Schafer Engineering LLC

14705 Main St. Alachua FL 32615

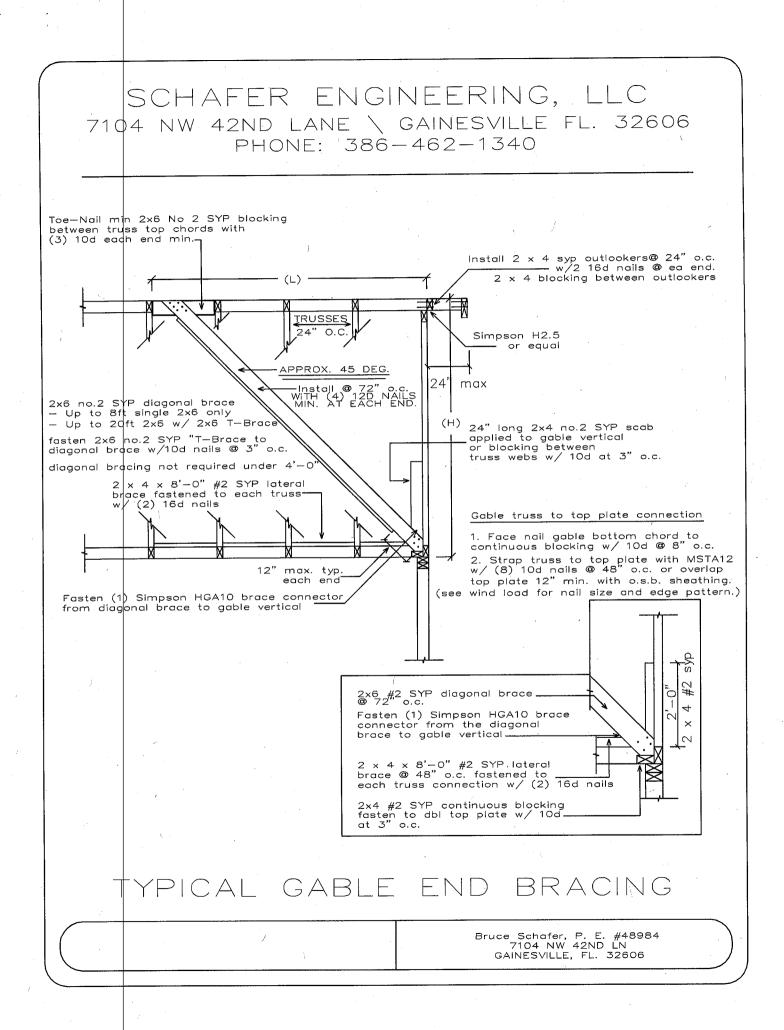
Prepared for:

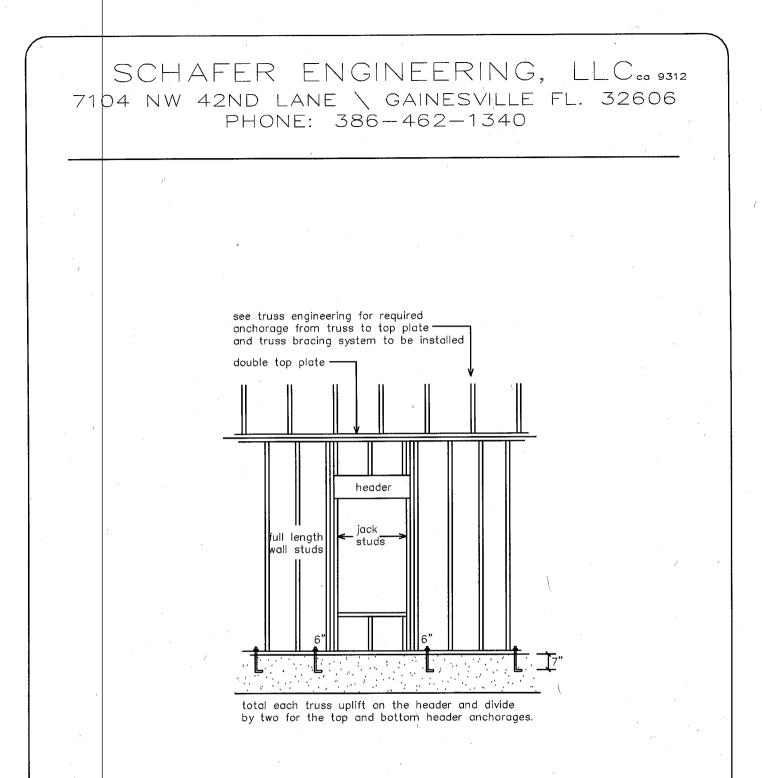
Schafer Construction of Gainesville, Inc. Jenna Payne Residence 1603 SW Howell St Lake City FL

By:

Schafer Engineering, LLC

386-462-1340




Digitally signed by Bruce M Schafer Date: 2022.07.25 12:33:10 -04'00' This item has been digitally signed and sealed by Bruce M Schafer PE.

Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

NO COPIES ARE TO BE PERMITTED

		SCHAFER ENGI	NEERING, LLC
	710	4 NW 42ND LANE \ Phone: 386-	GAINESVILLE FL. 32606 -462-1340
÷.,		es: Pre-engineered, pre-fabricated with t ng system installed.	
	Roof	Sheathing: Type: OSB Size: 7/16" F	
			nterior: <u>6"</u> Periphery: <u>4"</u> nterior: <u>6"</u> Periphery: <u>4"</u>
	Doub	le Top Plate: Type: <u>Spruce</u> Grade:#2 Si	ze: <u>2 x 4</u> Nail Size & Spacing: <u>10d min" @ 8 o.c.</u>
х.		Type: Spruce Grade: <u>#2</u> Size: <u>2 x s</u> ior stud spacing: <u>16"</u> End stud spaci	
		ired Shear Wall Siding: Type: <u>OSB</u> Thi	
		<u>ft</u> Trans: Fastener <u>8d/131</u> Spacing: Int: <u></u>	
	Allow	able Unit Shear on Shear Walls: <u>314</u> p able Unit Shear Transferred from Diaphrac	ounds per linear foot m: Trans: 180 ^{Long:} 95
		Tension Transferred by: Siding Nails: 8d/	
		dation Anchor Bolts: Concrete Strength: er: <u>2"</u> Embedment: <u>7"</u> Location of first a	
	Anch Type Floor	pr Bolts @ 48" o.c. Model: A307 Loc. fror of Foundation: (1) — #5 rebar continuous Slab: <u>4"</u> Cmu size: <u>8" x 16"</u> Height: lithic Footing: Depth: <u>20"</u> Bottom Width:	n corner: 8" required in bond beam. _ <u>48"</u> _Rein.: <u>_#5</u> _at_ <u>_72"</u> o.c.
		wall Footing: Width: 20 Depth: 10	
	1	or Footings 20" Wide X 12" Deep with 2- 6 X 6 X 9' syp #2 pt @ Columns: <u>12'-0" o.c. max. spacing</u>	#5 rebar continuous Simpson PC66 \ PBS66 or equal
		· · · · · · · · · · · · · · · · · · ·	with 7/16" osb flitch beam or equal over all
	doors	and windows.	
	2. All 3. Th 4. 15	: loon frame all gable ends unless accompo walls to be nailed with same nailing patt is wind load is not valid without a raised, D0 psf soil bearing pressure minimum. er mesh or WWM may be used in concret.	ern as the shear walls. embossed seal. (NO COPIES).
	Ins 6. Tru 7. Th strong	tall standard 10" ACI hook top and botton usses must be installed and anchored in c is is a windload only. Not a structural and gly recommends always having a structura e foundation is for minimum design use, c	m. Incordance to the truss engineering. Inlysis. Schafer Engineering I analysis.
	9. Wir 10. In Si 11. Tr	nd load is for one use only \ FBC-2020 stall anchor bolts a 48" o.c., & Simpson mpson SP2 at top plate or equal @ 32" juss company to use all exterior porch wa	\ No copies permitted SP1 at bottom plate and O.C. for all interior bearing walls. Ils for bearing when possible.
	12. If capac pour of mo	soil conditions in this project do not me ity , the contractor is required to contac for verification of the foundation design T ox. dry density as determined by ASTM-15	et or exceed the min. 1500 psf soil bearing t Schafer Engineering prior to the foundation he soil is to be compacted to at least 95% 57 (modified proctor)
$\left(\right)$		1	Bruce Schafer, P. E. #48984 7104 NW 42ND LN GAINESVILLE, FL. 32606
_			

