

RE: JENNA PAYNE - JENNA PAYNE

MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017

Site Information:

Customer Info: BRUCE SHAFER Project Name: JENNA PAYNE Model: .

Lot/Block: . Subdivision: .

Address: ., .

City: ALACHUA State: FL

Name Address and License # of Structural Engineer of Record, If there is one, for the building.

Name: License #:

Address:

City: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: FBC2020/TPI2014 Design Program: MiTek 20/20 8.4

Wind Code: ASCE 7-16 Wind Speed: 130 mph Roof Load: 40.0 psf Floor Load: N/A psf

This package includes 28 individual, Truss Design Drawings and 0 Additional Drawings. With my seal affixed to this sheet, I hereby certify that I am the Truss Design Engineer and this index sheet conforms to 61G15-31.003, section 5 of the Florida Board of Professional Engineers Rules.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	T27927582	A01	6/7/22	23	T27927604	V01	6/7/22
2	T27927583	A02	6/7/22	24	T27927605	V02	6/7/22
3 1	T27927584 T27927585	A03 B01	6/7/22 6/7/22	25 26	T27927606 T27927607	V03 V04	6/7/22 6/7/22
5	T27927586	B02	6/7/22	27	T27927608	V05	6/7/22
4 5 6 7	T27927587	C01	6/7/22	28	T27927609	V06	6/7/22
	T27927588	C02	6/7/22				
8	T27927589	C03	6/7/22				
9 10	T27927590 T27927591	C04 C05	6/7/22 6/7/22				
11	T27927591	C6GE	6/7/22				
12	T27927593	C7SR	6/7/22				
13	T27927594	C8GE	6/7/22				
14	T27927595	CJ01	6/7/22				
15	T27927596	D01	6/7/22				
16 17	T27927597 T27927598	D02 D3GE	6/7/22 6/7/22				
18	T27927599	GDR1	6/7/22				
19	T27927600	J01	6/7/22				
20	T27927601	J02	6/7/22				
21	T27927602	J03	6/7/22				
22	T27927603	J04	6/7/22				

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Mayo Truss Company, Inc..

Truss Design Engineer's Name: Magid, Michael

My license renewal date for the state of Florida is February 28, 2023.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

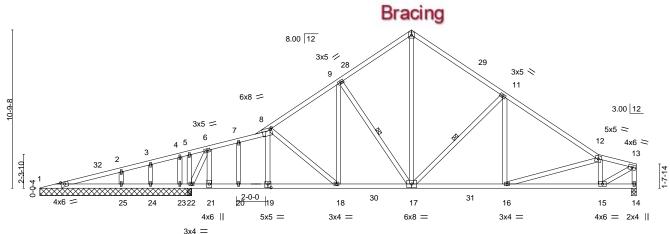
Job Truss Truss Type Qty Ply JENNA PAYNE T27927582 JENNA PAYNE A01 Roof Special Structural Gable Job Reference (optional) Mayo Truss Company, Inc., Mayo, FL - 32066, 8.530 s Dec 6 2021 MiTek Industries, Inc. Mon Jun 6 15:09:04 2022 Page 1 ID:mN7D32tr4R4?GcknbogKq6zlyaR-90FH8OIEvSD7WpBVBDr5sp6bO04TYkLi49L?cgz8zGT

25-4-0

4-11-10

20-4-6

4-11-10


15-4-13

7-1-14

31-8-6 38-0-13 40-8-0

6-4-6 6-4-6 2-7-3

Scale = 1:78.5 5x5 =

	8-2-14	10-0-8	15-4-13	20-4-6	25-4-0	31-8-6	38-0-13	40-8-0
	8-2-14	1-9-10	5-4-5	4-11-10	4-11-10	6-4-6	6-4-6	2-7-3
Plate Offsets (X,Y)	[8:0-1-4,0-1-4], [19:0-2-	-8,0-3-0]						

	.0010 (71, 17	[6:6 : 1,6 : 1], [16:6 2 6,6 6 6]			
LOADIN	IG (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL	20.0	Plate Grip DOL 1.25	TC 0.94	Vert(LL) -0.24 18-19 >999 240	MT20 244/190
TCDL	10.0	Lumber DOL 1.25	BC 0.78	Vert(CT) -0.44 18-19 >825 180	
BCLL	0.0 *	Rep Stress Incr YES	WB 0.61	Horz(CT) 0.11 14 n/a n/a	
BCDL	10.0	Code FBC2020/TPI2014	Matrix-AS		Weight: 240 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP No 2 2x4 SP No.2 *Except* **BOT CHORD**

1-19: 2x4 SP SS

WFBS 2x4 SP No.2 **BRACING-**

TOP CHORD Structural wood sheathing directly applied, except end verticals. BOT CHORD Rigid ceiling directly applied.

WFBS 1 Row at midpt 11-17 9-17

REACTIONS. All bearings 10-4-0 except (jt=length) 14=0-4-0.

(lb) -Max Horz 1=209(LC 11)

Max Uplift All uplift 100 lb or less at joint(s) 22, 22, 25 except 24=-133(LC 17)

Max Grav All reactions 250 lb or less at joint(s) 22 except 1=451(LC 18), 14=1483(LC 18), 23=1116(LC 17),

25=696(LC 17)

8-2-14

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 $8-9 = -2055/257, \ 9-10 = -1502/285, \ 10-11 = -1512/271, \ 11-12 = -2009/216, \ 12-13 = -1748/151,$ TOP CHORD

13-14=-1453/122, 1-2=-1474/120, 2-3=-1509/144, 3-4=-1478/156, 4-5=-1548/172,

5-6=-1371/165, 6-7=-2518/264, 7-8=-2545/277

BOT CHORD $1-25 = -136/1498,\ 24-25 = -136/1498,\ 23-24 = -136/1498,\ 22-23 = -136/1498,\ 21-22 = -211/2519,$

20-21=-211/2519, 19-20=-211/2519, 18-19=-206/2530, 17-18=-103/1763,

16-17=-103/1605, 15-16=-161/1726

WEBS 6-21=-49/1039, 4-23=-402/58, 5-22=-48/724, 6-22=-2212/163, 2-25=-343/74,

10-17=-170/1306, 9-18=-6/753, 11-16=0/372, 12-15=-850/150, 13-15=-162/1920,

11-17=-686/146. 9-17=-940/160. 8-18=-922/144

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=41ft; eave=5ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) 0-0-0 to 4-0-13, Interior(1) 4-0-13 to 25-4-0, Exterior(2R) 25-4-0 to 29-4-13, Interior(1) 29-4-13 to 40-6-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) All plates are 1.5x4 MT20 unless otherwise indicated.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 22, 25 except (jt=lb) 24=133.
- 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum

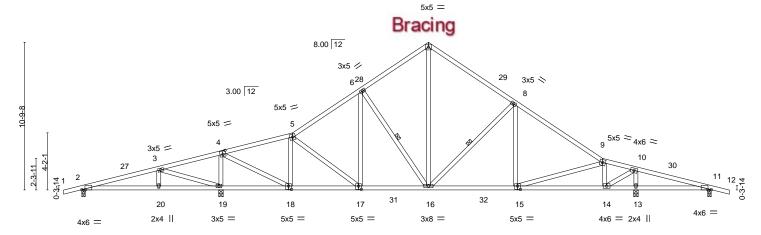
MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

June 8,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Job	Truss	Truss Type	Qty	Ply	JENNA PAYNE	
					T27927583	
JENNA_PAYNE	A02	Roof Special	10	1		
					Job Reference (optional)	
Mayo Truss Company, Inc.,	Mayo, FL - 32066,			3.530 s Ded	c 6 2021 MiTek Industries, Inc. Mon Jun 6 15:09:06 2022 Page 1	_

20-4-6

4-11-10

ID:mN7D32tr4R4?GcknbogKq6zlyaR-5PN2Z4KVR4Trl6KtJetZxEB2Wppn0hSbYTq6hYz8zGR 31-8-6 38-0-13 40-6-0 46-0-0

Scale = 1:84.2

	1	5-7-8 1 10	-2-0 _I	15-4-13 ₁	20-4-6	1 25-4-0	1 31-8-6	38-0-13	₁ 40-6-0 ₁	46-0-0 ₁
		5-7-8 4-	·6-8	5-2-13	4-11-10	4-11-10	6-4-6	6-4-6	2-5-3	5-6-0
Plate Offse	ets (X,Y)	[2:0-2-12,Edge], [4:0-2-8	8,0-3-0], [11:0	-2-12,Edge], [15:0-2-8,0-3-0]	, [17:0-2-8,0-3-0],	[18:0-2-8,0-3-0]			
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in (loc) I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.45	Vert(LL)	-0.12 15-16 >999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.25	BC	0.59	Vert(CT)	-0.22 15-16 >999	180		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.44	Horz(CT)	0.03 13 n/a	n/a		
BCDL	10.0	Code FBC2020/	TPI2014	Matr	ix-AS				Weight: 260 lb	FT = 20%

LUMBER-TOP CHORD

2x4 SP No 2 2x4 SP No 2

BOT CHORD 2x4 SP No 2 WFBS

BRACING-

Structural wood sheathing directly applied. TOP CHORD BOT CHORD Rigid ceiling directly applied.

WERS 1 Row at midpt 6-16, 8-16

REACTIONS. All bearings 0-3-0 except (jt=length) 19=0-4-0, 13=0-4-0.

