

8d 6" OC @ PANEL EDGES

8d 6" OC @ PANEL EDGES -

.131"X3" NAILS 6" OC -

INTERIOR SHEARWALL .131"X3" NAILS 12" OC -

1/2" GWB UNBLOCKED-

7" OC EDGE 10" OC FIELD

5d COOLER NAILS

WOOD FRAME

- 8d 12" OC NOT @ PANEL EDGES

OSB-

(TYP.) INTERSECTING WALL FRAMING

-8d 6" OC THIS STUD

FOR SHEAR TRANSFER

8d 12" OC NOT @ PANEL EDGES

-2X_ FULL HEIGHT STUDS (TYP.)

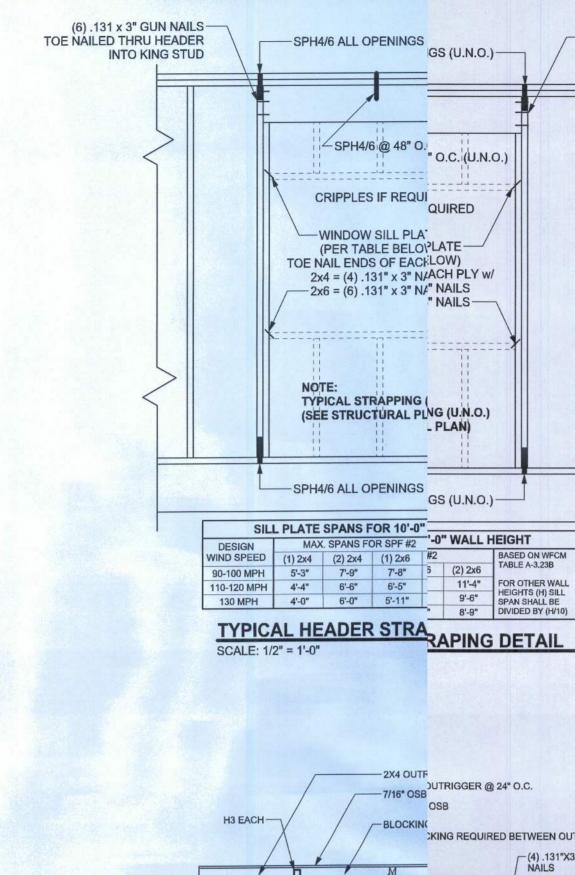
- 8d 6" OC @ PANEL EDGES 8d 12" OC NOT @ PANEL EDGES

8d 12" OC NOT @ PANEL EDGES -

2X_ FULL HEIGHT STUDS (TYP.) -

.131"X3" NAILS 12" OC -

OUT CORNER

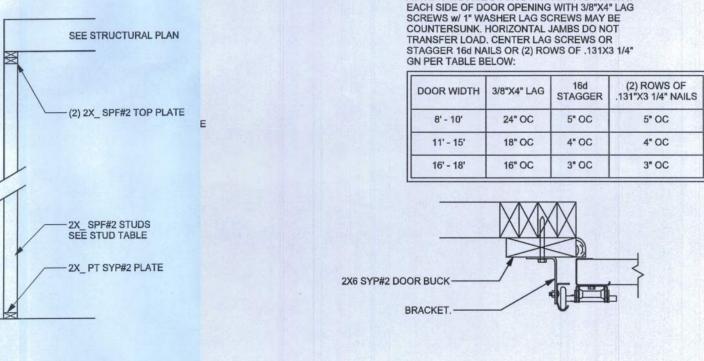

- 1/2" GWB UNBLOCKED

7" OC EDGE 10" OC FIELD

5d COOLER NAILS

-8d 6" OC @ PANEL EDGES

8d 12" OC NOT @ PANEL EDGES -


IF TRUSS TO WALL STRAPS ARE NAILED

TO THE HEADER THE SPH4/6 @ 48" O.C.