SCHAFER ENGINEERING, LLC 7104 NW 42ND LANE \ GAINESVILLE FL. 32606 PHONE: 386-462-1340

TIE-DOWN TABLES

HEADER	STRAPPING			
Uplift Lbs	Top Connector	Rating Lbs	Bottom Connector	Rating Lbs
to 455	LSTA9	635	НЗ	320
to 910	LSTA12	795	2-H3	640
to 1265	LSTA18	1110	LTT19	1305
to 1750	2-LSTA12	1810	LTT20	1750
to 2530	2-LSTA18	2530	HD2A-2.5	2165
to 2865	3-LSTA18	3255	HD2A-3.5	2565
to 3700	3-LSTA24	3880	HD5A-3	3130
Total the the uplift uplift load	on the header. L	uss sitting o Jse proper bo	n the header and di- blt anchors sufficient	vide by 2 to determine to support required

TRUSSES	\ GIRDERS		,
Uplift Lbs	Top Connector	Bottom Connector	Rating Lbs
to 535	H2.5A	NA	
to 1015	H10A	NA	
to 1215	TS22	LTT19	1305
to. 1750	2-TS22	LTT20	1750
to 2570	2-TS22	HD2A	2565
to 3665	3-TS22	HD5A	3645
to 5420	2-MST37	HTT22	5250
to 9660	2-MST60	HD10A	8160
Two 12d common toenials are required per truss for each bearing point into top plate.			

It is the contractors responsibility to provide a continuous load path from truss to foundation.

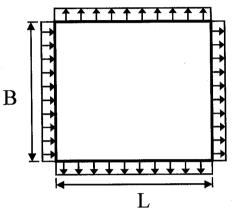
		RATING LBS	BOTTOM	RATING LBS
BEAM SEATS	LSTA18	1110	LTT19	1305
POSTS	2-LSTA18	2220	ABU44	2200

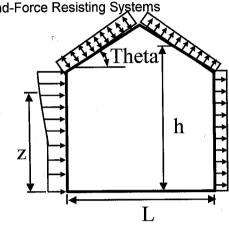
1. Simpson or equivlent hardware may be used. For nailing into spruce members, multiply table values by .86

2. See truss engineering for anchor uplift values.

This schedule is not meant to be a replacement to the specified values of any manufactures values.

	User Input	Data	
Structure	Туре	Building	
Basic Wir	nd Speed (V)	135	mph
Structura	Category	·	
Exposure		В	
Struc Nat	Frequency (n1)	1	Hz
Slope of I	Roof (Theta)	26.6	Deg
Type of R	oof	Gabled	
Eave Hei	ght (Eht)	9.00	ft
Ridge He	ight (RHt)	21.17	ft
Mean Ro	of Height (Ht)	15.08	ft
Width Pe	rp. to Wind (B)	50.00	ft
Width Pa	rallel to Wind (L)	56.83	ft
Damping	Ratio (beta)	0.01	
Red values	should be changed only	through "Main	Menu"
Calculated Parameters			


Calculated Parameters	
Type of Structure	
Height/Least Horizontal Dim	0.30
Flexible \$tructure	No


Calculated Parameters		
Importance Factor	1	
Non-Hurricane, Hurricane	(v=85-100 mph) & Alaska
Table C6	-4 Values	
Alpha =	7.000	
zg =	1200.000	
		·
·		
At =	0.143	
Bt =	0.840	
Am = 🕔	0.250	
Bm =	0.450	
Cc =	0.300	
	320.00	ft
Epsilon =	0.333	
Zmin =	30.00	ft

	Gust Factor Category I: Rigid Structures - Simplified Method		
Gust1	For rigid structures (Nat Freq > 1 Hz) use 0.85	0.85	
	Gust Factor Category II: Rigid Structures - Complete Analysi	S	
Zm	Zmin	30.00	ft
Izm	Cc * (33/z)^0.167	0.3048	
Lzm	I*(zm/33)^Epsilon	309.99	
Q	(1/(1+0.63*((B+Ht)/Lzm)^0.63))^0.5	0.8996	
Gust2	0.925*((1+1.7*lzm*3.4*Q)/(1+1.7*3.4*lzm))	0.8658	
	Gust Factor Category III: Flexible or Dynamically Sensitive Struc	tures	
Vhref	[V*(5280/3600)	198.00	
Vzm	bm*(zm/33)^Am*Vhref	87.00	
NF1	NatFreq*Lzm/Vzm	3.56	
Rn	(7.47*NF1)/(1+10.302*NF1)^1.667	0.0627	
Nh	4.6*NatFreq*Ht/Vzm	0.80	
Nb	4.6*NatFreq*B/Vzm	2.64	
Nd	15.4*NatFreq*Depth/Vzm	10.06	
Rh	1/Nh-(1/(2*Nh^2)*(1-Exp(-2*Nh)))	0.6273	
Rb	1/Nb-(1/(2*Nb^2)*(1-Exp(-2*Nb)))	0.3071	
Rd	1/Nd-(1/(2*Nd^2)*(1-Exp(-2*Nd)))	0.0945	
RR	((1/Beta)*Rn*Rh*Rb*(0.53+0.47*Rd))^0.5	0.8332	
gg	+(2*LN(3600*n1))^0.5+0.577/(2*LN(3600*n1))^0.5	4.19	
Gust3	0.925*((1+1.7*lzm*(3.4^2*Q^2+GG^2*RR^2)^0.5)/(1+1.7*3.4*lzm))	1.14	

