED BY THIS CHANGE.
- 2. THE CONSTRUCTION OF THE MINARETS AS ORIGINALLY DETAILED CALLED FOR ONLY METAL STUD CONSTRUCTION ABOVE THE CONCRETE LEVEL. THE AS-BUILT CONDITION INCLUDES A 4X4 STEEL POST ANCHORED TO THE CMU PORTION AND TO WHICH THE METAL STUD FRAMING IS IN TURN ANCHORED, THUS PROVIDING A GREATER STIFFNESS FOR THE VERTICAL FRAMING THAN WAS ORIGINALLY PLANNED. THIS CHANGE IS APPROVED AS IT ADDS STRENGTH TO THE ORIGINAL DESIGN AND THUS MEETS OR EXCEEDS THE ORIGINAL DESIGN LOAD INTENT.

PAGE 2 OF 2

3. THE DOME, WHILE ORIGINALLY WAS SPECIFIED AS A "PRODUCT" TO BE PURCHASED AND INSTALLED, IT WAS DETERMINED THAT SIGNIFICANT COST SAVINGS COULD BE ACHIEVED BY FABRICATING THE DOME FRAMING LOCALLY. THIS WAS ACHIEVED BY CUTTING THE RIBS FROM PLYWOOD AND THEN LAMINATING THE PLIES TOGETHER WITH GLUE AND NAILS TO FORM EACH OF THE SEPARATE RIBS. THE LOWER END OF THE RIB IS ANCHORED IN A CONVENTIONAL WAY USING A TWIST STRAP FROM THE RIB TO THE PLATE/STUD SUPPORTING THE RIB. THE RIBS IN TURN, BARE ON ONE-ANOTHER AND ARE SECURELY FASTENED TOGETHER WITH A 48 INCH CIRCLE OF PLYWOOD SHEATHING AT THE APEX OF THE DOME, APPLIED WITH GLUE AND NAILS. SINCE DOMES ACT AS 3-HINGE ARCHES, THE FORCES AT THE APEX ARE COMPRESSIVE AND THUS ARE SELF SUPPORTING WHEN BEARING ON ONE-ANOTHER AS IN THIS APPLICATION. THIS CHANGE IS ALSO APPROVED SINCE THE RESULTANT DOME MEETS AND/OR EXCEEDS ALL OF THE DESIGN FORCES PLANNED FOR THIS STRUCTURE.

SHOULD YOU HAVE ANY FURTHER QUESTIONS WITH THIS, PLEASE CALL FOR ASSISTANCE.

YOURS TRULY, NICHOLAS PAUL GEISLER, ARCHITECT AROOOTOOS

COLUMBIA COUNTY, FLORIDA

Department of Building and Zoning Inspection This Certificate of Occupancy is issued to the below named permit holder for the building

and premises at the below named location, and certifies that the work has been completed in accordance with the Columbia County Building Code.

Parcel Number 30-3S-16-02409-001

Fire: 0.00

Building permit No. 000026688

Use Classification CHURCH, UTILITY

Permit Holder SIMQUE CONSTRUCTION

Waste:

Owner of Building ISLAMIC CENTER OF LAKE CITY

0.00

Total:

Location:

7876 W US HWY 90, LAKE CITY, FL 32055

Date: 12/18/2008

Building Inspector

POST IN A CONSPICUOUS PLACE (Business Places Only)

COLUMBIA COUNTY FIRE DEPARTMENT

P. O. BOX 1529 LAKE CITY, FL 32056 PHONE (386) 754-7071 FAX (386) 754-7064

David L. Boozer Division Chief

09 July 2008

TO:

David Simque

P.O. Box 2962

Lake City, Florida 32056

FROM:

David L. Boozer

RE:

Islamic Center of Lake City

Permit # 000026688

Mr. Simque,

A Fire Safety Inspection was performed today of the Islamic Center located at 7876 W US 90, Lake City, Florida 32055. Thisbuilding meets the requirements as set forth in the Florida Fire Prevention Code, 2004 Edition. I recommend approval.

David L. Boozer Inspector #146595

Donald F. Lee & Associates, Inc.

Surveyors & Engineers

140 NW Ridgewood Avenue Lake City, Florida 32055 (386) 755-6166 Fax (386) 755-6167 donald@dfla.com

Thursday, February 28, 2008

FROM: Tim Delbene, P.L.S.

TO: Columbia County Building & Zoning Dept.

CC: Simque Construction

RE: Floor Elevation Check - Islamic Center of Lake City, Inc.

(Parcel No. 30-3S-16-02409-001).

We have obtained an elevation on the floor of a building under construction on the above referenced Parcel. The elevation is based on a benchmark (NGVD1929) used in the design of the project. The results are as follows:

Floor Elevation: 146.96'

The design finished floor elevation for the building, according to plans prepared by GTC Design Group, Inc., is 146.8'.

SIGNED:

Timothy A. Delbene, P.L.S. Florida Reg. Cert. No. 5594

DATE: 2/26/2008.

Project Information for:

L153414

Builder:

Charles Peeler Construction

Address:

2054 SW. Dairy St. Lake City, FL 32024

County:

Columbia

Truss Count:

30

Design Program:

MiTek 20/20 6.2

Truss Design Load Information:

Gravity:

Roof:

Wind:

Wind Standard:

ASCE 7-02

Floor:

45.0 N/A

Wind Speed:

110 mph

Note: See the individual truss drawings for special loading conditions.

Architect of Record: Nicholas P. Geisler

Florida License No.: AR0007005

nuary 30, 2007

Truss Design Engineer: Lawrence A. Paine, PE

Builders FirstSource, Jacksonville, FL. 32244

Florida License Number: 21475

Building Code: FBC2004/TPI2002

Address: 1758 NW Brown Road Lake City, FL 32055

Truss Design Engineer: Lawrence A. Paine, PE Florida P.E. License No. 21475

Company: Builders FirstSource

Address: 6550 Roosevelt Blvd. Jacksonville, FL 32244

Notes:

1. Determination as to the suitability of these truss components for the structure is the responsibility of the building designer/engineer of record, as defined in ANSI/TPI 1-1995 Section 2.2

2. The seal date shown on the individual truss component drawings must match the seal date on this index sheet.

Truss ID Dwg. # Seal Date

Project Information for:

L153414

Builder:

Charles Peeler Construction

Address:

2054 SW. Dairy St. Lake City, FL 32024

County:

Columbia

Truss Count:

30

Design Program:

MiTek 20/20 6.2

Gravity:

Truss Design Load Information:

Roof:

45.0

Wind Standard:

ASCE 7-02

Floor:

N/A

Wind Speed:

110 mph

Note: See the individual truss drawings for special loading conditions.

Architect of Record: Nicholas P. Geisler

Florida License No.: AR0007005

January 30, 2007

Truss Design Engineer: Lawrence A. Paine, PE

Builders FirstSource, Jacksonville, FL. 32244

Florida License Number: 21475

Building Code: FBC2004/TPI2002

Address: 1758 NW Brown Road Lake City, FL 32055

Truss Design Engineer: Lawrence A. Paine, PE Florida P.E. License No. 21475

Company: Builders FirstSource

Address: 6550 Roosevelt Blvd. Jacksonville, FL 32244

Notes:

1. Determination as to the suitability of these truss components for the structure is the responsibility of the building designer/engineer of record, as defined in ANSI/TPI 1-1995 Section 2.2

2. The seal date shown on the individual truss component drawings must match the seal date on this index sheet.

Truss ID Dwg. # Seal Date 123456789111345678901234567890

Job Truss Truss Type Qty Ply LAKE CITY/ISLAMIC CENTER J1672244 L153414 HJ7 MONO TRUSS Job Reference (optional) Builders FirstSource, Bunnell, FL. 32110 6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 12:54:49 2006 Page 1 -2-1-7 9-10-13 2-1-7 9-10-13 D 0.73x82 Scale = 1:24.6 3x4 C В G 3x6 2x4 2x4 3-10-0 9-10-13 3-10-0 6-0-13 LOADING (psf) SPACING 2-0-0 CSI DEFL in (loc) I/defl L/d **PLATES** GRIP TCLL 20.0 Plates Increase 1.25 TC 0.73 Vert(LL) -0.11F-G >999 244/190 240 MT20 10.0 1.25 BC 0.55 F-G TCDL Lumber Increase Vert(TL) -0.19>622 180 BCLL 10.0 NO 0.37 Rep Stress Incr WB 0.02 Horz(TL) D n/a n/a Code FBC2004/TPI2002 (Matrix) BCDL 5.0 Weight: 61 lb

LUMBER

TOP CHORD 2 X 4 SYP No.2

BOT CHORD 2 X 4 SYP No.2

WEBS 2 X 4 SYP No.3 *Except*

B-H 2 X 4 SYP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0

oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS (lb/size) H=519/1-0-1, D=309/Mechanical, E=398/Mechanical

Max Horz H=192(load case 4)

Max Uplift H=-312(load case 2), D=-265(load case 4), E=-135(load case 4)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD B-H=-102/111, A-B=0/8, B-C=-41/59, C-D=-21/13

BOT CHORD G-H=-255/375, F-G=-255/375, E-F=0/0

WEBS C-H=-628/302, C-F=-461/314, C-G=0/275

JOINT STRESS INDEX

B = 0.64, C = 0.32, F = 0.26, G = 0.20 and H = 0.48

NOTES

 Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; partially; MWFRS gable end zone; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 312 lb uplift at joint H, 265 lb uplift at joint D and 135 lb uplift at joint E.

3) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (P) has Design Engineer: Lawrence A. Paine, PE

Continued on page 2

Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

June 2,2006

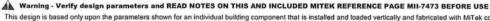
Job Truss Truss Type Qty Ply LAKE CITY/ISLAMIC CENTER J1672244 L153414 HJ7 MONO TRUSS Job Reference (optional)

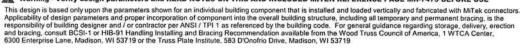
Builders FirstSource, Bunnell, FL. 32110

6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 12:54:49 2006 Page 2

LOAD CASE(S) Standard

1) Regular: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)


Vert: A-B=-60


Trapezoidal Loads (plf)

Vert: B=-2(F=29, B=29)-to-D=-148(F=-44, B=-44), H=0(F=15, B=15)-to-E=-74(F=-22, B=-22)

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

June 2,2006

Job Truss Truss Type Qty Ply LAKE CITY/ISLAMIC CENTER J1672245 L153414 **HJ70** MONO TRUSS Job Reference (optional) 6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 12:55:55 2006 Page 1 Builders FirstSource, Bunnell, FL. 32110 -2-1-7 3-10-0 9-10-13 2-1-7 3-10-0 6-0-13 0.71 J2 Scale = 1:20.7 C 3x4 В G E 2x4 11 2x4 9-10-13 9-10-13 LOADING (psf) SPACING 2-0-0 CSI DEFL I/defl L/d **PLATES** GRIP (loc) 0.73 TCLL 20.0 Plates Increase 1.25 TC Vert(LL) -0.10F-G >999 240 MT20 244/190 TCDL 10.0 1.25 BC 0.55 -0.18Lumber Increase Vert(TL) F-G >645 180 **BCLL** 10.0 **WB** 0.38 Rep Stress Incr NO Horz(TL) 0.02 D n/a n/a BCDL 5.0 Code FBC2004/TPI2002 (Matrix) Weight: 57 lb LUMBER BRACING Structural wood sheathing directly applied or 6-0-0 TOP CHORD 2 X 4 SYP No.2 TOP CHORD BOT CHORD 2 X 4 SYP No.2 oc purlins, except end verticals. 2 X 4 SYP No.3 *Except* **WEBS BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing. B-H 2 X 4 SYP No.2

REACTIONS

(lb/size) H=519/0-8-8, D=308/Mechanical, E=399/Mechanical

Max Horz H=159(load case 4)

Max Uplift H=-315(load case 2), D=-265(load case 4), E=-120(load case 4)

FORCES (Ib) - Maximum Compression/Maximum Tension

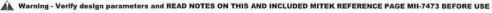
TOP CHORD B-H=-97/101, A-B=0/8, B-C=-54/79, C-D=-21/13

BOT CHORD G-H=-294/478, F-G=-294/478, E-F=0/0

WEBS C-H=-719/351, C-F=-546/336, C-G=0/270

JOINT STRESS INDEX

B = 0.69, C = 0.35, F = 0.28, G = 0.20 and H = 0.59


NOTES

- Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; partially; MWFRS gable end zone; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60.
- 2) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 315 lb uplift at joint H, 265 lb uplift at joint D and 120 lb uplift at joint E.
- 3) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (P) uss Design Engineer: Lawrence A. Paine, PE

Continued on page 2

Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

June 2,2006

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MITek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation authlable from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	LAKE CITY/ISLAMIC CENTER	
L153414	HJ70	MONO TRUSS	4	1		J1672245
					Job Reference (optional)	

Builders FirstSource, Bunnell, FL. 32110

6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 12:55:56 2006 Page 2

LOAD CASE(S) Standard

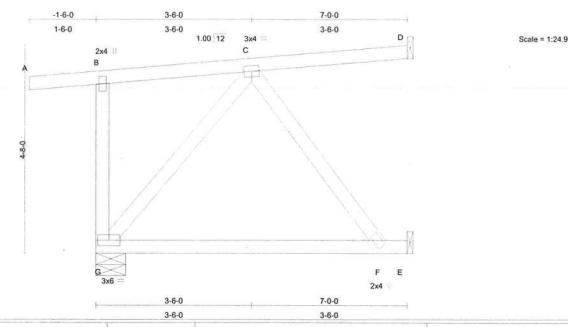
1) Regular: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)

Vert: A-B=-60

Trapezoidal Loads (plf)

Vert: B=-2(F=29, B=29)-to-D=-148(F=-44, B=-44), H=0(F=15, B=15)-to-E=-74(F=-22, B=-22)

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6SSO Roosevelt Blvd. Jacksonville, FL 32244


June 2,2006

Job Truss Truss Type Qty Ply LAKE CITY/ISLAMIC CENTER J1672246 L153414 J01 **JACK** 38 Job Reference (optional)

Builders FirstSource, Bunnell, FL. 32110

6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 11:24:44 2006 Page 1

LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.46	Vert(LL)	-0.09	F-G	>909	240	MT20	244/190
TCDL	10.0	Lumber Increase	1.25	BC	0.31	Vert(TL)	-0.16	F-G	>519	180	A 200	
BCLL	10.0	Rep Stress Incr	YES	WB	0.07	Horz(TL)	0.03	D	n/a	n/a		
BCDL	5.0	Code FBC2004/TF	PI2002	(Mat	rix)	38-28-038-38-38-4 8					Weight: 43 lb)

LUMBER

TOP CHORD 2 X 4 SYP No.2

BOT CHORD 2 X 4 SYP No.2

2 X 4 SYP No.3 **WEBS**

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0

oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS (lb/size) G=416/0-8-0, D=94/Mechanical, E=200/Mechanical

Max Horz G=183(load case 5)

Max Uplift G=-238(load case 3), D=-76(load case 5), E=-131(load case 5)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD B-G=-225/241, A-B=0/8, B-C=-50/144, C-D=-11/6

BOT CHORD F-G=-171/90, E-F=0/0

WEBS C-G=-80/93, C-F=-154/293

JOINT STRESS INDEX

LOAD CASE(S) Standard

B = 0.57, C = 0.19, F = 0.15 and G = 0.61

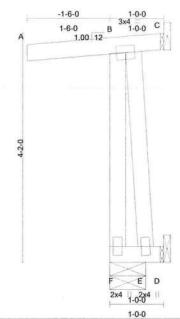
NOTES

- 1) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; partially; MWFRS gable end zone and C-C Exterior(2) zone; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 2) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 238 lb uplift at joint G, 76 lb uplift at joint D and 131 lb uplift at joint E.

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

June 2,2006

▲ Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE


This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MTek connec Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erect and bracing, consult BCS-11 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	LAKE CITY/ISLAMIC CENTER	14070047
L153414	J03	JACK	8	1		J1672247
,	1	(C.S.C.S.)			Job Reference (optional)	

Builders FirstSource, Bunnell, FL. 32110

6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 12:41:20 2006 Page 1

LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.15	Vert(LL)	-0.00	F	>999	240	MT20	244/190
TCDL	10.0	Lumber Increase	1.25	BC	0.00	Vert(TL)	-0.00	F	>999	180		
BCLL	10.0	Rep Stress Incr	YES	WB	0.03	Horz(TL)	-0.01	C	n/a	n/a		
BCDL	5.0	Code FBC2004/TI	212002	(Mat	rix)						Weight: 16 lb	

LUMBER TOP CHORD 2 X 4 SYP No.2 BOT CHORD 2 X 4 SYP No.2 **WEBS** 2 X 4 SYP No.3 BRACING TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 1-0-0

oc purlins, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS

(lb/size) F=227/0-8-0, C=-71/Mechanical, D=2/Mechanical, E=17/0-8-0

Max Horz F=13(load case 3)

Max Uplift F=-110(load case 3), C=-71(load case 1), E=-90(load case 3)

Max Grav F=227(load case 1), C=69(load case 3), D=2(load case 1), E=17(load case 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD B-F=-221/111, A-B=0/8, B-C=-10/6

BOT CHORD E-F=-15/0, D-E=0/0

B-E=0/106 **WEBS**

JOINT STRESS INDEX

B = 0.11, E = 0.06 and F = 0.08

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475

NOTES Builders FirstSource - Florida, LLC 1) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp Boso Roosevelt Blvd. Jacksonville, FL 32244 partially; MWFRS gable end zone and C-C Exterior(2) zone; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS

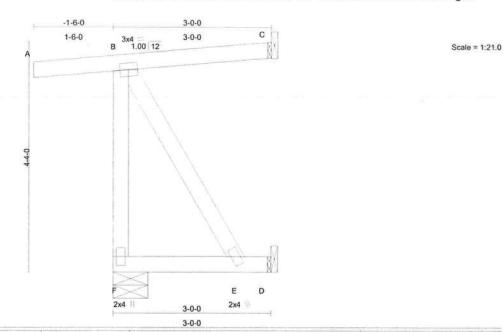
2) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 110 lb uplift at joint F, 71 lb uplift at joint C and 90 lb uplift at joint E.

LOAD CASE(S) Standard

for reactions specified.

June 2,2006

Scale = 1:20.2


 Job
 Truss
 Truss Type
 Qty
 Ply
 LAKE CITY/ISLAMIC CENTER

 L153414
 J04
 JACK
 8
 1

 Job Reference (optional)

Builders FirstSource, Bunnell, FL. 32110

6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 12:41:42 2006 Page 1

LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.32	Vert(LL)	0.01	E-F	>999	240	MT20	244/190
TCDL	10.0	Lumber Increase	1.25	BC	0.15	Vert(TL)	0.01	E-F	>999	180		
BCLL	10.0	Rep Stress Incr	YES	WB	0.07	Horz(TL)	-0.02	C	n/a	n/a		
BCDL	5.0	Code FBC2004/TI	PI2002	(Mat	rix)						Weight: 23 lb	

	M		

TOP CHORD 2 X 4 SYP No.2 BOT CHORD 2 X 4 SYP No.2

WEBS 2 X 4 SYP No.3

BRACING

TOP CHORD

Structural wood sheathing directly applied or 3-0-0

oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS (lb/size) F=253/0-8-0, C=55/Mechanical, D=42/Mechanical

Max Horz F=163(load case 5)

Max Uplift F=-165(load case 3), C=-45(load case 3), D=-118(load case 5)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD B

B-F=-212/169, A-B=0/8, B-C=-9/3

BOT CHORD

E-F=-145/0, D-E=0/0

WEBS

B-E=0/282

JOINT STRESS INDEX

LOAD CASE(S) Standard

B = 0.19, E = 0.15 and F = 0.10

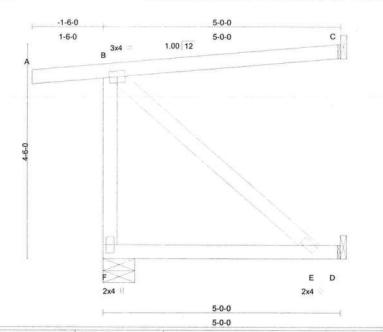
NOTES

- Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; partially; MWFRS gable end zone and C-C Exterior(2) zone; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 165 lb uplift at joint F, 45 lb uplift at joint C and 118 lb uplift at joint D.

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

June 2,2006

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE


This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCS-1 or ItIle-3P Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job Truss Truss Type LAKE CITY/ISLAMIC CENTER Qty Ply J1672249 L153414 J05 **JACK** Job Reference (optional)

Builders FirstSource, Bunnell, FL. 32110

6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 12:41:59 2006 Page 1

LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.36	Vert(LL)	-0.03	E-F	>999	240	MT20	244/190
TCDL	10.0	Lumber Increase	1.25	BC	0.16	Vert(TL)	-0.05	E-F	>999	180		
BCLL	10.0	Rep Stress Incr	YES	WB	0.05	Horz(TL)	0.01	C	n/a	n/a		
BCDL	5.0	Code FBC2004/TI	PI2002	(Mati	rix)						Weight: 31 lb	

JΝ		

TOP CHORD 2 X 4 SYP No.2 BOT CHORD 2 X 4 SYP No.2

WEBS

2 X 4 SYP No.3

BRACING TOP CHORD

Structural wood sheathing directly applied or 5-0-0

oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS (lb/size) F=331/0-8-0, C=127/Mechanical, D=72/Mechanical

Max Horz F=173(load case 5)

Max Uplift F=-198(load case 3), C=-108(load case 3), D=-67(load case 5)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD B-F=-259/211, A-B=0/8, B-C=-18/8

BOT CHORD E-F=-159/0, D-E=0/0

WEBS B-E=0/211

JOINT STRESS INDEX

B = 0.15, E = 0.10 and F = 0.12

NOTES

- 1) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; partially; MWFRS gable end zone and C-C Exterior(2) zone; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 2) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 198 lb uplift at joint F, 108 lb uplift at joint C and 67 lb uplift at joint D.

LOAD CASE(S) Standard

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

June 2,2006

Scale = 1:23.3

Job Truss Truss Type Qty Ply LAKE CITY/ISLAMIC CENTER J1672250 L153414 J07 **JACK** 14 Job Reference (optional) 6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 12:45:12 2006 Page 1 Builders FirstSource, Bunnell, FL. 32110 -1-6-0 3-6-0 7-0-0 1-6-0 3-6-0 3-6-0 1.00 12 D Scale = 1:20.7 3x4 C 2x4 В E 3x6 2x4 3-6-0 7-0-0 3-6-0 3-6-0 LOADING (psf) SPACING 2-0-0 CSI DEFL in (loc) I/defl L/d **PLATES** GRIP F-G TCLL 20.0 1.25 TC -0.08 Plates Increase 0.49 Vert(LL) >961 240 MT20 244/190 10.0 0.30 TCDL Lumber Increase 1.25 BC Vert(TL) -0.15F-G >549 180 **BCLL** 10.0 Rep Stress Incr YES WB 0.07 Horz(TL) 0.02 D n/a n/a BCDL 5.0 Code FBC2004/TPI2002 (Matrix) Weight: 40 lb LUMBER BRACING TOP CHORD 2 X 4 SYP No.2 TOP CHORD Structural wood sheathing directly applied or 6-0-0 BOT CHORD 2 X 4 SYP No.2 oc purlins, except end verticals. **WEBS** 2 X 4 SYP No.3 **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing.

(lb/size) G=416/0-1-15, D=93/Mechanical, E=201/Mechanical REACTIONS

Max Horz G=151(load case 5)

Max Uplift G=-241(load case 3), D=-75(load case 5), E=-111(load case 5)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD B-G=-225/228, A-B=0/8, B-C=-64/114, C-D=-11/6

BOT CHORD

F-G=-191/118, E-F=0/0

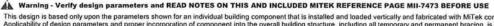
WEBS

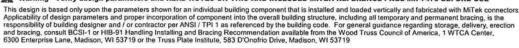
C-G=-89/111, C-F=-173/281

JOINT STRESS INDEX

B = 0.31, C = 0.18, F = 0.14 and G = 0.66

NOTES

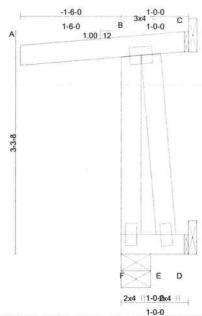

Florida PE No. 21475 1) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244 partially; MWFRS gable end zone and C-C Exterior(2) zone; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS


for reactions specified. 2) Provide mechanical connection (by others) of truss to bearing plate at joint(s) G.

3) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 241 lb uplift at joint G, 75 lb uplift at joint D and 111 lb uplift at joint E.

LOAD CASE(S) Standard

June 2,2006



Truss Design Engineer: Lawrence A. Paine, PE

Job	Truss	Truss Type	Qty	Ply	LAKE CITY/ISLAMIC CENTER	
L153414	J09	JACK	8	1		J1672251
					Job Reference (ontional)	

Builders FirstSource, Bunnell, FL. 32110

6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 12:46:25 2006 Page 1

Scale = 1:16.4

LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.15	Vert(LL)	-0.00	F	>999	240	MT20	244/190
TCDL	10.0	Lumber Increase	1.25	BC	0.02	Vert(TL)	-0.00	F	>999	180	10/02/02/02/02/0	
BCLL	10.0	Rep Stress Incr	YES	WB	0.02	Horz(TL)	-0.01	C	n/a	n/a		
BCDL	5.0	Code FBC2004/TI	212002	(Mati	rix)						Weight: 13 lb	

LUMBER TOP CHORD 2 X 4 SYP No.2 BOT CHORD 2 X 4 SYP No.2

2 X 4 SYP No.3

BRACING Structural wood sheathing directly applied or 1-0-0 TOP CHORD oc purlins, except end verticals. **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS (lb/size) F=233/0-5-4, C=-71/Mechanical, D=13/Mechanical

Max Horz F=13(load case 3)

Max Uplift F=-157(load case 3), C=-71(load case 1), D=-43(load case 3) Max Grav F=233(load case 1), C=69(load case 3), D=13(load case 1)

FORCES (Ib) - Maximum Compression/Maximum Tension

TOP CHORD

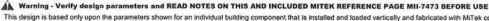
B-F=-221/133, A-B=0/8, B-C=-10/6

BOT CHORD WEBS

WEBS

E-F=-15/0, D-E=0/0 B-E=0/82

JOINT STRESS INDEX


B = 0.11, E = 0.05 and F = 0.08

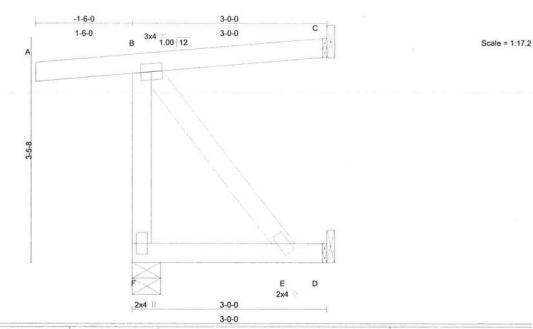
NOTES Builders FirstSource - Florida, LLC 1) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B 550 Roosevelt Blvd. Jacksonville, FL 32244 partially; MWFRS gable end zone and C-C Exterior(2) zone; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.

2) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 157 lb uplift at joint F, 71 lb uplift at joint C and 43 lb uplift at joint D.

LOAD CASE(S) Standard

June 2,2006

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MITek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719


Truss Design Engineer: Lawrence A. Paine, PE

Florida PE No. 21475

Truss Type Job Truss Qty Ply LAKE CITY/ISLAMIC CENTER J1672252 L153414 J10 **JACK** Job Reference (optional)

Builders FirstSource, Bunnell, FL. 32110

6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 12:46:48 2006 Page 1

LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.21	Vert(LL)	0.01	E-F	>999	240	MT20	244/190
TCDL	10.0	Lumber Increase	1.25	BC	0.09	Vert(TL)	0.01	E-F	>999	180		
BCLL	10.0	Rep Stress Incr	YES	WB	0.05	Horz(TL)	-0.01	C	n/a	n/a		
BCDL	5.0	Code FBC2004/TI	212002	(Mati	rix)						Weight: 20 lb	

LUMBER

TOP CHORD 2 X 4 SYP No.2

BOT CHORD 2 X 4 SYP No.2

WEBS 2 X 4 SYP No.3 BRACING TOP CHORD

Structural wood sheathing directly applied or 3-0-0

oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS (lb/size) F=253/0-5-4, C=55/Mechanical, D=42/Mechanical

Max Horz F=131(load case 5)

Max Uplift F=-167(load case 3), C=-45(load case 3), D=-72(load case 5)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD B-F=-212/172, A-B=0/8, B-C=-9/3

E-F=-118/0, D-E=0/0

BOT CHORD WEBS

B-E=0/191

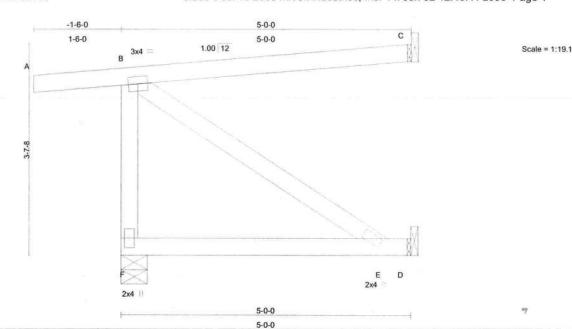
JOINT STRESS INDEX

B = 0.13, E = 0.10 and F = 0.10

NOTES

- 1) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; partially; MWFRS gable end zone and C-C Exterior(2) zone; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 2) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 167 lb uplift at joint F, 45 lb uplift at joint C and 72 lb uplift at joint D.

LOAD CASE(S) Standard


Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

June 2,2006

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job Truss Truss Type Qty Ply LAKE CITY/ISLAMIC CENTER J1672253 L153414 J11 **JACK** Job Reference (optional) 6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 12:48:41 2006 Page 1 Builders FirstSource, Bunnell, FL. 32110

LOADIN	IG (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.27	Vert(LL)	-0.03	E-F	>999	240	MT20	244/190
TCDL	10.0	Lumber Increase	1.25	BC	0.16	Vert(TL)	-0.05	E-F	>999	180	To the second se	
BCLL	10.0	Rep Stress Incr	YES	WB	0.04	Horz(TL)	0.01	C	n/a	n/a		
BCDL	5.0	Code FBC2004/TF	PI2002	(Mati	rix)	, ,					Weight: 29 I	b

LUMBER TOP CHORD 2 X 4 SYP No.2

BOT CHORD 2 X 4 SYP No.2

2 X 4 SYP No.3 WEBS

BRACING TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 5-0-0

oc purlins, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS (lb/size) F=331/0-5-8, C=127/Mechanical, D=72/Mechanical

Max Horz F=141(load case 5)

Max Uplift F=-201(load case 3), C=-108(load case 3), D=-39(load case 5)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD

B-F=-259/214, A-B=0/8, B-C=-18/8

BOT CHORD

E-F=-132/0, D-E=0/0

WEBS

B-E=0/159

JOINT STRESS INDEX

LOAD CASE(S) Standard

B = 0.16, E = 0.07 and F = 0.12

NOTES

- 1) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; partially; MWFRS gable end zone and C-C Exterior(2) zone; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 2) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 201 lb uplift at joint F, 108 lb uplift at joint C and 39 lb uplift at joint D.

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

June 2,2006

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCS-11 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job Truss Truss Type Qty Ply LAKE CITY/ISLAMIC CENTER J1672254 L153414 JACK J12 14 Job Reference (optional) 6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 12:51:31 2006 Page 1 Builders FirstSource, Bunnell, FL. 32110 5-6-12 -1-6-0 2-9-6 1-6-0 2-9-6 2-9-6 1.00 12 Scale = 1:21.3 Warning: This truss has not been designed to support 2x4 C any additional load from conventional framing. D 2x4 3x4 2-9-6 5-6-12 2-9-6 2-9-6 LOADING (psf) SPACING 2-0-0 CSI DEFL GRIP (loc) I/defI L/d **PLATES** 20.0 1.25 TC TCLL Plates Increase 0.33 Vert(LL) -0.04 D-E >999 240 MT20 244/190 TCDL 10.0 Lumber Increase 1.25 BC 0.20 Vert(TL) -0.07D-E >892 180 BCLL 10.0 Rep Stress Incr YES WB 0.05 -0.00 Horz(TL) D n/a n/a Code FBC2004/TPI2002 BCDL 5.0 (Matrix) Weight: 36 lb LUMBER BRACING TOP CHORD 2 X 4 SYP No.2 TOP CHORD Structural wood sheathing directly applied or BOT CHORD 2 X 4 SYP No.2 5-6-12 oc purlins, except end verticals. 2 X 4 SYP No.3 **BOT CHORD** WFBS Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS (lb/size) E=351/0-5-8, D=222/Mechanical

Max Horz E=143(load case 5)

Max Uplift E=-210(load case 3), D=-156(load case 5)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD B-E=-272/230, A-B=0/8, B-C=-20/9

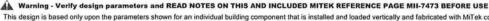
BOT CHORD D-E=-135/0

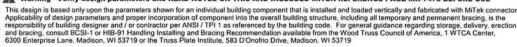
WEBS C-D=-143/191, B-D=0/154

JOINT STRESS INDEX

B = 0.18, C = 0.11, D = 0.13 and E = 0.14

NOTES

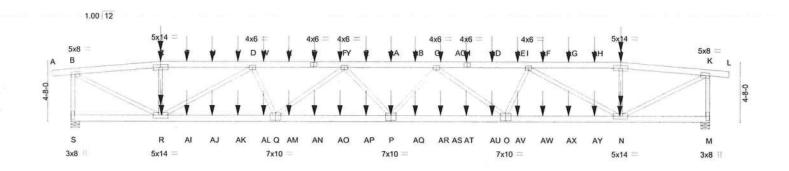

Unbalanced roof live loads have been considered for this design.


Builders FirstSource - Florida, LLC 2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B:550 Roosevelt Blvd. Jacksonville, FL 32244 partially; MWFRS gable end zone and C-C Exterior(2) zone; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.

3) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 210 lb uplift at joint E and 156 lb uplift at joint D.

LOAD CASE(S) Standard

June 2,2006



Truss Design Engineer: Lawrence A. Paine, PE

Florida PE No. 21475

Job Truss Type		Truss Type	Qty		Ply	LAKE CITY/ISLAMIC	J1672255		
L153414	53414 T01 HIP			2	3	Job Reference (optiona	01072233		
Builders Fire	stSource, Bu	unnell, FL. 32110		6.200 s Jul 1	3 2005	MiTek Ir	ndustries, Inc. Fri Jun 02		Page 1
-1-6-0	7-0-0	14-2-6	21-4-13	28-7-3		35-9-10	43-0-0	50-0-0	51-6-0
1-6-0	7-0-0	7-2-6	7-2-6	7-2-6		7-2-6	7-2-6	7-0-0	1-6-0 Scale = 1:86.8

7-0-0 16-0-0 7-0-0			25-0-0			34-0-0			1-0-0	50-0-0	-1	
			9-0-0		9-0-0			9-0-0		7-0-0		
Plate Of	fsets (X,Y):	[B:0-3-5,0-2-8], [K:0	-3-5,0-2-8], [O:0-5-	-0,0-4-8],	[P:0-5-0,0-4-8], [Q:0-5	-0,0-4-	3]			
LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.37	Vert(LL)	0.50	P-Q	>999	240	MT20	244/190
TCDL	10.0	Lumber Increase	1.25	BC	0.67	Vert(TL)	-0.83	P-Q	>718	180		
BCLL	10.0	Rep Stress Incr	NO	WB	0.94	Horz(TL)	0.16	M	n/a	n/a		
BCDL 5.0		Code FBC2004/TPI2002		(Matrix)							Weight: 1063 lb	

LUMBER TOP CHORD 2 X 6 SYP No.1D BOT CHORD 2 X 6 SYP No.1D 2 X 4 SYP No.3 WEBS

BRACING TOP CHORD

Structural wood sheathing directly applied or 6-0-0

oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS (lb/size) S=5205/0-8-0, M=5172/0-8-0

Max Horz S=-139(load case 2)

Max Uplift S=-2853(load case 2), M=-2836(load case 3)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD A-B=0/8, B-C=-7950/4309, C-T=-7904/4308, T-U=-7904/4308, U-V=-7904/4308,

> D-V=-7904/4308, D-W=-13970/7624, W-X=-13970/7624, E-X=-13970/7624, E-Y=-13970/7624, F-Y=-13970/7624, F-Z=-15992/8722, Z-AA=-15992/8722, AA-AB=-15992/8722, G-AB=-15992/8722, G-AC=-13826/7551, H-AC=-13826/7551,

H-AD=-13826/7551, AD-AE=-13826/7551, I-AE=-13826/7551, I-AF=-7854/4283, AF-AG=-7854/4283, AG-AH=-7854/4283, J-AH=-7854/4283, J-K=-7900/4284, K-L=0/8,

B-S=-5116/2865, K-M=-5087/2851

BOT CHORD R-S=-119/108, R-AI=-7072/12945, AI-AJ=-7072/12945, AJ-AK=-7072/12945,

> AK-AL=-7072/12945, Q-AL=-7072/12945, Q-AM=-8481/15467, AM-AN=-8481/15467, AN-AO=-8481/15467, AO-AP=-8481/15467, P-AP=-8481/15467, P-AQ=-8460/15409, AQ-AR=-8460/15409, AR-AS=-8460/15409, AS-AT=-8460/15409, AT-AU=-8460/15409,

O-AU=-8460/15409, O-AV=-7026/12821, AV-AW=-7026/12821, AW-AX=-7026/12821

AX-AY=-7026/12821, N-AY=-7026/12821, M-N=-63/107

C-R=-133/209, D-R=-5903/3276, D-Q=-1301/2618, F-Q=-1922/1137, F-P=-337/832, Florida PE No. 21475

G-P=-381/921, G-O=-2031/1192, I-O=-1277/2569, I-N=-5816/3233, J-N=-137/211, B-R=-4777/8825, K-N=-4750/8770

Truss Design Engineer: Lawrence A. Paine, PE

Builders FirstSource - Florida, LLC

6550 Roosevelt Blvd. Jacksonville, FL 32244

June 2,2006

Continued on page 2

WEBS

Job	Truss	Truss Type	Qty	Ply	LAKE CITY/ISLAMIC CENTER	
L153414	T01	HIP	2	-		J1672255
				3	Job Reference (optional)	

Builders FirstSource, Bunnell, FL. 32110

6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 13:01:15 2006 Page 2

JOINT STRESS INDEX

B = 0.65, C = 0.44, D = 0.59, E = 0.67, F = 0.26, G = 0.26, H = 0.67, I = 0.59, J = 0.35, K = 0.65, M = 0.38, N = 0.73, O = 0.84, P = 0.84, Q = 0.84, R = 0.73 and S = 0.38

NOTES

- 1) 3-ply truss to be connected together with 0.131"x3" Nails as follows: Top chords connected as follows: 2 X 6 - 2 rows at 0-9-0 oc, 2 X 4 - 1 row at 0-9-0 oc.
 - Bottom chords connected as follows: 2 X 6 2 rows at 0-9-0 oc.
 - Webs connected as follows: 2 X 4 1 row at 0-9-0 oc.
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; partially; MWFRS gable end zone; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60.
- 5) Provide adequate drainage to prevent water ponding.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 2853 lb uplift at joint S and 2836 lb uplift at joint M.

LOAD CASE(S) Standard

1) Regular: Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

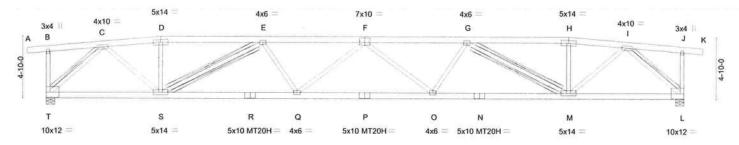
Vert: A-B=-60, B-C=-60, C-J=-60, J-K=-60, K-L=-60, Q-S=-30, Q-AS=-60(F=-30), M-AS=-30

Concentrated Loads (lb)

Vert: E=-34(B) R=-569(B) C=-343(B) P=-170(B) J=-343(B) N=-569(B) H=-34(B) T=-34(B) U=-34(B) V=-34(B) W=-34(B) X=-34(B) Y=-34(B) Z=-34(B) AA=-34(B) AB=-34(B) AC=-34(B) AD=-34(B) AE=-34(B) AF=-34(B) AG=-34(B) AH=-34(B) AI=-170(B) AJ=-170(B) AK=-170(B)

AL=-170(B) AM=-170(B) AN=-170(B) AO=-170(B) AP=-170(B) AQ=-170(B) AR=-170(B)

AT=-170(B) AU=-170(B) AV=-170(B) AW=-170(B) AX=-170(B) AY=-170(B)


Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

June 2,2006

Job		Truss	Truss Type				LAKE CITY/ISLA	U	J1672256			
L153414		T02	HIP		2	1	Job Reference (optional)					
Builders F	FirstSource	e, Bunnell, FL. 32	2110	6.200	s Jul 13 2005	MiTek Ir	ndustries, Inc. Fri	Jun 02 13:02:0	5 2006 F	Page 1		
-1-6-0	4-7-12	9-0-0	17-0-0	25-0-0	33-0-0		41-0-0	45-4-4	50-0-0	51-6-0		
1-6-0	4-7-12	4-4-4	8-0-0	8-0-0	8-0-0		8-0-0	4-4-4	4-7-12	1-6-0 Scale = 1:87.0		

1	9-0-0		19-8-0	30-4-0			41-0-0			50-0-0		
	9-0-0		10-8-0	10		10-8-0		9	10-8-0		9-0-0	
Plate Of	fsets (X,Y):	[F:0-5-0,0-4-8]										
LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.38	Vert(LL)	-0.54	O-Q	>999	240	MT20	244/190
TCDL	10.0	Lumber Increase	1.25	BC	0.69	Vert(TL)	-0.95	O-Q	>630	180	MT20H	187/143
BCLL	10.0	Rep Stress Incr	YES	WB	0.91	Horz(TL)	0.21	L	n/a	n/a	West (1000)	
BCDL	5.0	Code FBC2004/TF	212002	(Mat	rix)						Weight: 355	lb

LUMBER

TOP CHORD 2 X 6 SYP No.1D BOT CHORD 2 X 6 SYP No.1D **WEBS** 2 X 4 SYP No.3

BRACING

TOP CHORD

BOT CHORD WEBS

Structural wood sheathing directly applied or 3-3-5

oc purlins, except end verticals.

Rigid ceiling directly applied or 4-8-5 oc bracing. I-Brace: 2 X 4 SYP No.3 - E-S,

G-M

T-Brace:

2 X 4 SYP No.3 - C-T, I-L

Fasten T and I braces to narrow edge of web with 10d Common wire nails, 9in o.c., with 4in minimum

end distance.

Brace must cover 90% of web length.

REACTIONS (lb/size) T=2336/0-8-0, L=2336/0-8-0

Max Horz T=-136(load case 3)

Max Uplift T=-1210(load case 3), L=-1210(load case 4)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD A-B=0/8, B-C=-64/126, C-D=-3830/2060, D-E=-3812/2066, E-F=-6055/3192,

F-G=-6055/3192, G-H=-3812/2066, H-I=-3830/2060, I-J=-64/126, J-K=0/8, B-T=-268/232,

J-L=-268/232

J-L=-268/232 S-T=-1029/2138, R-S=-2874/5714, Q-R=-2874/5714, P-Q=-3215/6348, O-P=-3215/6348, Truss Design Engineer: Lawrence A. Paine, PE **BOT CHORD**

C-S=-1069/2220, D-S=-114/198, E-S=-2237/1185, E-Q=-173/689, F-Q=-427/338,

F-O=-427/338, G-O=-173/689, G-M=-2237/1185, H-M=-114/199, I-M=-1069/2220,

C-T=-2857/1510, I-L=-2857/1510

Florida PE No. 21475

Builders FirstSource - Florida, LLC

6550 Roosevelt Blvd. Jacksonville, FL 32244

JOINT STRESS INDEX

WEBS

B = 0.45, C = 0.82, D = 0.71, E = 0.67, F = 0.52, G = 0.67, H = 0.57, I = 0.82, J = 0.45, L = 0.47, M = 0.75, N = 0.79, O = 0.36, P = 0.90, Q = 0.36, R = 0.79, S = 0.75 and T = 0.47

Continued on page 2

June 2,2006

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	LAKE CITY/ISLAMIC CENTER	
L153414	T02	HIP	2	1		J1672256
					Job Reference (optional)	

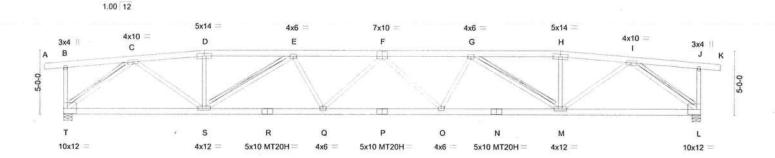
6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 13:02:05 2006 Page 2

NOTES

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; partially; MWFRS gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 3) Provide adequate drainage to prevent water ponding.

4) All plates are MT20 plates unless otherwise indicated.


5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1210 lb uplift at joint T and 1210 lb uplift at joint L.

LOAD CASE(S) Standard

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

Job	Truss Type		Truss Type		Qty	Ply	LAKE CITY/	ISLAMIC CENT	ER	J1672257
L153414		T03	HIP	HIP		1	Job Reference		31072237	
Builders Fi	irstSource	, Bunnell, FL. 3211	0	6.200	s Jul 13 2005	MiTek Ir		Fri Jun 02 13:0	2:50 2006	Page 1
-1-6-0	5-7-12	11-0-0	18-0-0	25-0-0	32-0-0		39-0-0	44-4-4	50-0-0	51-6-0
1-6-0	5-7-12	5-4-4	7-0-0	7-0-0	7-0-0		7-0-0	5-4-4	5-7-12	1-6-0 Scale = 1:87.0

-					-			90.0	~		00 0 0		
	11-0-0			9-4-0 9-4-0			9-4-0				11-0-0		
Plate Offs	sets (X,Y):	[F:0-5-0,0-4-8]		,									
LOADING	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP	
TCLL	20.0	Plates Increase	1.25	TC	0.64	Vert(LL)	-0.50	O-Q	>999	240	MT20	244/190	
TCDL	10.0	Lumber Increase	1.25	BC	0.65	Vert(TL)	-0.87	O-Q	>682	180	MT20H	187/143	
BCLL	10.0	Rep Stress Incr	YES	WB	0.87	Horz(TL)	0.20	L	n/a	n/a	A 14		
BCDL	5.0	Code FBC2004/TF	212002	(Mat	rix)	, ,					Weight: 357	lb	

29-8-0

LUMBER TOP CHORD 2 X 6 SYP No.1D BOT CHORD 2 X 6 SYP No.1D **WEBS** 2 X 4 SYP No.3

11-0-0

BRACING TOP CHORD

WEBS

BOT CHORD

39-0-0

Structural wood sheathing directly applied or 3-4-6 oc purlins, except end verticals.

Rigid ceiling directly applied or 4-9-13 oc bracing. T-Brace: 2 X 4 SYP No.3 - E-S,

G-M, C-T, I-L

50-0-0

Fasten T and I braces to narrow edge of web with 10d Common wire nails, 9in o.c., with 4in minimum end distance.

Brace must cover 90% of web length.

REACTIONS (lb/size) T=2336/0-8-0, L=2336/0-8-0

Max Horz T=-133(load case 3)

Max Uplift T=-1201(load case 3), L=-1201(load case 4)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD A-B=0/8, B-C=-94/127, C-D=-4285/2289, D-E=-4258/2295, E-F=-5888/3129,

20-4-0

F-G=-5888/3129, G-H=-4258/2295, H-I=-4285/2289, I-J=-94/127, J-K=0/8, B-T=-286/242,

BOT CHORD S-T=-1249/2521, R-S=-2821/5642, Q-R=-2821/5642, P-Q=-3075/6105, O-P=-3075/6105,

N-O=-2821/5642, M-N=-2821/5642, L-M=-1300/2521

C-S=-994/2148, D-S=-52/159, E-S=-1747/934, E-Q=-159/587, F-Q=-366/283,

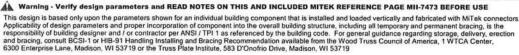
F-O=-366/283, G-O=-159/587, G-M=-1747/935, H-M=-52/159, I-M=-994/2148,

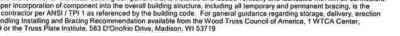
C-T=-3090/1676, I-L=-3090/1676

Truss Design Engineer: Lawrence A. Paine, PE

Florida PE No. 21475

Builders FirstSource - Florida, LLC


6550 Roosevelt Blvd. Jacksonville, FL 32244


JOINT STRESS INDEX

WEBS

B = 0.54, C = 0.82, D = 0.74, E = 0.50, F = 0.51, G = 0.50, H = 0.56, I = 0.82, J = 0.54, L = 0.53, M = 0.94, N = 0.77, O = 0.33, P = 0.54, N = 0.77, N =0.86, Q = 0.33, R = 0.77, S = 0.94 and T = 0.53

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	LAKE CITY/ISLAMIC CENTER	
L153414	T03	HIP	2	1		J1672257
					Job Reference (optional)	

6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 13:02:51 2006 Page 2

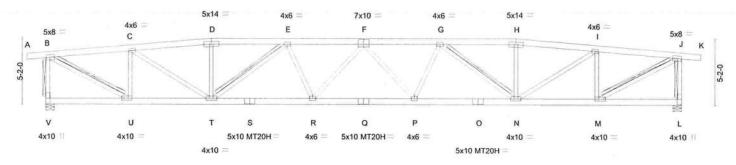
NOTES

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; partially; MWFRS gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 3) Provide adequate drainage to prevent water ponding.

4) All plates are MT20 plates unless otherwise indicated.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1201 lb uplift at joint T and 1201 lb uplift at joint L.


LOAD CASE(S) Standard

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

Job T		Truss Type			Qty	y Ply	LAKE CITY/ISLAMIC CENTER			J1672258
L153414		T04	HIP		2	1	Job Referen	ce (optional)		
Builders Fir	rstSource,	, Bunnell, FL. 32110		6.200 s	s Jul 13 2005	MiTek In	dustries, Inc.	Fri Jun 02 1	3:03:25 2006	Page 1
-1-6-0	6-7-12	13-0-0	19-0-0	25-0-0	31-0-0		37-0-0	43-4-4	50-0-0	51-6-0
1-6-0	6-7-12	6-4-4	6-0-0	6-0-0	6-0-0		6-0-0	6-4-4	6-7-12	1-6-0 Scale = 1:87.2

1-	6-7-12	13-0-0	21-	-0-0		29-0-0		37-0-0		43-4-4	50-0-0	
	6-7-12	6-4-4	8-	0-0		8-0-0		8-0-0	15	6-4-4	6-7-12	
Plate Offs	sets (X,Y):	[B:0-3-5,0-2-8], [F:0	-5-0,0-4-8]	, [J:0-3-	5,0-2-8], [L:Edge,0-3-8],	[M:0-3-	8,0-2-0], [U:0-3-	8,0-2-0]		
LOADING	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.65	Vert(LL)	0.47	P-R	>999	240	MT20	244/190
TCDL	10.0	Lumber Increase	1.25	BC	0.61	Vert(TL)	-0.82	P-R	>723	180	MT20H	187/143
BCLL	10.0	Rep Stress Incr	YES	WB	0.88	Horz(TL)	0.17	L	n/a	n/a		
BCDL	5.0	Code FBC2004/TF	2002	(Mati	rix)	480.000					Weight: 369	lb

LUMBER

TOP CHORD 2 X 6 SYP No.1D BOT CHORD 2 X 6 SYP No.1D

WEBS 2 X 4 SYP No.3 *Except*

B-U 2 X 4 SYP No.2, J-M 2 X 4 SYP No.2

BRACING

TOP CHORD

BOT CHORD WEBS Structural wood sheathing directly applied or 3-5-4

oc purlins, except end verticals. Rigid ceiling directly applied or 4-11-3 oc bracing.

T-Brace:

2 X 4 SYP No.3 - E-T, G-N, B-V, B-U, J-L, J-M

Fasten T and I braces to narrow edge of web with 10d Common wire nails, 9in o.c., with 4in minimum end distance.

Brace must cover 90% of web length.

REACTIONS (lb/size) V=2336/0-8-0, L=2336/0-8-0

Max Horz V=129(load case 4)

Max Uplift V=-1192(load case 3), L=-1192(load case 4)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD A-B=0/8, B-C=-3081/1685, C-D=-4596/2477, D-E=-4564/2482, E-F=-5732/3062,

F-G=-5732/3062, G-H=-4564/2482, H-I=-4596/2477, I-J=-3081/1685, J-K=0/8,

B-V=-2228/1220, J-L=-2228/1220

Truss Design Engineer: Lawrence A. Paine, PE

U-V=-84/92, T-U=-1474/3054, S-T=-2764/5552, R-S=-2764/5552, Q-R=-2945/5887, Florida PE No. 21475

P-Q=-2945/5887, O-P=-2764/5552, N-O=-2764/5552, M-N=-1495/3054, L-M=-37/64 Builders FirstSource - Florida, LLC C-U=-1498/902, C-T=-905/1808, D-T=-12/129, E-T=-1382/719, E-R=-144/529.

6550 Roosevelt Blvd. Jacksonville, FL 32244

C-U=-1498/902, C-T=-905/1808, D-T=-12/129, E-T=-1382/719, E-R=-144/529, F-R=-321/239, F-P=-321/239, G-P=-144/529, G-N=-1382/719, H-N=-12/129,

I-N=-905/1808, I-M=-1498/902, B-U=-1755/3426, J-M=-1755/3426

JOINT STRESS INDEX

B = 0.77, C = 0.73, D = 0.78, E = 0.38, F = 0.50, G = 0.38, H = 0.61, I = 0.73, J = 0.77, L = 0.37, M = 0.83, N = 0.85, O = 0.75, P = 0.32, Q = 0.80, R = 0.32, S = 0.75, T = 0.85, U = 0.83 and V = 0.37

June 2,2006

Continued on page 2

BOT CHORD

WEBS

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation authority Mood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

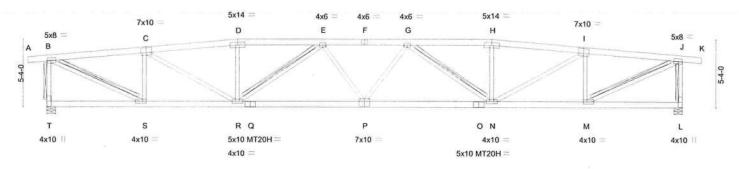
Job	Truss	Truss Type	Qty	Ply	LAKE CITY/ISLAMIC CENTER	11070050
L153414	T04	HIP	2	1		J1672258
	VARIOUS				Job Reference (optional)	

6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 13:03:25 2006 Page 2

NOTES

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; partially; MWFRS gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 3) Provide adequate drainage to prevent water ponding.
- 4) All plates are MT20 plates unless otherwise indicated.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1192 lb uplift at joint V and 1192 lb uplift at joint L.


LOAD CASE(S) Standard

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

Job	Trus	SS	Truss Type	Q	Qty	Ply	LAKE CITY/ISLAMIC CEN	J1672259	
L153414	T05		HIP	2	2	1	Job Reference (optional)		
Builders Fire	stSource, Bunn	nell, FL. 32110		6.200 s Jul 13 2	2005	MiTek In	dustries, Inc. Fri Jun 02 13	:03:52 2006	Page 1
-1-6-0	7-7-12	15-0-0	21-8-0	28-4-0		35-0-0	42-4-4	50-0-0	51-6-0
1-6-0	7-7-12	7-4-4	6-8-0	6-8-0		6-8-0	7-4-4	7-7-12	1-6-0 Scale = 1:87.2

1.00 12

7-7-12	15-0-0	25-0-0	35-0-0	42-4-4	50-0-0
7-7-12	7-4-4	10-0-0	10-0-0	7-4-4	7-7-12

Plate Offsets (X,Y): [B:0-3-5,0-2-8], [C:0-5-0,0-4-8], [I:0-5-0,0-4-8], [J:0-3-5,0-2-8], [L:Edge,0-3-8], [M:0-3-8,0-2-0], [P:0-5-0,0-4-8], [S:0-3-8,0-2-0], [P:0-5-0,0-4-8], [D:0-3-8,0-2-0], [P:0-5-0,0-4-8], [D:0-3-0,0-4-8], [D:

LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.73	Vert(LL)	-0.47	P-R	>999	240	MT20	244/190
TCDL	10.0	Lumber Increase	1.25	BC	0.62	Vert(TL)	-0.82	P-R	>730	180	MT20H	187/143
BCLL	10.0	Rep Stress Incr	YES	WB	0.98	Horz(TL)	0.15	L	n/a	n/a		
BCDL	5.0	Code FBC2004/TI	212002	(Mati	rix)						Weight: 362 lb	

LUMBER BRACING

TOP CHORD 2 X 6 SYP No.1D **BOT CHORD** 2 X 6 SYP No.1D

WEBS 2 X 4 SYP No.3 *Except*

B-S 2 X 4 SYP No.2, J-M 2 X 4 SYP No.2

TOP CHORD

WEBS

BOT CHORD

oc purlins, except end verticals. Rigid ceiling directly applied or 5-0-10 oc bracing.

T-Brace:

2 X 4 SYP No.3 - E-R,

G-N, B-T, B-S, J-L, J-M

Fasten T and I braces to narrow edge of web with 10d Common wire nails, 9in o.c., with 4in minimum

Structural wood sheathing directly applied or 3-5-3

end distance.

Brace must cover 90% of web length.

REACTIONS (lb/size) T=2336/0-8-0, L=2336/0-8-0

Max Horz T=126(load case 4)

Max Uplift T=-1180(load case 3), L=-1180(load case 4)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD A-B=0/8, B-C=-3418/1857, C-D=-4871/2616, D-E=-4836/2622, E-F=-5697/3030,

F-G=-5697/3030, G-H=-4836/2622, H-I=-4871/2616, I-J=-3418/1857, J-K=0/8,

B-T=-2212/1221, J-L=-2212/1221

BOT CHORD S-T=-87/83, R-S=-1668/3429, Q-R=-2790/5589, P-Q=-2790/5589, O-P=-2790/5589,

N-O=-2790/5589, M-N=-1668/3429, L-M=-47/83

C-S=-1403/875, C-R=-804/1658, D-R=-37/157, E-R=-1107/599, E-P=-7/292, G-P=-7/292, G-P=-7/2 **WEBS**

G-N=-1107/600, H-N=-37/157, I-N=-804/1658, I-M=-1403/875, B-S=-1878/3672,

J-M=-1878/3672


Builders FirstSource - Florida, LLC

6550 Roosevelt Blvd. Jacksonville, FL 32244

JOINT STRESS INDEX

B = 0.80, C = 0.43, D = 0.84, E = 0.31, F = 0.85, G = 0.31, H = 0.64, I = 0.43, J = 0.80, L = 0.38, M = 0.82, N = 0.77, O = 0.70, P = 0.80, D =0.92, Q = 0.70, R = 0.77, S = 0.82 and T = 0.38

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	LAKE CITY/ISLAMIC CENTER	14070050
L153414	T05	HIP	2	1		J1672259
					Job Reference (optional)	

6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 13:03:52 2006 Page 2

NOTES

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; partially; MWFRS gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 3) Provide adequate drainage to prevent water ponding.

4) All plates are MT20 plates unless otherwise indicated.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1180 lb uplift at joint T and 1180 lb uplift at joint L.

LOAD CASE(S) Standard

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

Job Truss Truss Type Qty Ply LAKE CITY/ISLAMIC CENTER J1672260 L153414 T06 SPECIAL Job Reference (optional) Builders FirstSource, Bunnell, FL. 32110 6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 13:05:10 2006 Page 1 1-11-8 -1-6-0 4-11-8 7-11-8 12-5-12 17-0-0 25-0-0 33-0-0 38-6-13 44-1-11 50-0-0 51-6-0 Scale = 1:88.6 1-6-01-11-8 3-0-0 3-0-0 4-6-4 4-6-4 8-0-0 8-0-0 5-6-13 5-6-13 5-10-5 1.00 12 3x4 || 6x8 6x8 4x6 4x10 = 4x6 4x6 4x6 = 4x10 = 3x4 G K E F L 3x4 || D M В C N 0 10x12 W V U AB AA X T S R 0 P 10x14 = 4x10 = 3x4 4x10 = 4x6 6x8 4x6 5x6 = 4x6 10x12 = 3x8 || 10x12

1-11-8	7-11-8	12-5-12	17-0-0	25-0-0	33-0-0	41-4-4	50-0-0
1-11-8	6-0-0	4-6-4	4-6-4	8-0-0	8-0-0	8-4-4	8-7-12

Plate Of	fsets (X,Y):	[W:0-3-8,0-2-0]										
LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.45	Vert(LL)	-0.43	T-V	>999	240	MT20	244/190
TCDL	10.0	Lumber Increase	1.25	BC	0.64	Vert(TL)	-0.74	T-V	>801	180		
BCLL	10.0	Rep Stress Incr	YES	WB	0.97	Horz(TL)	0.23	Р	n/a	n/a		
BCDL	5.0	Code FBC2004/TF	212002	(Mati	rix)						Weight: 390 lb	

LUMBER

TOP CHORD 2 X 6 SYP No.1D

BOT CHORD 2 X 6 SYP No.1D *Except*

C-AA 2 X 4 SYP No.3, E-X 2 X 4 SYP No.2

WEBS 2 X 4 SYP No.3 *Except*

W-Y 2 X 4 SYP No.2

BRACING

TOP CHORD

BOT CHORD

WEBS

Structural wood sheathing directly applied or 3-5-1

oc purlins, except end verticals.

Rigid ceiling directly applied or 5-4-11 oc bracing. 2 X 4 SYP No.3 - B-AB,

T-Brace:

M-P

Fasten T and I braces to narrow edge of web with 10d Common wire nails, 9in o.c., with 4in minimum end distance.

Brace must cover 90% of web length.

REACTIONS (lb/size) P=2336/0-8-0, AB=2336/0-8-0

Max Horz AB=-123(load case 3)

Max Uplift P=-1167(load case 4), AB=-1167(load case 3)

FORCES (lb) - Maximum Compression/Maximum Tension

A-B=0/8, B-C=-1269/711, C-D=-1352/753, D-E=-4456/2368, E-F=-4420/2376, TOP CHORD

F-G=-4413/2378, G-H=-5014/2715, H-I=-5575/3021, I-J=-5575/3021, J-K=-5026/2714,

K-L=-3618/1951, L-M=-3635/1949, M-N=-77/135, N-O=0/8, B-AB=-2293/1161,

N-P=-286/250

BOT CHORD AA-AB=-47/0, Z-AA=-15/22, C-Z=-76/84, Y-Z=-1494/3106, X-Y=-31/148, E-Y=-204/190,

W-X=-333/630, V-W=-2170/4431, U-V=-2446/4988, T-U=-2446/4988, S-T=-2446/4997,

R-S=-2096/4249, Q-R=-2096/4249, P-Q=-1304/2667

D-Y=-898/1847, W-Y=-1884/3899, G-Y=-178/65, G-W=-852/495, G-V=-454/931, H-V=-448/355, H-T=-452/912, I-T=-508/439, J-T=-454/907, J-S=-442/361, K-S=-503/1888, B-Z=-1102/229 milders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244 Truss Design Engineer: Lawrence A. Paine, PE

June 2,2006

Continued on page 2

WEBS

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricaled with MiTek connectors Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	LAKE CITY/ISLAMIC CENTER	J1672260
L153414	T06	SPECIAL	1	1		31672260
					Job Reference (optional)	

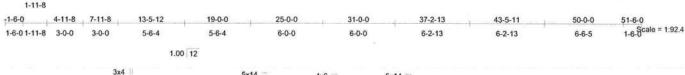
6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 13:05:10 2006 Page 2

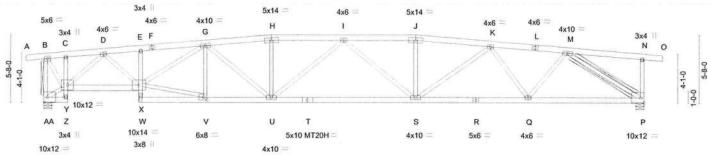
JOINT STRESS INDEX

B = 0.98, C = 0.48, D = 0.91, E = 0.23, F = 0.63, G = 0.53, H = 0.66, I = 0.34, J = 0.66, K = 0.45, L = 0.57, M = 0.64, N = 0.53, P = 0.55, Q = 0.79, R = 0.91, S = 0.45, T = 0.43, U = 0.97, V = 0.41, W = 0.76, X = 0.77, Y = 0.66, Z = 0.42, AA = 0.23 and AB = 0.30 an

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; partially; MWFRS gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 3) Provide adequate drainage to prevent water ponding.
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1167 lb uplift at joint P and 1167 lb uplift at joint AB.


LOAD CASE(S) Standard


Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

Job	Truss	Truss Type	Qty	Ply	LAKE CITY/ISLAMIC CENTER	14070004
L153414	T07	SPECIAL	1	1	4	J1672261
	Jones All	(I-1) - (1)			Job Reference (optional)	

6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 14:17:11 2006 Page 1

1-11-8	7-11-8	13-5-12	19-0-0	31-0-0	40-4-4	50-0-0	
1-11-8	6-0-0	5-6-4	5-6-4	12-0-0	9-4-4	9-7-12	- 3
Plate Offsets (>	X,Y): [V:0	-3-8,0-3-0]					

LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.57	Vert(LL)	-0.48	S-Ú	>999	240	MT20	244/190
TCDL	10.0	Lumber Increase	1.25	BC	0.74	Vert(TL)	-0.84	S-U	>708	180	MT20H	187/143
BCLL	10.0	Rep Stress Incr	YES	WB	0.99	Horz(TL)	0.24	P	n/a	n/a	ASSESSMENT NO.	
BCDL	5.0	Code FBC2004/TF	PI2002	(Mat	rix)	2 2					Weight: 386 lb	

LUMBER		BRACING
TOP CHORD	2 X 6 SYP No.1D	TOP CHO
BOT CHORD	2 X 6 SYP No 1D *Except*	

C-Z 2 X 4 SYP No.3, E-W 2 X 4 SYP No.2

2 X 4 SYP No.3 *Except* **WEBS**

BOT CHORD

V-X 2 X 4 SYP No.2

ORD

BOT CHORD

WEBS

bracing.

Rigid ceiling directly applied or 5-2-8 oc

I-Brace:

2 X 4 SYP No.3 - M-P

T-Brace:

2 X 4 SYP No.3 -

B-AA

Fasten T and I braces to narrow edge of web with 10d Common wire nails, 9in o.c., with 4in minimum end distance.

Structural wood sheathing directly applied or 3-7-13 oc purlins, except end verticals.

Brace must cover 90% of web length.

REACTIONS (lb/size) P=2336/0-8-0, AA=2336/0-8-0

Max Horz AA=-119(load case 3)

Max Uplift P=-1152(load case 4), AA=-1152(load case 3)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD A-B=0/8, B-C=-1272/712, C-D=-1357/756, D-E=-4455/2370, E-F=-4420/2380,

F-G=-4411/2383, G-H=-5117/2743, H-I=-5086/2745, I-J=-5093/2747,

J-K=-5126/2743, K-L=-3878/2083, L-M=-3893/2080, M-N=-94/139, N-O=0/8,

B-AA=-2297/1164, N-P=-304/263 Truss Design Engineer: Lawrence A. Paine, PE

Z-AA=-42/0, Y-Z=-15/23, C-Y=-79/86, X-Y=-1490/3099, W-X=-22/163, E-X=-2457224a PE No. 21475

, V-W=-361/728, U-V=-2257/4589, T-U=-2645/5296, S-T=-2645/5296, Builders FirstSource - Florida, LLC

R-S=-2222/4492, Q-R=-2222/4492, P-Q=-1431/2899 6550 Roosevelt Blvd. Jacksonville, FL 32244

WEBS D-X=-908/1857, V-X=-1929/3928, G-X=-336/150, G-V=-700/421, G-U=-352/825, June 2,2006

Continued on page-일=0/116, I-U=-509/346, I-S=-506/346, J-S=0/116, K-S=-381/916, K-Q=-1134/691,

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connector Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCS-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	LAKE CITY/ISLAMIC CENTER	14670004
L153414	T07	SPECIAL	1	1		J1672261
					Job Reference (optional)	

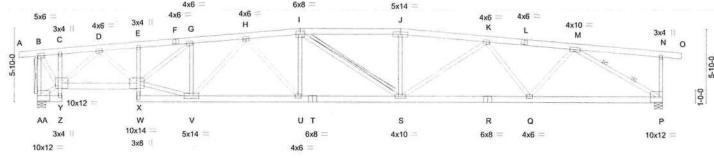
6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 14:17:11 2006 Page 2

NOTES

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; partially; MWFRS gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 3) Provide adequate drainage to prevent water ponding.

4) All plates are MT20 plates unless otherwise indicated.


5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1152 lb uplift at joint P and 1152 lb uplift at joint AA.

LOAD CASE(S) Standard

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

ob		Truss		Truss T	ype		Qty	Ply	LAKE C	ITY/ISLAN	MIC CENT	ΓER	J1672262
153414		T08		SPECIA	AL.		1	1	Job Refe	erence (op	otional)		01012202
Builders First	Source,	, Bunnell,	FL. 32110			6.200 s	s Jul 13 2005	MiTek Ir				06:30 200	06 Page 1
1-11-8 -1-6-0	4-11-8	7-11-8	12-3-11	16-7-13	21-0-0	29-0-	0	35-10-13		42-9-11		50-0-0	51-6-0
1-6-01-11-8	3-0-0	3-0-0	4-4-3	4-4-3 1.00 12	4-4-3	8-0-0)	6-10-13		6-10-13		7-2-5	Scale = 1:88.6
5x6 = 3x4	4:	x6 = 3x4 D E	4x6 = 4x6 = 4 F G	4xi H) =	6x8 =	5x14 =		4x6 = K	4x6 =	4x10 = M		3x4

- i	50-0-0			39-4-4		29-0-0)	21-0-0	12-3-11	7-11-8	1-11-8	į,
	10-7-12			10-4-4		8-0-0			8-8-5	4-4-3	6-0-0	1-11-8	
GRIP	PLATES	L/d	l/defl	(loc)	in	DEFL		CSI	2-0-0	ACING	SP	G (psf)	LOADIN
244/190	MT20	240	>999	S-Ú	-0.40	Vert(LL)	0.66	TC	1.25	tes Increase	Plat	20.0	TCLL
	CONTRACTORS.	180	>859	S-U	-0.69	Vert(TL)	0.60	BC	1.25	mber Increase	Lun	10.0	TCDL
		n/a	n/a	P	0.24	Horz(TL)	0.93	WB	YES	p Stress Incr	Rep	10.0	BCLL
,	Weight: 385 lb					10.00 mm/m = 10.00 mm/m = 1	ix)	(Matr	212002	de FBC2004/TF	Coc	5.0	BCDL

The second of th		(Troigini 000 ib
LUMBER			BRACING		
TOP CHORD	2 X 6 SYP No.1D		TOP CHORD	Structural wood sheat	hing directly applied or
BOT CHORD	2 X 6 SYP No.1D *Except*			3-6-15 oc purlins, exc	
	C-Z 2 X 4 SYP No.3, E-W 2 X 4 SY	P No.2	BOT CHORD	Rigid ceiling directly a	pplied or 5-4-5 oc bracing.
WEBS	2 X 4 SYP No.3 *Except*		WEBS	2 Rows at 1/3 pts	M-P
	V-X 2 X 4 SYP No.2			T-Brace:	2 X 4 SYP No.3 - I-S.
					B-AA

Fasten T and I braces to narrow edge of web with 10d Common wire nails, 9in o.c., with 4in minimum end distance.

Brace must cover 90% of web length.

REACTIONS (lb/size) P=2336/0-8-0, AA=2336/0-8-0

Max Horz AA=-116(load case 3)

Max Uplift P=-1136(load case 4), AA=-1136(load case 3)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD A-B=0/8, B-C=-1268/710, C-D=-1350/752, D-E=-4455/2366, E-F=-4419/2372,

F-G=-4407/2373, G-H=-4464/2427, H-I=-5114/2773, I-J=-5103/2781, J-K=-5137/2775,

K-L=-4114/2192, L-M=-4134/2190, M-N=-108/145, N-O=0/8, B-AA=-2291/1161,

N-P=-320/275

BOT CHORD Z-AA=-46/0, Y-Z=-15/21, C-Y=-74/82, X-Y=-1495/3108, W-X=-39/111, E-X=-180/168,

V-W=-331/575, U-V=-2408/4871, T-U=-2484/5091, S-T=-2484/5091, R-S=-2320/4675,

Q-R=-2320/4675, P-Q=-1552/3128

WEBS D-X=-892/1842, V-X=-1877/3969, G-X=-158/59, G-V=-316/262, H-V=-664/383, Truss Design Engineer: Lawrence A. Paine, PE

H-U=-230/566, I-U=-172/220, I-S=-316/330, J-S=-96/206, K-S=-315/747, K-Q=-980/646ada PE No. 21475

M-Q=-596/1487, M-P=-3565/1894, B-Y=-1101/2295, Y-AA=-12/147, D-Y=-2464/132 Builders FirstSource - Florida, LLC

6550 Roosevelt Blvd. Jacksonville, FL 32244

June 2,2006

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	LAKE CITY/ISLAMIC CENTER	14070000
L153414	T08	SPECIAL	1	1		J1672262
					Job Reference (optional)	

6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 13:06:30 2006 Page 2

JOINT STRESS INDEX

B = 0.98, C = 0.48, D = 0.91, E = 0.23, F = 0.61, G = 0.25, H = 0.27, I = 0.61, J = 0.68, K = 0.31, L = 0.66, M = 0.71, N = 0.69, P = 0.60, Q = 0.68, R = 0.92, S = 0.35, T = 0.93, U = 0.26, V = 0.93, W = 0.68, X = 0.67, Y = 0.42, Z = 0.23 and AA = 0.30

NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; partially; MWFRS gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.