ARE NOT REQUIRED

-2X4 OUTF DUTRIGGER @ 24" O.C. ----7/16" OSB OSB -BLOCKING KING REQUIRED BETWEEN OUT RIGGERS INSTALL 2X4 SPF#2 DIAGONAL BRACE -(4) .131"X3 1/4" AND NAIL TO BLOCKING AT TOP CHORACE -BOTTOM CHORD AND RAT RUN @ 6' O.HORD & 7/16" OSB 8d 6" O.C. --EDGE & 12" O.C. FIELD BE NAILEDTO TRUSS WEBS ATTACH RAT RUN TO -BLOCKING W/ (4) .131"X3 1/4" NAILS TO 12' AND UNBRACED TOE NAIL TRUSS ---(4) .131"X3 1/4"¬ SIMPSON LSTA21w/ (8) -10d TO TRUSS & (8) -10d TO WALL 2X4X8' RAT RUN NAIL EACH @ 48" O.C. U.N.O. CONNECTION w/ (4) .131"X3 1/4" NAILS -(8) .131";131"X3 1/4" NAILS -2X4 SPF 131"X3 1/4" NAILS H3 INST, SPF#2 BLOCKING NSTALLED HORIZONTALLY SPACE RAT RUN & DIAGONAL BRACE FOR GABLE HEIGHT UP TO 25'-0" 110 NCE 6'-0" O.C. 10 MPH, EXP. C. ENCLOSED (TYP.) GABLE BRAC ACING DETAIL

2X6 SYP#2 GARAGE DOOR BUCK ATTACHMENT ATTACH GARAGE DOOR BUCK TO STUD PACK AT EACH SIDE OF DOOR OPENING WITH 3/8"X4" LAG

(TYP.) INTERIOR BEARING WALL

ONE STORY WOOD FRAME

(TYP.) GARAGE DOOR BUCK INSTALLATION WOOD FRAME

GENERAL NOTES:

-(6) .131 x 3" GUN NAILS

INTO KING STUD

TOE NAILED THRU HEADER

GS (U.N.O.) -

" O.C. (U.N.O.)

QUIRED

" NAILS-

TABLE A-3.23B

SPAN SHALL BE

11'-4" FOR OTHER WALL

9'-6"

TRUSSES: TRUSSES SHALL BE DESIGNED BY A FLORIDA LICENSED ENGINEER IN ACCORDANCE WITH THE FBCR 2007. TRUSS ENGINEERING SHALL INCLUDE TRUSS DESIGN, PLACEMENT PLANS, TEMPORARY AND PERMANENT BRACING DETAILS, TRUSS-TO-TRUSS CONNECTIONS, AND UPLIFT AND REACTION LOADS FOR ALL BEARING LOCATIONS, TRUSS ENGINEERING IS THE RESPONSIBILITY OF THE TRUSS MANUFACTURER AND SHALL BE SIGNED & SEALED BY THE MANUFACTURER'S DESIGN ENGINEER. IT IS THE BUILDER'S RESPONSIBILITY VERIFY THE TRUSS DESIGNER FULLY SATISFIED ALL THE ABOVE REQUIREMENTS AND TO SELECT UPLIFT CONNECTIONS BASED ON TRUSS ENGINEERING UPLIFT AND PROVIDE FOOTINGS FOR NTERIOR BEARING WALLS. BUILDER IS TO FURNISH TRUSS ENGINEERING TO WIND LOAD ENGINEER FOR REVIEW OF TRUSS REACTIONS ON THE BUILDING STRUCTURE. STRAP 2X6 RAFTERS WITH MIN UPLIFT CONNECTION 415LB EACH END; 2X8 RAFTERS 700 LB EACH END.

SITE PREPARATION: SITE ANALYSIS AND PREPARATION IS NOT PART OF THIS PLAN FOUNDATION: CONFIRM THAT THE FOUNDATION DESIGN & SITE CONDITIONS MEET

VISUAL OBSERVATION OR SOILS TEST PROVES OTHERWISE CONCRETE: MINIMUM COMPRESSIVE STRENGTH OF CONCRETE AT 28 DAYS, F'c = 3000 PSI.