Gust Factor Summary		
Main Wind-force resisting system:	Components and Cladding:	
Gust Factor Category:	Gust Factor Category:	.
Gust Factor (G) 0.87	Gust Factor (G)	0.87

Pressure (lb/ft^2) Kz Kzt Kd Elev. qz Windward Wall* +GCpi lb/ft^2 -GCpi ft 1.00 27.47 0.70 1.00 1.00 32.69 17.81 21.17 27.47 32.69 17.81 0.70 1.00 1.00 20 17.81 27.47 32.69 1.00 15.08 0.70 1.00 27.47 1.00 1.00 32.69 17.81 15 0.70 Figure 6-3 - External Pressure Coefficients, Cp Loads on Main Wind-Force Resisting Systems

Variable	Formula	Value	Units
Kh	2.01*(Ht/zg)^(2/Alpha)	0.58	
Kht	Topographic factor (Fig 6-2)	1.00	
Qh	.00256*(V)^2*ImpFac*Kh*Kht*Kd	26.85	psf

Wall Pressure Coefficients, Cp	
Surface	Ср
Windward Wall (See Figure 6.5.12.2.1 for Pressures)	0.80

Roof P	essure Coefficients, Cp
Roof Area (sq. ft.)	
Reduction Factor	1.00

Description	Ср	Pressure (psf)		
	_	+GCpi	-GCpi	
Leeward Walls (Wind Dir Parallel to 50 ft wall)	-0.47	-15.82	-6.16	
Leeward Walls (Wind Dir Parallel to 56.83 ft wall)	-0.50	-16.46	-6.79	
Side Walls	-0.70	-21.11	-11.44	
Roof - Normal to Ridge (Th	neta>=10)			
Windward - Max Negative	-0.20	-9.58	0.09	
Windward - Max Positive	0.29	2.00	11.67	
Leeward Normal to Ridge	-0.60	-18.78	-9.12	
Overhang Top	-0.20	-4.75	-4.75	
Overhang Bottom	0.80	0.69	0.69	
Roof - Parallel to Ridge (A	All Theta)			
Dist from Windward Edge: 0 ft to 7.54 ft	-0.90	-25.76	-16.09	
Dist from Windward Edge: 7.54 ft to 15.08 ft	-0.90	-25.76	-16.09	
Dist from Windward Edge: 15.08 ft to 30.16 ft	-0.50	-16.46	् . –6.79	
Dist from Windward Edge: > 30.16 ft	-0.30	-11.81	-2.14	

* Horizontal distance from windward edge

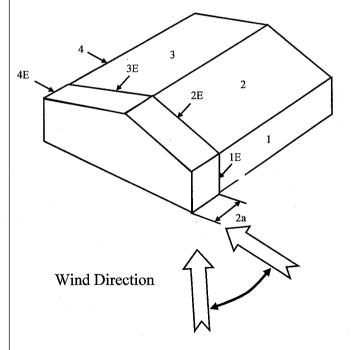

6.5.12.2.1 Design Wind Pressure - Buildings of All Heights (Non-flexible)

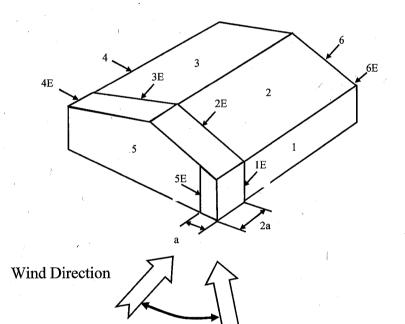
Figure 6-4 - External Pressure Coefficients, GCpf Loads on Main Wind-Force Resisting Systems w/ Ht <= 60 ft

Kh =	2.01*(Ht/zg)^(2/Alpha)	=	0.58
Kht =	Topographic factor (Fig 6-2)	=	1.00
Qh =	0.00256*(V)^2*ImpFac*Kh*Kht*Kd	. =	26.85