3) Provide adequate drainage to prevent water ponding.

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1136 lb uplift at joint P and 1136 lb uplift at joint AA.

LOAD CASE(S) Standard

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

Job Truss Truss Type Qty Ply LAKE CITY/ISLAMIC CENTER J1672263 L153414 T09 SPECIAL Job Reference (optional) Builders FirstSource, Bunnell, FL. 32110 6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 13:06:49 2006 Page 1 1-11-8 -1-6-0 4-11-8 7-11-8 12-11-11 17-11-13 44-0-6 23-0-0 27-0-0 32-8-2 38-4-4 50-0-0 51-6-0 Scale = 1:88.6 1-6-01-11-8 3-0-0 3-0-0 5-0-3 5-0-3 5-0-3 4-0-0 5-8-2 5-8-2 5-8-2 5-11-10 1.00 12 6x8 5x14 = 4x6 = 7x10 4x6 7x10 5x6 Н 3x4 G J 4x6 4x6 = 3x4 K 3x4 || E D B M N 0-0-9 X Z W ٧ S UT R 0 10x14 3x4 7x10 = 5x6 4x10 = 4x6 4x6 10x12 = 3x8 10x12 = 4x6 5x6 = 1-11-8 7-11-8 12-11-11 23-0-0 27-0-0 34-6-13 42-1-11 50-0-0 1-11-8 6-0-0 5-0-3 10-0-5 4-0-0 7-6-13 7-6-13 7-10-5 [F:0-5-0,0-4-8], [K:0-5-0,0-4-8]

Plate Offsets (X,Y): LOADING (psf) SPACING 2-0-0 CSI DEFL **PLATES** GRIP in I/defI L/d (loc) TCLL 20.0 Plates Increase 1.25 TC 0.43 Vert(LL) -0.41T-V >999 240 MT20 244/190 10.0 1.25 0.66 TCDL BC Lumber Increase Vert(TL) -0.73T-V >822 180 BCLL 10.0 Rep Stress Incr YES WB 0.89 Horz(TL) 0.24 0 n/a n/a BCDL 5.0 Code FBC2004/TPI2002 (Matrix) Weight: 397 lb

LUMBER

TOP CHORD 2 X 6 SYP No.1D

BOT CHORD 2 X 6 SYP No.1D *Except*

C-Z 2 X 4 SYP No.3, E-W 2 X 4 SYP No.2 **WEBS** 2 X 4 SYP No.3 *Except*

V-X 2 X 4 SYP No.2

BRACING

TOP CHORD

BOT CHORD

WEBS

Structural wood sheathing directly applied or 3-8-4

oc purlins, except end verticals.

Rigid ceiling directly applied or 5-4-6 oc bracing. 2 X 4 SYP No.3 - L-O

I-Brace: T-Brace:

2 X 4 SYP No.3 - B-AA

Fasten T and I braces to narrow edge of web with 10d Common wire nails, 9in o.c., with 4in minimum

end distance.

Brace must cover 90% of web length.

REACTIONS (lb/size) O=2336/0-8-0, AA=2336/0-8-0

Max Horz AA=-113(load case 3)

Max Uplift O=-1118(load case 4), AA=-1118(load case 3)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD A-B=0/8, B-C=-1270/711, C-D=-1353/754, D-E=-4455/2367, E-F=-4419/2376,

F-G=-4579/2479, G-H=-5044/2728, H-I=-4995/2735, I-J=-5027/2732, J-K=-4842/2602,

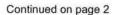
K-L=-3409/1846, L-M=-76/138, M-N=0/8, B-AA=-2294/1162, M-O=-290/255

Z-AA=-43/0, Y-Z=-15/21, C-Y=-77/84, X-Y=-1493/3104, W-X=-36/107, E-X=-210/190, V-W=-355/619, U-V=-2459/4952, T-U=-2459/4952, S-T=-2426/5013, R-S=-2445/4957,

Q-R=-2119/4287, P-Q=-2119/4287, O-P=-1330/2736

WEBS D-X=-898/1849, V-X=-1896/4020, F-X=-262/117, F-V=-267/251, G-V=-579/363,

G-T=-102/368, H-T=-59/320, H-S=-308/242, I-S=-5/158, J-S=-154/335, J-R=-419/324 nuss Design Engineer: Lawrence A. Paine, PE


Florida PE No. 21475 K-R=-335/821, K-P=-1425/806, L-P=-634/1476, L-O=-3297/1720, B-Y=-1103/2298,

D-Y=-2454/1315, Y-AA=-11/140

Builders FirstSource - Florida, LLC

6550 Roosevelt Blvd. Jacksonville, FL 32244

June 2,2006

BOT CHORD

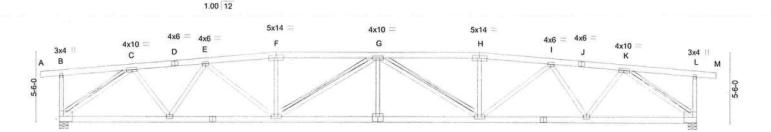
Job	Truss	Truss Type	Qty	Ply	LAKE CITY/ISLAMIC CENTER	14070000
L153414	T09	SPECIAL	1	1		J1672263
111-043098-74-800	100000			115	Job Reference (optional)	

6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 13:06:49 2006 Page 2

JOINT STRESS INDEX

B = 0.98, C = 0.48, D = 0.91, E = 0.23, F = 0.41, G = 0.26, H = 0.60, I = 0.67, J = 0.33, K = 0.43, L = 0.98, M = 0.55, O = 0.56, P = 0.85, Q = 0.85, R = 0.37, S = 0.35, T = 0.25, U = 1.00, V = 0.93, W = 0.72, X = 0.68, Y = 0.42, Z = 0.23 and AA = 0.30

NOTES


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; partially; MWFRS gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 3) Provide adequate drainage to prevent water ponding.
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1118 lb uplift at joint O and 1118 lb uplift at joint AA.

LOAD CASE(S) Standard

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

Job		Truss	Truss Type		Qty	Ply	LAKE CITY/I	SLAMIC CENT	ER	J1672264
L153414		T10	HIP		1	1	Job Referenc	e (optional)		
Builders Fi	rstSource	, Bunnell, FL. 3211	0	6.200	s Jul 13 2005	MiTek Ir	dustries, Inc.	Fri Jun 02 13:0	7:19 2006	Page 1
-1-6-0	5-10-5	11-5-3	17-0-0	25-0-0	33-0-0		38-6-13	44-1-11	50-0-0	51-6-0
1-6-0	5-10-5	5-6-13	5-6-13	8-0-0	8-0-0		5-6-13	5-6-13	5-10-5	1-6-0 Scale = 1:87.0

R

7x10 =

8-7-12	17-0-0	25-0-0	33-0-0	41-4-4	50-0-0
8-7-12	8-4-4	8-0-0	8-0-0	8-4-4	8-7-12

Plate Of	fsets (X,Y):	[H:0-0-0,0-0-0], [R:0	0-5-0,0-4-8]								
LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.45	Vert(LL)	0.41	Ŕ	>999	240	MT20	244/190
TCDL	10.0	Lumber Increase	1.25	BC	0.58	Vert(TL)	-0.71	R-S	>835	180	0.000.0000000	
BCLL	10.0	Rep Stress Incr	YES	WB	0.97	Horz(TL)	0.19	N	n/a	n/a		
BCDL	BCDL 5.0 Code FBC2004/TPI2002		(Mat	rix)		-				Weight: 366 lb		

LUMBER

V

10x12

TOP CHORD 2 X 6 SYP No.1D BOT CHORD 2 X 6 SYP No.1D

2 X 4 SYP No.3 **WEBS**

BRACING

TOP CHORD

BOT CHORD WEBS

Structural wood sheathing directly applied or 3-7-9

oc purlins, except end verticals.

P

5x6 =

4x10 =

0

4x6 =

10x12 =

Rigid ceiling directly applied or 5-1-2 oc bracing. T-Brace: 2 X 4 SYP No.3 - G-S,

G-Q, C-V, K-N

Fasten T and I braces to narrow edge of web with 10d Common wire nails, 9in o.c., with 4in minimum end distance.

Brace must cover 90% of web length.

REACTIONS (lb/size) V=2336/0-8-0, N=2336/0-8-0

Max Horz V=-123(load case 3)

U

4x6 =

5x6 =

Max Uplift V=-1167(load case 3), N=-1167(load case 4)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD A-B=0/8, B-C=-77/134, C-D=-3635/1949, D-E=-3618/1951, E-F=-5027/2712,

F-G=-4997/2716, G-H=-4997/2716, H-I=-5027/2712, I-J=-3618/1951, J-K=-3635/1949,

K-L=-77/134, L-M=0/8, B-V=-286/250, L-N=-286/250

BOT CHORD U-V=-1303/2668, T-U=-2096/4248, S-T=-2096/4248, R-S=-2753/5574, Q-R=-2753/5574,

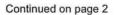
S

4x10

P-Q=-2096/4248, O-P=-2096/4248, N-O=-1305/2668

Truss Design Engineer: Lawrence A. Paine, PE C-U=-702/1610, E-U=-1231/736, E-S=-502/1090, F-S=-30/154, G-S=-905/459, G-R=9/228, PE No. 21475

, G-Q=-905/460, H-Q=-30/155, I-Q=-502/1090, I-O=-1231/736, K-O=-702/1610, Builders FirstSource - Florida, LLC


C-V=-3240/1706, K-N=-3240/1706

6550 Roosevelt Blvd. Jacksonville, FL 32244

JOINT STRESS INDEX

WEBS

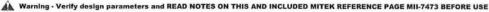
B = 0.53, C = 0.64, D = 0.57, E = 0.45, F = 0.87, G = 0.28, H = 0.67, I = 0.45, J = 0.57, K = 0.64, L = 0.53, N = 0.55, O = 0.79, P = 0.92, C = 0.000, C, Q = 0.53, R = 0.91, S = 0.53, T = 0.92, U = 0.79 and V = 0.55

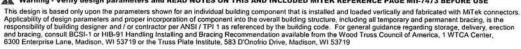
Job	Truss	Truss Type	Qty	Ply	LAKE CITY/ISLAMIC CENTER	14670064
L153414	T10	HIP	1	1		J1672264
					Job Reference (optional)	

6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 13:07:19 2006 Page 2

NOTES

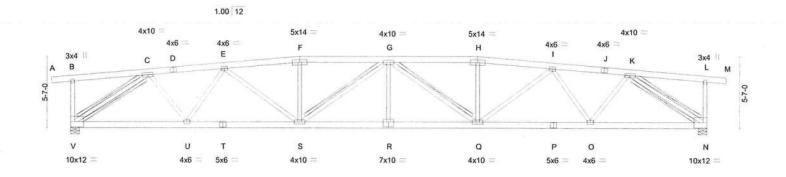
1) Unbalanced roof live loads have been considered for this design.


2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; partially; MWFRS gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.


3) Provide adequate drainage to prevent water ponding.

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1167 lb uplift at joint V and 1167 lb uplift at joint N.

LOAD CASE(S) Standard


Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

Job		Truss	Truss Type		Qty	Ply	LAKE CITY	//ISLAMIC CENT	ΓER	J1672265
L153414		T11	HIP		1	1	Job Referen	nce (optional)		01012200
Builders Fir	rstSource,	Bunnell, FL. 32110		6.200	s Jul 13 2005	MiTek Ir	ndustries, Inc	. Fri Jun 02 13:0	08:08 2006	Page 1
-1-6-0	6-2-5	12-1-3	18-0-0	25-0-0	32-0-0		37-10-13	43-9-11	50-0-0	51-6-0
1-6-0	6-2-5	5-10-13	5-10-13	7-0-0	7-0-0		5-10-13	5-10-13	6-2-5	1-6-0 Scale = 1:87.0

	9-	1-12	8-10-4		7-0-0	7-0-0)		8-10-4		9-1-12	
Plate Of	fsets (X,Y):	y ====										
LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.50	Vert(LL)	-0.40	R	>999	240	MT20	244/190
TCDL	10.0	Lumber Increase	1.25	BC	0.57	Vert(TL)	-0.70	R	>853	180	Charles (Acceptance)	
BCLL	10.0	Rep Stress Incr	YES	WB	0.91	Horz(TL)	0.19	N	n/a	n/a		
BCDL	5.0	Code FBC2004/TI	PI2002	(Mat	rix)						Weight: 367 lb	

25-0-0

LUMBER

TOP CHORD 2 X 6 SYP No.1D BOT CHORD 2 X 6 SYP No.1D

9-1-12

WEBS 2 X 4 SYP No.3 BRACING

32-0-0

TOP CHORD

BOT CHORD WEBS

Structural wood sheathing directly applied or 3-7-13 oc purlins, except end verticals.

Rigid ceiling directly applied or 5-1-15 oc bracing.

I-Brace: 2 X 4 SYP No.3 - C-V,

K-N

50-0-0

T-Brace:

40-10-4

2 X 4 SYP No.3 - G-S,

G-Q

Fasten T and I braces to narrow edge of web with 10d Common wire nails, 9in o.c., with 4in minimum end distance

Brace must cover 90% of web length.

REACTIONS (lb/size) V=2336/0-8-0, N=2336/0-8-0

Max Horz V=121(load case 4)

Max Uplift V=-1160(load case 3), N=-1160(load case 4)

18-0-0

FORCES (Ib) - Maximum Compression/Maximum Tension

TOP CHORD A-B=0/8, B-C=-84/137, C-D=-3772/2015, D-E=-3757/2018, E-F=-5071/2735,

F-G=-5039/2739, G-H=-5039/2739, H-I=-5071/2735, I-J=-3757/2018, J-K=-3772/2015,

K-L=-84/137, L-M=0/8, B-V=-295/257, L-N=-295/257

BOT CHORD

U-V=-1367/2788, T-U=-2162/4374, S-T=-2162/4374, R-S=-2691/5457, Q-R=-2691/5457,

P-Q=-2162/4374, O-P=-2162/4374, N-O=-1367/2788

WEBS

C-U=-679/1585, E-U=-1171/717, E-S=-444/987, F-S=-3/131, G-S=-748/385, G-R=0/7895 Design Engineer: Lawrence A. Paine, PE G-O=-748/386 H-O=-3/132 I-O=-443/987 I-O=-1171/717 K-O=-679/1585 Florida PE No. 21475

G-Q=-748/386, H-Q=-3/132, I-Q=-443/987, I-O=-1171/717, K-O=-679/1585, C-V=-3323/1753, K-N=-3323/1753

Builders FirstSource - Florida, LLC

6550 Roosevelt Blvd. Jacksonville, FL 32244

June 2,2006

Continued on page 2

warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	LAKE CITY/ISLAMIC CENTER	14070007
L153414	T11	HIP	1	1		J1672265
					Job Reference (optional)	

6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 13:08:08 2006 Page 2

JOINT STRESS INDEX

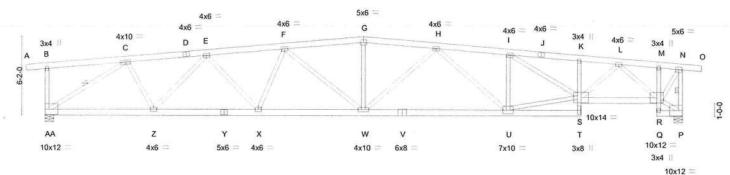
B = 0.56, C = 0.65, D = 0.57, E = 0.41, F = 0.86, G = 0.28, H = 0.68, I = 0.41, J = 0.57, K = 0.65, L = 0.56, N = 0.57, O = 0.76, P = 0.93, Q = 0.47, R = 0.89, S = 0.47, T = 0.93, U = 0.76 and V = 0.57

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; partially; MWFRS gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 3) Provide adequate drainage to prevent water ponding.
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1160 lb uplift at joint V and 1160 lb uplift at joint N.

LOAD CASE(S) Standard

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244



Job Truss Truss Type Qty Ply LAKE CITY/ISLAMIC CENTER J1672266 L153414 T12 SPECIAL Job Reference (optional)

Builders FirstSource, Bunnell, FL. 32110

6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 13:08:45 2006 Page 1

-	8-6	-5 16-9	9-3		25-0-0	-	36-4-5			42-0-8	48-0-0	50-0-0
	8-6	8-2-	13		3-2-13		11-4-5			5-8-3	5-11-8	2-0-0
LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.49	Vert(LL)	-0.45	Ù-W	>999	240	MT20	244/190
TCDL	10.0	Lumber Increase	1.25	BC	0.72	Vert(TL)	-0.79	U-W	>757	180	201100012440000	
BCLL	10.0	Rep Stress Incr	YES	WB	0.98	Horz(TL)	0.24	P	n/a	n/a		
BCDL	5.0	Code FBC2004/TI	2002	(Mati	rix)						Weight: 38	6 lb

LUMBER

TOP CHORD 2 X 6 SYP No.1D

BOT CHORD 2 X 6 SYP No.1D *Except*

K-T 2 X 4 SYP No.2, M-Q 2 X 4 SYP No.3

WEBS 2 X 4 SYP No.3 *Except*

S-U 2 X 4 SYP No.2

BRACING

BOT CHORD

TOP CHORD Structural wood sheathing directly applied or 3-8-9

oc purlins, except end verticals.

Rigid ceiling directly applied or 5-4-1 oc bracing.

WEBS 1 Row at midpt C-AA, N-P

REACTIONS

(lb/size) AA=2336/0-8-0, P=2336/0-8-0

Max Horz AA=110(load case 4)

Max Uplift AA=-1131(load case 5), P=-1131(load case 6)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD

A-B=0/8, B-C=-85/142, C-D=-3606/1940, D-E=-3583/1943, E-F=-4941/2659,

F-G=-4966/2683, G-H=-4964/2684, H-I=-4697/2541, I-J=-4412/2384, J-K=-4424/2382,

K-L=-4457/2371, L-M=-1386/771, M-N=-1302/728, N-O=0/8, B-AA=-303/265,

N-P=-2297/1166

P-R=0/131

BOT CHORD

Z-AA=-1425/2918, Y-Z=-2213/4461, X-Y=-2213/4461, W-X=-2476/5022, V-W=-2479/4986,

U-V=-2479/4986, T-U=-376/668, S-T=-31/108, K-S=-256/226, R-S=-1495/3109,

Q-R=-14/18, M-R=-83/85, P-Q=-36/0

WEBS

C-Z=-591/1421, E-Z=-1336/776, E-X=-256/676, F-X=-310/255, F-W=-378/250,

G-W=-124/448, H-W=-328/271, H-U=-458/305, I-U=-273/282, S-U=-1915/4063,

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475

Builders FirstSource - Florida, LLC I-S=-348/157, L-S=-905/1852, L-R=-2425/1299, C-AA=-3429/1791, N-R=-1114/2317

6550 Roosevelt Blvd. Jacksonville, FL 32244

JOINT STRESS INDEX

B = 0.60, C = 0.62, D = 0.51, E = 0.40, F = 0.33, G = 0.84, H = 0.25, I = 0.25, J = 0.67, K = 0.23, L = 0.90, M = 0.49, N = 0.98, P =0.30, Q = 0.23, R = 0.42, S = 0.69, T = 0.76, U = 0.92, V = 0.98, W = 0.29, X = 0.33, Y = 0.97, Z = 0.80 and AA = 0.58

June 2,2006

Continued on page 2

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MITek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCS-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	LAKE CITY/ISLAMIC CENTER	raner sarrara na navos vas c
L153414	T12	SPECIAL	4	1		J1672266
L					Job Reference (optional)	

6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 13:08:45 2006 Page 2

NOTES

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; partially; MWFRS gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1131 lb uplift at joint AA and 1131 lb uplift at joint P.

LOAD CASE(S) Standard

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

Ply Job Truss Truss Type Qty LAKE CITY/ISLAMIC CENTER J1672267 L153414 T13 **SPECIAL** 5 Job Reference (optional) Builders FirstSource, Bunnell, FL. 32110 6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 13:09:25 2006 Page 1 -1-6-0 1-11-8 7-11-8 9-3-8 1-6-0 1-11-8 6-0-0 1-4-0 1.00 12 4x6 = Scale = 1:27.2 2x4 E D 4x10 = 2x4 C B 3x4 = Truss to Beam connection to be specified J by the Architect/Engineer of Record. G 4x6 3x4 || 4x6 2x4 7-11-8 1-11-8 9-3-8 1-11-8 6-0-0 1-4-0 LOADING (psf) SPACING 2-0-0 CSI DEFL in I/defl L/d **PLATES** GRIP (loc) TCLL 20.0 Plates Increase 1.25 TC 0.17 Vert(LL) 0.02 H-I >999 240 MT20 244/190 10.0 TCDL Lumber Increase 1.25 BC 0.39 Vert(TL) -0.04>999 180 H-I 10.0 BCII Rep Stress Incr YES WB 0.14 Horz(TL) 0.03 F n/a n/a BCDL 5.0 Code FBC2004/TPI2002 (Matrix) Weight: 89 lb

LUMBER

TOP CHORD 2 X 6 SYP No.1D

BOT CHORD 2 X 6 SYP No.1D *Except*

C-J 2 X 4 SYP No.3, D-G 2 X 4 SYP No.3

WEBS

2 X 4 SYP No.3

BRACING TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 6-0-0

oc purlins, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing,

Except:

6-0-0 oc bracing: G-H.

REACTIONS

(lb/size) F=396/Mechanical, K=513/0-8-0

Max Horz K=188(load case 5)

Max Uplift F=-246(load case 5), K=-285(load case 3)

FORCES (Ib) - Maximum Compression/Maximum Tension

TOP CHORD A-B=0/8, B-C=-5/117, C-D=-175/114, D-E=-116/109, E-F=-410/347, B-K=-152/166

BOT CHORD J-K=-277/174, I-J=-112/81, C-I=-82/173, H-I=-320/234, G-H=-368/389, D-H=-237/317,

F-G=-12/12

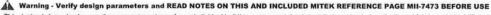
WEBS C-H=-83/200, E-G=-406/424, C-K=-428/275

JOINT STRESS INDEX

B = 0.54, C = 0.39, D = 0.79, E = 0.22, F = 0.36, G = 0.30, H = 0.27, I = 0.52, J = 0.65 and K = 0.35

NOTE

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC


1) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp Builders FirstSource - Florida, LLC partially; MWFRS gable end zone and C-C Exterior(2) zone; end vertical left exposed; Lumber 6550 Roosevelt Blvd. Jacksonville, FL 32244 DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 246 lb uplift at joint F and 285 lb uplift at joint K.

LOAD CASE(S) Standard

for reactions specified.

June 2,2006

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and i or contractor per ANSI / TP11 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation aublable from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Qty Ply Job Truss Truss Type LAKE CITY/ISLAMIC CENTER J1672268 L153414 T14 MONO TRUSS 8 Job Reference (optional) Builders FirstSource, Bunnell, FL. 32110 6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 13:09:46 2006 Page 1 9-3-8 1-6-0 4-7-12 4-7-12 1.00 12 2x4 Scale = 1:27.2 D 3x4 = C 2x4 В Truss to Beam connection to be specified E by the Architect/Engineer of Record. 4x6 = 9-3-8 9-3-8

LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.37	Vert(LL)	-0.05	E-F	>999	240	MT20	244/190
TCDL	10.0	Lumber Increase	1.25	BC	0.12	Vert(TL)	-0.09	E-F	>999	180		
BCLL	10.0	Rep Stress Incr	YES	WB	0.13	Horz(TL)	-0.00	E	n/a	n/a		
BCDL	5.0	Code FBC2004/TPI2002		(Mati	rix)						Weight: 74 lb)

LUMBER

TOP CHORD 2 X 6 SYP No.1D

BOT CHORD 2 X 6 SYP No.1D

WEBS 2 X 4 SYP No.3

BRACING TOP CHORD

Structural wood sheathing directly applied or 6-0-0

oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS (lb/size) E=396/Mechanical, F=513/0-8-0

Max Horz F=188(load case 5)

Max Uplift E=-246(load case 5), F=-285(load case 3)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD A-B=0/8, B-C=-52/127, C-D=-47/0, D-E=-123/128, B-F=-244/248

BOT CHORD E-F=-259/190

WEBS C-E=-208/341, C-F=-201/171

JOINT STRESS INDEX

B = 0.62, C = 0.21, D = 0.60, E = 0.31 and F = 0.38

NOTES

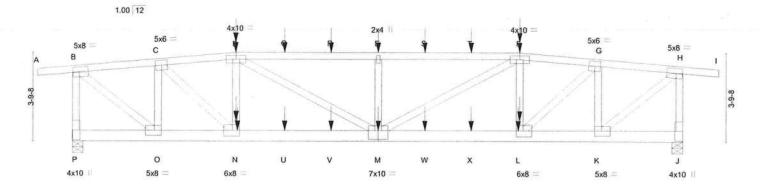
 Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; partially; MWFRS gable end zone and C-C Exterior(2) zone; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 246 lb uplift at joint E and 285 lb uplift at joint F.

LOAD CASE(S) Standard

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

June 2,2006


This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	LAKE CITY/ISLAMIC CENTER	11670060
L153414	T15	HIP	2	1		J1672269
					Job Reference (optional)	

6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 13:16:50 2006 Page 1

3-7-12	7-0-0	13-0-12	19-1-8	22-5-12	26-1-8
3-7-12	3-4-4	6-0-12	6-0-12	3-4-4	3-7-12

Plate Offsets (X,Y): [B:0-3-5,0-2-8], [F:0-0-0,0-0-0], [H:0-3-5,0-2-8], [J:Edge,0-3-8], [K:0-3-8,0-2-8], [L:0-3-8,0-3-0], [M:0-5-0,0-4-8], [N:0-3-8,0-3-0], [O:0-3-8,0-2-8]

LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.84	Vert(LL)	-0.28	M-N	>999	240	MT20	244/190
TCDL	10.0	Lumber Increase	1.25	BC	0.64	Vert(TL)	-0.48	L-M	>643	180		
BCLL	10.0	Rep Stress Incr	NO	WB	0.87	Horz(TL)	0.07	J	n/a	n/a		
BCDL 5.0		Code FBC2004/TI	P12002	(Mati	rix)						Weight: 177 lb	

LUMBER

TOP CHORD 2 X 4 SYP No.2 BOT CHORD 2 X 6 SYP No.1D

WEBS 2 X 4 SYP No.3 *Except*

B-O 2 X 4 SYP No.2, H-K 2 X 4 SYP No.2

BRACING

BOT CHORD

TOP CHORD

Structural wood sheathing directly applied or 2-1-4

oc purlins, except end verticals.

Rigid ceiling directly applied or 5-4-11 oc bracing.

REACTIONS (lb/

BOT CHORD

WEBS

(lb/size) P=2681/0-5-8, J=2681/0-5-8

Max Horz P=105(load case 3)

Max Uplift P=-1434(load case 2), J=-1434(load case 3)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD A-B=0/8, B-C=-2676/1401, C-D=-4644/2436, D-Q=-5689/2994, Q-R=-5689/2994,

E-R=-5689/2994, E-S=-5689/2994, S-T=-5689/2994, F-T=-5689/2994, F-G=-4644/2436,

G-H=-2676/1401, H-I=0/8, B-P=-2582/1416, H-J=-2582/1416

O-P=-77/76, N-O=-1341/2655, N-U=-2368/4625, U-V=-2368/4625, M-V=-2368/4625,

M-W=-2409/4625, W-X=-2409/4625, L-X=-2409/4625, K-L=-1375/2655, J-K=-29/50

C-O=-2127/1172, C-N=-1416/2697, D-N=-905/575, D-M=-686/1296, E-M=-487/398,

F-M=-685/1296, F-L=-905/575, G-L=-1416/2697, G-K=-2127/1171, B-O=-1734/3358,

H-K=-1734/3358

JOINT STRESS INDEX

B = 0.91, C = 0.89, D = 0.84, E = 0.34, F = 0.84, G = 0.89, H = 0.91, J = 0.42, K = 0.86, L = 0.60, M = 0.77, N = 0.60, O = 0.86 and P = 0.42

NOTES

1) Unbalanced roof live loads have been considered for this design.

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475

Builders FirstSource - Florida, LLC

6550 Roosevelt Blvd. Jacksonville, FL 32244

June 2,2006

Continued on page 2

Marning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation aublate from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	LAKE CITY/ISLAMIC CENTER	
L153414	T15	HIP	2	1		J1672269
Andrews of the state of the sta		100			Job Reference (optional)	

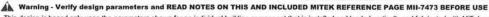
6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 13:16:50 2006 Page 2

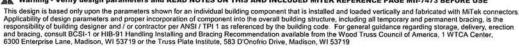
NOTES

- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; partially; MWFRS gable end zone; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60.
- Provide adequate drainage to prevent water ponding.
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1434 lb uplift at joint P and 1434 lb uplift at joint J.
- 5) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

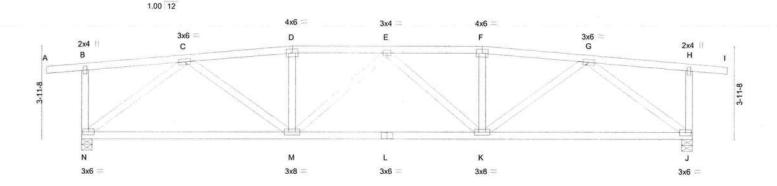
1) Regular: Lumber Increase=1.25, Plate Increase=1.25


Uniform Loads (plf)


Vert: A-B=-60, B-D=-60, D-F=-60, F-H=-60, H-I=-60, J-P=-30

Concentrated Loads (lb)

Vert: N=-570(B) D=-341(B) M=-171(B) E=-33(B) F=-341(B) L=-570(B) Q=-33(B) R=-33(B) S=-33(B) T=-33(B) U=-171(B) V=-171(B) W=-171(B) X=-171(B)


> Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

Job	Truss	Truss Type		Qty	Ply	LAKE CITY/ISLAMIC	CENTER	J1672270
L153414	T16	HIP 2 1 Job Refe		Job Reference (option				
Builders FirstSc	ource, Bunnell, FL.	32110	6.200 s	Jul 13 2005	MiTek Ir	ndustries, Inc. Fri Jun	02 13:17:25 200	6 Page 1
-1-6-0	4-7-12	9-0-0	13-0-12	17-1-8		21-5-12	26-1-8	27-7-8
1-6-0	4-7-12	4-4-4	4-0-12	4-0-12		4-4-4	4-7-12	1-6-0 Scale = 1:47.4

-	9-0-0	17-1-8	26-1-8
	9-0-0	8-1-8	9-0-0
Plate Offsets (X,Y):	[F:0-0-0,0-0-0]		

LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.60	Vert(LL)	-0.15	J-K	>999	240	MT20	244/190
TCDL	10.0	Lumber Increase	1.25	BC	0.58	Vert(TL)	-0.26	M-N	>999	180	AP-III-O-II-O-II-O-II-O-II-O-II-O-II-O-I	
BCLL	10.0	Rep Stress Incr	YES	WB	0.76	Horz(TL)	0.06	J	n/a	n/a		
BCDL	5.0	Code FBC2004/TI	PI2002	(Mati	rix)						Weight: 147 lb	

LUMBER

TOP CHORD 2 X 4 SYP No.2 BOT CHORD 2 X 4 SYP No.2

2 X 4 SYP No.3 **WEBS**

BRACING

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or

4-5-10 oc purlins, except end verticals. Rigid ceiling directly applied or 6-5-4 oc bracing.

REACTIONS (lb/size) N=1261/0-5-8, J=1261/0-5-8

Max Horz N=106(load case 4)

Max Uplift N=-655(load case 3), J=-655(load case 4)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD A-B=0/8, B-C=-85/96, C-D=-1913/1048, D-E=-1895/1054, E-F=-1895/1054,

F-G=-1913/1048, G-H=-85/96, H-I=0/8, B-N=-247/211, H-J=-247/211

BOT CHORD M-N=-583/1232, L-M=-963/2024, K-L=-963/2024, J-K=-626/1232

C-M=-330/818, D-M=-116/148, E-M=-277/191, E-K=-277/192, F-K=-116/148, **WEBS**

G-K=-330/818, C-N=-1457/829, G-J=-1457/829

JOINT STRESS INDEX

B = 0.57, C = 0.69, D = 0.57, E = 0.48, F = 0.57, G = 0.69, H = 0.57, J = 0.80, K = 0.79, L = 0.82, M = 0.79 and N = 0.80

1) Unbalanced roof live loads have been considered for this design.

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475

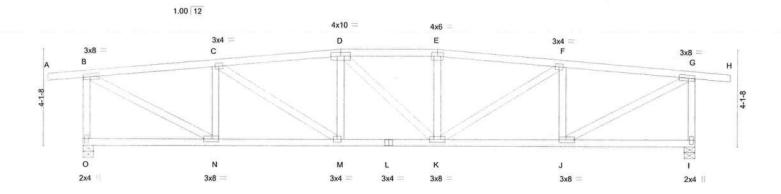
Builders FirstSource - Florida, LLC

- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B550 Roosevelt Blvd. Jacksonville, FL 32244 partially; MWFRS gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 3) Provide adequate drainage to prevent water ponding.
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 655 lb uplift at joint N and 655 lb uplift at joint J.

June 2,2006

Continued on page 2

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erect and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719


Job	Truss	Truss Type	Qty	Ply	LAKE CITY/ISLAMIC CENTER
		1 (1.00 (1.0			J1672270
L153414	T16	HIP	2	1	
	2				Job Reference (optional)
Builders FirstS	ource, Bunnell, FL. 32	2110	6.200 s Jul 13 2005	MiTek Ir	ndustries, Inc. Fri Jun 02 13:17:25 2006 Page 2

LOAD CASE(S) Standard

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

Job Truss Truss Type Qty Ply LAKE CITY/ISLAMIC CENTER J1672271 L153414 T17 HIP 2 Job Reference (optional) Builders FirstSource, Bunnell, FL. 32110 6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 13:17:51 2006 Page 1 5-7-12 -1-6-0 11-0-0 20-5-12 26-1-8 27-7-8 1-6-0 5-7-12 5-4-4 4-1-8 5-4-4 1-6-0 Scale = 1:47.4

	5-7-12	11-0-0	15-1-8	20-5-12	26-1-8	
	5-7-12	5-4-4	4-1-8	5-4-4	5-7-12	
011 1 1110	/D 0 0 0 0 1 01					

LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.39	Vert(LL)	0.11	K-M	>999	240	MT20	244/190
TCDL	10.0	Lumber Increase	1.25	BC	0.39	Vert(TL)	-0.19	J-K	>999	180	10000 TURBUTU	
BCLL	10.0	Rep Stress Incr	YES	WB	0.56	Horz(TL)	0.04	1	n/a	n/a		
BCDL	5.0	Code FBC2004/TF	212002	(Mati	rix)						Weight: 153 lb	

LUMBER

TOP CHORD 2 X 4 SYP No.2

BOT CHORD 2 X 4 SYP No.2

WEBS 2 X 4 SYP No.3 BRACING

TOP CHORD

Structural wood sheathing directly applied or 4-4-7

oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 6-8-15 oc bracing.

REACTIONS (lb/size) O=1261/0-5-8, I=1261/0-5-8

Max Horz O=-102(load case 3)

Max Uplift O=-639(load case 3), I=-639(load case 4)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD

A-B=0/8, B-C=-1542/871, C-D=-1947/1096, D-E=-1926/1102, E-F=-1947/1095,

F-G=-1542/871, G-H=0/8, B-O=-1176/681, G-I=-1176/681

BOT CHORD

N-O=-65/78, M-N=-693/1523, L-M=-889/1926, K-L=-889/1926, J-K=-699/1523, I-J=-24/53

WEBS

C-N=-620/435, C-M=-243/518, D-M=-139/157, D-K=-154/153, E-K=-155/170,

F-K=-242/518, F-J=-620/434, B-N=-845/1667, G-J=-845/1667

JOINT STRESS INDEX

B = 0.80, C = 0.50, D = 0.35, E = 0.63, F = 0.50, G = 0.80, I = 0.87, J = 0.69, K = 0.57, L = 0.76, M = 0.48, N = 0.69 and O = 0.87

NOTES

1) Unbalanced roof live loads have been considered for this design.

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475

Builders FirstSource - Florida, LLC

2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp \$50 Roosevelt Blvd. Jacksonville, FL 32244 partially; MWFRS gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.

Provide adequate drainage to prevent water ponding.

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 639 lb uplift at joint O and 639 lb uplift at joint I.

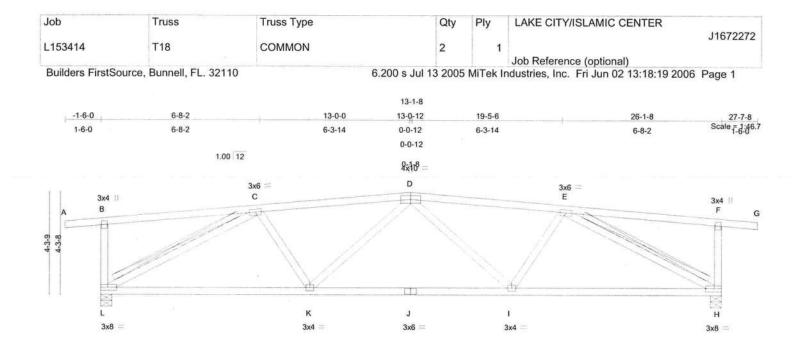
June 2,2006

Continued on page 2

▲ Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCS-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	LAKE CITY/ISLAMIC CENTER	
L153414	T17	HIP	2	1		J1672271
					Job Reference (optional)	


6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 13:17:51 2006 Page 2

LOAD CASE(S) Standard

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

	-	8-9-11 8-9-11				17-3-13 8-6-3		-+-		1-8		
		0-3-11			0.00				8-9-11			
LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.61	Vert(LL)	-0.16	I-K	>999	240	MT20	244/190
TCDL	10.0	Lumber Increase	1.25	BC	0.56	Vert(TL)	-0.28	I-K	>999	180		
BCLL	10.0	Rep Stress Incr	YES	WB	0.58	Horz(TL)	0.07	Н	n/a	n/a		
BCDL	5.0 Code FBC2004/TPI2002		(Mati	rix)						Weight: 139 lb		

LUMBER TOP CHORD 2 X 4 SYP No.2 **BOT CHORD** 2 X 4 SYP No.2 2 X 4 SYP No.3 WEBS

BRACING TOP CHORD

Structural wood sheathing directly applied or 4-4-15 oc purlins, except end verticals.

BOT CHORD WEBS

Rigid ceiling directly applied or 6-8-0 oc bracing. T-Brace: 2 X 4 SYP No.3 - C-L,

E-H

Fasten T and I braces to narrow edge of web with 10d Common wire nails, 9in o.c., with 4in minimum end distance.

Builders FirstSource - Florida, LLC

6550 Roosevelt Blvd. Jacksonville, FL 32244

Brace must cover 90% of web length.

REACTIONS

(lb/size) L=1261/0-5-8, H=1261/0-5-8

Max Horz L=-99(load case 3)

Max Uplift L=-633(load case 5), H=-633(load case 6)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD

A-B=0/8, B-C=-116/130, C-D=-1858/1017, D-E=-1858/1017, E-F=-116/130, F-G=0/8,

B-L=-303/262, F-H=-303/262

BOT CHORD

K-L=-783/1642, J-K=-894/1883, I-J=-894/1883, H-I=-783/1642

WEBS

C-K=-64/424, D-K=-138/156, D-I=-138/156, E-I=-64/424, C-L=-1752/943, E-H=-1752/943

JOINT STRESS INDEX

Truss Design Engineer: Lawrence A. Paine, PE B = 0.59, C = 0.52, D = 0.47, E = 0.52, F = 0.59, H = 0.56, I = 0.48, J = 0.82, K = 0.48 and L = 0.56 Design Engineer: Lawrence A. Paine, PE B = 0.59, C = 0.52, D = 0.47, E = 0.52, F = 0.59, H = 0.56, I = 0.48, J = 0.82, K = 0.48 and L = 0.56 Design Engineer: Lawrence A. Paine, PE B = 0.59, C = 0.52, D = 0.47, E = 0.52, F = 0.59, H = 0.56, I = 0.48, J = 0.82, K = 0.48 and L = 0.56 Design Engineer: Lawrence A. Paine, PE B = 0.59, C = 0.52, D = 0.47, E = 0.52, F = 0.59, H = 0.56, I = 0.48, J = 0.82, K = 0.48 and L = 0.56 Design Engineer: Lawrence A. Paine, PE B = 0.59, D = 0.47, E = 0.52, F = 0.59, H = 0.56, I = 0.48, J = 0.82, K = 0.48 and L = 0.56 Design Engineer: Lawrence A. Paine, PE B = 0.59, D = 0.47, E = 0.59, D = 0.

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; partially; MWFRS gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.

June 2,2006

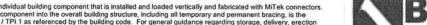
Continued on page 2

▲ Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erect and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	LAKE CITY/ISLAMIC CENTER	J1672272
L153414	T18	COMMON	2	1		31012212
					Job Reference (optional)	

6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 13:18:19 2006 Page 2

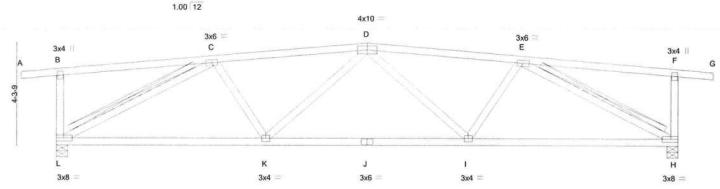

NOTES

3) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 633 lb uplift at joint L and 633 lb uplift at joint H.

LOAD CASE(S) Standard

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

June 2,2006


🛕 Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI /TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	LAKE CITY/ISLAMIC CENTER	14070070
L153414	T19	COMMON	2	1		J1672273
					Job Reference (optional)	

6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 13:18:54 2006 Page 1

-1-6-0	6-8-2	13-0-12	19-5-6	26-1-8	27-7-8
1-6-0	6-8-2	6-4-10	6-4-10	6-8-2	1-6-0
					Scale = 1:46.7

Warning: This truss has not been designed to support any additional load from conventional framing.

8-9-11				17-3-13 8-6-3				26-1-8 8-9-11				
8-9-11												
LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.61	Vert(LL)	-0.16	I-K	>999	240	MT20	244/190
TCDL	10.0	Lumber Increase	1.25	BC	0.56	Vert(TL)	-0.28	I-K	>999	180	100000000000000000000000000000000000000	
BCLL	10.0	Rep Stress Incr	YES	WB	0.58	Horz(TL)	0.07	Н	n/a	n/a		
BCDL	5.0	Code FBC2004/TF	212002	(Mat	rix)						Weight: 139 lb	
LUMBER	3					BRACING						

TOP CHORD 2 X 4 SYP No.2 BOT CHORD 2 X 4 SYP No.2 **WEBS** 2 X 4 SYP No.3

TOP CHORD

Structural wood sheathing directly applied or 4-4-15 oc purlins, except end verticals.

BOT CHORD WEBS

Rigid ceiling directly applied or 6-8-0 oc bracing. T-Brace: 2 X 4 SYP No.3 - C-L,

E-H

Fasten T and I braces to narrow edge of web with 10d Common wire nails, 9in o.c., with 4in minimum end distance.

Brace must cover 90% of web length.

REACTIONS (lb/size) L=1261/0-5-8, H=1261/0-5-8

Max Horz L=-99(load case 3)

Max Uplift L=-633(load case 5), H=-633(load case 6)

FORCES (Ib) - Maximum Compression/Maximum Tension

TOP CHORD

A-B=0/8, B-C=-116/130, C-D=-1858/1017, D-E=-1858/1017, E-F=-116/130, F-G=0/8,

B-L=-303/262, F-H=-303/262

BOT CHORD K-L=-783/1642, J-K=-894/1883, I-J=-894/1883, H-I=-783/1642

WEBS C-K=-64/424, D-K=-138/156, D-I=-138/156, E-I=-64/424, C-L=-1752/943, E-H=-1752/943

JOINT STRESS INDEX

NOTES

B = 0.59, C = 0.52, D = 0.47, E = 0.52, F = 0.59, H = 0.56, I = 0.48, J = 0.82, K = 0.48 and L = 0.56 mss Design Engineer: Lawrence A. Paine, PE

Florida PE No. 21475

Builders FirstSource - Florida, LLC

1) Unbalanced roof live loads have been considered for this design.

6550 Roosevelt Blvd. Jacksonville, FL 32244

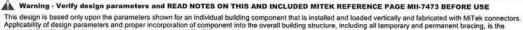
2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; partially; MWFRS gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.

June 2,2006

Continued on page 2

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MTek connectors Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	LAKE CITY/ISLAMIC CENTER	14670070
L153414	T19	COMMON	2	1		J1672273
					Job Reference (optional)	

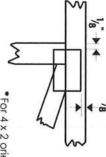

6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 13:18:54 2006 Page 2

NOTES

3) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 633 lb uplift at joint L and 633 lb uplift at joint H.

LOAD CASE(S) Standard

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244



Symbols

PLATE LOCATION AND ORIENTATION

 Center plate on joint unless dimensions indicate otherwise securely seat. plates to both sides of truss and Dimensions are in inches. Apply

*For 4 x 2 orientation, locate plates 1/8" from outside edge of truss and vertical web.

 This symbol indicates the required direction of slots in connector plates.

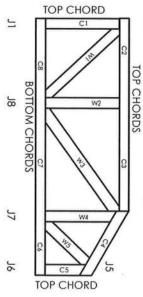
PLATE SIZE

4 × 4

dimension is the length parallel The first dimension is the width perpendicular to slots. Second to slots.

LATERAL BRACING

continuous lateral bracing. Indicates location of required


BEARING

which bearings (supports) occur. Indicates location of joints at

12 TOP CHORDS 3

14

JOINTS AND CHORDS ARE NUMBERED CLOCKWISE AROUND THE TRUSS STARTING AT THE LOWEST JOINT FARTHEST TO THE LEFT.

WEBS ARE NUMBERED FROM LEFT TO RIGHT

CONNECTOR PLATE CODE APPROVALS

ICBO

BOCA

96-31, 96-67

3907, 4922

SBCCI

WISC/DILHR

960022-W, 970036-N

9667, 94324

NER

561

MiTek Engineering Reference Sheet: MII-7473

Numbering System

General Safety Notes

- Provide copies of this truss design to the building designer, erection supervisor, property Failure to Follow Could Cause Property Damage or Personal Injury
- Cut members to bear tightly against each

owner and all other interested parties.

Place plates on each face of truss at each joint and embed fully. Avoid knots and wane at joint locations.

ω

4 Unless otherwise noted, locate chord splices at 1% panel length (± 6" from adjacent joint.)

5

Unless otherwise noted, moisture content of

- Unless expressly noted, this design is not lumber shall not exceed 19% at time of fabrication.
- 6 Camber is a non-structural consideration and preservative treated lumber. applicable for use with fire retardant or
- 00 Plate type, size and location dimensions shown indicate minimum plating requirements

practice is to camber for dead load deflection is the responsibility of truss fabricator. General

- Lumber shall be of the species and size, and grade specified. in all respects, equal to or better than the
- Top chords must be sheathed or purlins provided at spacing shown on design.
- Bottom chords require lateral bracing at 10 unless otherwise noted ft. spacing, or less, if no ceiling is installed
- 12. Anchorage and / or load transferring connections to trusses are the responsibility of others unless shown.
- Do not overload roof or floor trusses with stacks of construction materials.
- Do not cut or alter truss member or plate engineer. without prior approval of a professional
- 15. Care should be exercised in handling, erection and installation of trusses

© 1993 MiTek® Holdings, Inc.

Project Information for:

L153414

Builder:

Charles Peeler Construction

Address:

2054 SW. Dairy St. Lake City, FL 32024

County:

Columbia

Truss Count:

30

Design Program:

MiTek 20/20 6.2

Gravity:

Truss Design Load Information:

Roof:

Wind Standard:

ASCE 7-02

Floor:

45.0 N/A

Wind Speed:

110 mph

Note: See the individual truss drawings for special loading conditions.

Florida License No.: AR0007005

30, 2007

Truss Design Engineer: Lawrence A. Paine, PE

Builders FirstSource, Jacksonville, FL. 32244

Florida License Number: 21475

Building Code: FBC2004/TPI2002

Address: 1758 NW Brown Road Lake City, FL 32055

Architect of Record: Nicholas P. Geisler

Truss Design Engineer: Lawrence A. Paine, PE Florida P.E. License No. 21475

Company: Builders FirstSource

Address: 6550 Roosevelt Blvd. Jacksonville, FL 32244

Notes:

1. Determination as to the suitability of these truss components for the structure is the responsibility of the building designer/engineer of record, as defined in ANSI/TPI 1-1995 Section 2.2

2. The seal date shown on the individual truss component drawings must match the seal date on this index sheet.

Truss ID Dwg. # Seal Date 1234567891112345678901234567890

Project Information for:

L153414

Builder:

Charles Peeler Construction

Address:

2054 SW. Dairy St.

County:

Lake City, FL 32024

Columbia

Truss Count:

30

Design Program:

MiTek 20/20 6.2

Truss Design Load Information: Wind:

Gravity:

45.0

Wind Standard:

ASCE 7-02

Roof: Floor:

N/A

Wind Speed:

110 mph

Note: See the individual truss drawings for special loading conditions.

Architect of Record: Nicholas P. Geisler

Florida License No.: AR0007005

January 30, 2007

Truss Design Engineer: Lawrence A. Paine, PE

Builders FirstSource, Jacksonville, FL. 32244

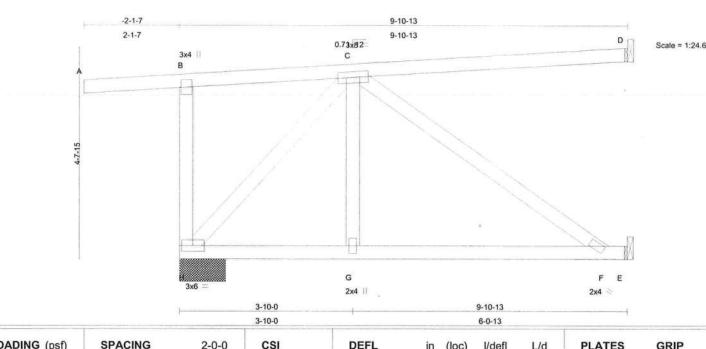
Florida License Number: 21475

Building Code: FBC2004/TPI2002

Address: 1758 NW Brown Road Lake City, FL 32055

Truss Design Engineer: Lawrence A. Paine, PE Florida P.E. License No. 21475 Company: Builders FirstSource

Address: 6550 Roosevelt Blvd. Jacksonville, FL 32244


1. Determination as to the suitability of these truss components for the structure is the responsibility of the building designer/engineer of record, as defined in ANSI/TPI 1-1995 Section 2.2

2. The seal date shown on the individual truss component drawings must match the seal date on this index sheet.

Truss ID Seal Date Job Truss Type Qty Ply LAKE CITY/ISLAMIC CENTER

L153414 HJ7 MONO TRUSS 4 1

Builders FirstSource, Bunnell, FL. 32110 6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 12:54:49 2006 Page 1

LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.73	Vert(LL)	-0.11	F-G	>999	240	MT20	244/190
TCDL	10.0	Lumber Increase	1.25	BC	0.55	Vert(TL)	-0.19	F-G	>622	180		
BCLL	10.0	Rep Stress Incr	NO	WB	0.37	Horz(TL)	0.02	D	n/a	n/a		
BCDL	5.0	Code FBC2004/TF	PI2002	(Mati	rix)						Weight: 61 lb	i

LUMBER

TOP CHORD 2 X 4 SYP No.2

BOT CHORD 2 X 4 SYP No.2

WEBS 2 X 4 SYP No.3 *Except*

B-H 2 X 4 SYP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0

oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS

(lb/size) H=519/1-0-1, D=309/Mechanical, E=398/Mechanical

Max Horz H=192(load case 4)

Max Uplift H=-312(load case 2), D=-265(load case 4), E=-135(load case 4)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD B-H=-102/111, A-B=0/8, B-C=-41/59, C-D=-21/13

BOT CHORD G-H=-255/375, F-G=-255/375, E-F=0/0

WEBS C-H=-628/302, C-F=-461/314, C-G=0/275

JOINT STRESS INDEX

B = 0.64, C = 0.32, F = 0.26, G = 0.20 and H = 0.48

NOTES

- Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; partially; MWFRS gable end zone; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60.
- 2) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 312 lb uplift at joint H, 265 lb uplift at joint D and 135 lb uplift at joint E.
- 3) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (P)uss Design Engineer: Lawrence A. Paine, PE

Continued on page 2

Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

June 2,2006

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCS-1 or HIB-91 Handling Installing and Bracing Recommendation atlable from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job Truss Truss Type Qty Ply LAKE CITY/ISLAMIC CENTER
L153414 HJ7 MONO TRUSS 4 1
Job Reference (optional)

Builders FirstSource, Bunnell, FL. 32110

6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 12:54:49 2006 Page 2

LOAD CASE(S) Standard

 Regular: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)

Vert: A-B=-60

Trapezoidal Loads (plf)

Vert: B=-2(F=29, B=29)-to-D=-148(F=-44, B=-44), H=0(F=15, B=15)-to-E=-74(F=-22, B=-22)

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6S50 Roosevelt Blvd. Jacksonville, FL 32244

Job Truss Truss Type Qty Ply LAKE CITY/ISLAMIC CENTER J1672245 **HJ70** L153414 MONO TRUSS Job Reference (optional) 6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 12:55:55 2006 Page 1 Builders FirstSource, Bunnell, FL. 32110 -2-1-7 3-10-0 9-10-13 2-1-7 3-10-0 6-0-13 0.71 12 Scale = 1:20.7 C 3x4 B G 2x4 2x4 9-10-13 9-10-13 LOADING (psf) SPACING 2-0-0 CSI DEFL GRIP (loc) I/defl L/d **PLATES** 20.0 TCLL Plates Increase 1.25 TC 0.73 Vert(LL) -0.10F-G >999 240 MT20 244/190 TCDL 10.0 1.25 BC 0.55 Lumber Increase Vert(TL) -0.18F-G >645 180 BCLL 10.0 Rep Stress Incr NO WB 0.38 Horz(TL) 0.02 D n/a n/a Code FBC2004/TPI2002 BCDL 5.0 (Matrix) Weight: 57 lb LUMBER BRACING TOP CHORD 2 X 4 SYP No.2 TOP CHORD Structural wood sheathing directly applied or 6-0-0

BOT CHORD 2 X 4 SYP No.2

WEBS

2 X 4 SYP No.3 *Except*

B-H 2 X 4 SYP No.2

oc purlins, except end verticals. **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing.

(lb/size) H=519/0-8-8, D=308/Mechanical, E=399/Mechanical REACTIONS

Max Horz H=159(load case 4)

Max Uplift H=-315(load case 2), D=-265(load case 4), E=-120(load case 4)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD B-H=-97/101, A-B=0/8, B-C=-54/79, C-D=-21/13

BOT CHORD

G-H=-294/478, F-G=-294/478, E-F=0/0

WEBS

C-H=-719/351, C-F=-546/336, C-G=0/270

JOINT STRESS INDEX

B = 0.69, C = 0.35, F = 0.28, G = 0.20 and H = 0.59


NOTES

- 1) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; partially; MWFRS gable end zone; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60.
- 2) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 315 lb uplift at joint H, 265 lb uplift at joint D and 120 lb uplift at joint E.
- 3) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (P) uss Design Engineer: Lawrence A. Paine, PE

Continued on page 2

Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

Job Truss Truss Type Qty Ply LAKE CITY/ISLAMIC CENTER

L153414 HJ70 MONO TRUSS 4 1

Job Reference (optional)

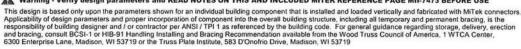
Builders FirstSource, Bunnell, FL. 32110

6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 12:55:56 2006 Page 2

LOAD CASE(S) Standard

1) Regular: Lumber Increase=1.25, Plate Increase=1.25


Uniform Loads (plf)


Vert: A-B=-60

Trapezoidal Loads (plf)

Vert: B=-2(F=29, B=29)-to-D=-148(F=-44, B=-44), H=0(F=15, B=15)-to-E=-74(F=-22, B=-22)

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

Job Truss Truss Type Qty Ply LAKE CITY/ISLAMIC CENTER J1672246 L153414 J01 **JACK** 38 Job Reference (optional) Builders FirstSource, Bunnell, FL. 32110 6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 11:24:44 2006 Page 1 7-0-0 -1-6-0 3-6-0 1-6-0 3-6-0 3-6-0 1.00 12 3x4 = D Scale = 1:24.9 C 2x4 В

LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.46	Vert(LL)	-0.09	F-G	>909	240	MT20	244/190
TCDL	10.0	Lumber Increase	1.25	BC	0.31	Vert(TL)	-0.16	F-G	>519	180		
BCLL	10.0	Rep Stress Incr	YES	WB	0.07	Horz(TL)	0.03	D	n/a	n/a		
BCDL	5.0	Code FBC2004/TI	212002	(Matr	rix)	, ,					Weight: 43 lb	

3-6-0

3-6-0

LUMBER

TOP CHORD 2 X 4 SYP No.2

BOT CHORD 2 X 4 SYP No.2

2 X 4 SYP No.3 WEBS

BRACING TOP CHORD

Structural wood sheathing directly applied or 6-0-0

oc purlins, except end verticals.

2x4

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

7-0-0

3-6-0

REACTIONS (lb/size) G=416/0-8-0, D=94/Mechanical, E=200/Mechanical

Max Horz G=183(load case 5)

Max Uplift G=-238(load case 3), D=-76(load case 5), E=-131(load case 5)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD B-G=-225/241, A-B=0/8, B-C=-50/144, C-D=-11/6

BOT CHORD F-G=-171/90, E-F=0/0

WEBS C-G=-80/93, C-F=-154/293

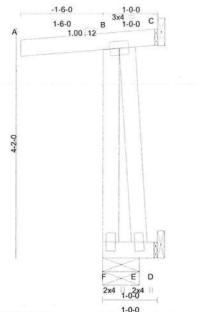
JOINT STRESS INDEX

B = 0.57, C = 0.19, F = 0.15 and G = 0.61

NOTES

1) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; partially; MWFRS gable end zone and C-C Exterior(2) zone; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.

2) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 238 lb uplift at joint G, 76 lb uplift at joint D and 131 lb uplift at joint E.


LOAD CASE(S) Standard

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

Job	Truss	Truss Type	Qty	Ply	LAKE CITY/ISLAMIC CENTER	14070047
L153414	J03	JACK	8	1		J1672247
					Job Reference (optional)	

6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 12:41:20 2006 Page 1

4-2-0		
	E D 2x4 1.02x4	

LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.15	Vert(LL)	-0.00	È	>999	240	MT20	244/190
TCDL	10.0	Lumber Increase	1.25	BC	0.00	Vert(TL)	-0.00	F	>999	180		15.0 A 3.5 B
BCLL	10.0	Rep Stress Incr	YES	WB	0.03	Horz(TL)	-0.01	C	n/a	n/a		
BCDL	5.0	Code FBC2004/TI	212002	(Mati	rix)	130 6					Weight: 16 lb	

LUMBER

TOP CHORD 2 X 4 SYP No.2 BOT CHORD 2 X 4 SYP No.2

WEBS 2 X 4 SYP No.3

BRACING TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 1-0-0

oc purlins, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS

(lb/size) F=227/0-8-0, C=-71/Mechanical, D=2/Mechanical, E=17/0-8-0

Max Horz F=13(load case 3)

Max Uplift F=-110(load case 3), C=-71(load case 1), E=-90(load case 3)

Max Grav F=227(load case 1), C=69(load case 3), D=2(load case 1), E=17(load case 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD

B-F=-221/111, A-B=0/8, B-C=-10/6

BOT CHORD

E-F=-15/0, D-E=0/0

WEBS

NOTES

B-E=0/106

JOINT STRESS INDEX

B = 0.11, E = 0.06 and F = 0.08

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475

Builders FirstSource - Florida, LLC

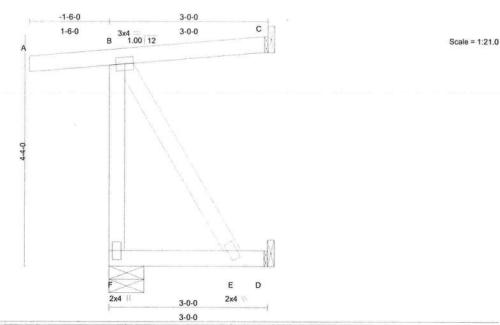
1) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B550 Roosevelt Blvd. Jacksonville, FL 32244 partially; MWFRS gable end zone and C-C Exterior(2) zone; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.

2) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 110 lb uplift at joint F, 71 lb uplift at joint C and 90 lb uplift at joint E.

LOAD CASE(S) Standard

June 2,2006

Scale = 1:20.2



This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and for contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCS-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	LAKE CITY/ISLAMIC CENTER	14070040
L153414	J04	JACK	8	1		J1672248
				1	Job Reference (optional)	

6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 12:41:42 2006 Page 1

LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.32	Vert(LL)	0.01	E-F	>999	240	MT20	244/190
TCDL	10.0	Lumber Increase	1.25	BC	0.15	Vert(TL)	0.01	E-F	>999	180		
BCLL	10.0	Rep Stress Incr	YES	WB	0.07	Horz(TL)	-0.02	C	n/a	n/a		
BCDL	5.0	Code FBC2004/TI	212002	(Mati	rix)						Weight: 23 lb	

LUMBER

TOP CHORD 2 X 4 SYP No.2

BOT CHORD 2 X 4 SYP No.2

2 X 4 SYP No.3 WEBS

BRACING

TOP CHORD Structural wood sheathing directly applied or 3-0-0

oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS (lb/size) F=253/0-8-0, C=55/Mechanical, D=42/Mechanical

Max Horz F=163(load case 5)

Max Uplift F=-165(load case 3), C=-45(load case 3), D=-118(load case 5)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD

B-F=-212/169, A-B=0/8, B-C=-9/3

BOT CHORD

E-F=-145/0, D-E=0/0

WEBS

B-E=0/282

JOINT STRESS INDEX

B = 0.19, E = 0.15 and F = 0.10

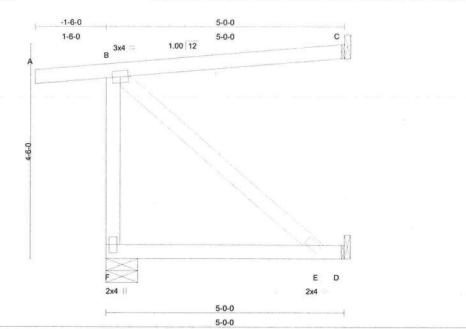
- 1) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; partially; MWFRS gable end zone and C-C Exterior(2) zone; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS
- 2) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 165 lb uplift at joint F, 45 lb uplift at joint C and 118 lb uplift at joint D.

LOAD CASE(S) Standard

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

June 2,2006

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCS-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719


 Job
 Truss
 Truss Type
 Qty
 Ply
 LAKE CITY/ISLAMIC CENTER

 L153414
 J05
 JACK
 8
 1

 Job Reference (optional)

Builders FirstSource, Bunnell, FL. 32110

6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 12:41:59 2006 Page 1

LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.36	Vert(LL)	-0.03	E-F	>999	240	MT20	244/190
TCDL	10.0	Lumber Increase	1.25	BC	0.16	Vert(TL)	-0.05	E-F	>999	180		
BCLL	10.0	Rep Stress Incr	YES	WB	0.05	Horz(TL)	0.01	C	n/a	n/a		
BCDL	5.0	Code FBC2004/TF	PI2002	· (Mat	rix)						Weight: 31 lb	

L	u	M	B	E	R
_	·	***	_	_	

TOP CHORD 2 X 4 SYP No.2 BOT CHORD 2 X 4 SYP No.2

WEBS 2 X 4 SYP No.3

BRACING TOP CHORD

Structural wood sheathing directly applied or 5-0-0

oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS

(lb/size) F=331/0-8-0, C=127/Mechanical, D=72/Mechanical

Max Horz F=173(load case 5)

Max Uplift F=-198(load case 3), C=-108(load case 3), D=-67(load case 5)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD BOT CHORD

B-F=-259/211, A-B=0/8, B-C=-18/8 E-F=-159/0, D-E=0/0

WEBS

----139/0, D-E-0

B-E=0/211

JOINT STRESS INDEX

B = 0.15, E = 0.10 and F = 0.12

NOTES

- Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; partially; MWFRS gable end zone and C-C Exterior(2) zone; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 198 lb uplift at joint F, 108 lb uplift at joint C and 67 lb uplift at joint D.

LOAD CASE(S) Standard

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

June 2,2006

Scale = 1:23.3

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCS-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job Truss Truss Type Ply Qty LAKE CITY/ISLAMIC CENTER J1672250 L153414 J07 **JACK** 14 Job Reference (optional) 6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 12:45:12 2006 Page 1 Builders FirstSource, Bunnell, FL. 32110 3-6-0 7-0-0 1-6-0 3-6-0 3-6-0 D 1.00 12 Scale = 1:20.7 3×4 C 2x4 В E 3x6 2x4 3-6-0 7-0-0 3-6-0 3-6-0 LOADING (psf) SPACING 2-0-0 CSI DEFL I/defl L/d **PLATES** GRIP in (loc) TCLL 20.0 Plates Increase 1.25 TC 0.49Vert(LL) -0.08F-G >961 240 MT20 244/190 TCDL 10.0 1.25 BC Lumber Increase 0.30 Vert(TL) -0.15F-G >549 180 BCLL 10.0 Rep Stress Incr YES WB 0.07 Horz(TL) 0.02 D n/a n/a BCDL 5.0 Code FBC2004/TPI2002 (Matrix) Weight: 40 lb LUMBER BRACING TOP CHORD 2 X 4 SYP No.2 TOP CHORD Structural wood sheathing directly applied or 6-0-0 **BOT CHORD** 2 X 4 SYP No.2 oc purlins, except end verticals. 2 X 4 SYP No.3 Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS **BOT CHORD**

REACTIONS

(lb/size) G=416/0-1-15, D=93/Mechanical, E=201/Mechanical

Max Horz G=151(load case 5)

Max Uplift G=-241(load case 3), D=-75(load case 5), E=-111(load case 5)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD B-G=-225/228, A-B=0/8, B-C=-64/114, C-D=-11/6

BOT CHORD F-G=-191/118, E-F=0/0

WEBS C-G=-89/111, C-F=-173/281

JOINT STRESS INDEX

B = 0.31, C = 0.18, F = 0.14 and G = 0.66

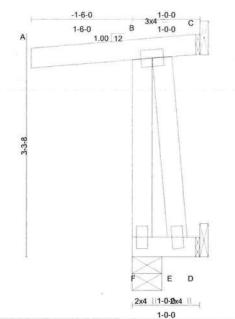
Florida PE No. 21475 1) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp Builders FirstSource - Florida, LLC partially: MWFRS gable end zone and C-C Exterior(2) zone; end vertical left exposed; Lumber 6550 Roosevelt Blvd. Jacksonville, FL 32244 partially; MWFRS gable end zone and C-C Exterior(2) zone; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.

2) Provide mechanical connection (by others) of truss to bearing plate at joint(s) G.

3) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 241 lb uplift at joint G, 75 lb uplift at joint D and 111 lb uplift at joint E.

LOAD CASE(S) Standard

June 2,2006


This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erec and bracing, consult 8CSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Truss Design Engineer: Lawrence A. Paine, PE

Job	Truss	Truss Type	Qty	Ply	LAKE CITY/ISLAMIC CENTER	14070054
L153414	J09	JACK	8	1		J1672251
				78	Job Reference (optional)	

6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 12:46:25 2006 Page 1

LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.15	Vert(LL)	-0.00	F	>999	240	MT20	244/190
TCDL	10.0	Lumber Increase	1.25	BC	0.02	Vert(TL)	-0.00	F	>999	180		
BCLL	10.0	Rep Stress Incr	YES	WB	0.02	Horz(TL)	-0.01	C	n/a	n/a		
BCDL	5.0	Code FBC2004/TR	212002	(Matr	rix)						Weight: 13 lb	

			_	_	_
L	u	M	в	E	R

TOP CHORD 2 X 4 SYP No.2 BOT CHORD 2 X 4 SYP No.2

WEBS 2 X 4 SYP No.3

BRACING TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 1-0-0

oc purlins, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS

(lb/size) F=233/0-5-4, C=-71/Mechanical, D=13/Mechanical

Max Horz F=13(load case 3)

Max Uplift F=-157(load case 3), C=-71(load case 1), D=-43(load case 3) Max Grav F=233(load case 1), C=69(load case 3), D=13(load case 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD

B-F=-221/133, A-B=0/8, B-C=-10/6

BOT CHORD WEBS

E-F=-15/0, D-E=0/0 B-E=0/82

JOINT STRESS INDEX

B = 0.11, E = 0.05 and F = 0.08

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475

Builders FirstSource - Florida, LLC

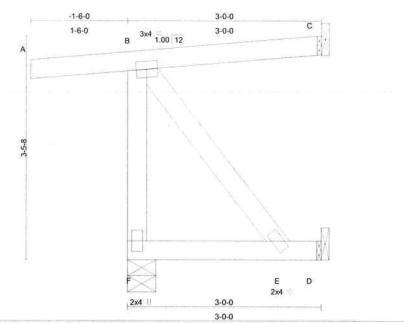
NOTES 1) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp 8:550 Roosevelt Blvd. Jacksonville, FL 32244 partially; MWFRS gable end zone and C-C Exterior(2) zone; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.

2) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 157 lb uplift at joint F, 71 lb uplift at joint C and 43 lb uplift at joint D.

LOAD CASE(S) Standard

June 2,2006

Scale = 1:16.4



This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	LAKE CITY/ISLAMIC CENTER	14070050
L153414	J10	JACK	8	1		J1672252
					Job Reference (optional)	

6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 12:46:48 2006 Page 1

LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.21	Vert(LL)	0.01	E-F	>999	240	MT20	244/190
TCDL	10.0	Lumber Increase	1.25	BC	0.09	Vert(TL)	0.01	E-F	>999	180		
BCLL	10.0	Rep Stress Incr	YES	WB	0.05	Horz(TL)	-0.01	C	n/a	n/a		
BCDL	5.0	Code FBC2004/TF	212002	(Mati	rix)						Weight: 20 lb	

LUMBER

TOP CHORD 2 X 4 SYP No.2

BOT CHORD 2 X 4 SYP No.2

WEBS 2

2 X 4 SYP No.3

BRACING

TOP CHORD

Structural wood sheathing directly applied or 3-0-0

oc purlins, except end verticals.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS

(lb/size) F=253/0-5-4, C=55/Mechanical, D=42/Mechanical

Max Horz F=131(load case 5)

Max Uplift F=-167(load case 3), C=-45(load case 3), D=-72(load case 5)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD

B-F=-212/172, A-B=0/8, B-C=-9/3

BOT CHORD

E-F=-118/0, D-E=0/0

WEBS

B-E=0/191

JOINT STRESS INDEX

LOAD CASE(S) Standard

B = 0.13, E = 0.10 and F = 0.10

NOTES

- Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; partially; MWFRS gable end zone and C-C Exterior(2) zone; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 167 lb uplift at joint F, 45 lb uplift at joint C and 72 lb uplift at joint D.

