

RE: 211014-04KM - Bill Ladson

MiTek USA, Inc. 6904 Parke East Blvd. Tampa, FL 33610-4115

Site Information:

Customer Info: Bill Ladson Project Name: Leo & Robbie Brooks Model: .

Lot/Block: . Subdivision: .

Address: SR. 47, .

City: Lake City State: Fl.

Name Address and License # of Structural Engineer of Record, If there is one, for the building.

Name: License #:

Address:

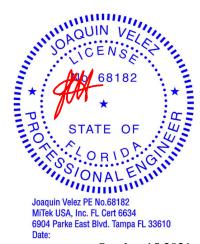
City: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: FBC2020/TPI2014 Design Program: MiTek 20/20 8.5

Wind Code: ASCE 7-16 Wind Speed: 130 mph Roof Load: 34.0 psf Floor Load: N/A psf

This package includes 51 individual, Truss Design Drawings and 0 Additional Drawings. With my seal affixed to this sheet, I hereby certify that I am the Truss Design Engineer and this index sheet conforms to 61G15-31.003, section 5 of the Florida Board of Professional Engineers Rules.


No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	T25656935	CJ01	10/15/21	23	T25656957	M04	10/15/21
2	T25656936	CJ02	10/15/21	24	T25656958	PB02	10/15/21
3	T25656937	GE01	10/15/21	25	T25656959	PB04	10/15/21
4	T25656938	GE02	10/15/21	26	T25656960	PB05	10/15/21
5	T25656939	H01	10/15/21	27	T25656961	PB06	10/15/21
<u>6</u>	T25656940	H02	10/15/21	28	T25656962	PB07	10/15/21
/	T25656941	H03	10/15/21	29	T25656963	PB08	10/15/21
8	T25656942	H04	10/15/21	30	T25656964	T01	10/15/21
9	T25656943	H05	10/15/21	31	T25656965	T02	10/15/21
10 11	T25656944 T25656945	H06 H07	10/15/21	32 33	T25656966 T25656967	T03 T04	10/15/21
12	T25656946	H08	10/15/21 10/15/21	33 34	T25656968	T05	10/15/21 10/15/21
13	T25656947	H09	10/15/21	35	T25656969		
14	T25656948	H10	10/15/21	36	T25656970	T06 T07	10/15/21 for Code Compliance
15	T25656949	J01	10/15/21	37	T25656971	T08	10/15/21 10/18/24rsal Engineering Science
16	T25656950	J02	10/15/21	38	T25656972	T09	10/15/21
17	T25656951	J04	10/15/21	39	T25656973	T10 \(\alpha\)	10/15/21 40/15/21 PX2707 11/18/2021
18	T25656952	J07	10/15/21	40	T25656974	T11 ~ ~ Lule	40/15/21/Ve
19	T25656953	J08	10/15/21	41	T25656975	112	1 0 种根据/10ef-License No.
20	T25656954	M01	10/15/21	42	T25656976	<u>T</u> 13	10/15/21
21	T25656955	M02	10/15/21	43	T25656977	<u>T14</u>	10/15/21
22	T25656956	M03	10/15/21	44	T25656978	T15	10/15/21

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Coastal Truss & Vinyl Siding.

Truss Design Engineer's Name: Velez, Joaquin

My license renewal date for the state of Florida is February 28, 2023.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

October 15,2021

RE: 211014-04KM - Bill Ladson

MiTek USA, Inc. 6904 Parke East Blvd. Tampa, FL 33610-4115

Site Information:

Customer Info: Bill Ladson Project Name: Leo & Robbie Brooks Model: . Lot/Block: _- Subdivision: .

Lot/Block: . Address: SR. 47, .

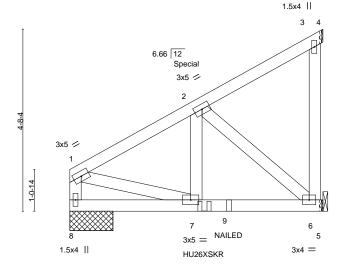
City: Lake City State: Fl.

No.	Seal#	Truss Name	Date
45	T25656979	T16	10/15/21
46	T25656980	T17	10/15/21
47	T25656981	T18	10/15/21
48	T25656982	T19	10/15/21
49	T25656983	T20	10/15/21
50	T25656984	T21	10/15/21
51	T25656985	TG01	10/15/21

Landem Panell

PX2707

11/18/2021


Job Truss Truss Type Qty Ply Bill Ladson T25656935 CJ01 2 211014-04KM Diagonal Hip Girder Job Reference (optional)

Coastal Truss & Vinyl Siding,

Patterson, GA - 31577,

8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 14 14:04:15 2021 Page 1 ID:5z5H8DqZnOIYpsEeEI7p3gyTVJ4-qAUxiLZpLhBND1RAlbTdGzqOaVqek1feYRDal3yTTrE

Scale = 1:29.6

6-6-3
3-3-1

LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.16	Vert(LL)	0.01	6-7	>999	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.13	Vert(CT)	-0.01	6-7	>999	180		
BCLL	0.0 *	Rep Stress Incr	NO	WB	0.08	Horz(CT)	-0.00	6	n/a	n/a		
BCDL	7.0	Code FBC2020/TP	12014	Matri	x-MP						Weight: 41 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

2x4 SP No.2 WFBS

REACTIONS. (size) 8=1-1-5, 6=Mechanical

Max Horz 8=189(LC 5)

Max Uplift 8=-93(LC 8), 6=-183(LC 5) Max Grav 8=257(LC 26), 6=306(LC 25)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-299/139

WEBS 1-7=-102/263, 2-6=-295/191

NOTES-

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8 except (jt=lb) 6 = 183.
- 7) Use Simpson Strong-Tie HU26XSKR (4-10d Girder, 2-10dx1 1/2 Truss, Skew Right, Single Ply Girder) or equivalent at 3-5-9 from the left end to connect truss(es) to back face of bottom chord, skewed 56.3 deg.to the right, sloping 0.0 deg. down.
- 8) Fill all nail holes where hanger is in contact with lumber.
- 9) "NAILED" indicates 3-10d skew 45 to 135 degrees (0.148" x 3") toe-nails per NDS guidelines.
- 10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 104 lb down and 99 lb up at 3-5-9 on top chord. The design/selection of such connection device(s) is the responsibility of others.
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)

Vert: 1-3=-54, 3-4=-14, 5-8=-14 Concentrated Loads (lb) Vert: 7=-4(B) 9=-56(F)

Review for Code @ o MPB Ham 628 82 Universal Engine FL 034 166. FL Cert 6634 Universal Engine FL 33610

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing. "Special" indicates special hanger(s) or other connection device(s) required at location(s)

shown. The design/selection of such special connection device(s) is the responsibility of

others. This applies to all applicable truss

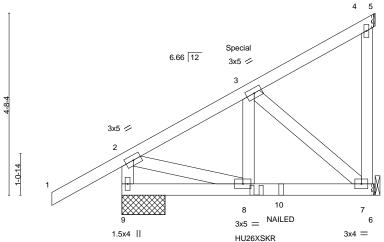
except end verticals

designs in this job.

PX October 15,202021

68182

Laudence Pernell


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply Bill Ladson T25656936 CJ02 2 211014-04KM Diagonal Hip Girder Job Reference (optional) Coastal Truss & Vinyl Siding, Patterson, GA - 31577, 8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 14 14:04:16 2021 Page 1 ID:5z5H8DqZnOIYpsEeEI7p3gyTVJ4-IM2KvhaR6_JEqB?MJI_soANXmv9yTU1nm5z7IWyTTrD -1-9-10 1-9-10 Scale = 1:29.6 1.5x4 || 4 5

BRACING-

TOP CHORD

BOT CHORD

LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.26	Vert(LL)	0.01	7-8	>999	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.12	Vert(CT)	-0.01	7-8	>999	180		
BCLL	0.0 *	Rep Stress Incr	NO	WB	0.07	Horz(CT)	-0.00	7	n/a	n/a		
BCDL	7.0	Code FBC2020/TI	PI2014	Matri	x-MP						Weight: 44 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

2x4 SP No.2 WFBS

REACTIONS. (size) 9=1-1-5, 7=Mechanical

Max Horz 9=210(LC 5)

Max Uplift 9=-193(LC 8), 7=-181(LC 5) Max Grav 9=353(LC 1), 7=291(LC 25)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-9=-340/212, 2-3=-296/136 2-8=-106/262, 3-7=-261/174 **WEBS**

NOTES-

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 9=193, 7=181.
- 7) Use Simpson Strong-Tie HU26XSKR (4-10d Girder, 2-10dx1 1/2 Truss, Skew Right, Single Ply Girder) or equivalent at 3-5-9 from the left end to connect truss(es) to back face of bottom chord, skewed 56.3 deg.to the right, sloping 0.0 deg. down.
- 8) Fill all nail holes where hanger is in contact with lumber.
- 9) "NAILED" indicates 3-10d skew 45 to 135 degrees (0.148" x 3") toe-nails per NDS guidelines.
- 10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 104 lb down and 99 lb up at 3-5-9 on top chord. The design/selection of such connection device(s) is the responsibility of others.
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)

Vert: 1-2=-54, 2-4=-54, 4-5=-14, 6-9=-14 Concentrated Loads (lb)

Vert: 8=-4(B) 10=-56(F)

Review for Code @ o mp file moet 82 Universal Enging in G Ex Get 6634 Universal Enging in G Ex Get 1634

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals

PX October 15,202021

JOAQUIN VE

68182

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

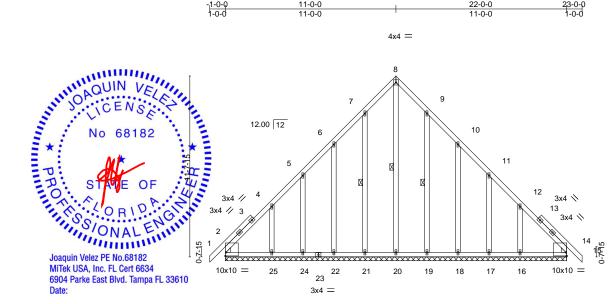
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply Bill Ladson T25656937 GE01 **GABLE** 211014-04KM Job Reference (optional) Coastal Truss & Vinyl Siding, Patterson, GA - 31577, 8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 14 14:04:18 2021 Page 1 ID:5z5H8DqZnOIYpsEeEI7p3gyTVJ4-EIA4KMbhecZx4V9lQj1KtbSvtirvxMb4EPSEMOyTTrB

11-0-0

11-0-0 11-0-0


> Scale = 1:74.3 4x4 =

> > Structural wood sheathing directly applied or 6-0-0 oc purlins.

8-20, 7-21, 9-19

Rigid ceiling directly applied or 10-0-0 oc bracing.

1 Row at midpt

22-0-0 22-0-0

Plate Offs	sets (X,Y)	[2:Edge,0-2-12], [14:Edge	e,0-2-12]										
LOADING	\(\(\)	SPACING-	2-0-0	CSI.	0.45	DEFL.		(loc)	l/defl	L/d	PLATES	GRIP	
TCLL	20.0	Plate Grip DOL	1.25	TC	0.15	Vert(LL)	0.00	14	n/r	120	MT20	244/190	
TCDL	7.0	Lumber DOL	1.25	BC	0.09	Vert(CT)	0.00	15	n/r	120			
BCLL	0.0 *	Rep Stress Incr	NO	WB	0.19	Horz(CT)	0.01	14	n/a	n/a			
BCDL	7.0	Code FBC2020/T	PI2014	Matri	x-S						Weight: 181 lb	FT = 20%	

BRACING-

WFBS

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No 2

2x4 SP No.2 WFBS **OTHERS** 2x4 SP No.2

WEDGE

Left: 2x4 SP No.2 , Right: 2x4 SP No.2

REACTIONS. All bearings 22-0-0.

(lb) -Max Horz 2=-360(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 14, 20, 21, 24, 19, 17 except

2=-141(LC 10), 22=-117(LC 12), 25=-170(LC 12), 18=-117(LC 12), 16=-170(LC

Max Grav All reactions 250 lb or less at joint(s) 2, 14, 21, 22, 24, 19, 18, 17

except 20=265(LC 12), 25=261(LC 17), 16=254(LC 18)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-306/298, 7-8=-183/304, 8-9=-183/304, 12-14=-302/203

BOT CHORD 2-25=-158/307, 24-25=-158/307, 22-24=-158/307, 21-22=-158/307, 20-21=-158/307,

19-20=-158/307, 18-19=-158/307, 17-18=-158/307, 16-17=-158/307, 14-16=-158/307

WEBS 8-20=-336/162, 4-25=-213/267, 12-16=-206/267

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (directional) and C-C Corner(3E) -1-0-0 to 2-0-0, Exterior(2N) 2-0-0 to 11-0-0, Corner(3R) 11-0-0 to 14-0-0, Exterior(2N) 14-0-0 to 23-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) All plates are 1.5x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live load
- 6-0 tall by 2-0 ta 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a recta Universal Engineering Science will fit between the bottom chord and any other members.

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14, 20, 21, 24, 19, 17 except (jt=lb) 2=141, 22=117, 25=170, 18=117, 16=170.

PX October 15,202021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply Bill Ladson T25656938 GE02 **GABLE** 211014-04KM Job Reference (optional)

4x4 =

6-8-0

6-8-0

Coastal Truss & Vinyl Siding,

Patterson, GA - 31577,

8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 14 14:04:19 2021 Page 1 ID:5z5H8DqZnOIYpsEeEI7p3gyTVJ4-ixkSXicKPvhohekx_RYZQp?5J6BSgq0ET3BovryTTrA 13-4-0 14-4-0 1-0-0

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Scale = 1:44.1

6-8-0

6 5 12.00 12 9^{3x4} ∨ 3x4 // 3x4 / 3x4 \ 10x10 10x10 =16 15 12 14 13 13-4-0

Plate Offsets (X,Y)--[2:Edge,0-2-12], [10:Edge,0-2-12] LOADING (psf) SPACING-CSI. DEFL. (loc) I/defI L/d **PLATES GRIP TCLL** 20.0 Plate Grip DOL 1.25 TC 0.11 Vert(LL) -0.00 10 n/r 120 MT20 244/190 TCDL 7.0 Lumber DOL 1.25 BC 0.07 Vert(CT) 0.00 10 n/r 120 WB **BCLL** 0.0 Rep Stress Incr NO 0.18 Horz(CT) 0.00 10 n/a n/a BCDL 7.0 Code FBC2020/TPI2014 Matrix-S Weight: 94 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

13-4-0

LUMBER-

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No.2 2x4 SP No.2 WFBS **OTHERS** 2x4 SP No.2

WEDGE

Left: 2x4 SP No.2 , Right: 2x4 SP No.2

REACTIONS. All bearings 13-4-0.

Max Horz 2=-225(LC 10) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 2, 10, 14 except 15=-103(LC 12),

16=-142(LC 12), 13=-103(LC 12), 12=-142(LC 12)

Max Grav All reactions 250 lb or less at joint(s) 2, 10, 14, 15, 16, 13, 12

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 4-16=-200/305, 8-12=-200/304

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (directional) and C-C Corner(3E) -1-0-0 to 2-0-0, Exterior(2N) 2-0-0 to 6-8-0, Corner(3R) 6-8-0 to 9-8-0. Exterior(2N) 9-8-0 to 14-4-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) All plates are 1.5x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10, 14 except (jt=lb) 15=103, 16=142, 13=103, 12=142.

Review for Code @ o MPB Ham 628 82 Universal Engine FL 034 166. FL Cert 6634 Universal Engine FL 33610

Laudence Pernell

PX October 15,202021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply Bill Ladson T25656939 H01 211014-04KM Hip Girder 2 Job Reference (optional) Coastal Truss & Vinyl Siding, Patterson, GA - 31577, 8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 14 14:04:21 2021 Page 1 ID:5z5H8DqZnOIYpsEeEl7p3gyTVJ4-eKrDyOdaxXxWxyuK5sa1VE4Qkwsj7lnWwNguzjyTTr8 11-7-7 15-8-0 19-4-0 20-4-0 7-8-9 3-8-0 4-0-9 3-10-13 3-8-0 1-0-0 Scale = 1:36.0 NAILED NAILED NAILED NAILED 3x8 = 4x8 = 1.5x4 || 4x4 = NAILED NAILED NAILED 3 18 16 17 19 5 14/15 12.00 12 3x6 💉 3x6 // 1-0-14 1-0-14 П П П 22 23 20 21 12 11 10 9 8_{2x4} || NAILED NAILED NAILED 8x10 = 3x8 = 2x4 || 5x10 = 2x4 || NAILED NAILED Special Special 7-8-9 15-8-0 3-8-0 3-8-0 4-0-9 3-10-13 4-0-9 3-8-0 Plate Offsets (X,Y)--[2:0-6-4,0-1-12], [5:0-2-4,0-1-12], [12:0-1-12,0-4-8] LOADING (psf) SPACING-2-0-0 CSI. DEFL. in (loc) I/defI L/d **PLATES** GRIP **TCLL** 20.0 Plate Grip DOL 1.25 TC 0.18 Vert(LL) 0.03 11-12 >999 240 MT20 244/190 TCDL 7.0 Lumber DOL 1.25 BC 0.15 Vert(CT) -0.03 11 >999 180 WB 0.10 **BCLL** 0.0 Rep Stress Incr NO Horz(CT) 0.01 8 n/a n/a BCDL 7.0 Code FBC2020/TPI2014 Matrix-MS Weight: 281 lb FT = 20% LUMBER-**BRACING-**TOP CHORD 2x4 SP No 2 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, **BOT CHORD** 2x6 SP No 2 except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 2-5. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing

2x4 SP No 2 WFBS REACTIONS.

(size) 13=0-8-0, 8=0-8-0 Max Horz 13=-165(LC 6)

Max Uplift 13=-671(LC 8), 8=-720(LC 8) Max Grav 13=1299(LC 29), 8=1350(LC 30)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1-2=-1426/781, 2-3=-1455/840, 3-4=-1455/840, 4-5=-1001/608, 5-6=-1423/777, TOP CHORD

1-13=-1298/703. 6-8=-1313/730

 $11\text{-}12\text{=-}487/1022,\ 10\text{-}11\text{=-}719/1486,\ 9\text{-}10\text{=-}719/1486}$ BOT CHORD

2-11=-408/773, 3-11=-415/103, 4-10=-152/263, 4-9=-732/355, 5-9=-464/720, **WEBS**

1-12=-499/943, 6-9=-474/922

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 5) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 6) Provide adequate drainage to prevent water ponding.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 13=671, 8=720,
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top
- 11) "NAILED" indicates 3-10d Nails (0.148" x 3") toe-nails per NDS guidelines.

12) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 323 lb down and 299 lb up at 3-8-0, and 311 lb down and 297 lb up at 15-7-4 on bottom chord. The design/selection of such connestion device(s) is,犇e responsibility of others.

sweeper t

notion Review for Code @omphane882 Milek Jisa Tee FL Cert 6634 Universal Engingaring ക്ലിക്സ് ക്ലെ FL 33610 PX October 15,20,2021

JOAQUIN VE

68182

LOAD CASE(S) verified sign parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Bill Ladson
					T25656939
211014-04KM	H01	Hip Girder	1	2	Job Reference (optional)

Coastal Truss & Vinyl Siding,

Patterson, GA - 31577,

8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 14 14:04:21 2021 Page 2 ID:5z5H8DqZnOIYpsEeEl7p3gyTVJ4-eKrDyOdaxXxWxyuK5sa1VE4Qkwsj7lnWwNguzjyTTr8

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)

Vert: 1-2=-54, 2-5=-54, 5-6=-54, 6-7=-54, 8-13=-14

Concentrated Loads (lb)

Vert: 2=-90(B) 5=-90(B) 11=-29(B) 3=-90(B) 10=-29(B) 4=-90(B) 9=-249(B) 15=-90(B) 16=-90(B) 18=-90(B) 20=-265(B) 21=-29(B) 22=-29(B) 23=-29(B)

Review for Code Compliance Universal Engineering Science

PX2707

11/18/2021

6904 Parke East Blvd. Tampa, FL 36610

Job Truss Truss Type Qty Ply Bill Ladson T25656940 H02 211014-04KM Hip Girder 2 Job Reference (optional) Coastal Truss & Vinyl Siding, Patterson, GA - 31577, 8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 14 14:04:22 2021 Page 1 ID:5z5H8DqZnOIYpsEeEI7p3gyTVJ4-6WPbAkeCiq3NY6TWfZ5G2RdZ9K0gs9Bg91QSV9yTTr7 4-10-0 19-4-0 |20-4-0 | 1-0-0 9-8-0 14-6-0 4-10-0 4-10-0 4-10-0 Scale = 1:38.5 4x8 = 4x8 = 1.5x4 || 2 13 \square^{5} 14 \square \square 12.00 12 5-10-14 4x6 🔌 4x6 // 1-0-14 T • ¹⁸ ₉ 16 11 17 19 10 8 12 7_{4x8} || 4x6 = HGUS26 HGUS26 7x8 = 7x8 =7x8 = 4x8 II HGUS26 HGUS26 HGUS26 HGUS26 4-10-0 9-8-0 14-6-0 4-10-0 4-10-0 4-10-0 4-10-0 Plate Offsets (X,Y)--[1:0-0-12,0-1-12], [2:0-6-4,0-1-12], [4:0-6-4,0-1-12], [5:0-0-12,0-1-12], [8:0-3-8,0-4-8], [9:0-4-0,0-4-8], [10:0-3-8,0-4-8]LOADING (psf) SPACING-2-0-0 CSI. DEFL. (loc) I/defI L/d **PLATES** GRIP **TCLL** 20.0 Plate Grip DOL 1.25 TC 0.26 Vert(LL) 0.10 8-9 >999 240 MT20 244/190 TCDL Lumber DOL вс 7.0 1.25 0.87 Vert(CT) -0.11 8-9 >999 180 WB **BCLL** 0.0 Rep Stress Incr NO 0.28 Horz(CT) 0.01 n/a n/a BCDL 7.0 Code FBC2020/TPI2014 Matrix-MS Weight: 287 lb FT = 20% LUMBER-**BRACING-**TOP CHORD TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins,

BOT CHORD

2x4 SP No.2 BOT CHORD 2x6 SP No 2

2x4 SP No.2 *Except* WFBS 1-12,5-7: 2x8 SP No.2

(size) 12=0-8-0, 7=0-8-0

Max Horz 12=-206(LC 6) Max Uplift 12=-1506(LC 8), 7=-1328(LC 8) Max Grav 12=4521(LC 2), 7=2914(LC 30)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-4203/1505, 2-3=-3904/1796, 3-4=-3904/1796, 4-5=-3367/1577, 1-12=-3484/1265,

5-7=-2984/1427

BOT CHORD 10-12=-365/843, 9-10=-1009/2945, 8-9=-1010/2352

WEBS 2-10=-192/1670, 2-9=-1056/1653, 3-9=-288/151, 4-9=-980/2515, 4-8=-287/388,

1-10=-814/2239, 5-8=-1078/2312

NOTES-

REACTIONS.

