Patented. Copyright 2020 Richard Pantel. All Rights Reserved. Paper or PDF copies of this report may be distributed only to employees of the company listed below under "Prepared for", or to Authorities Having Jursidiction (AHJ's) for their review purposes. This document contains Intellectual Property (IP) created by the Author, and as such, no parts of this calculation report or related data input form(s) may be copied in format, content or intent without permission in writing from the Author. Dis-assembly or reverse engineering of this calculation report or related data input form is strictly prohibited. The Author's contact information is: RPantel@iroofa.solar, web-site: www.iroofa.solar; tel: 908-507-5500. Trademark: iRooF® and iRooFA™.

tel: 540.313.5317 - email: info@iRooFA.solar

STRUCTURAL ANALYSIS for the ROOFTOP PV SOLAR INSTALLATION

Project: William Kunzler, 340 Sw Callaway Dr, Lake City, FL 32024

Prepared for:

Sunergy

7625 Little Rd Ste 200a - New Port Richey, FL 34654

Calculation Report Index

Description Pages

Roof Structural Calculations for PV Solar Installation

5-7 Location: MP 1 Pages Description

Loading Summary

Roof Structural Calculations for PV Solar Installation

8-10 Location: MP 2

Project Number: 66.400444.2, Rev. 0

Report Date: 11/09/2023

This item has been digitally signed and sealed by Richard Pantel, P.E. on the date adjacent to the seal. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Report Prepared by:

Richard Pantel, P.E. FL License No. 73222 Sealed 11/10/2023

Cover

Richard Digitally signed by Richard Pantel DN: c=US, st=Virginia, I=Round Hill, o=TectoniCorp, P.C., cn=Richard Pantel email=rpantel@princeton-engineering.com Date: 2023.11.10 15:02:34

Loading Summary

Exposure and Occupancy Categories							
В		Exposure Category (ASCE 7-16 Table 26.7.3, Page 266)					
Ш		Building Use Occupancy / Risk Category (ASCE 7-16 Table 1.5-1, Page 4)					

Wind Loading:								
V	118	mph	ASCE 7-16, Figure 26.5-1 A, B or C, pp 249-251. [(118 mph, 50					
V	110	116 Пірп	year wind MRI)]					
qz	21.18	psf	Velocity qz, calculated at height z [ASD]					

Snow Loading						
pg	0	psf	Ground Snow Load pg (ASCE 7-16 Table 7.2-1, Page 52-53)			

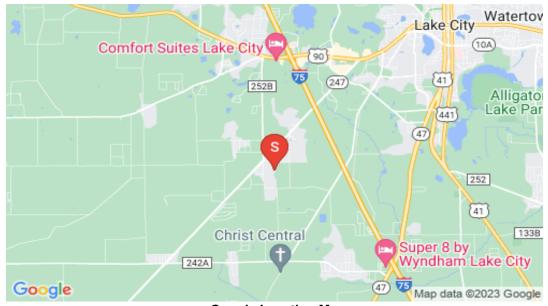
Module Data							
Mission Solar E	Mission Solar Energy LLC: MSE385SX5R						
Dimensions	mm	ft	in				
Length	1,905	6.25	75.00				
Width	1,041	3.42	41.00				
Area (m^2, ft^2)	2.0	21.35					
Weight	kg	lb					
Module	22.23	49.00					

Roof Panel (Cladding) Loading Sum	Module Loading Summary				
Support Point Loads		Upward	Upward	Upward	Downward
Roof Zones		1,2e,2r	2n,3r	3e	All
Net load per module	lb	-116	-145	-189	174

Positive values indicate net downward force

Stanc	hion Faste	ner Pull-ou	t and Spac	ing Calcul	
Framing spacing			ft	2.00	
Rails / Module			ea	2	
Max proposed stanchi	on span		ft	4.00	
# fasteners per stanch	ion			2	
Screw thread embedm	ent depth		in	2	
Safety Factor				1.10	
Pull-out for M5 threade	ed fasteners	3	lb/in	103	
Factored max fastener	uplift capa	city	lb	376	
Fastener details	Size	M5			
Max stanchion uplift ca	lb	400			
Max support point uplit	Max support point uplift capacity				