Max Horz 2=187(LC 11)

Max Uplift All uplift 100 lb or less at joint(s) 2, 11

Max Grav All reactions 250 lb or less at joint(s) 11 except 2=300(LC 21), 19=2092(LC 17), 13=1815(LC 18)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

3-4=-80/1047, 4-5=-977/145, 5-6=-1312/211, 6-7=-1102/247, 7-8=-1103/238, TOP CHORD

10-2-0

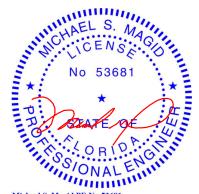
4-6-8

15-4-13

5-2-13

8-9=-1464/194, 9-10=-894/90, 10-11=-66/828

18-19=-884/133, 17-18=-28/1028, 16-17=0/1099, 15-16=-13/1139, 14-15=-28/904, BOT CHORD


13-14=-767/98, 11-13=-767/98

WEBS 3-19=-953/104, 4-19=-1615/191, 4-18=-160/2016, 5-18=-800/131, 6-16=-370/143, 7-16=-128/850, 8-16=-505/160, 9-15=0/297, 9-14=-830/151, 10-14=-135/1889,

10-13=-1642/151

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=46ft; eave=6ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) -1-4-0 to 3-3-3, Interior(1) 3-3-3 to 25-4-0, Exterior(2R) 25-4-0 to 29-11-3, Interior(1) 29-11-3 to 47-4-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 11.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

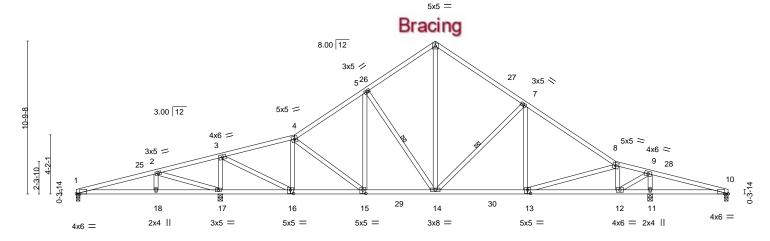
Michael S. Magid PE No.53681 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

June 8,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Job Truss Truss Type Qty Ply JENNA PAYNE T27927584 JENNA PAYNE A03 Roof Special Job Reference (optional) 8.530 s Dec 6 2021 MiTek Industries, Inc. Mon Jun 6 15:09:08 2022 Page 1

Mayo Truss Company, Inc., Mayo, FL - 32066,

ID:mN7D32tr4R4?GcknbogKq6zlyaR-1nVo_mLlyhkZ_QUGQ3w11fGPddVFUbyu?mJDlRz8zGP 10-2-0 20-4-6 31-8-6 38-0-13 40-6-0 46-0-0 15-4-13 4-11-10 4-6-8 5-2-13 4-11-10 6-4-6 6-4-6 2-5-3 5-6-0

Scale = 1:81.3

	1	5-7-8 ₁ 10-2-0	15-4-1	3 1	20-4-6	1 25-4-0	31-8-6		38-0-13	40-6-0	46-0-0 ₁	
	1	5-7-8 4-6-8	5-2-1	3 '	4-11-10	4-11-10	6-4-6		6-4-6	2-5-3	5-6-0	
Plate Offse	ets (X,Y)	[1:0-2-12,Edge], [10:0-2-	12,Edge], [13:0-	2-8,0-3-0]	, [15:0-2-8,0-3	-0], [16:0-2-8,0-3-0	0]					
LOADING	(psf)	SPACING-	2-0-0	CSI	ı .	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP	
TCLL	20.0	Plate Grip DOL	1.25	TC	0.41	Vert(LL)	-0.12 13-14	>999	240	MT20	244/190	
TCDL	10.0	Lumber DOL	1.25	ВС	0.59	Vert(CT)	-0.22 13-14	>999	180			
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.44	Horz(CT)	0.03 11	n/a	n/a			
BCDL	10.0	Code FBC2020/T	PI2014	Mat	trix-AS					Weight: 256 lb	FT = 20%	

LUMBER-

WFBS

TOP CHORD 2x4 SP No 2 **BOT CHORD** 2x4 SP No 2 2x4 SP No 2 **BRACING-**

Structural wood sheathing directly applied. TOP CHORD **BOT CHORD** WFBS

Rigid ceiling directly applied.

1 Row at midpt 5-14 7-14

REACTIONS. All bearings 0-3-0 except (jt=length) 17=0-4-0, 11=0-4-0.

Max Horz 1=184(LC 11)

Max Uplift All uplift 100 lb or less at joint(s) 1, 10, 17, 11

Max Grav All reactions 250 lb or less at joint(s) 1, 10 except 17=2096(LC 17), 11=1825(LC 18)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-78/1005, 3-4=-987/136, 4-5=-1310/205, 5-6=-1101/245, 6-7=-1103/235,

7-8=-1462/188, 8-9=-888/77, 9-10=-70/829

16-17=-899/132, 15-16=-35/1020, 14-15=-1/1097, 13-14=-21/1136, 12-13=-31/896, BOT CHORD

11-12=-768/88, 10-11=-768/88

WEBS 2-17=-898/98, 3-17=-1638/203, 3-16=-155/2012, 4-16=-774/126, 5-14=-371/140, 6-14=-124/851, 7-14=-504/159, 8-13=0/302, 8-12=-830/150, 9-12=-127/1881,

9-11=-1644/157

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=46ft; eave=6ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) 0-0-0 to 4-7-3, Interior(1) 4-7-3 to 25-4-0, Exterior(2R) 25-4-0 to 29-11-3, Interior(1) 29-11-3 to 46-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 10, 17, 11.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

June 8,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Qty Ply Truss Truss Type JENNA PAYNE T27927585 GABLE JENNA PAYNE B01 2 Job Reference (optional) 8.530 s Jan 6 2022 MiTek Industries, Inc. Tue Jun 7 16:07:08 2022 Page 1 Mayo Truss Company, Inc., Mavo. FL - 32066 ID:mN7D32tr4R4?GcknbogKq6zIyaR-VA1_JeCCleAeDJbE3pH8wmckrcNMhZsm2G_J8oz8nt1 30-8-0 15-4-0 24-6-0 6-2-0 9-2-0 9-2-0 6-2-0 NAILED Scale = 1:76.6 N Bracing TOP CHORD MUST BE BRACED BY END JACKS, ROOF DIAPHRAGM, OR PROPERLY CONNECTED NAILED NAILED 1.5x4 PURLINS AS SPECIFIED. 1.5x4 NAII FD NAILED 11 1.5x4 || 49 1.5x4 II 46 NAILED 17 NAILED 1.5x4 || 50 1.5x4 || 45 NAILED Special 5x5 / 19 5x5 **** 6x6 ₂₂6x6 = 10 8.00 12 3x5 // 3x5 20 NAILED 23 32 4-8-3 0-6-14 29 35 28 37 27 39 33 41 42 43 3x4 25 31 30 26 NAILED NAILED NAILED 3x4 =NAILED NAILED 3x8 NAILED NAILED 7x8 3x8 HJC26 NAILED NAILED NAILED NAILED NAILED 6-2-0 15-4-0 24-6-0 30-8-0 6-2-0 9-2-0 9-2-0 6-2-0 [4:0-3-0,0-2-3], [8:0-5-0,0-2-8], [16:0-5-0,0-2-8], [20:0-3-0,0-3-8], [22:0-3-0,0-2-3], [28:0-4-0,0-4-8] Plate Offsets (X,Y)--LOADING (psf) GRIP SPACING-CSI. DEFL. I/d **PLATES** 2-0-0 (loc) I/defl 244/190 TCLL 20.0 Plate Grip DOL 1.25 TC 0.25 Vert(LL) -0.06 28-29 >999 240 MT20 вс TCDL 10.0 Lumber DOL 1.25 0.33 Vert(CT) -0.12 27-28 >999 180 **BCLL** 0.0 Rep Stress Incr NO WB 0.13 Horz(CT) 0.05 24 BCDL 10.0 Code FBC2020/TPI2014 Matrix-S Weight: 563 lb FT = 20%

BRACING-

JOINTS

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 *Except*

4-20,20-22: 2x6 SP No.2

BOT CHORD 2x6 SP No.2 2x4 SP No.2 WEBS 2x4 SP No.2 OTHERS

REACTIONS.

(size) 24=Mechanical, 2=0-4-0

Max Horz 2=200(LC 24)

Max Uplift 24=-96(LC 8), 2=-207(LC 8) Max Grav 24=2334(LC 1), 2=2403(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-3579/275, 3-4=-3547/316, 22-23=-3295/216, 23-32=-3388/156, 24-32=-3514/162, 4-5=-2936/279, 5-6=-1905/289, 6-8=-1905/289, 8-10=-1835/256, 10-12=-1835/256,

12-14=-1835/256, 14-16=-1835/256, 16-18=-1688/202, 18-20=-1688/202,

20-21=-1688/202, 21-22=-2722/193, 5-44=-1364/34, 7-44=-1264/21, 7-45=-1328/82, 9-45=-1219/69, 9-46=-1379/135, 11-46=-1293/127, 11-47=-1346/178, 13-47=-1260/165, 13-48=-1251/164, 15-48=-1344/178, 15-49=-1276/130, 17-49=-1392/138, 17-50=-1153/50,

19-50=-1269/58, 19-51=-1290/28, 21-51=-1407/47

BOT CHORD 2-31=-179/2802, 30-31=-179/2802, 30-33=-231/3405, 33-34=-231/3405, 29-34=-231/3405,

29-35=-231/3405, 35-36=-231/3405, 28-36=-231/3405, 28-37=-207/3358, 37-38=-207/3358, 27-38=-207/3358, 27-39=-207/3358, 39-40=-207/3358,

26-40=-207/3358, 26-41=-90/2736, 25-41=-90/2736, 25-42=-90/2736, 42-43=-90/2736,

24-43=-90/2736

12-13=-115/1177, 8-9=-300/116, 16-17=-444/156, 4-30=-79/789, 12-28=-83/1162,

8-29=0/367, 16-27=0/361, 22-26=0/764, 16-26=-775/147, 16-28=-648/85, 8-28=-769/120,

8-30=-677/65

NOTES-

WEBS

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc, 2x6 - 2 rows staggered at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Unbalanced roof live loads have been considered for this design.

4) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=31ft; eave=2ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

5) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

1 Brace at Jt(s): 12, 6, 14, 18, 8, 16, 10

"Special" indicates special hanger(s) or other connection device(s) required at location(s) shown. The design/selection of such special connection device(s) is the responsibility of others. This applies to all applicable truss designs in this job.