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc, 2x8 - 2 rows staggered at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-5-0 oc. Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Unbalanced roof live loads have been considered for this design.

- 4) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 5) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 6) Provide adequate drainage to prevent water ponding.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb upl Int(s) expectite for Code @ ompliance 82 12=1506, 7=1328, nottom chaiversal Engines in the FL Cert 6634 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top
- 11) Use Simpson Strong-Tie HGUS26 (20-10d Girder, 6-10d Truss) or equivalent spaced at 2-0-0 oc max. starting at 1-3-4 from the left end to 9-3-4 to connect truss(es) to front face of bottom chord.

end to 9-3-4 to connect truss(es) to front face of bottom chord.

12) Use Simpson Strong-Tie HGUS26 (20-SD10212 Girder, 8-SD10212 Truss) or equivalent at 11-3-4 to connect truss(es) truss(es) to connect truss(es) truss(

except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 2-4.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE

AWARNING - Verity design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIT-47.3 (eV. 5/19/20/20 BEPORE USE.)

Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information

available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

6904 Parke East Blvd

PX October 15,20,2021

68182

Job	Truss	Truss Type	Qty	Ply	Bill Ladson
211014-04KM	H02	Hip Girder	1	_	T25656940
211014-04KW	NU2	Trip Girder		2	Job Reference (optional)

Coastal Truss & Vinyl Siding,

Patterson, GA - 31577,

8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 14 14:04:22 2021 Page 2 ID:5z5H8DqZnOIYpsEeEI7p3gyTVJ4-6WPbAkeCiq3NY6TWfZ5G2RdZ9K0gs9Bg91QSV9yTTr7

NOTES-

13) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)

Vert: 1-2=-54, 2-4=-54, 4-5=-54, 5-6=-54, 7-12=-14

Concentrated Loads (lb)

Vert: 11=-752(F) 10=-738(F) 16=-752(F) 17=-747(F) 18=-747(F) 19=-1887(F)

Review for Code Compliance Universal Engineering Science

Ludence Parnell

PX2707

11/18/2021

Job Truss Truss Type Qty Ply Bill Ladson T25656941 H03 211014-04KM Hip Girder 2 Job Reference (optional) Coastal Truss & Vinyl Siding, Patterson, GA - 31577, 8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 14 14:04:24 2021 Page 1 ID:5z5H8DqZnOIYpsEeEI7p3gyTVJ4-3uXLbQgSDSJ5oQdun_8k7siys7uaK5_zcLvZa2yTTr5 -1-0-0 1-0-0 6-10-0 3-8-0 3-2-0 NAILED Scale = 1:31.3 NAILED NAILED 4x8 =4x8 = 1.5x4 || NAILED NAILED 3 14 12 12.00 12 3x6 📏 3x6 // П 15 16 10 8 NAILED NAILED 3x8 = 3x8 = 3x4 = 2x4 || 2x4 II Special Special 3-8-0 6-10-0 10-0-0 13-3-8 3-8-0 3-2-0 Plate Offsets (X,Y)--[3:0-6-4,0-1-12], [5:0-6-4,0-1-12], [10:0-3-8,0-1-8] LOADING (psf) SPACING-2-0-0 CSI. DEFL. in (loc) I/defI L/d **PLATES** GRIP **TCLL** 20.0 Plate Grip DOL 1.25 TC 0.12 Vert(LL) -0.01 >999 240 MT20 244/190 Vert(CT) TCDL 7.0 Lumber DOL 1.25 BC 0.07 -0.01 9 >999 180 WB **BCLL** 0.0 Rep Stress Incr NO 0.07 Horz(CT) 0.00 n/a n/a BCDL 7.0 Code FBC2020/TPI2014 Matrix-MS Weight: 204 lb FT = 20% LUMBER-**BRACING-**TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 3-5.

BOT CHORD

BOT CHORD 2x6 SP No 2 2x4 SP No 2 WFBS

REACTIONS. (size) 11=0-8-0, 7=0-3-8 Max Horz 11=171(LC 7)

Max Uplift 11=-569(LC 8), 7=-539(LC 8) Max Grav 11=1023(LC 29), 7=992(LC 30)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1038/597. 3-4=-874/567. 4-5=-874/567. 5-6=-986/571. 2-11=-985/576.

6-7=-959/544

BOT CHORD 9-10=-429/752. 8-9=-380/683

WEBS 3-10=-212/252, 3-9=-196/336, 4-9=-422/78, 5-9=-230/389, 2-10=-390/656,

6-8=-376/682

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 5) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 6) Provide adequate drainage to prevent water ponding.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) notion Review for Code @omphane882 11=569, 7=539,
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top
- 11) "NAILED" indicates 3-10d Nails (0.148" x 3") toe-nails per NDS guidelines.

12) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 311 lb down and 297 lb up at 3-8-0, and 323 lb down and 299 lb up at 9-11-4 on bottom chord. The design/selection of such connestion device(s) is,犇e audence Pernet responsibility of others.

Milek Jisa Tee FL Cert 6634 Universal Engingaring ക്ലിക്സ് ക്ലെ FL 33610

Rigid ceiling directly applied or 10-0-0 oc bracing.

PX October 15,20,2021

LOAD CASE(S) verified sign parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

JOAQUIN VE

68182

Job	Truss	Truss Type	Qty	Ply	Bill Ladson
044044 041/04	1100	I lie Ciede	_		T25656941
211014-04KM	H03	Hip Girder	1	2	Job Reference (optional)

Coastal Truss & Vinyl Siding,

Patterson, GA - 31577,

8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 14 14:04:24 2021 Page 2 ID:5z5H8DqZnOIYpsEeEI7p3gyTVJ4-3uXLbQgSDSJ5oQdun_8k7siys7uaK5_zcLvZa2yTTr5

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf) Vert: 1-2=-54, 2-3=-54, 3-5=-54, 5-6=-54, 7-11=-14

Concentrated Loads (lb)

Vert: 3=-90(B) 5=-90(B) 10=-249(B) 4=-90(B) 9=-29(B) 8=-265(B) 12=-90(B) 14=-90(B) 15=-29(B) 16=-29(B)

Review for Code Compliance Universal Engineering Science

Ludence Parnell

PX2707

11/18/2021

6904 Parke East Blvd. Tampa, FL 36610

Job Truss Truss Type Qty Ply Bill Ladson T25656942 211014-04KM H04 diH Job Reference (optional) Coastal Truss & Vinyl Siding, Patterson, GA - 31577, 8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 14 14:04:25 2021 Page 1 ID:5z5H8DqZnOIYpsEeEI7p3gyTVJ4-X55jomh4_IRyQaB5Khfzf4F3AXDR3Y86r?e66UyTTr4 5-0-0 5-0-0 13-3-8 8-8-0 3-8-0 Scale = 1:37.0 4x8 = 4x4 =3 12 13 14 12.00 12 4x6 🔌 5 5x8 9-5-X 8 4x4 = 4x8 =1.5x4 || 1.5x4 || 5-0-0 8-8-0 13-3-8 5-0-0 Plate Offsets (X,Y)--[2:0-3-8,Edge], [3:0-6-4,0-1-12], [4:0-2-4,0-1-12] LOADING (psf) SPACING-2-0-0 CSI. DEFL. in (loc) I/defI L/d **PLATES GRIP TCLL** 20.0 Plate Grip DOL 1.25 TC 0.34 Vert(LL) -0.02 8-9 >999 240 MT20 244/190 TCDL 1.25 Vert(CT) 7.0 Lumber DOL вс 0.16 -0.03 8-9 >999 180 WB 0.08 **BCLL** 0.0 Rep Stress Incr NO Horz(CT) 0.00 6 n/a n/a BCDL 7.0 Code FBC2020/TPI2014 Matrix-AS Weight: 90 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No 2

2x4 SP No 2 WFBS

REACTIONS. 9=0-8-0, 6=0-3-8 (size) Max Horz 9=215(LC 11)

Max Uplift 9=-174(LC 12), 6=-120(LC 12) Max Grav 9=507(LC 1), 6=439(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-446/230, 4-5=-423/234, 2-9=-470/269, 5-6=-405/229

BOT CHORD 8-9=-349/298, 7-8=-129/292

NOTES-

LUMBER-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 5-0-0, Exterior(2E) 5-0-0 to 13-1-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 9=174, 6=120.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

No 681

No 681

No 681

ORIV

Ode Comprision CB8 JOAQUIN VE 68182

Review for Code @ o mp file moet 82 Universal Enging in G Ex Get 6634 Universal Enging in G Ex Get 1634

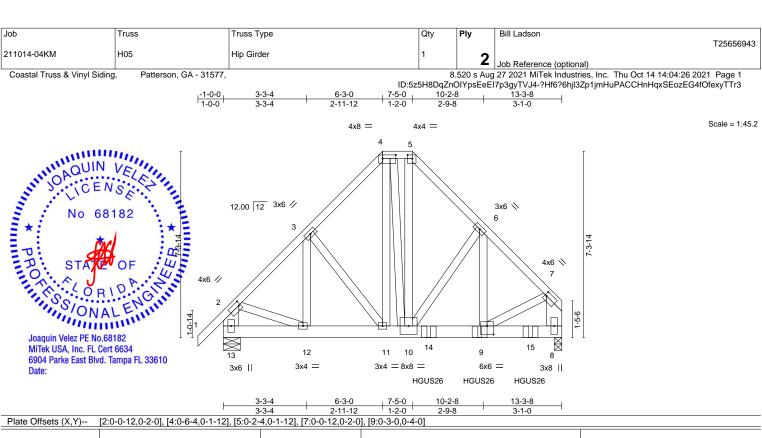
Structural wood sheathing directly applied, except end verticals, and

2-0-0 oc purlins (6-0-0 max.): 3-4.

Rigid ceiling directly applied.

Laudence Pernell

PX October 15,202021



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (psf) TCLL 20.0 TCDL 7.0	SPACING- 2-0-0 Plate Grip DOL 1.25 Lumber DOL 1.25	CSI. TC 0.16 BC 0.64	Vert(LL) 0.04 9-10 >9	defl L/d 199 240 199 180	PLATES MT20	GRIP 244/190
BCLL 0.0 * BCDL 7.0	Rep Stress Incr NO Code FBC2020/TPI2014	WB 0.22 Matrix-MS	Horz(CT) 0.01 8 I	n/a n/a	Weight: 259 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-TOP CHORD 2x4 SP No 2

BOT CHORD 2x6 SP No 2 2x4 SP No.2 *Except* WFBS

2-13,7-8: 2x8 SP No.2

REACTIONS. (size) 13=0-8-0, 8=0-3-8 Max Horz 13=255(LC 7)

Max Uplift 13=-885(LC 8), 8=-1538(LC 8) Max Grav 13=1727(LC 29), 8=3589(LC 29)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-1715/873, 3-4=-1940/1085, 4-5=-1542/932, 5-6=-2193/1246, 6-7=-2926/1404, TOP CHORD

2-13=-1642/860, 7-8=-2968/1430

BOT CHORD 12-13=-262/294, 11-12=-634/1285, 10-11=-679/1375, 9-10=-932/2054

WEBS 3-12=-494/292, 3-11=-323/351, 4-11=-363/328, 4-10=-966/1623, 5-10=-833/1466,

 $6-10=-988/385,\ 6-9=-420/1253,\ 2-12=-503/1131,\ 7-9=-967/2046$

NOTES-

- 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:
 - Top chords connected as follows: 2x4 1 row at 0-9-0 oc, 2x8 2 rows staggered at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-5-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Unbalanced roof live loads have been considered for this design.

- 4) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 5) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 6) Provide adequate drainage to prevent water ponding.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb upl Int(s) except (it the for Code Compliance 13=885, 8=1538, ottom chariversal Engineering Science 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top

11) Use Simpson Strong-Tie HGUS26 (20-SD10212 Girder, 8-SD10212 Truss) or equivalent at 8-0-12 from the left end to connect

truss(es) to front face of bottom chord. PX October 15,202021 12) Use Simpson Strong-Tie HGUS26 (20-10d Girder, 6-10d Truss) or equivalent spaced at 2-0-0 oc max starting #10-0/12/pop the

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFUKE USE.

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information

available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 4-5.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Job Truss Truss Type Qty Ply Bill Ladson T25656943 211014-04KM H05 Hip Girder 2 Job Reference (optional) 8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 14 14:04:26 2021 Page 2

Coastal Truss & Vinyl Siding,

Patterson, GA - 31577,

NOTES-

13) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)

Vert: 1-2=-54, 2-4=-54, 4-5=-54, 5-7=-54, 8-13=-14

Concentrated Loads (lb)

Vert: 9=-901(F) 14=-2305(F) 15=-901(F)

Review for Code Compliance Universal Engineering Science

ID:5z5H8DqZnOIYpsEeEI7p3gyTVJ4-?Hf6?6hjl3Zp1jmHuPACCHnHqxSEozEG4fOfexyTTr3

Ludence Pernell

PX2707

11/18/2021

Job Truss Truss Type Qty Ply Bill Ladson T25656944 H06 Half Hip 211014-04KM Job Reference (optional) Coastal Truss & Vinyl Siding, Patterson, GA - 31577, 8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 14 14:04:27 2021 Page 1 ID:5z5H8DqZnOIYpsEeEl7p3gyTVJ4-TTDUDRiLWNhgftLTS6hRIVKGrLjUXlaPlJ7DBNyTTr2 4-10<u>-0</u> <u>15-2-1</u>0 21-0-13 27-2-8 6-1-11 9-4-8 4-10-0 4-6-8 5-10-3 5-10-3 Scale = 1:65.0 4x5 = 3x4 = 4x5 = 3x4 =3x4 =<u></u>17 3 15 ⊠16 \boxtimes \bowtie 8.00 12 3x4 🖊 2x4 | 4-9-14 19 10 20 21 9 23 12 11 3x8 = 3x4 = 3x4 = 5x6 = 3x8 = 18-1-12 27-2-8 9-0-12 9-4-8 8-9-4 Plate Offsets (X,Y)--[3:0-2-8,0-1-13], [7:Edge,0-2-0] LOADING (psf) SPACING-2-0-0 CSI. DEFL. in (loc) I/defI L/d **PLATES** GRIP **TCLL** 20.0 Plate Grip DOL 1.25 ТС 0.84 Vert(LL) -0.31 11-12 >999 240 MT20 244/190 TCDL вс 7.0 Lumber DOL 1.25 0.96 Vert(CT) -0.45 11-12 >724 180 WB **BCLL** 0.0 Rep Stress Incr NO 0.72 Horz(CT) 0.02 n/a n/a BCDL 7.0 Code FBC2020/TPI2014 Matrix-AS Weight: 215 lb FT = 20% LUMBER-**BRACING-**Structural wood sheathing directly applied, except end verticals, and TOP CHORD 2x4 SP No.2 TOP CHORD BOT CHORD 2x4 SP No 2 2-0-0 oc purlins (6-0-0 max.): 3-7. 2x4 SP No 2 BOT CHORD WFBS Rigid ceiling directly applied. **WEBS** 1 Row at midpt 7-8, 4-11, 4-9, 5-8, 2-12 REACTIONS. (size) 8=Mechanical, 12=Mechanical Max Horz 12=466(LC 9) Max Uplift 8=-323(LC 9), 12=-239(LC 12)

Max Grav 8=1175(LC 17), 12=1138(LC 17)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

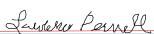
TOP CHORD 2-3=-907/327 3-4=-725/314 4-5=-702/298

BOT CHORD 11-12=-529/719, 9-11=-368/800, 8-9=-275/566

WFBS 2-11=-28/308, 3-11=-46/252, 4-9=-269/229, 5-9=-125/644, 5-8=-1048/337,

2-12=-988/271

NOTES-


- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=15ft; B=45ft; L=27ft; eave=4ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 9-4-8, Exterior(2R) 9-4-8 to 13-7-6, Interior(1) 13-7-6 to 27-0-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 7.0psf.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8=323, 12=239.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Review for Code @ o mp file moet 82 Universal Enging in G Ex Get 6634 Universal Enging in G Ex Get 1634

PX October 15,202021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply Bill Ladson T25656945 H07 211014-04KM Half Hip Girder Job Reference (optional) Coastal Truss & Vinyl Siding, Patterson, GA - 31577, 8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 14 14:04:28 2021 Page 1 ID:5z5H8DqZnOIYpsEeEI7p3gyTVJ4-xgmsQnjzHgqXH1wg0qCgHitXikBOGi_YXztmjpyTTr1 4-6-0 13-7-0 22-8-0 18-0-10 4-6-0 4-7-6 4-5-10 NAILED NAILED NAILED NAILED Scale = 1:58.5 4x8 = NAILED 1.5x4 || $3x8 = _{NAILED} 3x4 = 1.5x4 | |$ 5x6 = NAILED NAILED 8.00 12 ⁴ 19_{|||} 20 16 18 22 4x5 30 31 32 25 29 33 26 27 12 28 34 35 36 14 13 11 10 q NAILED 4x6 = NAII FD NAILED 5x10 П 3x8 || 3x5 =3x8 = 2x4 || 5x8 = NAILED NAILED NAILED NAILED NAILED NAILED NAILED NAILED 4-6-0 9-1-6 13-7-0 18-0-10 22-8-0 4-6-0 4-7-6 4-5-10 4-5-10 4-7-6 Plate Offsets (X,Y)--[2:0-5-12,0-2-0], [8:0-4-8,0-1-8] LOADING (psf) SPACING-2-0-0 CSI. DEFL. in (loc) I/defI L/d **PLATES** GRIP **TCLL** 20.0 Plate Grip DOL 1.25 TC 0.45 Vert(LL) 0.09 10-11 >999 240 MT20 244/190 TCDL 7.0 Lumber DOL 1.25 BC 0.40 Vert(CT) -0.09 10-11 >999 180 **BCLL** 0.0 Rep Stress Incr NO WB 0.90 Horz(CT) -0.02 8 n/a n/a BCDL 7.0 Code FBC2020/TPI2014 Matrix-MS Weight: 231 lb FT = 20% LUMBER-**BRACING-**TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 4-11-3 oc purlins,

BOT CHORD

WEBS

2x6 SP No 2

BOT CHORD 2x4 SP No.2 *Except* WFBS

7-8: 2x6 SP No.2

(size) 8=0-3-8, 14=Mechanical

Max Horz 14=369(LC 5)

Max Uplift 8=-1487(LC 5), 14=-1399(LC 8) Max Grav 8=2353(LC 25), 14=2356(LC 26)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD $1-2=-1324/858,\ 2-3=-1512/1043,\ 3-4=-1512/1043,\ 4-6=-1058/736,\ 6-7=-1058/736,$

7-8=-2101/1361, 1-14=-2058/1251

BOT CHORD 13-14=-346/222, 11-13=-828/1124, 10-11=-1051/1543, 9-10=-1051/1543 **WEBS** 2-13=-537/389, 2-11=-686/1080, 3-11=-391/345, 4-10=-269/587, 4-9=-1115/720,

6-9=-382/350, 7-9=-1386/2186, 1-13=-1002/1668

NOTES-

REACTIONS.

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 7.0psf.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb)
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 9) "NAILED" indicates 3-10d Nails (0.148" x 3") toe-nails per NDS guidelines.
- 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)

Vert: 1-2=-54, 2-7=-54, 8-14=-14

No 681

No 681

No 681

ORIV

Ode: Compression Compres Review for Code @ o mp file moet 82 Universal Enging in G Ex Get 6634 Universal Enging in G Ex Get 18634

except end verticals, and 2-0-0 oc purlins (4-6-14 max.): 2-7.

1-14

7-8, 2-13, 2-11, 3-11, 4-11, 4-9, 6-9, 7-9,

JOAQUIN VE

Rigid ceiling directly applied or 7-1-6 oc bracing.