Roof Zones		1,2e,2r	2n,3r	3e
Net lift per module	lb	116	145	189
Min tot screw thread embedment depth rq'd	in	0.62	0.77	1.00
Net uplift pressure 7. 0.60D - 0.6W	psf	-4.69	-6.12	-8.24
Allowable lift area / support point	sf	80.21	61.52	45.66
Max rail span per framing spacing	ft	4.00	4.00	4.00
Landscape Modules				
Length along rafter	ft	3.42		
Lift calc'ed max stanchion EW spacing	ft	> 6	> 6	> 6
Max stanchion EW spacing	ft	4.00	4.00	4.00
Maximum module area / support point	sf	6.83	6.83	6.83
Factored lift per support point	lb	-32	-42	-56
Portrait Modules				
Length along rafter	ft	6.25		
Lift calc'ed max stanchion EW spacing	ft	> 6	> 6	> 6
Max stanchion EW spacing	ft	4.00	4.00	4.00
Maximum module area / support point	sf	12.50	12.50	12.50
Factored lift per support point	lb	-59	-76	-103


Stanchion support threaded fastener sizes are indicated in the Module Loading Summary table above. Lift forces were determined from GCp and other coefficients contained in the ASCE nomographs

Conclusions

Princeton Engineering was asked to review the roof of William Kunzler, located at 340 Sw Callaway Dr, Lake City, FL, by Sunergy, to determine its suitability to support a PV solar system installation.

The referenced building's roof structure was field measured by Sunergy. The attached framing analyses reflect the results of those field measurements combined with the PV solar module locations shown on the PV solar roof layout design prepared by Sunergy. Loads are calculated to combine the existing building and environmental loads with the proposed new PV array loads.

Sunergy selected the Everest CrossRail 44-X racking with K2-Systems Splice Foot XL w/2 bolts stanchions for this project. The racking and support stanchions shall be placed as shown on their plans, dated 11/10/2023, and shall be fastened to the roof framing using fastener sizes indicated in this report. Rack support spacing shall be no more than that shown above. Note that support points for alternating rows shall share the same roof support member. Intermediate rows shall move the support points laterally to the next roof support member.

Google Location Map

Framing Summary

Based upon the attached calculations and in accordance with the FBC 2020 Section R324.4 and the FBC's reference to IRC 2018 Section 1607.12.5.2, the existing roofs' framing systems are capable of supporting the additional loading for the proposed PV solar system along with the existing building and environmental loads. No supplemental roof framing structural supports are required. Minimum required anchorage fastening is described above.

Wood fastener notes: 1) Fastener threads must be embedded in the side grain of a roof support structural member or other structural member integrated into the building's structure. 2) Fastener must be located in the middle third of the structural member. 3) Install fasteners with head and where required, washer, flush to material surface (no gap). Do not over-torque.

References and Codes:

- 1) ASCE 7-16 Minimum Design Loads for Buildings and Other Structures
- 2) IBC 2018
- 3) FBC 2020
- 4) 2022 Florida Statues and 2023 Florida Administrative Codes
- 5) American Wood Council, NDS 2018, Table 12.2A, 12.3.3A.
- 6) American Wood Council, Wood Structural Design, 1992, Figure 6.

Geometric Data						
Θ deg. 34.00 Angle of roof plane from horizontal, in degrees						
ω <i>deg.</i> 0.00		0.00	Angle the solar panel makes with the roof surface			
L	ft.	35.17	Length of roof plane, in feet (meters)			
W	ft.	12.83	Plan view width of roof plane, in feet (meters)			
h	ft.	15.00	Average height of roof above grade, in feet (meters)			

Roof Wind Zone Width						
use, a = 3.00 ft						

Wind Velocity Pressure, q_z evaluated at the height z								
q _z =	q_z = 21.18 psf Vasd q_z = 12.89 psf Basic wind pressure							
V=	118	mph						

Framing Data							
Rafter / Truss OC	in	24.00					
Member Total Length	ft	15.48					

48	Max. Rack Support Spacing (in)			
8	# Modules / Roof Plane			

Member Properties	Member
Name	(1)1.5x3.5

* Mem properties based upon field measurements Rafter

Module Pi				
Weight	kg	lb	psf load	
Module	22.23	49.00	2.29	
4 Stanchions	1.27	2.8	0.13	
Existing Dead Loads	Units	Value		Description
Framing Members	psf	0.50		
Roof Deck & Surface	psf	4.40	0.50 in. Plyv	wood w/ Standard Asphalt Shingles
Sum Existing DL Roof Loads	psf	4.90		
Proposed PV Dead Load				
PV Module + Stanchion	psf	2.43		

ASCE 7-16 Method for Calculating Uplift on PV Modules

Notation

Lp = Panel chord length.

p = uplift wind pressure

γa = Solar panel pressure equalization factor, defined in Fig. 29.4-8.

 γE = Array edge factor as defined in Section 29.4.4.

 θ = Angle of plane of roof from horizontal, in degrees.