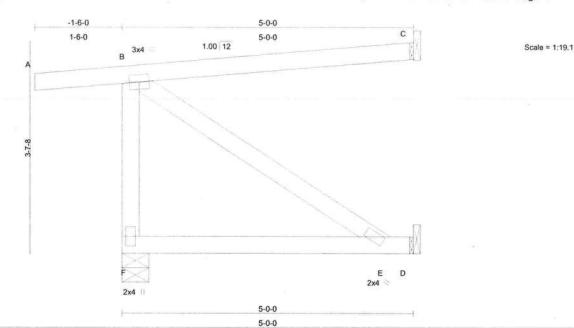
Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475

Builders FirstSource - Florida, LLC

6550 Roosevelt Blvd. Jacksonville, FL 32244

June 2,2006

Scale = 1:17.2


This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCS-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job Truss Truss Type Qty Ply LAKE CITY/ISLAMIC CENTER J1672253 L153414 J11 **JACK** 8 Job Reference (optional)

Builders FirstSource, Bunnell, FL. 32110

6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 12:48:41 2006 Page 1

LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.27	Vert(LL)	-0.03	E-F	>999	240	MT20	244/190
TCDL	10.0	Lumber Increase	1.25	BC	0.16	Vert(TL)	-0.05	E-F	>999	180		
BCLL	10.0	Rep Stress Incr	YES	WB	0.04	Horz(TL)	0.01	C	n/a	n/a		
BCDL	5.0	Code FBC2004/TPI2002		(Mati	rix)						Weight: 29 lb	

LUMBER

TOP CHORD 2 X 4 SYP No.2

BOT CHORD 2 X 4 SYP No.2

2 X 4 SYP No.3 WEBS

BRACING

BOT CHORD

TOP CHORD

Structural wood sheathing directly applied or 5-0-0

oc purlins, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS (lb/size) F=331/0-5-8, C=127/Mechanical, D=72/Mechanical

Max Horz F=141(load case 5)

Max Uplift F=-201(load case 3), C=-108(load case 3), D=-39(load case 5)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD

B-F=-259/214, A-B=0/8, B-C=-18/8

BOT CHORD

E-F=-132/0, D-E=0/0

WEBS

B-E=0/159

JOINT STRESS INDEX

B = 0.16, E = 0.07 and F = 0.12

- 1) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; partially; MWFRS gable end zone and C-C Exterior(2) zone; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 2) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 201 lb uplift at joint F, 108 lb uplift at joint C and 39 lb uplift at joint D.

LOAD CASE(S) Standard

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

June 2,2006

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MITek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Ply Job Truss Truss Type Qty LAKE CITY/ISLAMIC CENTER J1672254 L153414 .112 **JACK** 14 Job Reference (optional) Builders FirstSource, Bunnell, FL. 32110 6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 12:51:31 2006 Page 1 -1-6-0 2-9-6 5-6-12 1-6-0 2-9-6 1.00 12 Warning: This truss has not been designed to support 2x4 Scale = 1:21.3 C any additional load from conventional framing. D 3x4 2-9-6 5-6-12 2-9-6 2-9-6 LOADING (psf) SPACING 2-0-0 CSI DEFL in (loc) I/defl L/d **PLATES** GRIP 20.0 TCLL Plates Increase 1.25 TC 0.33 Vert(LL) -0.04D-E 244/190 >999 240 MT20 TCDL 10.0 Lumber Increase 1.25 BC 0.20 Vert(TL) -0.07D-E >892 180 BCLL 10.0 Rep Stress Incr YES WB 0.05 -0.00Horz(TL) D n/a n/a BCDL 5.0 Code FBC2004/TPI2002 (Matrix) Weight: 36 lb LUMBER BRACING TOP CHORD 2 X 4 SYP No.2 TOP CHORD Structural wood sheathing directly applied or **BOT CHORD** 2 X 4 SYP No.2 5-6-12 oc purlins, except end verticals. 2 X 4 SYP No.3 WEBS **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS

(lb/size) E=351/0-5-8, D=222/Mechanical

Max Horz E=143(load case 5)

Max Uplift E=-210(load case 3), D=-156(load case 5)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD

B-E=-272/230, A-B=0/8, B-C=-20/9

BOT CHORD

D-E=-135/0

WEBS

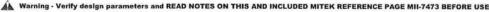
C-D=-143/191, B-D=0/154

JOINT STRESS INDEX

B = 0.18, C = 0.11, D = 0.13 and E = 0.14

1) Unbalanced roof live loads have been considered for this design.

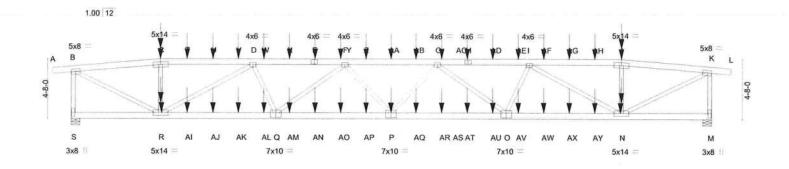
Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475


Builders FirstSource - Florida, LLC

2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B 550 Roosevelt Blvd. Jacksonville, FL 32244 partially; MWFRS gable end zone and C-C Exterior(2) zone; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.

3) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 210 lb uplift at joint E and 156 lb uplift at joint D.

LOAD CASE(S) Standard


June 2,2006

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Tru	SS	Truss Type		Qty	Ply	LAKE CITY/ISLAMIC CEN	ITER	J1672255
L153414	T01	ſ	HIP		2	3	Job Reference (optional)		01072200
Builders Fir	stSource, Buni	nell, FL. 32110		6.200 s Jul 1:	3 2005	MiTek Ir	ndustries, Inc. Fri Jun 02 13	:01:15 2006	Page 1
-1-6-0	7-0-0	14-2-6	21-4-13	28-7-3		35-9-10	3-0-0	50-0-0	51-6-0
1-6-0	7-0-0	7-2-6	7-2-6	7-2-6		7-2-6	7-2-6	7-0-0	1-6-0 Scale = 1:86.8

1	7-0-0 16-0-0		-	25-0-0		3	34-0-0		43-0-0		50-0-0	
	7-0-0	9-0-0		9	9-0-0	9	9-0-0		9	-0-0	7-0-0	10.0
Plate Of	fsets (X,Y):	[B:0-3-5,0-2-8], [K:0)-3-5,0-2-8	, [O:0-5-	-0,0-4-8],	[P:0-5-0,0-4-8], [Q:0-5	-0,0-4-	8]			
LOADIN	IG (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.37	Vert(LL)	0.50	P-Q	>999	240	MT20	244/190
TCDL	10.0	Lumber Increase	1.25	BC	0.67	Vert(TL)	-0.83	P-Q	>718	180	Wild the Destation of	
BCLL	10.0	Rep Stress Incr	NO	WB	0.94	Horz(TL)	0.16	M	n/a	n/a		
BCDL	5.0	Code FBC2004/TF	PI2002	(Mat	rix)						Weight: 1063 lb)
LUMBE	D					BBACING		-				

 LUMBER

 TOP CHORD
 2 X 6 SYP No.1D

 BOT CHORD
 2 X 6 SYP No.1D

 WEBS
 2 X 4 SYP No.3

TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals

oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 1

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS (lb/size) S=5205/0-8-0, M=5172/0-8-0

Max Horz S=-139(load case 2)

Max Uplift S=-2853(load case 2), M=-2836(load case 3)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD A-B=0/8, B-C=-7950/4309, C-T=-7904/4308, T-U=-7904/4308, U-V=-7904/4308,

D-V=-7904/4308, D-W=-13970/7624, W-X=-13970/7624, E-X=-13970/7624, E-Y=-13970/7624, F-Y=-13970/7624, F-Z=-15992/8722, Z-AA=-15992/8722,

AA-AB=-15992/8722, G-AB=-15992/8722, G-AC=-13826/7551, H-AC=-13826/7551, H-AD=-13826/7551, AD-AE=-13826/7551, I-AE=-13826/7551, I-AF=-7854/4283, AF-AG=-7854/4283, AG-AH=-7854/4283, J-AH=-7854/4283, J-K=-7900/4284, K-L=0/8,

B-S=-5116/2865, K-M=-5087/2851

BOT CHORD R-S=-119/108, R-AI=-7072/12945, AI-AJ=-7072/12945, AJ-AK=-7072/12945,

AK-AL=-7072/12945, Q-AL=-7072/12945, Q-AM=-8481/15467, AM-AN=-8481/15467, AN-AO=-8481/15467, AO-AP=-8481/15467, P-AP=-8481/15467, P-AQ=-8460/15409, AQ-AR=-8460/15409, AR-AS=-8460/15409, AS-AT=-8460/15409, AT-AU=-8460/15409, AT-AU=-8460/15409

O-AU=-8460/15409, O-AV=-7026/12821, AV-AW=-7026/12821, AW-AX=-7026/12821, AX-AY=-7026/12821, N-AY=-7026/12821, M-N=-63/107

C-R=-133/209, D-R=-5903/3276, D-Q=-1301/2618, F-Q=-1922/1137, F-P=-337/832,

G-P=-381/921, G-O=-2031/1192, I-O=-1277/2569, I-N=-5816/3233, J-N=-137/211,

B-R=-4777/8825, K-N=-4750/8770

Truss Design Engineer: Lawrence A. Paine, PE

Florida PE No. 21475

Builders FirstSource - Florida, LLC

6550 Roosevelt Blvd. Jacksonville, FL 32244

June 2,2006

Continued on page 2

WEBS

Job	Truss	Truss Type	Qty	Ply	LAKE CITY/ISLAMIC CENTER	14070055
L153414	T01	HIP	2	2		J1672255
				3	Job Reference (optional)	

6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 13:01:15 2006 Page 2

JOINT STRESS INDEX

B = 0.65, C = 0.44, D = 0.59, E = 0.67, F = 0.26, G = 0.26, H = 0.67, I = 0.59, J = 0.35, K = 0.65, M = 0.38, N = 0.73, O = 0.84, P = 0.84, Q = 0.84, R = 0.73 and S = 0.38

NOTES

- 1) 3-ply truss to be connected together with 0.131"x3" Nails as follows:

 Top chords connected as follows: 2 X 6 2 rows at 0-9-0 oc, 2 X 4 1 row at 0-9-0 oc.

 Bottom chords connected as follows: 2 X 6 2 rows at 0-9-0 oc.
 - Webs connected as follows: 2 X 4 1 row at 0-9-0 oc.
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; partially; MWFRS gable end zone; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60.
- 5) Provide adequate drainage to prevent water ponding.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 2853 lb uplift at joint S and 2836 lb uplift at joint M.

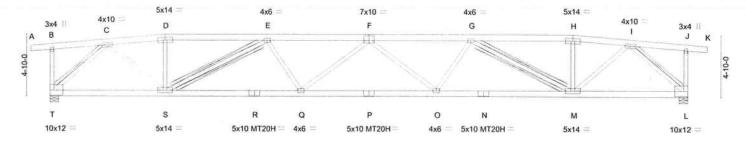
LOAD CASE(S) Standard

1) Regular: Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

Vert: A-B=-60, B-C=-60, C-J=-60, J-K=-60, K-L=-60, Q-S=-30, Q-AS=-60(F=-30), M-AS=-30

Concentrated Loads (lb)


Vert: E=-34(B) R=-569(B) C=-343(B) P=-170(B) J=-343(B) N=-569(B) H=-34(B) T=-34(B) U=-34(B) V=-34(B) W=-34(B) X=-34(B) X=-34(B) Z=-34(B) AA=-34(B) AB=-34(B) AC=-34(B) AC=-170(B) A

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

Job	ob Trus		Truss Type		Qty	Ply	LAKE CITY/ISLAMIC CENTER			J1672256	
L153414		T02	HIP		2	1	Job Reference (or	otional)		31072230	
Builders F	irstSourc	e, Bunnell, FL. 32	2110	6.200	s Jul 13 2005	MiTek Ir	ndustries, Inc. Fri J	un 02 13:02:0	5 2006 F	Page 1	
-1-6-0	4-7-12	9-0-0	17-0-0	25-0-0	33-0-0		41-0-0	45-4-4	50-0-0	51-6-0	
1-6-0	4-7-12	4-4-4	8-0-0	8-0-0	8-0-0		8-0-0	4-4-4	4-7-12	1-6-0 Scale = 1:87.	

	9-0-0		10-8-0	1		10-8-0	10-8-0		10-8-0		9-0-0	
Plate Of	fsets (X,Y):	[F:0-5-0,0-4-8]				4						
LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.38	Vert(LL)	-0.54	O-Q	>999	240	MT20	244/190
TCDL	10.0	Lumber Increase	1.25	BC	0.69	Vert(TL)	-0.95	O-Q	>630	180	MT20H	187/143
BCLL	10.0	Rep Stress Incr	YES	WB	0.91	Horz(TL)	0.21	L	n/a	n/a	10070000000000000000000000000000000000	
BCDL	5.0	Code FBC2004/TF	212002	(Mat	rix)						Weight: 355 lb	į

30-4-0

LUMBER

WEBS

WEBS

TOP CHORD 2 X 6 SYP No.1D BOT CHORD 2 X 6 SYP No.1D 2 X 4 SYP No.3

9-0-0

BRACING

TOP CHORD

BOT CHORD WEBS

Structural wood sheathing directly applied or 3-3-5

oc purlins, except end verticals.

Rigid ceiling directly applied or 4-8-5 oc bracing. 2 X 4 SYP No.3 - E-S,

50-0-0

G-M

T-Brace:

I-Brace:

2 X 4 SYP No.3 - C-T, I-L

Fasten T and I braces to narrow edge of web with 10d Common wire nails, 9in o.c., with 4in minimum

end distance.

41-0-0

Brace must cover 90% of web length.

REACTIONS (lb/size) T=2336/0-8-0, L=2336/0-8-0

Max Horz T=-136(load case 3)

Max Uplift T=-1210(load case 3), L=-1210(load case 4)

19-8-0

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD A-B=0/8, B-C=-64/126, C-D=-3830/2060, D-E=-3812/2066, E-F=-6055/3192,

F-G=-6055/3192, G-H=-3812/2066, H-I=-3830/2060, I-J=-64/126, J-K=0/8, B-T=-268/232,

J-L=-268/232

BOT CHORD S-T=-1029/2138, R-S=-2874/5714, Q-R=-2874/5714, P-Q=-3215/6348, O-P=-3215/6348,

Truss Design Engineer: Lawrence A. Paine, PE N-O=-2874/5714, M-N=-2874/5714, L-M=-1096/2138

C-S=-1069/2220, D-S=-114/198, E-S=-2237/1185, E-Q=-173/689, F-Q=-427/338,

Florida PE No. 21475 F-O=-427/338, G-O=-173/689, G-M=-2237/1185, H-M=-114/199, I-M=-1069/2220,

C-T=-2857/1510, I-L=-2857/1510

Builders FirstSource - Florida, LLC

6550 Roosevelt Blvd. Jacksonville, FL 32244

JOINT STRESS INDEX

B = 0.45, C = 0.82, D = 0.71, E = 0.67, F = 0.52, G = 0.67, H = 0.57, I = 0.82, J = 0.45, L = 0.47, M = 0.75, N = 0.79, O = 0.36, P = 0.90, Q = 0.36, R = 0.79, S = 0.75 and T = 0.47

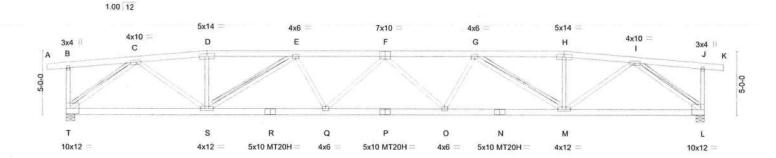
Continued on page 2

Job	Truss	Truss Type	Qty	Ply	LAKE CITY/ISLAMIC CENTER	14070050
L153414	T02	HIP	2	1		J1672256
					Job Reference (optional)	

6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 13:02:05 2006 Page 2

NOTES

1) Unbalanced roof live loads have been considered for this design.


- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; partially; MWFRS gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 3) Provide adequate drainage to prevent water ponding.
- 4) All plates are MT20 plates unless otherwise indicated.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1210 lb uplift at joint T and 1210 lb uplift at joint L.

LOAD CASE(S) Standard

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

Job			Truss Type		Qty	Ply	LAKE CITY/ISLAMIC CENTER			J1672257	
L153414		Т03	HIP		2	1	Job Reference	e (optional)		51072257	
Builders Fi	irstSource	e, Bunnell, FL. 321	10	6.200 s	s Jul 13 2005	MiTek Ir	ndustries, Inc.	Fri Jun 02 13:0:	2:50 2006	Page 1	
-1-6-0	5-7-12	11-0-0	18-0-0	25-0-0	32-0-0		39-0-0	44-4-4	50-0-0	51-6-0	
1-6-0	5-7-12	5-4-4	7-0-0	7-0-0	7-0-0		7-0-0	5-4-4	5-7-12	1-6-0 Scale = 1:87.0	

		11-0-0	9-4-0			9-4-0		9-4-0	V.		11-0-0	
Plate Offsets (X,Y): [F:0-5-0,0-4-8]												
LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.64	Vert(LL)	-0.50	O-Q	>999	240	MT20	244/190
TCDL	10.0	Lumber Increase	1.25	ВС	0.65	Vert(TL)	-0.87	O-Q	>682	180	MT20H	187/143
BCLL	10.0	Rep Stress Incr	YES	WB	0.87	Horz(TL)	0.20	L	n/a	n/a	VONONTERM O	
BCDL	5.0	Code FBC2004/TF	PI2002	(Mat	rix)						Weight: 357	lb

29-8-0

LUMBER

TOP CHORD 2 X 6 SYP No.1D

11-0-0

BOT CHORD 2 X 6 SYP No.1D WEBS 2 X 4 SYP No.3

BRACING

TOP CHORD

WEBS

Structural wood sheathing directly applied or 3-4-6 oc purlins, except end verticals.

BOT CHORD

39-0-0

Rigid ceiling directly applied or 4-9-13 oc bracing. T-Brace:

2 X 4 SYP No.3 - E-S,

50-0-0

G-M, C-T, I-L

Fasten T and I braces to narrow edge of web with 10d Common wire nails, 9in o.c., with 4in minimum

end distance.

Brace must cover 90% of web length.

REACTIONS (lb/size) T=2336/0-8-0, L=2336/0-8-0

Max Horz T=-133(load case 3)

Max Uplift T=-1201(load case 3), L=-1201(load case 4)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD A-B=0/8, B-C=-94/127, C-D=-4285/2289, D-E=-4258/2295, E-F=-5888/3129,

20-4-0

F-G=-5888/3129, G-H=-4258/2295, H-I=-4285/2289, I-J=-94/127, J-K=0/8, B-T=-286/242,

J-L=-286/242

BOT CHORD S-T=-1249/2521, R-S=-2821/5642, Q-R=-2821/5642, P-Q=-3075/6105, O-P=-3075/6105.

N-O=-2821/5642, M-N=-2821/5642, L-M=-1300/2521

C-S=-994/2148, D-S=-52/159, E-S=-1747/934, E-Q=-159/587, F-Q=-366/283,

F-O=-366/283, G-O=-159/587, G-M=-1747/935, H-M=-52/159, I-M=-994/2148,

C-T=-3090/1676, I-L=-3090/1676

Truss Design Engineer: Lawrence A. Paine, PE

Florida PE No. 21475

Builders FirstSource - Florida, LLC

6550 Roosevelt Blvd. Jacksonville, FL 32244

JOINT STRESS INDEX

WEBS

B = 0.54, C = 0.82, D = 0.74, E = 0.50, F = 0.51, G = 0.50, H = 0.56, I = 0.82, J = 0.54, L = 0.53, M = 0.94, N = 0.77, O = 0.33, P = 0.94, N =0.86, Q = 0.33, R = 0.77, S = 0.94 and T = 0.53

Continued on page 2

June 2,2006

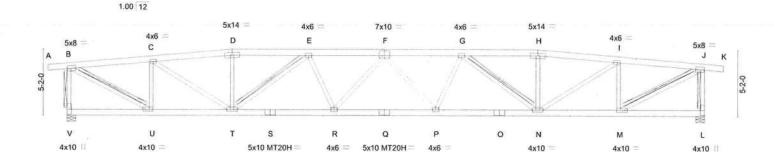
Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

Job	Truss	Truss Type	Qty	Ply	LAKE CITY/ISLAMIC CENTER	
L153414	T03	HIP	2	1		J1672257
				185	Job Reference (optional)	

6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 13:02:51 2006 Page 2

NOTES

1) Unbalanced roof live loads have been considered for this design.


- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; partially; MWFRS gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 3) Provide adequate drainage to prevent water ponding.
- 4) All plates are MT20 plates unless otherwise indicated.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1201 lb uplift at joint T and 1201 lb uplift at joint L.

LOAD CASE(S) Standard

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

Job L153414 Ruilders EirstSource		Truss	Truss Type		Qty	Ply	LAKE CITY/ISLAMIC CE	NTER	J1672258
		T04	HIP	HIP		1	Job Reference (optional)		01072200
Builders Fir	rstSource,	, Bunnell, FL. 32110)	6.200 s	Jul 13 2005	MiTek Ir	ndustries, Inc. Fri Jun 02 1	3:03:25 2006	Page 1
-1-6-0	6-7-12	13-0-0	19-0-0	25-0-0	31-0-0		37-0-0 43-4-4	50-0-0	51-6-0
1-6-0	6-7-12	6-4-4	6-0-0	6-0-0	6-0-0		6-0-0 6-4-4	6-7-12	1-6-0 Scale = 1:87.3

-	6-7-12	13-0-0	21	-0-0	-	29-0-0		37-0-0		43-4-4	50-0-0	
	6-7-12 6-4-4		8-0-0		80	8-0-0		8-0-0			6-7-12	
Plate Of	fsets (X,Y):	[B:0-3-5,0-2-8], [F:0	-5-0,0-4-8], [J:0-3-	5,0-2-8], [L:Edge,0-3-8],	(M:0-3	8,0-2-0], [U:0-3-	8,0-2-0]		
LOADIN	IG (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.65	Vert(LL)	0.47	P-R	>999	240	MT20	244/190
TCDL	10.0	Lumber Increase	1.25	BC	0.61	Vert(TL)	-0.82	P-R	>723	180	MT20H	187/143
BCLL	10.0	Rep Stress Incr	YES	WB	0.88	Horz(TL)	0.17	L	n/a	n/a		
BCDL	CDL 5.0 Code FBC2004/TPI2002		212002	(Mat	(Matrix)						Weight: 369	lb

TOP CHORD 2 X 6 SYP No.1D BOT CHORD 2 X 6 SYP No.1D **WEBS** 2 X 4 SYP No.3 *Except*

LUMBER

B-U 2 X 4 SYP No.2, J-M 2 X 4 SYP No.2

4x10

BRACING

TOP CHORD

5x10 MT20H

BOT CHORD WEBS

Structural wood sheathing directly applied or 3-5-4 oc purlins, except end verticals.

Rigid ceiling directly applied or 4-11-3 oc bracing. T-Brace: 2 X 4 SYP No.3 - E-T,

G-N, B-V, B-U, J-L, J-M

Fasten T and I braces to narrow edge of web with 10d Common wire nails, 9in o.c., with 4in minimum end distance.

Truss Design Engineer: Lawrence A. Paine, PE

Brace must cover 90% of web length.

REACTIONS (lb/size) V=2336/0-8-0, L=2336/0-8-0

Max Horz V=129(load case 4)

Max Uplift V=-1192(load case 3), L=-1192(load case 4)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD A-B=0/8, B-C=-3081/1685, C-D=-4596/2477, D-E=-4564/2482, E-F=-5732/3062,

F-G=-5732/3062, G-H=-4564/2482, H-I=-4596/2477, I-J=-3081/1685, J-K=0/8,

B-V=-2228/1220, J-L=-2228/1220

U-V=-84/92, T-U=-1474/3054, S-T=-2764/5552, R-S=-2764/5552, Q-R=-2945/5887, Florida PE No. 21475

P-Q=-2945/5887, O-P=-2764/5552, N-O=-2764/5552, M-N=-1495/3054, L-M=-37/64 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

C-U=-1498/902, C-T=-905/1808, D-T=-12/129, E-T=-1382/719, E-R=-144/529, F-R=-321/239, F-P=-321/239, G-P=-144/529, G-N=-1382/719, H-N=-12/129,

I-N=-905/1808, I-M=-1498/902, B-U=-1755/3426, J-M=-1755/3426

JOINT STRESS INDEX

BOT CHORD

WEBS

B = 0.77, C = 0.73, D = 0.78, E = 0.38, F = 0.50, G = 0.38, H = 0.61, I = 0.73, J = 0.77, L = 0.37, M = 0.83, N = 0.85, O = 0.75, P = 0.32, Q = 0.80, R = 0.32, S = 0.75, T = 0.85, U = 0.83 and V = 0.37June 2,2006 Continued on page 2

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

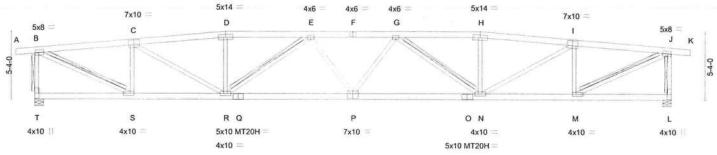
This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCS-11 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	LAKE CITY/ISLAMIC CENTER	14070050
L153414	T04	HIP	2	1		J1672258
			1		Job Reference (optional)	

6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 13:03:25 2006 Page 2

NOTES

1) Unbalanced roof live loads have been considered for this design.


- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; partially; MWFRS gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 3) Provide adequate drainage to prevent water ponding.
- 4) All plates are MT20 plates unless otherwise indicated.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1192 lb uplift at joint V and 1192 lb uplift at joint L.

LOAD CASE(S) Standard

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

ob 153414		Truss T05	Truss Type HIP		Qty 2	Ply 1	LAKE CITY/ISLAMIC CE	THE T W. STOWN.	J1672259
uilders Firs	tSource, B	Bunnell, FL. 32110	1	6.200 s Jul	13 2005	MiTek Ir	Job Reference (optional) ndustries, Inc. Fri Jun 02		Page 1
-1-6-0	7-7-12	15-0-0	21-8-0	28-4-0		35-0-0	42-4-4	50-0-0	51-6-0
1-6-0	7-7-12	7-4-4	6-8-0	6-8-0		6-8-0	7-4-4	7-7-12	1-6-0 Scale = 1:87.2
		1.00 12							
5x8 =		7x10 =		x6 4x6 =	4x6 =		5x14 = 7x10 H I	=	5x8 =

7-7-12	15-0-0	25-0-0	35-0-0	42-4-4	50-0-0
7-7-12	7-4-4	10-0-0	10-0-0	7-4-4	7-7-12

Plate Offsets (X,Y): [B:0-3-5,0-2-8], [C:0-5-0,0-4-8], [I:0-5-0,0-4-8], [J:0-3-5,0-2-8], [L:Edge,0-3-8], [M:0-3-8,0-2-0], [P:0-5-0,0-4-8], [S:0-3-8,0-2-0], [P:0-5-0,0-4-8], [D:0-3-8,0-2-0], [P:0-5-0,0-4-8], [P:0-5-

LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.73	Vert(LL)	-0.47	P-R	>999	240	MT20	244/190
TCDL	10.0	Lumber Increase	1.25	BC	0.62	Vert(TL)	-0.82	P-R	>730	180	MT20H	187/143
BCLL	10.0	Rep Stress Incr	YES	WB	0.98	Horz(TL)	0.15	L	n/a	n/a	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
BCDL	5.0	Code FBC2004/TR	212002	(Mat	rix)						Weight: 362 lb	

LUMBER TOP CHORD 2 X 6 SYP No.1D BOT CHORD 2 X 6 SYP No.1D

WEBS 2 X 4 SYP No.3 *Except*

B-S 2 X 4 SYP No.2, J-M 2 X 4 SYP No.2

BRACING

TOP CHORD

BOT CHORD

WEBS

Structural wood sheathing directly applied or 3-5-3

oc purlins, except end verticals.

Rigid ceiling directly applied or 5-0-10 oc bracing. 2 X 4 SYP No.3 - E-R, T-Brace:

G-N, B-T, B-S, J-L, J-M

Fasten T and I braces to narrow edge of web with 10d Common wire nails, 9in o.c., with 4in minimum

end distance.

Brace must cover 90% of web length.

REACTIONS (lb/size) T=2336/0-8-0, L=2336/0-8-0

Max Horz T=126(load case 4)

Max Uplift T=-1180(load case 3), L=-1180(load case 4)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD A-B=0/8, B-C=-3418/1857, C-D=-4871/2616, D-E=-4836/2622, E-F=-5697/3030,

F-G=-5697/3030, G-H=-4836/2622, H-I=-4871/2616, I-J=-3418/1857, J-K=0/8,

B-T=-2212/1221, J-L=-2212/1221

BOT CHORD S-T=-87/83, R-S=-1668/3429, Q-R=-2790/5589, P-Q=-2790/5589, O-P=-2790/5589,

N-O=-2790/5589, M-N=-1668/3429, L-M=-47/83

C-S=-1403/875, C-R=-804/1658, D-R=-37/157, E-R=-1107/599, E-P=-7/292, G-P=-7/292 Design Engineer: Lawrence A. Paine, PE

G-N=-1107/600, H-N=-37/157, I-N=-804/1658, I-M=-1403/875, B-S=-1878/3672,

J-M=-1878/3672

Builders FirstSource - Florida, LLC

6550 Roosevelt Blvd. Jacksonville, FL 32244

JOINT STRESS INDEX

WEBS

B = 0.80, C = 0.43, D = 0.84, E = 0.31, F = 0.85, G = 0.31, H = 0.64, I = 0.43, J = 0.80, L = 0.38, M = 0.82, N = 0.77, O = 0.70, P = 0.70, P = 0.80, N =0.92, Q = 0.70, R = 0.77, S = 0.82 and T = 0.38

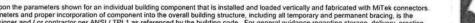
Job	Truss	Truss Type	Qty	Ply	LAKE CITY/ISLAMIC CENTER	
L153414	T05	HIP	2	1		J1672259
					Job Reference (optional)	

6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 13:03:52 2006 Page 2

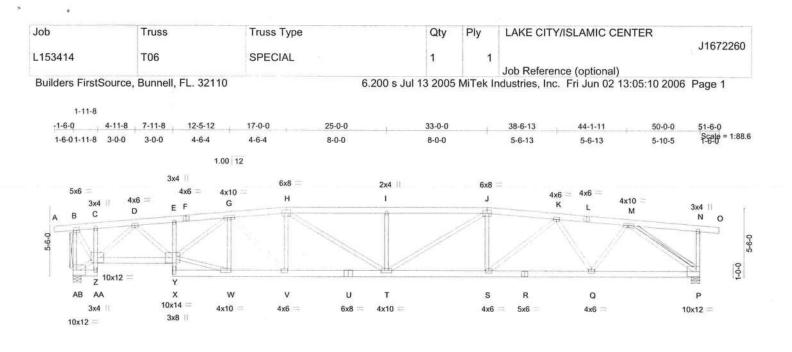
NOTES

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; partially; MWFRS gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 3) Provide adequate drainage to prevent water ponding.


4) All plates are MT20 plates unless otherwise indicated.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1180 lb uplift at joint T and 1180 lb uplift at joint L.


LOAD CASE(S) Standard

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

June 2,2006

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

100	11-8	6-0-0	4-6-4	4-6-4	-	-0-0	8-0-0	100	1	8-4-4		8-7-12	
Plate Offs	sets (X,	Y): [W:0-3	3-8,0-2-0]									V. 12	
LOADING	G (psf)	SPAC	CING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate	s Increase	1.25	TC	0.45	Vert(LL)	-0.43	T-V	>999	240	MT20	244/190
TCDL	10.0	Lumb	er Increase	1.25	BC	0.64	Vert(TL)	-0.74	T-V	>801	180		
BCLL	10.0	Rep S	Stress Incr	YES	WB	0.97	Horz(TL)	0.23	Р	n/a	n/a	, "	
BCDL	5.0	Code	FBC2004/TF	PI2002	(Mati	rix)						Weight: 390 lb	

25-0-0

LUMBER

TOP CHORD 2 X 6 SYP No.1D

BOT CHORD 2 X 6 SYP No.1D *Except*

C-AA 2 X 4 SYP No.3, E-X 2 X 4 SYP No.2

12-5-12 17-0-0

WEBS 2 X 4 SYP No.3 *Except*

W-Y 2 X 4 SYP No.2

BRACING

WEBS

TOP CHORD **BOT CHORD**

33-0-0

Structural wood sheathing directly applied or 3-5-1

oc purlins, except end verticals.

Rigid ceiling directly applied or 5-4-11 oc bracing.

T-Brace: 2 X 4 SYP No.3 - B-AB,

M-P

50-0-0

Fasten T and I braces to narrow edge of web with 10d Common wire nails, 9in o.c., with 4in minimum

end distance.

Brace must cover 90% of web length.

REACTIONS (lb/size) P=2336/0-8-0, AB=2336/0-8-0

Max Horz AB=-123(load case 3)

Max Uplift P=-1167(load case 4), AB=-1167(load case 3)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD A-B=0/8, B-C=-1269/711, C-D=-1352/753, D-E=-4456/2368, E-F=-4420/2376,

F-G=-4413/2378, G-H=-5014/2715, H-I=-5575/3021, I-J=-5575/3021, J-K=-5026/2714.

K-L=-3618/1951, L-M=-3635/1949, M-N=-77/135, N-O=0/8, B-AB=-2293/1161,

N-P=-286/250

BOT CHORD AA-AB=-47/0, Z-AA=-15/22, C-Z=-76/84, Y-Z=-1494/3106, X-Y=-31/148, E-Y=-204/190,

W-X=-333/630, V-W=-2170/4431, U-V=-2446/4988, T-U=-2446/4988, S-T=-2446/4997,

R-S=-2096/4249, Q-R=-2096/4249, P-Q=-1304/2667

Truss Design Engineer: Lawrence A. Paine, PE D-Y=-898/1847, W-Y=-1884/3899, G-Y=-178/65, G-W=-852/495, G-V=-454/931,

H-V=-448/355, H-T=-452/912, I-T=-508/439, J-T=-454/907, J-S=-442/361, K-S=-503 PE No. 21475

H-V=-448/355, H-I=-452/912, I-I=-508/439, J-I=-454/901, J-S=-442/361, N-S=-505/1000, K-Q=-1232/737, M-Q=-702/1611, M-P=-3239/1705, D-Z=-2458/1318, B-Z=-1102/229 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

Z-AB=-20/152

June 2,2006

Continued on page 2

WEBS

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MITek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erect and bracing, consult 8CSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	LAKE CITY/ISLAMIC CENTER	
L153414	T06	SPECIAL	1	1		J1672260
					Job Reference (optional)	

6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 13:05:10 2006 Page 2

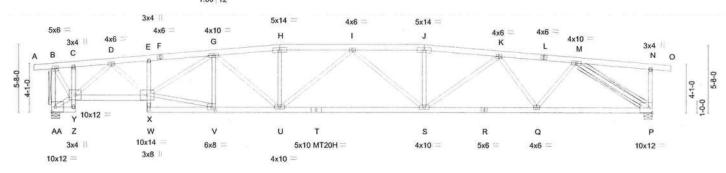
JOINT STRESS INDEX

B = 0.98, C = 0.48, D = 0.91, E = 0.23, F = 0.63, G = 0.53, H = 0.66, I = 0.34, J = 0.66, K = 0.45, L = 0.57, M = 0.64, N = 0.53, P = 0.55, Q = 0.79, R = 0.91, S = 0.45, T = 0.43, U = 0.97, V = 0.41, W = 0.76, X = 0.77, Y = 0.66, Z = 0.42, AA = 0.23 and AB = 0.30 an

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; partially; MWFRS gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 3) Provide adequate drainage to prevent water ponding.
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1167 lb uplift at joint P and 1167 lb uplift at joint AB.

LOAD CASE(S) Standard


Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

Job	Truss	Truss Type	Qty	Ply	LAKE CITY/ISLAMIC CENTER	
L153414	T07	SPECIAL	1	1		J1672261
					Job Reference (optional)	

6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 14:17:11 2006 Page 1

1	-11-8	6-0-0	5-6-4	5-6-4	12-0-0	9-4-4	9-7-12
Plate Of	fsets (X	(,Y): [V:0-	3-8,0-3-0]				
2000-000-000-000-000-000-000-000-000-00			ATT 100				

31-0-0

LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.57	Vert(LL)	-0.48	S-U	>999	240	MT20	244/190
TCDL	10.0	Lumber Increase	1.25	BC	0.74	Vert(TL)	-0.84	S-U	>708	180	MT20H	187/143
BCLL	10.0	Rep Stress Incr	YES	WB	0.99	Horz(TL)	0.24	P	n/a	n/a	2010120000	
BCDL	5.0	Code FBC2004/TI	212002	(Mat	rix)						Weight: 386 lb	

LUMBER	
TOP CHORD	2 X 6 SYP No.1D
BOT CHORD	2 X 6 SYP No.1D *Except*

C-Z 2 X 4 SYP No.3, E-W 2 X 4 SYP No.2

WEBS 2 X 4 SYP No.3 *Except*

BOT CHORD

V-X 2 X 4 SYP No.2

1-11-8 7-11-8 13-5-12 19-0-0

BRACING TOP CHORD

BOT CHORD

WEBS

bracing. I-Brace:

2 X 4 SYP No.3 - M-P

T-Brace:

40-4-4

2 X 4 SYP No.3 -

B-AA

50-0-0

Fasten T and I braces to narrow edge of web with 10d Common wire nails, 9in o.c., with 4in minimum end distance.

Structural wood sheathing directly applied or 3-7-13 oc purlins, except end verticals.

Rigid ceiling directly applied or 5-2-8 oc

Brace must cover 90% of web length.

REACTIONS (lb/size) P=2336/0-8-0, AA=2336/0-8-0

Max Horz AA=-119(load case 3)

Max Uplift P=-1152(load case 4), AA=-1152(load case 3)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD A-B=0/8, B-C=-1272/712, C-D=-1357/756, D-E=-4455/2370, E-F=-4420/2380,

F-G=-4411/2383, G-H=-5117/2743, H-I=-5086/2745, I-J=-5093/2747,

J-K=-5126/2743, K-L=-3878/2083, L-M=-3893/2080, M-N=-94/139, N-O=0/8,

B-AA=-2297/1164, N-P=-304/263

Truss Design Engineer: Lawrence A. Paine, PE

Z-AA=-42/0, Y-Z=-15/23, C-Y=-79/86, X-Y=-1490/3099, W-X=-22/163, E-X=-245/22/1a PE No. 21475

, V-W=-361/728, U-V=-2257/4589, T-U=-2645/5296, S-T=-2645/5296, Builders FirstSource - Florida, LLC

6550 Roosevelt Blvd. Jacksonville, FL 32244 R-S=-2222/4492, Q-R=-2222/4492, P-Q=-1431/2899

WEBS D-X=-908/1857, V-X=-1929/3928, G-X=-336/150, G-V=-700/421, G-U=-352/825, Continued on pade-b=0/116, I-U=-509/346, I-S=-506/346, J-S=0/116, K-S=-381/916, K-Q=-1134/691,

June 2,2006

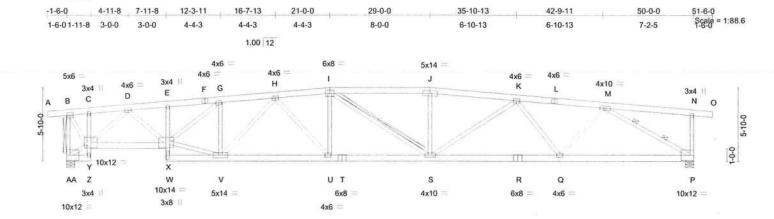
This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TP1 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	LAKE CITY/ISLAMIC CENTER	
L153414	T07	SPECIAL	1	1		J1672261
					Job Reference (optional)	

6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 14:17:11 2006 Page 2

NOTES

1) Unbalanced roof live loads have been considered for this design.


- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; partially; MWFRS gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 3) Provide adequate drainage to prevent water ponding.
- 4) All plates are MT20 plates unless otherwise indicated.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1152 lb uplift at joint P and 1152 lb uplift at joint AA.

LOAD CASE(S) Standard

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

-1	50-0-0			39-4-4		29-0-0	-)	21-0-0	12-3-11	7-11-8	1-11-8	
	10-7-12			10-4-4		8-0-0			8-8-5	4-4-3	6-0-0	1-11-8	
GRIP	PLATES	L/d	I/defl	(loc)	in	DEFL		CSI	2-0-0	ACING	SPA	IG (psf)	LOADI
244/190	MT20	240	>999	S-U	-0.40	Vert(LL)	0.66	TC	1.25	tes Increase	Plat	20.0	TCLL
		180	>859	S-U	-0.69	Vert(TL)	0.60	BC	1.25	nber Increase	Lum	10.0	TCDL
		n/a	n/a	P	0.24	Horz(TL)	0.93	WB	YES	Stress Incr	Rep	10.0	BCLL
5	Weight: 385 I					38/2 54/2	rix)	(Matr	212002	de FBC2004/TF	Cod	5.0	BCDL

TOP CHORD 2 X 6 SYP No.1D

BOT CHORD 2 X 6 SYP No.1D *Except*

C-Z 2 X 4 SYP No.3, E-W 2 X 4 SYP No.2

WEBS 2 X 4 SYP No.3 *Except*

V-X 2 X 4 SYP No.2

TOP CHORD BOT CHORD WEBS

BRACING

Structural wood sheathing directly applied or 3-6-15 oc purlins, except end verticals.

Rigid ceiling directly applied or 5-4-5 oc bracing. 2 Rows at 1/3 pts M-P

Z Rows at T-Brace:

M-P 2 X 4 SYP No.3 - I-S,

B-AA

Fasten T and I braces to narrow edge of web with 10d Common wire nails, 9in o.c., with 4in minimum end distance.

Brace must cover 90% of web length.

REACTIONS (lb/size) P=2336/0-8-0, AA=2336/0-8-0

Max Horz AA=-116(load case 3)

Max Uplift P=-1136(load case 4), AA=-1136(load case 3)

FORCES (lb) - Maximum Compression/Maximum Tension

A-B=0/8, B-C=-1268/710, C-D=-1350/752, D-E=-4455/2366, E-F=-4419/2372,

F-G=-4407/2373, G-H=-4464/2427, H-I=-5114/2773, I-J=-5103/2781, J-K=-5137/2775,

K-L=-4114/2192, L-M=-4134/2190, M-N=-108/145, N-O=0/8, B-AA=-2291/1161,

N-P=-320/275

BOT CHORD Z-AA=-46/0, Y-Z=-15/21, C-Y=-74/82, X-Y=-1495/3108, W-X=-39/111, E-X=-180/168,

V-W=-331/575, U-V=-2408/4871, T-U=-2484/5091, S-T=-2484/5091, R-S=-2320/4675,

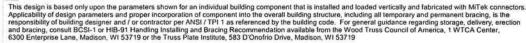
Q-R=-2320/4675, P-Q=-1552/3128

D-X=-892/1842, V-X=-1877/3969, G-X=-158/59, G-V=-316/262, H-V=-664/383, Truss Design Engineer: Lawrence A. Paine, PE

H-U=-230/566, I-U=-172/220, I-S=-316/330, J-S=-96/206, K-S=-315/747, K-Q=-980/646aida PE No. 21475

M-Q=-596/1487, M-P=-3565/1894, B-Y=-1101/2295, Y-AA=-12/147, D-Y=-2464/132 Builders First Source - Florida, LLC

6550 Roosevelt Blvd. Jacksonville, FL 32244


June 2,2006

Continued on page 2

TOP CHORD

WEBS

LUMBER

Job	Truss	Truss Type	Qty	Ply	LAKE CITY/ISLAMIC CENTER	14.070000
L153414	T08	SPECIAL	1	1		J1672262
		- 2000 CO - 1000			Job Reference (optional)	

6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 13:06:30 2006 Page 2

JOINT STRESS INDEX

B = 0.98, C = 0.48, D = 0.91, E = 0.23, F = 0.61, G = 0.25, H = 0.27, I = 0.61, J = 0.68, K = 0.31, L = 0.66, M = 0.71, N = 0.69, P = 0.60, Q = 0.68, R = 0.92, S = 0.35, T = 0.93, U = 0.26, V = 0.93, W = 0.68, X = 0.67, Y = 0.42, Z = 0.23 and AA = 0.30

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; partially; MWFRS gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 3) Provide adequate drainage to prevent water ponding.
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1136 lb uplift at joint P and 1136 lb uplift at joint AA.

LOAD CASE(S) Standard

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

Job Truss Truss Type Qty Ply LAKE CITY/ISLAMIC CENTER J1672263 L153414 T09 SPECIAL Job Reference (optional) Builders FirstSource, Bunnell, FL. 32110 6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 13:06:49 2006 Page 1 1-11-8 4-11-8 7-11-8 -1-6-0 12-11-11 17-11-13 23-0-0 27-0-0 32-8-2 38-4-4 44-0-6 50-0-0 51-6-0 Scale = 1:88.6 1-6-01-11-8 3-0-0 3-0-0 5-0-3 5-0-3 5-0-3 4-0-0 5-8-2 5-8-2 5-8-2 5-11-10 1.00 12 6x8 5x14 = 4x6 7x10 4x6 7x10 5x6 Н 3x4 G 4x6 4x6 3x4 K E 3x4 D L C В M N 0-0-9 X Z W V UT S R Q 0 10x14 = 7x10 = 5x6 = 4x10 = 3x4 4x6 4x6 10x12 = 3x8 || 10x12 4x6 = 5x6 =

1-11-8	7-11-8	12-11-11	23-0-0	27-0-0	34-6-13	42-1-11	50-0-0
1-11-8	6-0-0	5-0-3	10-0-5	4-0-0	7-6-13	7-6-13	7-10-5

Plate Offsets (X,	Y):	[F:0-5-0,0-4-8],	[K:0-5-0,0-4-8]
-------------------	-----	------------------	-----------------

LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.43	Vert(LL)	-0.41	T-V	>999	240	MT20	244/190
TCDL	10.0	Lumber Increase	1.25	BC	0.66	Vert(TL)	-0.73	T-V	>822	180		
BCLL	10.0	Rep Stress Incr	YES	WB	0.89	Horz(TL)	0.24	0	n/a	n/a		
BCDL	5.0	Code FBC2004/TF	212002	(Mat	rix)	, ,					Weight: 397 lb	

LUMBER

TOP CHORD 2 X 6 SYP No.1D

BOT CHORD 2 X 6 SYP No.1D *Except*

C-Z 2 X 4 SYP No.3, E-W 2 X 4 SYP No.2

WEBS 2 X 4 SYP No.3 *Except*

V-X 2 X 4 SYP No.2

BRACING

TOP CHORD

WEBS

BOT CHORD

Structural wood sheathing directly applied or 3-8-4 oc purlins, except end verticals.

Rigid ceiling directly applied or 5-4-6 oc bracing. I-Brace:

T-Brace:

2 X 4 SYP No.3 - L-O 2 X 4 SYP No.3 - B-AA

Fasten T and I braces to narrow edge of web with 10d Common wire nails, 9in o.c., with 4in minimum

end distance.

Brace must cover 90% of web length.

REACTIONS (lb/size) O=2336/0-8-0, AA=2336/0-8-0

Max Horz AA=-113(load case 3)

Max Uplift O=-1118(load case 4), AA=-1118(load case 3)

FORCES (lb) - Maximum Compression/Maximum Tension

A-B=0/8, B-C=-1270/711, C-D=-1353/754, D-E=-4455/2367, E-F=-4419/2376. TOP CHORD

F-G=-4579/2479, G-H=-5044/2728, H-I=-4995/2735, I-J=-5027/2732, J-K=-4842/2602,

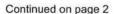
K-L=-3409/1846, L-M=-76/138, M-N=0/8, B-AA=-2294/1162, M-O=-290/255

BOT CHORD Z-AA=-43/0, Y-Z=-15/21, C-Y=-77/84, X-Y=-1493/3104, W-X=-36/107, E-X=-210/190,

V-W=-355/619, U-V=-2459/4952, T-U=-2459/4952, S-T=-2426/5013, R-S=-2445/4957,

Q-R=-2119/4287, P-Q=-2119/4287, O-P=-1330/2736

D-X=-898/1849, V-X=-1896/4020, F-X=-262/117, F-V=-267/251, G-V=-579/363, **WEBS**


G-T=-102/368, H-T=-59/320, H-S=-308/242, I-S=-5/158, J-S=-154/335, J-R=-419/324 russ Design Engineer: Lawrence A. Paine, PE

Florida PE No. 21475

K-R=-335/821, K-P=-1425/806, L-P=-634/1476, L-O=-3297/1720, B-Y=-1103/2298, D-Y=-2454/1315, Y-AA=-11/140

Builders FirstSource - Florida, LLC

6550 Roosevelt Blvd. Jacksonville, FL 32244

Job	Truss	Truss Type	Qty	Ply	LAKE CITY/ISLAMIC CENTER	11070000
L153414	T09	SPECIAL	1	1		J1672263
					Job Reference (optional)	

6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 13:06:49 2006 Page 2

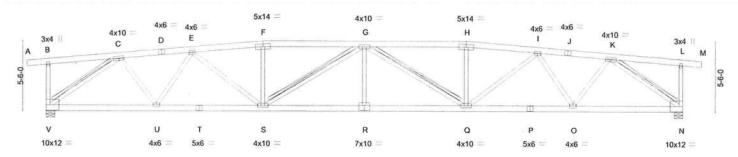
JOINT STRESS INDEX

B = 0.98, C = 0.48, D = 0.91, E = 0.23, F = 0.41, G = 0.26, H = 0.60, I = 0.67, J = 0.33, K = 0.43, L = 0.98, M = 0.55, O = 0.56, P = 0.85, Q = 0.85, R = 0.37, S = 0.35, T = 0.25, U = 1.00, V = 0.93, W = 0.72, X = 0.68, Y = 0.42, Z = 0.23 and AA = 0.30

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.Zpsf; BCDL=3.0psf; Category II; Exp B; partially; MWFRS gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 3) Provide adequate drainage to prevent water ponding.
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1118 lb uplift at joint O and 1118 lb uplift at joint AA.

LOAD CASE(S) Standard


Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

Job		Truss	Truss Type	Truss Type		Qty Ply	LAKE CITY/	ER	J1672264	
L153414		T10	HIP		1	1	Job Reference	e (optional)		
Builders Fi	irstSource,	, Bunnell, FL. 3211	0	6.200	s Jul 13 2005	MiTek Ir	ndustries, Inc.	Fri Jun 02 13:0	7:19 2006	Page 1
-1-6-0	5-10-5	11-5-3	17-0-0	25-0-0	33-0-0		38-6-13	44-1-11	50-0-0	51-6-0
1-6-0	5-10-5	5-6-13	5-6-13	8-0-0	8-0-0		5-6-13	5-6-13	5-10-5	1-6-0 Scale = 1:87.0

17-0-0

	8-7	-12 8-	4-4		8-0-0	8-0	1-0		8-4-4		8-7-12	
Plate Of	fsets (X,Y):	[H:0-0-0,0-0-0], [R:0	0-5-0,0-4-8]								
LOADIN	IG (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.45	Vert(LL)	0.41	Ŕ	>999	240	MT20	244/190
TCDL	10.0	Lumber Increase	1.25	BC	0.58	Vert(TL)	-0.71	R-S	>835	180	(200 at 200 at 2	
BCLL	10.0	Rep Stress Incr	YES	WB	0.97	Horz(TL)	0.19	N	n/a	n/a		
BCDL	5.0	Code FBC2004/TI	PI2002	(Mat	rix)						Weight: 366 lb)

25-0-0

LUMBER

TOP CHORD 2 X 6 SYP No.1D BOT CHORD 2 X 6 SYP No.1D **WEBS** 2 X 4 SYP No.3

8-7-12

BRACING

33-0-0

TOP CHORD

BOT CHORD WEBS

Structural wood sheathing directly applied or 3-7-9

oc purlins, except end verticals.

41-4-4

Rigid ceiling directly applied or 5-1-2 oc bracing. T-Brace: 2 X 4 SYP No.3 - G-S.

G-Q, C-V, K-N

50-0-0

Fasten T and I braces to narrow edge of web with 10d Common wire nails, 9in o.c., with 4in minimum end distance.

Brace must cover 90% of web length.

REACTIONS (lb/size) V=2336/0-8-0, N=2336/0-8-0

Max Horz V=-123(load case 3)

Max Uplift V=-1167(load case 3), N=-1167(load case 4)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD A-B=0/8, B-C=-77/134, C-D=-3635/1949, D-E=-3618/1951, E-F=-5027/2712,

F-G=-4997/2716, G-H=-4997/2716, H-I=-5027/2712, I-J=-3618/1951, J-K=-3635/1949,

K-L=-77/134, L-M=0/8, B-V=-286/250, L-N=-286/250

U-V=-1303/2668, T-U=-2096/4248, S-T=-2096/4248, R-S=-2753/5574, Q-R=-2753/5574,

P-Q=-2096/4248, O-P=-2096/4248, N-O=-1305/2668

Truss Design Engineer: Lawrence A. Paine, PE C-U=-702/1610, E-U=-1231/736, E-S=-502/1090, F-S=-30/154, G-S=-905/459, G-R=9/238 PE No. 21475

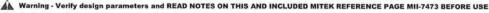
, G-Q=-905/460, H-Q=-30/155, I-Q=-502/1090, I-O=-1231/736, K-O=-702/1610.

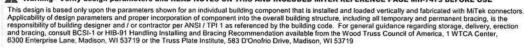
Builders FirstSource - Florida, LLC

C-V=-3240/1706, K-N=-3240/1706

6550 Roosevelt Blvd. Jacksonville, FL 32244

JOINT STRESS INDEX


BOT CHORD


WEBS

B = 0.53, C = 0.64, D = 0.57, E = 0.45, F = 0.87, G = 0.28, H = 0.67, I = 0.45, J = 0.57, K = 0.64, L = 0.53, N = 0.55, O = 0.79, P = 0.92 , Q = 0.53, R = 0.91, S = 0.53, T = 0.92, U = 0.79 and V = 0.55

June 2,2006

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	LAKE CITY/ISLAMIC CENTER	14070004
L153414	T10	HIP	1	1		J1672264
		l many		1	Job Reference (optional)	

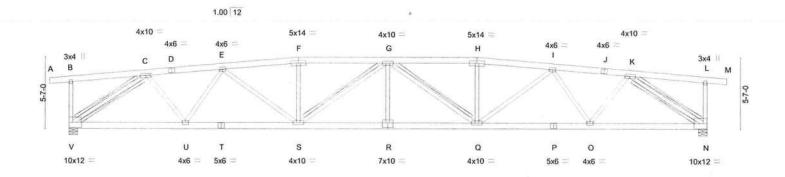
6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 13:07:19 2006 Page 2

NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; partially; MWFRS gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.

3) Provide adequate drainage to prevent water ponding.


4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1167 lb uplift at joint V and 1167 lb uplift at joint N.

LOAD CASE(S) Standard

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

Job		Truss	Truss Type		Qty	Ply	LAKE CITY	//ISLAMIC CEN	TER	J1672265
L153414		T11	HIP		1	1	Job Referer	nce (optional)		
Builders Fir	rstSource	, Bunnell, FL. 32110		6.200	s Jul 13 2005	MiTek Ir	ndustries, Inc	. Fri Jun 02 13:	08:08 2006	Page 1
1-6-0	6-2-5	12-1-3	18-0-0	25-0-0	32-0-0		37-10-13	43-9-11	50-0-0	51-6-0
1-6-0	6-2-5	5-10-13	5-10-13	7-0-0	7-0-0		5-10-13	5-10-13	6-2-5	1-6-0 Scale = 1:87.0

	9-1-12		B-10-4	7-0-0 7-0-0			8-10-4		9-1-12			
Plate Of	fsets (X,Y):	[H:0-0-0,0-0-0], [R:0	0-5-0,0-4-8]								
LOADIN	IG (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.50	Vert(LL)	-0.40	Ŕ	>999	240	MT20	244/190
TCDL	10.0	Lumber Increase	1.25	BC	0.57	Vert(TL)	-0.70	R	>853	180	30.00mm	
BCLL	10.0	Rep Stress Incr	YES	WB	0.91	Horz(TL)	0.19	N	n/a	n/a		
BCDL 5.0		Code FBC2004/TPI2002		(Matrix)							Weight: 367 lb	

25-0-0

LUMBER

TOP CHORD 2 X 6 SYP No.1D 2 X 6 SYP No.1D

9-1-12

WEBS

BOT CHORD

2 X 4 SYP No.3

BRACING

TOP CHORD

32-0-0

BOT CHORD WEBS

Structural wood sheathing directly applied or

3-7-13 oc purlins, except end verticals. Rigid ceiling directly applied or 5-1-15 oc bracing.

I-Brace:

40-10-4

2 X 4 SYP No.3 - C-V, K-N

50-0-0

T-Brace:

2 X 4 SYP No.3 - G-S,

G-Q Fasten T and I braces to narrow edge of web with

10d Common wire nails, 9in o.c., with 4in minimum end distance.

Brace must cover 90% of web length.

REACTIONS (lb/size) V=2336/0-8-0, N=2336/0-8-0

Max Horz V=121(load case 4)

Max Uplift V=-1160(load case 3), N=-1160(load case 4)

18-0-0

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD A-B=0/8, B-C=-84/137, C-D=-3772/2015, D-E=-3757/2018, E-F=-5071/2735,

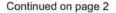
F-G=-5039/2739, G-H=-5039/2739, H-I=-5071/2735, I-J=-3757/2018, J-K=-3772/2015,

K-L=-84/137, L-M=0/8, B-V=-295/257, L-N=-295/257

BOT CHORD U-V=-1367/2788, T-U=-2162/4374, S-T=-2162/4374, R-S=-2691/5457, Q-R=-2691/5457,

P-Q=-2162/4374, O-P=-2162/4374, N-O=-1367/2788

C-U=-679/1585, E-U=-1171/717, E-S=-444/987, F-S=-3/131, G-S=-748/385, G-R=0/7855 Design Engineer: Lawrence A. Paine, PE G-O=-748/386, H-O=-3/132, I-O=-443/987, I-O=-1171/717, K-O=-679/1585. Florida PE No. 21475


G-Q=-748/386, H-Q=-3/132, I-Q=-443/987, I-O=-1171/717, K-O=-679/1585,

C-V=-3323/1753, K-N=-3323/1753

Builders FirstSource - Florida, LLC

6550 Roosevelt Blvd. Jacksonville, FL 32244

June 2,2006

WEBS

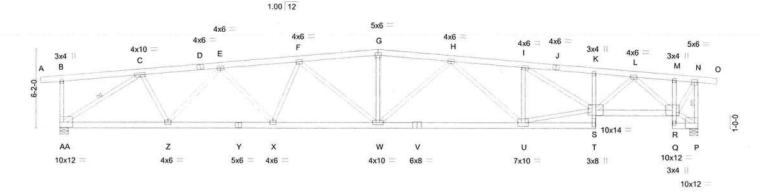
Job	Truss	Truss Type	Qty	Ply	LAKE CITY/ISLAMIC CENTER	J1672265
L153414	T11	HIP	1	1		
		, and a second			Job Reference (optional)	

6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 13:08:08 2006 Page 2

JOINT STRESS INDEX

B = 0.56, C = 0.65, D = 0.57, E = 0.41, F = 0.86, G = 0.28, H = 0.68, I = 0.41, J = 0.57, K = 0.65, L = 0.56, N = 0.57, O = 0.76, P = 0.93, Q = 0.47, R = 0.89, S = 0.47, T = 0.93, U = 0.76 and V = 0.57

NOTES


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; partially; MWFRS gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- Provide adequate drainage to prevent water ponding.
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1160 lb uplift at joint V and 1160 lb uplift at joint N.

LOAD CASE(S) Standard

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

Ply Job Truss LAKE CITY/ISLAMIC CENTER Truss Type Qty J1672266 SPECIAL L153414 T12 Job Reference (optional) Builders FirstSource, Bunnell, FL. 32110 6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 13:08:45 2006 Page 1 -1-6-0 6-5-10 12-7-12 18-9-14 25-0-0 30-8-3 36-4-5 42-0-8 45-0-4 48-0-0 50-0-0 2-11-12 2-11-12 2-0-0 1-6-0 1:87.0 1-6-0 6-2-2 6-2-2 6-2-2 5-8-3

	8-6-5		9-3		25-0-0		36-4-5			42-0-8	48-0-0	50-0-0
	8-6	-5 8-2-	13		3-2-13		11-4-5			5-8-3	5-11-8	2-0-0
LOADIN	IG (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.49	Vert(LL)	-0.45	Ù-W	>999	240	MT20	244/190
TCDL	10.0	Lumber Increase	1.25	BC	0.72	Vert(TL)	-0.79	U-W	>757	180	N100000000	
BCLL	10.0	Rep Stress Incr	YES	WB	0.98	Horz(TL)	0.24	P	n/a	n/a		
BCDL	CDL 5.0 Code FBC2004/TPI2002		PI2002	(Mati	rix)						Weight: 38	86 lb
	_											

LUMBER BRACING TOP CHORD 2 X 6 SYP No.1D TOP CHORD Structural wood sheathing directly applied or 3-8-9 BOT CHORD 2 X 6 SYP No.1D *Except* oc purlins, except end verticals. K-T 2 X 4 SYP No.2, M-Q 2 X 4 SYP No.3 **BOT CHORD** Rigid ceiling directly applied or 5-4-1 oc bracing. 2 X 4 SYP No.3 *Except* WFBS WERS 1 Row at midpt C-AA, N-P S-U 2 X 4 SYP No.2

REACTIONS (lb/size) AA=2336/0-8-0, P=2336/0-8-0

Max Horz AA=110(load case 4)

Max Uplift AA=-1131(load case 5), P=-1131(load case 6)

FORCES (Ib) - Maximum Compression/Maximum Tension

TOP CHORD A-B=0/8, B-C=-85/142, C-D=-3606/1940, D-E=-3583/1943, E-F=-4941/2659,

F-G=-4966/2683, G-H=-4964/2684, H-I=-4697/2541, I-J=-4412/2384, J-K=-4424/2382,

K-L=-4457/2371, L-M=-1386/771, M-N=-1302/728, N-O=0/8, B-AA=-303/265,

N-P=-2297/1166

BOT CHORD Z-AA=-1425/2918, Y-Z=-2213/4461, X-Y=-2213/4461, W-X=-2476/5022, V-W=-2479/4986,

U-V=-2479/4986, T-U=-376/668, S-T=-31/108, K-S=-256/226, R-S=-1495/3109,

Q-R=-14/18, M-R=-83/85, P-Q=-36/0

WEBS C-Z=-591/1421, E-Z=-1336/776, E-X=-256/676, F-X=-310/255, F-W=-378/250, Truss Design Engineer: Lawrence A. Paine, PE

G-W=-124/448, H-W=-328/271, H-U=-458/305, I-U=-273/282, S-U=-1915/4063,

I-S=-348/157, L-S=-905/1852, L-R=-2425/1299, C-AA=-3429/1791, N-R=-1114/2317 6550 Roosevelt Blvd. Jacksonville, FL 32244

P-R=0/131

JOINT STRESS INDEX

B = 0.60, C = 0.62, D = 0.51, E = 0.40, F = 0.33, G = 0.84, H = 0.25, I = 0.25, J = 0.67, K = 0.23, L = 0.90, M = 0.49, N = 0.98, P = 0.30, Q = 0.23, R = 0.42, S = 0.69, T = 0.76, U = 0.92, V = 0.98, W = 0.29, X = 0.33, Y = 0.97, Z = 0.80 and AA = 0.58

June 2,2006

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	LAKE CITY/ISLAMIC CENTER	770000000
L153414	T12	SPECIAL	4	1		J1672266
					Job Reference (optional)	

Builders FirstSource, Bunnell, FL. 32110

6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 13:08:45 2006 Page 2

NOTES

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.Zpsf; BCDL=3.0psf; Category II; Exp B; partially; MWFRS gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 3) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1131 lb uplift at joint AA and 1131 lb uplift at joint P.

LOAD CASE(S) Standard

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

Ply Job Truss Truss Type Qty LAKE CITY/ISLAMIC CENTER J1672267 L153414 T13 SPECIAL 5 Job Reference (optional) Builders FirstSource, Bunnell, FL. 32110 6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 13:09:25 2006 Page 1 -1-6-0 1-11-8 7-11-8 9-3-8 1-6-0 1-11-8 6-0-0 1.00 12 4x6 Scale = 1:27.2 2x4 E D 4x10 = 2x4 C В 3x4 4x6 = Truss to Beam connection to be specified by the Architect/Engineer of Record. 4x6 3x4 2x4 4x6 1-11-8 7-11-8 9-3-8 6-0-0 1-4-0 LOADING (psf) SPACING 2-0-0 CSI DEFL (loc) I/defl L/d **PLATES** GRIP in TCLL 20.0 Plates Increase 1.25 TC 0.17 Vert(LL) 0.02 H-I >999 240 MT20 244/190 TCDL 10.0 1.25 BC 0.39 Lumber Increase Vert(TL) -0.04H-I >999 180 10.0 BCLL Rep Stress Incr YES WB 0.14 0.03 F Horz(TL) n/a n/a BCDL 5.0 Code FBC2004/TPI2002 (Matrix) Weight: 89 lb LUMBER BRACING TOP CHORD 2 X 6 SYP No.1D Structural wood sheathing directly applied or 6-0-0 TOP CHORD BOT CHORD 2 X 6 SYP No.1D *Except* oc purlins, except end verticals. C-J 2 X 4 SYP No.3, D-G 2 X 4 SYP No.3 **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing,

WEBS

2 X 4 SYP No.3

Except:

6-0-0 oc bracing: G-H.

REACTIONS

(lb/size) F=396/Mechanical, K=513/0-8-0

Max Horz K=188(load case 5)

Max Uplift F=-246(load case 5), K=-285(load case 3)

FORCES (Ib) - Maximum Compression/Maximum Tension

TOP CHORD A-B=0/8, B-C=-5/117, C-D=-175/114, D-E=-116/109, E-F=-410/347, B-K=-152/166

BOT CHORD J-K=-277/174, I-J=-112/81, C-I=-82/173, H-I=-320/234, G-H=-368/389, D-H=-237/317,

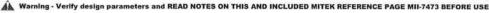
F-G=-12/12

WEBS C-H=-83/200, E-G=-406/424, C-K=-428/275

JOINT STRESS INDEX

B = 0.54, C = 0.39, D = 0.79, E = 0.22, F = 0.36, G = 0.30, H = 0.27, I = 0.52, J = 0.65 and K = 0.35

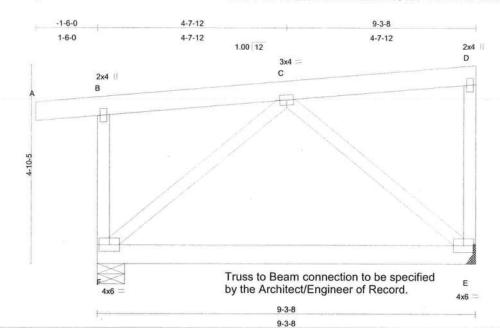
Truss Design Engineer: Lawrence A. Paine, PE


NOTES

Florida PE No. 21475 1) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp Builders FirstSource - Florida, LLC

- 6550 Roosevelt Blvd. Jacksonville, FL 32244 partially; MWFRS gable end zone and C-C Exterior(2) zone; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 2) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 246 lb uplift at joint F and 285 lb uplift at joint K.

LOAD CASE(S) Standard


June 2,2006

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Ply Job Truss Truss Type Qty LAKE CITY/ISLAMIC CENTER J1672268 L153414 T14 MONO TRUSS 8 Job Reference (optional) Builders FirstSource, Bunnell, FL. 32110 6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 13:09:46 2006 Page 1

LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.37	Vert(LL)	-0.05	E-F	>999	240	MT20	244/190
TCDL	10.0	Lumber Increase	1.25	BC	0.12	Vert(TL)	-0.09	E-F	>999	180		
BCLL	10.0	Rep Stress Incr	YES	WB	0.13	Horz(TL)	-0.00	Е	n/a	n/a		
BCDL	5.0	Code FBC2004/TI	PI2002	(Mati	rix)						Weight: 74 lb	

LUMBER

TOP CHORD 2 X 6 SYP No.1D

BOT CHORD 2 X 6 SYP No.1D

WEBS

2 X 4 SYP No.3

BRACING TOP CHORD

Structural wood sheathing directly applied or 6-0-0

oc purlins, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing. **BOT CHORD**

REACTIONS

(lb/size) E=396/Mechanical, F=513/0-8-0

Max Horz F=188(load case 5)

Max Uplift E=-246(load case 5), F=-285(load case 3)

FORCES (lb) - Maximum Compression/Maximum Tension

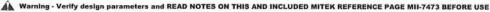
A-B=0/8, B-C=-52/127, C-D=-47/0, D-E=-123/128, B-F=-244/248 TOP CHORD

BOT CHORD E-F=-259/190

WEBS C-E=-208/341, C-F=-201/171

JOINT STRESS INDEX

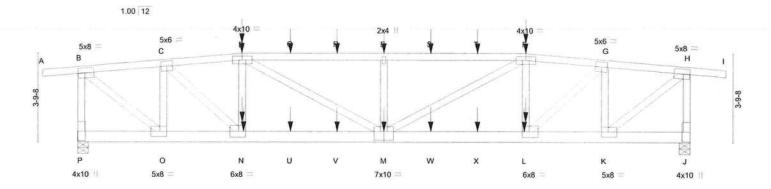
B = 0.62, C = 0.21, D = 0.60, E = 0.31 and F = 0.38


- 1) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; partially; MWFRS gable end zone and C-C Exterior(2) zone; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 2) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 246 lb uplift at joint E and 285 lb uplift at joint F.

LOAD CASE(S) Standard

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

June 2,2006


Scale = 1:27.2

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCS-11 or HIB-91 Handfling Installing and Bracing Recommendation awaitable from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job		Truss		Truss Type		Ply	LAKE CITY/ISLAMIC	CENTER	J1672269
L153	3414	T15		HIP	2	1	Job Reference (optiona	2.2.2200	
Buil	ders FirstS	Source, Bunnell,	FL. 32110	6.20	0 s Jul 13 2005	MiTek I	ndustries, Inc. Fri Jun 02	13:16:50 2006	Page 1
	-1-6-0	3-7-12	7-0-0	13-0-12		19-1-8	22-5-12	26-1-8	27-7-8
2	1-6-0	3-7-12	3-4-4	6-0-12		6-0-12	3-4-4	3-7-12	1-6-0 Scale = 1:47.4

3-7-12	7-0-0	13-0-12	19-1-8	22-5-12	26-1-8
3-7-12	3-4-4	6-0-12	6-0-12	3-4-4	3-7-12

Plate Offsets (X,Y): [B:0-3-5,0-2-8], [F:0-0-0,0-0-0], [H:0-3-5,0-2-8], [J:Edge,0-3-8], [K:0-3-8,0-2-8], [L:0-3-8,0-3-0], [M:0-5-0,0-4-8], [N:0-3-8,0-3-0], [O:0-3-8,0-2-8]

LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.84	Vert(LL)	-0.28	M-N	>999	240	MT20	244/190
TCDL	10.0	Lumber Increase	1.25	BC	0.64	Vert(TL)	-0.48	L-M	>643	180	CRETO, SONOMAY	
BCLL	10.0	Rep Stress Incr	NO	WB	0.87	Horz(TL)	0.07	J	n/a	n/a		
BCDL	5.0	Code FBC2004/TF	212002	(Mati	rix)						Weight: 177 lb	

LUMBER

TOP CHORD 2 X 4 SYP No.2 BOT CHORD 2 X 6 SYP No.1D

2 X 4 SYP No.3 *Except* **WEBS**

B-O 2 X 4 SYP No.2, H-K 2 X 4 SYP No.2

BRACING

BOT CHORD

TOP CHORD

Structural wood sheathing directly applied or 2-1-4

oc purlins, except end verticals.

Rigid ceiling directly applied or 5-4-11 oc bracing.

REACTIONS

(lb/size) P=2681/0-5-8, J=2681/0-5-8

Max Horz P=105(load case 3)

Max Uplift P=-1434(load case 2), J=-1434(load case 3)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD

A-B=0/8, B-C=-2676/1401, C-D=-4644/2436, D-Q=-5689/2994, Q-R=-5689/2994,

E-R=-5689/2994, E-S=-5689/2994, S-T=-5689/2994, F-T=-5689/2994, F-G=-4644/2436,

G-H=-2676/1401, H-I=0/8, B-P=-2582/1416, H-J=-2582/1416

BOT CHORD

O-P=-77/76, N-O=-1341/2655, N-U=-2368/4625, U-V=-2368/4625, M-V=-2368/4625,

M-W=-2409/4625, W-X=-2409/4625, L-X=-2409/4625, K-L=-1375/2655, J-K=-29/50

WEBS C-O=-2127/1172, C-N=-1416/2697, D-N=-905/575, D-M=-686/1296, E-M=-487/398,

F-M=-685/1296, F-L=-905/575, G-L=-1416/2697, G-K=-2127/1171, B-O=-1734/3358,

H-K=-1734/3358

JOINT STRESS INDEX

B = 0.91, C = 0.89, D = 0.84, E = 0.34, F = 0.84, G = 0.89, H = 0.91, J = 0.42, K = 0.86, L = 0.60, M = 0.77, N = 0.60, O = 0.86 and P = 0.860.42

NOTES

Unbalanced roof live loads have been considered for this design.