1 Row at midpt

PX October 15,202021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job		Truss	Truss Type	Qty	Ply	Bill Ladson
						T25656945
2110)14-04KM	H07	Half Hip Girder	1	1	
						Job Reference (optional)

Coastal Truss & Vinyl Siding,

Patterson, GA - 31577,

8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 14 14:04:28 2021 Page 2 ID:5z5H8DqZnOIYpsEeEI7p3gyTVJ4-xgmsQnjzHgqXH1wg0qCgHitXikBOGi_YXztmjpyTTr1

LOAD CASE(S) Standard

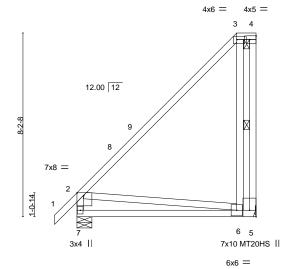
Concentrated Loads (lb)

Vert: 11=-146(B) 3=-43(B) 15=-43(B) 16=-43(B) 18=-43(B) 19=-43(B) 21=-43(B) 22=-43(B) 23=-43(B) 24=-43(B) 25=-243(B) 26=-243(B) 27=-146(B) 28=-146(B) 29=-146(B) 30=-146(B) 31=-146(B) 33=-146(B) 34=-146(B) 36=-146(B)

Review for Code Compliance Universal Engineering Science

PX2707

11/18/2021


Job Truss Truss Type Qty Ply Bill Ladson T25656946 H08 Half Hip 211014-04KM Job Reference (optional)

Coastal Truss & Vinyl Siding,

Patterson, GA - 31577,

8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 14 14:04:29 2021 Page 1 ID:5z5H8DqZnOIYpsEeEI7p3gyTVJ4-PsKEe7kb2_yNuBVsZXjvqwPdk8V4?EZimdcJFFyTTr0

Scale = 1:51.5

4-0-0 4-0-0 3-1-11 0-10-5

BRACING-

TOP CHORD

BOT CHORD

WEBS

Plate Offsets (X,Y)	[2:0-3-8,Edge], [3:0-4-4,0-1-12], [4:Edge,0-2-0], [5:Edge,0-3-8]

LOADING	G (psf)	SPACING- 2	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.82	Vert(LL)	0.11	6-7	>817	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.50	Vert(CT)	-0.15	6-7	>623	180	MT20HS	187/143
BCLL	0.0 *	Rep Stress Incr	NO	WB	0.63	Horz(CT)	-0.01	5	n/a	n/a		
BCDL	7.0	Code FBC2020/TPI20	014	Matri	x-AS						Weight: 65 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No 2

2x4 SP No 2 WFBS

REACTIONS.

5=Mechanical, 7=0-8-0 (size)

Max Horz 7=372(LC 9)

Max Uplift 5=-225(LC 9), 7=-100(LC 12) Max Grav 5=350(LC 17), 7=361(LC 18)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-442/275, 4-5=-262/134, 2-7=-303/212

BOT CHORD 6-7=-1344/861

WFBS 3-6=-462/805, 2-6=-699/1183

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 7-1-11, Exterior(2E) 7-1-11 to 7-10-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are MT20 plates unless otherwise indicated.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 5=225, 7=100.
- 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Review for Code @ompfiem@82
Universal Engine in Engine i

Structural wood sheathing directly applied, except end verticals, and

2-0-0 oc purlins (6-0-0 max.): 3-4.

Rigid ceiling directly applied.

1 Row at midpt

Laudence Pernell

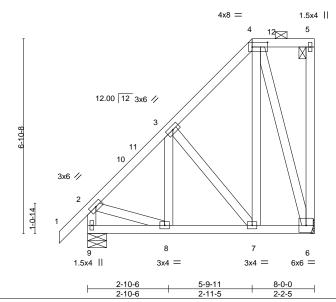
PX October 15,202021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply Bill Ladson T25656947 H09 Half Hip 211014-04KM Job Reference (optional)


Coastal Truss & Vinyl Siding,

Patterson, GA - 31577,

8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 14 14:04:30 2021 Page 1 ID:5z5H8DqZnOIYpsEeEI7p3gyTVJ4-t2ucrTkDpH4EWL427FF8M7ysKYxpkmMr_HMtniyTTr?

-1-0-0 1-0-0 2-10-6 5-9-11 2-11-5 8-0-0 2-10-6

Scale = 1:40.7

Plate Off	sets (X,Y)	[4:0-6-8,0-2-0]										
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.57	Vert(LL)	0.01	7	>999	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	ВС	0.08	Vert(CT)	-0.01	7-8	>999	180		
BCLL	0.0 *	Rep Stress Incr	NO	WB	0.27	Horz(CT)	-0.00	6	n/a	n/a		
BCDL	7.0	Code FBC2020/T	PI2014	Matri	x-AS						Weight: 75 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

2-0-0 oc purlins: 4-5.

Rigid ceiling directly applied.

LUMBER-

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No 2

2x4 SP No.2 WFBS

REACTIONS. 6=Mechanical, 9=0-8-0 (size)

Max Horz 9=313(LC 9)

Max Uplift 6=-183(LC 9), 9=-108(LC 12) Max Grav 6=309(LC 17), 9=329(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-275/138 2-9=-313/224 **BOT CHORD** 8-9=-674/407. 7-8=-457/336 WFBS 4-6=-337/453, 3-7=-205/358

NOTES-

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 5-9-11, Exterior(2E) 5-9-11 to 7-10-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=183, 9=108,
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Review for Code @ o mp file moet 82 Universal Enging in G Ex Get 6634 Universal Enging in G Ex Get 18634

Structural wood sheathing directly applied, except end verticals, and

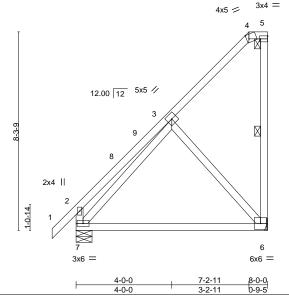
PX October 15,202021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Bill Ladson
					T25656948
211014-04KM	H10	Half Hip	1	1	
					Job Reference (optional)


Coastal Truss & Vinyl Siding,

Patterson, GA - 31577,

8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 14 14:04:31 2021 Page 1 olrabC58VfFhymNvLV1kyCQTEI?Dw5QK8yTTr_

		ID:5Z5I	H8DqZnOLYps	SEEE17p3gyTVJ4-MFS?3pI
₁ -1	0-0 ₁ 4	-0-0	7-2-11	8-0-0 _i
1-	0-0 4	-0-0	3-2-11	0-9-5

Scale: 1/4"=1

Plate Offsets (X,Y)	[4:0-1-3,Edge], [5:Edge,0-1-8]

LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DE	FL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.53	Vei	rt(LL)	-0.11	6-7	>872	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.44	Vei	rt(CT)	-0.18	6-7	>517	180		
BCLL	0.0 *	Rep Stress Incr	NO	WB	0.20	Ho	rz(CT)	-0.00	6	n/a	n/a		
BCDL	7.0	Code FBC2020/T	PI2014	Matri	x-AS							Weight: 60 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

WEBS

LUMBER-

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No 2

2x4 SP No 2 WFBS

REACTIONS. (size) 6=Mechanical, 7=0-8-0

Max Horz 7=376(LC 9)

Max Uplift 6=-228(LC 9), 7=-99(LC 12) Max Grav 6=353(LC 17), 7=364(LC 18)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-317/272, 3-4=-263/186, 5-6=-176/269, 2-7=-281/360

BOT CHORD 6-7=-458/331

WFBS 3-6=-285/498, 3-7=-332/260

NOTES-

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 7-2-11, Exterior(2E) 7-2-11 to 7-10-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7 except (jt=lb)
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Review for Code @ o MPB Ham 628 82 Universal Engine FL 034 166. FL Cert 6634 Universal Engine FL 33610

Structural wood sheathing directly applied, except end verticals, and

2-0-0 oc purlins (6-0-0 max.): 4-5.

Rigid ceiling directly applied.

1 Row at midpt

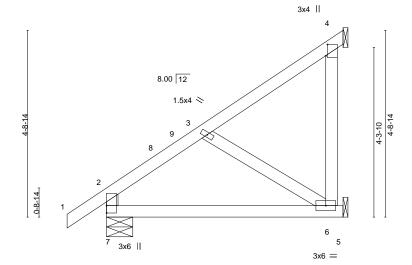
PX October 15,202021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply Bill Ladson T25656949 J01 12 211014-04KM Jack-Open Job Reference (optional)


Coastal Truss & Vinyl Siding,

Patterson, GA - 31577,

8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 14 14:04:31 2021 Page 1 ID:5z5H8DqZnOIYpsEeEI7p3gyTVJ4-MFS?3plrabC58VfFhymNvLV2jyDgTHx?Dw5QK8yTTr_

-1-0-0 1-0-0 2-6-10 6-0-0 3-5-6 2-6-10

Scale = 1:29.2

6-0-0 6-0-0

Plate Off	Sets (X,Y)	[4:0-3-7,0-0-8]										
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.47	Vert(LL)	-0.06	6-7	>999	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.36	Vert(CT)	-0.10	6-7	>688	180		
BCLL	0.0 *	Rep Stress Incr	NO	WB	0.06	Horz(CT)	-0.19	4	n/a	n/a		
BCDL	7.0	Code FBC2020/TF	PI2014	Matri	x-AS						Weight: 33 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No 2 **BOT CHORD** 2x4 SP No 2 2x4 SP No.2 WFBS

BRACING-

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied, except end verticals. Rigid ceiling directly applied.

REACTIONS. (size) 7=0-8-0, 4=Mechanical, 6=Mechanical

Max Horz 7=188(LC 12)


Max Uplift 7=-52(LC 12), 4=-17(LC 9), 6=-85(LC 12) Max Grav 7=257(LC 1), 4=144(LC 1), 6=105(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

BOT CHORD 6-7=-277/141 WFBS 3-6=-166/326

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 5-8-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 4, 6.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 9) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

Review for Code @ompliance 32
Universal Engine 11 33610

Laudence Pernell

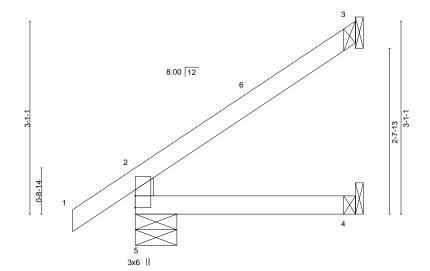
PX October 15,202021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply Bill Ladson T25656950 211014-04KM J02 4 Jack-Open Job Reference (optional)


Coastal Truss & Vinyl Siding,

Patterson, GA - 31577,

1-0-0

8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 14 14:04:33 2021 Page 1 ID:5z5H8DqZnOIYpsEeEl7p3gyTVJ4-IdalTVn66CSpNopdoNor_maSxlxqxBKHhEaXN1yTTqy 3-6-4

Scale = 1:18.4

3-6-4

LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.23	Vert(LL)	-0.01	4-5	>999	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.19	Vert(CT)	-0.01	4-5	>999	180		
BCLL	0.0 *	Rep Stress Incr	NO	WB	0.00	Horz(CT)	-0.01	3	n/a	n/a		
BCDL	7.0	Code FBC2020/T	PI2014	Matri	x-MR						Weight: 14 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

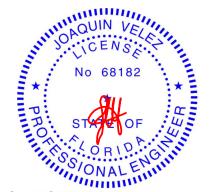
REACTIONS.

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD

2x4 SP No.2 WFBS

(size) 5=0-8-0, 3=Mechanical, 4=Mechanical

Max Horz 5=134(LC 12)


Max Uplift 5=-51(LC 12), 3=-63(LC 12)

Max Grav 5=185(LC 1), 3=87(LC 17), 4=52(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 3-5-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3.

Review for Code @ompliance 32
Universal Engine 11 33610

Structural wood sheathing directly applied or 3-6-4 oc purlins,

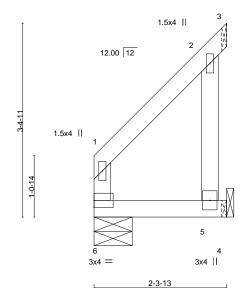
Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals

PX October 15,202021

Laudence Pernell

Job	Truss	Truss Type	Qty	Ply	Bill Ladson
					T25656951
211014-04KM	J04	Jack-Open Structural Gable	4	1	
					Joh Reference (ontional)


Coastal Truss & Vinyl Siding,

Patterson, GA - 31577,

8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 14 14:04:33 2021 Page 1 ID:5z5H8DqZnOIYpsEeEl7p3gyTVJ4-IdalTVn66CSpNopdoNor_maSalwlxBXHhEaXN1yTTqy

2-3-13 2-3-13

Scale = 1:20.1

LOADING ((psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 2	20.0	Plate Grip DOL	1.25	TC	0.25	Vert(LL)	0.01	5-6	>999	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.26	Vert(CT)	-0.00	5-6	>999	180		
BCLL	0.0 *	Rep Stress Incr	NO	WB	0.05	Horz(CT)	0.00		n/a	n/a		
BCDL	7.0	Code FBC2020/TF	PI2014	Matri	x-MS						Weight: 14 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

2-3-13

LUMBER-

REACTIONS.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

2x4 SP No.2 WFBS

> (size) 6=0-8-0, 5=Mechanical Max Horz 6=100(LC 12)

Max Uplift 6=-3(LC 10), 5=-104(LC 12)

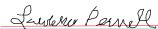
Max Grav 6=70(LC 18), 5=113(LC 17)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 2-5=-118/295

NOTES-

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Gable studs spaced at 2-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6 except (jt=lb) 5=104


Review for Code @ o MPB Ham 628 82 Universal Engine FL 034 166. FL Cert 6634 Universal Engine FL 33610

Structural wood sheathing directly applied or 2-3-13 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals

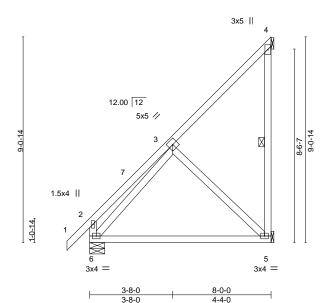
PX October 15,202021

Job Truss Truss Type Qty Ply Bill Ladson T25656952 211014-04KM J07 9 Jack-Open Job Reference (optional)

Coastal Truss & Vinyl Siding,

Patterson, GA - 31577,

8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 14 14:04:34 2021 Page 1


Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied.

1 Row at midpt

ID:5z5H8DqZnOIYpsEeEI7p3gyTVJ4-mq87hroktWag?yOpM4J4Xz7Z799MgbMRvuK4vTyTTqx 1-0-0 3-8-0 8-0-0 3-8-0

Scale = 1:50.8

LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.46	Vert(LL)	-0.21	5-6	>437	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.75	Vert(CT)	-0.36	5-6	>257	180		
BCLL	0.0 *	Rep Stress Incr	NO	WB	0.21	Horz(CT)	-0.01	4	n/a	n/a		
BCDL	7.0	Code FBC2020/TF	PI2014	Matri	x-AS						Weight: 61 lb	FT = 20%

BRACING-

WFBS

TOP CHORD

BOT CHORD

LUMBER-

REACTIONS.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

2x4 SP No.2 WFBS

(size) 4=Mechanical, 5=Mechanical, 6=0-8-0

Max Horz 6=360(LC 12)

Max Uplift 4=-113(LC 12), 5=-126(LC 12)

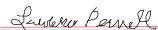
Max Grav 4=129(LC 17), 5=212(LC 17), 6=329(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-6=-174/318 **BOT CHORD** 5-6=-344/173

WFBS 3-5=-238/474. 3-6=-412/122

NOTES-


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 7-10-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 4=113, 5=126.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 9) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

Review for Code @ o MPB Ham 628 82 Universal Engine FL 034 166. FL Cert 6634 Universal Engine FL 33610

PX October 15,202021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

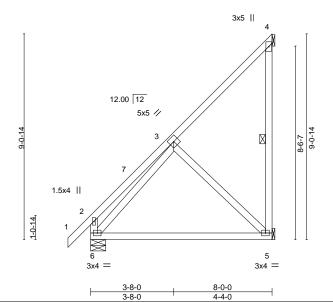
ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job T	russ	Truss Type	Qty	Ply	Bill Ladson
044044 041614	100	Inch On an	40		T25656953
211014-04KM J	108	Jack-Open	10	1	Job Reference (optional)

Coastal Truss & Vinyl Siding,

Patterson, GA - 31577,

8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 14 14:04:35 2021 Page 1


Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied.

1 Row at midpt

ID:5z5H8DqZnOIYpsEeEI7p3gyTVJ4-E0iVuAoMeqiXc6y0woqJ3BfktZUbP2ca8Y3eSvyTTqw 1-0-0 3-8-0 8-0-0 4-4-0 3-8-0

Scale = 1:50.8

LOADING	VI /	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.46	Vert(LL)	-0.21	5-6	>437	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.75	Vert(CT)	-0.36	5-6	>257	180		
BCLL	0.0 *	Rep Stress Incr	NO	WB	0.21	Horz(CT)	-0.01	4	n/a	n/a		
BCDL	7.0	Code FBC2020/TF	PI2014	Matri	x-AS						Weight: 61 lb	FT = 20%

BRACING-TOP CHORD

WFBS

BOT CHORD

LUMBER-

REACTIONS.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WFBS

2x4 SP No.2

(size) 6=0-8-0, 4=Mechanical, 5=Mechanical

Max Horz 6=360(LC 12)

Max Uplift 4=-113(LC 12), 5=-126(LC 12)

Max Grav 6=329(LC 1), 4=129(LC 17), 5=212(LC 17)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-6=-174/318 BOT CHORD 5-6=-344/173

WFBS 3-5=-238/474. 3-6=-412/122

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 7-10-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 4=113, 5=126.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 9) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

Review for Code @ o MPB Ham 628 82 Universal Engine FL 034 166. FL Cert 6634 Universal Engine FL 33610

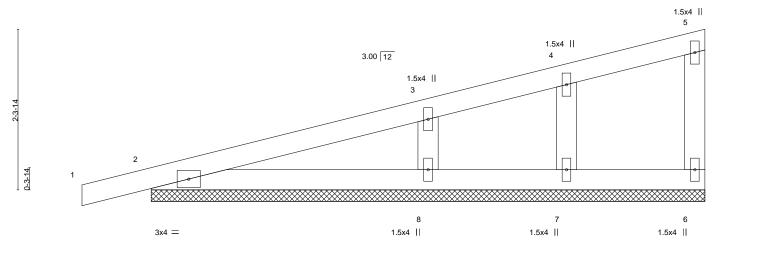
Lander Parrell

PX 20/20/20/21

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Job Truss Truss Type Qty Ply Bill Ladson T25656954 M01 211014-04KM Monopitch Supported Gable Job Reference (optional) 8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 14 14:04:35 2021 Page 1

Coastal Truss & Vinyl Siding, Patterson, GA - 31577,

> -1-0-0 1-0-0

ID:5z5H8DqZnOIYpsEeEI7p3gyTVJ4-E0iVuAoMeqiXc6y0woqJ3BfoHZeSP4na8Y3eSvyTTqw

Scale = 1:16.6

LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.24	Vert(LL)	0.00	1	n/r	120	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.12	Vert(CT)	0.00	1	n/r	120		
BCLL	0.0 *	Rep Stress Incr	NO	WB	0.07	Horz(CT)	0.00	6	n/a	n/a		
BCDL	7.0	Code FBC2020/TI	PI2014	Matri	x-P						Weight: 31 lb	FT = 20%

LUMBER-

OTHERS

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No 2 WFBS

TOP CHORD BOT CHORD

BRACING-

Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 8-0-0.

(lb) -Max Horz 2=88(LC 9)

2x4 SP No.2

Max Uplift All uplift 100 lb or less at joint(s) 6, 2, 7, 8

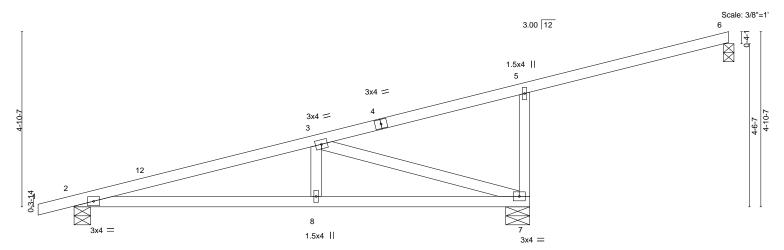
Max Grav All reactions 250 lb or less at joint(s) 6, 2, 7 except 8=262(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 3-8=-205/381

NOTES-

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (directional) and C-C Corner(3E) -1-0-0 to 2-0-0, Exterior(2N) 2-0-0 to 7-10-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 2, 7, 8.


PX October 15,202021

Job Truss Truss Type Qty Ply Bill Ladson T25656955 211014-04KM M02 Monopitch 12 Job Reference (optional) Coastal Truss & Vinyl Siding, Patterson, GA - 31577, 8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 14 14:04:36 2021 Page 1

ID:5z5H8DqZnOIYpsEeEI7p3gyTVJ4-iCFu6Wp_P7qOEGXCUVLYcOCxpzuA8QPkNCpB_MyTTqv -1-0-0 1-0-0 6-8-12 12-8-0 18-2-6 6-8-12 5-6-6

	6-8-12 6-8-12	+	12-8-0 5-11-4	18-2-6 5-6-6	
LOADING (psf) TCLL 20.0 TCDL 7.0 BCLL 0.0 * BCDL 7.0	SPACING- 2-0-0 Plate Grip DOL 1.25 Lumber DOL 1.25 Rep Stress Incr NO Code FBC2020/TPI2014	CSI. TC 0.38 BC 0.47 WB 0.55 Matrix-AS	DEFL. in (loc) I/de Vert(LL) -0.07 8-11 >98 Vert(CT) -0.12 8-11 >98 Horz(CT) 0.02 7 n	99 240 MT20 :	GRIP 244/190 FT = 20%

BRACING-TOP CHORD

BOT CHORD

LUMBER-

REACTIONS.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.2 WFBS

(size) 6=0-3-8, 2=0-5-8, 7=0-8-0

Max Horz 2=170(LC 9)

Max Uplift 6=-63(LC 12), 2=-141(LC 12), 7=-224(LC 12) Max Grav 6=113(LC 1), 2=466(LC 1), 7=625(LC 1)

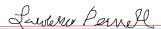
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-893/327, 5-7=-344/286 **BOT CHORD** 2-8=-454/846, 7-8=-454/846

WEBS 3-7=-886/446

NOTES-

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 18-0-10 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6 except (jt=lb) 2=141, 7=224.
- 6) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 6.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.



Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied.

