

RE: 0820-102 - Evans Replaceemtn

MiTek, Inc.

16023 Swingley Ridge Rd. Chesterfield, MO 63017

314.434.1200

Site Information:

Customer Info: SCCI Project Name: . Model: .

Lot/Block: . Subdivision: .

Address: ., .

City: Columbia County State: Fl

Name Address and License # of Structural Engineer of Record, If there is one, for the building.

Name: License #:

Address:

City: State:

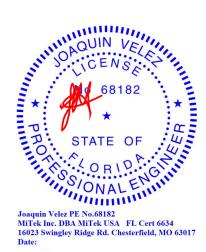
General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: FBC2023/TPI2014 Design Program: MiTek 20/20 8.7

Wind Code: ASCE 7-22 Wind Speed: 130 mph Roof Load: 40.0 psf Floor Load: N/A psf

This package includes 9 individual, Truss Design Drawings and 0 Additional Drawings. With my seal affixed to this sheet, I hereby certify that I am the Truss Design Engineer and this index sheet conforms to 61G15-31.003, section 5 of the Florida Board of Professional Engineers Rules.

No.	Seal#	Truss Name	Date
1	T36351150	CJ01	2/12/25
2	T36351151	H01	2/12/25
3	T36351152	J01	2/12/25
4	T36351153	J02	2/12/25
5	T36351154	J03	2/12/25
6	T36351155	J04	2/12/25
7	T36351156	T04	2/12/25
8	T36351157	T05	2/12/25
9	T36351158	T06	2/12/25

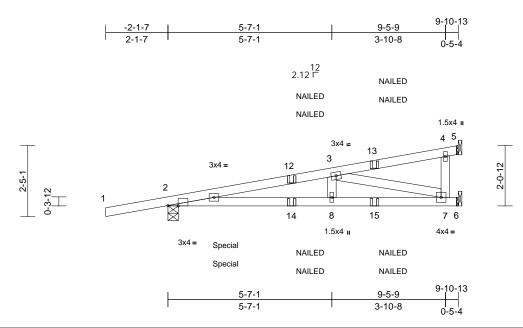


The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Mayo Truss Company, Inc..

Truss Design Engineer's Name: Velez, Joaquin

My license renewal date for the state of Florida is February 28, 2027.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.



February 12,2025

Job	Truss	Truss Type	Qty	Ply	Evans Replaceemtn	
0820-102	CJ01	Diagonal Hip Girder	1	1	Job Reference (optional)	T36351150

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Tue Feb 11 13:01:29 ID:LQdYVafHUsydlga4Oy3bQMyiOQq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:39.3

Plate Offsets (X, Y): [2:0-4-3,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.38	Vert(LL)	-0.05	7-8	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.25	BC	0.60	Vert(CT)	-0.11	7-8	>999	180		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.35	Horz(CT)	0.02	6	n/a	n/a		
BCDL	10.0	Code	FBC2023/TPI2014	Matrix-MS							Weight: 42 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.2 WEBS

BRACING

TOP CHORD Structural wood sheathing directly applied or

5-1-6 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 2=0-4-4, 5= Mechanical, 6=

Mechanical Max Horiz 2=60 (LC 23)

Max Uplift 2=-122 (LC 4), 6=-44 (LC 4)

2=499 (LC 1), 5=204 (LC 3), 6=302 Max Grav

(LC 1)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/22, 2-3=-1263/29, 3-4=-36/14,

4-5=0/35

BOT CHORD 2-8=-40/1226, 7-8=-25/1226, 6-7=0/0

WEBS 3-8=0/244, 4-7=0/168, 3-7=-1267/26

NOTES

- Wind: ASCE 7-22; Vult=130mph (3-second gust) 1) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) Bearings are assumed to be: , Joint 2 SP No.2 .