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

June 2,2006

Continued on page 2

🛕 Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connector Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or confractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	LAKE CITY/ISLAMIC CENTER	
L153414	T15	HIP	2	1		J1672269
					Job Reference (optional)	

Builders FirstSource, Bunnell, FL. 32110

6.200 s Jul 13 2005 MiTek Industries, Inc. Fri Jun 02 13:16:50 2006 Page 2

NOTES

2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; partially; MWFRS gable end zone; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60.

3) Provide adequate drainage to prevent water ponding.

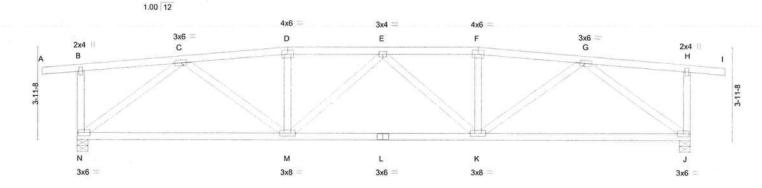
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1434 lb uplift at joint P and 1434 lb uplift at joint J.
- 5) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Regular: Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

Vert: A-B=-60, B-D=-60, D-F=-60, F-H=-60, H-I=-60, J-P=-30


Concentrated Loads (lb)

Vert: N=-570(B) D=-341(B) M=-171(B) E=-33(B) F=-341(B) L=-570(B) Q=-33(B) R=-33(B) S=-33(B) T=-33(B) U=-171(B) V=-171(B) W=-171(B) X=-171(B)

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

Job	Truss	Truss Type		Qty	Ply	LAKE CITY/ISLAMIC CENTER	J1672270
L153414	T16	HIP		2	1	Job Reference (optional)	01012210
Builders FirstSo	ource, Bunnell, FL. 3	2110	6.200 s	Jul 13 2005	MiTek Ir	ndustries, Inc. Fri Jun 02 13:17:25 2	2006 Page 1
-1-6-0	4-7-12	9-0-0	13-0-12	17-1-8		21-5-12 26-1-8	27-7-8
1-6-0	4-7-12	4-4-4	4-0-12	4-0-12		4-4-4 4-7-12	1-6-0 Scale = 1:47.4

		9-0-0			8-1-8					9-0-0				
Plate Of	Plate Offsets (X,Y): [F:0-0-0,0-0-0]													
LOADIN	IG (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP		
TCLL	20.0	Plates Increase	1.25	TC	0.60	Vert(LL)	-0.15	J-K	>999	240	MT20	244/190		
TCDL	10.0	Lumber Increase	1.25	BC	0.58	Vert(TL)	-0.26	M-N	>999	180				
BCLL	10.0	Rep Stress Incr	YES	WB	0.76	Horz(TL)	0.06	J	n/a	n/a				
BCDL	5.0	Code FBC2004/TI	PI2002	(Mati	rix)						Weight: 147 lb			

17-1-8

LUMBER

TOP CHORD 2 X 4 SYP No.2 **BOT CHORD** 2 X 4 SYP No.2

2 X 4 SYP No.3 WEBS

BRACING

BOT CHORD

TOP CHORD

Structural wood sheathing directly applied or 4-5-10 oc purlins, except end verticals.

26-1-8

Rigid ceiling directly applied or 6-5-4 oc bracing.

REACTIONS (lb/size) N=1261/0-5-8, J=1261/0-5-8

Max Horz N=106(load case 4)

9-0-0

Max Uplift N=-655(load case 3), J=-655(load case 4)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD A-B=0/8, B-C=-85/96, C-D=-1913/1048, D-E=-1895/1054, E-F=-1895/1054,

F-G=-1913/1048, G-H=-85/96, H-I=0/8, B-N=-247/211, H-J=-247/211

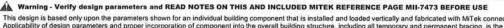
BOT CHORD M-N=-583/1232, L-M=-963/2024, K-L=-963/2024, J-K=-626/1232

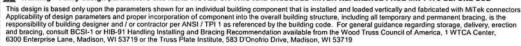
WEBS C-M=-330/818, D-M=-116/148, E-M=-277/191, E-K=-277/192, F-K=-116/148,

G-K=-330/818, C-N=-1457/829, G-J=-1457/829

JOINT STRESS INDEX

B = 0.57, C = 0.69, D = 0.57, E = 0.48, F = 0.57, G = 0.69, H = 0.57, J = 0.80, K = 0.79, L = 0.82, M = 0.79 and N = 0.80

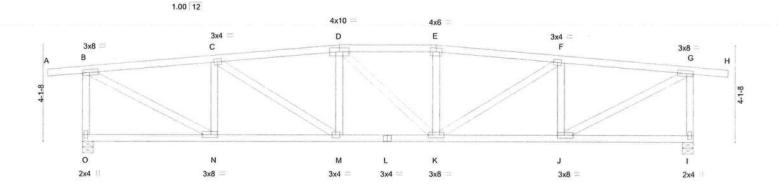

1) Unbalanced roof live loads have been considered for this design.


Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475

Builders FirstSource - Florida, LLC

- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B550 Roosevelt Blvd. Jacksonville, FL 32244 partially; MWFRS gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 3) Provide adequate drainage to prevent water ponding.
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 655 lb uplift at joint N and 655 lb uplift at joint J.

Continued on page 2


Job	Truss	Truss Type	Qty	Ply	LAKE CITY/ISLAMIC CENTER	
					J1672	2270
L153414	T16	HIP	2	1		
	1				Job Reference (optional)	
Builders FirstSource, Bunnell, FL. 32110			6.200 s Jul 13 2005	MiTek II	ndustries, Inc. Fri Jun 02 13:17:25 2006 Page 2	

LOAD CASE(S) Standard

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

Job	Truss	Truss Type		Qty	Ply	LAKE CITY/ISLAMIC CENTER J1672271
L153414	T17	HIP		2	1	Job Reference (optional)
Builders FirstSo	urce, Bunnell, FL. 32	110	6.200 s Jul 1	3 2005	MiTek Ir	ndustries, Inc. Fri Jun 02 13:17:51 2006 Page 1
-1-6-0	5-7-12	11-0-0	15-1-8		2	20-5-12 26-1-8 27-7-8
1-6-0	5-7-12	5-4-4	4-1-8			5-4-4 5-7-12 1-6-0 Scale = 1:47

		5-7-12	5-4-	4		4-1-8		5-4-4			5-7-12	
Plate Of	ffsets (X,Y):	[B:0-3-6,0-1-8], [G:	0-3-6,0-1-8], [J:0-3-	[N:0-3-8,0-1-8]							
LOADIN	IG (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.39	Vert(LL)	0.11	K-M	>999	240	MT20	244/190
TODI	10.0	Lumber Ingresses	1 25	DC.	0.20	Mont/TL)	0.40	11/	-000	400	i	

15-1-8

10.0 Lumber Increase 1.25 0.39Vert(TL) -0.19>999 180 BCLL 10.0 YES WB 0.56 Rep Stress Incr Horz(TL) 0.04 n/a n/a BCDL 5.0 Code FBC2004/TPI2002 Weight: 153 lb (Matrix)

LUMBER

TOP CHORD 2 X 4 SYP No.2

BOT CHORD 2 X 4 SYP No.2

2 X 4 SYP No.3 **WEBS**

BRACING

TOP CHORD **BOT CHORD**

Structural wood sheathing directly applied or 4-4-7

oc purlins, except end verticals.

20-5-12

Rigid ceiling directly applied or 6-8-15 oc bracing.

REACTIONS (lb/size) O=1261/0-5-8, I=1261/0-5-8

5-7-12

Max Horz O=-102(load case 3)

Max Uplift O=-639(load case 3), I=-639(load case 4)

FORCES (Ib) - Maximum Compression/Maximum Tension

TOP CHORD A-B=0/8, B-C=-1542/871, C-D=-1947/1096, D-E=-1926/1102, E-F=-1947/1095,

11-0-0

F-G=-1542/871, G-H=0/8, B-O=-1176/681, G-I=-1176/681

BOT CHORD N-O=-65/78, M-N=-693/1523, L-M=-889/1926, K-L=-889/1926, J-K=-699/1523, I-J=-24/53 **WEBS**

C-N=-620/435, C-M=-243/518, D-M=-139/157, D-K=-154/153, E-K=-155/170, F-K=-242/518, F-J=-620/434, B-N=-845/1667, G-J=-845/1667

JOINT STRESS INDEX

B = 0.80, C = 0.50, D = 0.35, E = 0.63, F = 0.50, G = 0.80, I = 0.87, J = 0.69, K = 0.57, L = 0.76, M = 0.48, N = 0.69 and O = 0.87

1) Unbalanced roof live loads have been considered for this design.

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475

Builders FirstSource - Florida, LLC

- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp & Roosevelt Blvd. Jacksonville, FL 32244 partially; MWFRS gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- Provide adequate drainage to prevent water ponding.

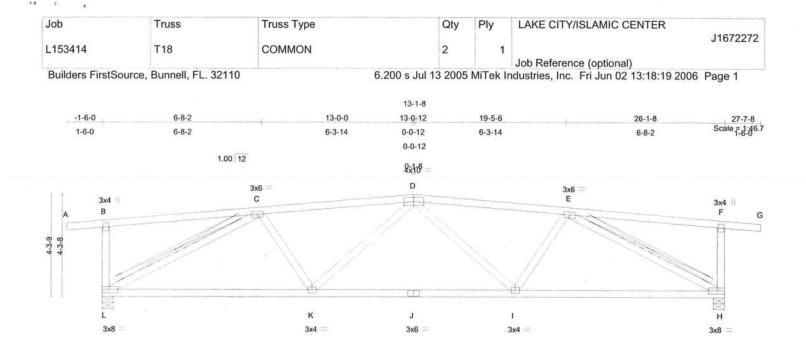
4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 639 lb uplift at joint O and 639 lb uplift at joint I.

June 2,2006

Continued on page 2

🛕 Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTex connector Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation availed from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719



Job	Truss	Truss Type	Qty	Ply	LAKE CITY/ISLAMIC CENTER	
L153414	T17	HIP	2	1	J16	72271
2.00.11.	1	3.000	1	i	Job Reference (optional)	
Ruildere FiretS	ource Bunnell El 32	2110	6 200 e Jul 13 2006	MiTok	Industries Inc. Fri Jun 02 13:17:51 2006 Page	. 2

LOAD CASE(S) Standard

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

	-	8-9-11				17-3-13				26-	1-8	
		8-9-11				8-6-3				8-9-	11	
LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.61	Vert(LL)	-0.16	I-K	>999	240	MT20	244/190
TCDL	10.0	Lumber Increase	1.25	BC	0.56	Vert(TL)	-0.28	I-K	>999	180		
BCLL	10.0	Rep Stress Incr	YES	WB	0.58	Horz(TL)	0.07	Н	n/a	n/a		
BCDL	5.0	Code FBC2004/TF	2002	(Mati	rix)	35 757					Weight: 139 lb	

LUMBER TOP CHORD 2 X 4 SYP No.2 BOT CHORD 2 X 4 SYP No.2 2 X 4 SYP No.3 BRACING TOP CHORD

Structural wood sheathing directly applied or 4-4-15 oc purlins, except end verticals.

BOT CHORD WEBS

Rigid ceiling directly applied or 6-8-0 oc bracing. T-Brace:

2 X 4 SYP No.3 - C-L.

E-H

Fasten T and I braces to narrow edge of web with 10d Common wire nails, 9in o.c., with 4in minimum end distance.

> Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

Brace must cover 90% of web length.

REACTIONS

(lb/size) L=1261/0-5-8, H=1261/0-5-8

Max Horz L=-99(load case 3)

Max Uplift L=-633(load case 5), H=-633(load case 6)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD A-B=0/8, B-C=-116/130, C-D=-1858/1017, D-E=-1858/1017, E-F=-116/130, F-G=0/8,

B-L=-303/262, F-H=-303/262

BOT CHORD K-L=-783/1642, J-K=-894/1883, I-J=-894/1883, H-I=-783/1642

C-K=-64/424, D-K=-138/156, D-I=-138/156, E-I=-64/424, C-L=-1752/943, E-H=-1752/943 WEBS

JOINT STRESS INDEX

Truss Design Engineer: Lawrence A. Paine, PE B = 0.59, C = 0.52, D = 0.47, E = 0.52, F = 0.59, H = 0.56, I = 0.48, J = 0.82, K = 0.48 and L = 0.55 Torrida PE No. 21475

1) Unbalanced roof live loads have been considered for this design.

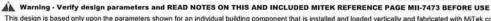
2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; partially; MWFRS gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.

June 2,2006

Continued on page 2

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

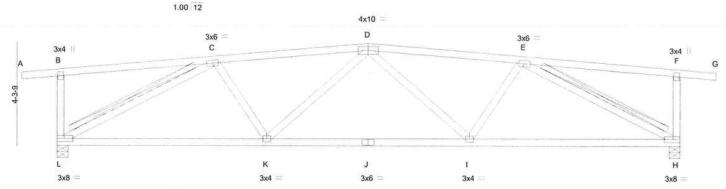
This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricaled with MITek connectors Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCS-11 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719



Job	Truss	Truss Type	Qty	Ply	LAKE CITY/ISLAMIC CENTER
					J1672272
L153414	T18	COMMON	2	1	
					Job Reference (optional)
Builders FirstS	ource, Bunnell, FL. 32	2110	6.200 s Jul 13 2005	MiTek I	ndustries, Inc. Fri Jun 02 13:18:19 2006 Page 2

3) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 633 lb uplift at joint L and 633 lb uplift at joint H.

LOAD CASE(S) Standard


Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

Job	Truss	Truss Type	Qty	Ply	LAKE CITY/ISLAMIC CENTER	
L153414	T19	COMMON	2	1	Job Reference (optional)	J1672273
Builders FirstSo	urce, Bunnell, FL. 32110	6.20	0 s Jul 13 2005	MiTek Ir	ndustries, Inc. Fri Jun 02 13:18:54 200	06 Page 1
-1-6-0	6-8-2	13-0-12		19-5-6	26-1-8	27-7-8
1-6-0	6-8-2	6-4-10		6-4-10	6-8-2	1-6-0 Scale = 1:46.7

Warning: This truss has not been designed to support any additional load from conventional framing.

	-	8-9-11				17-3-13				26-	1-8	
		8-9-11		-		8-6-3				8-9	-11	
LOADING TCLL TCDL BCLL BCDL	(psf) 20.0 10.0 10.0 5.0	SPACING Plates Increase Lumber Increase Rep Stress Incr Code FBC2004/TI	2-0-0 1.25 1.25 YES PI2002	TC BC WB (Mate	0.61 0.56 0.58 rix)	DEFL Vert(LL) Vert(TL) Horz(TL)	in -0.16 -0.28 0.07	(loc) I-K I-K H	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 139	GRIP 244/190
LUMBER TOP CHOI BOT CHOI WEBS	RD 2 X	4 SYP No.2 4 SYP No.2 4 SYP No.3				BRACING TOP CHO BOT CHO	RD	4-4-15	oc purlin	s, excep	g directly applied t end verticals. ied or 6-8-0 oc b	

WEBS

T-Brace:

Fasten T and I braces to narrow edge of web with 10d Common wire nails, 9in o.c., with 4in minimum end distance.

Brace must cover 90% of web length.

E-H

2 X 4 SYP No.3 - C-L,

REACTIONS (lb/size) L=1261/0-5-8, H=1261/0-5-8

Max Horz L=-99(load case 3)

Max Uplift L=-633(load case 5), H=-633(load case 6)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD A-B=0/8, B-C=-116/130, C-D=-1858/1017, D-E=-1858/1017, E-F=-116/130, F-G=0/8,

B-L=-303/262, F-H=-303/262

BOT CHORD K-L=-783/1642, J-K=-894/1883, I-J=-894/1883, H-I=-783/1642

WEBS C-K=-64/424, D-K=-138/156, D-I=-138/156, E-I=-64/424, C-L=-1752/943, E-H=-1752/943

JOINT STRESS INDEX

NOTES

B = 0.59, C = 0.52, D = 0.47, E = 0.52, F = 0.59, H = 0.56, I = 0.48, J = 0.82, K = 0.48 and L = 0.56 mss Design Engineer: Lawrence A. Paine, PE

Florida PE No. 21475

Builders FirstSource - Florida, LLC

6SSO Roosevelt Blyd. Jacksonville, FL 32244

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; partially; MWFRS gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.

June 2,2006

Continued on page 2

🛦 Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

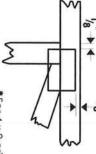
This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MITek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCS1-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

J1672273
5

3) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 633 lb uplift at joint L and 633 lb uplift at joint H.

LOAD CASE(S) Standard

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244



Symbols

PLATE LOCATION AND ORIENTATION

 Center plate on joint unless securely seat. plates to both sides of truss and Dimensions are in inches. Apply dimensions indicate otherwise.

*For 4 x 2 orientation, locate plates 1/8" from outside edge of truss and vertical web.

*This symbol indicates the required direction of slots in connector plates

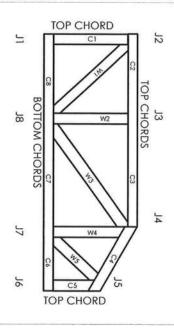
PLATE SIZE

4 × 4

The first dimension is the width perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING

Indicates location of required continuous lateral bracing.


BEARING

× 6.16

which bearings (supports) occur.

Numbering System

JOINTS AND CHORDS ARE NUMBERED CLOCKWISE AROUND THE TRUSS STARTING AT THE LOWEST JOINT FARTHEST TO THE LEFT.

WEBS ARE NUMBERED FROM LEFT TO RIGHT

CONNECTOR PLATE CODE APPROVALS

ICBO BOCA 96-31, 96-67

3907, 4922

SBCCI 9667, 9432A

561

NER

WISC/DILHR

960022-W, 970036-N

MiTek Engineering Reference Sheet: MII-7473

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Provide copies of this truss design to the owner and all other interested parties. building designer, erection supervisor, property
- N Cut members to bear tightly against each other.
- Place plates on each face of truss at each joint and embed fully. Avoid knots and wane at joint locations.

ω

- 4 Unless otherwise noted, locate chord splices at 1/4 panel length (± 6" from adjacent joint.)
- S Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- 6 Unless expressly noted, this design is not preservative treated lumber applicable for use with fire retardant or
- 7. is the responsibility of truss fabricator. General Camber is a non-structural consideration and practice is to camber for dead load deflection
- 00 shown indicate minimum plating requirements. Plate type, size and location dimensions
- Lumber shall be of the species and size, and grade specified. in all respects, equal to or better than the
- Top chords must be sheathed or purlins provided at spacing shown on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- Anchorage and / or load transferring connections to trusses are the responsibility of others unless shown.
- Do not overload roof or floor trusses with stacks of construction materials.
- 14. Do not cut or after truss member or plate engineer. without prior approval of a professional
- 15. Care should be exercised in handling erection and installation of trusses.
- © 1993 MiTek® Holdings, Inc.

Job: Jan 09, 2007

Project Information

For:

_			and the same of the same of			SHIPPING	THE RESERVE OF THE RES	Charles of the Ch
	Outside db	(°F)	Htg 33	Clg 91	Inside db	(°F)	Htg 70	Clg 75
	Outside RH	(%)	-	52	Inside RH	(%)	-	50
	Outside wb	(°F)	-	77	Inside wb	(°F)	_	63
	Daily range	(°F)	-	19	Design TD	(°F)	37	16
	Moisture diff	(ar/lb)	127	52	Dooigii 1D	(,)	37	10

Heating Equipment

Cooling Equipment

Make Model Type			Make Model Type		
Efficiency / HSPF Heating Input Heating Output Humidifier Leaving Air Temp Actual Heating Fan	0.0 0.0 0.0 0.0 70.0 1713	MBtuh MBtuh gpd °F cfm	COP / EER / SEER Sensible Cooling Latent Cooling Total Cooling Leaving Air Temp Actual Cooling Fan	0.0 0.0 0.0 0.0 55.0 1713	MBtuh MBtuh MBtuh °F cfm

Equipment Location ahu 2
System Type PEAKCV
Fan Motor Heat Type PACKAGE
Fan & Motor Combined Efficiency 0.0 %
Static Pressure Across Fan 0.0 in H2O

NAME	Area ft²	Heat Loss	Sensible Gain	Latent Gain	Htg cfm	Clg cfm	Time
ahu 2 ahu 4 ahu 3 ahu 1	925 651 1089 1322	50773 25606 18529 19372	41765 31052 31793 33591	19035 8619 6893 8218	1713 1394 1465 1536	1713 1394 1465 1536	Jul 1600 Jul 1700 Jul 1600 Jul 1500
Totals	3987	114280	138201	42765	6107	6107	n/a

Job: Jan 09, 2007

Project Information

For:

				THE RESERVE TO BE ADDRESS OF THE PARTY OF TH	STATISTICS STATES	AND RESIDENCE OF THE PARTY OF T	ESTATION STATEMENT
-		Htg	Clg			Htg	Clg
Outside db	(°F)	33	91	Inside db	(°F)	70	75
Outside RH	(%)	-	52	Inside RH	(%)	-	50
Outside wb	(°F)	-	77	Inside wb	(°F)	-	63
Daily range	(°F)	-	19	Design TD	(°F)	37	16
Moisture diff	(ar/lb)	_	52		(.)	0.	

Heating Equipment

Cooling Equipment

Make Model			Make Model		
Type			Туре		
Efficiency / HSPF	0.0	John House Co. V March	COP/EER/SEER	0.0	
Heating Input	0.0	MBtuh	Sensible Cooling	0.0	MBtuh
Heating Output	0.0	MBtuh	Latent Cooling	0.0	MBtuh
Humidifier	0.0	gpd	Total Cooling	0.0	MBtuh
Leaving Air Temp	70.0	°F	Leaving Air Temp	55.0	°F
Actual Heating Fan	1713	cfm	Actual Cooling Fan	1713	cfm

Equipment Location ahu 2
System Type PEAKCV
Fan Motor Heat Type PACKAGE
Fan & Motor Combined Efficiency 0.0 %
Static Pressure Across Fan 0.0 in H2O

NAME	Area ft²	Heat Loss	Sensible Gain	Latent Gain	Htg cfm	Clg cfm	Time
imam's office	204	9498	9663	2974	315	396	Jul 1600
foyer / entry 1	204	8165	7133	2974	232	274	Jul 1600
restroom 1	37	3247	1783	1995	106	74	Jul 1600
restroom 2	37	3247	1783	1995	106	74	Jul 1600
ablutions / wudu	96	4970	4416	1225	183	181	Jul 1600
foyer / entry 2	204	8165	7133	2974	232	274	Jul 1600
restroom 3	37	4190	2213	1995	160	95	Jul 1600
restroom 4	37	4391	3753	1995	172	165	Jul 1600
wudu ablutions	71	4900	3890	906	206	180	Jul 1600
ahu 2	925	50773	41765	19035	1713	1713	Jul 1600

Job: Jan 09, 2007

Project Information

For:

NAME OF TAXABLE PARTY.	THE RESERVE TO SERVE THE PARTY.			The Land Company of the Company of t			DESCRIPTION OF THE PERSON OF T
Outside db	(°F)	Htg 33	Clg 90	Inside db	(°F)	Htg 70	Clg 75
Outside RH	(%)	-	54	Inside RH	(%)	-	50
Outside wb	(°F)	2	77	Inside wb	(°F)	_	63
Daily range	(°F)		19	Design TD	(°F)	37	15
Moisture diff	(ar/lb)	12	52	_ 00.9 1.2	/	٥.	. •

Heating Equipment

Cooling Equipment

Make Model			Make Model			
Type			Type			
Efficiency / HSPF	0.0		COP/EER/SEER		0.0	
Heating Input	0.0	MBtuh	Sensible Cooling		0.0	MBtuh
Heating Output	0.0	MBtuh	Latent Cooling		0.0	MBtuh
Humidifier	0.0	gpd	Total Cooling		0.0	MBtuh
Leaving Air Temp	70.0	°F	Leaving Air Temp		55.0	°F
Actual Heating Fan	1394	cfm	Actual Cooling Fan		1394	cfm

Equipment Location ahu 4
System Type PEAKCV
Fan Motor Heat Type PACKAGE
Fan & Motor Combined Efficiency 0.0 %
Static Pressure Across Fan 0.0 in H2O

NAME	Area ft²	Heat Loss	Sensible Gain	Latent Gain	Htg cfm	Clg cfm	Time
hvac equip	93	1733	2473	530	106	114	Jul 1700
wudu ablutions	51	941	1342	288	57	62	Jul 1700
womens rest	40	3686	1908	2014	194	90	Jul 1700
mens bath	55	4380	2448	2100	240	113	Jul 1700
wudu ablutions	25	591	732	142	37	34	Jul 1700
gathering hall	248	7455	12023	1767	459	549	Jul 1700
library / sitting	139	6819	10127	1778	301	431	Jul 1700
ahu 4	651	25606	31052	8619	1394	1394	Jul 1700

Job: Jan 09, 2007

Project Information

For:

Outside db	(°F)	Htg 33	Clg 91	Inside db	(°F)	Htg 70	Clg 75
Outside RH	(%)	=	52	Inside RH	(%)	_	50
Outside wb	(°F)	-	77	Inside wb	(°F)	-	63
Daily range	(°F)		19	Design TD	(°F)	37	16
Moisture diff	(ar/lb)	1722	52	9	(. ,	٠,	10

Heating Equipment

Cooling Equipment

Make A Model			Make Model		x 4 ;
Туре			Туре		
Efficiency / HSPF	0.0		COP/EER/SEER	0.0	
Heating Input	0.0	MBtuh	Sensible Cooling	0.0	MBtuh
Heating Output	0.0	MBtuh	Latent Cooling	0.0	MBtuh
Humidifier	0.0	gpd	Total Cooling	0.0	MBtuh
Leaving Air Temp	70.0	°F	Leaving Air Temp	55.0	°F
Actual Heating Fan	1465	cfm	Actual Cooling Fan	1465	cfm

Equipment Location ahu 3
System Type PACKAGE
Fan Motor Heat Type PACKAGE
Fan & Motor Combined Efficiency 0.0 %
Static Pressure Across Fan 0.0 in H2O

NAME	Area ft²	Heat Loss	Sensible Gain	Latent Gain	Htg cfm	Clg cfm	Time
janitor serving corridor cultural hall	40 90 256 703	1352 1519 5082 10576	1232 2406 8277 19878	227 511 1810 4345	122 125 397 821	61 110 378 916	Jul 1600 Jul 1600 Jul 1600 Jul 1600
ahu 3	1089	18529	31793	6893	1465	1465	Jul 1600

Job: Jan 09, 2007

Project Information

For:

_	ALL AND AND AND ADDRESS OF THE PARTY OF THE		A PERSONAL PROPERTY OF			281212-1302		MANGE STATE
	0 1 1 1		Htg 33	Clg		Topping	Htg	Clg
	Outside db	(°F)	33	92	Inside db	(°F)	70	75
	Outside RH	(%)	-	51	Inside RH	(%)		50
	Outside wb	(°F)		77	Inside wb	(°F)	-	63
	Daily range	(°F)	-	19	Design TD	(°F)	37	17
	Moisture diff.	(gr/lb)		52				

Heating Equipment

Cooling Equipment

Make Model Type			Make Model Type			
Efficiency / HSPF	0.0		COP/EER/SEER		0.0	
Heating Input	0.0	MBtuh	Sensible Cooling	19	0.0	MBtuh
Heating Output	0.0	MBtuh	Latent Cooling		0.0	MBtuh
Humidifier	0.0	gpd	Total Cooling		0.0	MBtuh
Leaving Air Temp	70.0	°F	Leaving Air Temp		55.0	°F
Actual Heating Fan	1536	cfm	Actual Cooling Fan		1536	cfm

Equipment Location ahu 1
System Type PEAKCV
Fan Motor Heat Type PACKAGE
Fan & Motor Combined Efficiency 0.0 %
Static Pressure Across Fan 0.0 in H2O

NAME	Area ft²	Heat Loss	Sensible Gain	Latent Gain	Htg cfm	Clg cfm	Time
mosque male worship mosque female worship	889 433	14991 4381	23139 10452	5759 2460	1207 328	1058 478	Jul 1500 Jul 1500
ahu 1	1322	19372	33591	8218	1536	1536	Jul 1500

Job: Jan 09, 2007

Project Information

For:

Outside db Outside RH Outside wb	(°F) (%) (°F)	Htg 33 -	Clg 91 52 77	Inside db Inside RH Inside wb	(°F) (%) (°F)	Htg 70 -	Clg 75 50 63
Daily range	(°F)	-	19	Design TD	(°F)	37	16
Moisture diff.	(gr/lb)		52	3			1.1000

Heating Equipment

Cooling Equipment

Make			Make		
Model			Model		
Type			Type		
Efficiency / HSPF	0.0		COP/EER/SEER	0.0	
Heating Input	0.0	MBtuh	Sensible Cooling	0.0	MBtuh
Heating Output	0.0	MBtuh	Latent Cooling	0.0	MBtuh
Humidifier	0.0	gpd	Total Cooling	0.0	MBtuh
Leaving Air Temp	70.0	°F	Leaving Air Temp	55.0	°F
Actual Heating Fan	1713	cfm	Actual Cooling Fan	1713	cfm

Equipment Location ahu 2
System Type PEAKCV
Fan Motor Heat Type PACKAGE
Fan & Motor Combined Efficiency 0.0 %
Static Pressure Across Fan 0.0 in H2O

NAME	Area ft²	Heat Loss	Sensible Gain	Latent Gain	Htg cfm	Clg cfm	Time
ahu 2 ahu 4 ahu 3 ahu 1	925 651 1089 1322	50773 25606 18529 19372	41765 31052 31793 33591	19035 8619 6893 8218	1713 1394 1465 1536	1713 1394 1465 1536	Jul 1600 Jul 1700 Jul 1600 Jul 1500
Totals	3987	114280	138201	42765	6107	6107	n/a

Job: Jan 09, 2007

Project Information

For:

Outside db	(°F)	Htg 33	Clg 91	Inside db	(°F)	Htg 70	Clg 75
Outside RH	(%)	-	52	Inside RH	(%)	# C	50
Outside wb	(°F)	2	77	Inside wb	(°F)	2	63
Daily range	(°F)		19	Design TD	(°F)	37	16
Moisture diff.	(gr/lb)	-	52	_ co.g., , _	(.)	<i>71</i>	

Heating Equipment

Cooling Equipment

Make Model Type			Make Model Type		
Efficiency / HSPF	0.0		COP/EER/SEER	0.0	
Heating Input	0.0	MBtuh	Sensible Cooling	0.0	MBtuh
Heating Output	0.0	MBtuh	Latent Cooling	0.0	MBtuh
Humidifier	0.0	gpd	Total Cooling	0.0	MBtuh
Leaving Air Temp	70.0	°F	Leaving Air Temp	55.0	°F
Actual Heating Fan	1713	cfm	Actual Cooling Fan	1713	cfm

Equipment Location ahu 2
System Type PEAKCV
Fan Motor Heat Type PACKAGE
Fan & Motor Combined Efficiency 0.0 %
Static Pressure Across Fan 0.0 in H2O

NAME	Area ft²	Heat Loss	Sensible Gain	Latent Gain	Htg cfm	Clg cfm	Time
imam's office	204	9498	9663	2974	315	396	Jul 1600
foyer / entry 1	204	8165	7133	2974	232	274	Jul 1600
restroom 1	37	3247	1783	1995	106	74	Jul 1600
restroom 2	37	3247	1783	1995	106		Jul 1600
ablutions / wudu	96	4970	4416	1225	183	181	Jul 1600
foyer / entry 2	204	8165	7133	2974	232		Jul 1600
restroom 3	37	4190	2213	1995	160	95	Jul 1600
restroom 4	37	4391	3753	1995	172	165	Jul 1600
wudu ablutions	71	4900	3890	906	206	180	Jul 1600
ahu 2	925	50773	41765	19035	1713	1713	Jul 1600

Job: Jan 09, 2007

Project Information

For:

Outside wb (°F) - 77 Inside wb (°F) - 6	- 63
Moisture diff. (gr/lb) - 52	37 13

Heating Equipment

Cooling Equipment

Make Model Type		Make Model		
	0.0	Type COP / EER / SEER	0.0	
	0.0 MBtuh	Sensible Cooling	0.0	MBtuh
	0.0 MBtuh	Latent Cooling	0.0	MBtuh
	0.0 gpd	Total Cooling	0.0	MBtuh
).0 °F	Leaving Air Temp	55.0	°F
Actual Heating Fan 13	94 cfm	Actual Cooling Fan	1394	cfm

Equipment Location ahu 4
System Type PEAKCV
Fan Motor Heat Type PACKAGE
Fan & Motor Combined Efficiency Static Pressure Across Fan 0.0 in H2O

NAME	Area ft²	Heat Loss	Sensible Gain	Latent Gain	Htg cfm	Clg cfm	Time
hvac equip	93	1733	2473	530	106	114	Jul 1700
wudu ablutions	51	941	1342	288	57	62	Jul 1700
womens rest	40	3686	1908	2014	194	90	Jul 1700
mens bath	55	4380	2448	2100	240	113	Jul 1700
wudu ablutions	25	591	732	142	37	34	Jul 1700
gathering hall	248	7455	12023	1767	459	549	Jul 1700
library / sitting	139	6819	10127	1778	301	431	Jul 1700
ahu 4	651	25606	31052	8619	1394	1394	Jul 1700

Job: Jan 09, 2007

Project Information

For:

						III Zalberalus		28.5
Outside db	(°F)	Htg 33	Clg 91	Inside db	(°F)	Htg 70	Clg 75	
Outside RH	(%)	-	52	Inside RH	(%)	-	50	
Outside wb	(°F)	7 - 2	77	Inside wb	(°F)	-	63	
Daily range	(°F)	_	19	Design TD	(°F)	37	16	
Moisture diff.	(gr/lb)	-	52				(T.)	

Heating Equipment

Cooling Equipment

Make Model Type			Make Model Type		
Efficiency / HSPF	0.0		COP/EER/SEER	0.0	
Heating Input	0.0	MBtuh	Sensible Cooling	0.0	MBtuh
Heating Output	0.0	MBtuh	Latent Cooling	0.0	MBtuh
Humidifier	0.0	apd	Total Cooling	0.0	MBtuh
Leaving Air Temp	70.0	gpd °F	Leaving Air Temp	55.0	°F
Actual Heating Fan	1465	cfm	Actual Cooling Fan	1465	cfm

Equipment Location ahu 3
System Type PEAKCV
Fan Motor Heat Type PACKAGE
Fan & Motor Combined Efficiency
Static Pressure Across Fan 0.0 in H2O

NAME	Area ft²	Heat Loss	Sensible Gain	Latent Gain	Htg cfm	Clg cfm	Time
janitor serving corridor cultural hall	40 90 256 703	1352 1519 5082 10576	1232 2406 8277 19878	227 511 1810 4345	122 125 397 821	61 110 378 916	Jul 1600 Jul 1600 Jul 1600 Jul 1600
ahu 3	1089	18529	31793	6893	1465	1465	Jul 1600

Job: Jan 09, 2007

Project Information

For:

	THE REAL PROPERTY.			District with only to the late of the	Del To Bligger	Zorani wiel	andron bak
Outside db	(°F)	Htg	Clg	lucido dh	/or\	Htg	Clg 75
	(. /	33	92	Inside db	(°F)	70	15
Outside RH	(%)	-	51	Inside RH	(%)	-	50
Outside wb	(°F)	-	77	Inside wb	(°F)	_	63
Daily range	(°F)	-	19	Design TD	(°F)	37	17
Moisture diff.	(gr/lb)	-	52				

Heating Equipment

Cooling Equipment

Make Model Type			Make Model Type		
Efficiency / HSPF Heating Input Heating Output	0.0 0.0 0.0	MBtuh MBtuh	COP / EER / SEER Sensible Cooling Latent Cooling	0.0 0.0 0.0	MBtuh MBtuh
Humidifier Leaving Air Temp Actual Heating Fan	0.0 70.0 1536	gpd °F cfm	Total Cooling Leaving Air Temp Actual Cooling Fan	0.0 55.0 1536	MBtuh °F cfm

Equipment Location ahu 1
System Type PEAKCV
Fan Motor Heat Type PACKAGE
Fan & Motor Combined Efficiency 0.0 %
Static Pressure Across Fan 0.0 in H2O

NAME	Area ft²	Heat Loss	Sensible Gain	Latent Gain	Htg cfm	Clg cfm	Time
mosque male worship mosque female worship	889 433	14991 4381	23139 10452	5759 2460	1207 328	1058 478	Jul 1500 Jul 1500
ahu 1	1322	19372	33591	8218	1536	1536	Jul 1500

Right-Suite Commercial Load Calculation janitor

Job: Jan 09, 2007

Project Information

THE RESIDENCE OF THE PARTY OF T									
Zone: janitor									
	LWH:	10.0 x	4.0 x	15.0	DESCRIPTION O			CHIANTAL PARADRA MONAS	N-18-10-200-2003-18-0
1. DESIGN CONDIT	TIONS - 0	COOLING		(Jul 16	600)			1	
Outdoor Condition Indoor Conditions TOD Correction	s	$\stackrel{\longrightarrow}{\rightarrow}$	Dry Blb 91 75 1	RH 52 50	Mois	ture	Range 19	Wet Blb 77 63	
Difference			16		52.0				
2. GLAZING SOLAI	RHEAT	GAIN	(Lat	= 29.6	. N° 86	Const V	Nt = M	-[Mult =)	1.0]
Type Orien n/a 0 n/a	Area 0	Tilt 0	ShdF IntSh		O.00	SC 0.00	Sens/A 0.0	Sens 0	# 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3. TRANSMISSION	GAINS								
Type Orien WALL 2 NE WALL 2 NW FLOR 1 - ROOF 1 -	GrArea 60 150 14 40	NtArea 60 150 14	Uval 0.068 0.068 0.810 0.040	D	CLTD 25.9 15.9 0.0	Shad N N	Clr D D	Sens 106 163 0	
WALL 2 NE WALL 2 NW FLOR 1 - ROOF 1 -	60 150 14 40	60 150	0.068 0.068	D .	25.9 15.9	N	D	106 163	
WALL 2 NE WALL 2 NW FLOR 1 - ROOF 1 -	60 150 14 40	60 150 14	0.068 0.068 0.810	D .	25.9 15.9 0.0	N	D D	106 163 0	Latent
WALL 2 NE WALL 2 NW FLOR 1 - ROOF 1 -	60 150 14 40 F GAIN	60 150 14 40 ft²/prsn #	0.068 0.068 0.810 0.040	D D R-4	25.9 15.9 0.0 67.6	N	D D D	106 163 0 108 Sens	Latent 84

LIC	GHTS			2						
	Type	1011012	100	Total			actor	Spac		
	Schedule	W/ft²		W .		В	tuh/W	frac		
	Fluorescent	3.68	0	147			4.10	1.0	604	
	8ato12m	0.00		120			d age	7/2000		
	Fluorescent	0.00	0	0			4.10	1.0	0	
	Elverseent	0.00		•						
	Fluorescent	0.00	0	0			4.10	1.0	0	
	Chieresent	0.00	0							
	Fluorescent	0.00	0	0			4.10	1.0) 0	
DI I	JG LOADS / API	TANCE	C							
TEC	Application	LIANCE	3	Usage	Total	Con	sible	11242		
	Schedule			Usage	Total			Laten	t	
	Ochleddie	#/ft²	#			ы	uh	Btuh		
		0.000		1.00	0		0	7 2 2		0
		#/ft²	#	1.00	U		U	Ü	0	0
		0.000		1.00	0		0	0		
		#/ft²	#	1.00	U		U	U	0	0
		0.000		1.00	0		0	0	0	0
		#/ft²	#	1.00	U		U		U	0
		0.000		1.00	0		0	_		
		#/ft²	#	1.00	U		U	0	0	0
		0.000		1.00	0		0	0	0	0
		#/ft ²	#	1.00	U		U	U	U	0
		0.000		1.00	0		0	0	0	0
MO	TORS								0	U
	Power (hp)			Load	Total	Sens	sible			
	Schedule	#/ft²	#	factor	· Juli	Bt				
	0.00	0.0	Ö	1.00	0	50	0		0	
				. ಜನ್ ಡಾಹ್.c	all a		1 48 5		- 0	
	0.00	0.0	0	1.00	0		0		0	2
1000							250			
	0.00	0.0	0	1.00	0		0		0	
					-					
5. INFILTRA				_ '					Sens	Latent
	4 cfm -		x db	Temp Diff		16.4 x	1.09		72	
		>	x Mo	oist. Diff		52.0 x	0.69			143
6. SUBTOTA	AL COOLING L	OAD FOR	CDAC	B					1000	
o. SUBTOTA	AL COOLING L	UAD FOR	SPAC	E .					1232	227
7. SUPPLY I	DUCT HEAT GA	IN					12.7		1	
Gain fa				Line & Cor-	ible Cal					
- Gairi i	auti 0.00	1 4 1	X	Line 6 Sens	ible Gain		A 150	4	0	
8. COOLING	G FAN SIZING							1/		
	of Duct Gain	(7),	Line	(6) & D	rowther. F	on			4000	
Juli	Duoi Gaill		Sens		rawthru F		_ =		1232	
Est Co	ooling cfm	= (LO	3ens 123	/		pply TD) =			
	Cooling Fan	_ (123	1 (1.0	9 x	20.0 —>) =	56		
rioladi	o John g i dii							61	117	
9. VENTILA	TION									
	0 cfm -	>	db x	Temp Diff	4	16.4 x	1.09		0	
	_			ist. Diff		52.0 x	0.69		U	
			· IVIO	ISC DIII		02.U X	0.09		, i	0
10. RETURN	AIR LOAD FRO	MLICH	TING A	ND ROOF						an - Andres - Andres
	ghts	LIGH	III O A	Total pow	or (\\/)		26,002	D	604	
	A Roof Load						368931		604	
	A Ceiling Load C	redit		from Line					0	
17/	Coming Load C	Cuit		from Line	S (-)				0	

11. RETURN DUCT HEAT GAIN Gain factor 0.00	x Line 6 Sensible Gain	0
2. TOTAL COOLING LOADS ON EQ	UIPMENT (Btuh)	1232 227
SP	ACE HEATING LOAD CALCULATIO	N
3. HEATING DESIGN TEMPERATUR	E	- y
Heating TD = (Inside DB -	Outside DB) = (70	- 33) = 37
4. TRANSMISSION LOSSES	2 3	[Mult = 1.0]
Type Expos GrArea New WALL 2 NE 60 WALL 2 NW 150 FLOR 1 - 14 ROOF 1 - 40	tArea Uval HT 60 0.068 37.0 150 0.068 37.0 14 0.810 37.0 40 0.040 37.0	0 151 0 377 0 420
5. INFILTRATION 6 cfm x db Temp [Diff 37.0 x 1.09	Loss 243
5. SUBTOTAL HEATING LOAD FOR	SPACE	1250
Loss factor 0.00 x	Line 16 Loss	0
. VENTILATION 0 cfm x db Temp E	oiff 37.0 x 1.09	0
. HUMIDIFICATION Inside RH desired # of Glazing panes:		}
6 cfm x 4.56	g/100cfm/d = 0.3	gpd 102
. RETURN DUCT HEAT LOSS Loss factor 0.00 x	Line 16 Loss	0
. TOTAL HEATING LOAD ON EQUP	MENT (Rfuh)	1352

Right-Suite Commercial Load Calculation serving

Job: Jan 09, 2007

Project Information

	g LWH: 1	10.0		用(格等)(2)(2)	CONTRACT OF STREET				
	LVVH.	10.0	x 9.0 x	15.0			1		
I. DESIGN CONDIT	TIONS - CO	OLING		(Jul 16	300)				
Outdoor Condition Indoor Conditions TOD Correction		$\stackrel{\longrightarrow}{\Longrightarrow}$	Dry Blb 91 75 1	RH 52 50	Mois	ture	Range V 19	Vet Blb 77 63	
Difference			16	-1	52.0				
2. GLAZING SOLA	DHEATC	ATNI	/ Lat	- 20.0	0.001	0	[Mult =	1.0]
GEREING BOLA	KIILAI GA	-XIIV	(Lat	- 29.0	88 °N ,	Const V	Vt = M)		
Type Orien n/a 0 n/a	Area 0	Tilt 0	ShdF IntSh		Mult 0.00	SC 0.00	Sens/A 0.0	Sens 0	
					0.00	0.00	0.0		
3. TRANSMISSION	- 17				0.00	0.00	0.0	-	<u> </u>
Type Orien	GAINS GrArea	NtArea		Grp	CLTD	Shad	Clr	Sens	
Type Orien WALL 2 NE	GAINS GrArea 135	NtArea	0.068	Grp D	CLTD 25.9				
Type Orien WALL 2 NE FLOR 1 -	GAINS GrArea 135 9	NtArea 135	0.068 0.810	Grp D	CLTD 25.9 0.0	Shad	Clr	Sens	
Type Orien WALL 2 NE	GAINS GrArea 135	NtArea	0.068 0.810	Grp D	CLTD 25.9	Shad	Clr	Sens 238	
Type Orien WALL 2 NE FLOR 1 - ROOF 1 -	GAINS GrArea 135 9 90	NtArea 135	0.068 0.810	Grp D	CLTD 25.9 0.0	Shad	Clr D	Sens 238 0	1 100
Type Orien WALL 2 NE FLOR 1 - ROOF 1 -	GAINS GrArea 135 9 90	NtArea 135	0.068 0.810	Grp D	CLTD 25.9 0.0	Shad	Clr D	Sens 238 0 244	Latent
Type Orien WALL 2 NE FLOR 1 - ROOF 1 - INTERNAL HEAT	GAINS GrArea 135 9 90	NtArea 135	0.068 0.810	Grp D	CLTD 25.9 0.0	Shad	Clr D	Sens 238 0	Latent
Type Orien WALL 2 NE FLOR 1 - ROOF 1 - INTERNAL HEAT PEOPLE Activity	GAINS GrArea 135 9 90 I GAIN	NtArea 135 9 90	0.068 0.810 0.040	Grp D R-4	CLTD 25.9 0.0 67.6	Shad	Clr D	Sens 238 0 244	Latent
Type Orien WALL 2 NE FLOR 1 - ROOF 1 - INTERNAL HEAT PEOPLE Activity Sche	GAINS GrArea 135 9 90 I GAIN	NtArea 135 9 90	7 Tota # peop	Grp D R-4	CLTD 25.9 0.0 67.6	Shad N -	Clr D - D	Sens 238 0 244 Sens	Latent
Type Orien WALL 2 NE FLOR 1 - ROOF 1 - INTERNAL HEAT PEOPLE Activity	GAINS GrArea 135 9 90 I GAIN dule ft²/	NtArea 135 9 90	0.068 0.810 0.040 Tota # peop	Grp D R-4	CLTD 25.9 0.0 67.6	Shad N - - Sensible	Clr D - D	Sens 238 0 244 Sens	Latent

	LIGHTS									
	Type Schedule Fluorescent	W/ft² 3.68	W	Total W 331			Factor Btuh/W 4.10	Space fract 1.0	1358	
	8ato12m			001			4.10	1.0	1330	
	Fluorescent	0.00	0	0			4.10	1.0	0	
	Fluorescent	0.00	0	0			4.10	1.0	0	
	Fluorescent	0.00	0	0			4.10	1.0	0	
	PLUG LOADS / APP	LIANCES								
	Application Schedule			Usage	Total		Sensible Btuh	Latent Btuh		
		#/ft ² 0.000	# 0.00	1.00	0		0	0	0	0
		#/ft²	#							
		0.000 #/ft ²	0.00 #	1.00	0		0	0	0	0
		0.000 #/ft²		1.00	0		0	0	0	0
		0.000 (#/ft²	0.00	1.00	0		0	0	0	0
		0.000		1.00	0		0	0	0	0
		#/ft ² 0.000 (# 0.00	1.00	0		0	0	0	0
	MOTORS									
	Power (hp) Schedule	#/ft²	#	Load factor	Total	5	Sensible Btuh			
	0.00	0.0	0	1.00	0		0		0	
	0.00	0.0	0	1.00	0		0		0	
	0.00	0.0	0	1.00	0		0		0	
5.	INFILTRATION 9 cfm —	—> > —> >		Temp Diff pist. Diff		16.4 52.0		. 10 5	Sens 162	Latent 322
6.	SUBTOTAL COOLING LO	DAD FOR	SPAC	E					2406	511
7.	SUPPLY DUCT HEAT GA Gain factor 0.00	IN .	×	Line 6 Sensi	ble Gai	n		es a	0	
8.	COOLING FAN SIZING Sum of Duct Gain	(7),	Line		awthru		=	. H	2406	
	Est Cooling cfm Actual Cooling Fan	(L 8 S	Sens 240) / (Xfer 06) / (1.09		upply T 20.0 >		cfm 110 110		
9.	VENTILATION 0 cfm —	—> x		Temp Diff		16.4 52.0		5 pt	0	0
10.	RETURN AIR LOAD FRO Lights RA Roof Load RA Ceiling Load C		ING A	AND ROOF Total power from Line from Line	3 (+))	2	u2 4	1358 0 0	- 1 - 0 - 1

11.	Gain factor	0.00	хL	ine 6 Sens	sible Gain					0	
12.	TOTAL COOLING	LOADS ON	EQUIPMEN	T (Btuh)	đi.					2406	511
	12 12		SPACE HE	ATING LO	DAD CALO	CULA	TION				-
13.	HEATING DESIGN	N TEMPERAT	URE				=				
	Heating TD	= (Inside DE	3 - Outside I	DB)	, =	(70 -	33)	=	37	
14.	TRANSMISSION L	OSSES					iii , a		[Mult =	1.0]
V F	Type Expos VALL 2 NE LOR 1 - OOF 1 -	GrArea 135 9 90	NetArea 135 9 90	Uval 0.068 0.810 0.040			HTD 37.0 37.0 37.0				Loss 340 270 133
15.	INFILTRATION 14 cfm	x db Tem	np Diff	37.0	x 1.09			1			Loss 546
16.	SUBTOTAL HEAT	ING LOAD FO	OR SPACE	5 100							1289
17.	SUPPLY DUCT HE Loss factor		Line 16	Loss							0
8.	VENTILATION 0 cfm	x db Tem	p Diff	37.0	x 1.09						0
9.	HUMIDIFICATION Inside RH desi # of Glazing pa	red :		Max = Max =	32.0 for 52.0 for						
	14 cfm	x 4.56	g/100cfr	n/d	= (0.6	gpd	ί,			230
0.	RETURN DUCT HE Loss factor		Line 16 L	oss	(K - 4- 2	12				101	0
1.	TOTAL HEATING	LOAD ON EO	UPMENT (1	Btuh)					,		1519

Right-Suite Commercial Load Calculation hvac equip

Job: Jan 09, 2007

Project Information

		3	LWH:	11.7	v	8.0	x 15	5.0					
			LVVII.	11.7	^	0.0	A 10	J.U		-			
I. DES	IGN	CONDIT	TIONS - C	COOLING	G		()	Jul 17	00)				
Indoo	r Co	condition nditions ection	ıs	$\stackrel{\longrightarrow}{\rightarrow}$		Dry Blb 90 75 2		RH 54 50	Mois	ture	Range 19	Wet Blb 77 63	
Dif	fere	nce				15			52.0			1 1	
			R HEAT	GAIN	***	(Lat	=	29.6	8 °N	Const V	Nt = M	-[Mult =)	1.0] —
Type n/a	0	Orien n/a	Area 0	Tilt	S	hdF In	tShd		Mult	SC 0.00	Sens/A	Sens	
n/a	0	n/a	0		S	hdF In	tShd		Mult 0.00	SC 0.00	Sens/A 0.0	Sens 0	
n/a 3. TRA	0 NSM	n/a ISSION	0 GAINS	0		hdF In	tShd						
n/a 3. TRAI Type WALL	0 NSM 2	n/a	GAINS GrArea 175	0 NtAre	ea 75	Uva 0.00	il (CLTD 19.9			0 Sens 237	
n/a 3. TRAI Type	0 NSM	n/a ISSION Orien	GAINS GrArea	0 NtAre	ea	Uva 0.06 0.8	il (Grp	0.00 CLTD	0.00 Shad	0.0	0 Sens	
Type WALL FLOR ROOF	0 NSM 2 1 1	n/a ISSION Orien NW	0 GAINS GrArea 175 12 93	0 NtAre	ea 75 12	Uva 0.06 0.8	il (68 D 10	Grp	CLTD 19.9 0.0	0.00 Shad	O.O Clr D	Sens 237 0	Latent
Type WALL FLOR ROOF	0 NSM 2 1 1 RNA	n/a ISSION Orien NW	GAINS GrArea 175 12 93	NtAre	ea 75 12 93	Uva 0.06 0.8 0.04	il 0 68 D 10 40 R-	Grp	CLTD 19.9 0.0 67.6	0.00 Shad N	O.O Clr D D	Sens 237 0 253 Sens	Latent
Type WALL FLOR ROOF	0 NSM 2 1 1 RNA	n/a ISSION Orien NW	GAINS GrArea 175 12 93 I GAIN	0 NtAre	ea 75 12	Uva 0.06 0.8 0.04	il (68 D 10 40 R-	Grp	CLTD 19.9 0.0 67.6	Shad N	O.O Clr D D	Sens 237 0 253 Sens oft orsn	Latent 196

	LIGHTS								
	Type	311		Total		Factor	Space		
	Schedule	W/ft ²		W		Btuh/W	fract		
	Fluorescent	3.68	0	343		4.10	1.0	1408	
	8ato12m								
	Fluorescent	0.00	0	0		4.10	1.0	0	
	Fluorescent	0.00	0	0		4.10	1.0	0	
	Fluorescent	0.00	0	0		4.10	1.0	0	
	PLUG LOADS / API	PLIANCE	S						
	Application			Usage	Total	Sensible	Latent		
	Schedule			3-		Btuh	Btuh		
		#/ft²	#						
		0.000	0.00	1.00	0	0	0	0	0
		#/ft2	#						-
		0.000 #/ft ²	0.00	1.00	0	0	0	0	0
		0.000	0.00	1.00	0	0	0	0	0
		#/ft ² 0.000	0.00	1.00	0	0	0	0	0
		#/ft²	#	1.00	U	O	U	U	. 0
		0.000 #/ft²		1.00	0	0	0	0	0
		0.000	0.00	1.00	0	0	0	0	0
	MOTORS	0.000	0.00	.1.00	U	U	· ·	U	U
	Power (hp)			Load	Total	Sensible			
	Schedule	#/ft²	#	factor	10101	Btuh			
	0.00	0.0	0	1.00	0	0		0	
	0.00	0.0	0	1.00	0	0		- 0	
	0.00	0.0	0	1.00	0	0		0	
_							115		
5.	INFILTRATION			T 5:11				Sens	Latent
	9 cfm -			Temp Diff		15.1 x 1.09		154	1 1 2 2 1
		>	x M	oist. Diff		52.0 x 0.69			334
6.	SUBTOTAL COOLING L	OAD FOR	R SPAC	Œ		-		2473	530
	CURRI V DUCE HEAT C	TNI							
7.	Gain factor 0.00		>	k Line 6 Sens	ible Gair	1 9		0	
8.	COOLING FAN SIZING								
	Sum of Duct Gain	(7),	Line		rawthru l			2473	
			Sens) / (Xfer	x Su		= cfm		
	Est Cooling cfm Actual Cooling Fan	= (24	73) / (1.09	9 x		= 113 = 114		
9.	VENTILATION								
	0 cfm -	>	x db	Temp Diff		15.1 x 1.09		0	
	-			oist. Diff		52.0 x 0.69			0
10	RETURN AIR LOAD FRO	OM LIGH	TING	AND POOF					
10.	Lights	JII LIGH	ALITO A	Total pow	er (\A/ \	0		1408	
	RA Roof Load			from Line	3 (+)	U		0	
	RA Ceiling Load (Credit		from Line	3 (-)			0	
	3 5 2 2300 (HOM LINE	5 (7)			U	

to make the first of the second					
12. TOTAL COOLING LOADS ON	N EQUIPMENT (Btuh)			2473	530
4.75	SPACE HEATING LO	AD CALCULATION			
3. HEATING DESIGN TEMPERA	TURE				
Heating TD = (Inside [DB - Outside DB)	= (70 - 33	3) = 37		
4. TRANSMISSION LOSSES			[Mu	lt =	1.0]
Type Expos GrArea WALL 2 NW 175 FLOR 1 - 12	NetArea Uval 175 0.068 12 0.810	HTD 37.0 37.0			Loss 440 350 138
ROOF 1 - 93	93 0.040	37.0			130
5. INFILTRATION 14 cfm x db Te	emp Diff 37.0	x 1.09			Loss 567
5. INFILTRATION 14 cfm x db Te	emp Diff 37.0				Loss
5. INFILTRATION 14 cfm x db Te 6. SUBTOTAL HEATING LOAD 7. SUPPLY DUCT HEAT LOSS	emp Diff 37.0				Loss 567
5. INFILTRATION 14 cfm x db Te 6. SUBTOTAL HEATING LOAD 7. SUPPLY DUCT HEAT LOSS	emp Diff 37.0 FOR SPACE x Line 16 Loss				Loss 567 1495
5. INFILTRATION 14 cfm x db Te 6. SUBTOTAL HEATING LOAD 7. SUPPLY DUCT HEAT LOSS Loss factor 0.00 8. VENTILATION 0 cfm x db Te 9. HUMIDIFICATION Inside RH desired	emp Diff 37.0 FOR SPACE x Line 16 Loss mp Diff 37.0	x 1.09 x 1.09 32.0 for 1 pane)			Loss 567 1495
5. INFILTRATION 14 cfm x db Te 6. SUBTOTAL HEATING LOAD 7. SUPPLY DUCT HEAT LOSS Loss factor 0.00 8. VENTILATION 0 cfm x db Te 9. HUMIDIFICATION Inside RH desired	mp Diff 37.0 FOR SPACE x Line 16 Loss mp Diff 37.0 : 40.0 (Max = 0.0 (Max	x 1.09 x 1.09 32.0 for 1 pane)			Loss 567 1495

Right-Suite Commercial Load Calculation wudu ablutions

Job: Jan 09, 2007

Project Information

11 2			LWH:	6.3	X	8.0 x	15.0					
1. DES	IGN	CONDI	TIONS - 0	COOLIN	G		(Jul 17	700)		1 se		1-2
Indoo	r Co	Conditions editions		=	> >	Dry Blb 90 75 2	RH 54 50	Mois	ture	Range 19	Wet Blb 77 63	
Dif	ferer	nce				15		52.0				
2. GLA	ZINO	G SOLA	RHEAT	GAIN		(Lat	= 29.6	88 °N	Const V	Vt = M	[Mult =)	1.0]-
Type		Orien	Area	Tilt		ShdF IntSh	d SC	Mult	SC	Sens/A	Sens	
n/a	0	n/a	0	0				0.00	0.00	0.0	0	
n/a	0	n/a										
n/a TRAI Type WALL	0 NSM	n/a	0 N GAINS GrArea 95		711	.Uval 0.068	Grp					
n/a TRAI	0 NSM	n/a IISSION Orien	0 GAINS GrArea	0	rea	Uval	Grp D	0.00	0.00 Shad	0.0	Sens	
Type WALL FLOR ROOF	0 NSM 2 1	n/a USSION Orien NW -	0 N GAINS GrArea 95 6	0	rea 95 6	.Uval 0.068 0.810	Grp D	0.00 CLTD 19.9 0.0	0.00 Shad	O.O Clr D	Sens 129 0 137	
Type WALL FLOR ROOF	0 NSM 2 1 1	n/a USSION Orien NW -	0 GAINS GrArea 95 6 51	0	rea 95 6	.Uval 0.068 0.810	Grp D	0.00 CLTD 19.9 0.0	0.00 Shad	O.O Clr D	Sens 129 0	Latent
TRAI Type WALL FLOR ROOF	0 NSM 2 1 1 RNA	n/a USSION Orien NW AL HEA PLE Activity	0 GAINS GrArea 95 6 51	NtA	95 6 51	Uval 0.068 0.810 0.040	Grp D R-4	0.00 CLTD 19.9 0.0	0.00 Shad	O.O Clr D	Sens 129 0 137	Latent
Type WALL FLOR ROOF	0 NSM 2 1 1 RNA	n/a USSION Orien NW AL HEA PLE Activity Scho	0 GAINS GrArea 95 6 51 T GAIN	0	rea 95 6	Uval 0.068 0.810 0.040 Total peopl	Grp D R-4	0.00 CLTD 19.9 0.0 67.6	Shad N	O.O CIr D D Latent	Sens 129 0 137 Sens	Latent 106

W/ft² 3.68	W	Total W 186			3tuh/W		ract	764	
0.00	0								
0.00	0	0			4.10		1.0	0	
		Usage	Total						
0.000	0.00	1.00	0		0		0	0	0
0.000	0.00	1.00	0		0		0	0	0
0.000	0.00	1.00	0		0		0	0	0
0.000	0.00	1.00	0		0		0	0	0
0.000	0.00	1.00	0		0		0	0	0
		1.00	0		0		0	0	0
		Load	Total						
#/ft² 0.0	# 0	factor 1.00	0	В	tuh 0			0	
0.0	0	1.00	0		0			0	
0.0	0	1.00	0		0		5	0	
			+	15.1 x 52.0 x	1.09 0.69			Sens 84	Latent 181
OAD FOR	SPAC	E						1342	288
IN	×	Line 6 Sens	ible Gai	n				0	
) / (Xfer	x St	upply TD				1342	10 16 83
_ (, , (>		62			
	k db	Temp Diff			1.09	62		0	0
	3.68 0.00 0.00 0.00 0.00 0.00 LIANCES #/ft² 0.000 #/ft² 0.000 #/ft² 0.000 #/ft² 0.000 #/ft² 0.000 0.00 0.0	3.68 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0.00 #/ft² # 0.000 0.00 #/ft² # 0.00 0 0.00 #/ft² # 0.00 0 0.00 #/ft² # 0.0 0 0.0 0 0.0 0 0.0 0 DAD FOR SPAC IN X	W/ff² W W 3.68 0 186 0.00 0 0 0.00 0 0 0.00 0 0 0.00 0 0 0.00 0 0 Usage #/ft² # 0.000 0.00 1.00 */ft² # 0.000 0.0	W/ft² W W 3.68 0 186	W/ft² W W 3.68 0 186 0.00 0 0 0 0 0 0 0 0	W/ft² W W Btuh/W 3.68 0 186 4.10 0.00 0 0 4.10 0.00 0 0 4.10 0.00 0 0 4.10 Liances Usage Total Sensible Btuh #/ft² # 0.000 0.00 1.00 0 0 #/ft² # factor 0.00 0 0 0.00 0.00 0 1.00 0 0 0 0.00 0.00 0 1.00 0 0 0 0.00 0 0 0 0 0.00 0 0 0 0 0.00 0 0 0 0 0.00	W/ft² W W 3.68 0 186 4.10 0.00 0 0 0 4.10 0.00 0 0 0 4.10 0.00 0 0 0 4.10 0.00 0 0 0 4.10 CLIANCES Usage Total Sensible Buth Bith Bith Bith Bith Bith Bith Bith Bi	W/ft ²	W/ft² W W Btuh/W fract 4.10 1.0 764

11.	Gain fac		0.00	<u>.</u>	x Line	e 6 Sens	sible G	ain						0	
12.	TOTAL CO	OLING	LOADS C	N EQUII	MENT	(Btuh)		Ч	0.	T T			13	42	288
			3	SPAC	E HEAT	TING LO	OAD C	ALCU	LAT	ION					
3.	HEATING I	ESIGN	ТЕМРЕК	ATURE									-		5
	Heating	TD :	= (Inside	DB - Out	side DE	3)		= ((70) -	33)	=	37		
4.	TRANSMISS	SION LO	OSSES	-					-	-			[Mult	=	1.0]
W FL		xpos IW - -	GrArea 95 6 51	NetAr	ea 95 6 51	Uval 0.068 0.810 0.040			3	HTD 37.0 37.0 37.0					Loss 239 190 75
5.	INFILTRAT 8		x db T	emp Diff		37.0	x	1.09							Loss 308
ó.	SUBTOTAL	HEATI	NG LOAD	FOR SP	ACE		1	3			10 19				811
7.	SUPPLY DU Loss fac		0.00	x Lin	e 16 Lo	SS	i 2	7		1					0
3.	VENTILATIO		x db T	emp Diff		37.0	x	1.09							0
•	HUMIDIFIC Inside R # of Gla	H desire		: 40. : 0.		ax =	32.0 52.0	for 1 p	oane oane)		f	10.1		
	8	cfm	x 4.56	g/1	00cfm/	d	=	0.3	E	gpo	1				130
	RETURN DU Loss fac		AT LOSS 0.00	x Lin	e 16 Los	SS					10				0
	TOTAL HEA	TINGI	OADON	FOLIDME	NT (D4	-1-1									941

Right-Suite Commercial Load Calculation womens rest

Job: Jan 09, 2007

Project Information

A PER TONESCOPETIVE	SAME AT SHIPS	OTHER SECTION AND ADDRESS OF THE PERSON AND	LWH:	6.0	X	6.7	x 15.0	18968119051	Medical College Co.		en Les Debus II y false	
l. DES	IGN C	CONDI	TIONS -	COOLI	NG	E 1	(Jul 1	700)	3 3 3 3 3	14	-	
	r Con	ondition ditions ection		=	-> -> ->	Dry Blb 90 75 2	RH 54 50		ture	Range 19	Wet Blb 77 63	
Dif	feren	ce				15		52.0				
. GLA			RHEAT			(Lat		68 °N	, Const V		Tag B	1.0 1
		Orien n/a	Area			ShdF Int	Shd S	CMult	SC	Sens/A	Sens	
n/a	0	n/a	0	(ondr Int	sna S	0.00	0.00	0.0	Sens 0	
n/a TRAI Type WALL	0 NSMI	n/a	GAINS GrArea	a Nt	Area 90	Uval 0.06	Grp 8 D	0.00 CLTD 19.9			Sens	
TRAI Type WALL FLOR	0 NSMI	n/a SSION Orien	GAINS GrArea	n Nt) Area	Uval 0.06 0.81	Grp 8 D	0.00	0.00 Shad	0.0	0 Sens	
TRAI Type WALL FLOR ROOF	0 NSMI 2 1 1 1	n/a SSION Orien NW -	GAINS GrArea 90	n Nt	Area 90 6	Uval 0.06 0.81	Grp 8 D 0	0.00 CLTD 19.9 0.0	0.00 Shad	O.O Clr D	Sens 122 0	
TRAI Type WALL FLOR ROOF	NSMI (2 1 1 1 1 1 1 1 1 1	n/a SSION Orien NW L HEA	GAINS GrArea 90	n Nt	Area 90 6	Uval 0.06 0.81	Grp 8 D 0	0.00 CLTD 19.9 0.0	0.00 Shad	O.O Clr D	Sens 122 0	Latent
TRAI Type WALL FLOR ROOF	NSMI 2 1 1 RNA	SSION Orien NW L HEA PLE Activity	GAINS GrArea 90	a Nt	Area 90 6 40	Uval 0.06 0.81 0.04	Grp 8 D 0 0 R-4	0.00 CLTD 19.9 0.0	Shad N	O.O Clr D D	Sens 122 0 108 Sens	
Type WALL FLOR ROOF	NSMI 2 1 1 1 RNA	SSION Orien NW L HEA PLE Activity	GAINS GrArea 90 40 T GAIN	n Nt	Area 90 6 40	Uval 0.06 0.81 0.04	Grp 8 D 0 0 R-4	0.00 CLTD 19.9 0.0	Shad N	O.O Clr D D	Sens 122 0 108 Sens nt	

	LIGHTS									
	Type Schedule	W/ft²		Total W			actor Stuh/W	Space fract		
	Fluorescent 8ato12m	3.68	0	147			4.10	1.0	604	
	Fluorescent	0.00	0	0			4.10	1.0	0	
	Fluorescent	0.00	0	0			4.10	1.0	0	
	Fluorescent	0.00	0	0			4.10	1.0	0	
	PLUG LOADS / API	PLIANCE	S							
	Application Schedule			Usage	Total		isible tuh	Latent Btuh		
		#/ft²	#							
		0.000	0.00	1.00	0		0	0	0	0
		#/ft²	#							
		0.000 #/ft ²	0.00	1.00	0		0	0	0	0
		0.000 #/ft²		1.00	0		0	0	0	0
		0.000	0.00	1.00	0		0	0	0	0
		#/ft ² 0.000	# 0.00	1.00	0		0	0	0	0
		#/ft ² 0.000	0.00	1.00	0		0	0	0	0
	MOTORS	0.000	0.00	1.00	U		U	U	U	U
	Power (hp)			Load	Total	Sen	sible			
	Schedule	#/ft²	#	factor	10101		uh			
	0.00	0.0	0	1.00	0		0		0	
	0.00	0.0	0	1.00	0		0		0	
	0.00	0.0	0	1.00	0		0		0	
		1			-			· ·		
5.	INFILTRATION			T D:#		45.4	4.00		Sens	Latent
	54 cfm -	>		Temp Diff pist. Diff		15.1 x 52.0 x	1.09 0.69		894	1930
6.	SUBTOTAL COOLING L					. Consider the	1100000000000			000000000000000000000000000000000000000
•		OAD FOI	R SPAC	E				3	1908	2014
			R SPAC	E	-	95		190	1908	2014
	SUPPLY DUCT HEAT GA Gain factor 0.00	JN		E Line 6 Sens	sible Gai	n		-1	1908	2014
	SUPPLY DUCT HEAT GA Gain factor 0.00 COOLING FAN SIZING	JIN	×	Line 6 Sens					0	2014
	SUPPLY DUCT HEAT GA Gain factor 0.00	(7),	x Line	Line 6 Sens	rawthru	Fan				2014
	SUPPLY DUCT HEAT GA Gain factor 0.00 COOLING FAN SIZING Sum of Duct Gain	(7), (L 8	X Line Sens	Line 6 Sens (6) & D) / (Xfer	rawthru x S	Fan upply TD) =	cfm	0	2014
	SUPPLY DUCT HEAT GA Gain factor 0.00 COOLING FAN SIZING	(7),	x Line	Line 6 Sens (6) & D) / (Xfer	rawthru x S	Fan) =		0	2014
7.	SUPPLY DUCT HEAT GA Gain factor 0.00 COOLING FAN SIZING Sum of Duct Gain Est Cooling cfm Actual Cooling Fan VENTILATION	(7), (L 8	Line Sens 190	(6) & D) / (Xfer	rawthru x S	Fan upply TD 20.0) =	87	0	2014
8.	SUPPLY DUCT HEAT GA Gain factor 0.00 COOLING FAN SIZING Sum of Duct Gain Est Cooling cfm Actual Cooling Fan	(7), (L 8 = (Line Sens 190 x db	(6) & D) / (Xfer)8) / (1.0	rawthru x S	Fan upply TD 20.0 —>	1.09	87	0	
7. 8.	SUPPLY DUCT HEAT GA Gain factor 0.00 COOLING FAN SIZING Sum of Duct Gain Est Cooling cfm Actual Cooling Fan VENTILATION 0 cfm	(7), (L 8 = (Line Sens 190 x db x Mo	(6) & D) / (Xfer)8) / (1.0 Temp Diff ist. Diff	rawthru x S	Fan upply TD 20.0 —->) = = =	87	1908	0
7. 8.	SUPPLY DUCT HEAT GA Gain factor 0.00 COOLING FAN SIZING Sum of Duct Gain Est Cooling cfm Actual Cooling Fan VENTILATION 0 cfm -	(7), (L 8 = (Line Sens 190 x db x Mo	Line 6 Sens (6) & D) / (Xfer)8) / (1.0 Temp Diff ist. Diff	rawthru x S 9 x	Fan upply TD 20.0> 15.1 x 52.0 x	1.09	87 90	0 1908	
7.	SUPPLY DUCT HEAT GA Gain factor 0.00 COOLING FAN SIZING Sum of Duct Gain Est Cooling cfm Actual Cooling Fan VENTILATION 0 cfm -	(7), (L 8 = (Line Sens 190 x db x Mo	Line 6 Sens (6) & D) / (Xfer)8) / (1.0 Temp Diff ist. Diff ND ROOF Total pow	rawthru x S 9 x	Fan upply TD 20.0> 15.1 x 52.0 x	1.09	87 90	0 1908 0	
7. 8.	SUPPLY DUCT HEAT GA Gain factor 0.00 COOLING FAN SIZING Sum of Duct Gain Est Cooling cfm Actual Cooling Fan VENTILATION 0 cfm - RETURN AIR LOAD FRO Lights RA Roof Load	(7), (L 8 = (Line Sens 190 x db x Mo	Line 6 Sens (6) & D) / (Xfer)8) / (1.0 Temp Diff ist. Diff ND ROOF Total pow from Line	ver (W)	Fan upply TD 20.0> 15.1 x 52.0 x	1.09	87 90	0 1908 0 604 0	
7.	SUPPLY DUCT HEAT GA Gain factor 0.00 COOLING FAN SIZING Sum of Duct Gain Est Cooling cfm Actual Cooling Fan VENTILATION 0 cfm -	(7), (L 8 = (Line Sens 190 x db x Mo	Line 6 Sens (6) & D) / (Xfer)8) / (1.0 Temp Diff ist. Diff ND ROOF Total pow	ver (W)	Fan upply TD 20.0> 15.1 x 52.0 x	1.09	87 90	0 1908 0	