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

June 8.2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFUKE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information

available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	JENNA PAYNE	
IENNA DAVAIE	P04	CARLE	_			T27927585
JENNA_PAYNE	801	GABLE	1	2	Job Reference (optional)	

Mayo Truss Company, Inc.,

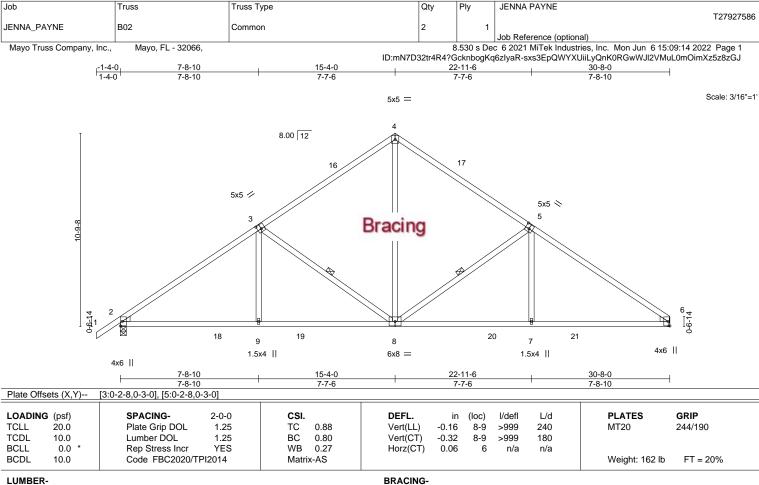
Mayo, FL - 32066,

8.530 s Jan 6 2022 MiTek Industries, Inc. Tue Jun 7 16:07:08 2022 Page 2 $ID:mN7D32tr4R4?GcknbogKq6zIyaR-VA1_JeCCleAeDJbE3pH8wmckrcNMhZsm2G_J8oz8nt1$

NOTES-

- 6) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are 2x4 MT20 unless otherwise indicated.
- 9) Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 12) Refer to girder(s) for truss to truss connections.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 96 lb uplift at joint 24 and 207 lb uplift at joint 2.
- 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 15) Use MiTek HJC26 (With 16-16d nails into Girder & 10d nails into Truss) or equivalent at 6-2-6 from the left end to connect truss(es) J04 (1 ply 2x4 SP), CJ01 (1 ply 2x4 SP). SP) to front face of bottom chord, skewed 0.0 deg.to the left, sloping 0.0 deg. down.
- 16) Fill all nail holes where hanger is in contact with lumber.
- 17) "NAILED" indicates 3-10d Nails (0.148" x 3") toe-nails per NDS guidelines.
- 18) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 248 lb down and 50 lb up at 6-2-0 on top chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard


1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

Vert: 1-4=-60, 22-24=-60, 2-24=-20, 4-5=-60, 21-22=-60, 5-13=-60, 13-21=-60

Concentrated Loads (lb)

Vert: 4=-174(F) 22=-101(F) 30=-350(F) 26=-54(F) 32=-120(F) 33=-54(F) 34=-54(F) 35=-54(F) 36=-54(F) 37=-54(F) 38=-54(F) 39=-54(F) 40=-54(F) 41=-54(F) 42=-54(F) 43=-61(F) 44=-101(F) 45=-101(F) 46=-101(F) 47=-101(F) 48=-101(F) 49=-101(F) 50=-101(F) 51=-101(F)

BOT CHORD

WFBS

LUMBER-

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No 2 WFBS

WEDGE

Left: 2x4 SP No.2, Right: 2x4 SP No.2

REACTIONS. (size) 2=0-4-0, 6=Mechanical

Max Horz 2=205(LC 11) Max Uplift 2=-33(LC 12)

Max Grav 2=1489(LC 17), 6=1413(LC 18)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1975/52, 3-4=-1335/139, 4-5=-1334/140, 5-6=-1981/56

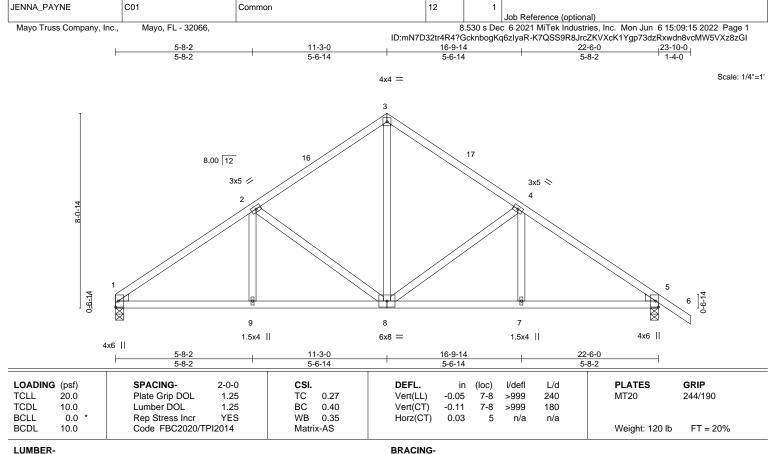
BOT CHORD $2-9=0/1668,\ 8-9=0/1663,\ 7-8=0/1550,\ 6-7=0/1555$

WEBS 4-8=0/935, 5-8=-696/61, 5-7=0/436, 3-8=-689/59, 3-9=0/435

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=31ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) -1-4-0 to 1-8-13, Interior(1) 1-8-13 to 15-4-0, Exterior(2R) 15-4-0 to 18-4-13, Interior(1) 18-4-13 to 30-8-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Structural wood sheathing directly applied


5-8.3-8

Rigid ceiling directly applied.

1 Row at midpt

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

BOT CHORD

Qty

Ply

JENNA PAYNE

Structural wood sheathing directly applied.

Rigid ceiling directly applied.

LUMBER-

Job

Truss

Truss Type

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.2 WFBS

WEDGE

Left: 2x4 SP No.2, Right: 2x4 SP No.2

REACTIONS.

(size) 1=0-4-0, 5=0-4-0 Max Horz 1=-150(LC 10) Max Uplift 5=-34(LC 12) Max Grav 1=898(LC 1), 5=982(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

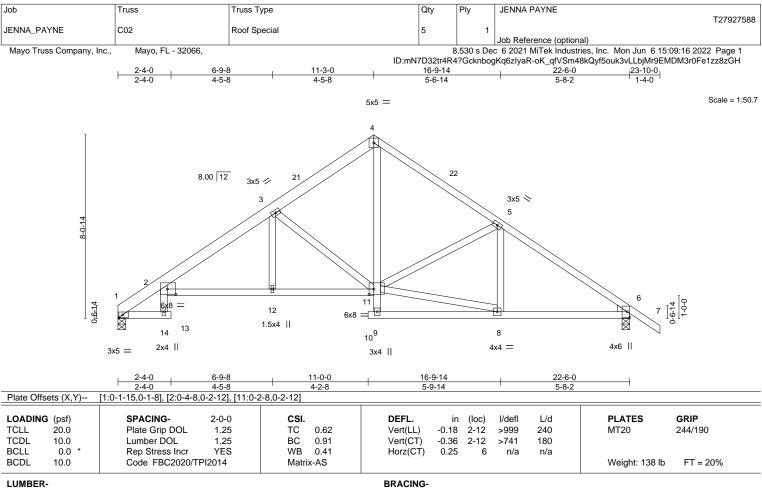
TOP CHORD 1-2=-1275/60, 2-3=-895/113, 3-4=-894/110, 4-5=-1266/53

BOT CHORD 1-9=0/994, 8-9=0/994, 7-8=0/984, 5-7=0/984**WEBS** $3-8=-23/562,\ 4-8=-413/69,\ 2-8=-425/72$

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 11-3-0, Exterior(2R) 11-3-0 to 14-3-0, Interior(1) 14-3-0 to 23-10-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.



MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

June 8,2022

T27927587

BOT CHORD

Structural wood sheathing directly applied.

Rigid ceiling directly applied. Except:

10-0-0 oc bracing: 9-11

LUMBER-

2x6 SP SS *Except* TOP CHORD 4-7: 2x4 SP No.2

BOT CHORD 2x4 SP No.2 **WEBS** 2x4 SP No.2

WEDGE

Right: 2x4 SP No.2

REACTIONS. (size) 1=0-4-0, 6=0-4-0

Max Horz 1=-150(LC 10) Max Uplift 6=-31(LC 12)

Max Grav 1=911(LC 1), 6=987(LC 1)

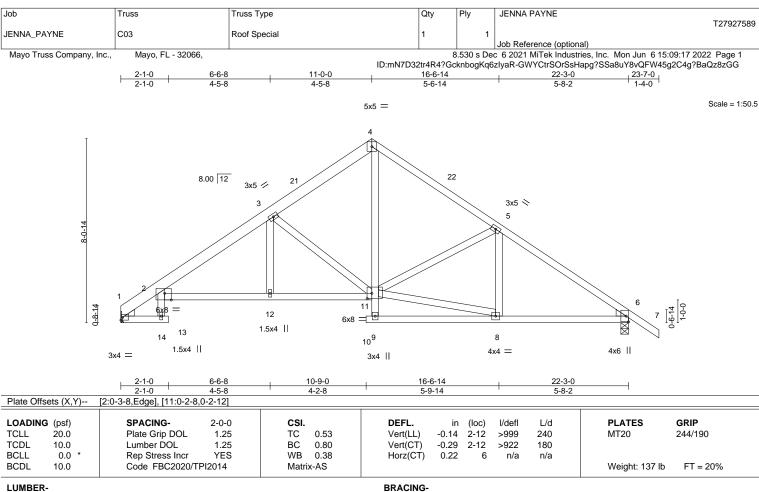
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. $2\text{-}16\text{=-}587/46,\ 2\text{-}3\text{=-}1469/45,\ 3\text{-}4\text{=-}1032/92,\ 4\text{-}5\text{=-}1026/84,\ 5\text{-}6\text{=-}1270/51}$ TOP CHORD

BOT CHORD 2-12=0/1311, 11-12=0/1309, 4-11=-4/805, 6-8=0/988

WEBS 3-11=-717/56, 8-11=0/901, 5-11=-280/82

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 11-3-0, Exterior(2R) 11-3-0 to 14-3-0, Interior(1) 14-3-0 to 23-10-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017


June 8,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BOT CHORD

Structural wood sheathing directly applied.