WELDED WIRE REINFORCED SLAB: 6" x 6" W1.4 x W1.4, FB = 85KSI, WELDED WIRE REINFORCEMENT FABRIC (W.W.M.) CONFORMING TO ASTM A185; LOCATED IN MIDDLE OF THE SLAB; SUPPORTED WITH APPROVED MATERIALS OR SUPPORTS AT SPACINGS NOT TO EXCEED 3'.

FIBER CONCRETE SLABS: CONCRETE SLABS ON GROUND CONTAINING SYNTHETIC FIBER REINFORCEMENT. FIBER LENGTH 1/2 INCH TO 2 INCHES. DOSAGE AMOUNTS FROM 0.75 TO 1.5 POUNDS PER CUBIC YARD PER THE MANUFACTURER'S RECOMMENDATIONS. FIBERS TO COMPLY WITH ASTM C 1116. SUPPLIER TO PROVIDE ASTM C 1116 CERTIFICATION OF COMPLIANCE WHEN REQUESTED BY BUILDING OFFICIAL

CONTROL JOINTS: WHERE SPECIFIED, SAWN CONTROL JOINTS IN SLAB-ON-GRADE SHALL BE CUT IN ACCORDANCE WITH ACI 302, JOINTS SHALL BE CUT WITHIN 12 HOURS OF SLAB PLACEMENT. THE LENGTH WIDTH RATIOS OF SLAB AREAS SHALL NOT EXCEED 1.5 AND TYPICAL SPACING OF CUTS TO BE 12FT. DO NOT CUT WWM OR REINFORCING STEEL. (RECOMMENDED LOCATION OF CONTROL JOINTS IS SUBJECT TO OWNER AND CONTRACTOR'S APPROVAL. THE CONTROL JOINTS ARE NOT INTENDED TO PREVENT CRACKS BUT RATHER TO ENCOURAGE THE SLAB TO CRACK ON A GIVEN LINE.)

REBAR: ASTM A 615, GRADE 60, DEFORMED BARS, FY = 60 KSI. ALL LAP SPLICES 40 * DB (25" FOR #5 BARS); UNO. ALL REINFORCEMENT SHALL BE DETAILED AND PLACED IN ACCORDANCE WITH ACI 315-96, U.N.O.

GLULAM BEAMS: GLULAM BEAM, GLB, 24F-V3SP, Fb = 2.4ksi, E = 1800ksi; UNO. SUPPLIER MAY SUPPLY AN ALTERNATE BEAM WITH EQUAL PROPERTIES OR MAY SUBMIT THEIR OWN SIZING CALCS. ROOF SHEATHING: ALL ROOFS ARE HORIZONTAL DIAPHRAGMS; 7/16" OSB SHEATHING, UNBLOCKED, APPLIED PERPENDICULAR TO FRAMING, OVER A MINIMUM OF 3 FRAMING MEMBERS, WITH PANEL EDGES STAGGERED, FASTENED WITH 8d COMMON NAILS (.131), 6"OC PANEL EDGES, 12"0C INTERMEDIATE MEMBERS, GABLE ENDS AND DIAPHRAGM BOUNDARY; 4"OC, UNC

STRUCTURAL CONNECTORS: MANUFACTURERS AND PRODUCT NUMBER FOR CONNECTORS, ANCHORS, AND REINFORCEMENT ARE LISTED FOR EXAMPLE NOT ENDORSEMENT. AN EQUIVALENT DEVICE OF THE SAME OR OTHER MANUFACTURER CAN BE SUBSTITUTED FOR ANY DEVICES LISTED IN THE EXAMPLE TABLES AS LONG AS IT MEETS THE REQUIRED LOAD CAPACITIES. MANUFACTURER'S INSTALLATION

ANCHOR BOLTS: A-307 ANCHOR BOLTS WITH MINIMUM EMBEDMENT AS SPECIFIED IN DRAWINGS BUT NO LESS THAN 7" IN CONCRETE OR REINFORCED BOND BEAM OR 15" IN GROUTED CMU.