PX October 15,202021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

AMSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply Bill Ladson T25656956 211014-04KM M03 Monopitch 4 Job Reference (optional) Coastal Truss & Vinyl Siding, Patterson, GA - 31577, 8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 14 14:04:37 2021 Page 1 ID:5z5H8DqZnOIYpsEeEI7p3gyTVJ4-APpGJsqc9RyFsQ6O1Dtn9cl7FNG9twFtbsYlWoyTTqu -1-0-0 10-8-0 5-8-12

5-8-12

1.5x4Sqale = 1:19.6 4 3.00 12 3x4 =6 1.5x4 ||

LOADING (psf) TCLL 20.0 TCDL 7.0 BCLL 0.0 * BCDL 7.0	SPACING- 2-0-0 Plate Grip DOL 1.25 Lumber DOL 1.25 Rep Stress Incr NO Code FBC2020/TPI2014	CSI. TC 0.27 BC 0.36 WB 0.32 Matrix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc 0.05 6- -0.07 6- 0.01	·9 >999	L/d 240 180 n/a	PLATES MT20 Weight: 46 lb	GRIP 244/190 FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.2 WFBS

1-0-0

REACTIONS. (size) 2=0-5-8, 5=0-8-0

Max Horz 2=116(LC 11)

Max Uplift 2=-144(LC 12), 5=-98(LC 12) Max Grav 2=414(LC 1), 5=355(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-787/471

BOT CHORD 2-6=-552/748 5-6=-552/748

WEBS 3-5=-756/521

NOTES-

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 10-6-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5 except (jt=lb)
- 6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Review for Code @ompliance 82
Universal Engine 11 33610

Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied.

PX October 15,202021

Lander Pernell

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

AMSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

T25656957 211014-04KM M04 Monopitch Supported Gable Job Reference (optional) Coastal Truss & Vinyl Siding, Patterson, GA - 31577, 8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 14 14:04:37 2021 Page 1 ID:5z5H8DqZnOIYpsEeEI7p3gyTVJ4-APpGJsqc9RyFsQ6O1Dtn9cl5ENJBt?JtbsYlWoyTTqu Scale = 1:9.5 1.5x4_H 3.00 12 2 0-3-14 4 3x4 = 1.5x4 | SPACING-CSL LOADING (psf) 2-0-0 DEFL. in (loc) I/defI I/d PLATES GRIP **TCLL** 20.0 Plate Grip DOL 1.25 TC 0.40 Vert(LL) 0.00 n/r 120 MT20 244/190 TCDL 7.0 Lumber DOL 1.25 вс 0.17 Vert(CT) 0.01 n/r 120 WB 0.00 **BCLL** 0.0 Rep Stress Incr NO Horz(CT) 0.00 n/a n/a Code FBC2020/TPI2014 BCDL 7.0 Matrix-P Weight: 15 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

Qty

Ply

Bill Ladson

LUMBER-

REACTIONS.

Job

Truss

Truss Type

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WFBS

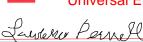
2x4 SP No.2

(size) 4=4-0-0, 2=4-0-0 Max Horz 2=46(LC 9) Max Uplift 4=-30(LC 12), 2=-87(LC 12) Max Grav 4=124(LC 1), 2=192(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (directional) and C-C Corner(3E) -1-0-0 to 2-0-0, Exterior(2N) 2-0-0 to 3-10-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.



Structural wood sheathing directly applied or 4-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals

PX October 15,202021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

AMSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply Bill Ladson T25656958 211014-04KM PB02 4 Piggyback Job Reference (optional) Coastal Truss & Vinyl Siding, Patterson, GA - 31577, 8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 14 14:04:38 2021 Page 1 ID:5z5H8DqZnOIYpsEeEI7p3gyTVJ4-ebNeXCrEwl46TZhbbwO0hpHJimhlcSN1qWII2EyTTqt 2-8-14 2-8-14 Scale = 1:18.7 4x4 = 3 12.00 12 4 5 0-5-3 0-11-8 2x4 = 1.5x4 || 2x4 = 5-5-11 Plate Offsets (X,Y)--[2:0-2-6,0-1-0], [4:0-2-6,0-1-0] LOADING (psf) SPACING-CSI. DEFL. (loc) I/defI L/d **PLATES** GRIP **TCLL** 20.0 Plate Grip DOL 1.25 TC 0.23 Vert(LL) 0.00 n/r 120 MT20 244/190 TCDL Lumber DOL вс 0.05 Vert(CT) 7.0 1.25 0.00 5 n/r 120

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

0.00

n/a

n/a

Rigid ceiling directly applied or 10-0-0 oc bracing.

Structural wood sheathing directly applied or 5-5-11 oc purlins.

LUMBER-

BCLL

BCDL

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No 2 2x4 SP No 2 **OTHERS**

0.0

7.0

REACTIONS. (size) 2=4-4-5, 4=4-4-5, 6=4-4-5

Max Horz 2=-79(LC 10)

Max Uplift 2=-59(LC 12), 4=-59(LC 12)

Rep Stress Incr

Code FBC2020/TPI2014

Max Grav 2=111(LC 1), 4=111(LC 1), 6=112(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

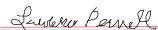
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WB

Matrix-P

0.01

- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- 8) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.



Weight: 21 lb

FT = 20%

PX October 15,202021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

AMSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply Bill Ladson T25656959 211014-04KM PB04 15 Piggyback Job Reference (optional) Coastal Truss & Vinyl Siding, Patterson, GA - 31577, 8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 14 14:04:39 2021 Page 1 ID:5z5H8DqZnOIYpsEeEI7p3gyTVJ4-7nx0kYrsh2Cz5jGn9evFE1qTqA0bLvUA3A1rbgyTTqs Scale = 1:18.2 4x4 = 3 8.00 12 0-4-7 0-4-7 0-1-8 2x4 = 1.5x4 || 2x4 = 8-2-0 8-2-0 CSL PLATES GRIP LOADING (psf) SPACING-2-0-0 DEFL. in (loc) I/defI I/d **TCLL** 20.0 Plate Grip DOL 1.25 TC 0.27 Vert(LL) 0.01 n/r 120 MT20 244/190 TCDL 7.0 Lumber DOL 1.25 вс 0.11 Vert(CT) 0.01 n/r 120 WB 0.02 **BCLL** 0.0 Rep Stress Incr NO Horz(CT) 0.00 4 n/a n/a Code FBC2020/TPI2014 Weight: 27 lb BCDL 7.0 Matrix-P FT = 20% LUMBER-BRACING-TOP CHORD 2x4 SP No.2

TOP CHORD BOT CHORD 2x4 SP No.2 2x4 SP No.2 **OTHERS**

BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 2=6-8-3, 4=6-8-3, 6=6-8-3

Max Horz 2=-69(LC 10)

Max Uplift 2=-77(LC 12), 4=-77(LC 12), 6=-14(LC 12) Max Grav 2=152(LC 1), 4=152(LC 1), 6=203(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) 0-3-2 to 3-3-2, Interior(1) 3-3-2 to 4-1-0, Exterior(2R) 4-1-0 to 7-1-0, Interior(1) 7-1-0 to 7-10-14 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4, 6.
- 8) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

PX October 15,202021

Laudence Pernell

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

AMSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

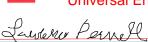
Job Truss Truss Type Qty Ply Bill Ladson T25656960 **PB05** 211014-04KM Piggyback Job Reference (optional) Coastal Truss & Vinyl Siding, Patterson, GA - 31577, 8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 14 14:04:40 2021 Page 1 ID:5z5H8DqZnOIYpsEeEI7p3gyTVJ4-bzVOyusVSMKqjtrzjLQUmENdqaLG4MFJIqnP77yTTqr 5-4-4 2-9-12 2-6-8 1-9-12 Scale = 1:14.2 3x4 = 1.5x4 3x4 = 3 8.00 12 -10-8 0-4-7 9-1-8 2x4 = 1.5x4 || 7-2-0 Plate Offsets (X,Y)--[3:0-2-0,0-2-3], [5:0-2-0,0-2-3] LOADING (psf) SPACING-CSI. DEFL. I/defI L/d **PLATES** GRIP **TCLL** 20.0 Plate Grip DOL 1.25 TC 0.38 Vert(LL) -0.00 n/r 120 MT20 244/190 TCDL вс 7.0 Lumber DOL 1.25 0.14 Vert(CT) -0.00 n/r 120 WB 0.05 **BCLL** 0.0 Rep Stress Incr NO Horz(CT) -0.00 n/a n/a BCDL 7.0 Code FBC2020/TPI2014 Matrix-S Weight: 24 lb FT = 20% LUMBER-**BRACING-**TOP CHORD 2x4 SP No 2 TOP CHORD Structural wood sheathing directly applied or 7-2-0 oc purlins, except BOT CHORD 2x4 SP No 2 2-0-0 oc purlins: 3-5. 2x4 SP No.2 BOT CHORD WFBS Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS. 2=6-1-9, 7=6-1-9 (size) Max Horz 2=45(LC 11)

Max Uplift 2=-68(LC 22), 7=-123(LC 12) Max Grav 2=65(LC 21), 7=455(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 4-7=-363/299

NOTES-


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 7=123.
- 8) N/A
- 9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Review for Code @ o mp file moet 82 Universal Enging in G Ex Get 6634 Universal Enging in G Ex Get 18634

PX October 15,202021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply Bill Ladson T25656961 211014-04KM **PB06** 4 Piggyback Job Reference (optional) Coastal Truss & Vinyl Siding, Patterson, GA - 31577, 8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 14 14:04:41 2021 Page 1 ID:5z5H8DqZnOIYpsEeEI7p3gyTVJ4-3A3m9Et7DgSgK1QAG2xjJSvpQ_h6ppMTWUWyfZyTTqq Scale = 1:18.0 4x4 = 3 8.00 12 8-9-0 0-4-7 1-1 0-1-8 3,4 = 1.5x4 || 2x4 =7-2-0 7-2-0 SPACING-CSL PLATES GRIP LOADING (psf) 2-0-0 DEFL in (loc) I/defI I/d **TCLL** 20.0 Plate Grip DOL 1.25 TC 0.26 Vert(LL) 0.00 n/r 120 MT20 244/190 TCDL 7.0 Lumber DOL 1.25 вс 0.10 Vert(CT) 0.00 n/r 120 WB 0.06 **BCLL** 0.0 Rep Stress Incr NO Horz(CT) 0.00 5 n/a n/a Code FBC2020/TPI2014 Weight: 25 lb BCDL 7.0 Matrix-P FT = 20% LUMBER-BRACING-TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 7-2-0 oc purlins. **BOT CHORD** 2x4 SP No.2 BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. 2x4 SP No.2 WFBS REACTIONS. (size) 2=6-1-9, 5=6-1-9 Max Horz 2=67(LC 11) Max Uplift 2=-43(LC 22), 5=-113(LC 12) Max Grav 2=102(LC 21), 5=418(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 3-5=-358/350

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) 0-3-2 to 3-3-2, Interior(1) 3-3-2 to 4-1-0, Exterior(2E) 4-1-0 to 7-2-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 5=113.
- 7) N/A
- 8) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

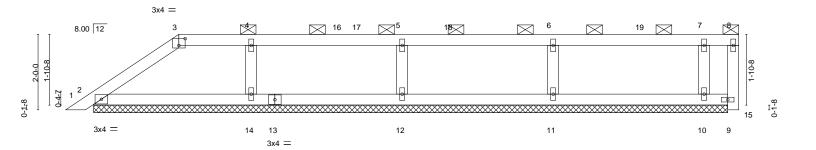
Review for Code @ompliance 82
Universal Engine 11 33610

Laudence Pernell

PX October 15,202021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see


AMSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply Bill Ladson T25656962 PB07 211014-04KM Piggyback Job Reference (optional) Coastal Truss & Vinyl Siding, Patterson, GA - 31577, 8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 14 14:04:42 2021 Page 1 ID:5z5H8DqZnOIYpsEeEI7p3gyTVJ4-XMd9Maul_zaXyB?MqmSysfS?3O0uYF9cl8GVC?yTTqp 3-0-0 17-10-0

14-10-0

Scale = 1:30.5

17-10-0 Plate Offsets (X,Y)--[3:0-2-0,0-2-3] LOADING (psf) SPACING-2-0-0 CSI. DEFL. in (loc) I/defI L/d **PLATES** GRIP **TCLL** 20.0 Plate Grip DOL 1.25 ТС 0.20 Vert(LL) 0.00 n/r 120 MT20 244/190 TCDL вс 7.0 Lumber DOL 1.25 0.13 Vert(CT) 0.00 n/r 120 WB 0.03 **BCLL** 0.0 Rep Stress Incr NO Horz(CT) -0.00 n/a n/a BCDL 7.0 Code FBC2020/TPI2014 Matrix-S Weight: 63 lb FT = 20%

LUMBER-TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No 2 2x4 SP No.2 WFBS **OTHERS** 2x4 SP No.2 **BRACING-**TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 3-8. Rigid ceiling directly applied or 10-0-0 oc bracing.

BOT CHORD

REACTIONS. All bearings 16-9-9.

(lb) -Max Horz 2=84(LC 11)

Max Uplift All uplift 100 lb or less at joint(s) 2, 12, 14, 11, 10, 9

Max Grav All reactions 250 lb or less at joint(s) 2, 10, 9 except 12=268(LC 22), 14=296(LC 1), 11=284(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) 0-3-2 to 3-0-0, Exterior(2R) 3-0-0 to 7-2-15, Interior(1) 7-2-15 to 17-8-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 1.5x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 12, 14, 11, 10,
- 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

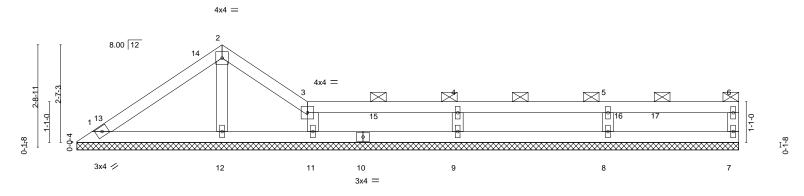
Review for Code @ompliance 32
Universal Engine III 1860 INC. FL Cert 6634
Universal Engine III 33610

Laudence Pernell

PX October 15,202021

a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply Bill Ladson T25656963 **PB08** 211014-04KM Piggyback Job Reference (optional)


Coastal Truss & Vinyl Siding,

Patterson, GA - 31577,

8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 14 14:04:43 2021 Page 1 ID:5z5H8DqZnOIYpsEeEI7p3gyTVJ4-?YBXawvNIHiOaLaYOTzBOt?A2nNUHiQm_o?3kSyTTqo

17-<u>10-0</u> 17-10-0

Scale = 1:30.7

17-10-0 17-10-0									
LOADING (psf) TCLL 20.0 TCDL 7.0 BCLL 0.0 * BCDL 7.0	SPACING- 2-0-0 Plate Grip DOL 1.25 Lumber DOL 1.25 Rep Stress Incr NO Code FBC2020/TPI2014	CSI. TC 0.19 BC 0.11 WB 0.02 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 60 lb	GRIP 244/190 FT = 20%

LUMBER-

WFBS

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

2x4 SP No.2

BRACING-

TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 3-6.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 17-7-6.

Max Horz 1=76(LC 11) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 1, 7, 11, 9, 8, 12

Max Grav All reactions 250 lb or less at joint(s) 1, 7, 11, 12 except 9=293(LC 1), 8=266(LC 22)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- $2) \ \ Wind: ASCE \ 7-16; \ Vult=130mph \ (3-second \ gust) \ \ Vasd=101mph; \ TCDL=4.2psf; \ BCDL=4.2psf; \ h=15ft; \ B=45ft; \ L=24ft; \ eave=4ft; \ Cat.$ II; Exp C; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) 0-8-0 to 3-8-0, Interior(1) 3-8-0 to 4-1-0, Exterior(2E) 4-1-0 to 6-4-4, Interior(1) 6-4-4 to 17-8-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 1.5x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7, 11, 9, 8, 12.
- 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Laudence Pernell

PX October 15,202021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

AMSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply Bill Ladson T25656964 T01 4 211014-04KM Attic Job Reference (optional)

Coastal Truss & Vinyl Siding,

Patterson, GA - 31577,

8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 14 14:04:45 2021 Page 1 ID:5z5H8DqZnOIYpsEeEI7p3gyTVJ4-xxIH?bwdHuz6pejxVu0fTl4JFbralYA3R6UAoKyTTqm

7-10-14 8-6-11 11-0-0 2-9-2 0-7-12 2-5-5 13-5-5 14-1₇2 16-10-4 19-5-15 22-0-0 23-0-0 2-5-5 0-7-12 2-9-2 2-7-11 2-6-1 1-0-0

> Scale = 1:72.3 5x6 =

> > Structural wood sheathing directly applied.

Rigid ceiling directly applied.

1 Brace at Jt(s): 17



Plate Offsets (X,Y)-- [4:0-3-0,Edge], [10:0-3-0,Edge]

LOADIN	G (psf)	SPACING- 2	-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.97	Vert(LL)	-0.31 1	4-16	>844	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.96	Vert(CT)	-0.45 1	4-16	>587	180		
BCLL	0.0 *	Rep Stress Incr	NO	WB	0.26	Horz(CT)	0.01	2	n/a	n/a		
BCDL	7.0	Code FBC2020/TPI20)14	Matri	x-AS	Attic	-0.16 1	4-16	868	360	Weight: 204 lb	FT = 20%

BRACING-

JOINTS

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No 1 *Except* 1-4.10-13: 2x6 SP No.2

BOT CHORD 2x10 SP No 2 **WEBS** 2x4 SP No.2

REACTIONS. (size) 2=0-8-0, 12=0-8-0

Max Horz 2=-373(LC 10)

Max Uplift 2=-139(LC 12), 12=-139(LC 12) Max Grav 2=1213(LC 18), 12=1213(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1648/135, 3-5=-1580/146, 5-6=-860/224, 8-9=-859/224, 9-11=-1579/146,

11-12=-1647/135

BOT CHORD 2-16=-5/1282, 14-16=0/944, 12-14=-10/1156

WEBS 9-14=0/938, 5-16=0/938, 6-17=-1133/298, 8-17=-1133/298, 3-16=-471/170,

11-14=-474/170

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II: Exp C: Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 11-0-0, Exterior(2R) 11-0-0 to 13-9-0, Interior(1) 13-9-0 to 23-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Ceiling dead load (5.0 psf) on member(s). 5-6, 8-9, 6-17, 8-17; Wall dead load (5.0 psf) on member(s).9-14, 5-16
- 7) Bottom chord live load (40.0 psf) and additional bottom chord dead load (3.0 psf) applied only to room. 14-16
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=139, 12=139,
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 10) Attic room checked for L/360 deflection.

Laudence Pernell

PX October 15,202021

6904 Parke East Blvd

JOROUIN VE

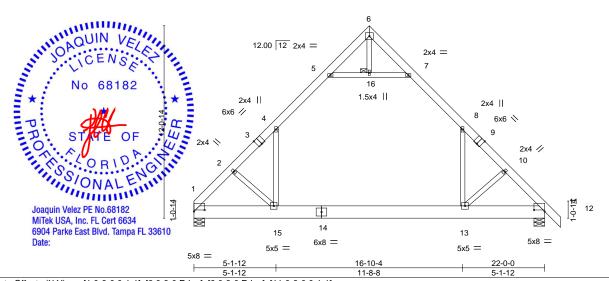
68182

Job Truss Truss Type Qty Ply Bill Ladson T25656965 T02 Attic 3 211014-04KM Job Reference (optional)

Coastal Truss & Vinyl Siding,

Patterson, GA - 31577,

8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 14 14:04:46 2021 Page 1 ID:5z5H8DqZnOIYpsEeEI7p3gyTVJ4-P7sfCxxF2C5zRoI73cXu0VcU_?BpU?PCgmEjLmyTTqI


7-10-14 8-6-11 11-0-0 2-9-2 0-7-12 2-5-5 13-5-5 14-1-2 16-10-4 19-5-15 22-0-0 23-0-0 2-5-5 0-7-12 2-9-2 2-7-11 2-6-1 1-0-0

> Scale = 1:72.3 5x6 =

> > Structural wood sheathing directly applied.

Rigid ceiling directly applied.

1 Brace at Jt(s): 16

Plate Offsets (X,Y)	[1:0-8-0,0-1-1], [3:0-3-0,Edge], [9:0-3-0,Edge], [11:0-8-0,0-1-1]

LOADIN	G (psf)	SPACING- 2	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.97	Vert(LL)	-0.31 13	3-15	>844	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.96	Vert(CT)	-0.45 13	3-15	>587	180		
BCLL	0.0 *	Rep Stress Incr	NO	WB	0.27	Horz(CT)	0.01	1	n/a	n/a		
BCDL	7.0	Code FBC2020/TPI20	014	Matrix	c-AS	Attic	-0.16 13	3-15	868	360	Weight: 200 lb	FT = 20%

BRACING-

JOINTS

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No 1 *Except* 1-3.9-12: 2x6 SP No.2

BOT CHORD 2x10 SP No 2 **WEBS** 2x4 SP No.2

REACTIONS.

(size) 1=0-8-0, 11=0-8-0

Max Horz 1=-361(LC 10)

Max Uplift 1=-92(LC 12), 11=-140(LC 12) Max Grav 1=1167(LC 19), 11=1214(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-1651/141, 2-4=-1583/152, 4-5=-860/226, 7-8=-861/225, 8-10=-1582/148,

10-11=-1650/136

BOT CHORD 1-15=-14/1290, 13-15=0/946, 11-13=-12/1158

WEBS 8-13=0/939, 4-15=0/940, 5-16=-1135/302, 7-16=-1135/302, 2-15=-479/174,

10-13=-474/170

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II: Exp C: Encl., GCpi=0.18: MWFRS (directional) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 11-0-0, Exterior(2R) 11-0-0 to 13-9-0, Interior(1) 13-9-0 to 23-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Ceiling dead load (5.0 psf) on member(s). 4-5, 7-8, 5-16, 7-16; Wall dead load (5.0 psf) on member(s).8-13, 4-15
- 7) Bottom chord live load (40.0 psf) and additional bottom chord dead load (3.0 psf) applied only to room. 13-15
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 11=140.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 10) Attic room checked for L/360 deflection.