Rigid ceiling directly applied. Except:

10-0-0 oc bracing: 9-11

LUMBER-

2x6 SP SS *Except* TOP CHORD 4-7: 2x4 SP No.2

BOT CHORD 2x4 SP No.2 **WEBS** 2x4 SP No.2

WEDGE

Left: 2x4 SP No.3, Right: 2x4 SP No.2

REACTIONS. (size) 1=Mechanical, 6=0-4-0

Max Horz 1=-148(LC 10) Max Uplift 6=-31(LC 12)

Max Grav 1=901(LC 1), 6=977(LC 1)

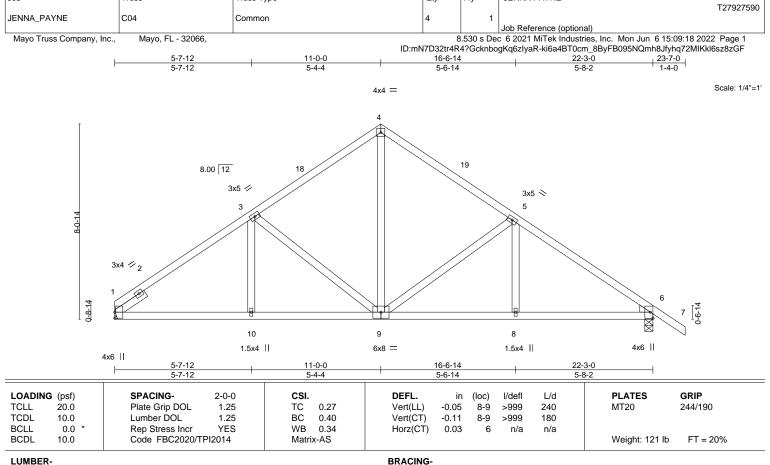
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. $2\text{-}16\text{=-}553/46,\ 2\text{-}3\text{=-}1424/44,\ 3\text{-}4\text{=-}1008/91,\ 4\text{-}5\text{=-}1006/84,\ 5\text{-}6\text{=-}1253/50}$ TOP CHORD

BOT CHORD 2-12=0/1254, 11-12=0/1252, 4-11=-3/774, 6-8=0/974

WEBS 8-11=0/890, 5-11=-282/82, 3-11=-668/55

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II: Exp B: Encl., GCpi=0.18: MWFRS (directional) and C-C Exterior(2E) 0-0-0 to 3-0-0. Interior(1) 3-0-0 to 11-0-0. Exterior(2R) 11-0-0 to 14-0-0, Interior(1) 14-0-0 to 23-7-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

ICHAEL
NO 5(


NO S. MAG 53681

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

June 8,2022

BOT CHORD

Qty

Ply

JENNA PAYNE

Structural wood sheathing directly applied.

Rigid ceiling directly applied.

LUMBER-

Job

Truss

Truss Type

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.2 WFBS

WEDGE

Right: 2x4 SP No.2

SLIDER Left 2x4 SP No.2 1-6-0

REACTIONS.

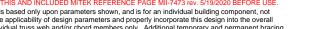
(size) 1=Mechanical, 6=0-4-0 Max Horz 1=-148(LC 10) Max Uplift 6=-34(LC 12)

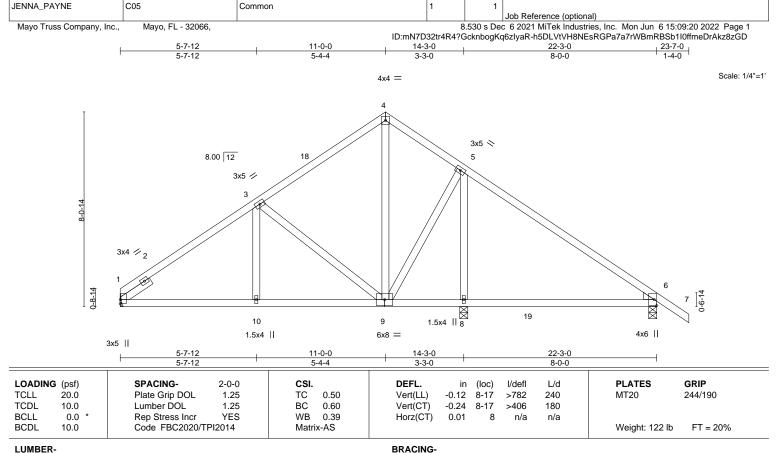
Max Grav 1=888(LC 1), 6=972(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-3=-1195/60, 3-4=-870/113, 4-5=-877/110, 5-6=-1249/53 BOT CHORD

1-10=0/930, 9-10=0/930, 8-9=0/970, 6-8=0/970WEBS 3-9=-381/70, 4-9=-25/544, 5-9=-413/70


NOTES-


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 11-0-0, Exterior(2R) 11-0-0 to 14-0-0, Interior(1) 14-0-0 to 23-7-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

June 8,2022

BOT CHORD

Qty

Ply

JENNA PAYNE

Structural wood sheathing directly applied.

Rigid ceiling directly applied.

LUMBER-

Job

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.2 WFBS

WEDGE

Right: 2x4 SP No.2

SLIDER Left 2x4 SP No.2 1-6-0

REACTIONS.

(size) 1=Mechanical, 8=0-4-0, 6=0-4-0

Max Horz 1=-148(LC 10)

Truss

Truss Type

Max Uplift 1=-20(LC 12), 6=-73(LC 12)

Max Grav 1=701(LC 17), 8=782(LC 17), 6=612(LC 18)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-3=-859/88, 3-4=-498/141, 4-5=-484/155, 5-6=-452/114 BOT CHORD

1-10=0/756, 9-10=0/756, 8-9=0/299, 6-8=0/299 WEBS 3-9=-498/73, 4-9=-105/337, 5-8=-479/26

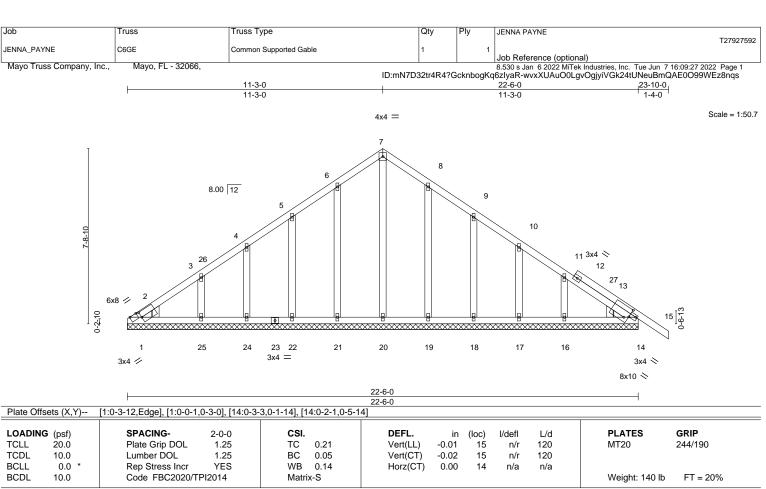
NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 11-0-0, Exterior(2R) 11-0-0 to 14-3-0, Interior(1) 14-3-0 to 23-7-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 6.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

June 8,2022

T27927591



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 2x4 SP No.2 **BOT CHORD OTHERS** 2x4 SP No.2

WEDGE

Left: 2x4 SP No.2 , Right: 2x4 SP No.2

REACTIONS. All bearings 22-6-0.

Max Horz 1=-146(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 14, 21, 22, 24, 25, 19, 18, 17, 16

Max Grav All reactions 250 lb or less at joint(s) 1, 20, 21, 22, 24, 25, 19, 18, 17, 16 except 14=265(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Corner(3E) 0-8-6 to 3-8-6, Exterior(2N) 3-8-6 to 11-3-0, Corner(3R) 11-3-0 to 14-3-0, Exterior(2N) 14-3-0 to 23-10-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) All plates are 1.5x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14, 21, 22, 24, 25, 19, 18, 17, 16.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

Job Truss Truss Type Qty Ply JENNA PAYNE T27927593 JENNA PAYNE C7SR **GABLE** Job Reference (optional) Mayo Truss Company, Inc., Mayo, FL - 32066, 8.530 s Dec 6 2021 MiTek Industries, Inc. Mon Jun 6 15:09:22 2022 Page 1 ID:mN7D32tr4R4?GcknbogKq6zlyaR-dUL5wYWXf_UagaZyF?AJbcrtcGOOm?PxDyiyFdz8zGB 11-3-0 11-3-0 6-0-0 5-3-0 Scale = 1:45.9 4x4 = 10 4x10 =11 3 8.00 12 Bracing 12 3x5 // 7x8 💸 2 13 4-4-12 19 0-6-14 0-2-10 22 21 20 4x6 II 3x4 3x8 =18 17 16 15 6-0-0 22-6-0 6-0-0 16-6-0 Plate Offsets (X,Y)--[3:0-3-0,Edge], [6:0-4-0,0-2-0], [19:0-4-3,0-1-11] LOADING (psf) SPACING-2-0-0 CSI. DEFL. (loc) I/defI L/d **PLATES** GRIP **TCLL** 20.0 Plate Grip DOL 1.25 TC 0.12 Vert(LL) -0.01 21 >999 240 MT20 244/190 TCDL Lumber DOL Vert(CT) 10.0 1.25 вс 0.15 -0.02 20-21 >999 180 WB 0.12 **BCLL** 0.0 Rep Stress Incr YES Horz(CT) -0.01 n/a n/a BCDL 10.0 Code FBC2020/TPI2014 Matrix-S Weight: 147 lb FT = 20% LUMBER-BRACING-

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.2 WFBS

OTHERS 2x4 SP No.2

WEDGE Left: 2x4 SP No.2

TOP CHORD BOT CHORD JOINTS

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 6-0-0 oc bracing.