1. RETURN DUCT HEAT GAIN Gain factor 0.00	x Line 6 Sensible Gain	0	
2. TOTAL COOLING LOADS ON	EQUIPMENT (Btuh)	1908 2	2014
	SPACE HEATING LOAD CALCULATION		
3. HEATING DESIGN TEMPERA	TURE		
Heating TD = (Inside I	DB - Outside DB) = (70 - 33) = 37	
4. TRANSMISSION LOSSES		[Mult = 1.	0]-
Type Expos GrArea WALL 2 NW 90 FLOR 1 - 6 ROOF 1 - 40	NetArea Uval HTD 90 0.068 37.0 6 0.810 37.0 40 0.040 37.0		226 180 59
5. INFILTRATION 56 cfm x db Te	mp Diff 37.0 x 1.09		ss 267
6. SUBTOTAL HEATING LOAD	FOR SPACE	2	732
7. SUPPLY DUCT HEAT LOSS Loss factor 0.00	x Line 16 Loss		0
B. VENTILATION 0 cfm x db Te	mp Diff 37.0 x 1.09		0
Inside RH desired # of Glazing panes	: 40.0 (Max = 32.0 for 1 pane) : 0.0 (Max = 52.0 for 2 pane)		
56 cfm x 4.56	g/100cfm/d = 2.6 gpd		954
). RETURN DUCT HEAT LOSS Loss factor 0.00	x Line 16 Loss		0
. TOTAL HEATING LOAD ON E	OTDATEME (D4-1)		686

Right-Suite Commercial Load Calculation mens bath

Job: Jan 09, 2007

Project Information

i. DESI	GN	CONDI	TIONS - C	COOLIN	(G		(Jul 1	700)				
Indoo	r Co	Condition Inditions ection			>	Dry Blb 90 75 2	RH 54 50	Mois	ture	Range 19	Wet Blb 77 63	
Dif	fere	nce				15		52.0				
. GLA	ZIN	G SOLA	R HEAT	GAIN	-	(Lat	= 29.6	68 °N ,	Const V	Vt = M	[Mult =)	1.0]-
Type n/a	0	Orien n/a	Area 0	Tilt 0	8	ShdF IntSh	d SC	CMult 0.00	SC 0.00	Sens/A 0.0	Sens 0	
. TRA	NSM	ISSION	GAINS								17	
Type	2	Orien SW	GrArea 45	NtA	45	Uval 0.068	.Grp	CLTD 26.1	Shad N	Clr D	Sens 80	
Туре		Orien	GrArea				D D					
Type WALL WALL FLOR ROOF	2 2 1 1	Orien SW NW	GrArea 45 165 14		45 165 14	0.068 0.068 0.810	D D	26.1 19.9 0.0	N N	D D	80 224 0 149	
Type WALL WALL FLOR ROOF	2 2 1 1	Orien SW NW - - AL HEA	GrArea 45 165 14 55		45 165 14	0.068 0.068 0.810	D D	26.1 19.9 0.0	N N	D D	80 224 0	Latent
Type WALL WALL FLOR ROOF	2 2 1 1 RNA	Orien SW NW 	GrArea 45 165 14 55 T GAIN		45 165 14	0.068 0.068 0.810 0.040	D D R-4	26.1 19.9 0.0 67.6	N N	D D - D	80 224 0 149 Sens	Latent 116

	LIGHTS			T-4-1		-	202 4 022	•		
	Type	1011512	141	Total			actor	Spac		
	Schedule	W/ft²		W		В	tuh/W	frac		
	Fluorescent	3.68	0	202			4.10	1.	0 830	
	8ato12m									
	Fluorescent	0.00	0	0			4.10	1.	0 0	
										*
	Fluorescent	0.00	0	0			4.10	1.	0 0	
							1. 10		0 0	
	Fluorescent	0.00	0	0			4.10	1.	0 0	
	ridoressent	0.00	Ü	U			4.10	1.	0 0	
	PLUG LOADS / AP	DITANCE	C							
		FLIANCE		(Ilaana	T-4-1	0	21.1	9 9		
	Application			Usage	Total		sible	Later		
	Schedule	11100				B	tuh	Btuh		
		#/ft²	#	10 1400						
		0.000	0.00	1.00	0		0		0 0	(
		#/ft²	#							
		0.000	0.00	1.00	0		0	(0 0	0
		#/ft2	#							90.00
		0.000		1.00	0		0	1	0	(
		#/ft²	#	1.00	U		U	3	0	
		0.000		1.00	0		0			
				1.00	U		0		0	(
		#/ft²	#	4 00			_			s
		0.000		1.00	0		0	(0	(
		#/ft²	#	1 1540 personal-co						
		0.000	0.00	1.00	0		0	(0	(
	MOTORS									
	Power (hp)		\$5	Load	Total	Sen	sible			
	Schedule	#/ft²	#	factor			uh			
	0.00	0.0	0.	1.00	0		0	2	0	
	3 7 7 7 7 7	0.0		1.00			U		U	
	0.00	0.0	0	1.00	0		0		0	
	() (11)		U	1.00	U		U		U	
	0.00	0.0								
			0	1.00	0		0		0	
	0.00	0.0	0	1.00	0		0		0	
			0	1.00	0	1	0 /		0	10 m
	0.00		0	1.00	0	1	0	-		Laterit
	0.00 INFILTRATION	0.0		and the second	0	45 1 v			Sens	Latent
	0.00	0.0	x db	Temp Diff	0	15.1 x	1.09			
	0.00 INFILTRATION	0.0	x db	and the second	0	15.1 x 52.0 x			Sens	
	0.00 INFILTRATION 56 cfm	0.0	x db x M	Temp Diff oist. Diff	0		1.09		Sens 919	1984
	0.00 INFILTRATION	0.0	x db x M	Temp Diff oist. Diff	0		1.09		Sens	1984
	0.00 INFILTRATION 56 cfm -	0.0	x db x M	Temp Diff oist. Diff	0		1.09		Sens 919	Latent 1984 2100
	0.00 INFILTRATION 56 cfm SUBTOTAL COOLING L SUPPLY DUCT HEAT GA	0.0	x db x M	Temp Diff oist. Diff Œ	, ,	52.0 x	1.09		Sens 919 2448	1984
	0.00 INFILTRATION 56 cfm -	0.0	x db x M	Temp Diff oist. Diff	, ,	52.0 x	1.09		Sens 919	1984
TOTAL STATE OF THE PARTY OF THE	0.00 INFILTRATION 56 cfm SUBTOTAL COOLING L SUPPLY DUCT HEAT GA Gain factor 0.00	0.0	x db x M	Temp Diff oist. Diff Œ	, ,	52.0 x	1.09		Sens 919 2448	1984
10 10 10 10 10 10 10 10 10 10 10 10 10 1	0.00 INFILTRATION 56 cfm SUBTOTAL COOLING L SUPPLY DUCT HEAT GA Gain factor 0.00 COOLING FAN SIZING	0.0	x db x M	Temp Diff oist. Diff E Line 6 Sens	sible Gai	52.0 x	1.09 0.69		Sens 919 2448	1984
100000	0.00 INFILTRATION 56 cfm SUBTOTAL COOLING L SUPPLY DUCT HEAT GA Gain factor 0.00	0.0	x db x M R SPAC	Temp Diff oist. Diff E Line 6 Sens	sible Gai	52.0 x	1.09		Sens 919 2448	1984
TOTAL STATE OF THE PARTY OF THE	0.00 INFILTRATION 56 cfm SUBTOTAL COOLING L SUPPLY DUCT HEAT GA Gain factor 0.00 COOLING FAN SIZING Sum of Duct Gain	0.0	x dk x M R SPAC	Temp Diff oist. Diff Line 6 Sens (6) & D) / (Xfer	sible Gai	n Fan upply TD	1.09 0.69	cfm	Sens 919 2448	1984
	0.00 INFILTRATION 56 cfm SUBTOTAL COOLING L SUPPLY DUCT HEAT GA Gain factor 0.00 COOLING FAN SIZING Sum of Duct Gain Est Cooling cfm	0.0	x dk x M R SPAC	Temp Diff oist. Diff E Line 6 Sens	sible Gai	52.0 x	1.09 0.69	cfm 112	Sens 919 2448	1984
10 a	0.00 INFILTRATION 56 cfm SUBTOTAL COOLING L SUPPLY DUCT HEAT GA Gain factor 0.00 COOLING FAN SIZING Sum of Duct Gain	0.0	x dk x M R SPAC	Temp Diff oist. Diff Line 6 Sens (6) & D) / (Xfer	sible Gai	n Fan upply TD	1.09 0.69		Sens 919 2448	1984
	O.00 INFILTRATION 56 cfm SUBTOTAL COOLING L SUPPLY DUCT HEAT GA Gain factor 0.00 COOLING FAN SIZING Sum of Duct Gain Est Cooling cfm Actual Cooling Fan	0.0	x dk x M R SPAC	Temp Diff oist. Diff Line 6 Sens (6) & D) / (Xfer	sible Gai	n Fan upply TD 20.0	1.09 0.69	112	Sens 919 2448	1984
	O.00 INFILTRATION 56 cfm 58 SUBTOTAL COOLING L SUPPLY DUCT HEAT GA Gain factor 0.00 COOLING FAN SIZING Sum of Duct Gain Est Cooling cfm Actual Cooling Fan	0.0	x dk x M R SPAC > Line Sens 24	Temp Diff oist. Diff E Line 6 Sens (6) & D) / (Xfer 48) / (1.0	sible Gai	n Fan upply TD 20.0	1.09 0.69	112	Sens 919 2448 0 2448	1984
	O.00 INFILTRATION 56 cfm SUBTOTAL COOLING L SUPPLY DUCT HEAT GA Gain factor 0.00 COOLING FAN SIZING Sum of Duct Gain Est Cooling cfm Actual Cooling Fan VENTILATION O cfm O cfm	0.0	x dk x M R SPAC >> Line Sens 24-	Temp Diff oist. Diff Line 6 Sens (6) & D) / (Xfer 48) / (1.0	sible Gai	n Fan upply TD 20.0	1.09 0.69	112	Sens 919 2448	1984
	O.00 INFILTRATION 56 cfm 58 SUBTOTAL COOLING L SUPPLY DUCT HEAT GA Gain factor 0.00 COOLING FAN SIZING Sum of Duct Gain Est Cooling cfm Actual Cooling Fan	0.0	x dk x M R SPAC >> Line Sens 24-	Temp Diff oist. Diff E Line 6 Sens (6) & D) / (Xfer 48) / (1.0	sible Gai	n Fan upply TD 20.0	1.09 0.69	112	Sens 919 2448 0 2448	1984
	O.00 INFILTRATION 56 cfm 56 cfm SUBTOTAL COOLING L SUPPLY DUCT HEAT GA Gain factor 0.00 COOLING FAN SIZING Sum of Duct Gain Est Cooling cfm Actual Cooling Fan VENTILATION 0 cfm	0.0	x db x M SPAC >> Line Sens 24- x db x Mo	Temp Diff oist. Diff Line 6 Sens (6) & D) / (Xfer 48) / (1.0	sible Gai	n Fan upply TD 20.0 —>	1.09 0.69 =) =) = =	112	Sens 919 2448 0 2448	1984
	O.00 INFILTRATION 56 cfm SUBTOTAL COOLING L SUPPLY DUCT HEAT GA Gain factor 0.00 COOLING FAN SIZING Sum of Duct Gain Est Cooling cfm Actual Cooling Fan VENTILATION O cfm O cfm	0.0	x db x M SPAC >> Line Sens 24- x db x Mo	Temp Diff oist. Diff Line 6 Sens (6) & D) / (Xfer 48) / (1.0	sible Gai	n Fan upply TD 20.0 —>	1.09 0.69 =) =) = =	112	Sens 919 2448 0 2448	1984
	O.00 INFILTRATION 56 cfm 56 cfm SUBTOTAL COOLING L SUPPLY DUCT HEAT GA Gain factor 0.00 COOLING FAN SIZING Sum of Duct Gain Est Cooling cfm Actual Cooling Fan VENTILATION 0 cfm	0.0	x db x M SPAC >> Line Sens 24- x db x Mo	Temp Diffoist. Diff Line 6 Sens (6) & D) / (Xfer 48) / (1.0 Temp Diffoist. Diff	rawthru x Si y x	52.0 x n Fan upply TD 20.0 > 15.1 x 52.0 x	1.09 0.69 =) =) = = 1.09 0.69	112	Sens 919 2448 0 2448	1984
	O.00 INFILTRATION 56 cfm 56 cfm SUBTOTAL COOLING L SUPPLY DUCT HEAT GA Gain factor 0.00 COOLING FAN SIZING Sum of Duct Gain Est Cooling cfm Actual Cooling Fan VENTILATION 0 cfm RETURN AIR LOAD FRO	0.0	x db x M SPAC >> Line Sens 24- x db x Mo	Temp Diffoist. Diff Line 6 Sens (6) & D) / (Xfer 48) / (1.0 Temp Diffoist. Diff AND ROOF Total pow	sible Gai Prawthru r x Si 9 x	52.0 x n Fan upply TD 20.0 > 15.1 x 52.0 x	1.09 0.69 =) =) = =	112	Sens 919 2448 0 2448	1984
	O.00 INFILTRATION 56 cfm 56 cfm SUBTOTAL COOLING L SUPPLY DUCT HEAT GA Gain factor 0.00 COOLING FAN SIZING Sum of Duct Gain Est Cooling cfm Actual Cooling Fan VENTILATION 0 cfm RETURN AIR LOAD FRO	0.0	x db x M SPAC >> Line Sens 24- x db x Mo	Temp Diffoist. Diff Line 6 Sens (6) & D) / (Xfer 48) / (1.0 Temp Diffoist. Diff	orawthru r x Si 9 x ver (W)	52.0 x n Fan upply TD 20.0 > 15.1 x 52.0 x	1.09 0.69 =) =) = = 1.09 0.69	112	Sens 919 2448 0 2448	1984

Gain factor 0.00	x Line 6 Sensible Gain	0	
2. TOTAL COOLING LOADS ON EC	QUIPMENT (Btuh)	2448	2100
S	PACE HEATING LOAD CALCULATION		
3. HEATING DESIGN TEMPERATU	RE		
Heating TD = (Inside DB -	Outside DB) = (70 - 33)	= 37	
4. TRANSMISSION LOSSES		[Mult =	1.0]
Type Expos GrArea N WALL 2 SW 45 WALL 2 NW 165 FLOR 1 - 14 ROOF 1 - 55	letArea Uval HTD 45 0.068 37.0 165 0.068 37.0 14 0.810 37.0 55 0.040 37.0		Loss 113 415 420 81
5. INFILTRATION 58 cfm x db Temp	Diff 37.0 x 1.09		Loss 2358
6. SUBTOTAL HEATING LOAD FOR	R SPACE	1,1	3387
7. SUPPLY DUCT HEAT LOSS Loss factor 0.00 x	Line 16 Loss	x 1, x 44	0
8. VENTILATION 0 cfm x db Temp	Diff 37.0 x 1.09		0
9. HUMIDIFICATION Inside RH desired : # of Glazing panes :	40.0 (Max = 32.0 for 1 pane) 0.0 (Max = 52.0 for 2 pane)		
58 cfm x 4.56	g/100cfm/d = 2.7 gpd	* **	993
D. RETURN DUCT HEAT LOSS Loss factor 0.00 x	Line 16 Loss	2 90	0
1. TOTAL HEATING LOAD ON EQU	PMENT (Reub)		4380

Right-Suite Commercial Load Calculation wudu ablutions

Job: Jan 09, 2007

Project Information

Zone	ANT HOLE		#191419419419		6			CONTRACTOR AND ADDRESS.				
			LWH:	5.0	Х	5.0 >	15.0		V 62.			
. DES	IGN (CONDI	TIONS - C	COOLIN	G		(Jul 1	700)				
Indoo	r Co	onditions nditions ection		$\stackrel{\longrightarrow}{\rightarrow}$		Dry Blb 90 75 2	RH 54 50	Moist	ture	Range 19	Wet Blb 77 63	
Dif	ferer	ice				15		52.0				
			RHEAT	GAIN		(Lat	= 29.	68 °N ,	Const V	Vt = M	[Mult =	1.0]
Type n/a	0	Orien n/a	Area 0	Tilt 0	S	hdF IntS	hd S	OMult 0.00	SC 0.00	Sens/A 0.0	Sens 0	
n/a	0	n/a			S	hdF IntS	hd So					,
n/a TRAI Type WALL FLOR	0 NSM	n/a	0	0 NtAr		Uval 0.068 0.810 0.040	Grp D					
n/a TRAI Type WALL FLOR ROOF	0 NSM 2 1	n/a ISSION Orien SW -	GAINS GrArea 75 5	0 NtAr	ea 75 5	Uval 0.068 0.810	Grp D	0.00 CLTD 26.1 0.0	0.00 Shad	O.O Clr D	Sens 133 0 68	
TRAI Type WALL FLOR ROOF	0 NSM 2 1 1	n/a ISSION Orien SW	GAINS GrArea 75 5 25	0 NtAr	ea 75 5	Uval 0.068 0.810	Grp D	0.00 CLTD 26.1 0.0	0.00 Shad	O.O Clr D	Sens 133 0	Latent
TRAI Type WALL FLOR ROOF	0 NSM 2 1 1 CRNA	n/a ISSION Orien SW L HEA PLE Activity	0 GAINS GrArea 75 5 25 T GAIN	0 NtAr	ea 75 5	Uval 0.068 0.810 0.040 Tota peop	Grp D R-4	0.00 CLTD 26.1 0.0 67.6	0.00 Shad	O.O Cir D - D	Sens 133 0 68 Sens	Latent 53

	LIGHTS Type Schedule Fluorescent 8ato12m	W/ft² 3.68	W	Total W 92			ctor tuh/W 4.10	Space fract 1.0	377	
	Fluorescent	0.00	0	0			4.10	1.0	0	
	Fluorescent	0.00	0	0			4.10	1.0	0	
	Fluorescent	0.00	0	0			4.10	1.0	0	
	PLUG LOADS / API	LIANCE	S							
	Application Schedule			Usage	Total		sible uh	Latent Btuh		
		#/ft ² 0.000	#	4.00	0		0		0	
		#/ft²	#	1.00	0		0	0	0	0
		0.000 #/ft²		1.00	0		0	0	0	0
		0.000 #/ft²		1.00	0		0	0	0	0
		0.000 #/ft²	1355	1.00	0		0	0	0	0
		0.000 #/ft²		1.00	0		0	0	0	0
		0.000		1.00	0		0	0	0	0
	MOTORS									
	Power (hp)		Tager 1	Load	Total	Sens				
	Schedule	#/ft²	#	factor		Bt				
	0.00	0.0	0	1.00	0		0		0	
	0.00	0.0	0	1.00	0		0		0	
	0.00	0.0	0	1.00	0		0		0	
5.	INFILTRATION 3 cfm -			Temp Diff oist. Diff	F	15.1 x 52.0 x	1.09 0.69	9	Sens 41	Latent 89
6.	SUBTOTAL COOLING L	OAD FOR	R SPAC	E					732	142
7.	SUPPLY DUCT HEAT GA Gain factor 0.00		>	Line 6 Sens	ible Gair	n		,	0	(1) 2 (2) (3)
8.	COOLING FAN SIZING Sum of Duct Gain Est Cooling cfm	(7), (L 8 = (Line Sens 73	(6) & D) / (Xfer 32) / (1.0		Fan upply TD 20.0	=) =) =	cfm 33	732	
	Actual Cooling Fan	_				>		34		" s s s s
9.	VENTILATION 0 cfm -			Temp Diff bist. Diff		15.1 x 52.0 x	1.09 0.69	50	0	0
10.	RETURN AIR LOAD FRO Lights RA Roof Load RA Ceiling Load 0		TING	AND ROOF Total pow from Line from Line	3 (+)	2	0		377 0 0	

11. RETURN DUCT HEAT GAIN Gain factor 0.00	x Line 6 Sensible Gain	0	
12. TOTAL COOLING LOADS ON E	UIPMENT (Btuh)	732	142
S	PACE HEATING LOAD CALCULATION		51
13. HEATING DESIGN TEMPERATU	RE		
Heating TD = (Inside DB	Outside DB) = (70 - 33)	= 37	
14. TRANSMISSION LOSSES		[Mult =	1.0]
Type Expos GrArea N WALL 2 SW 75 FLOR 1 - 5 ROOF 1 - 25	etArea Uval HTD 75 0.068 37.0 5 0.810 37.0 25 0.040 37.0		Loss 189 150 37
5. INFILTRATION 4 cfm x db Temp	Diff 37.0 x 1.09		Loss 152
6. SUBTOTAL HEATING LOAD FOI	RSPACE		527
7. SUPPLY DUCT HEAT LOSS Loss factor 0.00 x	Line 16 Loss		0
8. VENTILATION 0 cfm x db Temp	Diff 37.0 x 1.09	, re-	0
9. HUMIDIFICATION Inside RH desired : # of Glazing panes :	40.0 (Max = 32.0 for 1 pane) 0.0 (Max = 52.0 for 2 pane)		,e
4 cfm x 4.56	g/100cfm/d = 0.2 gpd		64
0. RETURN DUCT HEAT LOSS Loss factor 0.00 x	Line 16 Loss	Y Kar E	0
1. TOTAL HEATING LOAD ON EQU	DATENCE (DATE)		591

Right-Suite Commercial Load Calculation corridor

Job: Jan 09, 2007

Project Information

Zone	: (corrid	or									
			LWH:	256.0	х ′	1.0 x	15.0					
. DESI	GN	CONDI	TIONS -	COOLIN	G		(Jul 10	300)				
Indoo	Co	Conditions anditions rection		$\stackrel{\longrightarrow}{\Rightarrow}$		Ory Blb 91 75 1	RH 52 50	Mois	ture	Range 19	Wet Blb 77 63	
Diff	ere	nce				16		52.0			r . N. d	40.1
. GLA	ZIN	G SOLA	RHEAT	GAIN		(Lat	= 29.6	68 °N ,	Const \	Nt = M	[Mult =)	1.0]-
Type GLAZ	1	Orien SW	Area 20	Tilt 90		ndF IntSh I	d SC	CMult 1.00	SC 0.88	Sens/A 74.1	Sens 1483	
TRAI	NSM	IISSION	GAINS					- 1		1 11	8	
Туре		Orien	GrArea	a NtAr	ea	Uval	Grp	CLTD	Shad	Clr	Sens	
GLAZ	1	SW	20		20	0.585		14.6	N	-	171	
WALL	2	SW	75		55	0.068		20.1	N	D	75	
WALL	2	NW	75		54	0.068	D	15.9	N	D	59	
DOOR	8	nw	21		21	0.460		14.6		-	142	
FLOR	1	-	10		10	0.810	-	0.0	-		0	
ROOF	1		256	5 2	56	0.040	R-4	67.6	(a) # #	D	693	-
	RN	AL HEA	T GAIN								Sens	Latent
INTE		PLE										
	PEC	A AJAJ							Sensible	Latent		
	PEC	Activity				Total			Ochiginie	Laterit		
	PEC	Activity Sche	edule	ft²/prsn	#	peopl			Btuh/prsn			
	PEC	Activity	edule oly	ft²/prsn 50	# 0	peop						538

	LIGHTS			Tatal		-			_			
	Type Schedule Fluorescent	W/ft² 3.68	W	Total W 942			actor 3tuh/W 4.10		ace act 1.0	3863		
	8ato12m	3.00	U	342			4.10		.0	3003		
	Fluorescent	0.00	0	0			4.10	1	.0	0		
	Fluorescent	0.00	0	0			4.10	1	.0	0		
	Fluorescent	0.00	0	0			4.10	1	.0	0		
	PLUG LOADS / APP	LIANCE	S									
	Application Schedule			Usage	Total		nsible	Late				
	Scriedule	#/ft²	#			В	tuh	Btu	n			
		0.000		1.00	0		0		0	0	0	
		#/ft²	#				10.00		8			
		0.000		1.00	0		. 0		0	0	0	
		#/ft²	#	1.00	0		_		•			
		0.000 #/ft ²	0.00 #	1.00	0		0		0	0	0	
		0.000		1.00	0		0		0	0	0	
		#/ft ²	#	1.00	U		U		U	U	U	
	e e e e	0.000	0.00	1.00	0	2	0		0	0	0	
		#/ft²	#									
		0.000	0.00	1.00	0		0		0	0	0	
	MOTORS											
	Power (hp) Schedule	#/ft²	#	Load	Total		sible					
	0.00	0.0	0	factor 1.00	0	В	tuh 0			0		
	0.00	0.0		1.00	0		U			U		
	0.00	0.0	0	1.00	0		0			0		
	0.00	0.0	0	1.00	0		0			0		
			, a		254		11	25				
5.	INFILTRATION									Sens	Latent	
	36 cfm -	>	x db	Temp Diff		16.4 x	1.09			640	Laterit	
				oist. Diff		52.0 x	0.69				1273	
6.	SUBTOTAL COOLING L	OAD FOR	R SPAC	E			-			8277	1810	
7.	SUPPLY DUCT HEAT GA				ar si					5		
_	Gain factor 0.00	A	×	Line 6 Sens	ible Gai	in				0	3 6 2	
8.	COOLING FAN SIZING Sum of Duct Gain	(7.)	Line	(6 \ 8 D	rawthru	- Fon				00.77		
	our or buck cam		Sens) / (Xfer		upply TD) =	cfm		8277		
	Est Cooling cfm	= (827			20.0) =	378				
	Actual Cooling Fan	`		.,		>		378				
9.	VENTILATION								120			
	0 cfm -	> ;		Temp Diff		16.4 x	1.09			0		
	-	>	x Mo	oist. Diff		52.0 x	0.69				0	
10	RETURN AIR LOAD FRO	MICH	TINC	ND DOOF								_
10.	Lights	M LIGH	IIIVG A	Total pov	ver (\M	Y	-37E			3863		
	RA Roof Load			from Line	3 (+)	,	-31 L			0		
	RA Ceiling Load C	Credit		from Line						0		
	School Alexandre ₹ Acceptation				-500V - 13 N 0 AFC					9		

11. RETURN I Gain fa		0.00		×	Line 6	Sen:	sible (Gain						0	
12. TOTAL CO	OOLING I	LOADS O	V EQ	UIPME	ENT (B	tuh)							82	77	1810
			SP	ACE H	IEATII	NG L	OAD (CALC	ULAT	ION					*************
13. HEATING	DESIGN '	TEMPER	ATUR	E			150				207				
Heating	TD =	(Inside	DB - (Outside	e DB)			=	(70	0 -	33)	=	37		
14. TRANSMI	SSION LO	SSES						11	T	18	*	[Mult	=	1.0] -
GLAZ 1 WALL 2	Expos SW SW NW nw	GrArea 20 75 75 21 10 256	Ne	etArea 20 55 54 21 10 256	8	Uval 0.558 0.068 0.068 0.460 0.810 0.040	*		33333	HTD 37.0 37.0 37.0 37.0 37.0		E E			Loss 413 138 136 357 300 379
5. INFILTRA		x db Te	emp [Diff	37	.0	x	1.09				1			Loss 2364
6. SUBTOTAL	LHEATIN	G LOAD	FOR	SPACI	E		2			28				*	4087
7. SUPPLY D		T LOSS 0.00	x	Line 10	6 Loss				14.00 1 d 1 d						0
8. VENTILAT	ION cfm	x db Te	mp D	Diff	37	.0	x	1.09							0
	CATION RH desire azing pan		: :	40.0	(Max (Max	=	32.0 52.0	for 1 for 2	pane pane)			28 5 ₂₁ 52	16	222 B
58	cfm :	x 4.56		g/100d	cfm/d		=	2.	7	gpo	ł		= 11		995
0. RETURN D Loss fa			x I	Line 16	6 Loss								K . 1		0
1. TOTAL HE	ATING L	DAD ON I	QUP	MENT	(Btuh)							17. 7		5082

Right-Suite Commercial Load Calculation cultural hall

Job: Jan 09, 2007

Project Information

			LWH:	41.3	x	17.0 x	15.0					
DEC	CN	CONDI	TIONS - C	0) 550000	33773		LESTING.	000 \				
. DESI	IGN	CONDI	110N5 - 0	LOOLING	G		(Jul 1	600)				
0 11						Dry Blb	RH	Mois	ture	•	Wet Blb	
		Conditions on district conditions and a conditions are conditions as a conditions are conditional conditions are conditions are conditions are conditions are conditional conditions.		>		91 75	52 50			19	77 63	
		rection		\rightarrow		1	50				03	
Dif	fere	ence				16	9	52.0				
. GLA	ZIN	G SOLA	RHEAT	GAIN		(Lat	= 29.	68 °N	Const \	Nt = M	[Mult =)	1.0]
Туре		Orien	Area	Tilt		hdF IntSh		CMult			, C	
GLAZ	1	NE	48	90	3		N SC	1.00	SC 0.88	Sens/A 39.5	Sens 1889	
. TRAI	NSN	IISSION	CATNO									
		ALOUIO I	GAINS									
Туре		Orien	GrArea	NtAr	ea	Uval	Grp	CLTD	Shad	Clr	Sens	
GLAZ	1	Orien NE	GrArea 48		48	0.585		14.6	Shad N	-	410	
GLAZ WALL	1 2	Orien NE NE	GrArea 48 255	1	48 86	0.585 0.068		14.6 25.9		Clr - D	410 328	
GLAZ WALL DOOR	1	Orien NE	GrArea 48 255 21	1	48 86 21	0.585 0.068 0.460		14.6 25.9 14.6	N	-	410 328 142	
GLAZ WALL DOOR FLOR	1 2	Orien NE NE	GrArea 48 255	1	48 86	0.585 0.068	D	14.6 25.9	N	-	410 328	
GLAZ WALL DOOR FLOR ROOF	1 2 7 1	Orien NE NE ne	GrArea 48 255 21 17 703	1	48 86 21 17	0.585 0.068 0.460 0.810	D	14.6 25.9 14.6 0.0	N N -	- D -	410 328 142 0	
GLAZ WALL DOOR FLOR ROOF	1 2 7 1 1	Orien NE NE ne - -	GrArea 48 255 21 17 703	1	48 86 21 17	0.585 0.068 0.460 0.810	D	14.6 25.9 14.6 0.0	N N -	- D -	410 328 142 0	Latent
GLAZ WALL DOOR FLOR ROOF	1 2 7 1 1	Orien NE NE ne -	GrArea 48 255 21 17 703 T GAIN	1	48 86 21 17	0.585 0.068 0.460 0.810 0.040	D R-4	14.6 25.9 14.6 0.0	N N - -	D -	410 328 142 0 1901	Latent
GLAZ WALL DOOR FLOR ROOF	1 2 7 1 1	Orien NE NE ne AL HEA OPLE Activity	GrArea 48 255 21 17 703 T GAIN	1	48 86 21 17	0.585 0.068 0.460 0.810 0.040	D R-4	14.6 25.9 14.6 0.0	N N - - - - Sensible	D D D	410 328 142 0 1901 Sens	Latent
GLAZ WALL DOOR FLOR ROOF	1 2 7 1 1	Orien NE NE ne AL HEA OPLE Activity	GrArea 48 255 21 17 703 T GAIN	7	48 86 21 17 03	0.585 0.068 0.460 0.810 0.040	D R-4	14.6 25.9 14.6 0.0	N N - -	- D - D Latent Btuh/pr	410 328 142 0 1901 Sens	Latent 1476

	LIGHTS											
	Type Schedule	W/ft²	W	Total W			actor Stuh/W		act			
	Fluorescent 8ato12m	3.68	0	2586			4.10	1	.0	10602		
	Fluorescent	0.00	0	0			4.10	1	.0	0		
	Fluorescent	0.00	0	0			4.10	1	.0	0	9	
	Fluorescent	0.00	0	0			4.10	1	.0	0		
	PLUG LOADS / APP	LIANCE	S									
	Application Schedule			Usage	Total		nsible tuh	Late Btu				
		#/ft²	#	code (National List	100000							
		0.000 #/ft²	#	1.00	0		0		0	0		0
		0.000 #/ft ²	0.00	1.00	0		0		0	0		0
		0.000 #/ft ²	0.00	1.00	0		0		0	~ 0	la l	0
		0.000 #/ft²	The second second	1.00	0		0		0	0		0
		0.000 #/ft²		1.00	0		0		0	0	5	0
		0.000		1.00	0		0		0	0		0
	MOTORS				1 2							
	Power (hp)	111700		Load	Total		sible					
	Schedule 0.00	#/ft² 0.0	# 0	factor 1.00	0	В	tuh 0			0		
	0.00	0.0	0	1.00	0		0			0		
Victory Victory	0.00	0.0	0	1.00	0		0			0		
5.	INFILTRATION 80 cfm -			o Temp Diff		16.4 x	1.09	n e	;	Sens 1444	Latent	
_	1 2	>	× M	loist. Diff		52.0 x	0.69				2869	9
6.	SUBTOTAL COOLING LO	OAD FOR	R SPAC	CE					1	9878	4345	5
7.	SUPPLY DUCT HEAT GA Gain factor 0.00		,	x Line 6 Sens	ible Gai	in	DATE:	18		0	5 - E	
8.	COOLING FAN SIZING Sum of Duct Gain	(7), (L 8	Line Sens	(6) & D		Fan upply TD	,	cfm	1	9878	1	
	Est Cooling cfm Actual Cooling Fan	= (78) / (1.0		20.0) =	908 916		- 3		
9.	VENTILATION 0 cfm —			Temp Diff oist. Diff		16.4 x 52.0 x	1.09 0.69			0	0)
10	RETURN AIR LOAD FRO Lights	M LIGH	TING	AND ROOF							v -	-

	Gain factor	0.00	XL	ine 6 Sens	sible Gal	11				0	
12.	TOTAL COOLING	LOADS ON	EQUIPMEN	T (Btuh)						19878	4345
			SPACE HE	ATING LO	OAD CA	LCUL.	ATION				,
3.	HEATING DESIGN	TEMPERA	TURE				- 4				
	Heating TD	= (Inside D	B - Outside I	OB)	-	- (70 -	33)	=	37	
4.	TRANSMISSION L	OSSES							[Mult =	= 1.0]
G V D F	Type Expos LAZ 1 NE /ALL 2 NE OOR 7 ne LOR 1 -	GrArea 48 255 21 17 703	NetArea 48 186 21 17 703	Uval 0.558 0.068 0.460 0.810 0.040			HTD 37.0 37.0 37.0 37.0 37.0				Loss 988 468 357 509 1040
5.	INFILTRATION 125 cfm	x db Te	mp Diff	37.0	x 1.0)9	. 10				Loss 5076
6.	SUBTOTAL HEATI	NG LOAD I	FOR SPACE	i i	*		-	. 111 1			8439
7.	SUPPLY DUCT HEAL Loss factor		x Line 16	Loss							0
8.	VENTILATION 0 cfm	x db Te	mp Diff	37.0	x 1.0	9					0
).	HUMIDIFICATION Inside RH desir # of Glazing pa			Max = Max =	32.0 fc 52.0 fc	or 1 pa or 2 pa	ne)			8 .	
	125 cfm	x 4.56	g/100cfr	n/d	=	5.7	gpo	4 .			2137
).	RETURN DUCT HE Loss factor		x Line 16 l	oss							0
	TOTAL HEATING I	OADONE	OUDMENT	D4-LX					_		10576

Right-Suite Commercial Load Calculation mosque male worship

Job: Jan 09, 2007

Project Information

			LWH:	888.8	x 1.0	x	15.0	19				
i. DESI	GN	CONDI	TIONS - C	OOLING			(Jul 1:	500)	201	12		
Indoo	r Co	Condition nditions ection		$\stackrel{\longrightarrow}{\Rightarrow}$		Blb 22 75 0	RH 51 50	Mois	sture	Range 19	Wet Blb 77 63	
Diff	fere	nce			1	7		52.0)			
. GLA	ZIN	G SOLA	R HEAT (GAIN	(L	at	= 29.6	88 °N	, Const	Wt = M	-[Mult =)	1.0 .] —
Type n/a	0	Orien n/a	Area 0	Tilt 0	ShdF	IntSh	d SC	CMult 0.00	SC 0.00	Sens/A 0.0	Sens 0	
. TRAI	NSM	ISSION	GAINS						5 25	17.70	7.	173
Type WALL WALL WALL WALL DOOR DOOR FLOR ROOF	2 2 2 2 2 5 6 1	Orien N NE E SE NW ne ne	GrArea 101 335 97 60 60 21 21 43 889	NtArea 10 29 9 60 60 22 43 88	1 33 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Uval 0.068 0.068 0.068 0.068 0.068 0.560 0.560 0.810 0.040	D D D	CLTD 13.6 24.9 33.6 30.1 13.9 14.6 14.6 0.0 66.6	N N N N N N N N N N N N N N N N N N N	Clr D D D D - -	Sens 93 497 221 123 57 172 172 0 2369	
	PEO	PLE Activity Sche Assemb	edule f	² /prsn 50	# 0	Total people 18			Sensible Btuh/prsn 225		rsn	Latent 1866

LIGHTS										
Type Schedule Fluorescent	W/ft² 3.68	W 0	Total W 3271			Factor Btuh/W 4.10	Space fract 1.0	13410		
8ato12m Fluorescent	0.00	0	0			4.10	1.0	0		
Fluorescent	0.00	0	0			4.10	1.0	0		
Fluorescent	0.00	0	0			4.10	1.0	0		
PLUG LOADS / AP	DI IANCE	c								
Application Schedule	DIANCE		Usage	Total		Sensible Btuh	Latent Btuh			
	#/ft²	#	4.00							
	0.000 #/ft ²	0.00	1.00	0		0	0	0	0	
	0.000 #/ft²	2.5	1.00	0		0	0	0	0	
			1.00	0		0	0	0	0	
	0.000	0.00	1.00	0		0	0	0	0	
	#/ft² 0.000		1.00	0		0	0	0	0	
	#/ft ² 0.000	0.00	1.00	0		0	0	0	0	
MOTORS							7 9	Ü	Ü	
Power (hp)	5	100	Load	Total	5	Sensible				
Schedule 0.00	#/ft² 0.0	# 0	factor 1.00	0		Btuh 0		0		
0.00	0.0	0	1.00	0		0		0		
0.00	0.0	0	1.00	0		0		0		
				у э	1					_
5. INFILTRATION 109 cfm -			Temp Diff loist. Diff		17.0 52.0			Sens 2025	Latent 3892	
6. SUBTOTAL COOLING L	OAD FOR	R SPAC	Œ				Yes	23139	5759	_
7. SUPPLY DUCT HEAT GA Gain factor 0.00			x Line 6 Sens	ible Gai	n			0		-
8. COOLING FAN SIZING Sum of Duct Gain	(7),	Line Sens	(6) & D) / (Xfer	rawthru		= FD) =	cfm	23139	* · · · ·	-
Est Cooling cfm Actual Cooling Fan	= (231	39) / (1.0	9 x	20.0		1058 1058			
9. VENTILATION 0 cfm -			Temp Diff oist. Diff		17.0 52.0		, ,	0	0	
10. RETURN AIR LOAD FRO Lights RA Roof Load RA Ceiling Load 0		TING	AND ROOF Total pow from Line	ver (W)		-0	į.	13410 0		4

	0.00	ХL	ine 6 Sens	sible Gain				0	
TOTAL COOLING	LOADS ON	EQUIPMEN	T (Btuh)					23139	5759
		SPACE HE	ATING LO	DAD CALC	ULATION	1			
HEATING DESIGN	TEMPERA	TURE							
Heating TD	= (Inside D	B - Outside	DB)	=	(70 -	33)	=	37	
TRANSMISSION LO	OSSES				6		[Mult =	1.0]
Type Expos ALL 2 N ALL 2 NE ALL 2 E ALL 2 SE ALL 2 NW DOR 5 ne DOR 6 ne OR 1 -	GrArea 101 335 97 60 60 21 21 43 889	NetArea 101 293 97 60 60 21 21 43 889	0.068 0.068 0.068 0.068 0.560 0.560 0.810		37.0 37.0 37.0 37.0 37.0 37.0 37.0				Loss 253 737 243 151 151 435 435 1301 1315
INFILTRATION 173 cfm	x db Ter	np Diff	37.0	x 1.09		. ,	, 4	. 8 %	Loss 7016
SUBTOTAL HEATI	NG LOAD F	OR SPACE			6	. 1		1 5 m	12038
SUPPLY DUCT HEA Loss factor		Line 16	Loss						0
VENTILATION 0 cfm	x db Ten	np Diff	37.0	x 1.09	-		12	i	0
		EC 201 100)			E F
173 cfm	x 4.56	g/100cfr	m/d	= 7.	.9 g	pd			2953
RETURN DUCT HEA		Line 16 I	_oss					11 11 1	0
	TRANSMISSION LOT TRANSMISSION LOT TYPE Expos ALL 2 NE ALL 2 NE ALL 2 SE ALL 2 NW DOR 5 ne DOR 6 ne DOR 1 - INFILTRATION 173 cfm SUBTOTAL HEATIN SUPPLY DUCT HEAT Loss factor VENTILATION Inside RH desire # of Glazing par 173 cfm RETURN DUCT HEAT RETURN DUCT HEAT RETURN DUCT HEAT OF THE PARTICULATION INSIDER TO THE	Heating TD = (Inside D	HEATING DESIGN TEMPERATURE Heating TD = (Inside DB - Outside TRANSMISSION LOSSES TRANSMISSION LOSSES TRANSMISSION LOSSES TRANSMISSION LOSSES TRANSMISSION LOSSES TYPE Expos GrArea NetArea ALL 2 N 101 101 ALL 2 NE 335 293 ALL 2 E 97 97 ALL 2 SE 60 60 ALL 2 NW 60 80 ALL 2 NE 97 97 ALL 2 SE 60 60 ALL 2 NW 60 80 ALL 2 NE 97 97 ALL 2 SE 60 60 ALL 2 NW 60 80 ALL 2 NE 97 97 ALL 2 SE 60 60 ALL 2 NW 60 80 ALL 2 NE 97 97 ALL 2 SE 60 60 ALL 2 NE 97 97 ALL 2 SE 60 60 ALL 2 NE 97 97 ALL 2 SE 60 60 ALL 2 NE 97 ALL 2 SE 60 60 ALL 2 NE 97 ALL 2 SE 60 60 ALL 2 NE 97 ALL 2 SE 60 60 ALL 2 NE 97 ALL 2 SE 60 60 ALL 2 NE 97 ALL 2 SE 60 60 ALL 2 NE 97 ALL 2 SE 60 60 ALL 2 NE 97 ALL 2 SE 60 60 ALL 2 NE 97 ALL 2 SE 60 60 ALL 2 NE 97 ALL 2 SE 60 60 ALL 2 NE 97 ALL 2 SE 60 60 ALL 2 NE 97 ALL 2 SE 60 60 ALL 2 NE 97 ALL 2 SE 97 ALL 2 SE 60 60 ALL 2 NE 97 ALL 2 SE 97 ALL 2 SE 60 60 ALL 2 NE 97 ALL 2 SE 97 ALL 2 SE 60 60 ALL 2 NE 97 ALL 2 SE 97 ALL 2 SE 60 60 ALL 2 NE 97 ALL 2 SE 97 ALL 2 SE 60 60 ALL 2 NE 97 ALL 2 SE 97 ALL 2 SE 97 ALL 2 SE 60 60 ALL 2 NE 97 ALL 2 SE 97 ALL	HEATING DESIGN TEMPERATURE Heating TD = (Inside DB - Outside DB) TRANSMISSION LOSSES TRANSMISSION LOSSES TYPE Expos GrArea NetArea Uval ALL 2 N 101 101 0.068 ALL 2 NE 335 293 0.068 ALL 2 E 97 97 0.068 ALL 2 SE 60 60 0.068 ALL 2 NW 60 80 0.068 ALL 2 NW 60 80 0.068 ALL 2 NW 60 80 0.068 ALL 2 NW 60 60 60 0.068 ALL 2 NW 60 60 0.068 ALL 2 NW 60 60 60 ALL 2 NW 60 60 60 ALL 2 NW 60 60 60 ALL 2 NW 60 60 ALL 2 NW	Heating TD = (Inside DB - Outside DB) =	HEATING DESIGN TEMPERATURE Heating TD = (Inside DB - Outside DB) = (70 - TRANSMISSION LOSSES TYPE EXPOS GrArea NetArea Uval HTD ALL 2 N 101 101 0.068 37.0 ALL 2 NE 335 293 0.068 37.0 ALL 2 E 97 97 0.068 37.0 ALL 2 SE 60 60 0.068 37.0 ALL 2 NW 60 80 37.0 ALL 2 NW 60 80 37.0 ALL 2 NW 60 80 0.068 37.0 ALL 2 NW 60 80 0.068 37.0 ALL 2 NW 60 80 0.068 37.0 ALL 2 NW 60 60 60 0.068 37.0 ALL 2 NW 60 60 60 0.068 37.0 ALL 2	Heating TD = (Inside DB - Outside DB)	HEATING DESIGN TEMPERATURE Heating TD = (Inside DB - Outside DB) = (70 - 33) = TRANSMISSION LOSSES TO ALL 2 NP	HEATING DESIGN TEMPERATURE Heating TD = (Inside DB - Outside DB) = (70 - 33) = 37 TRANSMISSION LOSSES [Mult =

Right-Suite Commercial Load Calculation mosque female worship

Job: Jan 09, 2007

Project Information

LWH	15.7	x 2	27.7	x 15	5.0					
DESIGN CONDITIONS	- COOLIN	G		(.	Jul 1500))		n		S
Outdoor Conditions Indoor Conditions TOD Correction			Ory Blb 92 75 0	si i	RH 51 50	Mois	ure	Range 19	Wet Blb 77 63	
Difference			17			52.0				
GLAZING SOLAR HEA	T GAIN		(Lat	=	29.68	°N ,	Const V	Vt = M	-[Mult)	= 1.0]
Type Orien Area		Sł	ndF Int	Shd	SCM 0.0		SC 0.00	Sens/A 0.0	Ser	ns O
Type Orien GrAre			Uval			CLTD	Shad	Clr	Sens	
Type Orien GrAre ROOF 1 - 43 INTERNAL HEAT GAIN	3 4	rea 433		I (66.6	Shad -	Clr D	1150	6
ROOF 1 - 43 INTERNAL HEAT GAIN	3 4						Shad -			6
ROOF 1 - 43 INTERNAL HEAT GAIN PEOPLE Activity Schedule Assembly	3 4		0.04 To	10 R-		66.6	Shad - Sensible Btuh/prsn 225		Sens State	6 Latent
INTERNAL HEAT GAIN PEOPLE Activity Schedule	ft²/prsn	433 #	0.04 To	tal ople		66.6	- Sensible Btuh/prsn	D Laten Btuh/p	Sens	6 Latent
INTERNAL HEAT GAIN PEOPLE Activity Schedule Assembly	ft²/prsn 50	# 0	0.04 To	tal ople 9		66.6	Sensible Btuh/prsn 225	D Laten Btuh/p 105	Sens	Latent 1 910
INTERNAL HEAT GAIN PEOPLE Activity Schedule Assembly 8ato12m LIGHTS Type Schedule Fluorescent	ft²/prsn 50	# 0	Tot	tal ople 9		66.6	Sensible Btuh/prsn 225	Laten Btuh/p 105	Sens of 195	Latent 1 910
INTERNAL HEAT GAIN PEOPLE Activity Schedule Assembly 8ato12m LIGHTS Type Schedule	ft²/prsn 50 0	# 0 0	Tot	tal ople 9		66.6	Sensible Btuh/prsn 225 0 Factor Btuh/W	Laten Btuh/p 105	Sens of 195	Latent 1 910 0 0
INTERNAL HEAT GAIN PEOPLE Activity Schedule Assembly 8ato12m LIGHTS Type Schedule Fluorescent 8ato12m	ft²/prsn 50 0 W/ft² 3.68	# 0 0	Tot	tal ople 9 0 tal		66.6	Sensible Btuh/prsn 225 0 Factor Btuh/W 4.10	Laten Btuh/p 105 0 Space fract 1.0	Sens of tests of 195	Latent 1 910 0 0

	RA Roof Load RA Ceiling Load C RETURN DUCT HEAT G Gain factor 0.00	AIN	хl	ine 6 Sens					0	6
0.		Credit		HOIH EINC	()				F	
_	RETURN AIR LOAD FRO		ITING A	ND ROOF Total pow from Line from Line	3 (+)		36893	P	6540 0 0	
0.00	VENTILATION 0 cfm -	→	x db 7 x Moi	Гетр Diff st. Diff		17.0 x 52.0 x	1.09 0.69		0	0
	COOLING FAN SIZING Sum of Duct Gain Est Cooling cfm Actual Cooling Fan		Line Sens 10452) / (Xfer		Fan ipply TD 20.0 —>) =) = = =		10452	er in the second
	SUPPLY DUCT HEAT GA Gain factor 0.00		×	Line 6 Sens	sible Gair	i .	e*		0	
•	SUBTOTAL COOLING L	OAD FO	R SPACE	2			111		10452	2460
	INFILTRATION 43 cfm -	→		Temp Diff ist. Diff		17.0 x 52.0 x	1.09 0.69		Sens 806	Latent 1549
	0.00	0.0	0	1.00	0		0		0	
	0.00	0.0	0	1.00	0		0		0	
	Power (hp) Schedule 0.00	#/ft² 0.0	# 0	Load factor 1.00	Total 0		sible uh 0		0	T = 8
	MOTORS	0.000	0.00	1.00	0	1	0	0	0	0
		0.000 #/ft²	#	1.00	0		0	0	0	0
		0.000 #/ft²		1.00	0		0	0	0	0
		0.000 #/ft ²		1.00	0		0	0	0	0
		0.000 #/ft ²	0.00	1.00	0		0	0	0	0
		#/ft² 0.000 #/ft²	0.00	1.00	0		0	0	0	0
	Application Schedule			Usage	Total		sible tuh	Latent Btuh		
	PLUG LOADS / API	LAMBITUL								

SPACE HEATING LOAD CALCULATION

13. HEATING DESIGN TEMPERATURE

	TRANSMISSION A OSSES				0 4		[Mult	=	1.0] —
14.	TRANSMISSION LOSSES									
	Type Expos GrArea OOF 1 - 433	NetArea 433	Uval 0.040			TD 7.0				Loss 641
15.	INFILTRATION 65 cfm x db Tei	mp Diff	37.0	x 1	.09		4.5			Loss 2632
16.	SUBTOTAL HEATING LOAD F	OR SPACE					<u></u>			3273
(7.	SUPPLY DUCT HEAT LOSS Loss factor 0.00	x Line 16	6 Loss							0
1	Loss factor 0.00 :	x Line 16	37.0	x 1.	.09		10		1 4	0
18.	Loss factor 0.00 :	*	B	32.0	.09 for 1 pane for 2 pane)	5		3	
18.	Loss factor 0.00 VENTILATION 0 cfm x db Ter HUMIDIFICATION Inside RH desired	mp Diff	37.0 (Max = (Max =	32.0	for 1 pane)) gpd				
18.	Loss factor 0.00 VENTILATION 0 cfm x db Ter HUMIDIFICATION Inside RH desired # of Glazing panes 65 cfm x 4.56 RETURN DUCT HEAT LOSS	mp Diff 40.0	37.0 (Max = (Max =	32.0 f	for 1 pane for 2 pane)) gpd				0

Right-Suite Commercial Load Calculation gathering hall

Job: Jan 09, 2007

Project Information

			LWH:	8.7	v	28.7 x	15.0					
			LVVII.	0.7	×	20.1 X	15.0					
i. DESI	GN	CONDI	TIONS - C	COOLIN	G		(Jul '	1700)				
						Dry Blb	RH	H Mois	ture	Range	Wet Blb	
		Conditio		-	>	90	54			19	77	
		nditions		-	>	75	50				63	
TOD	Cori	ection		-	>	2		11				
Diff	fere	nce				15		52.0				7.00
. GLA	ZIN	CSOLA	RHEAT	CAIN		(Lat	- 20	.68 °N	, Const \	Λ# - ΛΛ	-[Mult =	1.0] -
. GLA	CILL	GSOLA	KIIEAI	GAIN		(Lat	- 29	.00 1	, Const	Nt = M	,	
Type		Orien	Area	Tilt		ShdF IntSl	nd S	CMult	SC	Sens/A	Sens	
GLAZ	1	SW	60	90	*	,	N	1.00	0.88	75.4	4525	
. TRAN	VSI	IISSION	GAINS									
· III	1011	100101	GAINS									
-												
Type		Orien	GrArea	NtA	rea	Uval	Grp	CLTD	Shad	Clr	Sens	
GLAZ	1	SW	60		60	0.585		13.6	(4) (CO) (1) (CO) (CO) (CO)	Clr	Sens 479	
GLAZ WALL	2	SW	60 430		60 328	0.585 0.068	D	13.6 26.1	N N	Clr - D	479 581	
GLAZ WALL DOOR		SW SW sw	60 430 42		60 328 42	0.585 0.068 0.560	D	13.6 26.1 13.6	N N		479 581 321	
GLAZ WALL DOOR FLOR	2 4 1	SW	60 430 42 29		60 328 42 29	0.585 0.068 0.560 0.810	D	13.6 26.1 13.6 0.0	N N -	_ D _	479 581 321 0	
GLAZ WALL DOOR	2	SW SW sw	60 430 42		60 328 42	0.585 0.068 0.560	D	13.6 26.1 13.6	N N -		479 581 321	
GLAZ WALL DOOR FLOR ROOF	2 4 1 1	SW SW sw	60 430 42 29 248		60 328 42 29	0.585 0.068 0.560 0.810	D	13.6 26.1 13.6 0.0	N N -	_ D _	479 581 321 0	
GLAZ WALL DOOR FLOR ROOF	2 4 1 1	SW SW sw	60 430 42 29		60 328 42 29	0.585 0.068 0.560 0.810	D	13.6 26.1 13.6 0.0	N N -	_ D _	479 581 321 0 672	Latent
GLAZ WALL DOOR FLOR ROOF	2 4 1 1 RN/	SW SW sw	60 430 42 29 248		60 328 42 29	0.585 0.068 0.560 0.810	D	13.6 26.1 13.6 0.0	N N -	_ D _	479 581 321 0	Latent
GLAZ WALL DOOR FLOR ROOF INTE	2 4 1 1 RN/	SW SW sw 	60 430 42 29 248 T GAIN		60 328 42 29 248	0.585 0.068 0.560 0.810 0.040	D R-4	13.6 26.1 13.6 0.0	N N -	_ D _	479 581 321 0 672	Latent
GLAZ WALL DOOR FLOR ROOF INTE	2 4 1 1 RNA	SW SW sw 	60 430 42 29 248 T GAIN	ft²/prsn	60 328 42 29 248	0.585 0.068 0.560 0.810 0.040	D R-4	13.6 26.1 13.6 0.0	N N - - - - Sensible Btuh/prsn	- D D Laten Btuh/p	479 581 321 0 672 Sens	Latent
GLAZ WALL DOOR FLOR ROOF	2 4 1 1 RNA	SW SW sw 	60 430 42 29 248 T GAIN		60 328 42 29 248	0.585 0.068 0.560 0.810 0.040	D R-4	13.6 26.1 13.6 0.0	N N - - - -	- D D Laten Btuh/p	479 581 321 0 672 Sens	Latent 522

	Type Schedule Fluorescent 8ato12m	W/ft² 3.68	W 0	Total W 914			actor 3tuh/W 4.10	Space fract 1.0	3749	
	Fluorescent	0.00	0	0			4.10	1.0	0	
	Fluorescent	0.00	0	0			4.10	1.0	0	
	Fluorescent	0.00	0	0			4.10	1.0	0	
	PLUG LOADS / API	LIANCE	S							
	Application Schedule		7 (22)	Usage	Total		nsible Ituh	Latent Btuh		
		#/ft ² 0.000		1.00	0		0	0	0	
		#/ft²	#	1.00	U		U	U	U	0
		0.000 #/ft ²	0.00	1.00	0	1070	0	0	0	0
		0.000 #/ft ²	0.00	1.00	0		0	0	0	0
		0.000 #/ft²		1.00	0		0	0	0	0
		0.000 #/ft²		1.00	0		0	0	0	0
	MOTORS	0.000		1.00	0		0	0	0	0
	Power (hp)			Load	Total	Sen	sible			
	Schedule	#/ft²	#	factor	rotar		tuh			
	0.00	0.0	0	1.00	0		0		0	
	0.00	0.0	0	1.00	0		0		0	
	0.00	0.0	0	1.00	0		0		0	
5.	INFILTRATION 35 cfm -			o Temp Diff oist. Diff	- <u> </u>	15.1 x 52.0 x	1.09 0.69		Sens 577	Latent 1246
6.	SUBTOTAL COOLING L	OAD FOI	R SPAC	CE	11	5	C. 311.	_ = 4 -4	12023	1767
7.	SUPPLY DUCT HEAT GA Gain factor 0.00		;	x Line 6 Sens	sible Gai	n ·		1	0	
8.	COOLING FAN SIZING Sum of Duct Gain Est Cooling cfm Actual Cooling Fan	(7), (L 8 = (Line Sens 120) / (Xfer		upply TD	=) =) = =	cfm 549 549	12023	
9.	VENTILATION 0 cfm -			Temp Diff oist. Diff	¥	15.1 x 52.0 x	1.09 0.69		0	0
10.	RETURN AIR LOAD FRO Lights RA Roof Load RA Ceiling Load C		TING	AND ROOF Total pow from Line from Line	3 (+)		36893	P	3749 0 0	

11. RETURN Gain		O.00	×	Line 6 Sens	sible Gain				0	
12. TOTAL	COOLING	LOADS OF	N EQUIPME	ENT (Btuh)					12023	1767
			SPACE H	EATING LO	DAD CALCU	JLATION	(5)			-
13. HEATING	G DESIGN	TEMPERA	TURE							
Heatir	ng TD	= (Inside I	OB - Outside	e DB)		(70 -	33)	=	37	
14. TRANSM	IISSION LO	OSSES			W- 11			[Mult =	= 1.0]-
Type GLAZ 1 WALL 2 DOOR 4 FLOR 1 ROOF 1	Expos SW SW sw	GrArea 60 430 42 29 248	NetArea 60 328 42 29 248	Uval 0.558 0.068 0.560 0.810 0.040		HTD 37.0 37.0 37.0 37.0 37.0				Loss 1239 825 870 859 368
5. INFILTR	ATION 57 cfm	x db Te	emp Diff	37.0	x 1.09		14 2	4		Loss 2318
6. SUBTOTA	AL HEATI	NG LOAD	FOR SPACE	C				100		6479
7. SUPPLY I	DUCT HEA	0.00	x Line 1	6 Loss	9	r,v: :				0
8. VENTILA	TION 0 cfm	x db Te	emp Diff	37.0	x 1.09					0
	FICATION e RH desir Glazing par		: 40.0 : 2.0	(Max = (Max =	32.0 for 1 52.0 for 2		e 4		. 4	
	57 cfm	x 4.56	g/100d	cfm/d	= 2.	6 gpd		· ·	0	976
). RETURN Loss	DUCT HEA		x Line 16	6 Loss	4 E		4,	= 6		0
1. TOTAL H	EATING L	OAD ON E	QUPMENT	(Btuh)			*			7455

Right-Suite Commercial Load Calculation library / sitting

Job: Jan 09, 2007

Project Information

			LWH:	8.7 x	16.0 x	15.0					
			LVVII.	0.1 X	16.U X	15.0			Ca		
. DESI	GN	CONDIT	IONS - C	OOLING		(Jul 17	700)				
Indoo	r Co	Conditions onditions rection	S	$\stackrel{\longrightarrow}{\Rightarrow}$	Dry Blb 90 75 2	RH 54 50	Moist	ure	Range 19	Wet Blb 77 63	
Dif	fere	nce			15		52.0				
. GLA	ZIN	G SOLAI	RHEAT	GAIN	(Lat	= 29.6	88 °N ,	Const V	Vt = M	_[Mult = I)	1.0]
Type GLAZ	1	Orien	Area		ShdF IntS		Mult	SC	Sens/A	Sens	
01,4	1	SW	60	90		N	1.00	0.88	75.4	4525	
	-	IISSION		90		N	1.00	0.88	75.4	4525	
TRAI	-	IISSION (90 NtArea	Uval		1.00	0.88 Shad	75.4		
TRAI Type GLAZ	NSIV	Orien SW	GAINS GrArea 60	NtArea 60	Uval 0.585	Grp		Shad N		4525 Sens 479	# 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
TRAI Type GLAZ WALL	NSM	IISSION (GAINS GrArea 60 240	NtArea 60 180	Uval 0.585 0.286	Grp D	CLTD 13.6 26.1	Shad		Sens	4
TRAI Type GLAZ WALL FLOR	1 1 1	Orien SW	GAINS GrArea 60 240 16	NtArea 60 180 16	Uval 0.585 0.286 0.810	Grp D	CLTD 13.6 26.1 0.0	Shad N	Clr - D	Sens 479 1342 0	
TRAI Type GLAZ WALL FLOR	NSIV	Orien SW	GAINS GrArea 60 240	NtArea 60 180	Uval 0.585 0.286	Grp D	CLTD 13.6 26.1	Shad N	Clr D	Sens 479 1342	
TRAI Type GLAZ WALL FLOR ROOF	1 1 1 1	Orien SW	GAINS GrArea 60 240 16 139	NtArea 60 180 16	Uval 0.585 0.286 0.810	Grp D	CLTD 13.6 26.1 0.0	Shad N	Clr - D	Sens 479 1342 0 375	
TRAI Type GLAZ WALL FLOR ROOF	1 1 1 1 RN/	Orien SW SW	GAINS GrArea 60 240 16 139	NtArea 60 180 16	Uval 0.585 0.286 0.810	Grp D	CLTD 13.6 26.1 0.0	Shad N	Clr - D	Sens 479 1342 0	Latent
TRAI Type GLAZ WALL FLOR ROOF	1 1 1 1 RN/	Orien SW SW AL HEAT OPLE Activity	GAINS GrArea 60 240 16 139	NtArea 60 180 16 139	Uval 0.585 0.286 0.810 0.040	Grp D R-4	CLTD 13.6 26.1 0.0 67.6	Shad N N - -	Clr - D - D	Sens 479 1342 0 375 Sens	Latent
TRAI Type GLAZ WALL FLOR ROOF	1 1 1 1 RNA	Orien SW SW 	GAINS GrArea 60 240 16 139 GAIN	NtArea 60 180 16 139	Uval 0.585 0.286 0.810 0.040	Grp D R-4	CLTD 13.6 26.1 0.0 67.6	Shad N N -	Clr - D - D	Sens 479 1342 0 375 Sens	Latent 291

1	LIGHTS									
	Type Schedule Fluorescent	W/ft² 3.68	W	Total W 510		Fact Btul 4.		Space fract 1.0	2092	
	8ato12m Fluorescent	0.00	0	0		4.	10	1.0	0	
	Fluorescent	0.00	0	0		4.	10	1.0	0	
	Fluorescent	0.00	0	0		4.	10	1.0	0	
	PLUG LOADS / APP	LIANCES	S							
	Application Schedule	#/ft²	#	Usage	Total	Sensik Btuh		Latent Btuh		
		0.000 #/ft²		1.00	0		0	0	0	0
		0.000 #/ft²	0.00	1.00	0		0	0	0	0
		0.000		1.00	0		0	0	0	0
		#/ft² 0.000		1.00	0		0	0	0	0
		#/ft² 0.000		1.00	0		0	0	0	0
		#/ft² 0.000	# 0.00	1.00	0		0	0	0	0
	MOTORS Power (hp)			Load	Total	Sensib	le			
	Schedule 0.00	#/ft² 0.0	#	factor 1.00	0	Btuh			0	
	0.00	0.0	0	1.00	0		0		0	
	0.00	0.0	0	1.00	0		0		0	
<u>.</u>			= V			± , ±				
5.	INFILTRATION 0 cfm -			Temp Diff oist. Diff			.09		Sens 0	Latent 0
6.	SUBTOTAL COOLING L	OAD FOR	SPAC	CE .				7	9438	1778
7.	SUPPLY DUCT HEAT GA Gain factor 0.00		>	Line 6 Sens	ible Gair	1			0	
8.	COOLING FAN SIZING Sum of Duct Gain Est Cooling cfm Actual Cooling Fan	(7), (L 8 :	Line Sens 94	(6) & D) / (Xfer 38) / (1.0	rawthru x Su y x	apply TD	=) = cfi) = 43 = 43	31	9438	
9.	VENTILATION 42 cfm -			Temp Diff pist. Diff			.09		689	1487
10.	RETURN AIR LOAD FRO Lights RA Roof Load RA Ceiling Load C		TING A	AND ROOF Total pow from Line from Line	3 (+)	. 0	9	2	2092 0 0	

RETURN DUCT H Gain factor	EAT GAIN 0.00	×	Line 6 Sen	sible	Gain							0	
TOTAL COOLING	LOADS ON	EQUIPMI	ENT (Btuh)						Get.		1012	27	1778
2 2	8 1	SPACE H	IEATING L	OAD	CALC	UL	ATION						
HEATING DESIGN	TEMPERA	TURE										i e	
Heating TD	= (Inside D	B - Outsid	e DB)		=	(70 -	33)	=		37		
TRANSMISSION L	OSSES		T				7	F]-	Mult	=	1.0]
LAZ 1 SW ALL 1 SW .OR 1 -	GrArea 60 240 16 139	180 16	0.286 0.810))			HTD 37.0 37.0 37.0 37.0						Loss 1239 1905 480 205
	x db Te	mp Diff	37.0	x	1.09				h				Loss 421
SUBTOTAL HEAT	NG LOAD I	OR SPACE	E								, it		4249
SUPPLY DUCT HE Loss factor		x Line 1	6 Loss					-					0
	x db Tei	mp Diff	37.0	×	1.09								1684
Inside RH desi	red		(Max = (Max =						.1				
52 cfm	x 4.56	g/100	cfm/d		= 2	.4	gpo	d					886
		x Line 10	6 Loss					1:		2			0
	HEATING DESIGN Heating TD TRANSMISSION L Type Expos LAZ 1 SW ALL 1 SW OR 1 - OOF 1 - INFILTRATION 10 cfm SUBTOTAL HEATI SUPPLY DUCT HE Loss factor VENTILATION 42 cfm HUMIDIFICATION Inside RH desin # of Glazing pa 52 cfm	HEATING DESIGN TEMPERA Heating TD = (Inside DESIGN TEMPERA Heating TD = (Inside DESIGN TEMPERA Heating TD = (Inside DESIGN TEMPERA TRANSMISSION LOSSES Type Expos GrArea LAZ 1 SW 60 (ALL 1 SW 240 LOR 1 - 16 LOF 1 - 139 INFILTRATION 10 cfm x db Te SUBTOTAL HEATING LOAD F SUPPLY DUCT HEAT LOSS Loss factor 0.00 VENTILATION 42 cfm x db Tel HUMIDIFICATION Inside RH desired # of Glazing panes 52 cfm x 4.56 RETURN DUCT HEAT LOSS	TOTAL COOLING LOADS ON EQUIPMING SPACE F HEATING DESIGN TEMPERATURE Heating TD = (Inside DB - Outside DB -	SPACE HEATING L	SPACE HEATING LOADS ON EQUIPMENT (Btuh)	SPACE HEATING LOAD CALCE HEATING DESIGN TEMPERATURE	SPACE HEATING LOAD CALCUL HEATING DESIGN TEMPERATURE	SPACE HEATING LOAD CALCULATION	TOTAL COOLING LOADS ON EQUIPMENT (Btuh) 1012	TOTAL COOLING LOADS ON EQUIPMENT (Btuh) 10127			

Right-Suite Commercial Load Calculation imam's office

Job: Jan 09, 2007

Project Information

		15	LWH:	11.3	x 18.	0 x	8.0					
DESI	GN	CONDI	TIONS - C	COOLING		9	(Jul 16	300)		(A)	- 1	-
Indoor	Co	Conditions Inditions ection		$\stackrel{\textstyle \longrightarrow}{\rightarrow}$	Dŋ	Blb 91 75 1	RH 52 50	Mois	ture	Range \ 19	Vet Blb 77 63	
Diff	ere	nce				16		52.0	6			
GLAZ	ZIN	G SOLA	RHEAT	GAIN	(Lat	= 29.6	68 °N	, Const V	Vt = M)	Mult =	1.0]-
Type GLAZ	1	Orien NE	Area 48	Tilt 90	ShdF		nd SC N	CMult 1.00	SC 0.88	Sens/A 39.5	Sens 1889	
TRAN	NSM	ISSION	GAINS						_0192dto 1159554 =			4
Туре		Orien	GrArea	NtAre	а	Uval	Grp	CLTD	Shad	Clr	Sens	
	1	NE	48	4	3	0.585	59	440	N	_	410	
	7.0							14.6				
NALL	1	NE	144	7	5	0.286		25.9	N	D	558	
NALL NALL	1	SE	91	7 9	5 1	0.286 0.286		25.9 31.1		D D	558 806	
GLAZ WALL WALL DOOR	1 1 3		91 21	7 9 2	5 1 1	0.286 0.286 0.560		25.9 31.1 14.6	N		558 806 172	
NALL NALL	1	SE	91	7 9	5 1 1 9	0.286 0.286	D	25.9 31.1	N		558 806	
WALL WALL DOOR FLOR ROOF	1 1 3 1 1	SE ne -	91 21 29	7 9 2 2	5 1 1 9	0.286 0.286 0.560 0.810	D	25.9 31.1 14.6 0.0	N	D -	558 806 172 0 552	
WALL WALL DOOR FLOR ROOF INTE	1 1 3 1 1	SE ne - - AL HEA	91 21 29 204	7 9 2 2	5 1 1 9	0.286 0.286 0.560 0.810	D	25.9 31.1 14.6 0.0	N	D -	558 806 172 0	Latent
WALL WALL DOOR FLOR ROOF INTE	1 1 3 1 1 RNA	SE ne 	91 21 29 204 T GAIN	7 9 2 2	5 1 1 9	0.286 0.286 0.560 0.810 0.040	D R-4	25.9 31.1 14.6 0.0	N N N N N N N N N N N N N N N N N N N	D - - D	558 806 172 0 552	Latent
WALL WALL DOOR FLOR ROOF INTE	1 1 3 1 1 RNA	SE ne 	91 21 29 204 T GAIN	7 9 2 2 2 20	5 1 1 9 4	0.286 0.286 0.560 0.810 0.040	D R-4	25.9 31.1 14.6 0.0	N N - - - - Sensible	D D	558 806 172 0 552	Latent
WALL WALL DOOR FLOR ROOF INTE	1 1 3 1 1 RNA	SE ne 	91 21 29 204 T GAIN	7 9 2 2	5 1 1 9	0.286 0.286 0.560 0.810 0.040	D R-4	25.9 31.1 14.6 0.0	N N N N N N N N N N N N N N N N N N N	D D	558 806 172 0 552	Latent 428
WALL WALL DOOR FLOR ROOF INTE	1 1 3 1 1 RNA	SE ne 	91 21 29 204 T GAIN	7 9 2 2 20	5 1 1 1 9 4	0.286 0.286 0.560 0.810 0.040	D R-4	25.9 31.1 14.6 0.0	N N - - - - Sensible Btuh/prsn	D D Latent Btuh/pr	558 806 172 0 552 Sens	