WASHERS: WASHERS USED WITH 1/2" BOLTS TO BE 2" x 2" x 9/64"; WITH 5/8" BOLTS TO BE 3" x 3" x 9/64"; WITH 3/4" BOLTS TO BE 3" x 3" x 9/64": WITH 7/8" BOLTS TO BE 3" x 3" x 5/16": UNO

NAILS: ALL NAILS ARE COMMON NAILS UNLESS OTHERWISE SPECIFIED OR ACCEPTED BY FBC TEST REPORTS AS HAVING EQUAL STRUCTURAL VALUES.

BUILDER'S RESPONSIBILITY

INSTRUCTIONS MUST BE FOLLOWED TO ACHIEVE RATED LOADS.

	R AND OWNER ARE RESPONSIBLE FOR THE FOLLOWING, WHICH AR LY NOT PART OF THE WIND LOAD ENGINEER'S SCOPE OF WORK.
	CONDITIONS, FOUNDATION BEARING CAPACITY, GRADE AND HT, WIND SPEED AND DEBRIS ZONE, AND FLOOD ZONE.
	RIALS AND CONSTRUCTION TECHNIQUES, WHICH COMPLY WITH FBCR 2007 IS FOR THE STATED WIND VELOCITY AND DESIGN PRESSURES.
BELIEVE THE F	ITINUOUS LOAD PATH FROM TRUSSES TO FOUNDATION. IF YOU AN OMITS A CONTINUOUS LOAD PATH CONNECTION, CALL ENGINEER IMMEDIATELY.
DESIGN, PLACI	USS MANUFACTURER'S SEALED ENGINEERING INCLUDES TRUSS MENT PLANS, TEMPORARY AND PERMANENT BRACING DETAILS, SS CONNECTIONS, AND UPLIFT AND REACTION LOADS FOR ALL TIONS.

ROOF SYSTEM DESIGN

5" OC

4" OC

THE SEAL ON THESE PLANS FOR COMPLIANCE WITH FBCR 2007, SECTION R301.2.1 IS BASED ON REACTIONS, UPLIFTS, AND BEARING LOCATIONS IN TRUSS ENGINEERING SUBMITTED TO THE WIND LOAD ENGINEER. IT IS THE RESPONSIBILITY OF THE BUILDER TO CHECK ALL DETAILS OF THE COMPLETE ROOF SYSTEM DESIGN SUBMITTED BY THE TRUSS MANUFACTURER AND HAVE IT SIGNED, AND SEALED BY A DESIGN PROFESSIONAL FOR CORRECT APPLICATION OF FBCR 2007 REQUIRED OADS AND ANY SPECIAL LOADS. THE BUILDER IS RESPONSIBLE TO REVIEW EACH INDIVIDUAL TRUSS MEMBER AND THE TRUSS ROOF SYSTEM AS A WHOLE AND TO PROVIDE RESTRAINT FOR ANY LATERAL BRACING. THE BUILDER SHOULD USE CARE CHECKING THE ROOF DESIGN BECAUSE THE WIND LOAD ENGINEER IS SPECIFICALLY NOT RESPONSIBLE FOR THE TRUSS LAYOUT WHICH WAS CREATED BY THE TRUSS MANUFACTURER AND THE TRUSS DESIGNER ALSO DENIES RESPONSIBILITY FOR THE LAYOUT PER NOTES ON THEIR SEALED