- Refer to girder(s) for truss to truss connections
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 122 lb uplift at joint 2 and 44 lb uplift at joint 6.
- "NAILED" indicates 3-10d (0.148"x3") or 2-12d (0.148"x3.25") toe-nails per NDS guidlines.
- Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 20 lb down and 93 lb up at 1-4-11, and 20 lb down and 93 lb up at 1-4-11 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

Dead + Roof Live (balanced): Lumber Increase=1.25,

Plate Increase=1.25 Uniform Loads (lb/ft)

Vert: 1-5=-60, 6-9=-20

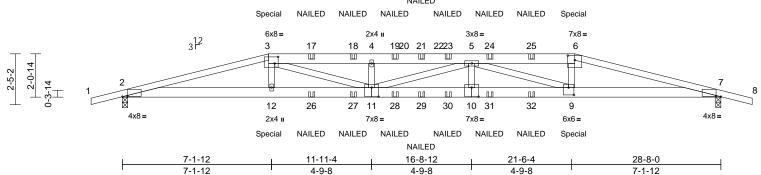
Concentrated Loads (lb)

Vert: 11=99 (F=50, B=50), 13=-76 (F=-38, B=-38),

14=-15 (F=-7, B=-7), 15=-66 (F=-33, B=-33)

Joaquin Velez PE No.68182 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

February 12,2025


🗥 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Job	Truss	Truss Type	Qty	Ply	Evans Replaceemtn	
0820-102	H01	Hip Girder	1	2	Job Reference (optional)	T36351151

Run: 8.73 S. Dec. 5.2024 Print: 8.730 S.Dec. 5.2024 MiTek Industries. Inc. Tue Feb 11.13:01:30 ID:LQdYVafHUsydlga4Oy3bQMyiOQq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-1-6-0 7-0-0 11-11-4 16-8-12 21-8-0 28-8-0 30-2-0 1-6-0 7-0-0 4-11-4 4-11-4 7-0-0 1-6-0 4-9-8 NAILED

THIS TRUSS IS NOT SYMMETRIC. PROPER ORIENTATION IS ESSENTIAL.

Scale = 1:55.2

Plate Offsets (X, Y): [2:0-2-12,0-0-4], [3:0-2-0,0-3-12], [6:0-4-0,0-2-10], [7:0-2-12,0-0-4], [9:0-3-0,0-4-4], [10:0-4-0,0-5-4], [11:0-4-0,0-5-4]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.64	Vert(LL)	-0.38	10-11	>887	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.25	BC	0.41	Vert(CT)	-0.77	10-11	>440	180		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.36	Horz(CT)	0.10	7	n/a	n/a		
BCDL	10.0	Code	FBC2023/TPI2014	Matrix-MS							Weight: 310 lb	FT = 20%

LUMBER

2x4 SP No.2 *Except* 3-6:2x6 SP No.2 TOP CHORD

2x6 SP 2400F 2.0E **BOT CHORD** 2x4 SP No.2 WEBS

BRACING

TOP CHORD Structural wood sheathing directly applied or

3-8-14 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS 2=0-3-0, 7=0-3-0 (size) Max Horiz 2=-18 (LC 24)

Max Uplift 2=-3 (LC 8), 7=-3 (LC 8)

Max Grav 2=2437 (LC 1), 7=2437 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD

1-2=0/24, 2-3=-8610/0, 3-4=-11258/0,

4-5=-11252/0. 5-6=-8400/0. 6-7=-8551/0.

7-8=0/24

BOT CHORD 2-12=0/8314, 9-12=0/11459, 7-9=0/8256 WEBS

3-12=0/651, 3-11=0/3180, 4-11=-767/107,

5-11=-261/33, 5-10=0/445, 5-9=-3359/0,

6-9=0/1612

NOTES

2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc, 2x6 - 2 rows staggered at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Web connected as follows: 2x4 - 1 row at 0-9-0 oc, Except member 3-12 2x4 - 1 row at 0-3-0 oc, Except member 6-9 2x4 - 1 row at 0-3-0 oc.

All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B). unless otherwise indicated.

- Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=29ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP 2400F 2.0E .
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 3 lb uplift at joint 2 and 3 lb uplift at joint 7.
- 11) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 12) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 254 lb down at 7-0-0, and 254 lb down at 21-8-0 on top chord, and 339 lb down and 33 lb up at 7-0-0, and 339 lb down and 33 lb up at 21-7-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.