1 Brace at Jt(s): 6

REACTIONS. All bearings 10-10-0 except (jt=length) 1=0-4-0.

Max Horz 19=-136(LC 10) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 18, 17, 16, 15

All reactions 250 lb or less at joint(s) 18, 17, 16, 14 except 1=451(LC 1), Max Grav

15=257(LC 18), 19=598(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD $1\hbox{-}2\hbox{--}600/40, 2\hbox{-}3\hbox{--}422/58, 3\hbox{-}4\hbox{--}420/100, 4\hbox{-}6\hbox{--}432/111, 6\hbox{-}8\hbox{--}635/142, 8\hbox{-}19\hbox{--}726/123}$

BOT CHORD 1-22=0/443, 21-22=0/443, 20-21=0/485, 19-20=0/485

WEBS 3-21=-33/304

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Corner(3E) 0-2-0 to 3-3-0, Exterior(2N) 3-3-0 to 11-3-0, Corner(3R) 11-3-0 to 14-3-0, Exterior(2N) 14-3-0 to 22-4-3 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) All plates are 1.5x4 MT20 unless otherwise indicated.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 18, 17, 16, 15.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

June 8,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

		, ,	1	1			T27927594
JENNA_PAYNE	C8GE	GABLE	1	1			
					eference (optional)		
Mayo Truss Company, Inc	c., Mayo, FL - 32066,		ID NZDOO		1 MiTek Industries, Ir		
1.10		6-0-0	ID:mN/D32t	tr4R4?GcknbogKq6zIya	RK-ZST I ILE Y NBCIIVIJLI 2-0-0	/IQCng1xEF45nE\	
-1-4-0 1-4-0		6-0-0		12	-0-0	+	13-4-0 1-4-0
1 4 0		0 0 0		ŭ			1 4 0
			4x4 =				Scale = 1:25.6
			444 —				
_			4				
			$/ \cup \setminus$				
		_ //					
	8.00	12		5			
		3 / /		//,			
		/п/		\			
		13			14		
4-2-10		13/					
5					, \		
7	_				6		
	2 /						
					\[\]		
						7	
	1 / /					/ / '	
							0
		Ц					0-2-10
d			<u> </u>	××××××××××××××××××××××××××××××××××××××	××××××××××××××××××××××××××××××××××××××		0
	3x4 //	11	10	9	8	3x4 ≫	
	OX4 /					OA4 C	
	1		12-0-0				
			12-0-0				
LOADING (psf)	SPACING- 2-0-		DEFL.	in (loc) I/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.2	.5 TC 0.05	Vert(LL)	n/a - n/a	999	MT20	244/190
TCDL 10.0	Lumber DOL 1.2		Vert(CT)	n/a - n/a	999		
BCLL 0.0 *	Rep Stress Incr YE	S WB 0.02	Horz(CT)	0.00 7 n/a	n/a		
BCDL 10.0	Code FBC2020/TPI2014	Matrix-S	. ,			Weight: 54 lb	FT = 20%

Qty

JENNA PAYNE

LUMBER-

Job

Truss

Truss Type

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.2 **OTHERS**

BRACING-

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 12-0-0.

Max Horz 1=-72(LC 10) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 11, 12, 9, 8

Max Grav All reactions 250 lb or less at joint(s) 1, 7, 10, 11, 12, 9, 8

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Corner(3E) 0-1-13 to 3-1-13, Exterior(2N) 3-1-13 to 6-0-0, Corner(3R) 6-0-0 to 9-0-0, Exterior(2N) 9-0-0 to 11-10-3 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) All plates are 1.5x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11, 12, 9, 8.

Michael S. Magid PE No.53681 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

Job Truss Truss Type Qty Ply JENNA PAYNE T27927595 JENNA PAYNE CJ01 Diagonal Hip Girder Job Reference (optional) Mayo Truss Company, Inc., Mayo, FL - 32066, 8.530 s Dec 6 2021 MiTek Industries, Inc. Mon Jun 6 15:09:25 2022 Page 1 ID:mN7D32tr4R4?GcknbogKq6zlyaR-131EYaZPyvt9X1HXw7j0DETIWTKbzL9Ovwxcsyz8zG8 -1-10-10 4-3-8 1-10-10 4-3-8 Scale = 1:30.8 1.5x4 || 4 5 NAILED 0-4-9 NAILED 13 NAILED 5.66 12 NAILED 3 4-7-13 1-3-4 NAII FD NAILED 12 9-9-0 15 14 8 NAILED NAILED 3x4 = 61.5x4 II 3x4 =NAILED NAILED NAILED NAILED 4-3-8 8-8-10 4-3-8 4-5-3 LOADING (psf) SPACING-2-0-0 CSL DEFL. in (loc) I/defl L/d **PLATES** GRIP **TCLL** 20.0 Plate Grip DOL 1.25 TC 0.46 Vert(LL) -0.03 7-8 >999 240 MT20 244/190 TCDL Lumber DOL 1.25 вс 0.51 Vert(CT) -0.07 7-8 >999 180 WB **BCLL** 0.0 Rep Stress Incr NO 0.18 Horz(CT) -0.01 5 n/a n/a BCDL 10.0 Code FBC2020/TPI2014 Matrix-MP Weight: 47 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.2 WFBS

WEDGE

Left: 2x4 SP No.3

REACTIONS. (size) 5=Mechanical, 2=0-5-11, 6=Mechanical

Max Horz 2=130(LC 8)

Max Uplift 2=-34(LC 8), 6=-112(LC 8)

Max Grav 5=189(LC 3), 2=505(LC 1), 6=324(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-547/0

BOT CHORD 2-8=-35/447 7-8=-35/447

WEBS 3-7=-513/40

NOTES-

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 6=112.
- 7) "NAILED" indicates 3-10d (0.148"x3") or 2-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)

Vert: 1-5=-60, 6-9=-20

Concentrated Loads (lb)

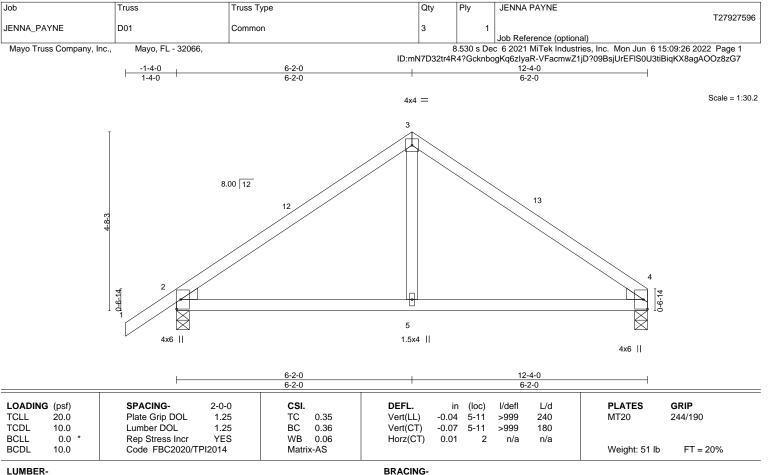
Vert: 8=-10(F=-5, B=-5) 13=-84(F=-42, B=-42) 15=-63(F=-32, B=-32)

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

June 8,2022


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not

Design Valid to its 9 this with Min New Commercials. This design is based only upon parameters shown, and is 10 at an individual obtaining Component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Chesterfield, MO 63017

BOT CHORD

Structural wood sheathing directly applied.

Rigid ceiling directly applied.

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.2 WFBS

WEDGE

Left: 2x4 SP No.2, Right: 2x4 SP No.2

REACTIONS.

(size) 2=0-4-0, 4=0-4-0 Max Horz 2=87(LC 11) Max Uplift 2=-35(LC 12) Max Grav 2=578(LC 1), 4=489(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-571/94. 3-4=-568/96 **BOT CHORD** 2-5=0/402, 4-5=0/402

WEBS 3-5=0/270

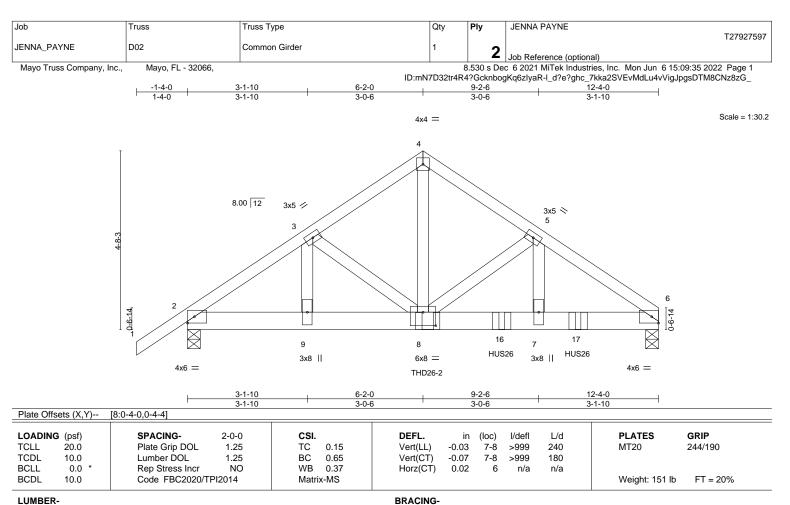
NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) -1-4-0 to 1-8-0, Interior(1) 1-8-0 to 6-2-0, Exterior(2R) 6-2-0 to 9-2-0, Interior(1) 9-2-0 to 12-4-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

June 8,2022



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No 2 BOT CHORD 2x6 SP No 2 2x4 SP No 2 WFBS