29.4.4 Rooftop Solar Panels Parallel to the Roof Surface on Buildings of All Heights and Roof Slopes.

 $\Theta >= 7 \text{ deg}$ TRUE

Min.d1: Exposed FALSE Max.d1: Exposed 1.5(Lp) = 9.38

Use NOT EXPOSED for uplift calculations

γE = 1 γa = 0.67

 $p = qh(GCp) (\gamma_E) (\gamma_a) (lb/ft2)$ (29.4-7)

Zones	1,2e,2r	2n,3r	3e
p, Windload (psf)	-12.67	-15.04	-18.58

Wind Loading	Module Upward	Module Upward	Module Upward	Downward
Zones	1,2e,2r	2n,3r	3e	All Zones
GCp	-1.47	-1.75	-2.16	0.77
Windload (psf)	-12.67	-15.04	-18.58	9.90

Roof Liv	re Load (Lr)				
Ex. Roof Design Live Load per ASCE 7-16 Table 4-1	psf	20	20	20	20

ASCE 7-16 Chapter 2 Combinations of Loads	Table 2.4,	Page 8 (in	psf)	
2.2 SYMBOLS AND NOTATION		Module	Module	Downward
		Upward	Upward	Downward
D = dead load of Sum Existing DL Roof Loads	4.90	4.90	4.90	4.90
Lr = roof live load	20.00	20.00	20.00	20.00
S = snow load Zeroed out to test for IBC 5% Dead Load Only	0.00	0.00	0.00	0.00
W = wind load	-12.67	-15.04	-18.58	9.90

2.4 Combining Nominal Loads Using Allowable Stress Design (in psf) 2.4.1 Basic Combinations. Loads listed herein shall be considered to act in the following combinations; whichever produces the most unfavorable effect in the building, foundation, or structural member being considered. Effects of one or more loads not acting shall be considered.

Combination Formulae Upward Upward Upward Downward

ASCE 7-16 Chapter 2 Combinations of Loads	Table 2.4,	Page 8 (in	psf)	
Zones	1,2e,2r	2n,3r	3e	All Zones
2.2 SYMBOLS AND NOTATION		Module	Module	Downward
2.2 STIVIBOLS AND NOTATION	Upward	Upward	Upward	Downward
D = dead load of Existing Dead Loads and Proposed PV Dead Load	7.33	7.33	7.33	7.33
Lr = roof live load	20.00	20.00	20.00	20.00
W = wind load	-12.67	-15.04	-18.58	9.90
Use this loading combination for DOWNWARD for Existing Dead Loads				
6. D + 0.75L - 0.75(0.60W) + 0.75(Lr or S or R)	24.90	24.90	24.90	29.36

Use this loading combination for DOWNWARD for Existing D	Dead Loads	and Propo	sed PV Dea	d Load
6. D + 0.75L - 0.75(0.60W) + 0.75(Lr or S or R)	27.33	27.33	27.33	31.78
Module Support point load (lb)	187	187	187	217

Use this loading combination for UPWARD for Proposed PV Dead Load					
7. 0.60D - 0.6W	-4.69	-6.12	-8.24	5.84	
Module Support point load (lb)	-32	-42	-56	40	

Check % Roof Load Increase		
Total Roof Area	sf	399
Existing Downward Roof Load	psf	29.36
Existing Downward Roof Load	lb	11,702
Number of PV Modules	ea	8
Area of PV Modules	sf	171
Total weight of Existing Roof + PV	lb	12,117
% increase in total loading		3.5%
Check if % increase < 5%		OK

# Modules Proposed	ea	8	Within Limits
# Modules Allowed	ea	11	OK

In accordance with 'IBC 3404.3 Existing Structures Carrying Gravity Loads', the net increase in roof load after adding the PV modules, is less than 5%. Hence, no structural modifications for this structure are required.

Geometric Data					
Θ	deg.	34.00	Angle of roof plane from horizontal, in degrees		
ω	deg.	0.00	Angle the solar panel makes with the roof surface		
L	ft.	28.92	Length of roof plane, in feet (meters)		
W	ft.	21.83	Plan view width of roof plane, in feet (meters)		
h	ft.	15.00	Average height of roof above grade, in feet (meters)		

Roof Wind Zone Width					
	use, a =	3.00	ft		

Win	Wind Velocity Pressure, q_z evaluated at the height z								
q_z = 21.18 psf Vasd q_z = 12.89 psf Basic wind pressure									
	V=	118	mph						