LOAD CASE(S) Standard

Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (lb/ft)

Vert: 1-3=-60, 3-6=-60, 6-8=-60, 2-7=-20 Concentrated Loads (lb)

Vert: 3=-207 (F), 6=-207 (F), 12=-339 (F), 9=-339 (F), 17=-123 (F), 18=-123 (F), 19=-123 (F), 21=-123 (F), 23=-123 (F), 24=-123 (F), 25=-123 (F), 26=-65 (F), 27=-65 (F), 28=-65 (F), 29=-65 (F), 30=-65 (F), 31=-65 (F), 32=-65 (F)

Page: 1

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

February 12,2025

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Job	Truss	Truss Type	Qty	Ply	Evans Replaceemtn	
0820-102	J01	Jack-Open	5	1	T36351152 Job Reference (optional)	

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Tue Feb 11 13:01:30 ID:LQdYVafHUsydlga4Oy3bQMyiOQq-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

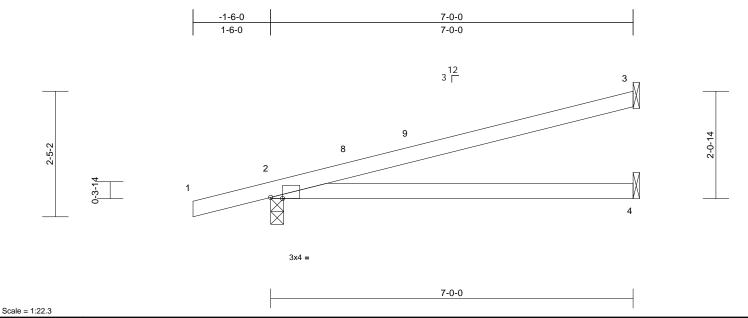


Plate Offsets (X, Y): [2:0-2-12,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.58	Vert(LL)	0.10	4-7	>875	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.25	BC	0.47	Vert(CT)	-0.21	4-7	>401	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCDL	10.0	Code	FBC2023/TPI2014	Matrix-AS							Weight: 24 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD

BRACING

TOP CHORD Structural wood sheathing directly applied. Rigid ceiling directly applied. BOT CHORD

REACTIONS (size) 2=0-3-0, 3= Mechanical, 4= Mechanical

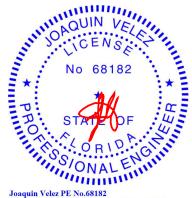
Max Horiz 2=55 (LC 12)

Max Uplift 2=-35 (LC 12), 3=-28 (LC 12) Max Grav 2=377 (LC 1), 3=183 (LC 1), 4=121

(LC 3)

FORCES (lb) - Maximum Compression/Maximum

Tension


TOP CHORD 1-2=0/22, 2-3=-148/36

BOT CHORD 2-4=-52/150

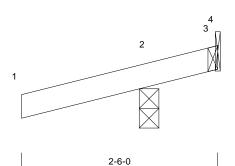
- 1) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft: L=24ft: eave=4ft: Cat. II: Exp B: Enclosed: MWFRS (directional) and C-C Zone3 -1-6-0 to 1-6-0, Zone1 1-6-0 to 6-11-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearings are assumed to be: , Joint 2 SP No.2 .
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate at joint(s) 2.

- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 28 lb uplift at joint 3 and 35 lb uplift at joint 2.
- This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

February 12,2025


🗥 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Job	Truss	Truss Type	Qty	Ply	Evans Replaceemtn	
0820-102	J02	Jack-Open	2	1	Job Reference (optional)	T36351153

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Tue Feb 11 13:01:30 ID:LQdYVafHUsydlga4Oy3bQMyiOQq-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Scale = 1:14.7

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.17	Vert(LL)	0.00	2-3	>999	240		
TCDL	10.0	Lumber DOL	1.25	BC	0.00	Vert(CT)	0.00	2-3	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	FBC2023/TPI2014	Matrix-MP							Weight: 4 lb	FT = 20%

LOAD CASE(S) Standard

LUMBER TOP CHORD 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or

1-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS 2=0-3-0, 3= Mechanical (size)

Max Horiz 2=20 (LC 12)

Max Uplift 2=-88 (LC 12), 3=-72 (LC 1) Max Grav 2=219 (LC 1), 3=38 (LC 12)

(lb) - Maximum Compression/Maximum

FORCES Tension

TOP CHORD 1-2=0/24, 2-3=-30/27, 3-4=0/0

NOTES

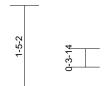
- Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Zone3 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearings are assumed to be: , Joint 2 SP No.2 .
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate at joint(s) 2.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 72 lb uplift at joint 3 and 88 lb uplift at joint 2.
- Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2.

