


SUPPORTIVE CENTER POST TO BEAM DETAIL

EITHER METHOD SHOWN ABOVE

SCALE: N.T.S.

BEAM CORNER CONNECTION. DETAIL

-SEE FOOTING DETAILS

TYPICAL PORCH POST DETAIL

SCALE: 1/2" = 1'-0"

## **GENERAL NOTES:**

TRUSSES: TRUSSES SHALL BE DESIGNED BY A FLORIDA LICENSED ENGINEER IN ACCORDANCE WITH THE FBC 2001. TRUSS ENGINEERING SHALL INCLUDE TRUSS DESIGN, PLACEMENT PLANS, TEMPORARY AND PERMANENT BRACING DETAILS, TRUSS-TO-TRUSS CONNECTIONS, AND UPLIFT AND REACTION LOADS FOR ALL BEARING LOCATIONS. TRUSS ENGINEERING IS THE RESPONSIBILITY OF THE TRUSS MANUFACTURER AND SHALL BE SIGNED & SEALED BY THE MANUFACTURER'S DESIGN ENGINEER. IT IS THE BUILDER'S RESPONSIBILITY VERIFY THE TRUSS DESIGNER FULLY SATISFIED ALL THE ABOVE REQUIREMENTS AND TO SELECT UPLIFT CONNECTIONS BASED ON TRUSS ENGINEERING UPLIFT AND PROVIDE FOOTINGS FOR INTERIOR BEARING WALLS. BUILDER IS TO FURNISH TRUSS ENGINEERING TO WIND LOAD ENGINEER FOR REVIEW OF TRUSS REACTIONS ON THE BUILDING STRUCTURE. STRAP 2X6 RAFTERS WITH MIN UPLIFT CONNECTION 415LB EACH END; 2X8 RAFTERS 700 LB EACH END.

SITE PREPARATION: SITE ANALYSIS AND PREPARATION IS NOT PART OF THIS PLAN FOUNDATION: CONFIRM THAT THE FOUNDATION DESIGN & SITE CONDITIONS MEET TY LOAD REQUIREMENTS (ASSUME 1000 PSF BEARING CAPACITY UNLESS

CONCRETE: MINIMUM COMPRESSIVE STRENGTH OF CONCRETE AT 28 DAYS, F'c = 3000 PSI.

WELDED WIRE REINFORCED SLAB: 6" x 6" W1.4 x W1.4, FB = 85KSI, WELDED WIRE REINFORCEMENT FABRIC (W.W.M.) CONFORMING TO ASTM A185; LOCATED IN MIDDLE OF THE SLAB; SUPPORTED WITH APPROVED MATERIALS OR SUPPORTS AT SPACINGS NOT TO EXCEED 3'.

FIBER CONCRETE SLABS: CONCRETE SLABS ON GROUND CONTAINING SYNTHETIC FIBER REINFORCEMENT. FIBER LENGTH 1/2 INCH TO 2 INCHES. DOSAGE AMOUNTS FROM 0.75 TO 1.5 POUNDS PER CUBIC YARD PER THE MANUFACTURER'S RECOMMENDATIONS. FIBERS TO COMPLY WITH ASTM C 1116. SUPPLIER TO PROVIDE ASTM C 1116 CERTIFICATION OF COMPLIANCE WHEN REQUESTED BY BUILDING OFFICIAL

CONTROL JOINTS: WHERE SPECIFIED, SAWN CONTROL JOINTS IN SLAB-ON-GRADE SHALL BE CUT IN ACCORDANCE WITH ACI 302. JOINTS SHALL BE CUT WITHIN 12 HOURS OF SLAB PLACEMENT. THE LENGTH WIDTH RATIOS OF SLAB AREAS SHALL NOT EXCEED 1.5 AND TYPICAL SPACING OF CUTS TO BE 12FT. DO NOT CUT WWM OR REINFORCING STEEL. (RECOMMENDED LOCATION OF CONTROL JOINTS IS SUBJECT TO OWNER AND CONTRACTOR'S APPROVAL. THE CONTROL JOINTS ARE NOT INTENDED TO PREVENT CRACKS BUT RATHER TO ENCOURAGE THE SLAB TO CRACK ON A GIVEN LINE.)