REACTIONS. 6=0-4-0, 2=0-4-0 (size) Max Horz 2=87(LC 24)

Max Grav 6=3295(LC 2), 2=2141(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-3136/0, 3-4=-3217/0, 4-5=-3215/0, 5-6=-4774/0 TOP CHORD **BOT CHORD** 2-9=0/2551, 8-9=0/2551, 7-8=0/3924, 6-7=0/3924 WFBS 4-8=0/3304. 5-8=-1711/0. 5-7=0/1849. 3-9=-254/0

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-7-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 5) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Use MiTek THD26-2 (With 18-16d nails into Girder & 12-10d nails into Truss) or equivalent at 6-3-8 from the left end to connect truss(es) to back face of bottom chord.
- 9) Use MITek HUS26 (With 14-16d nails into Girder & 6-16d nails into Truss) or equivalent spaced at 2-0-0 oc max. starting at 8-2-12 from the left end to 10-2-12 to connect truss(es) to back face of bottom chord.
- 10) Fill all nail holes where hanger is in contact with lumber

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)

Vert: 1-4=-60, 4-6=-60, 10-13=-20

Structural wood sheathing directly applied or 5-9-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

June 8.2022

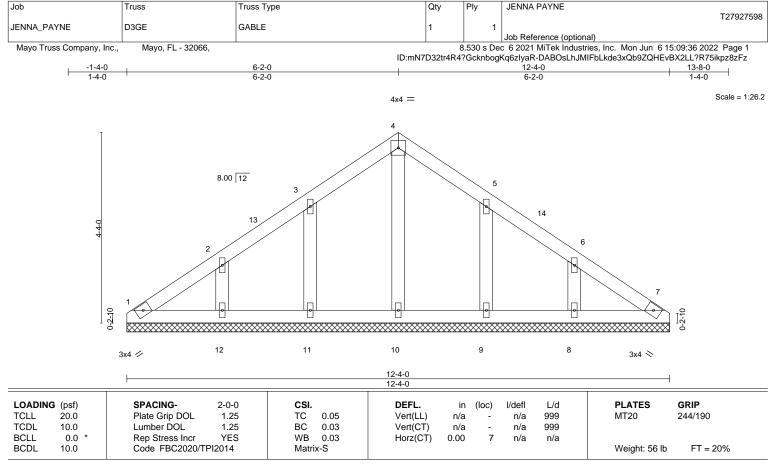
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MIL-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see

ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	JENNA PAYNE
	5.00				T27927597
JENNA_PAYNE	D02	Common Girder	1	2	Job Reference (optional)

Mayo Truss Company, Inc.,


Mayo, FL - 32066,

8.530 s Dec 6 2021 MiTek Industries, Inc. Mon Jun 6 15:09:35 2022 Page 2 ID:mN7D32tr4R4?GcknbogKq6zlyaR-I_d?e?ghc_7kka2SVEvMdLu4vVigJpgsDTM8CNz8zG_

LOAD CASE(S) Standard Concentrated Loads (lb)

Vert: 8=-1914(B) 16=-1205(B) 17=-1205(B)

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.2 **OTHERS**

BRACING-

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 12-4-0.

Max Horz 1=-74(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 11, 12, 9, 8

Max Grav All reactions 250 lb or less at joint(s) 1, 7, 10, 11, 12, 9, 8

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Corner(3E) 0-1-13 to 3-1-13, Exterior(2N) 3-1-13 to 6-2-0, Corner(3R) 6-2-0 to 9-2-0, Exterior(2N) 9-2-0 to 12-2-3 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) All plates are 1.5x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11, 12, 9, 8.

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

June 8,2022

Job Truss Truss Type Qty Ply JENNA PAYNE T27927599 JENNA PAYNE GDR1 Roof Special Girder 2 Job Reference (optional)

Mayo Truss Company, Inc., Mayo, FL - 32066,

8.530 s Dec 6 2021 MiTek Industries, Inc. Mon Jun 6 15:09:37 2022 Page 1 ID:mN7D32tr4R4?GcknbogKq6zlyaR-hMlm3hix7bNSztCrdfxqimzOqJMGnfC9gnrFGFz8zFy 9-4-10

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

1 Row at midpt

13-8-0 5-4-13 5-4-13 4-3-6

Scale = 1:56.1

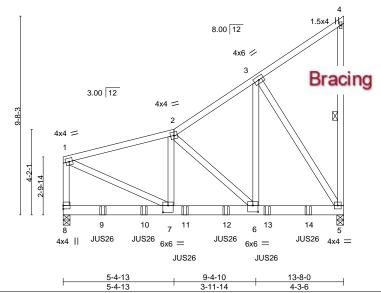


Plate Offsets (X,Y)-- [6:0-3-0,0-3-12], [7:0-3-0,0-4-0]

LOADING	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.31	Vert(LL)	-0.05	7-8	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.25	BC	0.71	Vert(CT)	-0.10	7-8	>999	180		
BCLL	0.0 *	Rep Stress Incr	NO	WB	0.63	Horz(CT)	0.01	5	n/a	n/a		
BCDL	10.0	Code FBC2020/TP	PI2014	Matri	x-MS						Weight: 224 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

WEBS

LUMBER-

TOP CHORD 2x4 SP No 2 BOT CHORD 2x6 SP No 2

2x4 SP No 2 WFBS

REACTIONS. 5=0-4-0, 8=0-4-0 (size)

Max Horz 8=270(LC 5)

Max Grav 5=2969(LC 1), 8=3080(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1-2=-3222/0, 2-3=-1953/0, 1-8=-2371/0 TOP CHORD **BOT CHORD** 6-7=0/3052 5-6=0/1582

WFBS 2-7=0/876, 2-6=-2028/0, 3-6=0/3208, 3-5=-2909/0, 1-7=0/3274

NOTES-

- 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:
 - Top chords connected as follows: 2x4 1 row at 0-9-0 oc.
 - Bottom chords connected as follows: 2x6 2 rows staggered at 0-9-0 oc.
 - Webs connected as follows: 2x4 1 row at 0-9-0 oc.
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Use MiTek JUS26 (With 4-10d nails into Girder & 4-10d nails into Truss) or equivalent spaced at 2-0-0 oc max. starting at 1-11-4 from the left end to 11-11-4 to connect truss(es) to back face of bottom chord.
- 8) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)

Vert: 1-2=-60, 2-4=-60, 5-8=-20

Concentrated Loads (lb)

Vert: 9=-881(B) 10=-868(B) 11=-868(B) 12=-868(B) 13=-868(B) 14=-628(B)

Michael S. Magid PE No.53681 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

June 8,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

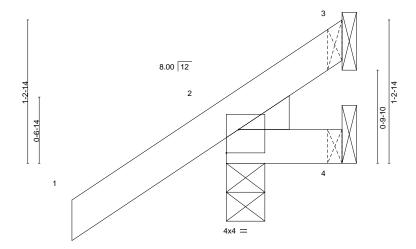
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	JENNA PAYNE	
						T27927600
JENNA_PAYNE	J01	Jack-Open	2	1	Ich Deference (entional)	
					Job Reference (optional)	

Mayo Truss Company, Inc.,

Mayo, FL - 32066,


8.530 s Dec 6 2021 MiTek Industries, Inc. Mon Jun 6 15:09:38 2022 Page 1 ID:mN7D32tr4R4?GcknbogKq6zlyaR-9ZJ8H0jZuvVJb1n1BMS3E_WbRjtlWFElvRaooiz8zFx

Structural wood sheathing directly applied or 1-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

-1-4-0 1-0-0 1-0-0 1-4-0

Scale = 1:10.0

1-0-0 1-0-0

Plate Off	late Offsets (X,Y) [2:Edge,0-2-7]											
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.13	Vert(LL)	0.00	7	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.25	BC	0.02	Vert(CT)	0.00	7	>999	180		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.00	2	n/a	n/a		
BCDL	10.0	Code FBC2020/TI	PI2014	Matri	x-MP	, ,					Weight: 7 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No.2

WEDGE

Left: 2x4 SP No.2

REACTIONS.

(size) 3=Mechanical, 2=0-4-0, 4=Mechanical

Max Horz 2=48(LC 12)

Max Uplift 3=-3(LC 9), 2=-52(LC 12), 4=-13(LC 1)

Max Grav 3=6(LC 8), 2=174(LC 1), 4=14(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2, 4.

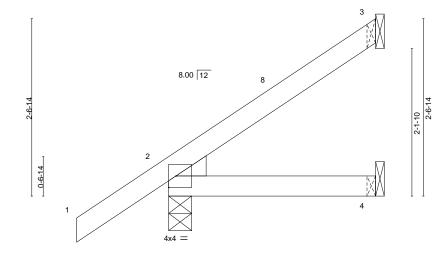
MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

June 8,2022

Job	Truss	Truss Type	Qty	Ply	JENNA PAYNE
JENNA PAYNE	J02	Jack-Open	2	1	T2792760 ⁻
JENNA_FATINE	302	Јаск-Ореп	2		Job Reference (optional)

Mayo Truss Company, Inc.,

Mayo, FL - 32066,


8.530 s Dec 6 2021 MiTek Industries, Inc. Mon Jun 6 15:09:39 2022 Page 1 ID:mN7D32tr4R4?GcknbogKq6zlyaR-dltWUMjBfDe9CBMDk4zlnB2nP7CYFiUS75KMK8z8zFw

Structural wood sheathing directly applied or 3-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

-1-4-0 1-4-0

Scale = 1:16.7

3-0-0
3-0-0

BRACING-TOP CHORD

BOT CHORD

LOADING	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.11	Vert(LL)	-0.00	4-7	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.25	BC	0.08	Vert(CT)	-0.01	4-7	>999	180		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code FBC2020/TF	PI2014	Matri	x-MP						Weight: 13 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

WEDGE Left: 2x4 SP No.2

REACTIONS.