WIND LOADS PER FLORIDA BUILDING CODE 2007 RESIDENTIAL, SECTION R301.2.1

DESIGN DATA

ANCHOR TABLE

MANUFACTURER'S ENGINEERING

< 420

< 455

< 360

< 455

< 415

< 600

< 950

< 745

< 1465

< 1465

< 990

< 760

< 1470

< 1470

< 1000

< 1450

< 2900

< 2050

< 3965

< 10980

< 10530

< 9250

< 435

< 455

< 825

< 825

< 885

< 1240

< 885

< 1240

< 1235

< 1235

< 1030

< 1705

< 1350

< 2310

< 2775

< 4175

< 1400

< 3335

< 2200

< 2300

< 2320

UPLIFT LBS. SYP UPLIFT LBS. SPF

OBTAIN UPLIFT REQUIREMENTS FROM TRUSS

< 245

< 265

< 235

< 320

< 365

< 535

< 820

< 565

< 1050

< 1050

< 850

< 655

< 1265

< 1265

< 860

< 1245

< 2490

< 1785

< 3330

< 6485

< 9035

< 9250

< 435

< 420

< 825

< 600

< 760

< 1065

< 760

< 1065

< 1165

< 1235

< 1030

< 1705

< 1305

< 2310

< 2570

< 3695

< 1400

< 3335

< 2200

< 2300

< 2320

TRUSS CONNECTOR*

H5

H2.5

H2.5A

H8

H14-1

H14-2

H10-1

H10-2

H16-1

H16-2

MTS24C

HTS24

2 - HTS24

LGT2

HEAVY GIRDER TIEDOWNS*

MGT

HGT-2

HGT-3

HGT-4

STUD STRAP CONNECTOR

SSP DOUBLE TOP PLATE

SSP SINGLE SILL PLATE

DSP DOUBLE TOP PLATE

DSP SINGLE SILL PLATE

SP4

SPH4

SPH6

LSTA18

LSTA21

CS20

CS16

STUD ANCHORS

LTT19

LTTI31

HD2A

HTT16

PAHD42

HPAHD22

ABU66

ABU88

TO PLATES TO RAFTER/TRUSS

4-8d

4-8d

4-8d

5-8d

5-8d

8-8d

5-10d, 1 1/2"

13-8d

15-8d

8-8d, 1 1/2"

6-10d

7-10d 1 1/2"

12-10d 1 1/2"

14 -16d

1-10d

6 -10d

14-10d

16-10d

18-8d

28-8d

TO STUDS

8-16d

2-5/8" BOLTS

18 - 16d

16-16d

16-16d

12-16d

12-16d

18 - 16d

(ENCLOSED SIMPLE DIAPHRAGM BUILDINGS WITH FLAT, HIPPED, OR GABLE ROOFS; MEAN ROOF HEIGHT NOT EXCEEDING LEAST HORIZONTAL DIMENSION OR 60 FT; NOT ON UPPER HALF OF HILL OR ESCARPMENT 60FT IN EXP. B, 30FT IN EXP. C AND >10%

BUILDING IS NOT IN THE HIGH VELOCITY HURRICANE ZONE

SLOPE AND UNOBSTRUCTED UPWIND FOR 50x HEIGHT OR 1 MILE WHICHEVER IS LESS.)

18-10d, 1 1/2

10-10d, 1 1/2" 2-10d, 1 1/2"

10-10d, 1 1/2" 2-10d, 1 1/2"

3-8d

4-8d

4-8d

4-8d

5-8d

5-8d

8-8d

5-10d, 1 1/2"

12-8d, 1 1/2"

12-8d, 1 1/2"

8-8d, 1 1/2"

6-10d

7-10d 1 1/2"

12-10d 1 1/2"

14 -16d

22 -10d

16 -10d

16 -10d

TO STUDS

TO FOUNDATION

1-5/8" THREADED ROD

12" EMBEDMENT

2-5/8" THREADED ROD

12" EMBEDMENT

2-5/8" THREADED ROD

2-5/8" THREADED ROD

12" EMBEDMENT

TO STUDS

4 -10d

4 -10d

8 -10d

8 -10d

6-10d, 1 1/2"

10-10d, 1 1/2"

6-10d, 1 1/2"

10-10d, 1 1/2"