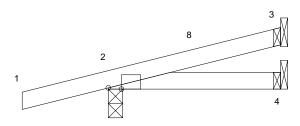
Page: 1

Joaquin Velez PE No.68182 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

February 12,2025

🗥 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Job	Truss	Truss Type	Qty	Ply	Evans Replaceemtn	
0820-102	J03	Jack-Open	2	1	Job Reference (optional)	T36351154


Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Tue Feb 11 13:01:30 ID: LQdYVafHUsydlga4Oy3bQMyiOQq-RfC? PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC? full for the property of the pro

Page: 1

3 T

3x4 =

3-0-0

Scale = 1:20.1

Plate Offsets (X, Y): [2:0-2-12,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.15	Vert(LL)	0.00	4-7	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.25	BC	0.06	Vert(CT)	0.00	4-7	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCDL	10.0	Code	FBC2023/TPI2014	Matrix-MP							Weight: 11 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD

BRACING

TOP CHORD Structural wood sheathing directly applied or 3-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS (size) 2=0-3-0, 3= Mechanical, 4= Mechanical

Max Horiz 2=31 (LC 12)

Max Uplift 2=-44 (LC 12), 3=-5 (LC 12) Max Grav 2=230 (LC 1), 3=62 (LC 1), 4=48

(LC 3)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/22, 2-3=-69/12

BOT CHORD 2-4=0/54

NOTES

- Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Zone3 -1-6-0 to 1-6-0, Zone1 1-6-0 to 2-11-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearings are assumed to be: , Joint 2 SP No.2 .
- Refer to girder(s) for truss to truss connections.

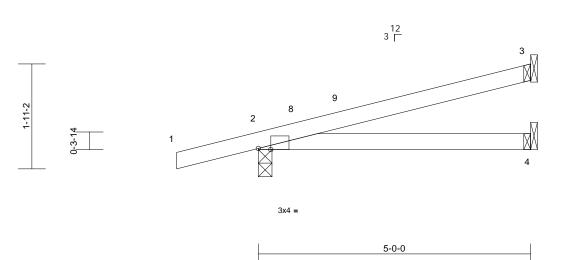
7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 5 lb uplift at joint 3 and 44 lb uplift at joint 2.

LOAD CASE(S) Standard

Joaquin Velez PE No.68182 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

February 12,2025

🗥 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Job	Truss	Truss Type	Qty	Ply	Evans Replaceemtn	
0820-102	J04	Jack-Open	2	1	Job Reference (optional)	T36351155

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Tue Feb 11 13:01:31 ID:LQdYVafHUsydlga4Oy3bQMyiOQq-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

1-6-14

Scale = 1:21.2

Plate Offsets (X, Y): [2:0-2-12,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.27	Vert(LL)	0.03	4-7	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.25	BC	0.22	Vert(CT)	-0.05	4-7	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCDL	10.0	Code	FBC2023/TPI2014	Matrix-AS							Weight: 18 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD

BRACING

TOP CHORD Structural wood sheathing directly applied. Rigid ceiling directly applied. BOT CHORD

REACTIONS (size) 2=0-3-0, 3= Mechanical, 4=

Mechanical Max Horiz 2=43 (LC 12)

Max Uplift 2=-39 (LC 12), 3=-17 (LC 12)

Max Grav 2=301 (LC 1), 3=123 (LC 1), 4=85

(LC 3)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/22, 2-3=-96/24

BOT CHORD 2-4=-40/100

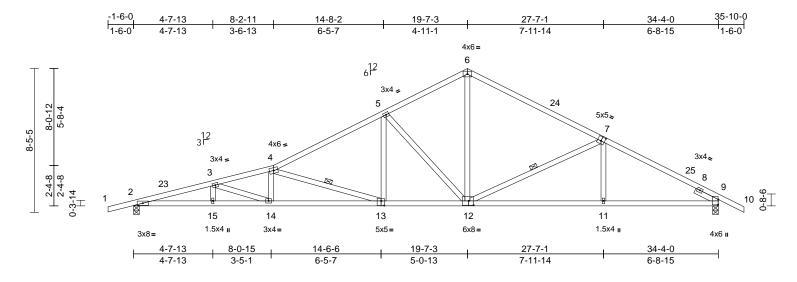
- 1) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft: L=24ft: eave=4ft: Cat. II: Exp B: Enclosed: MWFRS (directional) and C-C Zone3 -1-6-0 to 1-6-0, Zone1 1-6-0 to 4-11-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearings are assumed to be: , Joint 2 SP No.2 .
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate at joint(s) 2.

- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 17 lb uplift at joint 3 and 39 lb uplift at joint 2.
- This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

Joaquin Velez PE No.68182 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

February 12,2025


🗥 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Job	Truss	Truss Type	Qty	Ply	Evans Replaceemtn					
0820-102	T04	Roof Special	6	1	Job Reference (optional)	T36351156				

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Tue Feb 11 13:01:31 ID:LQdYVafHUsydlga4Oy3bQMyiOQq-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:67.6

Plate Offsets (X, Y): [7:0-2-8,0-3-0], [9:0-3-11,0-0-3], [12:0-3-8,0-3-0], [13:0-2-4,0-3-4]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.85	Vert(LL)	-0.30	13-14	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.25	BC	0.85	Vert(CT)	-0.64	13-14	>641	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.91	Horz(CT)	0.16	9	n/a	n/a		
BCDL	10.0	Code	FBC2023/TPI2014	Matrix-AS							Weight: 180 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP No.2 *Except* 2-13:2x4 SP No.1

2x4 SP No.2 WEBS

Right 2x4 SP No.2 -- 1-6-0 SLIDER

BRACING TOP CHORD

Structural wood sheathing directly applied. BOT CHORD Rigid ceiling directly applied.

WEBS 1 Row at midpt 4-13, 7-12

REACTIONS 2=0-4-0, 9=0-4-0 (size) Max Horiz 2=136 (LC 11)

Max Uplift 2=-35 (LC 12), 9=-35 (LC 12)

Max Grav 2=1463 (LC 1), 9=1463 (LC 1) **FORCES** (lb) - Maximum Compression/Maximum

Tension

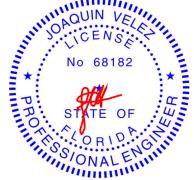
TOP CHORD 1-2=0/22, 2-3=-4647/155, 3-4=-4300/166,

4-5=-2568/157, 5-6=-1753/182, 6-9=-2339/172, 9-10=0/40

BOT CHORD 2-15=-90/4485, 14-15=-90/4485 11-14=-86/4144, 9-11=-41/2016

3-15=0/91, 3-14=-370/14, 4-14=0/319, 4-13=-2019/93, 5-13=0/741, 5-12=-1014/111,

6-12=-29/1130, 7-12=-593/97, 7-11=0/263


NOTES

WEBS

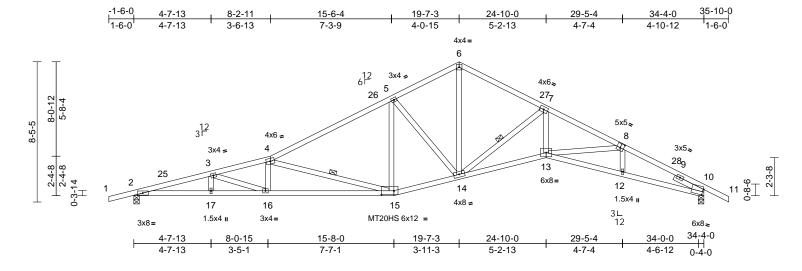
- Unbalanced roof live loads have been considered for 1)
- Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=34ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Zone3 -1-6-0 to 1-11-3, Zone1 1-11-3 to 19-7-3, Zone2 19-7-3 to 24-5-7, Zone1 24-5-7 to 35-10-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearings are assumed to be: Joint 2 SP No.1, Joint 9 6) SP No.2
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 35 lb uplift at joint 2 and 35 lb uplift at joint 9.
- This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

Joaquin Velez PE No.68182 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

February 12,2025


🗥 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Job	Truss	Truss Type		Ply	Evans Replaceemtn				
0820-102	T05	Roof Special	10	1	Job Reference (optional)	T36351157			

Run: 8.73 S. Dec. 5.2024 Print: 8.730 S.Dec. 5.2024 MiTek Industries. Inc. Tue Feb. 11.13:01:31 ID:LQdYVafHUsydlga4Oy3bQMyiOQq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:69.4

Plate Offsets (X, Y): [8:0-2-8,0-3-0], [10:0-0-9,0-4-3], [15:0-9-0,0-2-12]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.89	Vert(LL)	-0.37	15-16	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.25	BC	0.77	Vert(CT)	-0.82	15-16	>504	180	MT20HS	187/143
BCLL	0.0*	Rep Stress Incr	YES	WB	0.62	Horz(CT)	0.33	10	n/a	n/a		
BCDL	10.0	Code	FBC2023/TPI2014	Matrix-AS							Weight: 185 lb	FT = 20%