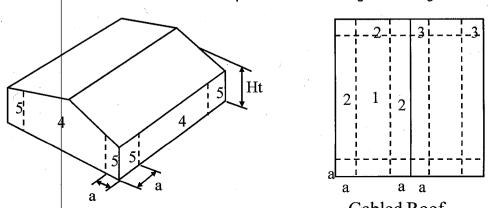
Case A							
Surface	GCpf	+GCpi	-GCpi	qh (psf)	Min P (psf)	Max P (psf)	
1	0.55	0.18	-0.18	32.69	12.09	23.85	
2	-0.10	0.18	-0.18	32.69	-9.02	2.75	
3	-0.45	0.18	-0.18	32.69	-20.49	-8.73	
4	-0.39	0.18	-0.18	32.69	-18.64	-6.88	
5	0.00	0.18	-0.18	32.69	-5.88	5.88	
6	0.00	0.18	-0.18	32.69	-5.88	5.88	
1E	0.73	0.18	-0.18	32.69	17.89	29.66	
2E	-0.19	0.18	-0.18	32.69	-11.95	-0.18	
3E	-0.58	0.18	-0.18	32.69	-24.99	-13.22	
4E	-0.53	0.18	-0.18	32.69	-23.35	-11.58	
5E	0.00	0.18	-0.18	32.69	-5.88	5.88	
6E	0.00	0.18	-0.18	32.69	-5.88	5.88	

* p = qh * (GCpf - GCpi)

Figure 6-4 - External Pressure Coefficients, GCpf


Loads on Main Wind-Force Resisting Systems w/ Ht <= 60 ft

Kh =	2.01*(Ht/zg)^(2/Alpha)	=.	0.58
Kht =	Topographic factor (Fig 6-2)	=	1.00
Qh =	0.00256*(V)^2*ImpFac*Kh*Kht*Kd	=	26.85


5/31/2022

Case B						
Surface	GCpf	+GCpi	-GCpi	qh (psf)	Min P (psf)	Max P (psf)
1	-0.45	0.18	-0.18	32.69	-20.59	-8.83
2	-0.69	0.18	-0.18	32.69	-28.44	-16.67
3	-0.37	0.18	-0.18	32.69	-17.98	-6.21
4	-0.45	0.18	-0.18	32.69	-20.59	-8.83
5	0.40	0.18	-0.18	32.69	7.19	18.96
6	-0.29	0.18	-0.18	32.69	-15.36	-3.60
1E	-0.48	0.18	-0.18	32.69	-21.57	-9.81
2E	-1.07	0.18	-0.18	32.69	-40.86	-29.09
3E	-0.53	0.18	-0.18	32.69	-23.21	-11.44
4E	-0.48	0.18	-0.18	32.69	-21.57	-9.81
5E	0.61	0.18	-0.18	32.69	14.06	25.82
6E	-0.43	0.18	-0.18	32.69	-19.94	-8.17

* p = qh * (GCpf - GCpi)

Gabled Roof

10 < Theta <= 45

а	=	

5

5.00

==>

00 ft

Component	Width	Length	Area	Zone	G	Ср	Wind Pre	ss (lb/ft^2
	(ft)	(ft)	(ft^2)		Max	Min	Max	Min
	16	7	112.00	5	0.81	-1.03	26.71	-32.48
	0	0	0.00					
	0	0	0.00	· · · · · · · · · · · · · · · · · · ·	······			
	0	0	0.00					
	0	0	0.00					
*	0	0	0.00		-			
#*************************************	0	0	0.00			· ·		
	0	0	0.00					
	0	0	0.00					
<u>, , , , , , , , , , , , , , , , , , , </u>	0	0	0.00	· · ·				
	0	0	0.00		··			
,	0	0	0.00					
	0	0	0.00					
	0	0	0.00					
	0	0	0.00					
	0	0	0.00					
· ·	0	0	0.00					
	0	0	0.00					
	0	0	0.00			· · · · · · · · · · · · · · · · · · ·	· · · · ·	
	0	0	0.00					·
	0	0	0.00	······			**	
	0	0	0.00					
	0	0	0.00					

Note: * Enter Zone 1 through 5, or 1H through 3H for overhangs.

Table 6-7 Internal Pressure Coefficients for Buildings, Gcpi

Condition	Gcpi			
	Max +	Max -		
Open Buildings	0.00	0.00		
Partially Enclosed Buildings	0.55	-0.55		
Enclosed Buildings	0.18	-0.18		
Enclosed Buildings	0.18	-0.18		