Review for Code Compliance Universal Engineering Science

Laudence Pernell

PX October 15,202021

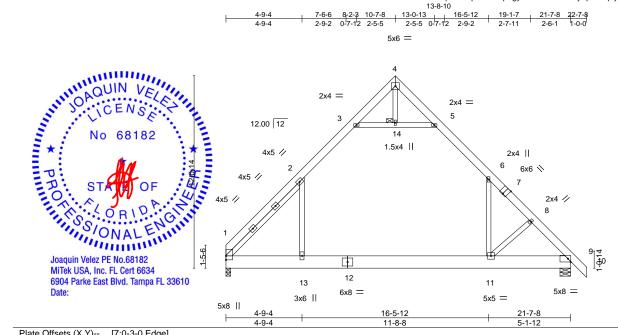
Job	Truss	Truss Type	Qty	Ply	Bill Ladson
211014-04KM	T00	A44:-		,	T25656966
211014-04KM	T03	Attic	3	1	Job Reference (optional)

Coastal Truss & Vinyl Siding,

Patterson, GA - 31577,

8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 14 14:04:47 2021 Page 1 ID:5z5H8DqZnOIYpsEeEI7p3gyTVJ4-uKQ2QHyupWDq2ytJdJ27Zj9g?PYQDSILvQzGtDyTTqk

13-8-10


13-0-13 16-5-12 2-5-5 0-7-12 2-9-2 16-5-12 19-1-7 21-7-8 22-7-8 2 2-9-2 2-7-11 2-6-1 1-0-0 8-2-3 10-7-8 0-7-12 2-5-5

> Scale = 1:72.3 5x6 =

> > Structural wood sheathing directly applied.

Rigid ceiling directly applied.

1 Brace at Jt(s): 14

I late Oil	3013 (A, I)	[1.0-3-0,Luge]									
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.96	Vert(LL)	-0.30 11-13	>865	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.94	Vert(CT)	-0.43 11-13	>605	180		
BCLL	0.0 *	Rep Stress Incr	NO	WB	0.26	Horz(CT)	0.03 1	n/a	n/a		
BCDL	7.0	Code FBC2020/TPI2	2014	Matri	x-AS	Attic	-0.16 11-13	893	360	Weight: 202 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

JOINTS

LUMBER-

WEBS

TOP CHORD 2x6 SP No.1 *Except*

7-10: 2x6 SP No.2 **BOT CHORD** 2x10 SP No.2

2x4 SP No.2 SLIDER Left 2x4 SP No.2 6-6-12

REACTIONS.

(size) 1=0-3-8, 9=0-8-0 Max Horz 1=-354(LC 10)

Max Uplift 1=-87(LC 12), 9=-139(LC 12) Max Grav 1=1169(LC 19), 9=1194(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-1038/190, 2-3=-846/227, 5-6=-839/222, 6-8=-1546/147, 8-9=-1614/136

BOT CHORD 1-13=0/923, 11-13=0/923, 9-11=-11/1135

WEBS 2-13=-10/766, 6-11=0/920, 3-14=-1110/305, 5-14=-1110/305, 8-11=-470/171

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 10-7-8, Exterior(2R) 10-7-8 to 13-4-8, Interior(1) 13-4-8 to 22-7-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Ceiling dead load (5.0 psf) on member(s). 2-3, 5-6, 3-14, 5-14; Wall dead load (5.0 psf) on member(s).2-13, 6-11
- 7) Bottom chord live load (40.0 psf) and additional bottom chord dead load (3.0 psf) applied only to room. 11-13
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 9=139.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 10) Attic room checked for L/360 deflection.

Review for Code Compliance Universal Engineering Science

Lander Parrell

PX October 15,202021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply Bill Ladson T25656967 T04 211014-04KM Common Job Reference (optional) Coastal Truss & Vinyl Siding, Patterson, GA - 31577, 8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 14 14:04:48 2021 Page 1 ID:5z5H8DqZnOIYpsEeEI7p3gyTVJ4-MW_QddyWapLhg6SWB1ZM5wiywo03ywwV74jqPfyTTqj 6-8-0 13-4-0 6-8-0 Scale: 1/4"=1 4x5 = 3 12.00 12 10 5x5 = 5x5 = 4 1-0-14 6 2x4 || 2x4 4x8 = 6-8-0 6-8-0 6-8-0 Plate Offsets (X,Y)-- [2:0-3-8,0-1-0], [4:Edge,0-1-0] DEFL. in (loc) I/defI L/d **PLATES GRIP**

LOADING (psf) TCLL 20.0 TCDL 7.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.25 Lumber DOL 1.25 Rep Stress Incr NO	CSI. TC 0.50 BC 0.34 WB 0.20	
BCDL 7.0	Code FBC2020/TPI2014	Matrix-AS	

Vert(LL) -0.03 5-6 >999 240 Vert(CT) -0.06 5-6 >999 180 Horz(CT) -0.01 5 n/a n/a MT20 244/190

Weight: 82 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No 2 2x4 SP No.2 WFBS

BRACING-

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied, except end verticals. Rigid ceiling directly applied.

REACTIONS. (size) 7=0-8-0, 5=0-8-0

Max Horz 7=260(LC 11)

Max Uplift 7=-175(LC 12), 5=-120(LC 12) Max Grav 7=508(LC 1), 5=441(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-440/233, 3-4=-434/225, 2-7=-465/308, 4-5=-398/237

BOT CHORD 6-7=-381/471

WFBS 2-6=-268/360, 4-6=-221/277

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 6-8-0, Exterior(2R) 6-8-0 to 9-8-0, Interior(1) 9-8-0 to 13-2-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb)
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Review for Code @ompliance 32
Universal Engine 11 33610

PX October 15,202021

Laudence Pernell

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply Bill Ladson T25656968 T05 GABLE II 211014-04KM Job Reference (optional) Coastal Truss & Vinyl Siding, Patterson, GA - 31577, 8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 14 14:04:49 2021 Page 1 ID:5z5H8DqZnOIYpsEeEI7p3gyTVJ4-qiYoqzz8L7TYIG1ikk4be8E9LCO2hLeeMkSNx5yTTqi 15-4-14 20-2-11 25-4-0 4-9-13 5-5-11 4-9-13 5-1-5 Scale = 1:65.5 4x8 = 4x5 = 5 43 44 🖂 _{-∞} 45 6 12.00 12 46 4x4 📏 42 47 8x8 N 9 3x4 / 10 3x4 \\

> 15-4-14 20-2-11 12-4-8 9-11-2 2-5-6 3-0-6 4-9-13 5-1-5

17 49

5x5 =

16

15

3x4 =

3x8 =

18

T late On	3013 (71, 1)	[2.Eugo,0 2 12], [3.0 3 4,0 1 12], [0	.0 0 4,0 1 12], [10.0 4 0,0 2 0	5], [11.Euge,0 2 12], [17.0 2 0,0 3 0]	
LOADING	G (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL	20.0	Plate Grip DOL 1.25	TC 0.33	Vert(LL) -0.02 14-15 >999 240	MT20 244/190
TCDL	7.0	Lumber DOL 1.25	BC 0.23	Vert(CT) -0.03 14-15 >999 180	
BCLL	0.0 *	Rep Stress Incr NO	WB 0.36	Horz(CT) 0.01 11 n/a n/a	
BCDL	7.0	Code FBC2020/TPI2014	Matrix-AS		Weight: 274 lb FT = 20%

BOT CHORD

WEBS

LUMBER-**BRACING-**TOP CHORD

21

20 48 19

Plate Offsets (X Y)-- [2:Edge 0-2-12] [5:0-3-4 0-1-12] [6:0-6-4 0-1-12] [10:0-4-0 0-2-8] [11:Edge 0-2-12] [17:0-2-8 0-3-0]

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No 2 WFBS

2x4 SP No.2 **OTHERS** 2x4 SP No.2

WEDGE Left: 2x4 SP No.2, Right: 2x4 SP No.2

REACTIONS. All bearings 12-8-0 except (jt=length) 11=0-8-0, 16=0-3-8.

10x10

22

Max Horz 2=327(LC 11)

Max Uplift All uplift 100 lb or less at joint(s) 22 except 2=-113(LC 12), 11=-138(LC

12), 18=-273(LC 12)

Max Grav All reactions 250 lb or less at joint(s) 19, 20, 21, 22, 16 except 2=270(LC

21), 11=599(LC 18), 18=882(LC 17)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-303/132, 6-7=-377/235, 7-8=-520/193, 8-10=-556/182, 10-11=-642/130 **BOT CHORD** 2-22=-197/262, 21-22=-197/262, 20-21=-197/262, 19-20=-197/262, 18-19=-197/262,

14-15=-27/366, 13-14=-28/363, 12-13=-28/363, 11-12=-28/363 **WEBS** 4-18=-265/254, 5-18=-313/90, 6-18=-513/160, 6-15=-124/401, 7-15=-389/233

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=15ft; B=45ft; L=25ft; eave=4ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 9-11-2, Exterior(2R) 9-11-2 to 14-2-1, Interior(1) 14-2-1 to 15-4-14, Exterior(2R) 15-4-14 to 19-7-12, Interior(1) 19-7-12 to 25-3-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) Provide adequate drainage to prevent water ponding.
- 6) All plates are 1.5x4 MT20 unless otherwise indicated.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live load
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a recta will fit between the bottom chord and any other members, with BCDL = 7.0psf.

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 22 except (jt=lb) 2=113, 11=138, 18=273.

11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the epicheragod 1/2" appairs H

b) E-b-owide Universal Engingaring கூடுக்கொள்ள 12 33610

12 10x10 =

Structural wood sheathing directly applied, except

5-18, 6-18

2-0-0 oc purlins (6-0-0 max.): 5-6.

Rigid ceiling directly applied.

1 Row at midpt

14 13

PX October 15,202021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE

AWARNING - Verity design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIT-47.3 (eV. 5/19/20/20 BEPORE USE.)

Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information

available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Bill Ladson
					T25656968
211014-04KM	T05	GABLETT	1	1	
					Job Reference (optional)

Coastal Truss & Vinyl Siding,

Patterson, GA - 31577,

8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 14 14:04:49 2021 Page 2 ID:5z5H8DqZnOIYpsEeEI7p3gyTVJ4-qiYoqzz8L7TYIG1ikk4be8E9LCO2hLeeMkSNx5yTTqi

NOTES-

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Review for Code Compliance Universal Engineering Science

PX2707

11/18/2021

Job Truss Truss Type Qty Ply Bill Ladson T25656969 211014-04KM T06 Piggyback Base 2 Job Reference (optional) Coastal Truss & Vinyl Siding, Patterson, GA - 31577, 8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 14 14:04:50 2021 Page 1 ID:5z5H8DqZnOIYpsEeEI7p3gyTVJ4-lv6A2J_m6RbPvPcuIRcqALnHscayQovobOCxUYyTTqh 9-11-2 20-2-11 25-4-0 15-4-14 4-9-13 5-5-11 4-9-13 5-1-5 Scale = 1:67.1 4x8 = 4x8 = 16__ _⊠17 12.00 12 4x4 // 18 4x4 📏 6 19 2x4 || 2x4 || 1-0-1 1-0-14 萎 ₩ 10 ¹² 11 20 21 22 23 9 5x6 5x6 3x4 = 3x5 = 3x4 = 3x4 =9-11-2 12-6-4 9-11-2 2-7-2 2-10-10 9-11-2 Plate Offsets (X,Y)--[4:0-6-4,0-1-12], [5:0-6-4,0-1-12] LOADING (psf) SPACING-2-0-0 CSI. DEFL. (loc) I/defI L/d **PLATES** GRIP **TCLL** 20.0 Plate Grip DOL 1.25 TC 0.53 Vert(LL) -0.31 8-9 >493 240 MT20 244/190 TCDL 7.0 Lumber DOL 1.25 BC 0.89 Vert(CT) -0.45 8-9 >335 180 WB **BCLL** 0.0 Rep Stress Incr NO 0.36 Horz(CT) 0.01 8 n/a n/a BCDL 7.0 Code FBC2020/TPI2014 Matrix-AS Weight: 198 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

WEBS

LUMBER-

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No 2

2x4 SP No 2 WFBS

REACTIONS. 10=0-3-8, 13=0-8-0, 8=0-8-0 (size)

Max Horz 13=365(LC 11)

Max Uplift 10=-254(LC 12), 13=-157(LC 12), 8=-107(LC 12) Max Grav 10=857(LC 17), 13=629(LC 17), 8=631(LC 18)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-567/180, 3-4=-411/199, 5-6=-424/188, 6-7=-572/151, 2-13=-542/228,

7-8=-481/151

BOT CHORD 11-13=-155/496 10-11=-115/318 9-10=-40/273 8-9=-28/324

WEBS $3-11=-277/258,\ 4-11=-95/556,\ 4-10=-659/171,\ 5-10=-587/151,\ 5-9=-98/545,$

6-9=-278/258

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=15ft; B=45ft; L=25ft; eave=4ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 9-11-2, Exterior(2R) 9-11-2 to 14-2-1. Interior(1) 14-2-1 to 15-4-14. Exterior(2R) 15-4-14 to 19-7-12. Interior(1) 19-7-12 to 25-2-4 zone: cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 7.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 10=254, 13=157, 8=107.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Review for Code @ o mp file moet 82 Universal Enging in G Ex Get 6634 Universal Enging in G Ex Get 1634

Structural wood sheathing directly applied, except end verticals, and

4-10. 5-10

2-0-0 oc purlins (6-0-0 max.): 4-5.

Rigid ceiling directly applied.

1 Row at midpt

Lawlence Pernell

PX October 15,202021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply Bill Ladson T25656970 T07 Piggyback Base Girder 211014-04KM 2 Job Reference (optional) Coastal Truss & Vinyl Siding, Patterson, GA - 31577, 8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 14 14:04:52 2021 Page 1 ID:5z5H8DqZnOIYpsEeEl7p3gyTVJ4-EHDxT_?0d2r79jmHQselFmsi2QlHud542ih1YQyTTqf 15-4-14 25-4-0 9-11-2 20-2-11 4-9-13 5-5-11 5-1-5 Scale = 1:73.8 4x8 = 4x8 4 _⊠16 5 12.00 12 3x6 // 5x6 \ 11-0-0 4x6 🔌 Ш ПП 19 鬟 ¹³ 12 18 20 21 22 23 14 9 15 6x6 HGUS26 4x5 = 4x5 = 8x8 = 12x12 // 6x8 5x5 II HGUS26 7x8 = HGUS26HGUS26 HGUS26 HGUS26 HGUS26 HGUS26 HGUS26 9-11-2 15-4-14 20-2-11 5-1-5 12-6-4 5-1-5 4-9-13 2-7-2 2-10-10 4-9-13 5-1-5 Plate Offsets (X,Y)--[4:0-6-4,0-1-12], [5:0-6-4,0-1-12], [7:0-0-12,0-2-0], [9:0-3-8,0-5-12], [11:0-3-0,0-3-12], [12:0-3-8,0-5-8], [13:0-2-11,0-3-0], [15:0-4-12,0-2-12], [15:0-4-12], [15:0-4-12], [15:0-4-12LOADING (psf) SPACING-2-0-0 CSI. DEFL. in (loc) L/d **PLATES** GRIP **TCLL** 20.0 Plate Grip DOL 1.25 TC 0.23 Vert(LL) 0.08 12-14 >999 240 MT20 244/190

TCDL 7.0 Lumber DOL 1.25 BC 0.77 Vert(CT) -0.10 9-10 >999 180 **BCLL** 0.0 Rep Stress Incr NO WB 0.70 Horz(CT) 0.01 8 n/a n/a BCDL 7.0 Code FBC2020/TPI2014 Matrix-MS Weight: 492 lb FT = 20%

LUMBER-TOP CHORD BOT CHORD

2x4 SP No.2 2x8 SP No 2

2x4 SP No.2 *Except* WFBS

2-15,7-8: 2x8 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals, and 2-0-0 oc purlins (10-0-0 max.): 4-5. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

6-0-0 oc bracing: 14-15.

WEBS 1 Row at midpt 4-11. 5-11

REACTIONS. (size) 15=0-8-0, 11=0-4-13, 8=0-8-0

Max Horz 15=363(LC 7)

Max Uplift 15=-767(LC 8), 11=-3025(LC 8), 8=-1005(LC 8) Max Grav 15=1362(LC 29), 11=8145(LC 2), 8=4126(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1676/981, 3-4=-795/572, 5-6=-1064/358, 6-7=-3388/836, 2-15=-1517/908,

7-8=-2702/679

BOT CHORD 14-15=-351/431, 12-14=-829/1318, 11-12=-520/648, 10-11=-282/742, 9-10=-523/2345, 8-9=-245/929

 $3-14 = -689/1155, \ 3-12 = -1075/716, \ 4-12 = -1730/2775, \ 4-11 = -2623/1520, \ 5-11 = -3104/739, \ 5-$ 5-10=-828/3467, 6-10=-2508/804, 6-9=-794/3324, 2-14=-717/1162, 7-9=-334/1439

NOTES-

WEBS

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc, 2x8 - 2 rows staggered at 0-9-0 oc.

Bottom chords connected as follows: 2x8 - 2 rows staggered at 0-5-0 oc. Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=15ft; B=45ft; L=25ft; eave=4ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 5) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 6) Provide adequate drainage to prevent water ponding.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide nt(s) except (1=16) for Code @omple Helmoe 32 will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb up 15=767, 11=3025, 8=1005.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 11) Use Simpson Strong-Tie HGUS26 (20-SD10212 Girder, 8-SD10212 Truss) or equivalent at 8-0-12 from the left end to connect truss(es) to back face of bottom chord.

Livery Perre

der (i = fi) (i = fi PX October 15,20,2021

68182

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFURE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information

available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Bill Ladson
044044.04404	T07	B: 1 1 B 0: 1			T25656970
211014-04KM	T07	Piggyback Base Girder	1	2	Job Reference (optional)

Coastal Truss & Vinyl Siding,

Patterson, GA - 31577,

8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 14 14:04:52 2021 Page 2 ID:5z5H8DqZnOIYpsEeEI7p3gyTVJ4-EHDxT_?0d2r79jmHQseIFmsi2QIHud542ih1YQyTTqf

NOTES-

12) Use Simpson Strong-Tie HGUS26 (20-10d Girder, 6-10d Truss) or equivalent spaced at 2-0-0 oc max. starting at 10-0-12 from the left end to 24-0-12 to connect truss(es) to back face of bottom chord.

13) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

Vert: 1-2=-54, 2-4=-54, 4-5=-54, 5-7=-54, 8-15=-14

Concentrated Loads (lb)

Vert: 12=-901(B) 9=-1087(B) 17=-2122(B) 18=-901(B) 19=-1103(B) 20=-1103(B) 21=-1103(B) 22=-1087(B) 23=-1087(B)

Review for Code Compliance Universal Engineering Science

Ludere Pernell

PX2707

11/18/2021

Job Truss Truss Type Qty Ply Bill Ladson T25656971 T08 211014-04KM Roof Special Girder Job Reference (optional) Coastal Truss & Vinyl Siding, Patterson, GA - 31577, 8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 14 14:04:54 2021 Page 1 ID:5z5H8DqZnOIYpsEeEI7p3gyTVJ4-AgLhug1H9f5qO1vfXHgmLByyzD1tMTZNW?A8dJyTTqd 11-6-2 16-7-12 5-1-10 NAILED NAILED NAILED NAILED NAILED Scale = 1:62.5 3x4 = 4x8 =3x4 || $_{\rm NAILED}$ 1.5x4 II 8.00 12 NAILED NAILED NAILED 18 19 21 🖂 5 17 23 20 6x6 = 32 ³⁸10 13 34 35 11 36 37 28 30 31 33 39 40 41 16 15 14 12 NAILED 3x8 = 2x4 | NAILED NAILED 7x10 MT20HS || 7x10 MT20HS = 4x6 = NAILED 4v8 = 2x4 || NAILED 6x6 =NAILED NAILED NAILED NAILED NAILED NAILED NAILED NAILED 2-8-4 6-4-8 11-6-2 21-9-6 5-1-10 5-1-10 5-1-10 Plate Offsets (X,Y)--[9:Edge,0-4-12] LOADING (psf) SPACING-2-0-0 CSI. DEFL. in (loc) I/defI L/d **PLATES** GRIP **TCLL** 20.0 Plate Grip DOL 1.25 TC 0.59 Vert(LL) 0.14 11-12 >999 240 MT20 244/190 Lumber DOL 187/143 TCDL 7.0 1.25 BC 0.50 Vert(CT) -0.14 11-12 >999 180 MT20HS WB **BCLL** 0.0 Rep Stress Incr 0.96 Horz(CT) -0.04 n/a n/a BCDL 7.0 Code FBC2020/TPI2014 Matrix-MS Weight: 261 lb FT = 20% LUMBER-**BRACING-**TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 4-0-7 oc purlins, 2x6 SP No 2 except end verticals, and 2-0-0 oc purlins (3-10-1 max.): 1-2, 3-8. **BOT CHORD** 2x4 SP No 2 BOT CHORD WFBS Rigid ceiling directly applied or 6-0-2 oc bracing. WEBS 1 Row at midpt 1-16, 8-9, 1-15, 2-15, 4-14, 4-11, 5-11, 7-11 2 Rows at 1/3 pts 7-9 REACTIONS. (size) 16=Mechanical, 9=Mechanical Max Horz 16=368(LC 5) Max Uplift 16=-1623(LC 8), 9=-1687(LC 5) Max Grav 16=2869(LC 26), 9=2760(LC 25) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-16=-2698/1577, 1-2=-1088/677, 2-3=-2032/1271, 3-4=-1699/1111, 4-5=-2166/1426,

5-7=-2166/1426

BOT CHORD 15-16=-343/227, 14-15=-862/1224, 12-14=-1484/2296, 11-12=-1484/2296,

10-11=-986/1497, 9-10=-986/1497

WEBS 1-15=-1624/2799, 2-15=-2103/1250, 2-14=-701/1108, 3-14=-479/806, 4-14=-1190/754,

4-12=-286/654, 5-11=-396/348, 7-11=-869/1388, 7-10=-362/771, 7-9=-2802/1722

NOTES-

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=15ft; B=45ft; L=27ft; eave=4ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) Provide adequate drainage to prevent water ponding.
- 4) All plates are MT20 plates unless otherwise indicated.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 7.0psf.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 16=1623, 9=1687,
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 10) "NAILED" indicates 3-10d Nails (0.148" x 3") toe-nails per NDS guidelines.
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B

Review for Code @ o mp file moet 82 Universal Enging in G Ex Get 6634 Universal Enging in G Ex Get 1634

PX October 15,202021

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

6904 Parke East Blvd

JOAQUIN VE

68182

Job	Truss	Truss Type	Qty	Ply	Bill Ladson
					T25656971
211014-04KM	T08	Roof Special Girder	1	1	
		I	l	1	Job Reference (optional)

Coastal Truss & Vinyl Siding,

Patterson, GA - 31577,

8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 14 14:04:54 2021 Page 2 ID:5z5H8DqZnOIYpsEeEI7p3gyTVJ4-AgLhug1H9f5qO1vfXHgmLByyzD1tMTZNW?A8dJyTTqd

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf) Vert: 1-2=-54, 2-3=-54, 3-8=-54, 9-16=-14

Concentrated Loads (lb)

Vert: 13=-146(F) 4=-43(F) 12=-146(F) 17=-43(F) 19=-43(F) 21=-43(F) 22=-43(F) 23=-43(F) 24=-43(F) 25=-43(F) 26=-43(F) 27=-43(F) 28=-243(F) 29=-243(F) 30=-243(F) 31=-146(F) 33=-146(F) 35=-146(F) 36=-146(F) 37=-146(F) 38=-146(F) 39=-146(F) 39=-146(F) 41=-146(F)

Review for Code Compliance Universal Engineering Science

PX2707

11/18/2021

Job Truss Truss Type Qty Ply Bill Ladson T25656972 211014-04KM T09 Piggyback Base 3 Job Reference (optional) Coastal Truss & Vinyl Siding, Patterson, GA - 31577, 8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 14 14:04:56 2021 Page 1 ID:5z5H8DqZnOIYpsEeEI7p3gyTVJ4-72TRIM3XhHLYeK32fiiEQc1Ja1gJqTygzJfFhByTTqb 14-10-0 18-11-0 23-0-0 27-8-4 32-8-0 7-6-12 7-3-4 4-1-0 4-1-0 4-8-4 4-11-12 Scale = 1:65.1 4x4 = 4x4 = 3x4 =8.00 12 ⁴18 19 205 21 Ø \boxtimes 3x4 / 3x5 <> 3x5 / 22 3x5 <> 4-7-8 4x4 / 1-2-3 23 14 12 25 26 15 13 11 10 3x4 =3x4 =3x4 = 1.5x4 II 4x4 = 3x8 =3x8 = 3x4 =7-6-12 14-10-0 23-0-0 27-8-4 32-8-0 7-6-12 7-3-4 4-8-4 4-11-12 8-2-0 Plate Offsets (X,Y)--[1:0-1-0,0-1-8], [4:0-2-4,0-2-4] LOADING (psf) SPACING-CSI. DEFL. in (loc) I/defI L/d **PLATES** GRIP **TCLL** 20.0 Plate Grip DOL 1.25 TC 0.52 Vert(LL) -0.17 11-13 >999 240 MT20 244/190 TCDL 7.0 Lumber DOL 1.25 BC 0.70 Vert(CT) -0.25 11-13 >999 180 WB **BCLL** 0.0 Rep Stress Incr NO 0.52 Horz(CT) 0.04 n/a n/a BCDL 7.0 Code FBC2020/TPI2014 Matrix-AS Weight: 242 lb FT = 20% LUMBER-**BRACING-**Structural wood sheathing directly applied, except end verticals, and TOP CHORD 2x4 SP No.2 TOP CHORD BOT CHORD 2x4 SP No 2 2-0-0 oc purlins (5-7-4 max.): 4-6. 2x4 SP No 2 BOT CHORD WFBS Rigid ceiling directly applied. WEBS 1 Row at midpt 2-13, 5-13, 5-11 REACTIONS. 16=Mechanical, 9=Mechanical (size) Max Horz 16=374(LC 11) Max Uplift 16=-299(LC 12), 9=-303(LC 12) Max Grav 16=1335(LC 17), 9=1291(LC 18) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-1720/414, 2-4=-1316/424, 4-5=-1041/416, 5-6=-873/376, 6-7=-1089/401, 7-8=-957/300 1-16=-1231/327 8-9=-1226/325 BOT CHORD 15-16=-309/503, 13-15=-430/1544, 11-13=-264/1049, 10-11=-214/751 **WEBS**

2-13=-534/235, 4-13=-72/438, 5-11=-406/139, 6-11=-100/384, 1-15=-156/1071,

7-11=-62/293, 7-10=-511/193, 8-10=-218/969

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=15ft; B=45ft; L=33ft; eave=4ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) 0-1-12 to 3-4-15, Interior(1) 3-4-15 to 14-10-0, Exterior(2R) 14-10-0 to 19-5-7. Interior(1) 19-5-7 to 23-0-0. Exterior(2R) 23-0-0 to 27-8-4. Interior(1) 27-8-4 to 32-6-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 7.0psf.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 16=299, 9=303,
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top a

JOAQUIN VE

68182

pottom chedview for Code இற in Flame 82 Universal Enging நிழித்தின் நடித்து 18634 Universal Enging நிழித்தின் இது 18 33610

PX October 15,202021

a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply Bill Ladson T25656973 T10 Piggyback Base 9 211014-04KM Job Reference (optional) Coastal Truss & Vinyl Siding, Patterson, GA - 31577, 8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 14 14:04:57 2021 Page 1 ID:5z5H8DqZnOIYpsEeEI7p3gyTVJ4-bF1qWi39SaTPFUeECQETyqaPKRzPZqDqCzOoDeyTTqa 7-10-12 19-7-0 23-8-0 31-3-4 39-2-0 40-2-0 1-0-0 7-10-12 7-10-12 4-1-0 Scale = 1:76.6 5x5 = 5x5 =8.00 12 3x4 = 5 31⊠ 32 6 Ø 3x6 // 3x6 × 8 33 30 3x5 // 3x4 × 9 3 2 20 4v4 / 0-8-14 11 ļφ. 13 35 17 38 39 40 12 18 16 15 3x6 = 4x4 = 3x6 | I1.5x4 \\ 1.5x4 || 3x8 =4x6 || 3x8 = 3x6 = 7-10-12 15-6-0 23-8-0 33-0-0 39-2-0 7-10-12 7-7-4 9-4-0 8-2-0 6-2-0 Plate Offsets (X,Y)--[1:0-3-15,0-0-5], [5:0-3-4,0-2-4], [7:0-3-4,0-2-4], [10:0-1-11,0-0-4]

LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in (l	loc)	I/defI	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.84	Vert(LL)	-0.19 13	-15	>999	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.83	Vert(CT)	-0.29 13	-15	>999	180		
BCLL	0.0 *	Rep Stress Incr	NO	WB	0.90	Horz(CT)	0.05	13	n/a	n/a		
BCDL	7.0	Code FBC2020/TI	PI2014	Matr	ix-AS						Weight: 248 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

WEBS

LUMBER-

TOP CHORD 2x4 SP No 2 **BOT CHORD** 2x4 SP No 2

2x4 SP No 2 WFBS

SLIDER Left 2x6 SP No.2 2-6-0, Right 2x6 SP No.2 2-6-0

REACTIONS. (size) 1=0-8-0, 13=0-8-0, 10=0-5-8

Max Horz 1=-316(LC 10)

Max Uplift 1=-324(LC 12), 13=-270(LC 12), 10=-180(LC 12) Max Grav 1=1379(LC 17), 13=1747(LC 18), 10=234(LC 22)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-3=-1792/467, 3-5=-1290/452, 5-6=-1027/445, 6-7=-832/413, 7-9=-1069/416,

9-10=-79/374

BOT CHORD $1 - 18 = -257/1624, \ 16 - 18 = -257/1624, \ 15 - 16 = -78/1021, \ 13 - 15 = -92/314, \ 10 - 13 = -308/592$ **WEBS** 3-18=0/321, 3-16=-615/246, 5-16=-72/395, 6-16=-69/326, 6-15=-465/130, 7-15=-56/298,

9-15=0/754, 9-13=-1478/347

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=15ft; B=45ft; L=39ft; eave=5ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) 0-0-0 to 3-11-0, Interior(1) 3-11-0 to 15-6-0, Exterior(2R) 15-6-0 to 21-0-7, Interior(1) 21-0-7 to 23-8-0, Exterior(2R) 23-8-0 to 29-2-7, Interior(1) 29-2-7 to 40-2-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 7.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=324, 13=270, 10=180.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top ar

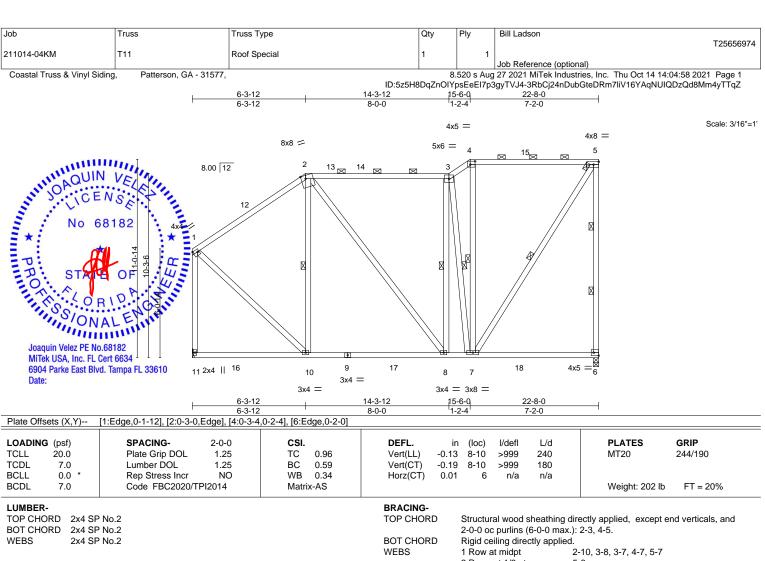
ittom cheeview for Code இற**்று Playne 8**2 Universal Enging Public Eden 16634 Universal Enging Public கூடு இது 1,33610

Structural wood sheathing directly applied, except

3-16, 6-16, 6-15

2-0-0 oc purlins (5-6-4 max.): 5-7.

Rigid ceiling directly applied.


1 Row at midpt

PX October 15,202021

Laudence Pernell

2 Rows at 1/3 pts

6=0-3-8, 11=Mechanical REACTIONS. (size)

Max Horz 11=462(LC 9)

Max Uplift 6=-315(LC 9), 11=-196(LC 12) Max Grav 6=987(LC 17), 11=934(LC 18)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-647/238, 2-3=-557/292, 3-4=-624/371, 4-5=-485/299, 5-6=-847/395,

1-11=-837/310

BOT CHORD 10-11=-572/529, 8-10=-497/654, 7-8=-375/584 **WEBS** 3-7=-629/297, 5-7=-388/838, 1-10=-196/657

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 6-3-12, Exterior(2R) 6-3-12 to 9-3-12. Interior(1) 9-3-12 to 15-6-0. Exterior(2R) 15-6-0 to 18-6-0. Interior(1) 18-6-0 to 22-6-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 7.0psf.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=315, 11=196,
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top a

l^{ottom c}ਇੰਢਿview for Code Compliance **Universal Engineering Science**

Lawlence Pernell

PX October 15,202021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not

Design Valid to its 9 this with Min New Commercials. This design is based only upon parameters shown, and is 10 at an individual obtaining Component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply Bill Ladson T25656975 T12 Piggyback Base 211014-04KM Job Reference (optional)

4-2-4

4x5 =

11-3-12

8-0-0

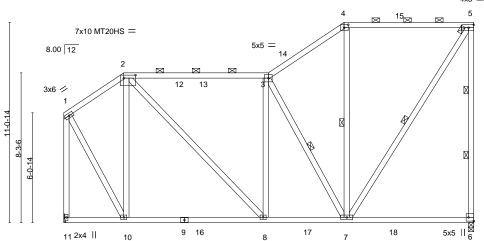
3x5 =

11-3-12

8-0-0

3x4 =

3-3-12


Coastal Truss & Vinyl Siding,

Patterson, GA - 31577,

8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 14 14:04:59 2021 Page 1 ID:5z5H8DqZnOIYpsEeEI7p3gyTVJ4-Xd8axO5P_Cj7VoodKqGx2FfiuEkV1r86fHtvIWyTTqY 15-6-0 22-8-0

7-2-0

Scale: 3/16"=1" 4x8 =

3-3-12 Plate Offsets (X,Y)-- [2:0-7-12,0-2-0], [4:0-2-12,0-2-0], [6:Edge,0-3-8]

LOADING	G (psf)	SPACING- 2	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.96	Vert(LL)	-0.13	8-10	>999	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.54	Vert(CT)	-0.20	8-10	>999	180	MT20HS	187/143
BCLL	0.0 *	Rep Stress Incr	NO	WB	0.49	Horz(CT)	0.01	6	n/a	n/a		
BCDL	7.0	Code FBC2020/TPI20)14	Matri	x-AS						Weight: 189	lb FT = 20%

3x4 =

15-6-0

4-2-4

LUMBER-

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No 2 WFBS

2x4 SP No 2

BRACING-

TOP CHORD Structural wood sheathing directly applied, except end verticals, and

2-0-0 oc purlins (5-0-0 max.): 2-3, 4-5. BOT CHORD

Rigid ceiling directly applied. **WEBS** 1 Row at midpt 3-7, 4-7, 5-7

3x8 =

2 Rows at 1/3 pts

22-8-0

REACTIONS. (size) 6=0-3-8, 11=Mechanical

Max Horz 11=462(LC 9)

Max Uplift 6=-300(LC 9), 11=-196(LC 12) Max Grav 6=1002(LC 17), 11=931(LC 18)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-510/200, 2-3=-715/269, 3-4=-642/312, 4-5=-474/296, 5-6=-857/405,


1-11=-931/289

BOT CHORD 10-11=-573/514, 8-10=-553/653, 7-8=-473/787

WEBS 2-10=-434/293, 2-8=-191/533, 3-7=-589/275, 5-7=-397/845, 1-10=-257/794

NOTES-

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) 0-1-12 to 3-3-12, Exterior(2R) 3-3-12 to 6-3-12, Interior(1) 6-3-12 to 15-6-0, Exterior(2R) 15-6-0 to 18-6-0, Interior(1) 18-6-0 to 22-6-4 zone; cantilever left and right exposed; end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) Provide adequate drainage to prevent water ponding.
- 4) All plates are MT20 plates unless otherwise indicated.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 7.0psf.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=300, 11=196.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Review for Code @ o mp file moet 82 Universal Enging in G Ex Get 6634 Universal Enging in G Ex Get 1634

PX October 15,202021

Laudence Pernell

Job Truss Truss Type Qty Ply Bill Ladson T25656976 T13 211014-04KM Piggyback Base Job Reference (optional) Coastal Truss & Vinyl Siding, Patterson, GA - 31577, 8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 14 14:05:00 2021 Page 1 ID:5z5H8DqZnOIYpsEeEl7p3gyTVJ4-?qiy8k61lVs_6yNpuYnAaSCtWe3ymFxGuxdSqzyTTqX 8-3-12 22-8-0 15-6-0 0-3-12 7-2-0 8-0-0 Scale = 1:65.2 4x5 = 5x6 =5 14_∞ 8.00 12 6x6 =6x8 = 211-0-14 6-0-14 17 15 9 16 10 7 6 3x4 = 3x4 = 4x5 = 3x8 =8-3-12 15-6-0 22-8-0 $3x4_1 =$ 8-3-12 7-2-4 7-2-0 Plate Offsets (X,Y)--[1:Edge,0-1-8], [4:0-3-4,0-2-4], [6:Edge,0-2-0] LOADING (psf) SPACING-2-0-0 CSI. DEFL. in (loc) I/defI L/d **PLATES** GRIP **TCLL** 20.0 Plate Grip DOL 1.25 TC 0.97 Vert(LL) -0.14 8-10 >999 240 MT20 244/190 TCDL 7.0 Lumber DOL 1.25 вс 0.59 Vert(CT) -0.21 8-10 >999 180

BCDL 7.0

BCLL

LUMBER-TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No 2

0.0

2x4 SP No 2 WFBS

BRACING-

Horz(CT)

0.01

TOP CHORD Structural wood sheathing directly applied, except end verticals, and

n/a

2-0-0 oc purlins (3-8-11 max.): 2-3, 4-5. BOT CHORD Rigid ceiling directly applied.

n/a

WEBS 1 Row at midpt 3-7, 4-7, 5-7

6

2 Rows at 1/3 pts

REACTIONS. (size) 6=0-3-8, 10=Mechanical

Max Horz 10=463(LC 11)

Max Uplift 6=-290(LC 9), 10=-197(LC 12) Max Grav 6=999(LC 17), 10=936(LC 18)

Rep Stress Incr

Code FBC2020/TPI2014

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-562/221, 2-3=-858/262, 3-4=-676/275, 4-5=-464/297, 5-6=-861/398,

1-10=-787/322

BOT CHORD 8-10=-563/545, 7-8=-555/992

WEBS 2-8=-337/1027, 3-8=-388/297, 3-7=-616/274, 4-7=-207/260, 5-7=-398/862

NOTES-

1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) 0-1-12 to 0-3-12, Exterior(2R) 0-3-12 to 3-3-12, Interior(1) 3-3-12 to 15-6-0, Exterior(2R) 15-6-0 to 18-6-0, Interior(1) 18-6-0 to 22-6-4 zone; cantilever left and right exposed; end vertical left and right exposed: C-C for members and forces & MWFRS for reactions shown: Lumber DOL=1.60 plate grip DOL=1.60

WB

Matrix-AS

0.58

- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

NO

- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 7.0psf.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=290, 10=197.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Weight: 164 lb

FT = 20%

Review for Code @ o mp file moet 82 Universal Enging in G Ex Get 6634 Universal Enging in G Ex Get 1634

Laudence Pernell

PX October 15,202021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply Bill Ladson T25656977 211014-04KM T14 Piggyback Base 2 Job Reference (optional)

Coastal Truss & Vinyl Siding,

Patterson, GA - 31577,

8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 14 14:05:03 2021 Page 1 ID:5z5H8DqZnOIYpsEeEI7p3gyTVJ4-QPO5ml8w2QEZzP5OZgKtC5qQnr4HzbHiavr7RHyTTqU

22-8-0 7-10-12 15-6-0 7-10-12 7-2-0

7x10 MT20HS =

Scale = 1:66.8

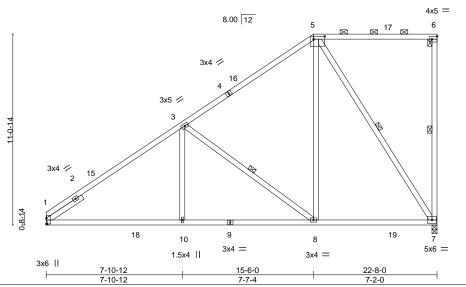


Plate Offsets (X,Y)-- [1:Edge,0-0-0], [5:0-7-12,0-2-0], [6:Edge,0-2-0]

LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.84	Vert(LL)	-0.11	7-8	>999	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	ВС	0.61	Vert(CT)	-0.15	7-8	>999	180	MT20HS	187/143
BCLL	0.0 *	Rep Stress Incr	NO	WB	0.67	Horz(CT)	0.03	7	n/a	n/a		
BCDL	7.0	Code FBC2020/T	PI2014	Matri	ix-AS						Weight: 148 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

WEBS

LUMBER-

TOP CHORD 2x4 SP No 2 **BOT CHORD** 2x4 SP No 2 2x4 SP No 2 WFBS

SLIDER Left 2x4 SP No.2 2-6-0

REACTIONS. (size) 7=0-3-8, 1=Mechanical

Max Horz 1=475(LC 11)

Max Uplift 7=-292(LC 9), 1=-193(LC 12) Max Grav 7=1013(LC 17), 1=958(LC 17)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-3=-1165/279, 3-5=-696/282

BOT CHORD 1-10=-505/1112, 8-10=-505/1112, 7-8=-313/550 **WEBS** 3-10=0/356, 3-8=-709/273, 5-8=-125/689, 5-7=-916/346

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 15-6-0, Exterior(2R) 15-6-0 to 19-8-14, Interior(1) 19-8-14 to 22-6-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are MT20 plates unless otherwise indicated.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 7.0psf.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 7=292, 1=193.
- 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Structural wood sheathing directly applied, except end verticals, and

6-7. 3-8. 5-7

2-0-0 oc purlins (6-0-0 max.): 5-6.

Rigid ceiling directly applied.