LUMBER

2x4 SP No.2 *Except* 8-11:2x4 SP No.1 TOP CHORD 2x4 SP No.1 *Except* 15-13:2x4 SP No.2, BOT CHORD

13-10:2x4 SP SS 2x4 SP No.2

SLIDER Right 2x4 SP No.2 -- 2-0-0

BRACING

WFBS

TOP CHORD Structural wood sheathing directly applied. **BOT CHORD** Rigid ceiling directly applied. 4-15, 7-14 WFRS 1 Row at midpt

REACTIONS (size) 2=0-4-0, 10=0-4-0 Max Horiz 2=136 (LC 11)

Max Uplift 2=-35 (LC 12), 10=-35 (LC 12)

Max Grav 2=1463 (LC 1), 10=1463 (LC 1)

FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD

1-2=0/22, 2-3=-4639/156, 3-4=-4321/161,

4-5=-2398/159, 5-6=-1986/181,

6-7=-1991/169, 7-10=-3773/160, 10-11=0/40 2-17=-91/4478, 16-17=-91/4478,

15-16=-83/4165, 14-15=0/2142,

13-14=-41/3475, 12-13=-63/3286

10-12=-59/3231

3-17=0/69, 3-16=-335/18, 4-16=0/353,

4-15=-2182/93, 5-15=0/296, 5-14=-597/118,

6-14=-67/1488, 7-14=-2102/110,

7-13=0/1751, 8-13=0/246, 8-12=-116/55

NOTES

WEBS

BOT CHORD

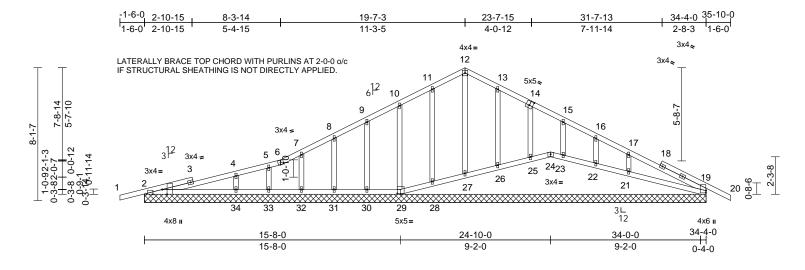
1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=34ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Zone3 -1-6-0 to 1-11-3, Zone1 1-11-3 to 19-7-3, Zone2 19-7-3 to 24-5-7, Zone1 24-5-7 to 35-10-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- All plates are MT20 plates unless otherwise indicated.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearings are assumed to be: Joint 2 SP No.1, Joint 10
- Bearing at joint(s) 10 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 35 lb uplift at joint 2 and 35 lb uplift at joint 10.
- 10) This truss design requires that a minimum of 7/16' structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

Joaquin Velez PE No.68182 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

February 12,2025


MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Job	Truss	Truss Type	Qty	Ply	Evans Replaceemtn	
0820-102	T06	Roof Special Supported Gable	1	1	Job Reference (optional)	T36351158

Run: 8.73 S. Dec. 5.2024 Print: 8.730 S.Dec. 5.2024 MiTek Industries. Inc. Tue Feb. 11.13:01:31 ID:LQdYVafHUsydlga4Oy3bQMyiOQq-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:70.4

Plate Offsets (X, Y): [2:0-3-8,Edge], [2:0-6-12,Edge], [14:0-2-8,0-3-0], [19:0-1-9,0-0-2], [29:0-2-8,0-0-10]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.25	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.25	BC	0.26	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.11	Horz(CT)	0.01	19	n/a	n/a		
BCDL	10.0	Code	FBC2023/TPI2014	Matrix-AS							Weight: 183 lb	FT = 20%

LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.2 OTHERS

BRACING

TOP CHORD Structural wood sheathing directly applied.

BOT CHORD Rigid ceiling directly applied.