	Type Schedule Fluorescent	W/ft² 3.68	W	Total W 751			actor stuh/W 4.10	Space fract 1.0	3078	
	8ato12m Fluorescent	0.00	0	0			4.10	1.0	0	
	Fluorescent	0.00	0	0			4.10	1.0	0	
	Fluorescent	0.00	0	0			4.10	1.0	0	
	PLUG LOADS / API	PLIANCE	s							
	Application Schedule			Usage	Total		sible tuh	Latent Btuh		
		#/ft²	#		-		E'	10000		
		0.000 #/ft²	0.00	1.00	0		0	. 0	0	0
		0.000 #/ft²		1.00	0		0	0	0	0
			0.00	1.00	0		0	0	0	0
		0.000	0.00	1.00	0		0	0	0	0
		#/ft² 0.000		1.00	0		0	0	0	0
		#/ft² 0.000	0.00	1.00	0		0	0	0	0
	MOTORS	0.000	0.00	1.00	O		U	U		U
	Power (hp)			Load	Total	Sen	sible			
	Schedule	#/ft2	#	factor			uh			
	0.00	0.0	0	1.00	0		0		0	
	0.00	0.0	0	1.00	0		0		0	
	0.00	0.0	0	1.00	0		0		0	
5.	INFILTRATION 10 cfm -			Temp Diff bist. Diff	115	16.4 x 52.0 x	1.09 0.69		Sens 180	Latent 357
6.	SUBTOTAL COOLING L	OAD FOR	SPAC	E					8562	2974
7.	SUPPLY DUCT HEAT GA Gain factor 0.00		×	Line 6 Sensi	ible Gai	n .	8		0	
8.	COOLING FAN SIZING Sum of Duct Gain Est Cooling cfm Actual Cooling Fan		Line Sens 856) / (Xfer	rawthru x S 9 x	Fan upply TD 20.0	= } = } =	cfm 391 396	8562	
9.	VENTILATION 61 cfm -			Temp Diff pist. Diff		16.4 x 52.0 x	1.09 0.69		1101	2188
10.	RETURN AIR LOAD FRO Lights RA Roof Load RA Ceiling Load 0		TING A	AND ROOF Total pow from Line from Line	3 (+))	-0		3078 0 0	,

Gain factor 0.00 x Line 6 Sensible Gain 0	
TOTAL COOLING LOADS ON EQUIPMENT (Btuh) 9663	2974
SPACE HEATING LOAD CALCULATION	
HEATING DESIGN TEMPERATURE	
Heating TD = (Inside DB - Outside DB) = (70 - 33) = 37	
TRANSMISSION LOSSES	1.0]
AZ 1 NE 48 48 0.558 37.0	Loss 988
ALL 1 SE 91 91 0.286 37.0	795 959 435
OR 1 - 29 29 0.810 37.0	879 302
INFILTRATION 28 cfm x db Temp Diff 37.0 x 1.09	Loss 1140
SUBTOTAL HEATING LOAD FOR SPACE	5498
SUPPLY DUCT HEAT LOSS Loss factor 0.00 x Line 16 Loss	0
VENTILATION 61 cfm x db Temp Diff 37.0 x 1.09	2477
Inside RH desired : 40.0 (Max = 32.0 for 1 pane)	= 4
89 cfm x 4.56 g/100cfm/d = 4.1 gpd	1523
RETURN DUCT HEAT LOSS Loss factor 0.00 x Line 16 Loss	0
	SPACE HEATING LOAD CALCULATION

Right-Suite Commercial Load Calculation foyer / entry 1

Job: Jan 09, 2007

Project Information

			LWH:	204.0	×	1.0 x	15.0					
. DES	GN	CONDI	TIONS - C	A STATE OF THE STA	277		(Jul 10	300)				
Indoo	r Co	Conditions ection		→ → →		Dry Blb 91 75 1	RH 52 50	Mois	ture	Range 19	Wet Blb 77 63	
Dif	fere	nce				16		52.0			-[Mult =	1.0]-
Туре		Orien	ARHEAT	GAIN	S	(Lat hdF IntSh		58 °N , CMult	Const V	Vt = M Sens/A) Sens	
n/a		n/a	0	0								
n/a	0 NSM	n/a	0 I GAINS	0	<u> </u>			0.00	0.00	0.0	0	
TRA	-	IISSION	GAINS		00		E .	0.00	0.00	0.0	0	
TRA	NSM	IISSION Orien	N GAINS GrArea	NtAr		Uval	Grp	0.00	0.00 Shad	0.0	0 Sens	
TRAI Type WALL	-	IISSION	GAINS GrArea 150	NtAr 1	08	Uval 0.286	Grp	0.00 CLTD 31.1	0.00	0.0	Sens 960	
TRAI Type WALL DOOR	NSM 1	IISSION Orien SE	N GAINS GrArea	NtAr 1		Uval	Grp	0.00	0.00 Shad	0.0	0 Sens	
TRAI Type WALL DOOR FLOR	1 2	IISSION Orien SE	GrArea 150 42	NtAr 1	08 42	Uval 0.286 0.560	Grp D	0.00 CLTD 31.1 14.6	0.00 Shad	0.0	Sens 960 345	
Type WALL DOOR FLOR ROOF	1 2 1 1	Orien SE se -	GrArea 150 42 10	NtAr 1	08 42 10	Uval 0.286 0.560 0.810	Grp D	0.00 CLTD 31.1 14.6 0.0	0.00 Shad	0.0 Clr D -	Sens 960 345 0 552	
TRAI Type WALL DOOR FLOR ROOF	1 2 1 1 1 RNA	Orien SE se	GrArea 150 42 10 204	NtAr 1	08 42 10	Uval 0.286 0.560 0.810	Grp D	0.00 CLTD 31.1 14.6 0.0	0.00 Shad	0.0 Clr D -	Sens 960 345 0	Latent
TRAI Type WALL DOOR FLOR ROOF	1 2 1 1 PEO	Orien SE se	GrArea 150 42 10 204	NtAr 1	08 42 10 04	Uval 0.286 0.560 0.810 0.040	Grp D R-4	0.00 CLTD 31.1 14.6 0.0 67.6	0.00 Shad N Sensible	O.O Clr D - D Laten	Sens 960 345 0 552 Sens	Latent
Type WALL DOOR FLOR ROOF	1 2 1 1 RNA	Orien SE Se	GrArea 150 42 10 204 T GAIN	NtAr 1	08 42 10	Uval 0.286 0.560 0.810 0.040	Grp D R-4	0.00 CLTD 31.1 14.6 0.0 67.6	0.00 Shad N - -	O.O Clr D - D Laten	Sens 960 345 0 552 Sens	Latent 428

	LIGHTS Type Schedule Fluorescent	W/ft² 3.68	W	Total W 751			Factor Btuh/W 4.10	Spac frac 1.	ct	
	8ato12m Fluorescent	0.00	0	0			4.10	1.		
	Fluorescent	0.00	0	0			4.10	1.0		
	Fluorescent	0.00	0							
				0			4.10	1.0	0 0	
	PLUG LOADS / A Application Schedule			Usage	Total	- 3	Sensible Btuh	Later Btuh		
		#/ft² 0.000 #/ft²		1.00	0		0	(0	0
		0.000	0.00	1.00	0		0	. (0 0	0
		#/ft² 0.000		1.00	0		0		0 0	0
		#/ft² 0.000		1.00	0		0	(0	0
		#/ft² 0.000 #/ft²	# 0.00 #	1.00	0		0	(0	0
	MOTORS	0.000		1.00	0		0	(0	0
	Power (hp) Schedule	#/ft²	#	Load factor	Total	8	Sensible Btuh			
	0.00	0.0	0	1.00	0		0		0	
	0.00	0.0	0	1.00	0		0		0	
	0.00	0.0	0	1.00	0		0		0	
5.	INFILTRATION 10 cfm			Temp Diff oist. Diff	1	16.4 52.0			Sens 180	Latent 357
6.	SUBTOTAL COOLING	LOAD FOR	SPAC	Œ		1 -			6032	2974
7.	SUPPLY DUCT HEAT (Gain factor 0.	GAIN 00	>	k Line 6 Sens	ible Ga	in		5 II	0	
8.	COOLING FAN SIZING Sum of Duct Gain Est Cooling cfr Actual Cooling Fan	(7), (L 8	Line Sens 60	(6) & D) / (Xfer 32) / (1.09		Fan upply T 20.0) =	cfm 276 274	6032	e s
9.	VENTILATION 61 cfm			Temp Diff pist. Diff		16.4 52.0			1101	2188
10.	RETURN AIR LOAD FI Lights RA Roof Load RA Ceiling Load		TING A	AND ROOF Total pow from Line from Line	3 (+))	-0		3078 0 0	, r <u>.</u>

II. RETURN DUCT HEAT GAIN Gain factor 0.00	x Line 6 Sensible Gain	0	
12. TOTAL COOLING LOADS ON E	QUIPMENT (Btuh)	7133	2974
S	SPACE HEATING LOAD CALCULATION	- +	
3. HEATING DESIGN TEMPERATU	JRE		
Heating TD = (Inside DB	- Outside DB) = (70 - 33) =	37	
4. TRANSMISSION LOSSES	<u> </u>	Mult =	1.0]-
Type Expos GrArea MALL 1 SE 150 DOOR 2 se 42 FLOR 1 - 10 ROOF 1 - 204	NetArea Uval HTD 108 0.286 37.0 42 0.560 37.0 10 0.810 37.0 204 0.040 37.0		Loss 1143 870 300 302
5. INFILTRATION 35 cfm x db Temp	Diff 37.0 x 1.09	Arie y	Loss 1429
6. SUBTOTAL HEATING LOAD FO	R SPACE		4044
7. SUPPLY DUCT HEAT LOSS Loss factor 0.00 x	Line 16 Loss		0
8. VENTILATION 61 cfm x db Temp	Diff 37.0 x 1.09	# = # **	2477
9. HUMIDIFICATION Inside RH desired : # of Glazing panes :	40.0 (Max = 32.0 for 1 pane) 0.0 (Max = 52.0 for 2 pane)	9 - 5	
97 cfm x 4.56	g/100cfm/d = 4.4 gpd		1644
0. RETURN DUCT HEAT LOSS Loss factor 0.00 x	Line 16 Loss	- 4	0
1. TOTAL HEATING LOAD ON EQU	IPMENT (Rtub)		8165

Right-Suite Commercial Load Calculation restroom 1

Job: Jan 09, 2007

Project Information

LWH:	7.3	x 5	5.0 x	15.0					
DESIGN CONDITIONS -	COOLIN	G	(Jul 1600))			20.3	
		Г	Dry Blb	RH	Moistu	ıre	Range \	Wet Blb	
Outdoor Conditions Indoor Conditions	→	e	91 75	52 50	11101010		19	77 63	
TOD Correction	>		1			-			
Difference			16		52.0			r M. 14 -	40.1
GLAZING SOLAR HEAT	r gain		(Lat =	= 29.68	°N ,	Const V	Vt = M	[Mult =)	1.0]
Type Orien Area n/a 0 n/a 0		Sh	dF IntShd			SC 0.00	Sens/A 0.0	Sens 0	
TRANSMISSION GAINS	la II		-00					F	
				Tage of the second	01.70	01 1		•	
Type Orien GrAre ROOF 1 - 3		теа 37	Uval 0.040 F		CLTD 67.6	Shad -	Clr D	Sens 99	
	7					Shad			
RÓOF 1 - 3 INTERNAL HEAT GAIN	7					Shad -			Latent
RÓÓF 1 - 3 INTERNAL HEAT GAIN PEOPLE	7		0.040 F		67.6	2	D	99 Sens	Latent
ROOF 1 - 3 INTERNAL HEAT GAIN PEOPLE Activity	7	37	0.040 F	₹-4	67.6	- Sensible	D Latent	99 Sens	Latent
INTERNAL HEAT GAIN PEOPLE Activity Schedule Assembly	7		0.040 F	₹-4	67.6	2	D	99 Sens	Latent
INTERNAL HEAT GAIN PEOPLE Activity Schedule	7 ft²/prsn	37 #	0.040 F	₹-4	67.6	Sensible Btuh/prsn	D Latent Btuh/pr	99 Sens	
INTERNAL HEAT GAIN PEOPLE Activity Schedule Assembly	ft²/prsn 50	# 0	Total people	₹-4	67.6	Sensible Stuh/prsn 225	Latent Btuh/pr 105	Sens rsn 165	77
PEOPLE Activity Schedule Assembly 8ato12m	ft²/prsn 50	# 0	Total people 1	₹-4	67.6	Sensible Stuh/prsn 225	Latent Btuh/pr 105	99 Sens rsn 165 0	77
PEOPLE Activity Schedule Assembly 8ato12m ROOF 1 - 3	ft²/prsn 50 0 W/ft²	# 0	Total people	₹-4	67.6	Sensible Btuh/prsn 225	Latent Btuh/pr 105 0	99 Sens rsn 165 0	77
PEOPLE Activity Schedule Assembly 8ato12m LIGHTS Type	ft²/prsn 50	# 0	Total people 1	₹-4	67.6	Sensible Btuh/prsn 225 0 Factor	Latent Btuh/pr 105 0	99 Sens rsn 165 0	77
PEOPLE Activity Schedule Assembly 8ato12m LIGHTS Type Schedule Fluorescent	ft²/prsn 50 0 W/ft²	# 0 0 W	Total people 1	₹-4	67.6	Sensible Btuh/prsn 225 0 Factor Btuh/W	Latent Btuh/pr 105 0 Space	99 Sens rsn 165 0	77
PEOPLE Activity Schedule Assembly 8ato12m LIGHTS Type Schedule Fluorescent 8ato12m	ft²/prsn 50 0 W/ft² 3.68	# 0 0 W 0	Total people 1 Total W 135	₹-4	67.6	Sensible Btuh/prsn 225 0 Factor Btuh/W 4.10	Latent Btuh/pr 105 0 Space fract 1.0	99 Sens 165 0	77

	PLUG LOADS / AP Application Schedule	PLIANCE	S	Usage	Total	5	Sensible Btuh	Late			
		#/ft ² 0.000	# 0.00	1.00	0		0		0	0	0
		#/ft ² 0.000	# 0.00	1.00	0		0		0	0	0
		#/ft ² 0.000	# 0.00	1.00	0		0		0	0	. 0
		#/ft² 0.000	# 0.00	1.00	0		0		0	0	0
		#/ft² 0.000		1.00	0		0		0	0	0
9		#/ft² 0.000	0.00	1.00	0		0		0	0	0
	MOTORS Power (hp)			Load	Total		Sensible				
	Schedule 0.00	#/ft² 0.0	#	factor 1.00	0		Btuh 0			0	
	0.00	0.0	0	1.00	0		0			0	
	0.00	0.0	0	1.00	0		0			0	
	INFILTRATION 43 cfm	→		o Temp Diff loist. Diff	E.E.	16.4 52.0				Sens 767	Latent 1525
	SUBTOTAL COOLING I	OAD FO	R SPAC	CE			A		-	1585	1995
	SUPPLY DUCT HEAT G. Gain factor 0.0			x Line 6 Sens	sible Gai	n		7,		0	4.7
	COOLING FAN SIZING		*	7							
	Sum of Duct Gain Est Cooling cfm		Line Sens 15	(6) & D) / (Xfe 85) / (1.0	rawthru r x Si	upply 7 20.0) =	cfm 72		1585	
1 1000	Est Cooling cfm Actual Cooling Fan	(L 8	Sens) / (Xfe	r x Si	upply 7	TD) =			1585	
1000	Est Cooling cfm	(L 8	Sens 15 x db) / (Xfe	r x Si	upply 7 20.0	TD) = 0) = = = = = = = = = = = = = = = =	72		1585	393
	Est Cooling cfm Actual Cooling Fan VENTILATION 11 cfm RETURN AIR LOAD FR	= (L 8	Sens 15 x db x M) / (Xfe 85) / (1.0 D Temp Diff oist. Diff	r x Si 09 x	16.4 52.0	TD) = 0) = = = = x 1.09 x 0.69	72		198	393
	Est Cooling cfm Actual Cooling Fan VENTILATION 11 cfm	= (L 8	Sens 15 x db x M) / (Xfe 85) / (1.0 D Temp Diff oist. Diff	r x Si 09 x wer (W)	16.4 52.0	TD) = 0) = = = = = = = = = = = = = = = =	72			393
	Est Cooling cfm Actual Cooling Fan VENTILATION 11 cfm RETURN AIR LOAD FR Lights RA Roof Load	= (L 8 = (OM LIGH Credit	x dk x M	Temp Diff oist. Diff AND ROOF Total pow from Line	ver (W)	upply 7 20.0 	TD) = 0) = = = = x 1.09 x 0.69	72		198 553 0	393

SPACE HEATING LOAD CALCULATION

13. HEATING DESIGN TEMPERATURE

Heating TD = (Inside DB - Outside DB) = (70 - 33) = 37

14. TRANSMISSION LOSSES

Type Expos GrArea NetArea Uval HTD Loss ROOF 1 - 37 37 0.040 37.0 54

 15. INFILTRATION
 Loss

 45 cfm x db Temp Diff
 37.0 x 1.09
 1801

16. SUBTOTAL HEATING LOAD FOR SPACE 1856

17. SUPPLY DUCT HEAT LOSS

Loss factor 0.00 x Line 16 Loss 0

18. VENTILATION

11 cfm x db Temp Diff 37.0 x 1.09 445

19. HUMIDIFICATION

Inside RH desired : 40.0 (Max = 32.0 for 1 pane) # of Glazing panes : 0.0 (Max = 52.0 for 2 pane)

 $56 ext{ cfm } \times 4.56 ext{ g/100cfm/d} = 2.5 ext{ gpd}$

20. RETURN DUCT HEAT LOSS

Loss factor 0.00 x Line 16 Loss 0

21. TOTAL HEATING LOAD ON EQUPMENT (Btuh)

3247

Mult = 1.0] —

Right-Suite Commercial Load Calculation restroom 2

Job: Jan 09, 2007

Project Information

LWH	1: 7.3	x :	5.0 x 1	5.0					
. DESIGN CONDITIONS	- COOLIN	G	(Jul 160	00).	7 T X	6		
Outdoor Conditions Indoor Conditions TOD Correction			Ory Blb 91 75 1	RH 52 50	Mois	sture	Range W 19	et Blb 77 63	
Difference		-	16		52.0				
GLAZING SOLAR HEA	T GAIN		(Lat =	29.68	°N	, Const \	Nt = M	Mult =	1.0]-
Type Orien Are	a Tilt	Sh	ndF IntShd	SCN 0	/lult .00	SC 0.00	Sens/A 0.0	Sens 0	
Tuna Orian CrAn	1144		1.1 1	0	OLTO	01 1	01		
The state of the s	37	rea 37	Uval 0.040 R		67.6		Clr D	Sens 99	
INTERNAL HEAT GAIL	37								Latent
INTERNAL HEAT GAIN PEOPLE Activity Schedule Assembly	37						D Latent Btuh/prsr	99 Sens	Latent
INTERNAL HEAT GAIN PEOPLE Activity Schedule	N ft²/prsn	37 #	0.040 R			Sensible Btuh/prsn	D Latent Btuh/prsr	99 Sens	77
PEOPLE Activity Schedule Assembly 8ato12m	37 N ft²/prsn 50	# 0	Total people			Sensible Btuh/prsn 225	Latent Btuh/prsr 105	99 Sens	
PEOPLE Activity Schedule Assembly 8ato12m LIGHTS Type Schedule Fluorescent	37 N ft²/prsn 50	# 0	Total people			Sensible Btuh/prsn 225	Latent Btuh/prsr 105 0	99 Sens	77
PEOPLE Activity Schedule Assembly 8ato12m LIGHTS Type Schedule	137 N ft²/prsn 50 0 W/ft²	# 0 0	Total people 1 Total W			Sensible Btuh/prsn 225 0 Factor Btuh/W	Latent Btuh/prsr 105 0 Space	99 Sens 1 165 0	77
PEOPLE Activity Schedule Assembly 8ato12m LIGHTS Type Schedule Fluorescent 8ato12m	ft²/prsn 50 0 VV/ft² 3.68	# 0 0	Total people 1 Total W 135			Sensible Btuh/prsn 225 0 Factor Btuh/W 4.10	Latent Btuh/prsr 105 0 Space fract 1.0	99 Sens 1 165 0	77

	PLUG LOADS / API Application Schedule	LIANCE	S	Usage	Total	Sens Bt			tent uh		
		#/ft² 0.000	# 0.00	1.00	0	5	0	50	0	0	0
		#/ft² 0.000	#	1.00	0		0	:4			
		#/ft²	#				U		0	0	0
		0.000 #/ft²	0.00	1.00	0		0		0	0	0
		0.000 #/ft²		1.00	0		0		0	0	0
		0.000	0.00	1.00	0		0		0	0	0
		#/ft ² 0.000	0.00	1.00	0		0		0	0	0
	MOTORS			1	T-1-1	0	9-1-				
	Power (hp) Schedule	#/ft²	#	Load factor	Total	Sens Btu					
	0.00	0.0	0	1.00	0	Die	0			0	
	0.00	0.0	0	1.00	0		0			0	
	0.00	0.0	0	1.00	0		0			0	
5.	INFILTRATION 43 cfm -			Temp Diff oist. Diff		16.4 x 52.0 x	1.09 0.69		T.	Sens 767	Latent 1525
5.	SUBTOTAL COOLING L	OAD FO	R SPAC	E				pro existence		1585	1995
<i>'</i> .	SUPPLY DUCT HEAT GA Gain factor 0.00		· >	Line 6 Sens	ible Gair	n	*	0.0		0	
ı.	COOLING FAN SIZING Sum of Duct Gain Est Cooling cfm		Line Sens 158	(6) & D) / (Xfer 85) / (1.0		Fan upply TD 20.0	=) =) =	cfm 72	0	1585	
	Actual Cooling Fan	-				>	, =				
	VENTILATION 11 cfm -			Temp Diff			,		ľ	198	393
1	VENTILATION	──> OM LIGH	x Mo	Temp Diff bist. Diff	ver(W)	16.4 x 52.0 x	1.09		1	198 553 0	393
	VENTILATION 11 cfm - RETURN AIR LOAD FRO Lights RA Roof Load	> OM LIGH Credit	X Mo	Temp Diff bist. Diff AND ROOF Total pow from Line	ver (W) 3 (+) 3 (-)	16.4 x 52.0 x	1.09			553 0	393

SPACE HEATING LOAD CALCULATION

13. HEATING DESIGN TEMPERATURE

2 1	= (Inside				(70	- 33		37		
14. TRANSMISSION L	OSSES							-[Mult	=	1.0] -
Type Expos ROOF 1 -	GrArea 37	NetArea 37	Uval 0.040		H ⁻ 37	ΓD .0				Loss 54
15. INFILTRATION 45 cfm	ıx dbT	emp Diff	37.0	x 1.09)			=		Loss 1801
16. SUBTOTAL HEAT	ING LOAD	FOR SPACE				-		5		1856
7. SUPPLY DUCT HE Loss factor							2			
LUSS IACIOI	0.00	x Line 16	Loss	N 9						0
		x Line 16	37.0	x 1.09)					445
8. VENTILATION	x db T	emp Diff : 40.0	7	x 1.09	1 pane)		2		
8. VENTILATION 11 cfm 9. HUMIDIFICATION Inside RH desi	x db To N ired anes	emp Diff : 40.0	37.0 (Max = (Max =	32.0 for 52.0 for	1 pane)) gpd				
8. VENTILATION 11 cfm 9. HUMIDIFICATION Inside RH desi # of Glazing pa	x db To N ired anes	emp Diff : 40.0 : 0.0	37.0 (Max = (Max =	32.0 for 52.0 for	1 pane 2 pane)) gpd				445

Right-Suite Commercial Load Calculation ablutions / wudu

Job: Jan 09, 2007

Project Information

			LWH:	95.6	v	10	x 15.0					
X			LVVII.	95.0	Χ	1.0	x 15.0					Land Same
DES	IGN	CONDI	TIONS - C	COOLING			(Jul 1	600)				
044		0		0					ture			
				_>			1,000,000			19		
			a 6	— <u></u>		1	50				03	
Di	ffere	nce			9	16		52.0	-			
	liele	nce	77.4			10		52.0		1	Mult =	1.0 1
GLA	ZIN	G SOLA	RHEAT	GAIN		(Lat	= 29.	68 °N	Const \	√t = M)		
Type		Orien	Area	Tilt	SI	ndE IntS	hd S	CMult	90	Sons/A	Cons	
n/a			0	0	Oi	idi ilito	ilu S	0.00	0.00	0.0	0	
TDA	NICA	ATESTON	CAINE				-				7	
INA	1401	1155101	GAINS									
Type		Orien	GrArea			Uval	Grp	CLTD	Shad	Clr	Sens	
	7.7							25.9	N	D	297	
										D	1244	
LOR									N	D		
		-	12							-	- 0	
	1	- 2				0.810		0.0	4 (#t)			
OOF	1		96		96) R-4	0.0 67.6	-	D	259	
OOF	1	- AL HEA	96								259	
OOF	1 ERN	- AL HEA	96						13.0			Latent
OOF	1 ERN	- AL HEA OPLE	96 T GAIN			0.040) R-4		Sensible	D	259	Latent
OOF	1 ERN	AL HEADPLE Activity	96 T GAIN	•	96	0.040 Tota) R-4	67.6	Sensible	D Latent	259 Sens	Latent
OOF	1 ERN	AL HEADPLE Activity	96 T GAIN			0.040) R-4	67.6	Btuh/prsn	D Latent Btuh/prs	259 Sens	1
OOF	1 ERN	AL HEADPLE Activity Sche	96 T GAIN edule	ft²/prsn	#	0.040 Tota	R-4	67.6		D Latent Btuh/prs	259 Sens	Latent 201
-	Outd Indoor TOD Di GLA Type n/a TRA Type /ALL /ALL	Outdoor Condition of Condition	Outdoor Conditions Indoor Conditions TOD Correction Difference GLAZING SOLA Type Orien n/a 0 n/a TRANSMISSION Type Orien /ALL 1 NE /ALL 1 SE /ALL 1 SW	Outdoor Conditions Indoor Conditions Indoor Conditions TOD Correction Difference GLAZING SOLAR HEAT Type Orien Area n/a 0 n/a 0 TRANSMISSION GAINS Type Orien GrArea //ALL 1 NE 40 //ALL 1 SE 140 //ALL 1 SW 40	Outdoor Conditions -> Indoor Conditions -> Indoor Conditions -> TOD Correction -> Difference GLAZING SOLAR HEAT GAIN Type Orien Area Tilt n/a 0 n/a 0 0 TRANSMISSION GAINS Type Orien GrArea NtArea All 1 NE 40 40 40 40 40 40 40 40 40 40 40 40 40	Outdoor Conditions - > Indoor Conditions - > Indoor Conditions - > TOD Correction - > Difference GLAZING SOLAR HEAT GAIN Type Orien Area Tilt SI n/a 0 n/a 0 0 TRANSMISSION GAINS Type Orien GrArea NtArea //ALL 1 NE 40 40 //ALL 1 SE 140 140 //ALL 1 SW 40 40	DESIGN CONDITIONS - COOLING Outdoor Conditions → 91 Indoor Conditions → 75 TOD Correction → 1 Difference 16 GLAZING SOLAR HEAT GAIN (Lat Type Orien Area Tilt ShdF IntSn/a 0 n/a 0 0 TRANSMISSION GAINS Type Orien GrArea NtArea Uval /ALL 1 NE 40 40 0.286 /ALL 1 SE 140 140 0.286 /ALL 1 SW 40 40 0.286 /ALL 1 SW 40 40 0.286	DESIGN CONDITIONS - COOLING (Jul 1 Outdoor Conditions → 91 52 Indoor Conditions → 75 50 TOD Correction → 1 Difference 16 GLAZING SOLAR HEAT GAIN (Lat = 29 Type Orien Area Tilt ShdF IntShd S Type Orien Area Tilt ShdF IntShd S Type Orien GrArea NtArea Uval Grp /ALL 1 NE 40 40 0.286 D /ALL 1 SE 140 140 0.286 D /ALL 1 SW 40 0.286 D	DESIGN CONDITIONS - COOLING (Jul 1600) Outdoor Conditions → 91 52 Indoor Conditions → 75 50 TOD Correction → 1 Difference 16 52.0 GLAZING SOLAR HEAT GAIN (Lat = 29.68 °N) Type Orien Area Tilt ShdF IntShd SCMult n/a 0 n/a 0 0 0.00 TRANSMISSION GAINS Type Orien GrArea NtArea Uval Grp CLTD /ALL 1 NE 40 40 0.286 D 25.9 /ALL 1 SE 140 140 0.286 D 31.1 /ALL 1 SW 40 40 0.286 D 20.1	DESIGN CONDITIONS - COOLING (Jul 1600) Outdoor Conditions	DESIGN CONDITIONS - COOLING (Jul 1600) Outdoor Conditions → 91 52 19 Indoor Conditions → 75 50 TOD Correction → 1 Difference 16 52.0 GLAZING SOLAR HEAT GAIN (Lat = 29.68 °N , Const Wt = M) Type Orien Area Tilt ShdF IntShd SCMult SC Sens/A n/a 0 n/a 0 0 Sens/A 0.00 0.00 0.00 TRANSMISSION GAINS Type Orien GrArea NtArea Uval Grp CLTD Shad Clr /ALL 1 NE 40 40 0.286 D 25.9 N D /ALL 1 SE 140 140 0.286 D 31.1 N D /ALL 1 SE 140 140 0.286 D 31.1 N D /ALL 1 SW 40 40 0.286 D 20.1 N D	DESIGN CONDITIONS - COOLING (Jul 1600) Outdoor Conditions → 91 52 19 77 Indoor Conditions → 75 50 63 TOD Correction → 1 Difference 16 52.0 GLAZING SOLAR HEAT GAIN (Lat = 29.68 °N , Const Wt = M) Type Orien Area Tilt ShdF IntShd SCMult SC Sens/A 0 n/a 0 n/a 0 0 0 Sens 0.00 0.00 0.00 0.0 Type Orien GrArea NtArea Uval Grp CLTD Shad Clr Sens /ALL 1 NE 40 40 0.286 D 25.9 N D 297 /ALL 1 SE 140 140 0.286 D 31.1 N D 1244 /ALL 1 SW 40 40 0.286 D 20.1 N D 230

	LIGHTS									
	Type Schedule	W/ft²	W	Total W			actor stuh/W	Space fract		
	Fluorescent 8ato12m	3.68	0	352			4.10	1.0	1442	
	Fluorescent	0.00	0	0			4:10	1.0	0	
	Fluorescent	0.00	0	0			4.10	1.0	0	
	Fluorescent	0.00	0	0			4.10	1.0	0	
	PLUG LOADS / APP	PLIANCE	S							
	Application	Dinie D		Usage	Total	Sen	sible	Latent		
	Schedule	111613	,,,			В	tuh .	Btuh		
		#/ft ² 0.000	0.00	1.00	0		0			
		#/ft²	#	1.00	0		0	0	0	0
		0.000 #/ft²		1.00	0		0	0	0	0
		0.000 #/ft²		1.00	0		0	0	0	0
		0.000 #/ft²		1.00	0		0	0	0	0
			0.00	1.00	0		0	0	0	0
		0.000		1.00	0		0	0	0	0
	MOTORS				3370					
	Power (hp)			Load	Total	Sen	sible			
	Schedule	#/ft²	#	factor		Bt	uh			
	0.00	0.0	0	1.00	0		0		0	
	0.00	0.0	0	1.00	0		0		0	
	0.00	0.0	0	1.00	0		0		0	
5.	INFILTRATION								Sens	Latent
	0 cfm -	>	x db	Temp Diff		16.4 x	1.09		0	Laterit
	grant to the state of the state			oist. Diff		52.0 x	0.69			0
6.	SUBTOTAL COOLING L	OAD FOR	R SPAC	E					3901	1225
7.	SUPPLY DUCT HEAT GA	IN						7.1		-
	Gain factor 0.00		х	Line 6 Sens	sible Gai	n			0	* 1
8.	COOLING FAN SIZING								10	
	Sum of Duct Gain	(7),	Line	(6) & D			=		3901	
	Est Caplina -f-		Sens) / (Xfe		upply TD		0.850000000000		
	Est Cooling cfm Actual Cooling Fan	= (390	01) / (1.0	9 x	20.0 >) =	10.00		
9.	VENTILATION						193			
	29 cfm —			Temp Diff ist. Diff		16.4 x 52.0 x	1.09 0.69		516	1025
10	DETUDN AID LOAD TO									1020
10.	RETURN AIR LOAD FRO	M LIGH	TING A		Ver / 10/ 1	ř	0		1440	
	RA Roof Load			Total pov from Line		Į.	-0		1442	
	RA Ceiling Load C	redit		from Line					0	
	3 = 3 4 4				/				U	

11. RETURN DUCT HE Gain factor	O.00	хL	ine 6 Sens	sible Ga	ain				0	
12. TOTAL COOLING	LOADS ON	EQUIPMEN	VT (Btuh)	2					4416	1225
	10 10	SPACE HE	ATING LO	DAD CA	LCULA	TION	11			
13. HEATING DESIGN	TEMPERA	TURE			11	71			il.	3
Heating TD	= (Inside [DB - Outside	DB)		= (70 -	33)	=	37	
4. TRANSMISSION LO	OSSES					2 11		[Mult =	1.0 J-
Type Expos WALL 1 NE WALL 1 SE WALL 1 SW FLOR 1 - ROOF 1 -	GrArea 40 140 40 15 96	NetArea 40 140 40 15 96	Uval 0.286 0.286 0.286 0.810 0.040			HTD 37.0 37.0 37.0 37.0 37.0				Loss 423 1481 423 440 141
5. INFILTRATION 7 cfm	x db Te	mp Diff	37.0	x 1.	09					Loss 290
6. SUBTOTAL HEATI	NG LOAD I	FOR SPACE							11.5	3199
7. SUPPLY DUCT HEA		x Line 16	Loss						11	0
8. VENTILATION 29 cfm	x db Te	mp Diff	37.0	x 1.	09					1160
P. HUMIDIFICATION Inside RH desir # of Glazing par			Max = Max =	32.0 f 52.0 f	or 1 par or 2 par	ne) ne)	* * *		- 0.50 1	a :
36 cfm	x 4.56	g/100cfr	m/d	-	1.6	gpo	ı			611
D. RETURN DUCT HEAL Loss factor		x Line 16 I	Loss							0
. TOTAL HEATING L	OAD ON E	QUPMENT (Btuh)						, ,3	4970

Right-Suite Commercial Load Calculation foyer / entry 2

Job: Jan 09, 2007

Project Information

			LWH:	204.0	X	1.0 x	15.0					
i. DES	IGN	COND	ITIONS - C	COOLING	3		(Jul 1	600)		1		4
Indoo	r Co	Conditions ection		$\stackrel{\rightarrow}{\Rightarrow}$		Dry Blb 91 75 1	RH 52 50		ture	Range 19	Wet Blb 77 63	
Dif	fere	nce				16		52.0				
. GLA	ZIN	GSOLA	RHEAT	GAIN		(Lat	= 29.	68 °N	, Const V	Vt = M)	Mult =	1.0]-
Type n/a	0	Orien n/a	Area 0	Tilt	S	ShdF IntSh	nd S	CMult	SC	Sens/A	Sens	
IIIa		TI/A	U	U				0.00	0.00	0.0	0	
T. W. Sales			N GAINS	- 0	,	T		0.00	0.00	0.0	0	
TRA	NSM 1	Orien SE	GAINS GrArea 150	NtAr	80	Uval 0.286	Grp D	CLTD 31,1	Shad N	Clr D	Sens 960	
Type WALL DOOR FLOR	NSM 1 1 1	IISSION Orien	GrArea 150 42 10	NtAro 1	08 42 10	0.286 0.560 0.810	D .	CLTD 31.1 14.6 0.0	Shad N -	Clr D -	Sens 960 345	
TRAI Type WALL DOOR FLOR ROOF	1 1 1 1	Orien SE se	GrArea 150 42 10 204	NtAro 1	08 42	0.286 0.560	D .	CLTD 31.1 14.6	Shad	Clr	Sens 960 345	
TRAI Type WALL DOOR FLOR ROOF	1 1 1 1 2	Orien SE se	GrArea 150 42 10	NtAro 1	08 42 10	0.286 0.560 0.810	D .	CLTD 31.1 14.6 0.0	Shad N -	Clr D -	Sens 960 345	Latent
TRAI Type WALL DOOR FLOR ROOF	NSM 1 1 1 1 2RNA PEO	Orien SE Se	GrArea 150 42 10 204 AT GAIN	NtAro 1	08 42 10	0.286 0.560 0.810 0.040 Total peop	D R-4	CLTD 31.1 14.6 0.0 67.6	Shad N -	Clr D -	Sens 960 345 0 552 Sens	Latent 428

	LIGHTS									
	Type Schedule	W/ft²	W	Total W		Facto Btuh	/VV	Space fract		
	Fluorescent 8ato12m	3.68	0	751		4.	10	1.0	3078	
	Fluorescent	0.00	0	0		4.	10	1.0	0	
	Fluorescent	0.00	0	0		4.	10	1.0	0	
	Fluorescent	0.00	0	0		4.	10	1.0	0	
	PLUG LOADS / APP	LIANCES	S							
	Application Schedule			Usage	Total	Sensib Btuh		Latent Btuh		
		#/ft²	#							
		0.000 #/ft ²	0.00	1.00	0		0	0	0	0
		0.000 #/ft ²	0.00	1.00	0		0	0	0	0
		0.000 #/ft²	0.00	1.00	0		0	0	0	0
		0.000		1.00	0		0	0	0	0
*		#/ft² 0.000		1.00	0		0	0	0	0
		#/ft² 0.000	# 0.00	1.00	0		0	0	0	0
	MOTORS									
	Power (hp)			Load	Total	Sensibl	е			
	Schedule 0.00	#/ft² 0.0	#	factor 1.00	0	Btuh	0		0	
	0.00	0.0	0	1.00	0		0		0	
	0.00	0.0	0	1.00	0		0		0	
	0.00	0.0	U	1.00	U		0		U	
5.	INFILTRATION				. I	September 1931 Service	noteons: v	5	Sens	Latent
	10 cfm —			Temp Diff oist. Diff			.09 .69		180	357
6.	SUBTOTAL COOLING LO	OAD FOR	SPAC	E					6032	2974
7.	SUPPLY DUCT HEAT GA	IN								
	Gain factor 0.00	11 12 12 12 12 12 12 12 12 12 12 12 12 1	×	Line 6 Sens	ible Gai	n			0	
8.	COOLING FAN SIZING Sum of Duct Gain	(7), (L 8 S	Line	(6) & D	rawthru	Fan upply TD	=	cfm	6032	
	Est Cooling cfm Actual Cooling Fan	= (603			20.0 >) = :	276 274		
9.	VENTILATION 61 cfm —	—> > —> >		Temp Diff			09 69		1101	2188
10.	RETURN AIR LOAD FRO Lights RA Roof Load RA Ceiling Load C		TING A	AND ROOF Total pow from Line from Line	3 (+)	-0			3078 0 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1. RETURN DUCT HEAT GAIN Gain factor 0.00	x Line 6 Sensible Gain	0	
2. TOTAL COOLING LOADS ON E	QUIPMENT (Btuh)	7133	2974
	PACE HEATING LOAD CALCULATION		
3. HEATING DESIGN TEMPERAT	URE	20.11	
Heating TD = (Inside DB	- Outside DB) = (70 - 33) =	37	
4. TRANSMISSION LOSSES		Mult =	1.0]
Type Expos GrArea WALL 1 SE 150 DOOR 1 se 42 FLOR 1 - 10 ROOF 1 - 204	NetArea Uval HTD 108 0.286 37.0 42 0.560 37.0 10 0.810 37.0 204 0.040 37.0		Loss 1143 870 300 302
5. INFILTRATION 35 cfm x db Temp	Diff 37.0 x 1.09		Loss 1429
5. SUBTOTAL HEATING LOAD FO	R SPACE		4044
7. SUPPLY DUCT HEAT LOSS Loss factor 0.00 x	Line 16 Loss		0
B. VENTILATION 61 cfm x db Temp	Diff 37.0 x 1.09	in 20	2477
Inside RH desired : # of Glazing panes :	40.0 (Max = 32.0 for 1 pane) 0.0 (Max = 52.0 for 2 pane)	9,	
97 cfm x 4.56	g/100cfm/d = 4.4 gpd		1644
Loss factor 0.00 x	Line 16 Loss		0
. TOTAL HEATING LOAD ON EQ	PMENT (Rfuh)	1, 1	8165

Right-Suite Commercial Load Calculation restroom 3

Job: Jan 09, 2007

Project Information

Zone	: res	troc	m 3										
			LWH:	7.3	x	5.0	x 1	5.0					
1. DES	IGN CO	NDIT	IONS - C	COOLIN	G		(Jul 1	600)				ř
Indoo	oor Condi r Condi Correct	tions	5	$\stackrel{\longrightarrow}{\rightarrow}$		Dry Blb 91 75 1		RH 52 50	Mois	ture	Range 19	Wet Blb 77 63	
Dif	ference					16			52.0				
2. GLA	ZING S	OLAR	HEAT	GAIN		(Lat	=	29.	68 °N	, Const	Wt = M	-[Mult =)	1.0] —
Type n/a	Ori 0 n/		Area 0	Tilt 0	5	ShdF Ir	tShd	S	CMult 0.00	SC 0.00	Sens/A 0.0	Sens 0	
3. TRA	NSMISS	ION	GAINS						12			FI -	
Type WALL FLOR ROOF	Ori 1 SV 1		GrArea 75 5 37	NtAr	ea 75 5 37	0.8	86 D		CLTD 20.1 0.0 67.6	Shad N -	Clr D - D	Sens 431 0 99	
. INTE	RNAL	HEAT	GAIN								72 W		1.
	PEOPL	E										Sens	Latent
		ivity Sched sembly		ft²/prsn 50	#	pe	otal eople 1			Sensible Btuh/prsn 225	Btuh/p	rsn	77
		Bato12		0	0		0			0			0

	LIGHTS									
	Type Schedule Fluorescent	W/ft² 3.68	W	Total W 135			actor Btuh/W 4.10	Spac frac 1.0	at .	
	8ato12m Fluorescent	0.00	0	0			4.10	1.0	0 0	
	Fluorescent	0.00	0	0						
							4.10	1.0	0 0	
	Fluorescent	0.00	0	0			4.10	1.0	0	
	PLUG LOADS / APP	LIANCE	S	141400000000				400		
	Application Schedule			Usage	Total		ensible Btuh	Later Btuh		
		#/ft2	#							
		0.000 #/ft²		1.00	0		0	C	0	0
		0.000 #/ft ²	0.00	1.00	0		0		0	0
		0.000 #/ft²	7,555	1.00	0		0		0	0
		0.000 #/ft²		1.00	0		0	C	0	0
		0.000	0.00	1.00	0		0		0	0
		#/ft ² 0.000	0.00	1.00	0		0	0	0	0
	MOTORS									
	Power (hp)			Load	Total	Se	nsible			
	Schedule	#/ft²	#	factor			Btuh			
	0.00	0.0	0	1.00	0		0		0	
	0.00	0.0	0	1.00	0		0		0	
	0.00	0.0	0	1.00	0		0		0	
-							-			
5.	INFILTRATION 43 cfm -			Temp Diff bist. Diff		16.4 x 52.0 x	1.09 0.69	1 1	Sens 767	Latent 1525
6.	SUBTOTAL COOLING L	OAD FOI	R SPAC	E					2015	1995
7.	SUPPLY DUCT HEAT GA Gain factor 0.00			Line 6 Sens	sible Cai	in			0	
_	- Control Management - National		^	Line o Sens	ible Gal				0	
8.	COOLING FAN SIZING Sum of Duct Gain Est Cooling cfm Actual Cooling Fan	(7), (L 8 = (Line Sens 201) / (Xfe		Fan upply TD 20.0) =	cfm 92 95	2015	
9.	VENTILATION 11 cfm —			Temp Diff bist. Diff	= 12	16.4 x 52.0 x	1.09 0.69	D	198	393
10.	RETURN AIR LOAD FRO Lights RA Roof Load RA Ceiling Load C		TING A	Total pov from Line	3 (+))	-37E	a E	553 0 0	4_ 5 * * *

11.	RETURN DUCT HE Gain factor	0.00	x Li	ne 6 Sens	sible Ga	ain					0	
12.	TOTAL COOLING	LOADS ON I	EQUIPMEN	T (Btuh)				-		22	13	1995
			SPACE HE	ATING LO	DAD CA	ALCUL	ATION					
13.	HEATING DESIGN	TEMPERAT	URE		Ta.	×						5-
	Heating TD :	= (Inside DB	3 - Outside [OB)		= (70 -	33)	=	37		
14.	TRANSMISSION LO	OSSES	-						[Mult	=	1.0]
W Fl	Type Expos VALL 1 SW LOR 1 - OOF 1 -	GrArea 75 5 37	NetArea 75 5 37	Uval 0.286 0.810 0.040			HTD 37.0 37.0 37.0					Loss 794 150 54
5.	INFILTRATION 45 cfm	x db Tem	p Diff	37.0	x 1	.09		1				Loss 1801
6.	SUBTOTAL HEATI	NG LOAD FO	OR SPACE		<u>.</u>		in .					2799
7.	SUPPLY DUCT HEA Loss factor		Line 16 I	_oss								0
8.	VENTILATION 11 cfm	x db Tem	p Diff	37.0	x 1	.09						445
9.	HUMIDIFICATION Inside RH desir # of Glazing par			Max = Max =		for 1 pa for 2 pa			31	7		
	56 cfm	x 4.56	g/100cfr	n/d	=	2.5	gpo	t				946
0.	RETURN DUCT HEA		Line 16 L	.oss	9.			l.	-	2) 2 8:		0
1.	TOTAL HEATING L	OAD ON EO	UPMENT (1	Stuh)			1:				7	4190

Right-Suite Commercial Load Calculation restroom 4

Job: Jan 09, 2007

Project Information

			THE COMPANIES AND A SHEET	CONTRACTOR DES	ABOUT 1	OTHER WARRANTS	WHEN THE WAY	SURVEY BUILDING	CHINA CASTOLIS	AND REPORT OF THE PARTY OF THE	以604年4月15日 15至62日末港門市総	经验证证证证明
			LWH:	7.3	x	5.0 x	15.0		4			
. DESI	GN	CONDI	TIONS - C	COOLIN	G		(Jul 16	300)		ä	1	, ,
Indoor	r Co	Conditions anditions rection				Dry Blb 91 75 1	RH 52 50	Mois	ture	Range 19	Wet Blb 77 63	
Diff	fere	nce		n, 3		16	1:	52.0				
. GLAZ	ZIN	G SOLA	RHEAT	GAIN		(Lat	= 29.6	88°N ,	Const V	Vt = M	=[Mult =)	1.0] =
Type GLAZ	1	Orien SW	Area 20	Tilt 90	S	hdF IntSh		Mult 1.00	SC 0.88	Sens/A 74.1	Sens	
							•	1.00	0.00		1403	
TRAN	NSI	IISSION	GAINS			•	,	1.00	0.00		1403	
Туре		Orien	GrArea	NtA		Uval	Grp	CLTD	Shad	Clr	Sens	
Type GLAZ	1	Orien SW	GrArea 20	NtA	20	Uval 0.585	Grp	CLTD 14.6	Shad N	Clr	Sens	
Type GLAZ WALL		Orien	GrArea 20 75	NtA	20 55	Uval 0.585 0.286	Grp	CLTD 14.6 20.1	Shad		Sens 171 316	
Type GLAZ WALL FLOR	1	Orien SW	GrArea 20	NtA	20	Uval 0.585	Grp D	CLTD 14.6	Shad N	Clr	Sens	
Type GLAZ WALL FLOR ROOF	1 1 1 1	Orien SW SW	GrArea 20 75 5	NtA	20 55 5	Uval 0.585 0.286 0.810	Grp D	CLTD 14.6 20.1 0.0	Shad N N	Clr - D	Sens 171 316 0 99	Lebel
Type GLAZ WALL FLOR ROOF	1 1 1 1 RN	Orien SW SW	GrArea 20 75 5 37	NtA	20 55 5	Uval 0.585 0.286 0.810	Grp D	CLTD 14.6 20.1 0.0	Shad N N	Clr - D	Sens 171 316 0	Latent
Type GLAZ WALL FLOR ROOF	1 1 1 1 RNA	Orien SW SW - - - AL HEA	GrArea 20 75 5 37	NtA	20 55 5	Uval 0.585 0.286 0.810	Grp D	CLTD 14.6 20.1 0.0	Shad N N	Clr - D	Sens 171 316 0 99	Latent
Type GLAZ WALL FLOR ROOF	1 1 1 1 RNA	Orien SW SW 	GrArea 20 75 5 37 T GAIN	ft²/prsn	20 55 5 37	Uval 0.585 0.286 0.810 0.040	Grp D R-4	CLTD 14.6 20.1 0.0 67.6	Shad N N - - - Sensible Btuh/prsn	Clr D - D	Sens 171 316 0 99 Sens	Latent
Type GLAZ WALL FLOR ROOF	1 1 1 1 RNA	Orien SW SW 	GrArea 20 75 5 37 T GAIN		20 55 5 37	Uval 0.585 0.286 0.810 0.040	Grp D R-4	CLTD 14.6 20.1 0.0 67.6	Shad N N - -	Clr D D	Sens 171 316 0 99 Sens	Latent

•												
	LIGHTS			T-4-1			F4	C.,				
	Type Schedule	W/ft²	W	Total W			Factor Btuh/W		ace			
	Fluorescent	3.68	0	135			4.10		1.0	553		
	8ato12m	3.00	U	133			4.10		1.0	333		
	Fluorescent	0.00	0	0			4.10		1.0	0		
	ridorescent	0.00	U	U			4.10		1.0	U		
	Fluorescent	0.00	0	0			4.10		1.0	0		
		0.00										
	Fluorescent	0.00	0	0			4.10		1.0	0		
	PLUG LOADS / APP	LIANCE	S									
	Application			Usage	Total	5	Sensible	La	tent			
	Schedule						Btuh	Bt	uh			
		#/ft²	#									
		0.000		1.00	. 0		0		0	0	0	
		#/ft²	#		19							
		0.000		1.00	0		0		0	0	0	
		#/ft²	#	4.00								
		0.000		1.00	0		0		0	0	0	
		#/ft²	#	1.00	0		0		_		0	
		0.000 #/ft ²	0.00	1.00	0		0		0	0	0	
		0.000		1.00	0		0		0	0	0	
		#/ft²	#	1.00	U		U		U	U	U	
		0.000		1.00	0		0		0	0	0	
	MOTORS	0.000	0.00	1.00			· ·		U		J	
	Power (hp)			Load	Total		Sensible					
	Schedule	#/ft²	#	factor	1001		Btuh					
	0.00	0.0	0	1.00	0		0			0		
	0.00	0.0	0	1.00	0		0			0		
	0.00	0.0	0	1.00	0		0	8		0		
-											14 1 14 1 1 E	= 1
5.	INFILTRATION		a di	T D:		40.4	4.00			Sens	Latent	
	43 cfm -	>		Temp Diff		16.4				767	4505	
41.1		>	x M	oist. Diff		52.0	x 0.69	2			1525	
6.	SUBTOTAL COOLING L	OAD FOI	D SPAC	TE.						3555	1995	
-	SCBTOTAL COOLING L	OAD FO	N SI AC	- L	-					3333	1995	
7.	SUPPLY DUCT HEAT GA	IN										
	Gain factor 0.00		34.1	x Line 6 Sen	sible Ga	in				0		
_								-				-
8.	COOLING FAN SIZING											
	Sum of Duct Gain	(7),	Line	(6) & [Drawthru	Fan	=			3555		
			Sens) / (Xfe		Supply T	D) =	cfm				
	Est Cooling cfm	= (35	55) / (1.0		20.0) =					
	Actual Cooling Fan	-				 >	=	165				
_						-		-				-
9.	VENTILATION			nazir ^d verseur		Sa war						
	11 cfm -			Temp Diff		16.4				198		
	. D	>	x M	oist. Diff		52.0	x 0.69				393	
10	DETUDAL AID LOAD PRO	MILLON	TTN	AND BOOS								7
10.	RETURN AIR LOAD FRO	JM LIGH	LING			,	075			er o		
	Lights			Total po)	-37E			553		
	RA Roof Load	rodit		from Lin						0		
	RA Ceiling Load (realt		from Lin	es (-)					0		

	Gain factor	T HEAT GAIN 0.00	хL	ine 6 Sens	ible Gain				0	
2.	TOTAL COOL	ING LOADS OF	N EQUIPMEN	T (Btuh)				37	53	1995
			SPACE HE	ATING LO	OAD CALC	ULATION				
3.	HEATING DES	IGN TEMPERA	TURE				E			
	Heating	TD = (Inside I	OB - Outside I	OB)	=	(70 -	33) =	= 37		
4.	TRANSMISSIO	N LOSSES	*		,			—[Mult	=	1.0]
	уре Ехро	s GrArea	NetArea	Uval		HTD				Loss
	AZ 1 SW		20	0.558		37.0				413
	ALL 1 SW	110.00	55	0.286		37.0				582
	OR 1 -	5	5	0.810		37.0				150
R	OOF 1 -	37	37	0.040		37.0				54
5.	INFILTRATION 45	vi cfm x db Te	emp Diff	37.0	x 1.09					Loss 1801
6.	SUBTOTAL HE	and the second second second			х					3000
7.	SUPPLY DUCT	HEAT LOSS			7					
	Loss factor	0.00	x Line 16	LOSS						0
8.	VENTILATION									
		ofm x db Te	mp Diff	37.0	x 1.09					445
9.	HUMIDIFICAT									
	Inside RH				32.0 for 1)			
	# of Glazing	gpanes	: 2.0 (1	Max =	52.0 for 2	2 pane)			
i.	56	cfm x 4.56	g/100cfr	n/d	= 2	.5 gp	d			946
).	RETURN DUCT				W 5	@ ==		E		
	Loss factor	0.00	x Line 16 L	OSS						0
			QUPMENT (- 4					4391

Right-Suite Commercial Load Calculation wudu ablutions

Job: Jan 09, 2007

Project Information

				LWH:	70.7	~	1.0 x	15.0					ON THE REAL PROPERTY.
				LVVIII	10.1	^	1.0	15.0	τ,				
•	DESI	IGN	CONDI	TIONS - C	COOLIN	G		(Jul 16	600)				
	.						Dry Blb	RH	Mois	ture	Range	Wet Blb	
			Condition		->	>	91	52			19	77	
			onditions rection		<u> </u>	>	75	50				63	
	יטטו	COII	ection			•	1						
	Dif	fere	nce				16		52.0				
	CLA	7 IN	CSOLA	RHEAT	CAIN	,	(Lat	= 29 6	68 °N	. Const V	A# - NA	-[Mult =	1.0] -
41	GLA	ZIII	GSOLA	KHEAI	GAIN		(Lai	- 29.0	00 IN	, Const v	Vt = M)	
	Туре		Orien	Area	Tilt	5	ShdF IntS	nd SC	CMult	SC	Sens/A	Sens	
		^	- TO 60	•									
	n/a	0	n/a	0	0				0.00	0.00	0.0	0	
					. 0	1			0.00	0.00	0.0	0	
			n/a IISSION		0		1:		0.00	0.00	0.0	0	9
					NtA	rea	Uval	Grp	CLTD	Shad	0.0		
	TRAITType		IISSION Orien SE	GAINS GrArea 140	NtA	140	0.286	D .	THE STATE OF THE S		2 21	Sens 1244	
	TRAIType /ALL	NSM	IISSION Orien	GAINS GrArea 140 120	NtA	140 120	0.286 0.286	D .	CLTD 31.1 20.1	Shad	Clr	Sens	
W W FI	TRAIT Type /ALL /ALL	NSM 1	IISSION Orien SE	GAINS GrArea 140 120 17	NtA	140 120 17	0.286 0.286 0.810	D D	CLTD 31.1 20.1 0.0	Shad N	Clr D D	Sens 1244 689 0	
V V FI	TRAIType /ALL	NSM 1	IISSION Orien SE	GAINS GrArea 140 120	NtA	140 120	0.286 0.286	D D	CLTD 31.1 20.1	Shad N	Clr D	Sens 1244 689	
V V FI	TRAIT Type /ALL /ALL LOR OOF	1 1 1	IISSION Orien SE	GAINS GrArea 140 120 17 71	NtA	140 120 17	0.286 0.286 0.810	D D	CLTD 31.1 20.1 0.0	Shad N	Clr D D	Sens 1244 689 0	
V V FI	TRAIT Type /ALL /ALL LOR OOF	1 1 1 1 1 KRN/	Orien SE SW	GAINS GrArea 140 120 17 71	NtA	140 120 17	0.286 0.286 0.810	D D	CLTD 31.1 20.1 0.0	Shad N	Clr D D	Sens 1244 689 0	Latent
W W FI	TRAIT Type /ALL /ALL LOR OOF	NSM 1 1 1 1 2 RN/	Orien SE SW 	GAINS GrArea 140 120 17 71	NtA	140 120 17	0.286 0.286 0.810 0.040	D D R-4	CLTD 31.1 20.1 0.0	Shad N N -	Clr D D - D	Sens 1244 689 0 191	Latent
W W FI	TRAIT Type /ALL /ALL LOR OOF	NSM 1 1 1 1 2 RN/	Orien SE SW	GAINS GrArea 140 120 17 71 T GAIN	NtA	140 120 17 71	0.286 0.286 0.810 0.040	D D R-4	CLTD 31.1 20.1 0.0	Shad N N - -	Clr D D - D	Sens 1244 689 0 191 Sens	Latent
W W FI	TRAIT Type /ALL /ALL LOR OOF	NSM 1 1 1 1 2 RNA	Orien SE SW	GAINS GrArea 140 120 17 71 T GAIN	NtA	140 120 17 71	0.286 0.286 0.810 0.040	D D R-4	CLTD 31.1 20.1 0.0	Shad N N - - - Sensible Btuh/prsn	CIr D D D	Sens 1244 689 0 191 Sens	
V V FI	TRAIT Type /ALL /ALL LOR OOF	NSM 1 1 1 1 2 RNA	Orien SE SW	GAINS GrArea 140 120 17 71 T GAIN	NtA	140 120 17 71	0.286 0.286 0.810 0.040	D D R-4	CLTD 31.1 20.1 0.0	Shad N N - -	Clr D D - D	Sens 1244 689 0 191 Sens	Latent 148
V	TRAIT Type /ALL /ALL LOR OOF	NSM 1 1 1 1 2 RNA	Orien SE SW	GAINS GrArea 140 120 17 71 T GAIN	NtA	140 120 17 71	0.286 0.286 0.810 0.040 Tota	D D R-4	CLTD 31.1 20.1 0.0	Shad N N - - - Sensible Btuh/prsn	CIr D D D	Sens 1244 689 0 191 Sens t	

8	LIGHTS									
	Type Schedule Fluorescent	W/ft² 3.68	W	Total W 260			ctor tuh/W 4.10	Space fract 1.0	1066	
	8ato12m Fluorescent	0.00	0	0			4.10	1.0	0	
	Fluorescent	0.00	0	0			4.10	1.0	0	- X
	Fluorescent	0.00	0	0			4.10	1.0	0	
	PLUG LOADS / APP	LIANCE	S							
	Application Schedule			Usage	Total		sible uh	Latent Btuh		
		#/ft²	#	4.00	•					
		0.000 #/ft²	#	1.00	0		0	0	0	0
		0.000 #/ft ²	0.00	1.00	0		0	0	0	0
		0.000 #/ft ²	0.00	1.00	0		0	0	0	0
		0.000 #/ft²		1.00	0		0	0	0	0
		0.000	0.00	1.00	0		0	0	0	0
		#/ft² 0.000	0.00	1.00	0		0	0	0	0
	MOTORS			Land	T-4-1					
	Power (hp) Schedule	#/ft²	#	Load factor	Total	Sens				
	0.00	0.0	0	1.00	0	Bt	0		0	
	0.00	0.0	0	1.00	0		0		0	
	0.00	0.0	0	1.00	0		0		0	
5.	INFILTRATION		-				-		Sens	Latent
	0 cfm -	>		b Temp Diff loist. Diff		16.4 x 52.0 x	1.09		0	0
6.	SUBTOTAL COOLING L	OAD FOI						100	3508	906
-		*	K DI A	CE	-				3300	
7.	Gain factor 0.00		2	x Line 6 Sens	ible Ga	in		2 2	0	
8.	COOLING FAN SIZING Sum of Duct Gain Est Cooling cfm Actual Cooling Fan	(7), (L 8 = (Line Sens 35	(6) & D) / (Xfer 508) / (1.0		Fan upply TD 20.0	=) =) = =	cfm 160 180	3508	
9.	VENTILATION	,								
	21 cfm - -			b Temp Diff loist. Diff		16.4 x 52.0 x	1.09 0.69	5 T	381	758
10.	RETURN AIR LOAD FRO Lights RA Roof Load RA Ceiling Load C		ITING	AND ROOF Total pov from Line from Line	3 (+))	0		1066 0 0	

SPACE HEATING LOAD CALCULATION 13. HEATING DESIGN TEMPERATURE Heating TD = (Inside DB - Outside DB) = (70 - 33) = 37 14. TRANSMISSION LOSSES [Mult = 1.0		RN DUCT H in factor	0.00	×	Line 6 Sens	sible G	ain						0	
Heating TD = (Inside DB - Outside DB)	12. TOTA	L COOLING	G LOADS ON	EQUIPMI	ENT (Btuh)							389	90	906
Heating TD = (Inside DB - Outside DB)				SPACE H	EATING LO	OAD C	ALCU	LATIO	ON					
4. TRANSMISSION LOSSES Type Expos GrArea NetArea Uval HTD Loss WALL 1 SE 140 140 0.286 37.0 144 WALL 1 SW 120 120 0.286 37.0 127 FLOR 1 - 17 17 0.810 37.0 57 ROOF 1 - 71 71 0.040 37.0 16 5. INFILTRATION Loss 5 cfm x db Temp Diff 37.0 x 1.09 21 Cfm x db Temp Diff 37.0 x 1.09 21 Cfm x db Temp Diff 37.0 x 1.09 85 WENTILATION Loss factor 0.00 x Line 16 Loss 8. VENTILATION 21 cfm x db Temp Diff 37.0 x 1.09 85 9. HUMIDIFICATION Inside RH desired 40.0 (Max = 32.0 for 1 pane) # of Glazing panes 0.00 (Max = 52.0 for 2 pane)	3. HEAT	ING DESIG	N TEMPERA	TURE										
### TRANSMISSION LOSSES Type	Hea	ating TD	= (Inside D	B - Outsid	e DB)		= (70	-	33)	=	37		
WALL 1 SE 140 140 0.286 37.0 144 WALL 1 SW 120 120 0.286 37.0 12: FLOR 1 - 17 17 0.810 37.0 57 ROOF 1 - 71 71 0.040 37.0 10: 5. INFILTRATION Loss 5 cfm x db Temp Diff 37.0 x 1.09 21: 6. SUBTOTAL HEATING LOAD FOR SPACE 359 7. SUPPLY DUCT HEAT LOSS Loss factor 0.00 x Line 16 Loss 8. VENTILATION 21 cfm x db Temp Diff 37.0 x 1.09 859 9. HUMIDIFICATION Inside RH desired 40.0 (Max = 32.0 for 1 pane) # of Glazing panes 0.0 (Max = 52.0 for 2 pane)	4. TRANS	SMISSIONI	LOSSES			3'					[Mult	=	1.0]-
5 cfm x db Temp Diff 37.0 x 1.09 21 6. SUBTOTAL HEATING LOAD FOR SPACE 359 7. SUPPLY DUCT HEAT LOSS Loss factor 0.00 x Line 16 Loss 8. VENTILATION 21 cfm x db Temp Diff 37.0 x 1.09 85 9. HUMIDIFICATION Inside RH desired : 40.0 (Max = 32.0 for 1 pane) # of Glazing panes : 0.0 (Max = 52.0 for 2 pane)	WALL THOR	1 SE 1 SW 1 -	140 120 17	140 120 17	0.286 0.286 0.810			37 37 37	.0 .0 .0 .0					Loss 1481 1270 519 105
7. SUPPLY DUCT HEAT LOSS Loss factor 0.00 x Line 16 Loss 8. VENTILATION 21 cfm x db Temp Diff 37.0 x 1.09 9. HUMIDIFICATION Inside RH desired : 40.0 (Max = 32.0 for 1 pane) # of Glazing panes : 0.0 (Max = 52.0 for 2 pane)	5. INFILT		n x db Tei	mp Diff	37.0	x	1.09			- 1	1:			Loss 215
Loss factor 0.00 x Line 16 Loss 8. VENTILATION 21 cfm x db Temp Diff 37.0 x 1.09 9. HUMIDIFICATION Inside RH desired : 40.0 (Max = 32.0 for 1 pane) # of Glazing panes : 0.0 (Max = 52.0 for 2 pane)	6. SUBTO	TAL HEAT	ING LOAD F	OR SPAC	E								100	3590
21 cfm x db Temp Diff 37.0 x 1.09 85 P. HUMIDIFICATION Inside RH desired : 40.0 (Max = 32.0 for 1 pane) # of Glazing panes : 0.0 (Max = 52.0 for 2 pane)				x Line 1	6 Loss	9; X	-	2 -			1 1	er se	-1	0
Inside RH desired : 40.0 (Max = 32.0 for 1 pane) # of Glazing panes : 0.0 (Max = 52.0 for 2 pane)	8. VENTI		x db Ter	np Diff	37.0	x	1.09				-			858
27 cfm x 4.56 g/100cfm/d = 1.2 gpd	Ins	side RH des	ired :)					
		27 cfm	1 x 4.56	g/100	cfm/d	=	1.2		gpd					452
Loss factor 0.00 x Line 16 Loss				c Line 1	6 Loss		2	F. 18						0

Right-Suite Commercial Load Calculation janitor

Job: Jan 09, 2007

Project Information

For:

			LWH:	10.0	X	4.0 x	15.0			3		
. DES	IGN	CONDI	TIONS - C	COOLING	G		(Jul 16	(00				
Indoo	r Co	Conditio onditions rection		$\stackrel{\longrightarrow}{\rightarrow}$		Dry Blb 91 75 1	RH 52 50	Moist	ture	Range 19	Wet Blb 77 63	
Dif	ffere	nce				16		52.0				
. GLA	ZIN	G SOLA	RHEAT	GAIN		(Lat	= 29.6	88 °N ,	Const V	Vt = M	-[Mult =)	1.0]-
Type n/a	0	Orien n/a	Area 0	Tilt 0	S	hdF IntSh		Mult	SC	Sens/A	Sens	
474634055	165834	100	U	U				0.00	0.00	0.0	0	
. TRA	NSN		GAINS					0.00	0.00	0.0	0	
Type WALL WALL FLOR	2 2 1 1			NtAr 1	ea 60 50 14 40	Uval 0.068 0.068 0.810 0.040	Grp D D	CLTD 25.9 15.9 0.0 67.6	Shad N N	Clr D D	Sens 106 163 0 108	
Type WALL WALL FLOR ROOF	2 2 1 1	Orien NE NW	GrArea 60 150 14	NtAr 1	60 50 14	0.068 0.068 0.810	Grp D D	CLTD 25.9 15.9 0.0	Shad N N	Clr D D	Sens 106 163 0 108	-
Type WALL WALL FLOR ROOF	2 2 1 1	Orien NE NW	GAINS GrArea 60 150 14 40	NtAr 1	60 50 14	0.068 0.068 0.810	Grp D D	CLTD 25.9 15.9 0.0	Shad N N	Clr D D	Sens 106 163 0	Latent
Type WALL WALL FLOR ROOF	2 2 1 1	Orien NE NW AL HEA OPLE Activity	GAINS GrArea 60 150 14 40 T GAIN	NtAr 1	60 50 14 40	0.068 0.068 0.810 0.040	Grp D D	CLTD 25.9 15.9 0.0 67.6	Shad N N - -	CIr D D - D	Sens 106 163 0 108 Sens	Latent
Type WALL WALL FLOR ROOF	2 2 1 1	Orien NE NW - AL HEA OPLE Activity Sch Assem	GAINS GrArea 60 150 14 40 T GAIN	NtAr 1	60 50 14	0.068 0.068 0.810 0.040	Grp D D	CLTD 25.9 15.9 0.0 67.6	Shad N N -	CIr D D - D	Sens 106 163 0 108 Sens	Latent 84

FILE COPY

	LIGHTS Type			Total		Fa	ctor	Space		
	Schedule Fluorescent	W/ft ² 3.68	W	W . 147		Bt	uh/W 4.10	fract 1.0	604	
	8ato12m		25							
	Fluorescent	0.00	0	0			4.10	1.0	0	
	Fluorescent	0.00	0	0			4.10	1.0	0	
	Fluorescent	0.00	0	0			4.10	1.0	0	
	PLUG LOADS / AP	PLIANCE	S							
	Application Schedule	#/ft²	#	Usage	Total	Sens Bt	sible uh	Latent Btuh		
		0.000 #/ft²		1.00	0		0	0	0	0
		0.000 #/ft²		1.00	0		0	0	0	0
			0.00	1.00	0		0	0	0	0
		0.000 #/ft²		1.00	0		0	0	0	0
				1.00	0		0	0	0	0
		0.000		1.00	0		0	0	0	0
	MOTORS Power (hp)			Load	Total	Sens	sible			
	Schedule	#/ft²	#	Load factor	Total	Bt				
	0.00	0.0	Ö	1.00	0	Di	0		0	
	0.00	0.0	0	1.00	0		0		0	
	0.00	0.0	0	1.00	0		0		0	
5.	INFILTRATION								Sens	Latent
	4 cfm			Temp Diff pist. Diff		16.4 x 52.0 x	1.09 0.69		72	143
6.	SUBTOTAL COOLING I	LOAD FOI	R SPAC	E					1232	227
7.	SUPPLY DUCT HEAT G Gain factor 0.0		×	Line 6 Sens	ible Gair	n	0-1		0	
8.	COOLING FAN SIZING Sum of Duct Gain	(7),	Line		rawthru		=		1232	XI
_	Est Cooling cfm Actual Cooling Fan		Sens 123) / (Xfei 32) / (1.0	9 x	upply TD 20.0 —>) =	cfm 56 61		
9.	VENTILATION 0 cfm	> >		Temp Diff		16.4 x 52.0 x	1.09 0.69		0	0
10.	RETURN AIR LOAD FR Lights	OM LIGH	ITING A	AND ROOF Total pov	Un # / LA ! \		36893	n	604	

11.	Gain factor	O.00	хl	ine 6 Sens	sible G	ain						0	
12.	TOTAL COOLING	LOADS ON	EQ UIPME!	NT (Btuh)							12	32	227
		1	SPACE HI	EATING LO	OAD C	ALCUI	LATIC	N					
3.	HEATING DESIGN	TEMPERA	ГURE										
	Heating TD	= (Inside D	B - Outside	DB)		= (70	- ;	33)	=	37		
4.	TRANSMISSION L	OSSES						,		1	[Mult	=	1.0]
W K FI	Type Expos ALL 2 NE ALL 2 NW OR 1 - OOF 1 -	GrArea 60 150 14 40	NetArea 60 150 14 40	Uval 0.068 0.068 0.810 0.040	})		H7 37 37 37 37	.0 .0 .0					Loss 151 377 420 59
5.	INFILTRATION 6 cfm	x db Ter	mp Diff	37.0	x	1.09							Loss 243
6.	SUBTOTAL HEAT	ING LOAD F	OR SPACE			1							1250
7.	SUPPLY DUCT HE Loss factor		x Line 16	Loss									0
8.	VENTILATION 0 cfm	x db Ter	mp Diff	37.0	x 1	.09							0
9.	HUMIDIFICATION Inside RH desi # of Glazing pa	red :		(Max = (Max =	32.0 52.0	for 1 p)					
	6 cfm	x 4.56	g/100c	fm/d	=	0.3	. 1	gpd					102
0.	RETURN DUCT HE Loss factor		x Line 16	Loss									0
1.	TOTAL HEATING	LOAD ON E	OUPMENT	(Btuh)									1352

Right-Suite Commercial Load Calculation serving

Job: Jan 09, 2007

Project Information

				LWH:	10.0	X	9.0	X	15.0					
1.	DESI	GN	CONDI	TIONS -	COOLIN	G			(Jul 1	600)				
1	Indoo	r Co	Conditio enditions ection			» »		Blb 91 75 1	RH 52 50	Mois	ture	Range 19	Wet Blb 77 63	
	Diff	fere	nce				1	6		52.0				
2.	GLA	ZIN	G SOLA	RHEAT	GAIN		(L	at	= 29.	68 °N	, Const V	Vt = M	[Mult =)	1.0]-
1	Туре		Orion	۸	T:11	1100								
r	n/a	0	Orien n/a	Area 0	Tilt 0		ShdF	IntSh	d S	CMult 0.00	SC 0.00	Sens/A 0.0	Sens 0	1
W	n/a		n/a		0 NtA			Uval 0.068 0.810 0.040	Grp D		0.00 Shad N			
W FL R	TRAM Type ALL OR OOF	2 1 1	n/a IISSION Orien NE -	0 N GAINS GrArea 135	0 NtA	rea 135 9		Uval 0.068 0.810	Grp D	0.00 CLTD 25.9 0.0	0.00 Shad N	O.O Clr D	Sens 238 0	Latent
W FL R	TRAM Type ALL OR OOF	2 1 1	n/a Orien NE AL HEA OPLE Activity Sch Assem	0 N GAINS GrArea 135 90 AT GAIN	0 NtA	rea 135 9	Ł	Uval 0.068 0.810 0.040	Grp D R-4	0.00 CLTD 25.9 0.0	0.00 Shad N	O.O CIr D D Latent Btuh/pi	Sens 238 0 244 Sens	Latent 189