Framing Data						
Rafter / Truss OC	in	24.00				
Member Total Length	ft	26.34				

48	Max. Rack Support Spacing (in)
4	# Modules / Roof Plane

Member Properties	Member
Name	(1)1.5x3.5

* Mem properties based upon field measurements Rafter

Module Pi	Module Physical Data			
Weight	kg	lb	psf load	
Module	22.23	49.00	2.29	
4 Stanchions	1.27	2.8	0.13	
Existing Dead Loads	Units	Value		Description
Framing Members	psf	0.50		
Roof Deck & Surface	psf	4.40	0.50 in. Plyv	wood w/ Standard Asphalt Shingles
Sum Existing DL Roof Loads	psf	4.90		
Proposed PV Dead Load				
PV Module + Stanchion	psf	2.43		

ASCE 7-16 Method for Calculating Uplift on PV Modules

Notation

Lp = Panel chord length.

p = uplift wind pressure

γa = Solar panel pressure equalization factor, defined in Fig. 29.4-8.

 γE = Array edge factor as defined in Section 29.4.4.

 θ = Angle of plane of roof from horizontal, in degrees.

29.4.4 Rooftop Solar Panels Parallel to the Roof Surface on Buildings of All Heights and Roof Slopes.

 $\Theta >= 7 \text{ deg}$ TRUE

Min.d1: Exposed Max.d1: Exposed TRUE 1.5(Lp) = 9.38

Use EXPOSED for uplift calculations

 $\gamma E = 1.5$ $\gamma a = 0.67$

 $p = qh(GCp) (Y_E) (Y_a) (lb/ft2)$ (29.4-7)

Zones	1,2e,2r	2n,3r	3e
p, Windload (psf)	-19.00	-22.57	-27.88

Wind Loading	Module Upward	Module Upward	Module Upward	Downward
Zones	1,2e,2r	2n,3r	3e	All Zones
GCp	-1.47	-1.75	-2.16	0.77
Windload (psf)	-19.00	-22.57	-27.88	9.90

Roof Live Load (Lr)						
Ex. Roof Design Live Load per ASCE 7-16 Table 4-1	psf	20	20	20	20	

ASCE 7-16 Chapter 2 Combinations of Loads, Table 2.4, Page 8 (in psf)							
2.2 SYMBOLS AND NOTATION	Module	Module	Module	Downward			
	Upward	Upward	Upward	Downwaru			
D = dead load of Sum Existing DL Roof Loads	4.90	4.90	4.90	4.90			
Lr = roof live load	20.00	20.00	20.00	20.00			
S = snow load Zeroed out to test for IBC 5% Dead Load Only	0.00	0.00	0.00	0.00			
W = wind load	-19.00	-22.57	-27.88	9.90			

2.4 Combining Nominal Loads Using Allowable Stress Design (in psf) 2.4.1 Basic Combinations. Loads listed herein shall be considered to act in the following combinations; whichever produces the most unfavorable effect in the building, foundation, or structural member being considered. Effects of one or more loads not acting shall be considered.

Combination Formulae Upward Upward Upward Downward

ASCE 7-16 Chapter 2 Combinations of Loads, Table 2.4, Page 8 (in psf)							
Zones	1,2e,2r	2n,3r	3e	All Zones			
2.2 SYMBOLS AND NOTATION		Module	Module	Downward			
	Upward	Upward	Upward	Downward			
D = dead load of Existing Dead Loads and Proposed PV Dead Load	7.33	7.33	7.33	7.33			
Lr = roof live load	20.00	20.00	20.00	20.00			
W = wind load	-19.00	-22.57	-27.88	9.90			
Use this loading combination for DOWNWARD for Existing Dead Loads							
6. D + 0.75L - 0.75(0.60W) + 0.75(Lr or S or R)	24.90	24.90	24.90	29.36			

Use this loading combination for DOWNWARD for Existing Dead Loads and Proposed PV Dead Load							
6. D + 0.75L - 0.75(0.60W) + 0.75(Lr or S or R)	27.33	27.33	27.33	31.78			
Module Support point load (lb)	187	187	187	217			

Use this loading combination for UPWARD for Proposed PV Dead Load						
7. 0.60D - 0.6W	-8.49	-10.63	-13.81	5.84		
Module Support point load (lb)	-58	-73	-94	40		

Check % Roof Load Increase		
Total Roof Area	sf	225
Existing Downward Roof Load	psf	29.36
Existing Downward Roof Load	lb	6,608
Number of PV Modules	ea	4
Area of PV Modules	sf	85
Total weight of Existing Roof + PV	lb	6,815
% increase in total loading		3.1%
Check if % increase < 5%		OK

# Modules Proposed	ea	4	Within Limits
# Modules Allowed	ea	6	OK

In accordance with 'IBC 3404.3 Existing Structures Carrying Gravity Loads', the net increase in roof load after adding the PV modules, is less than 5%. Hence, no structural modifications for this structure are required.