(size) 3=Mechanical, 2=0-4-0, 4=Mechanical

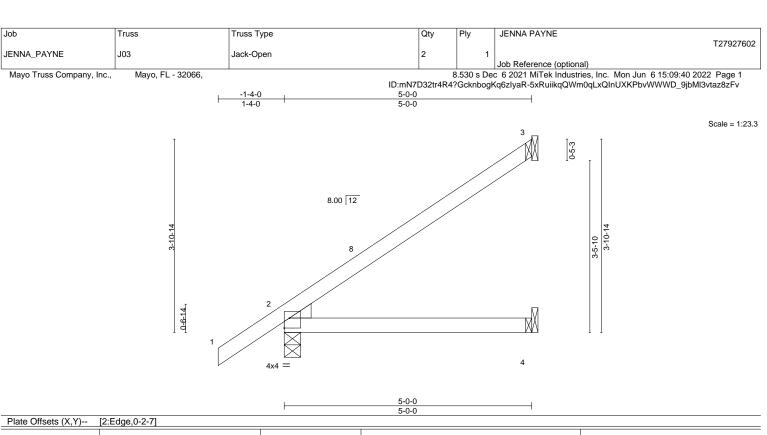
Max Horz 2=80(LC 12)

Max Uplift 3=-21(LC 12), 2=-23(LC 12)

Max Grav 3=69(LC 17), 2=216(LC 1), 4=52(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-


- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) -1-4-0 to 1-8-0, Interior(1) 1-8-0 to 2-11-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

June 8,2022

Plate Off	Plate Offsets (A, Y) [2:Edge,0-2-7]											
LOADIN	G (psf)	SPACING- 2-	-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL 1	.25	TC	0.28	Vert(LL)	0.03	4-7	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL 1	.25	BC	0.24	Vert(CT)	-0.05	4-7	>999	180		
BCLL	0.0 *	Rep Stress Incr Y	'ES	WB	0.00	Horz(CT)	0.01	2	n/a	n/a		
BCDL	10.0	Code FBC2020/TPI201	14	Matri	x-AS						Weight: 20 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied.

Rigid ceiling directly applied.

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

WEDGE

Left: 2x4 SP No.2

REACTIONS.

(size) 3=Mechanical, 2=0-4-0, 4=Mechanical

Max Horz 2=111(LC 12)

Max Uplift 3=-41(LC 12), 2=-8(LC 12)

Max Grav 3=130(LC 17), 2=288(LC 1), 4=89(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) -1-4-0 to 1-8-0, Interior(1) 1-8-0 to 4-11-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

June 8,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	JENNA PAYNE	Ply	Qty		Truss Type	Truss	ob
T2792760		1	13		Jack-Open	J04	ENNA_PAYNE
	Job Reference (optional)		13		Jack Open	304	ENIVA_I ATTIL
Jun 6 15:09:41 2022 Page 1 nsc81dwpCjczkbPpTP1z8zFu	c 6 2021 MiTek Industries, Inc. Mon J gKq6zIyaR-Z8_Hv2ISBqutSVWcsU?ns	.530 s De ?Gcknbo	7D32tr4R	ID:ml	·	c., Mayo, FL - 32066,	Mayo Truss Company
				6-2-0 6-2-0	-1-4-0 1-4-0		
				6-2-0	1-4-0		
Scale = 1:2	3						
		//	//	8.00 12			
	4.3.0			8		4-8-3	

6-2-0 6-2-0

BRACING-

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied.

Rigid ceiling directly applied.

Plate Off	sets (X,Y)	[2:Edge,0-2-3]										
LOADING	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.45	Vert(LL)	0.06	4-7	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.25	ВС	0.39	Vert(CT)	-0.13	4-7	>568	180		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.02	2	n/a	n/a		
BCDL	10.0	Code FBC2020/T	PI2014	Matri	x-AS						Weight: 24 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

WEDGE

Left: 2x4 SP No.2

REACTIONS.

(size) 3=Mechanical, 2=0-4-0, 4=Mechanical

0-6-14

Max Horz 2=130(LC 12)

Max Uplift 3=-53(LC 12), 2=-1(LC 12)

Max Grav 3=165(LC 17), 2=333(LC 1), 4=110(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) -1-4-0 to 1-8-0, Interior(1) 1-8-0 to 6-1-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

MiTck Inc. DBA MiTck USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

Job Truss Truss Type Qty JENNA PAYNE T27927604 JENNA PAYNE V01 Valley Job Reference (optional) 8.530 s Jan 6 2022 MiTek Industries, Inc. Tue Jun 7 16:11:02 2022 Page 1 ID:mN7D32tr4R4?GcknbogKq6zlyaR-eBASQf2_eXeRIGUDmyT0P6lixxGNWOADsgghMEz8npN Mayo, FL - 32066. Mayo Truss Company, Inc., 33-1-2 19-6-11 9-7-7 9-11-3 13-6-8 Scale = 1:59 4 4x4 = 6 8.00 12 19 5 Bracing 3.00 12 5x7 = 2-4-14 " 3x4 = 3x4 > 16 15 14 21 13 12 22 10 5x5 = 5x5 = 33-0-12 33-1-2 0-0-6 33-0-12 Plate Offsets (X,Y)--[12:0-2-8,0-3-0], [14:0-2-8,0-3-0] LOADING (psf) CSI. DEFL. **PLATES** GRIP SPACING-I/d 2-0-0 in (loc) I/defl TC BC Plate Grip DOL 244/190 TCLL 20.0 1.25 0.30 Vert(LL) n/a n/a 999 MT20 TCDL 10.0 Lumber DOL 1.25 0.25 Vert(CT) n/a n/a 999 **BCLL** 0.0 Rep Stress Incr YES WB 0.17 Horz(CT) 0.00 9 n/a BCDL 10.0 Code FBC2020/TPI2014 Matrix-S Weight: 146 lb FT = 20% LUMBER-BRACING-2x4 SP No.2 TOP CHORD TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. 2x4 SP No.2 **BOT CHORD BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing. 2x4 SP No.2 **WEBS** WEBS 1 Row at midpt 6-12 OTHERS 2x4 SP No.2

REACTIONS. All bearings 32-11-12.

(lb) - Max Horz 1=163(LC 11)

Max Uplift All uplift 100 lb or less at joint(s) 14, 13, 11, 10, 16

Max Grav All reactions 250 lb or less at joint(s) 1, 9, 15 except 14=284(LC 17), 12=327(LC 17), 13=526(LC 17), 11=455(LC 18), 10=526(LC 18), 16=430(LC 17)

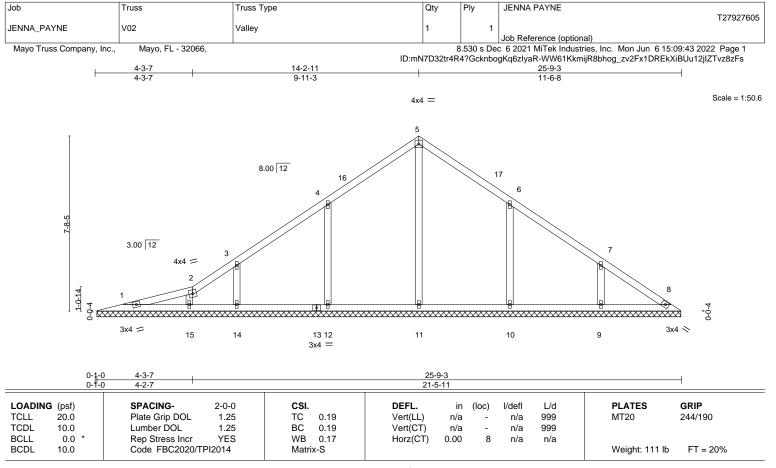
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. **WEBS** 5-13=-274/154, 8-10=-319/162, 2-16=-300/101

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=33ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) 1-3-0 to 4-6-10, Interior(1) 4-6-10 to 19-6-11, Exterior(2R) 19-6-11 to 22-10-4, Interior(1) 22-10-4 to 32-7-6 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) All plates are 1.5x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14, 13, 11, 10, 16.

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

June 8,2022



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LUMBER-

OTHERS

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No 2 WFBS

BRACING-

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

6-0-0 oc bracing: 1-15.

REACTIONS. All bearings 25-7-13.

(lb) -Max Horz 1=136(LC 11)

2x4 SP No.2

Max Uplift All uplift 100 lb or less at joint(s) 12, 14, 10, 9

Max Grav All reactions 250 lb or less at joint(s) 1, 8, 15 except 11=384(LC 17), 12=427(LC 17), 14=301(LC 17),

10=431(LC 18), 9=368(LC 18)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 4-12=-271/152, 6-10=-264/149

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=26ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) 1-3-0 to 4-3-7, Interior(1) 4-3-7 to 14-2-11, Exterior(2R) 14-2-11 to 17-2-11, Interior(1) 17-2-11 to 25-3-6 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) All plates are 1.5x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12, 14, 10, 9.

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

June 8,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

		· ·	1	'			T27927606
IENNA_PAYNE	V03	Valley	1	1		D.	
Mayo Truss Company, Inc.,	Mayo, FL - 32066,			8.530 s De	Job Reference (optional c 6 2021 MiTek Industri	ies, Inc. Mon Jun 6 15	i:09:44 2022 Page 1
		9-6-8	ID:mN7D32tr	4R4?Gcknbogk	(q6zIyaRigPX4nKUIG 19-1-0	SJyEBXdZUUFmaM8s	twyFBHN170Lz8zFr
H		9-6-8			9-6-8		
			4x4 =				Scale = 1:40.4
6-4-5	8.00 12	1.5x4 10	3	11	1.5x4 4	5	
1 40	***************************************	——————————————————————————————————————			<u>*************************************</u>	***************************************	0-0-4
	*********	*********	******	****	******	******	Ò
3	3x4 🖊	9 12 8	7	13 6		3x4 📏	
		1.5x4 3x4 = 1	1.5x4	1.5x4	!		
0- <u>9-</u> 0-0-	6 6		19-1-0 19-0-10				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.25 Lumber DOL 1.25 Rep Stress Incr YES	TC 0.29 BC 0.26 WB 0.09	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) n/a - n/a - 0.00 5	l/defl L/d n/a 999 n/a 999 n/a n/a	PLATES MT20	GRIP 244/190
BCDL 10.0	Code FBC2020/TPI2014	Matrix-S				Weight: 79 lb	FT = 20%

Qty

Plv

JENNA PAYNE

LUMBER-

Job

Truss

Truss Type

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.2 **OTHERS**

BRACING-

TOP CHORD **BOT CHORD**

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 19-0-4.