REACTIONS (size) 2=34-4-0, 19=34-4-0, 21=34-4-0, 22=34-4-0, 23=34-4-0, 24=34-4-0, 25=34-4-0, 26=34-4-0, 27=34-4-0, 28=34-4-0, 29=34-4-0, 30=34-4-0, 31=34-4-0, 32=34-4-0, 33=34-4-0,

34=34-4-0

Max Horiz 2=131 (LC 11) Max Uplift 2=-36 (LC 12), 19=-47 (LC 12),

21=-17 (LC 12), 22=-10 (LC 12), 23=-14 (LC 12), 24=-10 (LC 11), 25=-15 (LC 12), 26=-7 (LC 12), 28=-7 (LC 12), 29=-32 (LC 12), 30=-10 (LC 12), 31=-13 (LC 12),

32=-9 (LC 12), 33=-11 (LC 12) Max Grav 2=291 (LC 1), 19=273 (LC 24), 21=337 (LC 1), 22=89 (LC 24), 23=176 (LC 1), 24=38 (LC 12), 25=153 (LC 1), 26=168 (LC 24),

27=150 (LC 17), 28=168 (LC 23), 29=156 (LC 23), 30=165 (LC 23), 31=150 (LC 23), 32=196 (LC 1), 33=26 (LC 18), 34=436 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension

11-12=-98/277

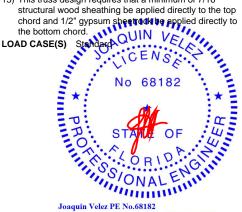
TOP CHORD 1-2=0/22, 2-4=-96/94, 4-5=-104/75, 5-6=-96/79, 12-13=-98/277, 13-15=-81/224, 15-16=-41/108, 16-17=-58/66, 17-19=-75/70, 19-20=0/40, 6-7=-93/91, 7-8=-98/81, 8-9=-87/113, 9-10=-78/168, 10-11=-81/225,

BOT CHORD

2-34=-35/129, 33-34=-35/129, 32-33=-35/129, 31-32=-35/129, 30-31=-35/129, 29-30=-35/129, 28-29=-39/137, 27-28=-39/137, 26-27=-39/137, 25-26=-40/137, 24-25=-39/135, 23-24=-39/134, 22-23=-38/137, 21-22=-43/137, 19-21=-41/148

12-27=-159/25, 11-28=-127/93, 10-29=-118/104, 9-30=-121/101,

8-31=-115/100, 7-32=-138/106, 5-33=-49/60, 4-34=-277/144, 13-26=-127/93 14-25=-117/103. 15-23=-132/108. 16-22=-74/71, 17-21=-244/190


NOTES

WEBS

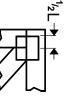
- 1) Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=34ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Zone3 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- All plates are 1.5x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing. 6)
- 7) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) All bearings are assumed to be SP No.2.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 36 lb uplift at joint 2, 10 lb uplift at joint 24, 47 lb uplift at joint 19, 7 lb uplift at joint 28, 32 lb uplift at joint 29, 10 lb uplift at joint 30, 13 lb uplift at joint 31, 9 lb uplift at joint 32, 11 lb uplift at joint 33, 7 lb uplift at joint 26, 15 lb uplift at joint 25, 14 lb uplift at joint 23, 10 lb uplift at joint 22, 17 lb uplift at joint 21, 36 lb uplift at joint 2 and 47 lb uplift at joint 19.
- 12) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 24, 27, 28, 26, 25, 23, 22, 21.

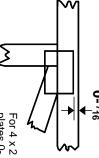
13) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top

Joaquin Velez PE No.68182 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

February 12,2025



MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE



Symbols

PLATE LOCATION AND ORIENTATION

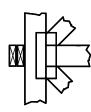
Center plate on joint unless x, y offsets are indicated.
Dimensions are in ft-in-sixteenths.
Apply plates to both sides of truss and fully embed teeth.

For 4 x 2 orientation, locate plates 0- ¹/16" from outside edge of truss.

This symbol indicates the required direction of slots in connector plates.

* Plate location details available in MiTek software or upon request.

PLATE SIZE

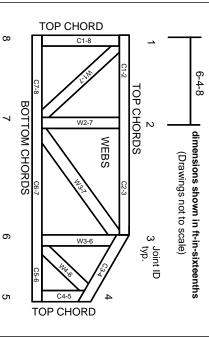

The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated.

BEARING

Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number/letter where bearings occur. Min size shown is for crushing only.


Industry Standards:

National Design Specification for Metal Plate Connected Wood Truss Construction Design Standard for Bracing.

Building Component Safety Information, Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses.

ANSI/TPI1: DSB-22:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282 ESR-4722, ESL-1388

Design General Notes

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2023 MiTek® All Rights Reserved

MiTek Engineering Reference Sheet: MII-7473 rev. 1/2/2023

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.

ω

- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other.

'n

- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.

œ

Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.

9

- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- The design does not take into account any dynamic or other loads other than those expressly stated.