1 Row at midpt

Review for Code ® อาศาสโตเกรียง Universal Enging เมื่อ เมื่อเลือง เมื่อ เมื่อ

Landence Pernell

PX October 15,202021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply Bill Ladson T25656978 211014-04KM T15 Piggyback Base Job Reference (optional) Coastal Truss & Vinyl Siding, Patterson, GA - 31577, 8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 14 14:05:09 2021 Page 1 ID:5z5H8DqZnOIYpsEeEI7p3gyTVJ4-EZIM1pDhdG_ihKZYvxRHSM3SGG7aNJwbyrlRfxyTTqO 7-10-12 7-10-12 22-8-0 Scale = 1:65.0 8x8 = 4x5 =8.00 12 5 6 19 \boxtimes \boxtimes 3x4 / 3x5 / 3 9 21 10 8 3x4 = 5x6 = 1.5x4 || 3x4 = 3x6 || 7-10-12 15-6-0 22-8-0 7-10-12 7-2-0 Plate Offsets (X,Y)-- [1:0-3-15,0-0-5], [5:0-3-0,Edge], [6:Edge,0-2-0] **PLATES** GRIP MT20 244/190

LOADING TCLL TCDL BCLL	20.0 7.0 0.0 *	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.25 1.25 NO	CSI. TC BC WB	0.84 0.62 0.66	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.11 -0.15 0.03	(loc) 7-8 7-8 7	l/defl >999 >999 n/a	L/d 240 180 n/a	
BCDL	7.0	Code FBC2020/TI	PI2014	Matri	x-AS						

BRACING-

Structural wood sheathing directly applied, except end verticals, and TOP CHORD

2-0-0 oc purlins (6-0-0 max.): 5-6. **BOT CHORD** Rigid ceiling directly applied.

WEBS 1 Row at midpt 6-7. 3-8. 5-7

REACTIONS. (size) 7=0-3-8, 1=0-8-0 Max Horz 1=475(LC 11)

Left 2x6 SP No.2 2-6-0

2x4 SP No 2

2x4 SP No 2

2x4 SP No 2

Max Uplift 7=-292(LC 9), 1=-196(LC 12)

Max Grav 7=999(LC 17), 1=972(LC 17)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-3=-1149/271, 3-5=-684/279

BOT CHORD 1-10=-504/1061, 8-10=-504/1061, 7-8=-313/542 **WEBS** 3-10=0/339, 3-8=-655/262, 5-8=-119/663, 5-7=-903/346

NOTES-

LUMBER-

WFBS

SLIDER

TOP CHORD

BOT CHORD

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 15-6-0, Exterior(2R) 15-6-0 to 19-8-14, Interior(1) 19-8-14 to 22-6-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 7.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 7=292, 1=196.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Weight: 150 lb

FT = 20%

Review for Code @ o mp file moet 82 Universal Enging in G Ex Get 6634 Universal Enging in G Ex Get 1634

Lander Pernell

PX October 15,202021

Job Truss Truss Type Qty Ply Bill Ladson T25656979 211014-04KM T16 Piggyback Base Job Reference (optional) Coastal Truss & Vinyl Siding, Patterson, GA - 31577, 8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 14 14:05:11 2021 Page 1 ID:5z5H8DqZnOIYpsEeEI7p3gyTVJ4-Bxt6SUEx9uEQxejx1MUIXn9o_4l6rFStQ9nYjqyTTqM 7-10-12 19-7-0 28-4-4 33-4-0 15-6-0 23-8-0 7-10-12 4-11-12 4-1-0 4-8-4 Scale = 1:71.1 4x5 = 4x4 =3x4 =8.00 12 5 24 25 6 26 3x5 // 3x5 🔊 8 3x5 // 3x5 <> 23 4x4 / 0-8-14 28 29 15 13 30 31 10 16 12 11 14 3x4 =3x4 =1.5x4 || 1.5x4 || 3x8 = 3x4 = 4x6 || 3x8 = 7-10-12 15-6-0 23-8-0 7-10-12 7-7-4 4-8-4 4-11-12 8-2-0 Plate Offsets (X,Y)--[1:0-3-15,0-0-5], [5:0-3-0,0-2-0] LOADING (psf) SPACING-CSI. DEFL. in (loc) I/defI L/d **PLATES** GRIP **TCLL** 20.0 Plate Grip DOL 1.25 TC 0.89 Vert(LL) -0.18 12-14 >999 240 MT20 244/190 вс TCDL 7.0 Lumber DOL 1.25 0.87 Vert(CT) -0.27 12-14 >999 180 WB **BCLL** 0.0 Rep Stress Incr NO 0.53 Horz(CT) 0.05 10 n/a n/a BCDL 7.0 Code FBC2020/TPI2014 Matrix-AS Weight: 239 lb FT = 20% LUMBER-**BRACING-**Structural wood sheathing directly applied, except end verticals, and TOP CHORD 2x4 SP No.2 TOP CHORD 2-0-0 oc purlins (5-4-5 max.): 5-7.

BOT CHORD

WEBS

Rigid ceiling directly applied.

3-14, 6-14, 6-12

1 Row at midpt

BOT CHORD 2x4 SP No.2 2x4 SP No 2 WFBS

SLIDER Left 2x6 SP No.2 2-6-0

REACTIONS. (size) 1=0-8-0, 10=0-8-0

Max Horz 1=373(LC 11)

Max Uplift 1=-310(LC 12), 10=-307(LC 12) Max Grav 1=1419(LC 17), 10=1315(LC 18)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-3=-1857/444, 3-5=-1365/427, 5-6=-1089/424, 6-7=-895/380, 7-8=-1114/406,

8-9=-976/303, 9-10=-1251/330

BOT CHORD 1-16=-446/1655, 14-16=-446/1655, 12-14=-268/1081, 11-12=-216/767 WEBS 3-16=0/313, 3-14=-597/250, 5-14=-63/433, 6-14=-73/283, 6-12=-433/141,

7-12=-102/396, 8-12=-61/305, 8-11=-525/195, 9-11=-221/992

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=15ft; B=45ft; L=33ft; eave=4ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) 0-0-0 to 3-4-0, Interior(1) 3-4-0 to 15-6-0, Exterior(2R) 15-6-0 to 20-2-9, Interior(1) 20-2-9 to 23-8-0, Exterior(2R) 23-8-0 to 28-4-4, Interior(1) 28-4-4 to 33-2-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 7.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=310, 10=307,
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top ar

68182

JOAQUIN VE

ittom cheeview for Code இற**்று Playne 8**2 Universal Enging Public Eden 16634 Universal Enging Public கூடு இது 1,33610

Lawlence Pernell

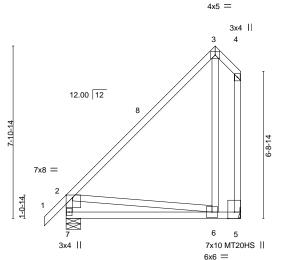
PX October 15,202021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Bill Ladson
					T25656980
211014-04KM	T17	Common	2	1	
					Job Reference (optional)


Coastal Truss & Vinyl Siding,

Patterson, GA - 31577,

8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 14 14:05:13 2021 Page 1 ID:5z5H8DqZnOIYpsEeEI7p3gyTVJ4-7K?ttAGBhVU8AysJ8nWDcCEAZtWJJ83AtTGeoiyTTqK

₋ 1-0-0 ₁	6-10-0	8-0-0
1-0-0	6-10-0	1-2-0

Scale = 1:52.8

4-0-0 6-10-0 8-0-0 4-0-0 2-10-0

BRACING-

TOP CHORD

BOT CHORD

Plate Offsets	(X,Y)	[2:0-3-8,Edge]

LOADIN	G (psf)	SPACING- 2	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.76	Vert(LL)	0.12	6-7	>782	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.50	Vert(CT)	-0.13	6-7	>717	180	MT20HS	187/143
BCLL	0.0 *	Rep Stress Incr	NO	WB	0.59	Horz(CT)	-0.01	5	n/a	n/a		
BCDL	7.0	Code FBC2020/TPI20	014	Matri	x-AS						Weight: 62 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No 2 **BOT CHORD** 2x4 SP No 2

2x4 SP No 2 WFBS

REACTIONS. (size) 7=0-8-0, 5=Mechanical

Max Horz 7=342(LC 11)

Max Uplift 7=-108(LC 12), 5=-158(LC 9) Max Grav 7=341(LC 18), 5=331(LC 17)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-294/180, 3-4=-277/256, 2-7=-291/241

BOT CHORD 6-7=-1187/906

WFBS 3-6=-275/433, 2-6=-749/1039

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 6-10-0, Exterior(2E) 6-10-0 to 7-10-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) All plates are MT20 plates unless otherwise indicated.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 7=108, 5=158,
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Review for Code @ompliance 32
Universal Engine 11 33610

Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied.

Landerer Pernell

PX October 15,202021

Job Truss Truss Type Qty Ply Bill Ladson T25656981 211014-04KM T18 Piggyback Base Job Reference (optional) Coastal Truss & Vinyl Siding, Patterson, GA - 31577, 8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 14 14:05:15 2021 Page 1 ID:5z5H8DqZnOIYpsEeEI7p3gyTVJ4-3i6dlsHSD6ksPF0iGBYhhdJTkh5jn0STLnllsbyTTqI 4-10<u>-0</u> 15-2-10 . 21-0-13 27-2-8 6-1-11 9-4-8 4-10-0 4-6-8 5-10-3 5-10-3 Scale = 1:65.0 4x5 = 3x4 = 4x5 = 3x4 =3x4 =⊿16 **⊠**17 3 15 \boxtimes \bowtie 8.00 12 3x4 🖊 2x4 | 4-9-14 18 19 10 20 21 9 23 12 11 8 3x8 = 3x4 = 3x4 = 5x6 = 3x8 = 18-1-12 27-2-8 9-0-12 9-4-8 8-9-4 Plate Offsets (X,Y)--[3:0-2-8,0-1-13], [7:Edge,0-2-0] LOADING (psf) SPACING-2-0-0 CSI. DEFL. in (loc) I/defI L/d **PLATES** GRIP **TCLL** 20.0 Plate Grip DOL 1.25 TC 0.84 Vert(LL) -0.31 11-12 >999 240 MT20 244/190 TCDL вс 7.0 Lumber DOL 1.25 0.96 Vert(CT) -0.45 11-12 >724 180 WB **BCLL** 0.0 Rep Stress Incr NO 0.72 Horz(CT) 0.02 n/a n/a BCDL 7.0 Code FBC2020/TPI2014 Matrix-AS Weight: 215 lb FT = 20% LUMBER-**BRACING-**Structural wood sheathing directly applied, except end verticals, and TOP CHORD 2x4 SP No.2 TOP CHORD BOT CHORD 2x4 SP No 2 2-0-0 oc purlins (6-0-0 max.): 3-7. 2x4 SP No 2 BOT CHORD WFBS Rigid ceiling directly applied. **WEBS** 1 Row at midpt 7-8, 4-11, 4-9, 5-8, 2-12 REACTIONS. (size) 8=Mechanical, 12=Mechanical Max Horz 12=466(LC 9)

Max Uplift 8=-323(LC 9), 12=-239(LC 12) Max Grav 8=1175(LC 17), 12=1138(LC 17)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-907/327 3-4=-725/314 4-5=-702/298

BOT CHORD 11-12=-529/719, 9-11=-368/800, 8-9=-275/566

WFBS 2-11=-28/308, 3-11=-46/252, 4-9=-269/229, 5-9=-125/644, 5-8=-1048/337,

2-12=-988/271

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=15ft; B=45ft; L=27ft; eave=4ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 9-4-8, Exterior(2R) 9-4-8 to 13-7-6, Interior(1) 13-7-6 to 27-0-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 7.0psf.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8=323, 12=239.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Review for Code @ o mp file moet 82 Universal Enging in G Ex Get 6634 Universal Enging in G Ex Get 1634

Laudence Pernell

PX October 15,202021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply Bill Ladson T25656982 211014-04KM T19 Piggyback Base Job Reference (optional) Coastal Truss & Vinyl Siding, Patterson, GA - 31577, 8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 14 14:05:16 2021 Page 1 ID:5z5H8DqZnOIYpsEeEI7p3gyTVJ4-Xvg?VCI4_Qtj1Pbuqv3wEqsdY5QJWSUdZRVJO1yTTqH 7-10-12 19-10-10 24-3-4 28-7-14 33-4-0 15-6-0 7-10-12 4-4-10 4-4-10 4-4-10 4-8-2 Scale = 1:72.3 3x4 =4x5 = 1.5x4 || 3x4 =4x5 = 3x4 = 8.00 12 5 ⊠ 26 24 625 9 3x5 // 3x5 / 4x4 / 0-8-14 27 28 13 29 31 15 30 11 16 14 12 3x4 = 3x4 = 4x6 =1.5x4 || 4x8 =4x6 || 3x8 =7-10-12 15-6-0 24-3-4 7-10-12 9-0-12 8-9-4 Plate Offsets (X,Y)--[1:0-3-15,0-0-5], [5:0-3-0,0-2-0], [10:Edge,0-2-0] LOADING (psf) SPACING-2-0-0 CSI. DEFL. in (loc) I/defI L/d **PLATES** GRIP **TCLL** 20.0 Plate Grip DOL 1.25 TC 0.90 Vert(LL) -0.30 11-12 >999 240 MT20 244/190 TCDL 7.0 Lumber DOL 1.25 BC 1.00 Vert(CT) -0.42 11-12 >951 180 WB **BCLL** 0.0 Rep Stress Incr 0.80 Horz(CT) 0.06 11 n/a n/a BCDL 7.0 Code FBC2020/TPI2014 Matrix-AS Weight: 246 lb FT = 20% **BRACING-**

TOP CHORD

BOT CHORD

WEBS

LUMBER-

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No 2 2x4 SP No 2 WFBS

SLIDER Left 2x6 SP No.2 2-6-0

REACTIONS.

(size) 11=Mechanical, 1=0-8-0

Max Horz 1=475(LC 11)

Max Uplift 11=-334(LC 9), 1=-301(LC 12) Max Grav 11=1420(LC 17), 1=1444(LC 17)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD $1\hbox{-}3\hbox{--}1897/430, 3\hbox{-}5\hbox{--}1407/410, 5\hbox{-}6\hbox{--}1124/409, 6\hbox{-}7\hbox{--}900/352, 7\hbox{-}9\hbox{--}900/352}$ BOT CHORD 1-16=-638/1672, 14-16=-638/1672, 12-14=-404/1104, 11-12=-247/555 **WEBS** 3-16=0/313, 3-14=-594/253, 5-14=-51/439, 6-14=-164/258, 6-12=-434/224,

9-12=-214/1039, 9-11=-1290/365

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=15ft; B=45ft; L=33ft; eave=4ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) 0-0-0 to 3-4-0, Interior(1) 3-4-0 to 15-6-0, Exterior(2R) 15-6-0 to 20-2-9, Interior(1) 20-2-9 to 33-2-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 7.0psf.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 11=334, 1=301.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Review for Code @ o mp file moet 82 Universal Enging in G Ex Get 6634 Universal Enging in G Ex Get 1634

Structural wood sheathing directly applied, except end verticals, and

10-11, 3-14, 6-14, 6-12, 7-12, 9-11

2-0-0 oc purlins (5-3-7 max.): 5-10.

Rigid ceiling directly applied.

1 Row at midpt

Laudence Pernell

PX October 15,202021

Job Truss Truss Type Qty Ply Bill Ladson T25656983 T20 Piggyback Base 211014-04KM Job Reference (optional) Coastal Truss & Vinyl Siding, Patterson, GA - 31577, 8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 14 14:05:18 2021 Page 1 ID:5z5H8DqZnOIYpsEeEI7p3gyTVJ4-THomwtKKV17QGjlHxK6OJFx_9u8i_Oiv1k_PTwyTTqF 15-6-0 19-7-0 23-8-0 24-10-4 1-2-4 28-11-6 33-4-0 7-10-12 7-10-12 4-1-0 4-1-0 4-4-10 Scale = 1:66.1 4x5 = 4x4 = 3x4 =8.00 12 5 4x5 =25,26 6 27 4x4 = 3x4 =× 8 10 9 ∠28 \bowtie 3x5 🗸 3x5 // M 4x4 🖊 0-8-14 16 14 32 17 15 12 13 3x4 =6x6 =1.5x4 || 3x8 = 3x8 = 3x4 =4x6 II 7-10-12 23-8-0 24-10-4 1-2-4 33-4-0 8-5-12 7-10-12 8-2-0 Plate Offsets (X,Y)--[1:0-3-15,0-0-5], [5:0-3-0,0-2-0], [10:Edge,0-2-0] LOADING (psf) SPACING-2-0-0 CSI. DEFL. in (loc) I/defI L/d **PLATES** GRIP **TCLL** 20.0 Plate Grip DOL 1.25 TC 0.89 Vert(LL) -0.23 11-12 >999 240 MT20 244/190 TCDL 7.0 Lumber DOL 1.25 BC 0.87 Vert(CT) -0.33 11-12 >999 180 WB **BCLL** 0.0 Rep Stress Incr NO 0.69 Horz(CT) 0.06 11 n/a n/a BCDL 7.0 Code FBC2020/TPI2014 Matrix-AS Weight: 271 lb FT = 20% LUMBER-**BRACING-**TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied, except end verticals, and **BOT CHORD** 2x4 SP No.2 2-0-0 oc purlins (5-3-12 max.): 5-7, 8-10. 2x4 SP No 2 BOT CHORD WFBS Rigid ceiling directly applied. SLIDER Left 2x6 SP No.2 2-6-0 **WEBS** 1 Row at midpt 10-11, 3-15, 6-15, 6-13, 8-13, 8-12, 9-11 REACTIONS.

(size) 11=Mechanical, 1=0-8-0

Max Horz 1=463(LC 11)

Max Uplift 11=-315(LC 12), 1=-302(LC 12) Max Grav 11=1398(LC 17), 1=1435(LC 17)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-3=-1883/498, 3-5=-1394/478, 5-6=-1113/469, 6-7=-905/418, 7-8=-1060/477,

8-9=-899/401

 $1-17 = -765/1663,\ 15-17 = -765/1663,\ 13-15 = -498/1097,\ 12-13 = -396/937,\ 11-12 = -288/555$ BOT CHORD WEBS

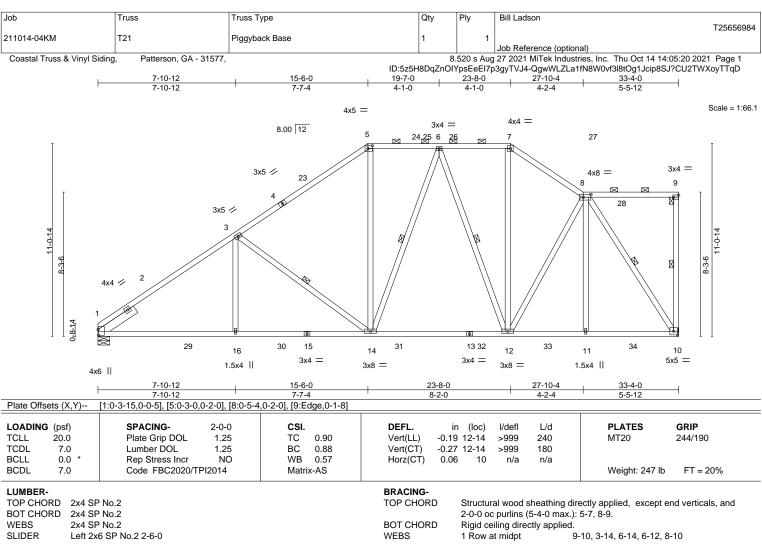
3-17=0/312, 3-15=-594/280, 5-15=-68/440, 6-15=-119/268, 6-13=-417/228,

7-13=-176/419, 8-12=-704/354, 9-12=-282/1024, 9-11=-1291/486

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=15ft; B=45ft; L=33ft; eave=4ft; Cat. II: Exp C: Encl., GCpi=0.18: MWFRS (directional) and C-C Exterior(2E) 0-0-0 to 3-4-0. Interior(1) 3-4-0 to 15-6-0. Exterior(2R) 15-6-0 to 18-10-0, Interior(1) 18-10-0 to 23-8-0, Exterior(2E) 23-8-0 to 24-10-4, Interior(1) 24-10-4 to 33-2-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 7.0psf.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 11=315, 1=302.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top


PX October 15,202021

JOAQUIN VE

68182

REACTIONS.

(size) 10=Mechanical, 1=0-8-0

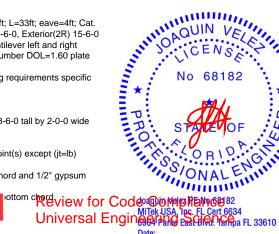
Max Horz 1=430(LC 11)

Max Uplift 10=-312(LC 12), 1=-306(LC 12) Max Grav 10=1376(LC 17), 1=1430(LC 17)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD $1\hbox{-}3\hbox{--}1875/515,\ 3\hbox{-}5\hbox{--}1384/496,\ 5\hbox{-}6\hbox{--}1105/484,\ 6\hbox{-}7\hbox{--}912/442,\ 7\hbox{-}8\hbox{--}1120/464}$

BOT CHORD 1-16=-691/1661, 14-16=-691/1661, 12-14=-440/1093, 11-12=-327/821, 10-11=-326/824


3-16=0/311, 3-14=-596/276, 5-14=-75/442, 6-14=-86/271, 6-12=-426/189, **WEBS**

7-12=-109/419, 8-12=-99/253, 8-10=-1412/434

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=15ft; B=45ft; L=33ft; eave=4ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) 0-0-0 to 3-4-0, Interior(1) 3-4-0 to 15-6-0, Exterior(2R) 15-6-0 to 18-10-0. Interior(1) 18-10-0 to 23-8-0. Exterior(2R) 23-8-0 to 27-0-0. Interior(1) 27-0-0 to 33-2-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 7.0psf.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 10=312, 1=306,
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top a

JOAQUIN VE

68182

Lawlence Pernell

PX October 15,202021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE

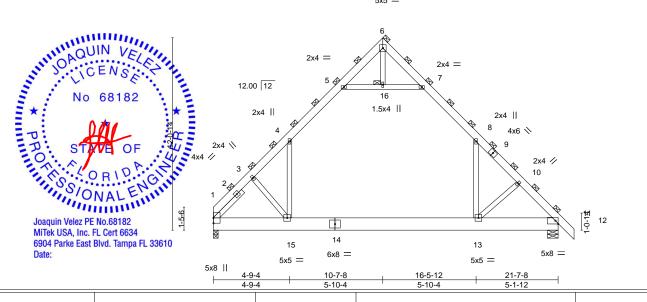
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not

Design Valid to its 9 this with Min New Commercials. This design is based only upon parameters shown, and is 10 at an individual obtaining Component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply Bill Ladson T25656985 TG01 ATTIC GIRDER 211014-04KM Job Reference (optional)

Coastal Truss & Vinyl Siding,


Patterson, GA - 31577,

8.520 s Aug 27 2021 MiTek Industries, Inc. Thu Oct 14 14:05:22 2021 Page 1 ID:5z5H8DqZnOIYpsEeEI7p3gyTVJ4-M31GmFNrZGdslK22AAALT56ksWZDwJ1VyMydchyTTqB

13-8-10

19-1-7 21-7-8 22-7-8 2-7-11 2-6-1 1-0-0 16-5-12 13-0-13 16-5-12 2-5-5 0-7-12 2-9-2 8-2-3 10-7-8 0-7-12 2-5-5

> Scale = 1:72.3 5x5 =

LOADIN	G (psf)	SPACING-	3-7-0	CSI.		DEFL.	in (loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.59	Vert(LL)	-0.19 13-15	>999	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.58	Vert(CT)	-0.27 13-15	>972	180		
BCLL	0.0 *	Rep Stress Incr	NO	WB	0.16	Horz(CT)	0.01 1	n/a	n/a		
BCDL	7.0	Code FBC2020/TI	PI2014	Matri	ix-MS	Attic	-0.10 13-15	1446	360	Weight: 604 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

JOINTS

2-0-0 oc purlins (6-0-0 max.)