	Type Schedule Fluorescent	W/ft² 3.68	W 0	Total W 331		Bt	ctor uh/W 4.10	Space fract 1.0	1358	
	8ato12m Fluorescent	0.00	0	0			4.10	1.0	0	
	Fluorescent	0.00	0	0			4.10	1.0	0	
	Fluorescent	0.00	0	0			4.10	1.0	0	
	PLUG LOADS / AP	PLIANCE	S							
	Application Schedule	#/ft²	#	Usage	Total	Sens Bt	sible uh	Latent Btuh		
		0.000 #/ft²		1.00	0		0	0	0	0
		0.000 #/ft²		1.00	0		0	0	0	0
		0.000 #/ft ²	0.00	1.00	0		0	0	0	0
		0.000 #/ft²		1.00	0		0	0	0	0
		0.000 #/ft²		1.00	0		0	0	0	0
		0.000		1.00	0		0	0	0	0
	MOTORS									
	Power (hp)			Load	Total	Sens	sible			
	Schedule 0.00	#/ft ² 0.0	# 0	factor 1.00	0	Bt	uh O		0	
	0.00	0.0	0	1.00	0		0		0	
	0.00	0.0	0	1.00	0		0		0	
_										
5.	INFILTRATION 9 cfm	>	x db	Temp Diff		16.4 x	1.09		Sens 162	Latent
_		>		oist. Diff		52.0 x	0.69			322
6.	SUBTOTAL COOLING	LOAD FO	R SPAC	E					2406	511
7.	SUPPLY DUCT HEAT G Gain factor 0.0		X	Line 6 Sens	sible Gai	in			0	
8.	COOLING FAN SIZING Sum of Duct Gain	(7),	Line		rawthru		=		2406	
	Est Cooling cfm Actual Cooling Fan		Sens 240) / (Xfe 06) / (1.0	r x S	upply TD 20.0 >) = = =	cfm 110 110		
9.	VENTILATION 0 cfm	── >		Temp Diff bist. Diff		16.4 x 52.0 x	1.09 0.69	е.	0	0
10.	RETURN AIR LOAD FR Lights RA Roof Load RA Ceiling Load		ITING A	AND ROOF Total pow from Line from Line	3 (+))	2	-	1358 0 0	

 RETURN DUCT HEAT Gain factor 0. 	GAIN 00	x Lir	ne 6 Sens	ible G	ain					0	
12. TOTAL COOLING LO	ADS ON EQ	UIPMENT	Γ (Btuh)	7					24	06	511
E	SP	ACE HEA	TING LO	OAD C	ALCUL	ATION					
13. HEATING DESIGN TE	MPERATUR	RE									
Heating TD =	(Inside DB -	Outside D)B)		= (70 -	33)	=	37		
4. TRANSMISSION LOSS	SES				-	- 11		[Mult	=	1.0]
Type Expos G WALL 2 NE FLOR 1 - ROOF 1 -	rArea Ne 135 9 90	etArea 135 9 90	Uval 0.068 0.810 0.040			HTD 37.0 37.0 37.0					Loss 340 270 133
5. INFILTRATION 14 cfm x	db Temp I	Diff	37.0	х .	1.09		12 E-2				Loss 546
6. SUBTOTAL HEATING	LOAD FOR	SPACE									1289
7. SUPPLY DUCT HEAT Loss factor		Line 16 L	.oss								0
8. VENTILATION 0 cfm x	db Temp I	Diff	37.0	x '	1.09						0
9. HUMIDIFICATION Inside RH desired # of Glazing panes			Лах = Лах =		for 1 pa)	ı			2
14 cfm x	4.56	g/100cfm	n/d	=	0.6	gr	od				230
0. RETURN DUCT HEAT Loss factor (Line 16 L	.oss	4	1		,				0
1. TOTAL HEATING LOA	AD ON EQUI	PMENT (E	Stuh)								1519

Right-Suite Commercial Load Calculation hvac equip

Job: Jan 09, 2007

Project Information

			LWH:	11.7	Х	8.0	x 15.0					
. DES	IGN	CONDI	TIONS - C	COOLING	G		(Jul 17	700)				
Indoo	or Co	Conditio onditions rection		$\stackrel{\longrightarrow}{\longrightarrow}$		Dry Blb 90 75 2	RH 54 50	Moist	ure	Range 19	Wet Blb 77 63	
Di	ffere	nce				15		52.0				
. GLA	ZIN	G SOLA	RHEAT	GAIN		(Lat	= 29.0	68 °N ,	Const V	Vt = M	-[Mult =)	1.0]-
T		o :			20							
Type n/a	0	Orien n/a	Area 0	Tilt 0	S	hdF IntS	Shd SC	CMult 0.00	SC 0.00	Sens/A 0.0	Sens 0	Fi Lin
n/a	0	n/a			S	hdF IntS	Shd SC					P. Lis
n/a	0 NSM 2 1	n/a	0	0 NtAr 1		Uval 0.068 0.810	Grp					7 2
Type WALL FLOR ROOF	0 NSM 2 1 1	n/a IISSION Orien NW -	0 N GAINS GrArea 175 12	0 NtAr 1	ea 75 12	Uval 0.068 0.810	Grp 3 D	0.00 CLTD 19.9 0.0	0.00 Shad N	O.O Clr D	Sens 237 0 253	
Type WALL FLOR ROOF	0 NSM 2 1 1	n/a MISSION Orien NW AL HEA	0 GAINS GrArea 175 12 93	0 NtAr 1	ea 75 12	Uval 0.068 0.810	Grp 3 D	0.00 CLTD 19.9 0.0	0.00 Shad N	O.O Clr D	Sens 237 0	Latent
Type WALL FLOR ROOF	0 NSM 2 1 1	n/a Orien NW AL HEA OPLE Activity Sch Assem	0 GAINS GrArea 175 12 93 AT GAIN	0 NtAr 1	ea 75 12	Uval 0.068 0.810 0.040	Grp 3 D 0 0 R-4	0.00 CLTD 19.9 0.0 67.6	0.00 Shad N	O.0 Clr D D Later	Sens 237 0 253 Sens nt prsn	Latent

	Type Schedule Fluorescent 8ato12m Fluorescent Fluorescent Fluorescent	W//ft² 3.68 0.00 0.00 0.00	W 0 0 0	Total W 343 0 0		Bt	ctor uh/W 4.10 4.10 4.10 4.10	Space fract 1.0 1.0 1.0	1408 0 0	
	PLUG LOADS / APP Application Schedule			Usage	Total	Sens		Latent Btuh		
		#/ft ² 0.000	# 0.00	1.00	0		0	0	0	0
		#/ft² 0.000 #/ft²	# 0.00 #	1.00	0		0	0	0	0
		0.000	0.00	1.00	0		0	0	0	0
		#/ft ² 0.000		1.00	0		0	0	0	0
		#/ft² 0.000		1.00	0		0	0	0	0
		#/ft ² 0.000	0.00	1.00	0		0	0	0	0
	MOTORS Power (hp)			Load	Total	Sens	sible			
	Schedule 0.00	#/ft² 0.0	#	factor 1.00	0	Bt			0	
	0.00	0.0	0	1.00	0		0		0	
	0.00	0.0	0	1.00	0		0		0	
5.	INFILTRATION 9 cfm -	>		o Temp Diff loist. Diff		15.1 x 52.0 x	1.09 0.69		Sens 154	Latent 334
6.	SUBTOTAL COOLING L	OAD FOI	R SPAC	CE					2473	530
7.	SUPPLY DUCT HEAT GA Gain factor 0.00		5	x Line 6 Sens	ible Gai	n			0	7
8.	COOLING FAN SIZING Sum of Duct Gain	(7),	Line Sens	(6) & D) / (Xfer	rawthru	Fan upply TD	=	ofm	2473	
	Est Cooling cfm Actual Cooling Fan	= (73) / (1.0		20.0 —->) =	cfm 113 114		
9.	VENTILATION 0 cfm -	→		Temp Diff oist. Diff		15.1 x 52.0 x	1.09 0.69		0	0
10.	RETURN AIR LOAD FRO Lights RA Roof Load RA Ceiling Load C		TING	AND ROOF Total pow from Line from Line	3 (+)		0		1408 0 0	

1. RETURN DUCT HEAT GAIN Gain factor 0.00 x Line 6 Sensible Gain	0	
2. TOTAL COOLING LOADS ON EQUIPMENT (Btuh)	2473	530
SPACE HEATING LOAD CALCULATION		The second
3. HEATING DESIGN TEMPERATURE		
Heating TD = (Inside DB - Outside DB) = (70 - 33) =	37	
4. TRANSMISSION LOSSES	Mult =	1.0]
Type Expos GrArea NetArea Uval HTD WALL 2 NW 175 175 0.068 37.0 FLOR 1 - 12 12 0.810 37.0 ROOF 1 - 93 93 0.040 37.0		Loss 440 350 138
5. INFILTRATION 14 cfm x db Temp Diff 37.0 x 1.09		Loss 567
6. SUBTOTAL HEATING LOAD FOR SPACE		1495
7. SUPPLY DUCT HEAT LOSS Loss factor 0.00 x Line 16 Loss		0
8. VENTILATION 0 cfm x db Temp Diff 37.0 x 1.09		0
9. HUMIDIFICATION Inside RH desired : 40.0 (Max = 32.0 for 1 pane) # of Glazing panes : 0.0 (Max = 52.0 for 2 pane)		E
14 cfm x 4.56 g/100cfm/d = 0.6 gpd		239
0. RETURN DUCT HEAT LOSS Loss factor 0.00 x Line 16 Loss	,	0
1. TOTAL HEATING LOAD ON EQUPMENT (Btuh)		1733

Right-Suite Commercial Load Calculation wudu ablutions

Job: Jan 09, 2007

Project Information

			LWH:	6.3	Х	8.0	X	15.0					
. DESI	GN	CONDIT	TIONS -	COOLIN	G			(Jul 17	700)				
	Co	Condition Inditions ection	ns	$\stackrel{\longrightarrow}{\rightarrow}$		Dry Blb 90 75 2		RH 54 50	Mois	ture	Range 19	Wet Blb 77 63	
Diff	ere	nce				15			52.0				
. GLAZ	ZIN	G SOLA	RHEAT	GAIN		(Lat		= 29.6	88 °N	Const	vvt = M	_[Mult)	= 1.0
Type n/a	0	Orien n/a	Area 0	Tilt 0	5	ShdF Int	:Sh	d SC	CMult 0.00	SC 0.00	Sens/A 0.0	Sei	ns 0
. TRAN	ISM	IISSION	GAINS	Ti .		Di II							
Type WALL FLOR ROOF	2 1 1	Orien NW -	GrArea 95 6 51		95 6 51	0.00 0.8 0.04	38 10	Grp D R-4	CLTD 19.9 0.0 67.6	N -	Clr D - D	Sens 12 13	9
. INTE	RN	AL HEA	T GAIN										- 26 25 26
1	PEC	PLE										Sens	Laten
		Activity Sche Assemb		ft²/prsn 50	#	e pe	tal opl			Sensible Btuh/prsi 225	n Btuh/	prsn	8 10
		oato	12111	0	()	()		() (0	0

	Type Schedule Fluorescent 8ato12m Fluorescent	W/ft² 3.68	W 0 0	Total W 186		Bi	ctor tuh/W 4.10	Space fract 1.0	t 764	
	Fluorescent Fluorescent	0.00	0	0			4.10 4.10	1.0		
	PLUG LOADS / APP			U			4.10	1.0	0	
	Application Schedule	#/ft²		Usage	Total		sible uh	Laten Btuh	t	
		0.000 #/ft²	# 0.00 #	1.00	0		0	0	0	0
		0.000 #/ft²		1.00	0		0	0	0	0
		0.000 #/ft²	0.00	1.00	0		0	0	0	0
		0.000 #/ft ²	0.00	1.00	0		0	0	0	0
		0.000 #/ft ²	0.00	1.00	0		0	0	0	0
	MOTORS	0.000		1.00	0		0	0	0	0
	Power (hp) Schedule	#/ft²	#	Load factor	Total	Sens				
	0.00	0.0	0	1.00	0	ы	uh 0		0	
	0.00	0.0	0	1.00	0		0		0	
	0.00	0.0	0	1.00	0		0		0	
5.	INFILTRATION 5 cfm -	>		Temp Diff pist. Diff		15.1 x 52.0 x	1.09 0.69		Sens 84	Latent 181
6.	SUBTOTAL COOLING L	OAD FOI	R SPAC	Е					1342	288
7.	SUPPLY DUCT HEAT GA Gain factor 0.00		x	Line 6 Sens	ible Gai	in			0	
8.	COOLING FAN SIZING Sum of Duct Gain	(7), (L 8	Line Sens) / (Xfer	rawthru x S	Fan upply TD	=) =	cfm	1342	
	Est Cooling cfm Actual Cooling Fan	= (134	42) / (1.0	9 x	20.0) =	61 62		
9.	VENTILATION 0 cfm -			Temp Diff bist. Diff		15.1 x 52.0 x	1.09 0.69		0	0
10.	RETURN AIR LOAD FRO Lights RA Roof Load RA Ceiling Load C		ITING A	AND ROOF Total pow from Line from Line	3 (+))	-2		764 0 0	

Gain factor 0.00 x Line 6 Sensible Gain	0
12. TOTAL COOLING LOADS ON EQUIPMENT (Btuh)	342 288
SPACE HEATING LOAD CALCULATION	
13. HEATING DESIGN TEMPERATURE	
Heating TD = (Inside DB - Outside DB) = (70 - 33) = 37	
14. TRANSMISSION LOSSES [Mult	= 1.0]
Type Expos GrArea NetArea Uval HTD WALL 2 NW 95 95 0.068 37.0 FLOR 1 - 6 6 0.810 37.0 ROOF 1 - 51 51 0.040 37.0	Loss 239 190 75
5. INFILTRATION 8 cfm x db Temp Diff 37.0 x 1.09	Loss 308
6. SUBTOTAL HEATING LOAD FOR SPACE	811
7. SUPPLY DUCT HEAT LOSS Loss factor 0.00 x Line 16 Loss	0
8. VENTILATION 0 cfm x db Temp Diff 37.0 x 1.09	0
9. HUMIDIFICATION Inside RH desired : 40.0 (Max = 32.0 for 1 pane) # of Glazing panes : 0.0 (Max = 52.0 for 2 pane)	. 2
8 cfm x 4.56 g/100cfm/d = 0.3 gpd	130
0. RETURN DUCT HEAT LOSS Loss factor 0.00 x Line 16 Loss	0
1. TOTAL HEATING LOAD ON EQUPMENT (Btuh)	941

Right-Suite Commercial Load Calculation womens rest

Job: Jan 09, 2007

Project Information

				LWH:	6.0	x (6.7 x	15.0					
. D	ESI	GN	CONDI	TIONS -	COOLIN	G		(Jul 17	700)				
Inc	door	Co	Conditions editions		$\stackrel{\longrightarrow}{\rightarrow}$]	Ory Blb 90 75 2	RH 54 50	Mois	ture	Range 19	Wet Blb 77 63	
	Diff	ere	nce				15		52.0				
. G	LAZ	ZIN	G SOLA	RHEAT	GAIN		(Lat	= 29.6	88 °N ,	Const	Nt = M	-[Mult =)	1.0]-
Ty n/a	rpe a	0	Orien n/a	Area 0	Tilt 0	Sh	ndF IntSh		Mult 0.00	SC 0.00	Sens/A 0.0	Sens 0	
. T	RAN	ISM	IISSION	GAINS									
	ре		Orien	GrArea			Uval	Grp	CLTD	Shad	CIr	Sens	
Ty WAI FLO ROC	LL R	2 1 1	NW - -	90 6 40		90 6 40	0.068 0.810 0.040	1.77	19.9 0.0 67.6	N - -	D - D	122 0 108	
FLO ROC	LL OR OF	1	-	6		6	0.810	1.77	0.0	N - -	2	108	
WAI FLO ROC	LL OR OF NTE	1 1 RN	- AL HEA OPLE	6 40 T GAIN		6	0.810 0.040	R-4	0.0	N - -	2	0	Latent
FLO ROC	LL OR OF NTE	1 1 RN	AL HEA OPLE Activity Sch	T GAIN		6	0.810	R-4	0.0	Sensible Btuh/prsr 225	D D Later Btuh/	Sens	Latent 84

	LIGHTS									
	Type Schedule Fluorescent	W/ft² 3.68	W	Total W 147		Bt	ctor uh/W 4.10	Space fract 1.0	604	
	8ato12m Fluorescent	0.00	0	0			4.10	1.0	0	
	Fluorescent	0.00	0	0)	4.10	1.0	0	
	Fluorescent	0.00	0	0		3	4.10	1.0	0	
	PLUG LOADS / API	LIANCE	S							
	Application Schedule	#/ft²	#	Usage	Total	Sens Bt		Latent Btuh		
		0.000 #/ft²		1.00	0		0	0	0	0
		0.000 #/ft²	2000	1.00	0		0	0	0	0
		0.000 #/ft²	0.00	1.00	0		0	0	0	0
		0.000 #/ft²		1.00	0		0	0	0	0
		0.000 #/ft²		1.00	0		0	0	0	0
	MOTORS	0.000		1.00	0		0	0	0	0
	MOTORS Power (hp)			Load	Total	Sens	sible			
	Schedule	#/ft²	#	factor		Btu				
	0.00	0.0	0	1.00	0		0		0	
	0.00	0.0	0	1.00	0		0		0	
	0.00	0.0	0	1.00	0		0		0	
5.	INFILTRATION								Sens	Latent
	54 cfm -	>		Temp Diff pist. Diff		15.1 x 52.0 x	1.09 0.69		894	1930
6.	SUBTOTAL COOLING L	OAD FO	R SPAC	E				a T	1908	2014
7.	SUPPLY DUCT HEAT GA					o e				-
	Gain factor 0.00)	X	Line 6 Sens	ible Ga	in			0	
8.	COOLING FAN SIZING Sum of Duct Gain		Line Sens) / (Xfer	rawthru x S	Fan Jupply TD	=) =	cfm	1908	
	Est Cooling cfm Actual Cooling Fan	= (190	08) / (1.0	9 x	<u>20.0</u>) =	87 90		
9.	VENTILATION 0 cfm	>		Temp Diff bist. Diff		15.1 x 52.0 x	1.09 0.69		0	0
10.	RETURN AIR LOAD FRO Lights RA Roof Load RA Ceiling Load		ITING A	AND ROOF Total pov from Line from Line	3 (+))	36893	P	604 0 0	

11.	RETURN DUCT HEAT GAIN Gain factor 0.00 x Line 6 Sensible Gain	0	
12.	TOTAL COOLING LOADS ON EQUIPMENT (Btuh)	1908	2014
	SPACE HEATING LOAD CALCULATION		1
13.	HEATING DESIGN TEMPERATURE		
	Heating TD = (Inside DB - Outside DB) = (70 - 33) =	37	
14.	TRANSMISSION LOSSES	Mult =	1.0 J
FL	ype Expos GrArea NetArea Uval HTD ALL 2 NW 90 90 0.068 37.0 OR 1 - 6 6 0.810 37.0 OCF 1 - 40 40 0.040 37.0		Loss 226 180 59
15.	INFILTRATION 56 cfm x db Temp Diff 37.0 x 1.09		Loss 2267
16.	SUBTOTAL HEATING LOAD FOR SPACE		2732
17.	SUPPLY DUCT HEAT LOSS Loss factor 0.00 x Line 16 Loss		0
18.	VENTILATION 0 cfm x db Temp Diff 37.0 x 1.09		0
19.	HUMIDIFICATION Inside RH desired : 40.0 (Max = 32.0 for 1 pane) # of Glazing panes : 0.0 (Max = 52.0 for 2 pane)		
	$56 ext{ cfm x } 4.56 ext{ g/100cfm/d} = 2.6 ext{ gpd}$		954
20.	RETURN DUCT HEAT LOSS Loss factor 0.00 x Line 16 Loss		0
21.	TOTAL HEATING LOAD ON EQUPMENT (Btuh)		3686

Right-Suite Commercial Load Calculation mens bath

Job: Jan 09, 2007

Project Information

						15.0	1.0 x	X	55.0	LWH:				
	1		s 11		00)	(Jul 17		G	COOLIN	TIONS - 0	CONDI	GN	DESI	ι.
	Blb 77 33		Range 19	ture F	Moist	RH 54 50	Ory Blb 90 75 2	> > >		ıs	Condition onditions ection	Co	Indoor	
					52.0		15				nce	ere	Diff	
1.0] -	/lult =		/t = M	Const W	8°N ,	= 29.6	(Lat		GAIN	RHEAT	G SOLA	ZIN	GLAZ	2.
	Sens 0		Sens/A 0.0	SC 0.00	Mult 0.00	d SC	ndF IntSh	SI	Tilt 0	Area 0	Orien n/a	0	Type n/a	
		- 0								GAINS	IISSION	ISM	TRAN	3.
	Sens 80 224 0 149		Clr D D - D	Shad N N -	CLTD 26.1 19.9 0.0 67.6	N. Committee	Uval 0.068 0.068 0.810 0.040	rea 45 165 14 55	NtA	GrArea 45 165 14 55	Orien SW NW -	2 2 1 1	Type VALL VALL LOR ROOF	V
	_									T GAIN	AL HEA	RN	INTE	•
Latent	Sens 248	nt prsn	Laten Btuh/p 105	Sensible Btuh/prsn 225			Total peopl	# 0	ft²/prsn 50	oly	Assemb	PEC	= 1	
		70		93799970						12m	8ato			

	LIGHTS									
	Type Schedule Fluorescent	W/ft² 3.68	W	Total W 202		Bf	ctor tuh/W 4.10	Space fract 1.0	830	
	8ato12m						1.10	1.0	000	
	Fluorescent	0.00	0	0			4.10	1.0	0	
	Fluorescent	0.00	0	0			4.10	1.0	0	
	Fluorescent	0.00	0	0			4.10	1.0	0	
	PLUG LOADS / APP	LIANCE	S							
	Application			Usage	Total		sible	Latent		
	Schedule	#/ft²	#			ы	uh	Btuh		
		0.000 #/ft²		1.00	0		0	0	0	0
		0.000 #/ft²		1.00	0		0	0	0	0
		0.000 #/ft²		1.00	0		0	0	0	0
		0.000 #/ft²		1.00	0		0	0	0	0
		0.000	0.00	1.00	0		0	0	0	0
		#/ft ² 0.000	0.00	1.00	0		0	0	0	0
	MOTORS									
	Power (hp)			Load	Total		sible			
	Schedule	#/ft²	#	factor		Bt	uh			
	0.00	0.0	0.	1.00	0		0		0	
	0.00	0.0	0	1.00	0		0		0	
	0.00	0.0	0	1.00	0		0		0	
5.	INFILTRATION 56 cfm -	>		Temp Diff		15.1 x 52.0 x	1.09 0.69		Sens 919	Latent 1984
6.	SUBTOTAL COOLING L	OAD FO	R SPAC	E					2448	2100
7.	SUPPLY DUCT HEAT GA	IIN								
	Gain factor 0.00		х	Line 6 Sens	sible Ga	in			0	
8.	COOLING FAN SIZING Sum of Duct Gain	(7), (L 8	Line Sens	(6) & D	rawthru r x S	Fan upply TD	=	cfm	2448	
	Est Cooling cfm Actual Cooling Fan	= (244			20.0) = =	112		
9.	VENTILATION 0 cfm -	→ →>		Temp Diff bist. Diff		15.1 x 52.0 x	1.09 0.69		0	0
10.	RETURN AIR LOAD FRO Lights RA Roof Load RA Ceiling Load		ITING A	AND ROOF Total pov from Line from Line	3 (+))	-37E		830 0 0	

11. RETURN DUCT HEAT GAIN Gain factor 0.00 x Line 6 Sensible Gain	0	
12. TOTAL COOLING LOADS ON EQUIPMENT (Btuh)	2448	2100
SPACE HEATING LOAD CALCULATION		
3. HEATING DESIGN TEMPERATURE		
Heating TD = (Inside DB - Outside DB) = (70 - 33) =	37	
4. TRANSMISSION LOSSES	-[Mult :	= 1.0]
Type Expos GrArea NetArea Uval HTD WALL 2 SW 45 45 0.068 37.0 WALL 2 NW 165 165 0.068 37.0 FLOR 1 - 14 14 0.810 37.0 ROOF 1 - 55 55 0.040 37.0		Loss 113 415 420 81
5. INFILTRATION 58 cfm x db Temp Diff 37.0 x 1.09		Loss 2358
6. SUBTOTAL HEATING LOAD FOR SPACE		3387
7. SUPPLY DUCT HEAT LOSS Loss factor 0.00 x Line 16 Loss		0
8. VENTILATION 0 cfm x db Temp Diff 37.0 x 1.09		0
9. HUMIDIFICATION Inside RH desired : 40.0 (Max = 32.0 for 1 pane) # of Glazing panes : 0.0 (Max = 52.0 for 2 pane)		
$58 ext{ cfm } x ext{ 4.56} ext{ g/100cfm/d} ext{ = } 2.7 ext{ gpd}$	15	993
0. RETURN DUCT HEAT LOSS Loss factor 0.00 x Line 16 Loss		0
1. TOTAL HEATING LOAD ON EQUPMENT (Btuh)		4380

Right-Suite Commercial Load Calculation wudu ablutions

Job: Jan 09, 2007

Project Information

			LWH:	5.0	X	5.0 x	15.0					
. DES	IGN	CONDI	TIONS - 0	COOLIN	G		(Jul 17	700)				
Indoo	or Co	onditions nditions ection		- - ->		Dry Blb 90 75 2	RH 54 50	Mois	ture	Range \ 19	Wet Blb 77 63	
Dif	fferer	nce				15		52.0				
. GLA	ZIN	G SOLA	RHEAT	GAIN		(Lat	= 29.6	68 °N ,	, Const V	Vt = M)	Mult =	1.0]-
Type n/a	0	Orien n/a	Area	Tilt	S	hdF IntSh	nd S0	CMult	SC	Sens/A	Sens	
9000000		IIIa	0	0				0.00	0.00	0.0	0	
. TRA	4000	12.00 20.00	GAINS	0				0.00	0.00	0.0	0	
Туре	NSM	12.00 20.00	10.500	NtA	rea 75 5 25	Uval 0.068 0.810 0.040		0.00 CLTD 26.1 0.0 67.6	0.00 Shad N	O.O Clr D	Sens 133 0 68	
Type WALL FLOR ROOF	2 1 1	Orien SW	GAINS GrArea 75 5	NtA	75 5	0.068 0.810	D	CLTD 26.1 0.0	Shad	Clr D	Sens 133 0 68	
Type WALL FLOR ROOF INTE	NSM 2 1 1	Orien SW	GAINS GrArea 75 5 25	NtA	75 5	0.068 0.810	D	CLTD 26.1 0.0	Shad	Clr D	Sens 133 0	Latent
Type WALL FLOR ROOF	NSM 2 1 1 ERNA	Orien SW AL HEA PLE Activity Sche	GAINS GrArea 75 5 25 T GAIN	NtA	75 5	0.068 0.810 0.040 Tota peop	D R-4	CLTD 26.1 0.0 67.6	Shad	Clr D - D	Sens 133 0 68 Sens	Latent 53

	LIGHTS Type Schedule	W/ft²	W	Total W			ctor uh/W	Space fract		
	Fluorescent 8ato12m	3.68	O	92			4.10	1.0	377	
	Fluorescent	0.00	0	0		3	4.10	1.0	0	
	Fluorescent	0.00	0	0			4.10	1.0	0	
	Fluorescent	0.00	0	0			4.10	1.0	0	
	PLUG LOADS / API	PLIANCE	S							
	Application Schedule	#/ft²		Usage	Total	Sens Btu		Latent Btuh		
		0.000 #/ft²	# 0.00 #	1.00	0		0	0	0	0
		0.000 #/ft²		1.00	0		0	0	0	0
		0.000 #/ft²	0.0	1.00	0		0	0	0	0
		0.000 #/ft²	C	1.00	0		0	0	0	0
		0.000 #/ft²	. 22	1.00	0		0	0	0	0
	MOTORS	0.000		1.00	0		0	0	0	0
	MOTORS Power (hp)			Load	Total	Sens	ible			
	Schedule	#/ft²	#	factor	Total	Btu				
	0.00	0.0	0	1.00	0		0		0	
	0.00	0.0	0	1.00	0		0		0	
	0.00	0.0	0	1.00	0		0		0	
5.	INFILTRATION								Sens	Latent
	3 cfm	>		Temp Diff pist. Diff		15.1 x 52.0 x	1.09 0.69		41	89
6.	SUBTOTAL COOLING I	OAD FO	R SPAC	Е					732	142
7.	SUPPLY DUCT HEAT G. Gain factor 0.0		X	Line 6 Sens	sible Gair	n			0	
8.	COOLING FAN SIZING Sum of Duct Gain	(7), (L 8	Line Sens	(6) & D	rawthru r x Su	Fan upply TD	=	cfm	732	17
	Est Cooling cfm Actual Cooling Fan	= (73	32) / (1.0		20.0) = =	. 10/07/		
9.	VENTILATION 0 cfm			Temp Diff bist. Diff		15.1 x 52.0 x	1.09 0.69		0	0
10.	RETURN AIR LOAD FR Lights RA Roof Load RA Ceiling Load		ITING A	AND ROOF Total pov from Line from Line	e 3 (+)	ĺ	0		377 0 0	

	RN DUCT HE n factor	0.00	хL	ine 6 Sens	ible Gain					0	
12. TOTAI	L COOLING	LOADS ON I	QUIPME	NT (Btuh)					73	2	142
			SPACE HI	EATING LO	OAD CAL	CULATIO	ON				
3. HEATI	NG DESIGN	TEMPERAT	URE								
Hea	ating TD	= (Inside DE	- Outside	DB)	=	(70	- 33)	=	37		
4. TRANS	SMISSION L	OSSES			<u>11</u>			[Mult	=	1.0]
	Expos 2 SW 1 - 1 -	GrArea 75 5 25	NetArea 75 5 25	Uval 0.068 0.810 0.040		37 37	TD 7.0 7.0				Loss 189 150 37
5. INFILT	TRATION 4 cfm	x db Tem	p Diff	37.0	x 1.09)					Loss 152
6. SUBTO	TAL HEATI	NG LOAD FO	OR SPACE								527
	Y DUCT HEA		Line 16	Loss							0
8. VENTI	LATION 0 cfm	x db Tem	p Diff	37.0	x 1.09)					0
Ins	DIFICATION side RH desi of Glazing pa	red :		(Max = (Max =	32.0 for 52.0 for)				
	4 cfm	x 4.56	g/100c	fm/d	Ξ	0.2	gpd				64
	RN DUCT HE ss factor	AT LOSS 0.00 x	Line 16	Loss		¥ ¥					0
1. TOTAI	HEATING	LOAD ON EQ	UPMENT	(Btuh)				-			591

Right-Suite Commercial Load Calculation corridor

Job: Jan 09, 2007

Project Information

Zone	: (corric	lor										
			LWH:	256.0	x	1.0 x	15.0						
1. DESI	GN	CONDI	TIONS -	COOLING	ì		(Jul 1	600)					
Indoor	Co	Conditions ection		$\stackrel{\longrightarrow}{\rightarrow}$	1	Dry Blb 91 75 1	RH 52 50	l Mois	ture	Range 19	Wet Blb 77 63)	
Diff	ere	nce			-	16		52.0					
2. GLAZ	ZIN	G SOL	AR HEAT	GAIN		(Lat	= 29.	68 °N	, Const	√t = M	-[Mult)	=	1.0] -
Type GLAZ	1	Orien SW	Area 20	Tilt 90	SI	hdF IntSI	nd S N	CMult 1.00	SC 0.88	Sens/A 74.1		ens 83	
3. TRAN	ISN	iissioi	N GAINS										
Type GLAZ WALL WALL DOOR FLOR ROOF	1 2 2 8 1 1	Orien SW SW NW nw	GrArea 20 75 75 21 10 256		ea 20 55 54 21 10	Uval 0.585 0.068 0.068 0.460 0.810 0.040	D D	CLTD 14.6 20.1 15.9 14.6 0.0 67.6	N N -	Clr D D -	1	71 75 59 42 0 93	11
. INTE	RN	AL HEA	AT GAIN								Ser	10	Latent
1	PEC	PLE Activity Sch	/ edule	ft²/prsn	#	Tota peop			Sensible Btuh/prsr		nt	,5	Laterit
		Assem 8ato	bly o12m	50	0	Foot	5		225	105	5 11	52	538
				0	0		0		0	()	0	0

	Type Schedule Fluorescent 8ato12m	W/ft² 3.68	W 0	Total W 942		Bt	ctor uh/W 4.10	Space fract 1.0	3863	
	Fluorescent	0.00	0	0			4.10	1.0	0	
	Fluorescent	0.00	0	0			4.10	1.0	0	
	Fluorescent	0.00	0	0			4.10	1.0	0	
	PLUG LOADS / APP Application Schedule			Usage	Total	Sens		Latent Btuh		
		#/ft² 0.000 #/ft²	# 0.00 #	1.00	0		0	0	0	0
		0.000 #/ft²		1.00	0		0	0	0	0
		0.000 #/ft²	0.00	1.00	0		0	0	0	0
		0.000 #/ft²		1.00	0		0	0	0	0
	W.		0.00	1.00	0		0	0	0	0
	MOTORS	0.000		1.00	0		0	0	0	0
	Power (hp)			Load	Total	Sens	sible			
	Schedule	#/ft²	#	factor	10101	Bti				
	0.00	0.0	Ö	1.00	0	Ъ.,	0		0	
	0.00	0.0	0	1.00	0		0		0	
	0.00	0.0	0	1.00	0		0		0	
5.	INFILTRATION 36 cfm -	──>		Temp Diff oist. Diff		16.4 x 52.0 x	1.09 0.69		Sens 640	Latent 1273
6.	SUBTOTAL COOLING L	OAD FO	R SPAC	CE					8277	1810
7.	SUPPLY DUCT HEAT GA Gain factor 0.00		,	x Line 6 Sens	ible Ga	in			0	
8.	COOLING FAN SIZING Sum of Duct Gain Est Cooling cfm Actual Cooling Fan	(7), (L 8 = (Line Sens 82	(6) & D) / (Xfer 77) / (1.0		Fan upply TD 20.0	=) =) = =	378	8277	
9.	VENTILATION 0 cfm -	>		Temp Diff oist. Diff		16.4 x 52.0 x	1.09 0.69		0	0
10.	RETURN AIR LOAD FRO Lights RA Roof Load RA Ceiling Load (ITING	AND ROOF Total pov from Line from Line	3 (+))	-37E		3863 0 0	

1. RETURN DUCT HEAT GAIN Gain factor 0.00	x Line 6 Sensible Gain	0
2. TOTAL COOLING LOADS ON E	QUIPMENT (Btuh)	8277 1810
S	PACE HEATING LOAD CALCULATION	
3. HEATING DESIGN TEMPERATU	JRE	T2
Heating TD = (Inside DB	- Outside DB) = (70 -	33) = 37
4. TRANSMISSION LOSSES		[Mult = 1.0]
Type Expos GrArea M GLAZ 1 SW 20 WALL 2 SW 75 WALL 2 NW 75 DOOR 8 nw 21 FLOR 1 - 10 ROOF 1 - 256	NetArea Uval HTD 20 0.558 37.0 55 0.068 37.0 54 0.068 37.0 21 0.460 37.0 10 0.810 37.0 256 0.040 37.0	Loss 413 138 136 357 300 379
5. INFILTRATION 58 cfm x db Temp	Diff 37.0 x 1.09	Loss 2364
6. SUBTOTAL HEATING LOAD FO	R SPACE	4087
7. SUPPLY DUCT HEAT LOSS Loss factor 0.00 x	Line 16 Loss	0
8. VENTILATION 0 cfm x db Temp	Diff 37.0 x 1.09	0
Inside RH desired : # of Glazing panes :	40.0 (Max = 32.0 for 1 pane) 2.0 (Max = 52.0 for 2 pane)	
58 cfm x 4.56	g/100cfm/d = 2.7 gpd	995
D. RETURN DUCT HEAT LOSS Loss factor 0.00 x	Line 16 Loss	0
1. TOTAL HEATING LOAD ON EQ	UPMENT (Btuh)	5082

Right-Suite Commercial Load Calculation cultural hall

Job: Jan 09, 2007

Project Information

			LWH:	41.3	X	17	.0	x 1	5.0						
i. DESI	GN	CONDI	ΓΙΟΝS -	COOLI	NG			(Jul 16	(00					
Indoo	Cc	Condition onditions rection		=	-> ->	Dņ	y Blb 91 75 1		RH 52 50	Mois	ture	Range 19		t Blb 77 63	
Dif	ere	nce				-	16		-	52.0					
. GLA	ZIN	G SOLA	RHEAT	GAIN		(Lat	=	29.6	8 °N	, Const	Wt = N		Mult =	1.0]
Type GLAZ	1	Orien NE	Area 48	Ti 90		Shdl 		Shd N		Mult 1.00	SC 0.88	Sens/A 39.5		Sens 1889	
. TRA	NSN	IISSION	GAINS												
Туре		Orien	GrArea	ı Ni	tArea		Uval		Grp	CLTD	Shad	Clr		Sens	
GLAZ	1	NE	48		48		0.58			14.6	200			410	
WALL	2	NE	255		186		0.068)	25.9		D		328	
DOOR	7	ne	21		21		0.460			14.6		=		142	
FLOR ROOF	1	-	17 703		17 703		0.810		4	0.0 67.6		D		0 1901	
. INTE	RN.	AL HEA	T GAIN												
	PFC	PLE												Sens	Latent
	L	Activity					Tota	al			Sensible	Late	nt		
			edule	ft²/prsr	ı	#	peo				Btuh/prsr				
		Assemi		50		0		14			225		•	3162	1476
		8ato	12m	1/2		2					152		751		
				(0	0		0			C)	0	0	0

	LIGHTS									
	Type Schedule Fluorescent	W/ft² 3.68	W	Total W 2586			tor ıh/VV 1.10	Space fract 1.0	10602	
	8ato12m	0.00	Ü	2000		\ 	7. 10	1.0	10002	
	Fluorescent	0.00	0	0		4	1.10	1.0	0	
	Fluorescent	0.00	0	0		4	1.10	1.0	0	
	Fluorescent	0.00	0	0		4	1.10	1.0	. 0	
	PLUG LOADS / API	PLIANCE	S							
	Application Schedule	9.7862		Usage	Total	Sens Btu		Latent Btuh		
		#/ft² 0.000	#	1.00	0		0	0		
		#/ft²	#	1.00	U		0	0	0	0
		0.000 #/ft²		1.00	0		0	0	0	0
		0.000 #/ft²		1.00	0		0	0	. 0	0
		0.000 #/ft²		1.00	0		0	0	0	0
		0.000 #/ft²	1000	1.00	0		0	0	0	0
	The second second second	0.000	P1 2550	1.00	0		0	0	0	0
	MOTORS						UP:1-22			
	Power (hp)	11/212	ш	Load	Total	Sensi				
	Schedule 0.00	#/ft² 0.0	# 0	factor 1.00	0	Btu	0		0	
	0.00	0.0	0	1.00	0		0		0	
	0.00	0.0	0	1.00	0		0		0	
5.	INFILTRATION 80 cfm	> >		Temp Diff		16.4 x 52.0 x	1.09 0.69		Sens 1444	Latent 2869
6.	SUBTOTAL COOLING I	OAD FO	R SPAC	E					19878	4345
7.	SUPPLY DUCT HEAT G. Gain factor 0.00		×	Line 6 Sens	sible Gair	n			0	5.
8.	COOLING FAN SIZING Sum of Duct Gain	(7), (1 8	Line Sens	(6) & E		Fan upply TD	=	cfm	19878	
	Est Cooling cfm Actual Cooling Fan			78) / (1.0		20.0 —->) =	908 916		
9.	VENTILATION 0 cfm -	>		Temp Diff bist. Diff		16.4 x 52.0 x	1.09 0.69	(e)	0	0
10.	RETURN AIR LOAD FR Lights RA Roof Load RA Ceiling Load		ITING A	AND ROOF Total poor from Line	e 3 (+))	0	3	10602 0 0	

1. RETURN DUCT HEAT GAIN Gain factor 0.00 x Line 6 Sensible Gain	0	
2. TOTAL COOLING LOADS ON EQUIPMENT (Btuh)	19878	4345
SPACE HEATING LOAD CALCULATION		
3. HEATING DESIGN TEMPERATURE		
Heating TD = (Inside DB - Outside DB) = (70 - 33) =	37	
4. TRANSMISSION LOSSES	Mult =	1.0]-
Type Expos GrArea NetArea Uval HTD GLAZ 1 NE 48 48 0.558 37.0 WALL 2 NE 255 186 0.068 37.0 DOOR 7 ne 21 21 0.460 37.0 FLOR 1 - 17 17 0.810 37.0 ROOF 1 - 703 703 0.040 37.0		Loss 988 468 357 509 1040
5. INFILTRATION 125 cfm x db Temp Diff 37.0 x 1.09		Loss 5076
6. SUBTOTAL HEATING LOAD FOR SPACE		8439
7. SUPPLY DUCT HEAT LOSS Loss factor 0.00 x Line 16 Loss		0
8. VENTILATION 0 cfm x db Temp Diff 37.0 x 1.09		0
Inside RH desired : 40.0 (Max = 32.0 for 1 pane) # of Glazing panes : 2.0 (Max = 52.0 for 2 pane)		
125 cfm x 4.56 g/100cfm/d = 5.7 gpd		2137
). RETURN DUCT HEAT LOSS Loss factor 0.00 x Line 16 Loss		0
I. TOTAL HEATING LOAD ON EQUPMENT (Btuh)		10576

Right-Suite Commercial Load Calculation mosque male worship

Job: Jan 09, 2007

Project Information

			LWH:	888.8	X ´	1.0 x	15.0	11				
. DES	GN	CONDI	TIONS -	COOLIN	G		(Jul 1	500)				
Indoo	r Co	Conditions editions		—> —> —>		Ory Blb 92 75 0	RH 51 50	Mois	ture	Range 19	Wet Blb 77 63	
Dif	fere	nce				17		52.0				
. GLA	ZIN	G SOLA	RHEAT	GAIN		(Lat	= 29.	68 °N	, Const	Nt = M	[Mult =	1.0 .] -
Type n/a	0	Orien n/a	Area 0	Tilt 0	Sh	ndF IntSh	d So	CMult 0.00	SC 0.00	Sens/A 0.0	Sens 0	
. TRA	NSM	IISSION	GAINS									
Type WALL WALL WALL WALL DOOR DOOR FLOR ROOF	2 2 2 2 5 6 1 1	Orien N NE E SE NW ne ne	GrArea 101 335 97 60 60 21 21 43 889	; ; ;)	rea 101 293 97 60 60 21 21 43	Uval 0.068 0.068 0.068 0.068 0.560 0.560 0.810 0.040	D D D	CLTD 13.6 24.9 33.6 30.1 13.9 14.6 0.0 66.6	N N N N N N N N N N N N N N N N N N N	Clr D D D D - -	Sens 93 497 221 123 57 172 172 0 2369	-
. INTE	RNA	AL HEA	T GAIN								Sens	Latent
	PEC	Assem	edule bly	ft²/prsn 50	# 0	Total peop	le		Sensible Btuh/prsr 225	Btuh/p	t ersn	1866
		Bato	12m	0	0	(0		0	0	0	0

	LIGHTS									
	Type Schedule Fluorescent 8ato12m	W/ft² 3.68	W	Total W 3271		B	ctor tuh/W 4.10	Space fract 1.0	13410	
	Fluorescent	0.00	0	0			4.10	1.0	0	
	Fluorescent	0.00	0	0			4.10	1.0	0	
	Fluorescent	0.00	0	0			4.10	1.0	0	
	PLUG LOADS / API	PLIANCE	s	200		· · · · · · · · · · · · · · · · · · ·	20/01			
	Application Schedule			Usage	Total		sible uh	Latent Btuh		
		#/ft² 0.000	# 0.00	1.00	0		0	0	0	0
		#/ft² 0.000	#	1.00	0		0	0	0	0
		#/ft²	#							
		0.000 #/ft²	0.00	1.00	0		0	0	0	0
		0.000 #/ft ²	0.00	1.00	0		0	0	0	0
		0.000	0.00	1.00	0		0	0	0	0
		#/ft² 0.000	0.00	1.00	0		0	0	0	0
	MOTORS			20 20						
	Power (hp)		25	Load	Total		sible			
	Schedule 0.00	#/ft² 0.0	# 0	factor 1.00	0	Bt	uh O		0	
					0					
	0.00	0.0	0	1.00	0		0		0	
	0.00	0.0	0	1.00	0		0		0	
5.	INFILTRATION 109 cfm	> >		Temp Diff oist. Diff		17.0 x 52.0 x	1.09 0.69		Sens 2025	Latent 3892
6.	SUBTOTAL COOLING I	OAD FO	R SPAC	E					23139	5759
7.	SUPPLY DUCT HEAT G. Gain factor 0.0		>	Line 6 Sens	ible Gai	n			0	
8.	COOLING FAN SIZING Sum of Duct Gain	(7), (L 8	Line Sens	(6) & D		Fan upply TD	=	cfm	23139	
_	Est Cooling cfm Actual Cooling Fan		2313		9 x	20.0) =	1058 1058		
9.	VENTILATION 0 cfm	→		Temp Diff pist. Diff		17.0 x 52.0 x	1.09 0.69		0	0
10.	RETURN AIR LOAD FR Lights RA Roof Load RA Ceiling Load		ITING A	AND ROOF Total pov from Line from Line	3 (+))	-0		13410 0 0	2

1. RETURN DUCT HEAT GAIN Gain factor 0.00	x Li	ne 6 Sens	ible G	ain							0	•
2. TOTAL COOLING LOADS ON I	EQUIPMEN	Γ (Btuh)								2313	39	5759
,	SPACE HEA	ATING LO	AD (CALC	UL	ATIO	N					-
3. HEATING DESIGN TEMPERAT	URE											
Heating TD = (Inside DE	3 - Outside D	DB)		=	(70 -	33	3) =	=	37		
4. TRANSMISSION LOSSES									<u> [</u>	Mult	=	1.0]-
Type Expos GrArea WALL 2 N 101 WALL 2 NE 335 WALL 2 E 97 WALL 2 SE 60 WALL 2 NW 60 DOOR 5 ne 21 DOOR 6 ne 21 FLOR 1 - 43 ROOF 1 - 889	NetArea 101 293 97 60 60 21 21 43 889	Uval 0.068 0.068 0.068 0.068 0.560 0.560 0.810 0.040		180		HTI 37.0 37.0 37.0 37.0 37.0 37.0 37.0						Loss 253 737 243 151 151 435 435 1301 1315
5. INFILTRATION 173 cfm x db Tem	np Diff	37.0	х	1.09			1					Loss 7016
6. SUBTOTAL HEATING LOAD FO	OR SPACE											12038
7. SUPPLY DUCT HEAT LOSS Loss factor 0.00 x	Line 16 I	Loss										0
8. VENTILATION 0 cfm x db Tem	np Diff	37.0	х	1.09								0
9. HUMIDIFICATION Inside RH desired : # of Glazing panes :		Max = Max =		for 1)		ı			
173 cfm x 4.56	g/100cfr	n/d	=	7	.9		gpd					2953
0. RETURN DUCT HEAT LOSS Loss factor 0.00 x	Line 16 l	_oss										0
1. TOTAL HEATING LOAD ON EQ	OUPMENT (Rtuh)									ψ.	14991

Right-Suite Commercial Load Calculation mosque female worship

Job: Jan 09, 2007

Project Information

	15			LWH:	15.7	X	27.7	X	15.0						
	DESIG	GN (CONDI	TIONS -	COOLING	G		(Jul 150	00)		4)E
	Outdoor Indoor TOD C	Co	nditions		→ → →		Dry Blb 92 75 0		RH 51 50	Mois	sture	Range 19	W	et Blb 77 63	
	Diffe	erer	nce				17			52.0)		-		- 18 M27 D1
	GLAZ	INC	G SOLA	RHEAT	GAIN		(Lat	:	= 29.68	3 °N	, Const	∨ t = N		Mult	= 1.0]
	Type n/a	0	Orien n/a	Area 0	Tilt 0	S	hdF In	tShd		Mult 0.00	SC 0.00	Sens/A 0.0		Sens 0	
	TRAN	SM	ISSION	GAINS									V		
	T														
f	Type ROOF	1	Orien -	GrArea 43		ea 133	0.0	al 40 F	Grp R-4	66.6		Clr D		Sens 1156	-
F	ROOF	1												1156	Latent
	INTE	1 RNA PEO	PLE Activity Sch Assem	T GAIN decline			0.0 To pe		R-4			D Late		1156 Sens	Latent 910
	INTE	1 RNA PEO	PLE Activity Sch Assem	43. T GAIN edule bly	3 4 ft²/prsn	#	O.O	otal	R-4		Sensible Btuh/prsr	Late Btuh	/prsr	1156 Sens	Latent 910
	INTEI	1 RNA PEO	PLE Activity Sch Assem 8ato	43. T GAIN edule bly 12m	ft²/prsn 50	# 0 0	O.O	otal eople 9 0	R-4		Sensible Btuh/prsr 225	D Late Btuh	/prsr 05 0 ce	1156 Sens	910
	INTEI	1 RNA PEO	PLE Activity Sch Assem 8atc HTS Type Sch Fluores	43. T GAIN edule bly o12m edule scent	ft²/prsn 50	# 0	O.O	otal eople 9 0	R-4		Sensible Btuh/prsr 225	Laten Btuh	/prsr 05 0 ce	1156 Sens	910
	INTEI	1 RNA PEO	PLE Activity Sch Assem 8atc HTS Type Sch Fluores	edule bly of 12m	ft²/prsn 50 0	# 0 0	To pe	otal eople 9 0	R-4		Sensible Btuh/prsr 225 0 Factor Btuh/V	Laten Btuh	/prsr 05 0 ce ct	1156 Sens 1951	910
	INTEI	1 RNA PEO	PLE Activity Sch Assem 8atc HTS Type Sch Fluores 8atc	edule bly of 12m edule scent of 12m scent	ft²/prsn 50 0 W/ft² 3.68	#33 #0 0	To pe	otal eople 9 0 otal V 595	R-4		Sensible Btuh/prsr 225 0 Factor Btuh/V 4.10	D Late Btuh 10 Spa V fra 1	/prsr 05 0 ce ct	1156 Sens 1 1951 0 6540	910

PLUG LOADS / APP Application Schedule			Usage	Total		sible uh	Later Btuh		
	#/ft² 0.000		1.00	0		0		0 0	0
	#/ft² 0.000 (1.00	0		0	(0 0	0
	#/ft² 0.000 (1.00	0		0	(0 0	0
	#/ft² 0.000 (1.00	0		0	(0 0	0
	#/ft² 0.000 (#/ft²	# 0.00 #	1.00	0		0	(0	0
MOTORS	0.000		1.00	0		0	(0 0	0
Power (hp) Schedule	#/ft²	#	Load factor	Total	Sens				it.
0.00	0.0	0	1.00	0		0		0	
0.00	0.0	0	1.00	0		0		0	
0.00	0.0	0	1.00	0		0		0	
5. INFILTRATION 43 cfm	>) >)		Temp Diff		17.0 x 52.0 x	1.09 0.69		Sens 806	Latent 1549
5. SUBTOTAL COOLING L	OAD FOR	SPACI	E					10452	2460
7. SUPPLY DUCT HEAT GA Gain factor 0.00		×	Line 6 Sens	sible Gain				0	
Sum of Duct Gain Est Cooling cfm Actual Cooling Fan	(7), (L 8 S	Line Sens 1045) / (Xfe		an pply TD 20.0) =) =) =	cfm 478 478	10452	7 H
O. VENTILATION 0 cfm -			Temp Diff ist. Diff		17.0 x 52.0 x	1.09 0.69		0	0
10. RETURN AIR LOAD FRO Lights RA Roof Load RA Ceiling Load		ΓING A	ND ROOF Total pov from Line from Line	3 (+)		368931	P	6540 0 0	
11. RETURN DUCT HEAT G Gain factor 0.00		х	Line 6 Sens	ible Gain	į.			0	
12. TOTAL COOLING LOAD	DO ON BO	LIEDAAD						10452	2460

SPACE HEATING LOAD CALCULATION

13. HEATING DESIGN TEMPERATURE

	Н	Heating TD = (Inside DB - Outside DB)										=	(70 -	3	3)	=	37		
14.	TRA	NSM	ISSI	ONLO	OSSI	ES											[Mult	=	1.0]
	Type OOF	1	Exp	oos -	Gr	Area 433	N	letArea 433	70.00	Jval).040)			HTE 37.0						Loss 641
15.	INFI		ATI0	ON cfm	x	db T	emp	Diff	37	.0	x	1.09						11		Loss 2632
16.	SUBT	ГОТ	AL H	EATI	NG I	LOAD	FOI	R SPAC	E										×	3273
17.	SUPP		DUC fact			oss 00	x	Line 1	6 Loss											0
18.	VEN	ΓILA	OIT	N cfm	х	db T	emp	Diff	37	.0	×	1.09								0
19.		nsid	e Rh	TION I desir ing par			1	40.0 0.0	(Max (Max	=		O for)		-2		51	
			65	cfm	X	4.56		g/100	cfm/d		=	= 3	3.0	ç	gpd					1108
20.			DU C	CT HE.		LOSS 00	x	Line 1	6 Loss											0

21. TOTAL HEATING LOAD ON EQUPMENT (Btuh)

4381

Right-Suite Commercial Load Calculation gathering hall

Job: Jan 09, 2007

Project Information

			LWH:	8.7	x 2	8.7 x	15.0					
. DESI	GN	CONDI	TIONS -	COOLING	;		(Jul 1	700)				
Outdoor Conditions Indoor Conditions TOD Correction Difference			$\stackrel{\longrightarrow}{\rightarrow}$	D	90 75 2	RH 54 50		ture	Range 19	Wet Blb 77 63		
Difference GLAZING SOLAR HEA						15		52.0				
. GLA	ZIN	G SOLA	RHEAT	GAIN		(Lat	= 29	.68 °N ,	Const V	Vt = M	_[Mult =)	1.0]-
Type GLAZ	1	Orien SW	Area 60	Tilt 90	She		id S	CMult 1.00	SC 0.88	Sens/A 75.4	Sens 4525	
TRA	NSN	IISSION	GAINS	V								
Type GLAZ WALL	1 2	Orien SW SW	GrArea 60 430		ea 60 28	Uval 0.585 0.068	Grp D	CLTD 13.6 26.1	Shad N N	Clr - D	Sens 479 581	
DOOR FLOR ROOF	4 1 1	sw - -	42 29 248		42 29 48	0.560 0.810 0.040	R-4	13.6 0.0 67.6	- 5	- - D	321 0 672	
INTE	RN	AL HEA	T GAIN								_	
	PEC	PLE				5-21-07-07-07-07			Manager Control of the Control		Sens	Latent
		The second second	edule	ft²/prsn	#	Total peop			Sensible Btuh/prsn 225	Later Btuh/ 10	prsn	522
		Assem	12m	50	U	,	3		223	103	3 1110	522

	LIGHTS Type Schedule	W/ft²	W	Total W		Bt	ctor uh/W	Space fract	2740	
	Fluorescent 8ato12m	3.68	0	914			4.10	1.0	3749	
	Fluorescent	0.00	0	0			4.10	1.0	0	
	Fluorescent	0.00	0	0			4.10	1.0	0	
	Fluorescent	0.00	0	0			4.10	1.0	0	
	PLUG LOADS / APP	LIANCE	S							
	Application Schedule			Usage	Total	Sens Bt		Latent Btuh		
	Odreddie	#/ft2	#			Di	un	Dian		
		0.000 #/ft ²	0.00	1.00	0		0	0	0	0
		0.000 #/ft ²	0.00	1.00	0		0	0	0	0
		0.000 #/ft²	0.00	1.00	0		0	0	0	0
		0.000 #/ft²	0.00	1.00	0		0	0	0	0
		0.000	0.00	1.00	0		0	0	0	0
		#/ft² 0.000	# 0.00	1.00	0		0	0	0	0
	MOTORS									
	Power (hp)			Load	Total	Sens				
	Schedule 0.00	#/ft² 0.0	#	factor	0	Bt			0	
			770	1.00	0		0		0	
	0.00	0.0	0	1.00	0		0		0	
	0.00	0.0	0	1.00	0		0		0	
5.	INFILTRATION 35 cfm -	>		Temp Diff		15.1 x 52.0 x	1.09 0.69		Sens 577	Latent 1246
6.	SUBTOTAL COOLING L	OAD FO	R SPAC	Œ					12023	1767
7.	SUPPLY DUCT HEAT GA	AIN .		1427						
	Gain factor 0.00		>	k Line 6 Sens	ible Ga	in			0	
8.	COOLING FAN SIZING Sum of Duct Gain	(7), (L 8	Line Sens) / (Xfer		Fan upply TD	=) =	cfm	12023	
	Est Cooling cfm Actual Cooling Fan	= (120	23) / (1.0	9 x	20.0) = =	549 549		
9.	VENTILATION 0 cfm -	> >		Temp Diff oist. Diff		15.1 x 52.0 x	1.09 0.69		0	0
10.	RETURN AIR LOAD FRO Lights RA Roof Load RA Ceiling Load		ITING	AND ROOF Total pov from Line from Line	3 (+))	36893	P	3749 0 0	

 RETURN DUCT HEAT GAIN Gain factor 0.00 	x Line 6 Sensible Gain			0	
12. TOTAL COOLING LOADS ON E	QUIPMENT (Btuh)	=		12023	1767
S	PACE HEATING LOAD CALCUI	ATION			
13. HEATING DESIGN TEMPERATU	RE				
Heating TD = (Inside DB	- Outside DB) = (70 - 33)	=	37	
14. TRANSMISSION LOSSES			[Mult =	1.0]
Type Expos GrArea M GLAZ 1 SW 60 WALL 2 SW 430 DOOR 4 sw 42 FLOR 1 - 29 ROOF 1 - 248	NetArea Uval 60 0.558 328 0.068 42 0.560 29 0.810 248 0.040	HTD 37.0 37.0 37.0 37.0 37.0			Loss 1239 825 870 859 368
15. INFILTRATION 57 cfm x db Temp	Diff 37.0 x 1.09				Loss 2318
16. SUBTOTAL HEATING LOAD FO	R SPACE		77		6479
17. SUPPLY DUCT HEAT LOSS Loss factor 0.00 x	Line 16 Loss				0
18. VENTILATION 0 cfm x db Temp	Diff 37.0 x 1.09				0
19. HUMIDIFICATION Inside RH desired : # of Glazing panes :	40.0 (Max = 32.0 for 1 p 2.0 (Max = 52.0 for 2 p				
57 cfm x 4.56	g/100cfm/d = 2.6	gpd			976
20. RETURN DUCT HEAT LOSS Loss factor 0.00 x	Line 16 Loss			al .	0
21. TOTAL HEATING LOAD ON EQ	UPMENT (Btuh)				7455

Right-Suite Commercial Load Calculation library / sitting

Job: Jan 09, 2007

Project Information

			LWH:	8.7	X	16.0 x	15.0					
. DESI	GN	CONDI	TIONS -	COOLING	3		(Jul 17	700)				
Outdoor Conditions Indoor Conditions TOD Correction Difference			→ → →		90 75 2	RH 54 50	Mois	ture	Range 19	Wet Blb 77 63		
Diff	ere	nce				15		52.0				
. GLAZ	ZIN	G SOLA	RHEAT	GAIN		(Lat	= 29.6	68 °N	, Const	VVt = M		= 1.0] -
Type GLAZ	1	Orien SW	Area 60	Tilt 90	S	ndF IntSh	d SO	CMult 1.00	SC 0.88	Sens/A 75.4	Sens 4525	
. TRAN	NSM	IISSION	GAINS									
Type GLAZ WALL FLOR ROOF	1 1 1	Orien SW SW	GrArea 60 240 16 139	1	ea 60 80 16 39	Uval 0.585 0.286 0.810 0.040		CLTD 13.6 26.1 0.0 67.6	Shad N N -	Clr - D - D	Sens 479 1342 0 375	
INTE	RN	AL HEA	T GAIN								Sens	Latent
1	PEC	Assemi	edule oly	ft²/prsn 50	# 0	Total peop			Sensible Btuh/prsi 225	n Btuh/	nt prsn	291
		8ato	12m	0	0							

	LIGHTS									
	Type Schedule Fluorescent 8ato12m	W/ft ² 3.68	W 0	Total W 510		Bt	ctor uh/W 4.10	Space fract 1.0	2092	
	Fluorescent	0.00	0	0			4.10	1.0	0	
	Fluorescent	0.00	0	0			4.10	1.0	0	
	Fluorescent	0.00	0	0			4.10	1.0	0	
	PLUG LOADS / API	PLIANCE	S							
	Application Schedule	yrossa		Usage	Total	Sen:		Latent Btuh		
		#/ft² 0.000	# 0.00	1.00	0		0	0	0	0
		#/ft²	#	1.00	U		U	U	U	0
		0.000 #/ft ²	0.00	1.00	0		0	0	0	0
		0.000 #/ft²	0.00	1.00	0		0	0	0	0
		0.000 #/ft²	0.00	1.00	0		0	0	0	0
		0.000	0.00	1.00	0		0	0	0	0
		#/ft ² 0.000	0.00	1.00	0		0	0	0	0
	MOTORS									
	Power (hp)			Load	Total	Sens	sible			
	Schedule	#/ft²	#	factor	4011	Bti				
	0.00	0.0	0	1.00	0		0		0	
	0.00	0.0	0	1.00	0		0		0	
	0.00	0.0	0	1.00	0		0		0	
5.	INFILTRATION 0 cfm -			o Temp Diff loist. Diff		15.1 x 52.0 x	1.09 0.69		Sens 0	Latent 0
6.	SUBTOTAL COOLING L	OAD FO	R SPAC	CE					9438	1778
7.	SUPPLY DUCT HEAT GA Gain factor 0.00			x Line 6 Sens	ible Ga	in			0	
8.	COOLING FAN SIZING Sum of Duct Gain	(7), (L 8	Line Sens	(6) & D		Fan upply TD	=	cfm	9438	
	Est Cooling cfm Actual Cooling Fan			38) / (1.0		20.0) =	431 431		
9.	VENTILATION 42 cfm -			Temp Diff loist. Diff		15.1 x 52.0 x	1.09 0.69		689	1487
10.	RETURN AIR LOAD FR Lights RA Roof Load RA Ceiling Load		ITING	AND ROOF Total pov from Line from Line	3 (+))	0		2092 0 0	

1. RETURN DUCT HEAT GAIN Gain factor 0.00	x Line 6 Sensible Gain	0	
SPACE HEATING LOAD CALCULATION SPACE HEATING LOAD CALCULATION		1778	
Si	PACE HEATING LOAD CALCULATION	N	
3. HEATING DESIGN TEMPERATU	RE		
Heating TD = (Inside DB -	Outside DB) = (70 - 33) =	= 37	
4. TRANSMISSION LOSSES		—[Mult =	1.0]
GLAZ 1 SW 60 WALL 1 SW 240 FLOR 1 - 16	60 0.558 37.0 180 0.286 37.0 16 0.810 37.0		Loss 1239 1905 480 205
	Diff 37.0 x 1.09		Loss 421
6. SUBTOTAL HEATING LOAD FOR	SPACE		4249
	Line 16 Loss		0
	Diff 37.0 x 1.09		1684
Inside RH desired :			
52 cfm x 4.56	g/100cfm/d = 2.4 gpd		886
0. RETURN DUCT HEAT LOSS Loss factor 0.00 x	Line 16 Loss		0
1. TOTAL HEATING LOAD ON EQU	PMENT (Btuh)		6819

Right-Suite Commercial Load Calculation imam's office

Job: Jan 09, 2007

Project Information

			LWH:	11.3	X	18.0	Х	8.0						
. DESI	GN	CONDI	TIONS -	COOLIN	V G		=	(Jul 16	300)					11
Indoor	Co	Conditions and itions rection		=	> > >	Dry Blb 91 75 1		RH 52 50	Mois	ture	Range 19	Wet I 77 63		
Diff	ere	nce				16			52.0			00 200000		
. GLAZ	ZIN	G SOLA	RHEAT	GAIN		(Lat		= 29.6	38 °N	Const	VVt = N	-[Mu 1)	ult :	= 1.0]
Type GLAZ	1	Orien NE	Area 48	Tilt 90	5	ShdF Int	Sho		CMult 1.00	SC 0.88	Sens/A 39.5		Sens 1889	
. TRAN	ISIV	IISSION	GAINS											
Type GLAZ WALL	1	Orien NE NE	GrArea 48 144	3	48 75	Uva 0.58 0.28	35	Grp D	CLTD 14.6 25.9	Shad N N	Clr - D	S	Sens 410 558	
WALL DOOR	1	SE ne	91	l I	91 21	0.28 0.56	36 30	D	31.1 14.6	N -	D -		806 172	
FLOR ROOF	1	-	29 20		29 204	0.81 0.04		R-4	0.0 67.6	-	D D		0 552	
. INTE	RN	AL HEA	T GAIN											
	PFC	PLE										S	ens	Latent
	LC	Activity	edule	ft²/prsn	#		tal ople	9		Sensible Btuh/prsi				
		Assem 8ato	bly 12m	50	(4			225			918	428
				0	()	0			()	0	0	0

	LIGHTS Type Schedule Fluorescent 8ato12m	W/ft² 3.68	W 0	Total W 751		Fact Btul 4.		Space fract 1.0	3078		
	Fluorescent	0.00	0	0		4.	10	1.0	0		
	Fluorescent	0.00	0	0		4.	10	1.0	0		
	Fluorescent	0.00	0	0		4.	10	1.0	0		
	PLUG LOADS / APP	LIANCE	S	1	Name of Grant		Marketon (Marketon)				
	Application Schedule	#/ft²	#	Usage	Total	Sensik Btul		Latent Btuh			
		0.000 #/ft²		1.00	0		0	0	0	0	
		0.000 #/ft²	7.7	1.00	0		0	0	0	0	
			0.00	1.00	0		0	0	0	0	
		0.000 #/ft²		1.00	0		0	0	0	0	
				1.00	0		0	0	0	0	
	MOTORS	0.000		1.00	0		0	0	0	0	
	Power (hp)			Load	Total	Sensik	No.				
	Schedule	#/ft²	#	factor	Total	Btuh					
	0.00	0.0	ő	1.00	0	Diai	0		0		
	0.00	0.0	0	1.00	0		0		0		
	0.00	0.0	0	1.00	0		0		0		
5.	INFILTRATION 10 cfm -			Temp Diff			1.09		Sens 180	Latent 357	_
6.	SUBTOTAL COOLING L	OAD FO	R SPAC	E					8562	2974	
7.	SUPPLY DUCT HEAT GA Gain factor 0.00		×	Line 6 Sens	ible Ga	in			0		_
8.	COOLING FAN SIZING Sum of Duct Gain	(7), (L 8	Line Sens	(6) & D	rawthru x S	Fan upply TD	=	efm	8562		_
	Est Cooling cfm Actual Cooling Fan		856			20.0) = 3	391 396			
9.	VENTILATION 61 cfm -	→		Temp Diff			1.09 0.69		1101	2188	
10.	RETURN AIR LOAD FRO Lights RA Roof Load RA Ceiling Load (ITING A	AND ROOF Total pov from Line from Line	3 (+)) -	0		3078 0 0		_

Page 2

SPACE HEATING LOAD CALCULATION	Gain factor 0.00	x Line 6 Sensible Gain	0	
3. HEATING DESIGN TEMPERATURE Heating TD = (Inside DB - Outside DB) = (70 - 33) = 37 [Mult = 1.0] 4. TRANSMISSION LOSSES Type Expos GrArea NetArea Uval HTD Loss GLAZ 1 NE 48 48 0.558 37.0 98! WALL 1 NE 144 75 0.286 37.0 99! WALL 1 SE 91 91 0.286 37.0 95! DOOR 3 ne 21 21 0.560 37.0 43! FLOR 1 - 29 29 0.810 37.0 87! ROOF 1 - 204 204 0.040 37.0 87! 5. INFILTRATION LOSS	2. TOTAL COOLING LOADS	S ON EQUIPMENT (Btuh)	9663	2974
Heating TD = (Inside DB - Outside DB) = (70 - 33) = 37	<u> </u>	SPACE HEATING LOAD CALCULATION		
4. TRANSMISSION LOSSES Type Expos GrArea NetArea Uval HTD Loss GLAZ 1 NE 48 48 0.558 37.0 98.6 WALL 1 NE 144 75 0.286 37.0 79.9 WALL 1 SE 91 91 0.286 37.0 95.6 DOOR 3 ne 21 21 0.560 37.0 43.6 FLOR 1 - 29 29 0.810 37.0 87.7 ROOF 1 - 204 204 0.040 37.0 37.0 5. INFILTRATION Loss 28 cfm x db Temp Diff 37.0 x 1.09 1146 6. SUBTOTAL HEATING LOAD FOR SPACE 549.6 7. SUPPLY DUCT HEAT LOSS Loss factor 0.00 x Line 16 Loss (Constitution) 61 cfm x db Temp Diff 37.0 x 1.09 247.7 9. HUMIDIFICATION Inside RH desired 40.0 (Max = 32.0 for 1 pane) # of Glazing panes 2.0 (Max = 52.0 for 2 pane) 89 cfm x 4.56 g/100cfm/d = 4.1 gpd 152.0 0. RETURN DUCT HEAT LOSS	3. HEATING DESIGN TEMP	PERATURE		
Type	Heating TD = (Ins	ide DB - Outside DB) = (70 - 33)	= 37	
GLAZ 1 NE 48 48 0.558 37.0 988 WALL 1 NE 144 75 0.286 37.0 799 WALL 1 SE 91 91 0.286 37.0 953 DOOR 3 ne 21 21 0.560 37.0 433 FLOR 1 - 29 29 0.810 37.0 879 ROOF 1 - 204 204 0.040 37.0 37.0 5. INFILTRATION Loss 28 cfm x db Temp Diff 37.0 x 1.09 1146 6. SUBTOTAL HEATING LOAD FOR SPACE 5498 7. SUPPLY DUCT HEAT LOSS Loss factor 0.00 x Line 16 Loss (8. VENTILATION 61 cfm x db Temp Diff 37.0 x 1.09 2477 9. HUMIDIFICATION Inside RH desired 40.0 (Max = 32.0 for 1 pane) # of Glazing panes 2.0 (Max = 52.0 for 2 pane) 89 cfm x 4.56 g/100cfm/d = 4.1 gpd 1523 0. RETURN DUCT HEAT LOSS	4. TRANSMISSION LOSSES		[Mult =	1.0]-
28 cfm x db Temp Diff 37.0 x 1.09 1140 6. SUBTOTAL HEATING LOAD FOR SPACE 5498 7. SUPPLY DUCT HEAT LOSS Loss factor 0.00 x Line 16 Loss (247) 8. VENTILATION 61 cfm x db Temp Diff 37.0 x 1.09 2477 9. HUMIDIFICATION Inside RH desired : 40.0 (Max = 32.0 for 1 pane) # of Glazing panes : 2.0 (Max = 52.0 for 2 pane) 89 cfm x 4.56 g/100cfm/d = 4.1 gpd 1523	GLAZ 1 NE 24 WALL 1 NE 14 WALL 1 SE 5 DOOR 3 ne 22 FLOR 1 - 22	48 48 0.558 37.0 44 75 0.286 37.0 91 91 0.286 37.0 21 21 0.560 37.0 29 29 0.810 37.0		Loss 988 795 959 435 879 302
7. SUPPLY DUCT HEAT LOSS Loss factor 0.00 x Line 16 Loss (8. VENTILATION 61 cfm x db Temp Diff 37.0 x 1.09 2477 9. HUMIDIFICATION Inside RH desired : 40.0 (Max = 32.0 for 1 pane) # of Glazing panes : 2.0 (Max = 52.0 for 2 pane) 89 cfm x 4.56 g/100cfm/d = 4.1 gpd 1523 9. RETURN DUCT HEAT LOSS		db Temp Diff 37.0 x 1.09	10	Loss 1140
Loss factor 0.00 x Line 16 Loss 8. VENTILATION 61 cfm x db Temp Diff 37.0 x 1.09 9. HUMIDIFICATION Inside RH desired : 40.0 (Max = 32.0 for 1 pane) # of Glazing panes : 2.0 (Max = 52.0 for 2 pane) 89 cfm x 4.56 g/100cfm/d = 4.1 gpd 1523	6. SUBTOTAL HEATING LO	OAD FOR SPACE		5498
61 cfm x db Temp Diff 37.0 x 1.09 2477 9. HUMIDIFICATION Inside RH desired : 40.0 (Max = 32.0 for 1 pane) # of Glazing panes : 2.0 (Max = 52.0 for 2 pane) 89 cfm x 4.56 g/100cfm/d = 4.1 gpd 1523 0. RETURN DUCT HEAT LOSS		position and the state of the s		0
Inside RH desired : 40.0 (Max = 32.0 for 1 pane) # of Glazing panes : 2.0 (Max = 52.0 for 2 pane) 89 cfm x 4.56 g/100cfm/d = 4.1 gpd 1523 D. RETURN DUCT HEAT LOSS		lb Temp Diff 37.0 x 1.09		2477
D. RETURN DUCT HEAT LOSS	Inside RH desired # of Glazing panes	: 2.0 (Max = 52.0 for 2 pane)	1. E	4500
				1523
				0