TO FOUNDATION

1/2" AB

1/2" AB

5/8" AB

5/8" AB

1/2" AB

1/2" AB

2-5/8" AB

12" EMBEDMENT

							11									
								BUILDING IS NOT IN THE WIND-BORNE DEBRIS REGION								
								1.) BASIC WIND SPEED = 110 MPH								
								2.) WIND EXPOSURE = C								
							3.)	WIND IMPORTANCE FACTOR = 1.0			135		100			
	DE & SPECI	IES TA	BIF				4.)	BUILDING CATEGORY = II		4.00	395		5.6			
							5.)	ROOF ANGLE = 10-45 DEGREES				No. 11	16 54			
							6.)	MEAN ROOF HEIGHT = <30 FT								
		Fb (psi)	E (10 ⁶ psi)				7.)	INTERNAL PRESSURE COEFFICIENT = I	I/A (ENCLOSE	(ENCLOSED BUILDING)						
SYF	#2	1200	1.6				8.)	COMPONENTS AND CLADDING DESIGN	WIND PRESS	IND PRESSURES (TABLE R301.2(2))						
ev	P #2	1050	1.6					A A	Zone	e Effective Wind Area (ft2)						
		1000	1.0								10		100			
S	SYP #2	975	1.6					2 2	1	_	-30.5		-25.3			
24F-V3	3 SP	2400	1.8					1	2 2 O'hg	27.8	-35.7 -56.8	25.3	-30.5 -56.8			
TIMBERSTRAND	-	4700	COLD THE			100		2 2 2 3 5	3	27.8	_	25.3	-30.5			
TIMBERSTRAN	ט	1700	1.7					3 4	3 O'hg	_	-95.6	20.0	-59.3			
MICROLAM		1600	1.9					55	4	30.5	-33.0	25.9	-28.5			
PARALA	M	2900	2.0				133	THE THE	5	30.5	-40.7	25.9	-31.6			
	_	1						/3/	Doors & Windo		dows	30.5	-40.7			
								A '	DOWNERS	Worst Case (Zone 5, 10 ft2)		1846				
								5 2					-			
								2 4 /3/ 5		Garage Door Garage Door		27.3	-32.0			
								A 'A	1007 G	araye	Door	25.9	-29.4			
								555				35				
							DES	SIGN LOADS								
							FLC	OOR 40 PSF (ALL OTHER DWELLING RO	OMS)	9 8 19		al chic				
								30 PSF (SLEEPING ROOMS)		THE RESERVE SHOWS THE						

30 PSF (ATTICS WITH STORAGE)

12 PSF (12:12 AND GREATER)

NOT IN FLOOD ZONE (BUILDER TO VERIFY)

STAIRS 40 PSF (ONE & TWO FAMILY DWELLINGS)

ROOF 20 PSF (FLAT OR <4:12) 16 PSF (4:12 TO <12:12)

SOIL BEARING CAPACITY 1000PSF

10 PSF (ATTICS WITHOUT STORAGE, <3:12)

REVISIONS 210c10

SOFTPLAN

Mark Disos/ay, PE No.53915, OB 868, Lake City, FL 32056, 386-754-549 DIMENSIONS: Stated dimesions supercede scaled Mark Disosay, P.E. for resolution. Do not proced without clarification. COPYRIGH'S AND PROPERTY RIGHTS: Mark Disosyay, P.E. hereby expressly reserves its:ommon law copyrights and property rigt in these instruments of service This documnt is not to be reproduced, altered

of Mark Disaway. CERTIFICAION: I hereby certify that I have examined tts plan, and that the applicable portions of te plan, relating to wind enginering comply with section R301.2.1, firida building code residential 207, and 2009 supplements to the best cmy knowledge.

or copied inany form or manner without first

the expressvritten permission and consent

LIMITATION This design is valid for one building, at pecified location. MARK DISOSWAY (PIE/53915

Edgey Construction

Doiald R. Houston

ADDRESS: Contry Landings Lot 6 Lak City, Florida 32025

Mak Disosway P.E. 3.O. Box 868 Lake City, Florida 32056 Phon: (386) 754 - 5419 Fax:(386) 269 - 4871

[ecember 22, 2010 DRAWIBY: STRUCTURAL BY: David Dissway David Disosway

FINALS ATE: 22Dec1

JOB NUMBER: 1012037 DRAWING NUMBER

OF 4 SHEETS