Max Horz 1=-111(LC 10) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 9, 6

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=312(LC 17), 9=554(LC 17), 6=547(LC 18)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-9=-333/135, 4-6=-334/135 **WEBS**

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) 0-5-12 to 3-5-12, Interior(1) 3-5-12 to 9-6-8, Exterior(2R) 9-6-8 to 12-6-8, Interior(1) 12-6-8 to 18-7-4 zone, cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9, 6.

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

lob	Truss	Truss Type	Qty	Ply	JENNA PAYNE		
		l.,		١.			T27927607
ENNA_PAYNE	V04	Valley	1	1		1)	
Maya Truas Campany Inc	May 51 22066			2 F20 a Da	Job Reference (optiona c 6 2021 MiTek Industrie		00:45 2022 Dogs 4
Mayo Truss Company, Inc.,	Mayo, FL - 32066,				ıKq6zIyaR-SvEnlQoyF30		
		7-6-8	ID.IIIIV/ D32(14)(-	+: Ockriboč	15-1-0	JJXOPINJIN4J I JIIIZXI QII	VICVV IIIg 102021 q
		7-6-8			7-6-8		
		4x4	=				Scale: 3/8"=1'
		3					
т		3					
			<u> </u>				
	8.00	12					
		· //					
			,		10		
	1.5x4	⁹ //			1.5x4		
ιά		<i>" / / </i>			4		
5-0-5					\ \ '		
1	_				\\[\]		
						\ \	
	1 //					5	
4-0-0	£		····	~~~~	××××××××××××××××××××××××××××××××××××××	- 5	5
Ó	·····	***************************************	·····	~~~~~	***************************************	***************************************	5
	3x4 🖊	8 7			6	3x4 ≪	
			1			****	
	1.	5x4 1.5x4	II.		1.5x4		
0-0)-6 -6	15-1-					
U-(J-6	15-0-1	10			· · · · · · · · · · · · · · · · · · ·	
LOADING (psf)	SPACING- 2-0-	CSI.	DEFL. i	n (loc)	I/defl L/d	PLATES (GRIP
TCLL 20.0	Plate Grip DOL 1.2		ert(LL) n/a		n/a 999		244/190
TCDL 10.0	Lumber DOL 1.2		rert(LL) n/a		n/a 999 n/a 999	IVIIZU	244/130
BCLL 0.0 *	Rep Stress Incr YE						
BCDL 10.0	Code FBC2020/TPI2014		Horz(CT) 0.00	U S	n/a n/a	Weight: 60 lb	FT = 20%
DODL 10.0	Code FBC2020/1PI2014	iviatrix-3				weight. 60 lb	F I = 20%
·	·		·		·	·	· · · · · · · · · · · · · · · · · · ·

LUMBER-

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.2 **OTHERS**

BRACING-

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 15-0-4.

Max Horz 1=87(LC 11) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 8, 6

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=259(LC 1), 8=335(LC 17), 6=335(LC 18)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-8=-254/124, 4-6=-254/124 **WEBS**

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) 0-5-12 to 3-6-8, Interior(1) 3-6-8 to 7-6-8, Exterior(2R) 7-6-8 to 10-6-8, Interior(1) 10-6-8 to 14-7-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6.

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

Job Truss Truss Type Qty Ply JENNA PAYNE T27927608 JENNA PAYNE V05 Valley Job Reference (optional) Mayo Truss Company, Inc., Mayo, FL - 32066, 8.530 s Dec 6 2021 MiTek Industries, Inc. Mon Jun 6 15:09:46 2022 Page 1 ID:mN7D32tr4R4?GcknbogKq6zIyaR-w5oAympa0MWAYGOZf2byZgrv7xYPOtLUIhWE4Ez8zFp 5-6-8 5-6-8 . 11-1-0 5-6-8 Scale = 1:23.7 4x4 = 2 8.00 12 3x4 // 3x4 × 1.5x4 || 11-1-0 11-0-10 CSL GRIP LOADING (psf) SPACING-2-0-0 DEFL. in (loc) I/defI I/d **PLATES TCLL** 20.0 Plate Grip DOL 1.25 TC 0.34 Vert(LL) n/a n/a 999 MT20 244/190 TCDL 10.0 Lumber DOL 1.25 вс 0.26 Vert(CT) n/a n/a 999 WB 0.06 **BCLL** 0.0 Rep Stress Incr YES Horz(CT) 0.00 3 n/a n/a Code FBC2020/TPI2014 Weight: 39 lb BCDL 10.0 Matrix-S FT = 20% BRACING-

TOP CHORD

BOT CHORD

LUMBER-

REACTIONS.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.2 **OTHERS**

Max Horz 1=62(LC 11)

Max Uplift 1=-13(LC 12), 3=-13(LC 12)

(size) 1=11-0-4, 3=11-0-4, 4=11-0-4

Max Grav 1=197(LC 1), 3=197(LC 1), 4=415(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 2-4=-265/80

NOTES-

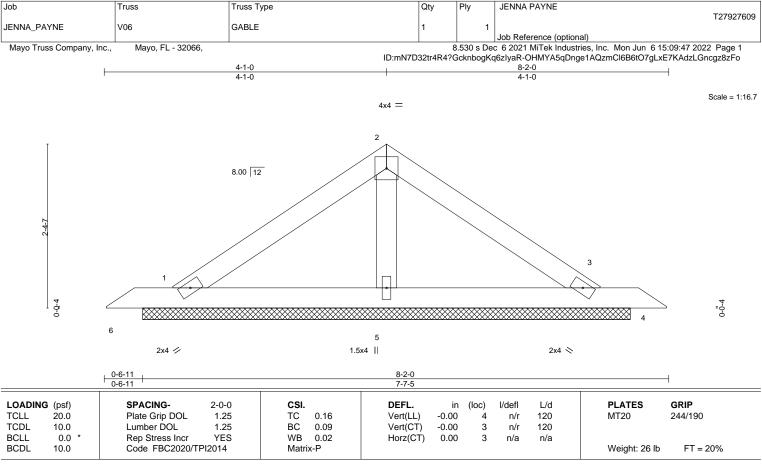
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) 0-5-12 to 3-5-12, Interior(1) 3-5-12 to 5-6-8, Exterior(2R) 5-6-8 to 8-6-8, Interior(1) 8-6-8 to 10-7-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

June 8,2022



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.2 **OTHERS**

BRACING-

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 1=7-0-10, 3=7-0-10, 5=7-0-10

Max Horz 1=-38(LC 10)

Max Uplift 1=-35(LC 12), 3=-20(LC 12)

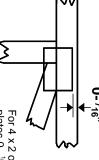
Max Grav 1=187(LC 1), 3=187(LC 1), 5=211(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017



Symbols

PLATE LOCATION AND ORIENTATION

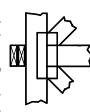
offsets are indicated. Center plate on joint unless x, y and fully embed teeth Apply plates to both sides of truss Dimensions are in ft-in-sixteenths.

plates 0- 1/16" from outside edge of truss. For 4 x 2 orientation, locate

connector plates. required direction of slots in This symbol indicates the

* Plate location details available in MiTek 20/20 software or upon request.

PLATE SIZE

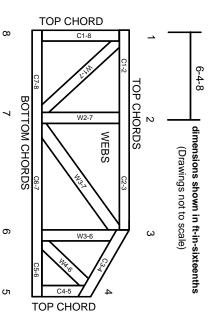

to slots. Second dimension is the length parallel to slots. width measured perpendicular The first dimension is the plate

LATERAL BRACING LOCATION

by text in the bracing section of the output. Use T or I bracing if indicated. ndicated by symbol shown and/or

BEARING

Min size shown is for crushing only number where bearings occur. reaction section indicates joint (supports) occur. Icons vary but Indicates location where bearings


Industry Standards:

National Design Specification for Metal

DSB-89: ANSI/TPI1:

Installing & Bracing of Metal Plate Connected Wood Trusses. Guide to Good Practice for Handling **Building Component Safety Information** Design Standard for Bracing. Plate Connected Wood Truss Construction.

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

PRODUCT CODE APPROVALS

ICC-ES Reports:

ESR-1311, ESR-1352, ESR1988 ER-3907, ESR-2362, ESR-1397, ESR-3282

truss unless otherwise shown. Trusses are designed for wind loads in the plane of the

established by others. section 6.3 These truss designs rely on lumber values Lumber design values are in accordance with ANSI/TPI 1

© 2012 MiTek® All Rights Reserved

MiTek Engineering Reference Sheet: MII-7473 rev. 5/19/2020

General Safety Notes

Damage or Personal Injury Failure to Follow Could Cause Property

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Ņ Truss bracing must be designed by an engineer. For bracing should be considered may require bracing, or alternative Tor I wide truss spacing, individual lateral braces themselves
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.

ω

- Provide copies of this truss design to the building all other interested parties. designer, erection supervisor, property owner and
- Cut members to bear tightly against each other.

Ģ

- joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1. Place plates on each face of truss at each
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.

œ

- 9 Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber
- Camber is a non-structural consideration and is the camber for dead load deflection responsibility of truss fabricator. General practice is to
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- Connections not shown are the responsibility of others
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable project engineer before use. environmental, health or performance risks. Consult with
- 19. Review all portions of this design (front, back, words is not sufficient. and pictures) before use. Reviewing pictures alone
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.