Right-Suite Commercial Load Calculation foyer / entry 1

Job: Jan 09, 2007

Project Information

			1.14.0.1	0016	5000	4.0	45.0					
			LWH:	204.0	X	1.0 x	15.0					
. DESI	GN	CONDI	TIONS - 0	COOLING	3		(Jul 16	300)				
Indoo	r Co	Conditions Inditions ection		$\stackrel{\longrightarrow}{\longrightarrow}$	1	Dry Blb 91 75 1	RH 52 50	Mois	ture	Range 19	Wet Blb 77 63	
Dif	fere	nce				16		52.0				
. GLA	ZIN	G SOLA	RHEAT	GAIN		(Lat	= 29.6	68 °N	, Const V	Vt = M	_[Mult =)	1.0]-
Type n/a	0	Orien n/a	Area 0	Tilt 0	SI	ndF IntSh	id S0	CMult 0.00	SC 0.00	Sens/A 0.0	Sens 0	
TRA	NSM	IISSION	GAINS									
Type WALL DOOR FLOR ROOF	1 2 1 1	Orien SE se -	GrArea 150 42 10 204	1	ea 08 42 10 04	Uval 0.286 0.560 0.810 0.040		31.1 14.6 0.0 67.6	Shad N - -	Clr D - D	Sens 960 345 0 552	
INTE	RNA	AL HEA	T GAIN				.:			ř y	-	
		PLE Activity Sch Assem	edule	ft²/prsn 50	# 0	Total peop			Sensible Btuh/prsn 225		prsn	Latent 428
			12m	30	U				220	10	310	420

	LIGHTS Type Schedule Fluorescent	W/ft² 3.68	W	Total W 751		Bt	ctor uh/W 4.10	Spa fra		3078	
	8ato12m Fluorescent	0.00	0	0			4.10		.0	0	
	Fluorescent	0.00	0	0			4.10				
									.0	0	
	Fluorescent	0.00	0	0			4.10	1	.0	0	
	PLUG LOADS / APP Application Schedule			Usage	Total	Sens Bt		Late Btu			
		#/ft² 0.000 #/ft²		1.00	0		0		0	0	0
		0.000 #/ft²	0.00 #	1.00	0		0		0	0	0
		0.000 #/ft²	0.00	1.00	0		0		0	0	0
		0.000 #/ft²		1.00	0		0		0	0	0
		0.000 #/ft²	0.00	1.00	0		0		0	0	0
	MOTORS	0.000		1.00	0		0		0	0	0
	MOTORS Power (hp)			Load	Total	Sens	sible				
	Schedule	#/ft²	#	factor		Bti	uh				
	0.00	0.0	0	1.00	0		0			0	
	0.00	0.0	0	1.00	0		0			0	
	0.00	0.0	0	1.00	0		0			0	
5.	INFILTRATION 10 cfm -	> >		Temp Diff pist. Diff		16.4 x 52.0 x	1.09 0.69			Sens 180	Latent 357
6.	SUBTOTAL COOLING L	OAD FO	R SPAC	E						6032	2974
7.	SUPPLY DUCT HEAT GA Gain factor 0.00		×	Line 6 Sens	sible Ga	in		2		0	
8.	COOLING FAN SIZING Sum of Duct Gain Est Cooling cfm Actual Cooling Fan	(7), (L 8 = (Line Sens 603) / (Xfe		Fan upply TD 20.0) =) =) =			6032	-
9.	VENTILATION 61 cfm -			Temp Diff		16.4 x 52.0 x	1.09 0.69			1101	2188
10.	RETURN AIR LOAD FRO Lights RA Roof Load RA Ceiling Load 0		ITING A	AND ROOF Total pov from Line from Line	3 (+))	-0			3078 0 0	

11.	RETURN DUCT HE Gain factor	0.00	хl	ine 6 Sens	sible G	ain					0	
12.	TOTAL COOLING	LOADS ON	EQUIPME	NT (Btuh)						71	33	2974
			SPACE HI	EATING LO	DAD C	ALCUL	ATION					
13.	HEATING DESIGN	TEMPERAT	URE									
	Heating TD	= (Inside DI	3 - Outside	DB)		= (70 -	33)	=	37		
14.	TRANSMISSION LO	OSSES								[Mult	=	1.0] —
D FL	Type Expos ALL 1 SE OOR 2 se OOF 1 -	GrArea 150 42 10 204	NetArea 108 42 10 204	Uval 0.286 0.560 0.810 0.040	l L		HTD 37.0 37.0 37.0 37.0					Loss 1143 870 300 302
15.	INFILTRATION 35 cfm	x db Ten	np Diff	37.0	x	1.09						Loss 1429
16.	SUBTOTAL HEATI	NG LOAD F	OR SPACE									4044
17.	SUPPLY DUCT HEA Loss factor		Line 16	Loss								0
18.	VENTILATION 61 cfm	x db Ten	np Diff	37.0	x	.09	ii.					2477
19.	HUMIDIFICATION Inside RH desir # of Glazing pa			(Max = (Max =		for 1 pa)				
	97 cfm	x 4.56	g/100c	fm/d	=	4.4	gi	od				1644
20.	RETURN DUCT HE Loss factor	AT LOSS 0.00 x	Line 16	Loss								0
21.	TOTAL HEATING I	LOAD ON E	QUPMENT	(Btuh)		7						8165

Right-Suite Commercial Load Calculation restroom 1

Job: Jan 09, 2007

Project Information

	LWH:	7.3	x 5	5.0 x	15.0					
	220762570020	10.00	2662		530,839					
. DESIGN COND	ITIONS -	COOLING	G		(Jul 16)	00)				
Outdoor Condition Indoor Condition TOD Correction	ns	$\stackrel{\rightarrow}{\Rightarrow}$	[Dry Blb 91 75 1	RH 52 50	Mois	ture	Range 19	Wet Blb 77 63	
Difference				16		52.0				
. GLAZING SOL	ARHEAT	Γ GAIN		(Lat	= 29.68	B °N	, Const \	Vt = M	[Mult =)	= 1.0]-
Type Orien n/a 0 n/a	Area 0		Sh	ndF IntSh		Mult 0.00	SC 0.00	Sens/A 0.0	Sens 0	
. TRANSMISSIO	N GAINS									
Type Orien ROOF 1 -		a NtAr	ea	Uval	0	01.75	O			
	3		37	0.040	Grp R-4	CLTD 67.6		Clr D	Sens 99	
. INTERNAL HE		7							99	Latent
PEOPLE Activit Sch Assen	AT GAIN	ft²/prsn 50	# 0	Total peopl	R-4		Sensible Btuh/prsn 225	Latent Btuh/pr 105	Sens rsn 165	Latent 77
PEOPLE Activit Scl Assen 8at	AT GAIN y hedule hbly	7 ft²/prsn	37 #	0.040 Total peopl	R-4		Sensible Btuh/prsn	Latent Btuh/pr 105	99 Sens	
PEOPLE Activit Sch Assen 8at LIGHTS Type Sch Fluore	AT GAIN y hedule hbly o12m hedule	ft²/prsn 50	# 0	Total peopl	R-4		Sensible Btuh/prsn 225	Latent Btuh/pr 105 0	99 Sens rsn 165	77
PEOPLE Activit Scl Assen 8at LIGHTS Type Scl Fluore	AT GAIN y hedule hbly o12m hedule escent o12m	ft²/prsn 50 0	# 0 0	Total peopl	R-4		Sensible Btuh/prsn 225 0 Factor Btuh/V	Latent Btuh/pr 105 0 Space	99 Sens rsn 165	77
PEOPLE Activit Sch Assen 8at LIGHTS Type Sch Fluore 8at	AT GAIN y hedule hbly to12m hedule escent o12m escent	ft²/prsn 50 0 W/ft² 3.68	# 0 0	Total peopl Total W 135	R-4		Sensible Btuh/prsn 225 0 Factor Btuh/W 4.10	Latent Btuh/pr 105 0 Space fract 1.0	99 Sens rsn 165 0	77

	PLUG LOADS / API Application Schedule	PLIANCE	S	Usage	Total		sible uh	Later Btuh		
	3323	#/ft²	#			В.	M.1.1	Dian		
		0.000 #/ft²	0.00	1.00	0		0	(0	0
		0.000 #/ft²	0.00	1.00	0		0	(0	0
		0.000 #/ft ²	0.00	1.00	0		0	(0	0
		0.000 #/ft²		1.00	0		0	(0	0
		0.000 #/ft²		1.00	0		0	(0	0
	MOTORS	0.000		1.00	0		0	(0	0
				Lood	Total	Sens	مامانه			
	Power (hp) Schedule	#/ft²	#	Load factor	Total	Bt				
	0.00	0.0	0	1.00	0	DU	0		0	
	0.00	0.0	0	1.00	0		0		0	
	0.00	0.0	0	1.00	0		0		0	
5.	INFILTRATION		45.						Sens	Latent
	43 cfm -	>		Temp Diff pist. Diff		16.4 x 52.0 x	1.09 0.69		767	1525
6.	SUBTOTAL COOLING I	OAD FO	R SPACI	E					1585	1995
7.	SUPPLY DUCT HEAT G. Gain factor 0.0		x	Line 6 Sens	sible Gai	n			0	
8.	COOLING FAN SIZING Sum of Duct Gain	(7),	Line		rawthru		=		1585	
	Est Cooling cfm Actual Cooling Fan		Sens 158) / (Xfe 35) / (1.0		upply TD 20.0 >) =) = =	72		
9.	VENTILATION			T D:"	4	10.1			122	
	11 cfm -	>		Temp Diff ist. Diff		16.4 x 52.0 x	1.09 0.69		198	393
10.	RETURN AIR LOAD FR Lights	OM LIGH	ITING A	ND ROOF	wer(W)		-37E		553	
	RA Roof Load			from Line		t/			0	
_	RA Ceiling Load	Credit		from Line					ő	
11.	RETURN DUCT HEAT O		x	Line 6 Sens	sible Gai	n			0	
12.	TOTAL COOLING LOA	DS ON EC	OUIPME	NT (Btuh)					1783	1995
	The second secon			()					1100	1000

SPACE HEATING LOAD CALCULATION

13. HEATING DESIGN TEMPERATURE

Heating TD = (Inside DB - Outside DB) = (70 - 33) = 37

14. TRANSMISSION LOSSES

 Type
 Expos
 GrArea
 NetArea
 Uval
 HTD
 Loss

 ROOF 1
 37
 37
 0.040
 37.0
 54

15. INFILTRATION Loss 45 cfm x db Temp Diff 37.0 x 1.09 Loss 1801

16. SUBTOTAL HEATING LOAD FOR SPACE 1856

17. SUPPLY DUCT HEAT LOSS

11

cfm x

Loss factor 0.00 x Line 16 Loss 0

18. VENTILATION

1.09

37.0

19. HUMIDIFICATION

Inside RH desired : 40.0 (Max = 32.0 for 1 pane) # of Glazing panes : 0.0 (Max = 52.0 for 2 pane)

db Temp Diff

56 cfm x 4.56 g/100cfm/d = 2.5 gpd 946

20. RETURN DUCT HEAT LOSS

Loss factor 0.00 x Line 16 Loss

21. TOTAL HEATING LOAD ON EQUPMENT (Btuh) 3247

Mult

1.0] —

445

0

Right-Suite Commercial Load Calculation restroom 2

Job: Jan 09, 2007

Project Information

	LWH:	7.3	x 5	5.0 x	15.0					
	DESIGN CONDITIONS - C	COOLING	;		(Jul 16	00)				
	Outdoor Conditions Indoor Conditions TOD Correction	$\stackrel{\longrightarrow}{\longrightarrow}$		Ory Blb 91 75 1	RH 52 50	Mois	ture	Range 19	Wet Blb 77 63	
	Difference		-	16		52.0				
	GLAZING SOLAR HEAT	GAIN		(Lat	= 29.68	з°N,	Const V	Vt = M	[Mult =)	1.0]
	Type Orien Area n/a 0 n/a 0	Tilt 0	Sh	ndF IntSho		Mult 0.00	SC 0.00	Sens/A 0.0	Sens 0	
	TRANSMISSION GAINS									
F	Type Orien GrArea ROOF 1 - 37	NtAr	ea 37	Uval 0.040	Grp R-4	CLTD 67.6	Shad -	Clr D	Sens 99	O
	INTERNAL HEAT GAIN								Sens	Latent
	Assembly	ft²/prsn 50	# 0	Total people 1	e		Sensible Btuh/prsn 225	Latent Btuh/pi 105		77
	8ato12m	0	0	0			0	0	0	0
	LIGHTS									
	Type Schedule Fluorescent 8ato12m	VV/ft² 3.68	W 0	Total W 135			Factor Btuh/W 4.10	Space fract 1.0	553	
	Fluorescent	0.00	0	0			4.10	1.0	0	
	<u>1220</u> 0	0.00	0	0			4.10	1.0	0	
	Fluorescent	0.00	0	U			4.10	1.0	U	

	PLUG LOADS / APP Application Schedule			Usage	Total	Sens Bt	sible uh	Late Btuł			
		#/ft² 0.000	15.029	1.00	0		0		0	0	0
		#/ft² 0.000		1.00	0		0		0	0	0
		#/ft ² 0.000 #/ft ²	# 0.00 #	1.00	0		0		0	0	0
		0.000 #/ft²		1.00	0		0		0	0	0
		0.000 #/ft²	55	1.00	0		0		0	0	0
	MOTORS	0.000		1.00	0		0		0	0	0
	Power (hp) Schedule	#/ft²	#	Load factor	Total	Sens					
	0.00	0.0	0	1.00	0		0		j	0	
	0.00	0.0	0	1.00	0		0			0	
	0.00	0.0	0	1.00	0		0		9	0	
5.	INFILTRATION 43 cfm -	> >		Temp Diff oist. Diff		16.4 x 52.0 x	1.09 0.69		Sens 76		Latent 1525
6.	SUBTOTAL COOLING L	OAD FO	R SPAC	CE					158	5	1995
7.	SUPPLY DUCT HEAT GA Gain factor 0.00		23	x Line 6 Sens	ible Gai	n			· (0	
8.	COOLING FAN SIZING Sum of Duct Gain		Line Sens) / (Xfe		Fan upply TD	=		158	5	
	Est Cooling cfm Actual Cooling Fan	= (15	85) / (1.0	9 x	20.0 —>) =	72 74			
9.	VENTILATION 11 cfm -	→		Temp Diff oist. Diff		16.4 x 52.0 x	1.09 0.69		198	В	393
10.	RETURN AIR LOAD FRO Lights RA Roof Load RA Ceiling Load 0		ITING	AND ROOF Total pow from Line from Line	3 (+))	-37E			3	
11.	RETURN DUCT HEAT G Gain factor 0.00	AIN	, ,	x Line 6 Sens		n))	
	TOTAL COOLING LOAD									-	

SPACE HEATING LOAD CALCULATION

13. HEATING DESIGN TEMPERATURE

TD = (Inside DB - Outside DB) = (70 -33) 37

Loss factor

Mult 1.0] — 14. TRANSMISSION LOSSES Type NetArea Expos GrArea Uval HTD Loss ROOF 37 0.040 37.0 54 15. INFILTRATION Loss cfm x db Temp Diff 37.0 1.09 1801 X 16. SUBTOTAL HEATING LOAD FOR SPACE 1856 17. SUPPLY DUCT HEAT LOSS Loss factor 0.00 Line 16 Loss 0 18. VENTILATION cfm x db Temp Diff 37.0 1.09 X 445 19. HUMIDIFICATION Inside RH desired 40.0 (Max = 32.0 for 1 pane # of Glazing panes (Max = 0.0 52.0 for 2 pane 56 cfm x 4.56 g/100cfm/d 2.5 946 gpd 20. RETURN DUCT HEAT LOSS

21. TOTAL HEATING LOAD ON EQUPMENT (Btuh)

0.00

Line 16 Loss

3247

0

Right-Suite Commercial Load Calculation ablutions / wudu

Job: Jan 09, 2007

Project Information

			LWH:	95.6	X	1.0 x	15.0					
. DESI	GN	CONDI	TIONS - 0	COOLING	3		(Jul 16	300)			3 - 3	
Indoor	Co	Condition Inditions ection		-> -> ->		Dry Blb 91 75 1	RH 52 50	Mois	ture	Range 19	Wet Blb 77 63	
Diff	fere	nce			- 1	16		52.0				
. GLAZ	ZIN	G SOLA	RHEAT	GAIN		(Lat	= 29.6	68 °N ,	Const '	Wt = M	-[Mult =)	1.0] -
Type n/a	0	Orien n/a	Area 0	Tilt 0	S	hdF IntSh	id SC	OMult 0.00	SC 0.00	Sens/A 0.0	Sens 0	
. TRAN	NSM	ussion	GAINS									
Type WALL WALL WALL FLOR ROOF	1 1 1 1	Orien NE SE SW -	GrArea 40 140 40 15 96	1	ea 40 40 40 15 96	Uval 0.286 0.286 0.286 0.810 0.040	D D	25.9 31.1 20.1 0.0 67.6	Shad N N N	Clr D D D	Sens 297 1244 230 0 259	
. INTE	RN	AL HEA	T GAIN								Cana	Lataut
1	-	PLE Activity School Assemi	edule	ft²/prsn 50	# 0	Total peop			Sensible Btuh/prsr 225	Btuh/p	orsn	Latent 201

	LIGHTS Type Schedule	W/ft²	W	Total W			ctor	Space			
	Fluorescent 8ato12m	3.68	0	352			uh/W 4.10	fract 1.0	1442		
	Fluorescent	0.00	0	0			4.10	1.0	0		
	Fluorescent	0.00	0	0		9	4.10	1.0	0		
	Fluorescent	0.00	0	0		3	4.10	1.0	0		
	PLUG LOADS / APP	LIANCE	S					2 2 3			
	Application Schedule	#/ft²	#	Usage	Total	Sens Bt		Latent Btuh			
		0.000 #/ft²		1.00	0		0	0	0	0	
				1.00	0		0	0	0	0	
				1.00	0		0	0	0	0	
		0.000 #/ft²		1.00	0		0	0	0	0	
				1.00	0		0	0	0	0	
	MOTORS	0.000		1.00	0		0	0	0	0	
	Power (hp)			Load	Total	Sens	ible				
	Schedule	#/ft²	#	factor		Btu	uh				
	0.00	0.0	0	1.00	0		0		0		
	0.00	0.0	0	1.00	0		0		0		
	0.00	0.0	0	1.00	0		0		0		
5.	INFILTRATION 0 cfm -		طلم يد	Town Diff		10.4	1.00		Sens	Latent	-
	0 61111	 >		Temp Diff pist. Diff		16.4 x 52.0 x	1.09 0.69		0	0	
6.	SUBTOTAL COOLING L	OAD FO	R SPAC	E					3901	1225	
7.	SUPPLY DUCT HEAT GA Gain factor 0.00		×	Line 6 Sens	sible Gai	in			0		
8.	COOLING FAN SIZING Sum of Duct Gain	(7), (L 8	Line Sens	(6) & D		Fan upply TD	=	cfm	3901		
	Est Cooling cfm Actual Cooling Fan	= (390	01) / (1.0		20.0) = =	178			
9.	VENTILATION 29 cfm -	>		Temp Diff pist. Diff		16.4 x 52.0 x	1.09 0.69		516	1025	
10.	RETURN AIR LOAD FRO Lights RA Roof Load RA Ceiling Load (ITING A	Total pov from Line from Line	3 (+))	-0	-9	1442 0 0	0	

11.	RETURN DUCT HEAT GAIN Gain factor 0.00 x Line 6 Sensible Gain	0	
12.	TOTAL COOLING LOADS ON EQUIPMENT (Btuh)	4416	1225
_	SPACE HEATING LOAD CALCULATION		
13.	HEATING DESIGN TEMPERATURE		
	Heating TD = (Inside DB - Outside DB) = (70 - 33) =	37	
14.	TRANSMISSION LOSSES [N	Mult =	1.0]
WA WA FL	Type Expos GrArea NetArea Uval HTD VALL 1 NE 40 40 0.286 37.0 VALL 1 SE 140 140 0.286 37.0 VALL 1 SW 40 40 0.286 37.0 LOR 1 - 15 15 0.810 37.0 OOF 1 - 96 96 0.040 37.0		Loss 423 1481 423 440 141
15.	INFILTRATION 7 cfm x db Temp Diff 37.0 x 1.09		Loss 290
16.	SUBTOTAL HEATING LOAD FOR SPACE		3199
17.	SUPPLY DUCT HEAT LOSS Loss factor 0.00 x Line 16 Loss		0
18.	VENTILATION 29 cfm x db Temp Diff 37.0 x 1.09		1160
19.	HUMIDIFICATION Inside RH desired : 40.0 (Max = 32.0 for 1 pane) # of Glazing panes : 0.0 (Max = 52.0 for 2 pane)		
	$36 ext{ cfm } x ext{ 4.56} ext{ g/100cfm/d} = 1.6 ext{ gpd}$		611
20.	RETURN DUCT HEAT LOSS Loss factor 0.00 x Line 16 Loss		0
21.	TOTAL HEATING LOAD ON EQUPMENT (Btuh)		4970

Right-Suite Commercial Load Calculation foyer / entry 2

Job: Jan 09, 2007

Project Information

				LWH:	204.0	X	1.0 x	15.0					
. DE	ESI	GN	CONDI	TIONS -	COOLING	3		(Jul 16	300)				
Indo	loor	Co	Conditions editions		$\stackrel{\longrightarrow}{\rightarrow}$		Dry Blb 91 75 1	RH 52 50	Mois	ture	Range 19	Wet Blb 77 63	
[Diff	ere	nce				16		52.0				
. GL	LAZ	ZIN	G SOLA	RHEAT	GAIN		(Lat	= 29.6	68 °N	, Const	Wt = M	-[Mult =)	1.0] —
Typ n/a		0	Orien n/a	Area 0	Tilt 0	S	ShdF IntSh	d SC	CMult 0.00	SC 0.00	Sens/A 0.0	Sens 0	
. TR	RAN	ISM	IISSION	GAINS					H				
Typ WAL DOO FLOF ROO	L DR R	1 1 1	Orien SE se -	GrArea 150 42 10 204	1	ea 08 42 10 04	Uval 0.286 0.560 0.810 0.040		CLTD 31.1 14.6 0.0 67.6	N - -	Clr D - - D	Sens 960 345 0 552	
. IN	TE	RNA	AL HEA	T GAIN								Sens	Latent
	I		Assemi	edule bly	ft²/prsn 50	#		e		Sensible Btuh/prsr 225	Btuh/p	nt orsn	428
			oato	12m	0	0) ()		C) (0	0

	LIGHTS									
	Type Schedule Fluorescent	W/ft ² 3.68	W	Total W 751		Bt	ctor uh/W 4.10	Space fract 1.0	3078	
	8ato12m Fluorescent	0.00	0	0		1	4.10	1.0	0	
	Fluorescent	0.00	0	0			4.10	1.0	0	
	Fluorescent	0.00	0	0			4.10	1.0	0	
	PLUG LOADS / APP	LIANCE	S							
	Application Schedule	#/ft²	#	Usage	Total	Sens Bto		Latent Btuh		
		0.000 #/ft²		1.00	0		0	0	0	0
		0.000 #/ft²		1.00	0		0	0	0	0
		0.000 #/ft²	0.00	1.00	0		0	0	0	0
		0.000 #/ft²		1.00	0		0	0	0	0
		0.000 #/ft²	100	1.00	0		0	0	0	0
	Mamana	0.000		1.00	0		0	0	0	0
	MOTORS			Lood	Total	Cone	ماطن			
	Power (hp) Schedule	#/ft²	#	Load factor	rotai	Sens Btu				
	0.00	0.0	ő	1.00	0	Dit	0		0	
	0.00	0.0	0	1.00	0		0		0	
	0.00	0.0	0	1.00	0		0		0	
5.	INFILTRATION 10 cfm -			Temp Diff		16.4 x 52.0 x	1.09 0.69		Sens 180	Latent 357
6.	SUBTOTAL COOLING L	OAD FOI	R SPAC	E					6032	2974
7.	SUPPLY DUCT HEAT GA	IN								
_	Gain factor 0.00		×	Line 6 Sens	sible Gair	n			0	
8.	COOLING FAN SIZING Sum of Duct Gain	(7), (L 8	Line Sens	(6) & D	rawthru r x Sı	Fan upply TD	=	cfm	6032	
_	Est Cooling cfm Actual Cooling Fan	= (603			20.0) =	276 274		,
9.	VENTILATION 61 cfm -	>		Temp Diff bist. Diff		16.4 x 52.0 x	1.09 0.69		1101	2188
10.	RETURN AIR LOAD FRO Lights RA Roof Load RA Ceiling Load (TING A	AND ROOF Total pow from Line from Line	3 (+)	v k	-0		3078 0 0	-

II. RETURN DUCT HEAT GAIN Gain factor 0.00	x Line 6 Sensil	ole Gain	0	
2. TOTAL COOLING LOADS ON E	QUIPMENT (Btuh)		7133	2974
S	SPACE HEATING LOA	AD CALCULATION		
3. HEATING DESIGN TEMPERATU	JRE		1.5	
Heating TD = (Inside DB	- Outside DB)	= (70 - 33)		
4. TRANSMISSION LOSSES			[Mult =	1.0]-
Type Expos GrArea MALL 1 SE 150 DOOR 1 se 42 FLOR 1 - 10 ROOF 1 - 204	NetArea Uval 108 0.286 42 0.560 10 0.810 204 0.040	HTD 37.0 37.0 37.0 37.0		Loss 1143 870 300 302
5. INFILTRATION 35 cfm x db Temp	D Diff 37.0	x 1.09	-	Loss 1429
6. SUBTOTAL HEATING LOAD FO	R SPACE	5		4044
7. SUPPLY DUCT HEAT LOSS Loss factor 0.00 x	Line 16 Loss	2		0
8. VENTILATION 61 cfm x db Temp	Diff 37.0	x 1.09	4	2477
9. HUMIDIFICATION Inside RH desired : # of Glazing panes :		32.0 for 1 pane) 52.0 for 2 pane)		
97 cfm x 4.56	g/100cfm/d	= 4.4 gpd		1644
0. RETURN DUCT HEAT LOSS Loss factor 0.00 x	Line 16 Loss			0
1. TOTAL HEATING LOAD ON EQ	UPMENT (Btuh)			8165

Right-Suite Commercial Load Calculation restroom 3

Job: Jan 09, 2007

Project Information

				LWH:	7.3	X	5.0 x	15.0					
ι.	DESI	GN	CONDI	TIONS - 0	COOLIN	G		(Jul 1	600)				
1	ndoo	r Co	Condition anditions ection				Dry Blb 91 75 1	RH 52 50	Mois	ture	Range 19	Wet Blb 77 63	
	Diff	fere	nce				16		52.0				
2.	GLAZ	ZIN	G SOLA	RHEAT	GAIN		(Lat	= 29.	68 °N	, Const \	Nt = M	-[Mult =)	1.0]-
	Type n/a	0	Orien n/a	Area 0	Tilt 0	5	ShdF IntS	hd S	CMult 0.00	SC 0.00	Sens/A 0.0	Sens 0	
3.	TRA	NSM	IISSION	GAINS									
W. FL	ype ALL OR OOF	1 1 1	Orien SW -	GrArea 75 5 37		75 5 37	Uval 0.286 0.810 0.040		CLTD 20.1 0.0 67.6	Shad N - -	Clr D - D	Sens 431 0 99	
	INTE	RN	AL HEA	T GAIN								C	
١.		PEC	PLE									Sens	Latent
			Activity		ft²/prsn	#	Tota			Sensible			
					11/01011	#		ле		Btuh/prsn			
.			Assemil 8ato	oly	50	()	1		225	105	165	77

	LIGHTS									
	Туре			Total		Fa	ctor	Space		
	Schedule	W/ft²		W		B	tuh/W	fract	222	
	Fluorescent 8ato12m	3.68	0	135			4.10	1.0	553	
	Fluorescent	0.00	0	0			4.10	1.0	0	
	Fluorescent	0.00	0	0			4.10	1.0	0	
	Fluorescent	0.00	0	0			4.10	1.0	0	
	PLUG LOADS / AI	PPLIANCE	S							
	Application Schedule			Usage	Total		sible uh	Latent Btuh		
		#/ft² 0.000	0.00	1.00	0		0	0	0	0
		#/ft²	#	1.00	U		U	U	U	U
		0.000 #/ft²	0.00	1.00	0		0	0	0	0
				1.00	0		0	0	0	0
		#/ft² 0.000	# 0.00	1.00	0		0	0	0	0
		#/ft²	#	1.00	U		U	U	U	U
				1.00	0		0	0	0	0
		#/ft² 0.000	0.00	1.00	0		0	0	0	0
	MOTORS			1.00			Ü	Ü		Ü
	Power (hp)		201	Load	Total		sible			
	Schedule 0.00	#/ft² 0.0	# 0	factor 1.00	0	Bt	uh 0		0	
		0.0	U	1.00	U		U		U	
	0.00	0.0	0	1.00	0		0		0	
	0.00	0.0	0	1.00	0		0		0	
5.	INFILTRATION					-			Sens	Latent
	43 cfm	>		Temp Diff		16.4 x	1.09		767	
		>	x Mo	ist. Diff		52.0 x	0.69			1525
6.	SUBTOTAL COOLING	LOAD FO	R SPAC	E					2015	1995
7.	SUPPLY DUCT HEAT O	ZAIN								
<i>'</i> ·		00	×	Line 6 Sens	ible Gair	n			0	
8.	COOLING FAN SIZING Sum of Duct Gain	; (7),	Line	(6) & D	rawthru	Fan	=		2015	
			Sens) / (Xfer		apply TD		cfm	2015	
	Est Cooling cfi Actual Cooling Fan	m = (201	5) / (1.0	9 x	20.0) = =	92 95		
9.	VENTILATION									
	11 cfm	—⇒ ¹		Temp Diff ist. Diff		16.4 x 52.0 x	1.09 0.69		198	303
						02.0 X	0.08			393
10.	RETURN AIR LOAD F	ROM LIGH	ITING A		,					
	Lights RA Roof Load			Total pov from Line	ver(W)		-37E		553	
	RA Ceiling Load	d Credit		from Line					0	

	RETURN DUCT HEAT GAIN Gain factor 0.00 x Line 6 Sensible Gain 0	
12.	TOTAL COOLING LOADS ON EQUIPMENT (Btuh) 2213	1995
	SPACE HEATING LOAD CALCULATION	
3.	HEATING DESIGN TEMPERATURE	
	Heating TD = (Inside DB - Outside DB) = (70 - 33) = 37	
4.	TRANSMISSION LOSSES Mult =	1.0]-
W FL	Type Expos GrArea NetArea Uval HTD VALL 1 SW 75 75 0.286 37.0 LOR 1 - 5 5 0.810 37.0 OOF 1 - 37 37 0.040 37.0	Loss 794 150 54
5.	INFILTRATION 45 cfm x db Temp Diff 37.0 x 1.09	Loss 1801
6.	SUBTOTAL HEATING LOAD FOR SPACE	2799
7.	SUPPLY DUCT HEAT LOSS Loss factor 0.00 x Line 16 Loss	0
8.	VENTILATION 11 cfm x db Temp Diff 37.0 x 1.09	445
9.	HUMIDIFICATION Inside RH desired : 40.0 (Max = 32.0 for 1 pane) # of Glazing panes : 0.0 (Max = 52.0 for 2 pane)	
	$56 ext{ cfm } ext{ x } ext{ 4.56} ext{ g/100cfm/d} ext{ = } ext{ 2.5} ext{ gpd}$	946
0.	RETURN DUCT HEAT LOSS Loss factor 0.00 x Line 16 Loss	0
1	TOTAL HEATING LOAD ON EQUPMENT (Btuh)	4190

Right-Suite Commercial Load Calculation restroom 4

Job: Jan 09, 2007

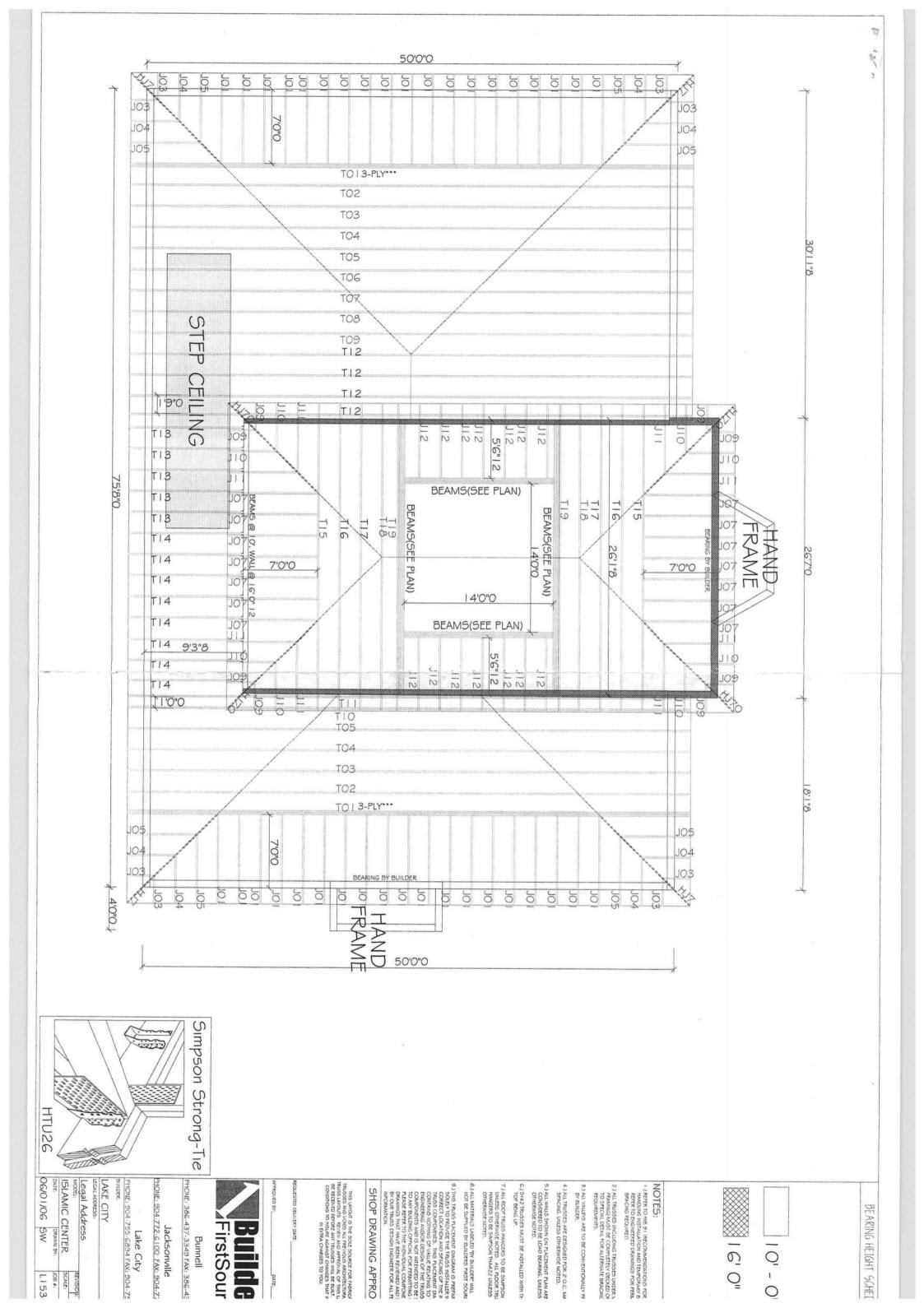
Project Information

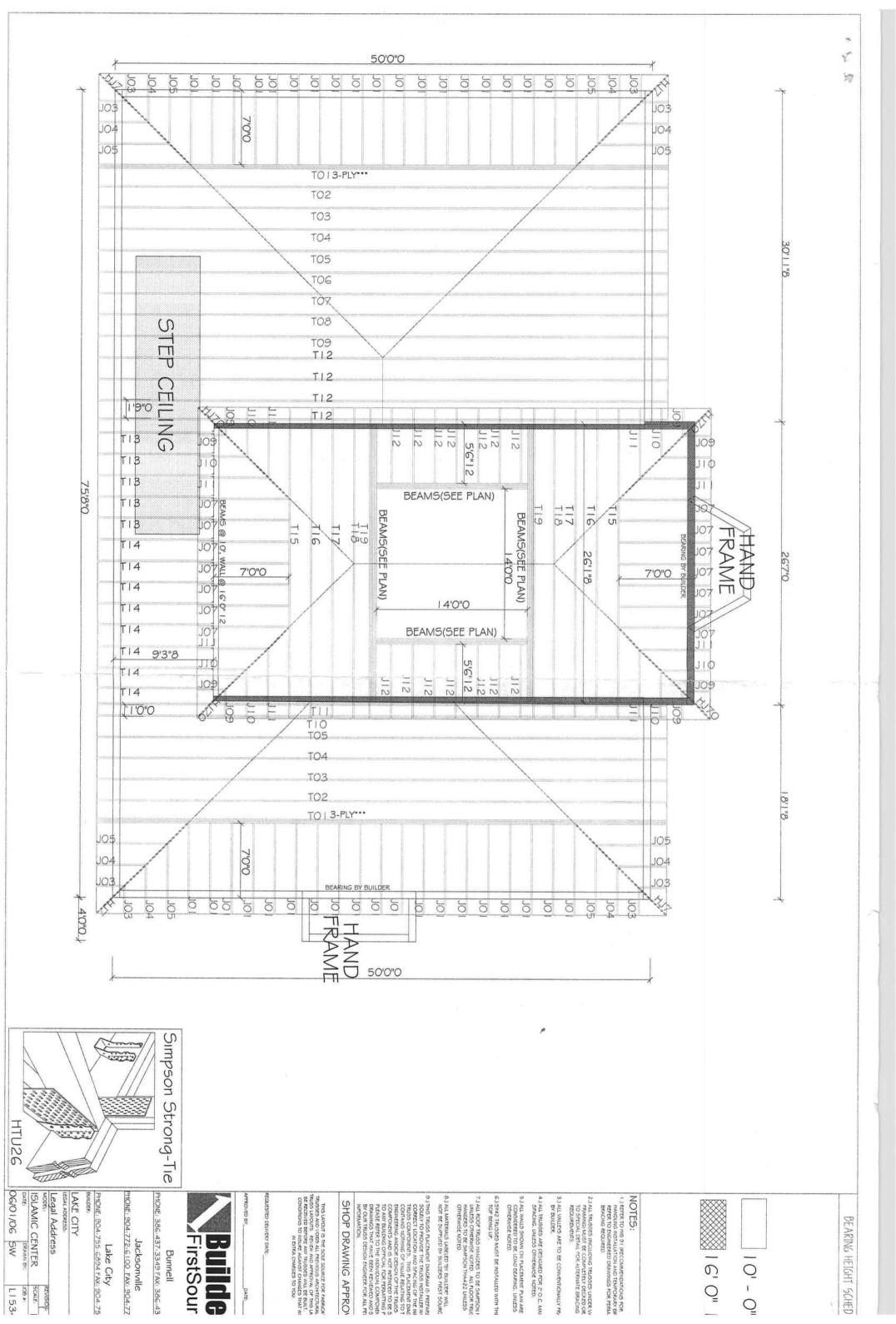
			LWH:	7.3	X	5.0	X	15.0					
. DES	IGN	CONDI	TIONS - 0	COOLIN	G			(Jul 16	(00)		18		
Indoo	r C	Condition onditions rection		$\stackrel{\frown}{\Rightarrow}$		Dry Blb 91 75 1		RH 52 50	Mois	ture	Range 19	Wet Blb 77 63	
Dif	fere	ence				16			52.0				
. GLA	ZIN	G SOLA	RHEAT	GAIN		(Lat		= 29.6	8 °N ,	Const	Wt = №	_[Mult = 1)	1.0] =
Type GLAZ	1	Orien SW	Area 20	Tilt 90	S	ShdF Int	Sh N		Mult 1.00	SC 0.88	Sens/A 74.1	Sens 1483	
. TRA	NSI	MISSION	GAINS										
Type GLAZ WALL FLOR ROOF	1 1 1	Orien SW SW	GrArea 20 75 5 37	NtA	ea 20 55 5 37	Uva 0.58 0.28 0.81 0.04	35 36 10	Grp D R-4	CLTD 14.6 20.1 0.0 67.6	Shad N N -	Clr D D	Sens 171 316 0 99	4
INTE	RN	AL HEA	T GAIN									Como	Lataut
	PEC	Activity	edule	ft²/prsn	#	To	tal opl			Sensible Btuh/prsr			Latent
		Assemb 8ato	oly	50	(٠,	1		225			77

	LICHTS									
	LIGHTS Type			Total		Fa	ctor	Space		
	Schedule	W/ft ²	W	W			tuh/W	fract		
	Fluorescent	3.68	0	135			4.10	1.0	553	
	8ato12m	0.00	0	0						
	Fluorescent	0.00	0	0			4.10	1.0	0	
	Fluorescent	0.00	0	0			4.10	1.0	0	
	Fluorescent	0.00	0	0			4.10	1.0	0	
	PLUG LOADS / AP	PLIANCE	S							
	Application Schedule			Usage	Total		sible uh	Latent Btuh		
		#/ft²	#	4.00	0					
		0.000 #/ft ²	#	1.00	. 0		0	0	0	0
		0.000 #/ft ²	0.00	1.00	0		0	0	0	0
		0.000	0.00	1.00	0		0	0	0	0
		#/ft² 0.000	# 0.00	1.00	0		0	0	0	0
		#/ft ² 0.000	0.00	1.00	0		0	0	0	0
		#/ft²	#							
	MOTORS	0.000	0.00	1.00	0		0	0	0	0
	MOTORS			Lood	Total	Com	مالمالم			
	Power (hp) Schedule	#/ft²	#	Load factor	Total		sible			
	0.00	0.0	0	1.00	0	DI	uh 0		0	
	0.00	0.0	0	1.00	0		0		0	
	0.00	0.0	0	1.00	0		0		0	
_	INICII TO LTION						manda		•	respect
5.	INFILTRATION 43 cfm	>	x db	Temp Diff		16.4 x	1.09		Sens 767	Latent
		>		oist. Diff		52.0 x	0.69		707	1525
6.	SUBTOTAL COOLING	LOAD FO	D SPAC	F					3555	1995
			K SI AC	L					3555	1995
7.	SUPPLY DUCT HEAT G Gain factor 0.0		х	Line 6 Sens	ible Gai	in			0	
8.	COOLING FAN SIZING	II <u>201</u> 0.020			28	-				
	Sum of Duct Gain	(7), (1 8	Line	(6) & D) / (Xfer	rawthru	Fan upply TD	=) =	cfm	3555	
	Est Cooling cfn Actual Cooling Fan		355			20.0 >) = =	162 165		
9.	VENTILATION									
25.2	11 cfm	>		Temp Diff pist. Diff		16.4 x 52.0 x	1.09 0.69		198	393
10.	RETURN AIR LOAD FF	ROM LIGH	ITING A	ND ROOF						
	Lights			Total pov	ver (W) -	-37E		553	
	RA Roof Load			from Line	3 (+)		ASSESSED !		0	
	RA Ceiling Load	Credit		from Line	3 (-)				0	

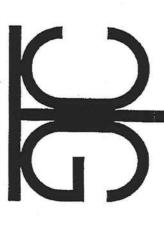
1. RETURN DUCT HEAT GAIN Gain factor 0.00	x Line 6 Sensible Gain	0	
2. TOTAL COOLING LOADS ON E	QUIPMENT (Btuh)	3753	1995
S	PACE HEATING LOAD CALCULATION		
3. HEATING DESIGN TEMPERATU	URE	4.1	
Heating TD = (Inside DB	- Outside DB) = (70 - 33) =	37	
4. TRANSMISSION LOSSES		[Mult =	1.0]-
Type Expos GrArea M GLAZ 1 SW 20 WALL 1 SW 75 FLOR 1 - 5 ROOF 1 - 37	NetArea Uval HTD 20 0.558 37.0 55 0.286 37.0 5 0.810 37.0 37 0.040 37.0		Loss 413 582 150 54
5. INFILTRATION 45 cfm x db Temp	Diff 37.0 x 1.09		Loss 1801
6. SUBTOTAL HEATING LOAD FO	R SPACE		3000
7. SUPPLY DUCT HEAT LOSS Loss factor 0.00 x	Line 16 Loss	9	0
3. VENTILATION 11 cfm x db Temp	Diff 37.0 x 1.09		445
D. HUMIDIFICATION Inside RH desired : # of Glazing panes :	40.0 (Max = 32.0 for 1 pane) 2.0 (Max = 52.0 for 2 pane)		3
56 cfm x 4.56	g/100cfm/d = 2.5 gpd		946
). RETURN DUCT HEAT LOSS Loss factor 0.00 x	Line 16 Loss	14	0
1. TOTAL HEATING LOAD ON EQ	UPMENT (Btuh)		4391

Right-Suite Commercial Load Calculation wudu ablutions


Job: Jan 09, 2007

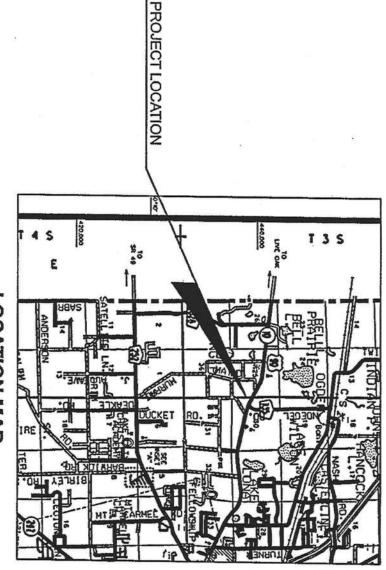

Project Information

				LWH:	70.7	X	1.0	X	15.0						
1.	DESI	GN	CONDI	TIONS - 0	COOLIN	G			(Jul 16	(000					
	Indoo	Co	Conditio enditions ection				Dry Blb 91 75 1		RH 52 50	Mois	ture	Range 19	Wet E 77 63		
	Diff	fere	nce				16			52.0					
2.	GLA	ZIN	G SOLA	RHEAT	GAIN		(Lat		= 29.6	8 °N ,	Const \	Nt = N	—[Μι 1)	ılt =	1.0]
	Type n/a	0	Orien n/a	Area 0	Tilt 0	5	ShdF Int	:Sh		Mult 0.00	SC 0.00	Sens/A 0.0		Sens 0	
3.	TRA	NSN	IISSION	GAINS					5						19
۷ ۲ ۲	Type /ALL /ALL LOR OOF	1 1 1	Orien SE SW	GrArea 140 120 17 71		rea 140 120 17 71	0.28 0.28 0.8° 0.04	36 36 10	Grp D D R-4	31.1 20.1 0.0 67.6	Shad N N -	Clr D D - D	-	ens 1244 689 0 191	
1.	INTE	RN	AL HEA	T GAIN									c	ens	Latent
		PEC	Assem	edule	ft²/prsn 50	#	ре	tal opl	е		Sensible Btuh/prsn 225	Btuh	nt /prsn	318	148


	LIGHTS Type Schedule	W/ft²	W	Total W		Fac Bto	ctor uh/W	Space fract		
	Fluorescent 8ato12m	3.68	0	260			4.10	1.0		
	Fluorescent	0.00	0	0			4.10	1.0	0	
	Fluorescent	0.00	0	0			4.10	1.0	0	
	Fluorescent	0.00	0	0		4	4.10	1.0	0	
	PLUG LOADS / AP	PLIANCE	S							
	Application Schedule	#/ft²	#	Usage	Total	Sens Btu		Latent Btuh		
		0.000 #/ft²		1.00	0		0	0	0	0
		0.000 #/ft²		1.00	0		0	0	0	0
			0.00	1.00	0		0	0	0	0
		0.000 #/ft²		1.00	0		0	0	0	0
			0.00	1.00	0		0	0	0	0
	MOTORS	0.000		1.00	0		0	0	0	0
	MOTORS Power (hp)			Load	Total	Sens	ihle			
	Schedule	#/ft²	#	factor	Total	Btu				
	0.00	0.0	0	1.00	0		0		0	
	0.00	0.0	0	1.00	0		0		0	
	0.00	0.0	0	1.00	0		0		0	
5.	INFILTRATION								Sens	Latent
	0 cfm			Temp Diff ist. Diff		16.4 x 52.0 x	1.09 0.69		0	0
6.	SUBTOTAL COOLING I	LOAD FOI	R SPACE	E					3508	906
7.	SUPPLY DUCT HEAT G Gain factor 0.0		х	Line 6 Sens	ible Gain				0	
8.	COOLING FAN SIZING Sum of Duct Gain	(7),	Line		rawthru F		=		3508	
	Est Cooling cfm Actual Cooling Fan	n = (Sens 350) / (Xfer 8) / (1.0	9 x	pply TD 20.0 —>) =) = =	cfm 160 180		
9.	VENTILATION 21 cfm			Temp Diff ist. Diff		16.4 x 52.0 x	1.09 0.69		381	758
10.	RETURN AIR LOAD FR Lights RA Roof Load RA Ceiling Load		TING A	ND ROOF Total pov from Line from Line	3 (+)		0		1066 0 0	

11.	RETURN DUCT HEAT GAIN Gain factor 0.00 x Line 6 Sensible Gain							0				
12. TOTAL COOLING LOADS ON EQUIPMENT (Btuh)								3890		906		
			SPACE HE	ATING LO)AD	CALCUI	LATION	9:				
13.	HEATING DES	IGN TEMPERA	TURE									
	Heating	TD = (Inside I	DB - Outside	DB)		= (70 -	33)		37		
14.	TRANSMISSIO	N LOSSES							[Mult	=	1.0] —
WA WA FLO RO	LL 1 SW DR 1 -	140	NetArea 140 120 17 71	Uval 0.286 0.286 0.810 0.040			HTD 37.0 37.0 37.0 37.0					Loss 1481 1270 519 105
15. 1	INFILTRATION 5		emp Diff	37.0	x	1.09						Loss 215
16. 5	SUBTOTAL HE	ATING LOAD	FOR SPACE									3590
17. 8	SUPPLY DUCT Loss factor		x Line 16	Loss							-	0
18. V	VENTILATION 21 c	ofm x db Te	emp Diff	37.0	x	1.09						858
19. I	HUMIDIFICAT Inside RH o # of Glazino	desired	: 40.0 (: 0.0 ((Max = (Max =		0 for 1 p 0 for 2 p)				
	27	cfm x 4.56	g/100cf	fm/d		= 1.2	g	pd				452
20. I	RETURN DUCT Loss factor		x Line 16	Loss								0
21. 7	TOTAL HEATI	NG LOAD ON 1	EOUPMENT	(Btuh)				85				4900

ISLAMIC CENTER OF LAF



STRUCTURAL/CIVIL ENGINEERS

Chadwick W. Williams, PE 63144 Auth. #: 9461 130 West Howard Street Phone: (386) 362-3678 Fax: (386) 362-6133 Live Oak FL, 32064 GTC Design Group P.O. Box 187

PROJECT NUMBER

DR. MOHAMMED CHOUDHURY LAKE CITY, FLORIDA 32055 386.755.9457 PHONE 155 NW ENTERPRISE WAY 386.755.3369 FAX

SHEET INDEX

GRADING PLAN

SITE PLAN

EXISTING SITE

GENERAL NOTES

ယ

STORMWATER PLAN

4007

FDOT CONNECTION

EROSION CONTROL

MISCELLANEOUS FDOT STANDARDS MISCELLANEOUS DETAILS

LOCATION MAP

SECTIONS 30, TOWNSHIP 3 SOUTH, RANGE 16 EAST COLUMBIA COUNTY, FLORIDA

- 1. The contractor shall verify all existing conditions and dimensions at the job site to insure that all new work will fit in the manner intended on the plans. Should any conditions exist that are contrary to those shown on the plans, the contractor shall notify the engineer of such differences immediately prior to proceeding with the work.
- The contractor shall maintain the construction site at all times in a secure manner. All open trenches and excavated areas shall be protected from access by the general public.
- All construction materials to be according to the latest edition of the Florida Department of Transportation Standard Specifications for Road and Bridge Construction and the Florida Department of Transportation Design Standards.
- The contractor shall verify all conditions and dimensions at the job site to ensure that all work will ift in the manner intended on the plans. Should any conditions exist that are contrary to those shown on the plans, the contractor shall notify the engineer of difference immediately and prior to proceeding with the work.
- Contractors shall adhere to the Erosion Control Plan. All erosion control measures shall be implemented prior to construction and be continued until construction is complete. Contractor shall take necessary measures to minimize erosion, turbidity, nutrient loading and sedimentation to adjacent lands and low areas. The Erosion and Sediment Control Plan shall be maintained as designed and upgraded as needed as directed by Engineer or SRWMD personnel. Construction designs and specifications as outlined by the "Florida Erosion and Sediment Control Inspectors Manual" shall be adhered to.
- Boundary and topographical information shown was obtained from a survey performed by Wes Rabon Surveying.
- Any public land comer within the limits of construction is to be protected. If a comer monument is in danger of being destroyed and has not been properly referenced, the contractor should notify the engineer.

7.

- All erosion control measures shall be implemented prior to construction.
- Contractor shall coordinate all work with other contractors within project limits.

6

- All disturbed areas not sodded shall be seeded with a mixture of long-term vegetation and quick-growing short-term vegetation for the following conditions. For the months from September through March, the mix shall consist of 70 pounds per acre of long-term seed and 20 pounds per acre of winter ye. For the months of April through August, the mix shall consist of 70 pounds per acre of long-term seed and 20 pounds per acre of miliet.
- Existing drainage structures within the construction limits shall be removed, unless otherwise specified in the plans.

The contractor shall waste all excess earth on site as directed by the engineer.

=

- All site construction shall be in accordance with Columbia County Land Development Regulations.
- Water is to be supplied by individual wells and sewage disposal by individual on-site septic tanks and drainfields per County and Florida Department of Health.
- The location of the utilities shown in the plans is approximate only. The exact location shall be determined by the contractor during construction.
- Contractor shall review and become familiar with all required utility connections prior to bidding. Contractor shall provide all work and materials required to complete connection to the existing utilities. This includes, but Is not limited to, manhole coring, wet taps, pavement repairs and directional boring.
- A pad of rubble riprap shall be placed at the bottom of all collection flumes and collection pipe outlets.
- The stormwater basin is designed in accordance with Chapter 408-4 F.A.C.

18.

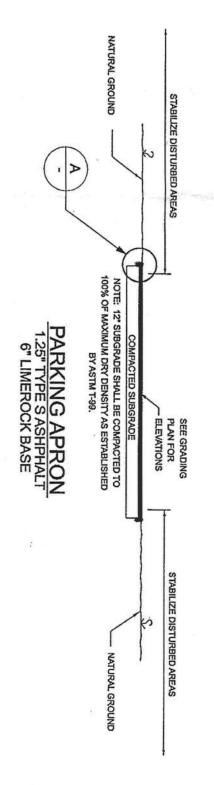
17.

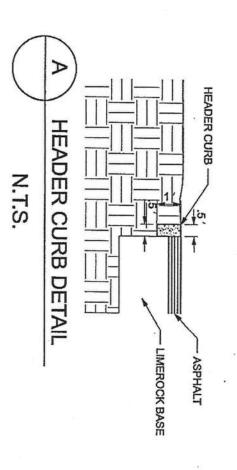
6

5

4

3


2


- The retention basin shall be constructed initially to serve as a sediment trap during construction.
- All slopes of the stormwater basin shall be sodded. All slopes steeper than 3:1 shall be stapled sod.

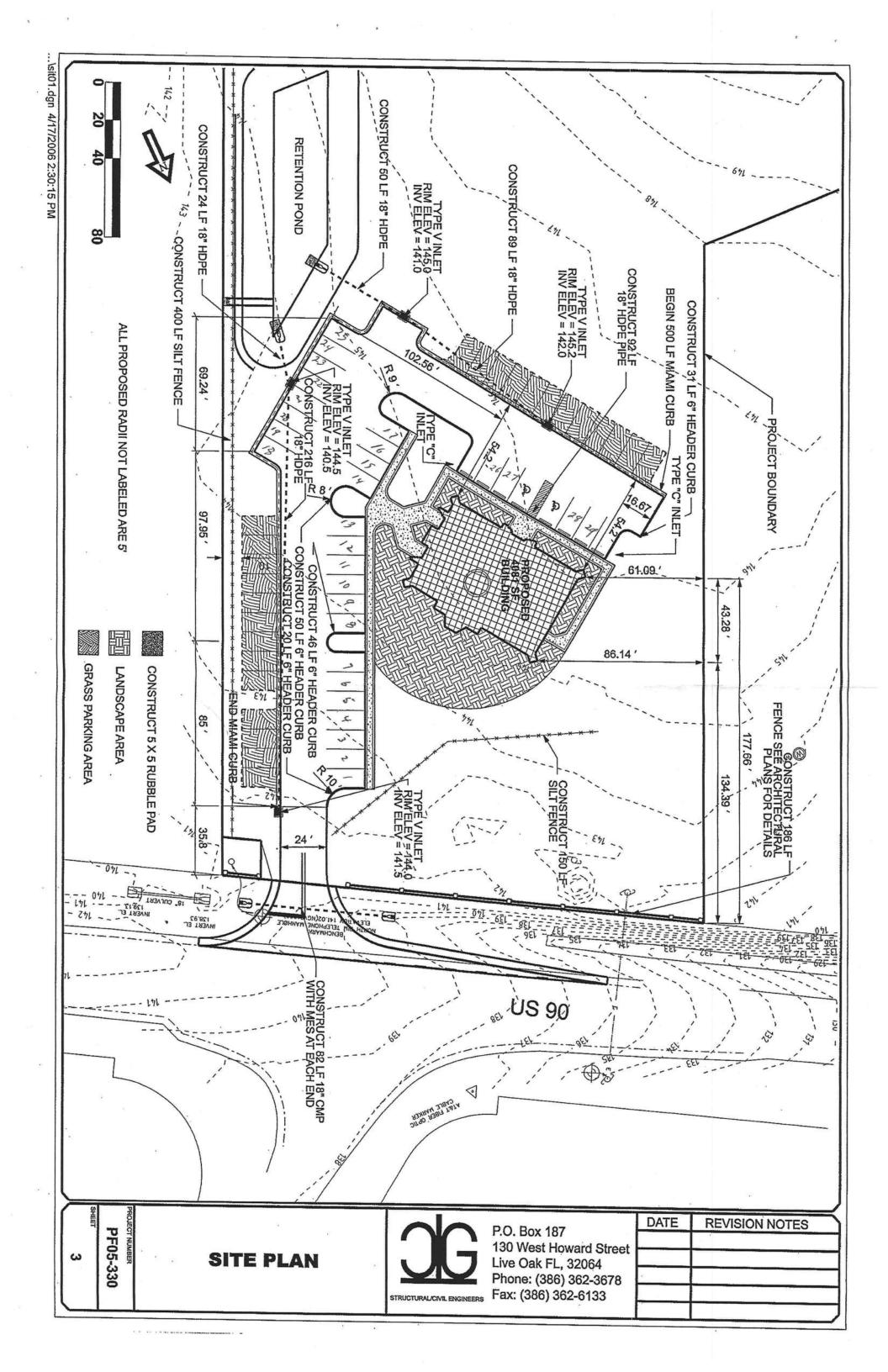
20.

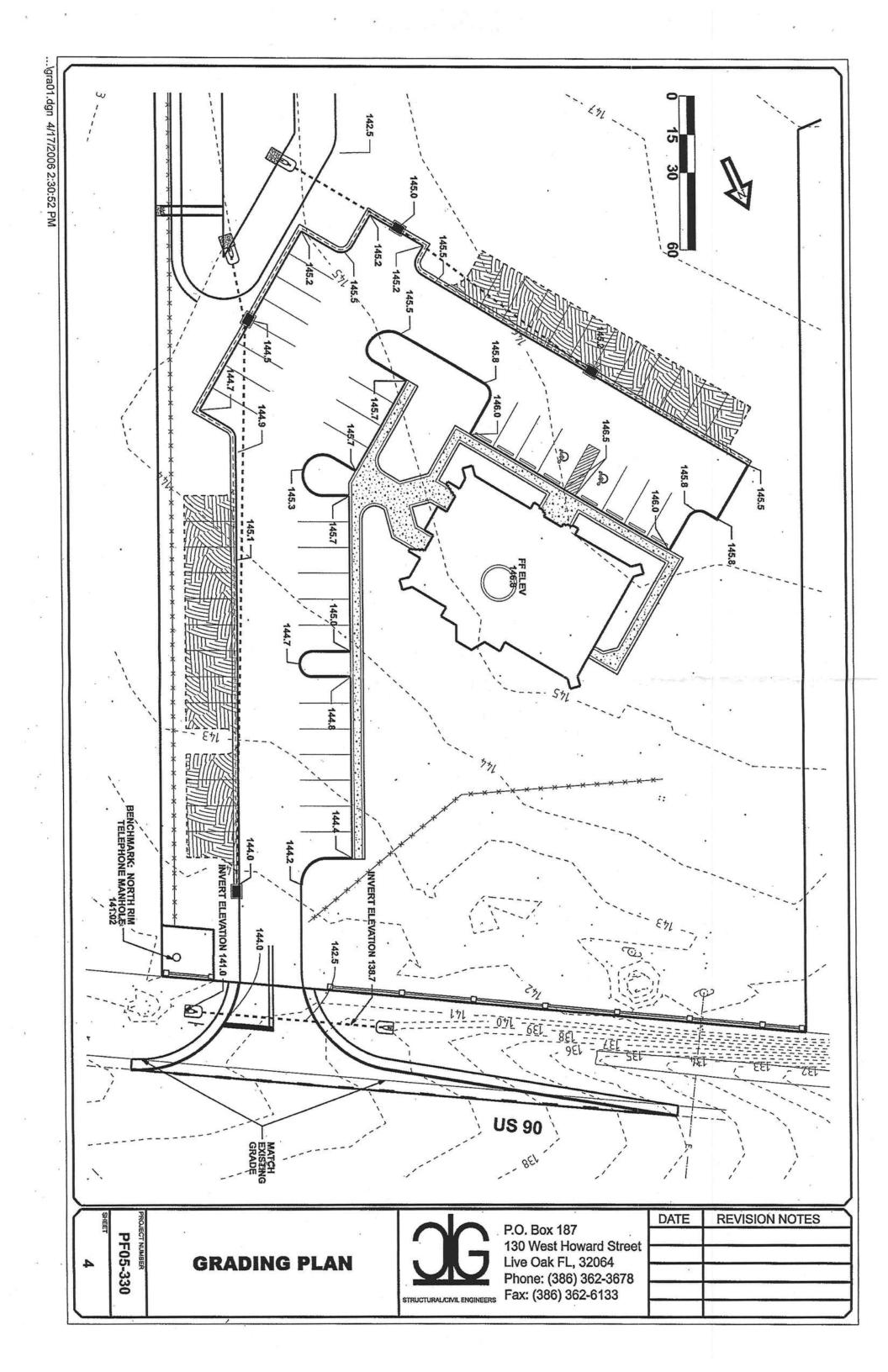
Contractor shall provide an as-built survey meeting the requirements of Chapter 61(317 F.A.C. for the stormwater management systems. Include horizontal and vertical dimensional data so that improvements are located and delineated relative to the boundary. Provide sufficient detailed data to determine whether the improvements were constructed in accordance with the plans. Submit the survey to the engineer on reproducible 20 lb. Vellum.

.\gen01.dgn 4/17/2006 2:29:01 PM

GENERAL NOTES


PF05-330




STRUCTURAL/CIVIL ENGINEERS

P.O. Box 187 130 West Howard Street Live Oak FL, 32064 Phone: (386) 362-3678 Fax: (386) 362-6133

DATE REVISION NOTES

Phone: (386) 362-3678 Fax: (386) 362-6133

STRUCTURAL/CIVIL ENGINEERS

EROSION CONTROL NOTES

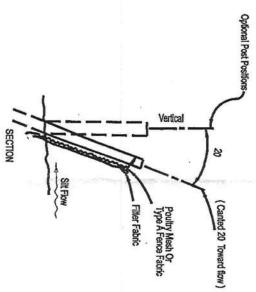
- Contractor shall adhere to Columbia County, SRWMD and other governing authorities for erosion and sediment control regulations. Contractor shall use BMP's from *The Florida Development Manual".
- Sediment and erosion control facilities, storm drainage facilities and detention basins shall be installed prior to any other construction.
- Erosion control measures shall be inspected weekly and after each rainfall and replaced as necessary.
- Sediment and erosion control measures shall not be removed until all construction is complete and until a permanent ground cover has been
- All open drainage swales shall be grassed and riprap shall be placed as required to control erosion.
- Sitt fences shall be located on site to prevent sediment and erosion from leaving right-of-way limits.
- Additional erosion control devices shall be used as required
- Silt fence shall be cleaned or replaced when silt builds up to within one foot of top of silt fence.
- During construction and after construction is complete, all structures shall be cleaned of all debris and excess sediment.
- All grades areas shall be stabilized immediately with a temporary fast-growing cover and/or mulch.

0

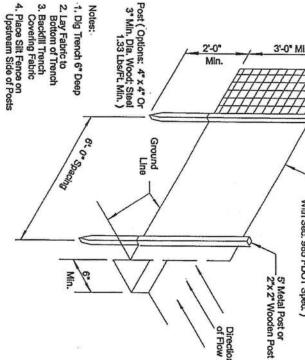
- # A pad of rubble riprap shall be placed at the bottom of all collection flumes and collection pipe outlets.
- 13. 12 All disturbed areas not sodded shall be seeded with a mixture of long-term vegetation and quick-growing short-term vegetation for the following conditions. For the months from September through March, the mix shall consist of 70 pounds per acre of long-term seed and 20 pounds per acre of winter rye. For the months of April through August, the mix shall consist of 70 pounds per acre of long-term seed and 20 pounds per acre of millet.
- Staked sllt fences shall be placed near all box culvert extensions in accordance with FDOT Standard Index 102.
- 5 4. All stabilization practices shall be initiated as soon as practicable in areas of the job where construction activities have temporarily or permanently stopped, but in no case shall the disturbed area be left unprotected for more than three (3) days. Disturbed areas shall be stabilized with sodding and grassing and mulching. All side slopes steeper than 3:1 shall be adequately protected from erosion through the use of hay bales or sodding.
- If the proposed erosion control plan does not work, the contractor should use the BMP's in the Florida Erosion and Sediment Control Inspecor's manual to implement a plan that will work and meet actual field conditions.
- All waste generated on the project shall be disposed of by the contractor in areas provided by contractor.

17.

16.

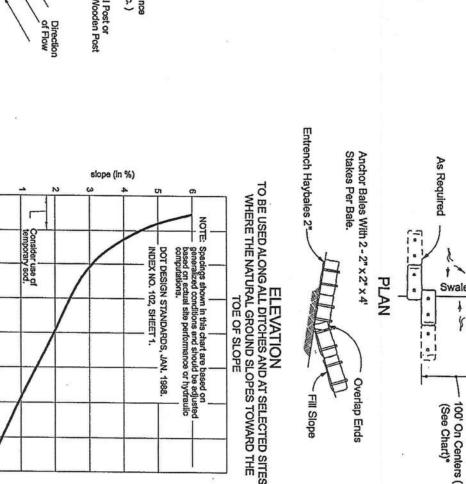

- Loaded haul trucks shall be covered with tarps.
- Excess dirt shall be removed daily.

19. 18.


- Fertilizer shall be applied as specified in the plans and specifications.
- This project shall comply with all water quality standards. Permit required from SRWMD has been obtained.
- All pollution controls shall be maintained at all times

23.

- Straw bales shall be placed to remove sediment. Straw bales shall be replaced after three (3) months or when sediment reaches one-half (1/2) the height of the bales.
- 24. Qualified personnel shall inspect the area used for storage of stockpiles, the silt fence and straw bales, the location where vehicles enter or exit the site, and the disturbed areas that have not been finally stabilized, at least once every seven (7) calendar days and within 24 hours of the end of a storm of 0.2 nches or greater.
- Sites that have been finally stabilized with sod or grassing shall be inspected at least once every week.
- Contractor is responsible for the construction and maintenance of all erosion and sedimentation controls during proposed construction.


Poultry Mesh (20 Ga, Min.)
Or Type A Fence Fabrio
(Index No. 451 & Sec. 966
FDOT Spec.) - Where Required

With Sec. 985 FDOT Spec.) Filter Fabric (In Conformance

TYPE IV SILT FENCE

AS COMPARED TO TYPE III SILT FENCE, TYPE IV FENCE HAS GREATER STRENGTH AND HEIGHT WHICH REDUCES THE POSSIBILTY OF SEDIMENT AND WATER FROM OVERTOPPING THE FENCE. AS A RESULT, AVOID USING TYPE IV FENCE IN AREAS WHERE THE DETAINED WATER WOULD BACK INTO TRAVEL LANES OR OFF THE RIGHT OF WAY.

STAK ED HAY BALES

PF05-330

TO BE USED AT SELECTED SITES WHERE THE NATURAL GROUND SLOPES AWAY FROM THE TOE OF SLOPE

ELEVATION

6' Min. PLAN

Loose Soil Placed By Shovel And Lightly - Compacted Along The Upstream Edge Of Bales.

Fill Slope

Bales To Butt

Flow

*RECOMMENDED SPACING FOR TYPE I HAY BALE BARRIERS.

Spacing (In feet) 200

8

GTC Design Group P.O. Box 187 130 West Howard Street Live Oak FL, 32064 Phone: (386) 362-3678 Fax: (386) 362-6133

Siope	ap Ends	100' On Centers (Typ.) (See Chart)* OTES

Overlap Ends

Fill Slope

ا - ا ا

EROSION CONTROL

Anchor Bales With 2 - 2" x 2" x 4" Stakes Per Bale.

STRUCTURAL/CIVIL ENGINEERS

PARKING STALL DETAIL

SIGN SHALL BE PLACED IN FRONT OF ALL DESIGNATED HANDICAPPED SPACES, SIGN HEIGHT SHALL BE 7' FROM PAVEMENT TO BOTTOM OF SIGN.

5' HANDICAPPED AISLE MAY BE PLACED ON THE RIGHT OR LEFT SIDE OF PARKING STALL.

HANDICAPPED PARKING SYMBOL SHALL BE 3 OR 5 FT. HIGH AND BLUE IN COLOR.

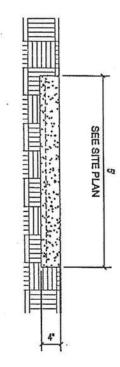
SEE SITE PLAN FOR ADDITIONAL PARKING STALL DIMENSIONS.

WHEEL STOPS WHERE INDICATED ON PLANS MINIMUM CCESS AISLE

WHITE SYMBOL ON BLUE BACKGROUND BLACK 1" LETTERS ON WHITE BACKGROUND PARKING BY
DISABLED
PERMIT
ONLY

1/4" PITCH OPTIONAL NIM.8 3/4" HOLES CAST OR RUBBED 12:0

No. 4 BARS, 18" LONG (TWO PER GUARD)


S. MYX

S' MAX

CONCRETE WHEEL STOP

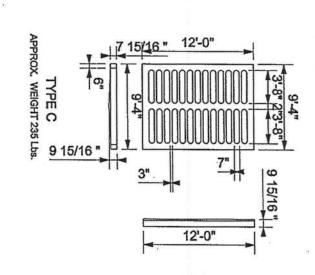
STANDARD SIDEWALK DETAIL

REINFORCED WITH 6x6x10/10 WWM. PROVIDE 1/8"-1/4" CONTRACTION JOINTS AT 10' CENTERS MAXIMUM.

SECTION
TYPE 6

RECOMMENDED MAXIMUM PIPE SIZE:
2'-0" WALL 18" PIPE
3'-1" WALL 24" PIPE (18" WHERE ON 18" PIPE
ENTERS A 2'-0" WALL) 17'-7 15/16 " GRATE 7 15/16" 8'-0" 7 15/16 "

17'-7 15/16 "


2'-0"

PLAN

2'-1/4"

34

8"

PF05-330 8

MISCELLANEOUS

P.O. Box 187 130 West Howard Street Live Oak FL, 32064 Phone: (386) 362-3678 Fax: (386) 362-6133

REVISION NOTES DATE