1 Brace at Jt(s): 6, 16

(Switched from sheeted: Spacing > 2-0-0).

Rigid ceiling directly applied or 10-0-0 oc bracing.

LUMBER-

TOP CHORD 2x6 SP No.1 *Except*

9-12: 2x6 SP No.2

BOT CHORD 2x10 SP No 2 WFBS 2x4 SP No 2

SLIDER Left 2x4 SP No.2 2-6-0

REACTIONS. (size) 1=0-3-8, 11=0-8-0

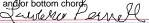
Max Horz 1=-633(LC 10)

Max Uplift 1=-156(LC 12), 11=-248(LC 12) Max Grav 1=2094(LC 19), 11=2139(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-3=-2748/225. 3-4=-2717/280. 4-5=-1502/400. 5-6=-110/381. 6-7=-106/385.

7-8=-1499/400, 8-10=-2736/254, 10-11=-2858/233 BOT CHORD 1-15=-16/2012, 13-15=0/1637, 11-13=-11/2002


WEBS 4-15=-3/1655, 8-13=0/1614, 5-16=-1893/530, 7-16=-1893/530, 3-15=-608/285,

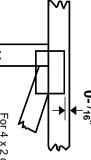
10-13=-803/297

NOTES-

- 1) 3-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x10 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 10-7-8, Exterior(2R) 10-7-8 to 13-4-8, Interior(1) 13-4-8 to 22-7-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 5) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- will fit between the bottom chord and any other members.

 8) Ceiling dead load (5.0 psf) on member(s). 4-5, 7-8, 5-16, 7-16; Wall dead load (5.0 psf) on member(s) to the story dead load (3.0 psf) applied only to room Review for Code Compliance 9) Bottom chord live load (40.0 psf) and additional bottom chord dead load (3.0 psf) applied only to room Jint(s) eldiniversal Engineering Science 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb u
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and or bottom chorge
- 12) Attic room checked for L/360 deflection.

PX October 15,202021



Symbols

PLATE LOCATION AND ORIENTATION

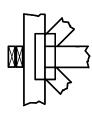
offsets are indicated. Center plate on joint unless x, y and fully embed teeth Apply plates to both sides of truss Dimensions are in ft-in-sixteenths

edge of truss. plates 0- 1/16" from outside For 4 x 2 orientation, locate

connector plates. required direction of slots in This symbol indicates the

* Plate location details available in MiTek 20/20 software or upon request.

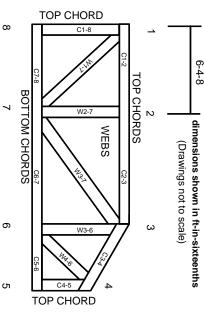
PLATE SIZE


to slots. Second dimension is the length parallel to slots. width measured perpendicular The first dimension is the plate

LATERAL BRACING LOCATION

by text in the bracing section of the output. Use T or I bracing if indicated. ndicated by symbol shown and/or

BEARING


Min size shown is for crushing only number where bearings occur. reaction section indicates joint (supports) occur. Icons vary but Indicates location where bearings

Industry Standards:

National Design Specification for Metal **Building Component Safety Information** Installing & Bracing of Metal Plate Connected Wood Trusses. Guide to Good Practice for Handling Design Standard for Bracing. Plate Connected Wood Truss Construction.

DSB-89: ANSI/TPI1:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

PRODUCT CODE APPROVALS

ICC-ES Reports:

ESR-1311, ESR-1352, ESR1988 ER-3907, ESR-2362, ESR-1397, ESR-3282

truss unless otherwise shown. Trusses are designed for wind loads in the plane of the

established by others. section 6.3 These truss designs rely on lumber values Lumber design values are in accordance with ANSI/TPI 1

© 2012 MiTek® All Rights Reserved

MiTek Engineering Reference Sheet: MII-7473 rev. 5/19/2020

General Safety Notes

Damage or Personal Injury Failure to Follow Could Cause Propeğy

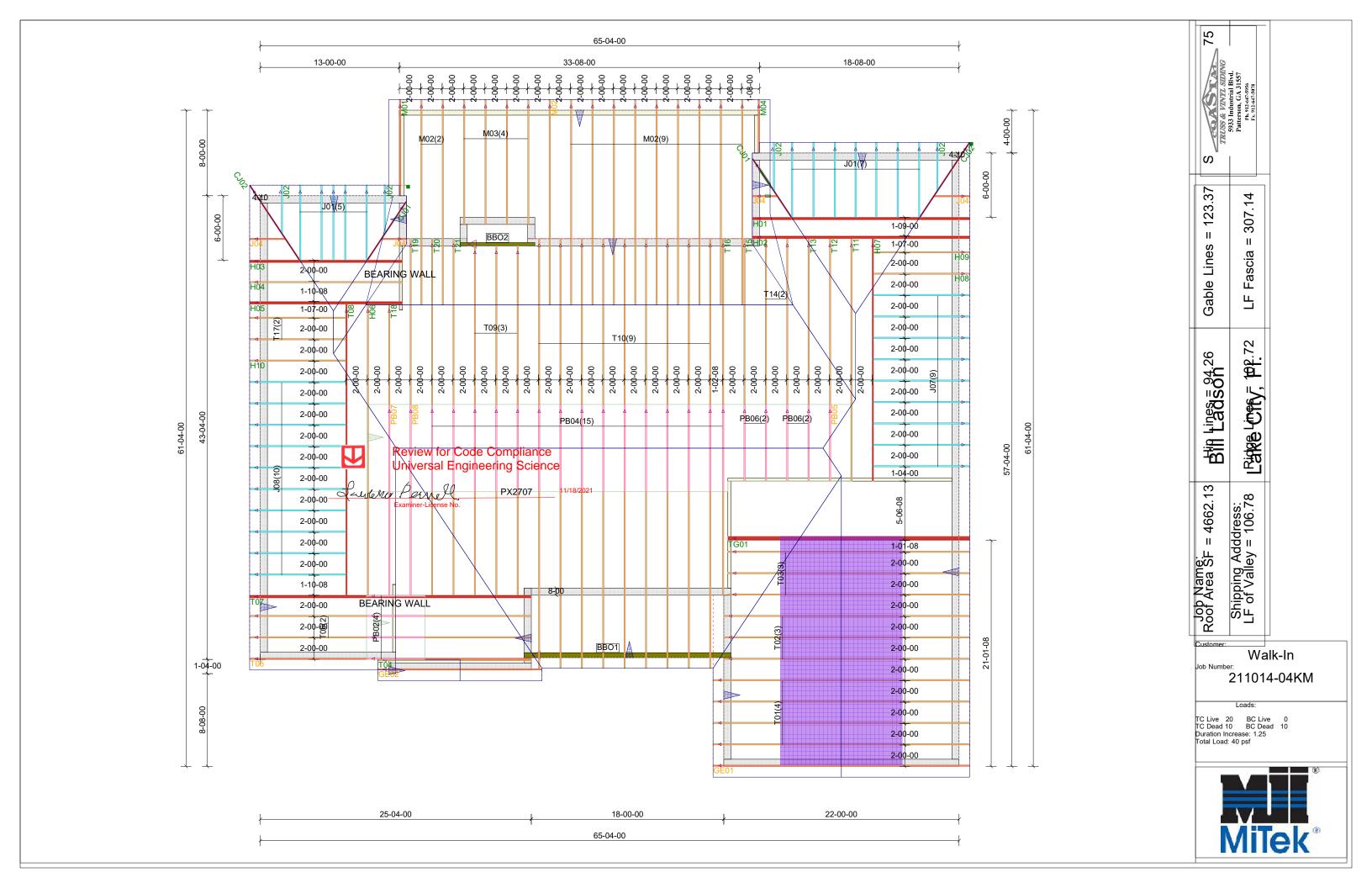
- Additional stability bracing for truss system, egg. C diagonal or X-bracing, is always required.
- wide truss spacing, individual lateral braces themselves 2 may require bracing, or alternative Tor I E O X bracing should be considered.

Ņ

ω

- designer, erection supervisor, property owner all other interested parties.
- Cut members to bear tightly against each ot

Perne


Ģ

- iocations are regulated by ANSI/TPI 1.

 Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1
- Unless otherwise noted, moisture content shall not exceed 19% at time of fabrication

œ

- 9 Camber is a non-structural consideration and is the Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber
- camber for dead load deflection responsibility of truss fabricator. General practice is to
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- Connections not shown are the responsibility of others
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable project engineer before use. environmental, health or performance risks. Consult with
- Review all portions of this design (front, back, words is not sufficient. and pictures) before use. Reviewing pictures alone
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.

Reaction Summary

Coastal Truss & Vinyl Siding 5933 Industrial Blvd. Patterson Georgia 31557 Business: (912) 647-5956

sold to Walk-In

JOB NAME Bill Ladson

TRANSACTION # 211014-04KM

STATUS Quote

ORDERED This field intentionally left blank.

SCHD DELIVERY This field intentionally left blank.

SALES REP Kent Music

JOB CATEGORY

STRUCTURE 211014-04K MODEL

SHIP TO Leo & Robbie Brooks
SR. 47
Lake City FI.

		Roof L	oading			F	loor Load	ding		
TC Live:	TC	Dead:	BC Live:	BC Dead:	TC Live:	TC Dea	d: E	BC Live:	ВС	Dead:
20		7	0	7						
Building Cod	de		Wind D	Design Method		Exp Cat	Occ Cat	Velocity	TC Dead	BC Dead
FBC2020/TPI2	2014	MWFF	RS (Directional)	/C-C hybrid Win	d ASCE 7-16	С	II.	130	4.2	4.2

FBC2020	/ I Pl2	2014	MWFRS	(Direction	ai)/C-C r	iybrid V	Vind AS	UE 7-16		C	II	130	4.2	4.2
Componen	t Iter	m - Roc	of Truss	es										
	QTY			(Shipping)	Base Span									
DIAGRAM	PLY	PITCH	LABEL	HEIGHT	SPAN	LUMBER I	REACTIONS	i						
	-						Joint 8	Joint 6						
	2	6.66 /12	CJ01	4-08-04	6-06-03	2 x 4	257 -93	306 -183						
				-			Joint 9	Joint 7						
	2	6.66 /12	CJ02	(4-11-06) 4-08-04	6-06-03	2 x 4	353	291						
				-	- 00000		-193 Joint 2	-181 Joint 14	Joint 20	Joint 21	Joint 22	Joint 24	Joint 25	Joint 19
	1	12 /12	GE01	(12-00-00) 11-07-15	22-00-00	2 x 4	248	194	265	180	176	150	261	176
		,	020.		22-00-00		-141 Joint 18	-70 Joint 17	-40 Joint 16	-96	-117	-93	-170	-96
							178	151	254					
	-						-117 Joint 2	-93 Joint 10	-170 Joint 14	Joint 15	Joint 16	Joint 13	Joint 12	
	1	12 /12	GE02	(7-08-00) 7-03-15	13-04-00	2 x 4	182	154	143	172	225	171	221	
		12/12	OLUZ	7-03-13	13-04-00	2 7 4	-54 Joint 13	-27 Joint 8	-6	-103	-142	-103	-142	
	1 2 ph/	12 /12	⊔ ∩1	(5-00-15) 4-08-14	40.04.00	2 x 4	1299	1350						
	2-ply	12/12	H01	4-00-14	19-04-00	2 x 6	-671 Joint 12	-720 Joint 7						
	1	40 /40	1100	(6-02-15)	40.04.00	2 x 4	4521	2914						
	2-ply	12 /12	H02	5-10-14	19-04-00	2 x 6	-1506 Joint 11	-1327 Joint 7						
	1	10.110		(5-00-15)		2 x 4	1023	992						
	2-ply	12 /12	H03	4-08-14	13-03-08	2 x 6	-569	-539						
	1			(6-04-15)			Joint 9 507	Joint 6 439						
		12 /12	H04	6-00-14	13-03-08	2 x 4	-174	-120						
	1			(7-07-15)		2 x 4	Joint 13 1727	Joint 8 3589						
	2-ply	12 /12	H05	7-03-14	13-03-08	2 x 6	-885	-1538						
$\mathcal{A}[\Lambda\Lambda]$	1						Joint 12 1138	Joint 8 1175						
		8 /12	H06	11-00-14	27-02-08	2 x 4	-239	-323						
	1					2 x 4	Joint 14 2356	Joint 8	Pov	iow for	Codo	Complia	2000	
		8 /12	H07	9-00-14	22-08-00	2 x 6	-1399	7				•		
1	1			(8-06-10)			Joint 7 361	350	Univ	rersai E	ngine	ering So	cience	
		12 /12	H08	8-02-08	8-00-00	2 x 4	-100		6	0.	1	DV070	7 14	1/18/2021
	1			(7-02-10)			Joint 9 329	Souther (e.M.)		2 Net	-	PX270	<u>/ </u>	1/10/2021
		12 /12	H09	`6-10-08́	8-00-00	2 x 4	-108	-183	Exami	ner-License N	NO.			
	1			(8-07-10)			Joint 7	Joint 6						
	-	12 /12	H10	8-03-09	8-00-00	2 x 4	364 -99	353 -228						
	12			(5-00-03)		-	Joint 7	Joint 4	Joint 6					
		8 /12	J01	4-08-14	6-00-00	2 x 4	257 -52	144 -17	105 -85					
	4			(3-04-06)	-	-	Joint 5	Joint 3	Joint 4					
	7	8 /12	J02	3-01-01	3-06-04	2 x 4	185 -51	87 -63	52 0					
	4						Joint 6	Joint 5						
	7	12 /12	J04	3-04-11	2-03-13	2 x 4	70 -3	113 -104						
	9	-		(9-04-15)		•	Joint 6	Joint 4	Joint 5					
	9	12 /12	J07	9-04-15)	8-00-00	2 x 4	329 43	129 -113	212 -126					
			-				Joint 6	Joint 4	Joint 5					
	10	12 /12	J08	(9-04-15) 9-00-14	8-00-00	2 x 4	329	129	212					
					<u> </u>		Joint 6	-113 Joint 2	-126 Joint 7	Joint 8				
	1	3 /12	M01	(2-06-10) 2-03-14	8-00-00	2 x 4	59	174	94	262				
	•	0/12	1410 1	2-00-14	0-00-00	2 A T	-12	-77	-33	-72				

Component Item - Roof Trusses

DIAGRAM	QTY PLY	PITCH	LABEL	(Shipping) HEIGHT	Base Span SPAN	IIIMBED 1	REACTIONS							
DIAGRAM		PIICH	LABEL		SPAN	LUMBER	Joint 2	Joint 7	Joint 6					
	12	3 /12	M02	(5-01-03) 4-10-07	12-08-00	2 x 4	466 -141	625 -224	113 -63					
	4	3 /12	M03	(3-02-10) 2-11-14	10-08-00	2 x 4	Joint 2 414 -144	Joint 5 355 -98						
	1	3 /12	M04	(1-06-10) 1-03-14	4-00-00	2 x 4	Joint 4 124 -30	Joint 2 192 -87						
	4	12 /12	PB02	(2-08-14) 2-07-06	5-05-11	2 x 4	Joint 2 111 -59	Joint 4 111 -59	Joint 6 112 5					
	15	8 /12	PB04	(2-08-11) 2-07-03	8-02-00	2 x 4	Joint 2 152 -77	Joint 4 152 -77	Joint 6 203 -14					
	1	8 /12	PB05	(1-10-08) 1-09-00	7-02-00	2 x 4	Joint 2 65 -68	Joint 7 455 -123						
	4	8 /12	PB06	(2-08-11) 2-07-03	7-02-00	2 x 4	Joint 2 102 -43	Joint 5 418 -113						
	1	8 /12	PB07	(2-00-00) 1-10-08	17-10-00	2 x 4	Joint 2 158 -61	Joint 12 268 -76	Joint 14 296 -78	Joint 11 284 -93	Joint 10 205 -26			
<u> </u>	1	8 /12	PB08	2-07-03	17-10-00	2 x 4	Joint 1 139 -57	Joint 7 93 -30	Joint 11 240 -87	Joint 9 293 -87	Joint 8 266 -86	Joint 12 162 -2		
	4	12 /12	T01	(12-07-12) 12-00-14	22-00-00	2 x 6 2 x 10	-57	-50	-07	-07	-00			
	3	12 /12	T02	(12-07-12) 12-00-14	22-00-00	2 x 6 2 x 10								
	3	12 /12	T03	(12-07-12) 12-00-14	21-07-08	2 x 6 2 x 10	Joint 1 1169 -87							
	1	12 /12	T04	(8-00-15) 7-08-14	13-04-00	2 x 4	Joint 7 508 -175	Joint 5 441 -120						
	1	12 /12	T05	(10-11-02) 10-07-01	25-04-00	2 x 4	Joint 2 270 -113 Joint 11 599	Joint 18 882 -273	Joint 19 86 19	Joint 20 103 12	Joint 21 88 13	Joint 22 161 -73	Joint 16 125 7	Joint 16 125 7
	2	12 /12	T06	(11-04-01) 11-00-00	25-04-00	2 x 4	-138 Joint 13 629 -157	Joint 10 857 -254	Joint 8 631 -107					
	1 2-ply	12 /12	T07	(11-04-01) 11-00-00	25-04-00	2 x 4 2 x 8	Joint 15 1362 -767	Joint 11 8145 -3025	Joint 8 4125 -1005					
	1	8 /12	T08	9-00-14	27-02-08	2 x 4 2 x 6	Joint 16 2869 -1623	Joint 9 2760 -1687	-1000					
	3	8 /12	T09	11-00-14	32-08-00	2 x 4	Joint 16 1335 -299	Joint 9 1291 -303						
	9	8 /12	T10	(11-04-03) 11-00-14	39-02-00	2 x 4	Joint 1 1379 -324	Joint 13 1747 -270	Joint 10 234 -180					
	1	8 /12	T11	11-00-14	22-08-00	2 x 4	Joint 11 934 -196	Joint 6 987 -315						
	1	8 /12	T12	11-00-14	22-08-00	2 x 4	Joint 11 931 -196	Joint 6 1002 -300						
	1	8 /12	T13	11-00-14	22-08-00	2 x 4	Joint 10 936 -197	Joint 6 999 -290	W				Complia	
	2	8 /12	T14	11-00-14	22-08-00	2 x 4	Joint 1 958 -193	Joint 7 1013 -292	-ρ .	6	ersal E an	nginee	ring Sc	
	1	8 /12	T15	11-00-14	22-08-00	2 x 4	Joint 1 972 -196	Joint_7 (999 -292	Zawiek	-	er-License No).	PX2707	
	1	8 /12	T16	11-00-14	33-04-00	2 x 4	Joint 1 1419 -310	Joint 10 1315 -307						
	2	12 /12	T17	(8-02-15) 7-10-14	8-00-00	2 x 4	Joint 7 341 -108	Joint 5 331 -158						
	1						Joint 12 1138	Joint 8 1175						

Component Item - Roof Trusses

		QTY			(Shipping)	Base Span			
DIAG	GRAM	PLY	PITCH	LABEL	HEIGHT	SPAN	LUMBER	REACTIONS	
	$\overline{\Lambda}$	1						Joint 1	Joint 11
\wedge	/ \I/ \I	ı	0 /10	T10	11 00 14	22 04 00	2 v 1	1444	1420
	<u> </u>		8 /12	T19	11-00-14	33-04-00	2 x 4	-301	-334
1	Λ	1						Joint 1	Joint 11
\wedge	/ \W / \I	- 1	0 /10	TOO	11 00 14	22 04 00	2 v 4	1435	1398
	<u> </u>		8 /12	T20	11-00-14	33-04-00	2 x 4	-302	-315
1		1						Joint 1	Joint 10
\wedge	/ \I <i>X</i> \\	1	8 /12	T21	11-00-14	00 04 00	2 v 4	1430	1376
			0/12	121	11-00-14	33-04-00	2 x 4	-306	-312
	A	4			(10.07.10)		2 6	Joint 1	
Λ	V	1 2 ply	12 /12	TG01	(12-07-12)	04.07.00	2 x 6	2094	
	<u> </u>	3-ply	12/12	1601	12-00-14	21-07-08	2 x 10	-156	

11/18/2021