REBAR: ASTM A 615, GRADE 60, DEFORMED BARS, FY = 60 KSI. ALL LAP SPLICES 40 \* DB (25" FOR #5 BARS); UNO. ALL REINFORCEMENT SHALL BE DETAILED AND PLACED IN ACCORDANCE WITH ACI 315-96, U.N.O.

GLULAM BEAMS: GLULAM BEAM, GLB, 24F-V3SP, Fb = 2.4ksi, E = 1800ksi; UNO. SUPPLIER MAY SUPPLY AN ALTERNATE BEAM WITH EQUAL PROPERTIES OR MAY SUBMIT THEIR OWN SIZING CALCS. ROOF SHEATHING: ALL ROOFS ARE HORIZONTAL DIAPHRAGMS; 7/16" OSB SHEATHING, UNBLOCKED, APPLIED PERPENDICULAR TO FRAMING, OVER A MINIMUM OF 3 FRAMING MEMBERS, WITH PANEL EDGES STAGGERED, FASTENED WITH 8d COMMON NAILS (.131), 6"OC PANEL EDGES, 12"0C INTERMEDIATE MEMBERS, GABLE ENDS AND DIAPHRAGM BOUNDARY; 4"OC, UNO.

STRUCTURAL CONNECTORS: MANUFACTURERS AND PRODUCT NUMBER FOR CONNECTORS, ANCHORS, AND REINFORCEMENT ARE LISTED FOR EXAMPLE NOT ENDORSEMENT. AN EQUIVALENT DEVICE OF THE SAME OR OTHER MANUFACTURER CAN BE SUBSTITUTED FOR ANY DEVICES LISTED IN THE EXAMPLE TABLES AS LONG AS IT MEETS THE REQUIRED LOAD CAPACITIES. MANUFACTURER'S INSTALLATION INSTRUCTIONS MUST BE FOLLOWED TO ACHIEVE RATED LOADS.

ANCHOR BOLTS: A-307 ANCHOR BOLTS WITH MINIMUM EMBEDMENT AS SPECIFIED IN DRAWINGS BUT NO LESS THAN 7" IN CONCRETE OR REINFORCED BOND BEAM OR 15" IN GROUTED CMU

WASHERS: WASHERS USED WITH 1/2" BOLTS TO BE 2" x 2" x 9/64"; WITH 5/8" BOLTS TO BE 3" x 3" x 9/64"; WITH 3/4" BOLTS TO BE 3" x 3" x 9/64"; WITH 7/8" BOLTS TO BE 3" x 3" x 5/16"; UNO.

NAILS: ALL NAILS ARE COMMON NAILS UNLESS OTHERWISE SPECIFIED OR ACCEPTED BY FBC TEST REPORTS AS HAVING EQUAL STRUCTURAL VALUES.

## **BUILDER'S RESPONSIBILITY**

THE BUILDER AND OWNER ARE RESPONSIBLE FOR THE FOLLOWING, WHICH ARE SPECIFICALLY NOT PART OF THE WIND LOAD ENGINEER'S SCOPE OF WORK. CONFIRM SITE CONDITIONS, FOUNDATION BEARING CAPACITY, GRADE AND BACKFILL HEIGHT, WIND SPEED AND DEBRIS ZONE, AND FLOOD ZONE. PROVIDE MATERIALS AND CONSTRUCTION TECHNIQUES, WHICH COMPLY WITH FBC 2001 REQUIREMENTS FOR THE STATED WIND VELOCITY AND DESIGN PRESSURES. PROVIDE A CONTINUOUS LOAD PATH FROM TRUSSES TO FOUNDATION. IF YOU BELIEVE THE PLAN OMITS A CONTINUOUS LOAD PATH CONNECTION, CALL THE WIND LOAD ENGINEER IMMEDIATELY. VERIFY THE TRUSS MANUFACTURER'S SEALED ENGINEERING INCLUDES TRUSS DESIGN, PLACEMENT PLANS, TEMPORARY AND PERMANENT BRACING DETAILS, TRUSS-TO-TRUSS CONNECTIONS, AND UPLIFT AND REACTION LOADS FOR ALL BEARING LOCATIONS

## **ROOF SYSTEM DESIGN**

THE SEAL ON THESE PLANS FOR COMPLIANCE WITH FBC 2001 SECTION 1606 IS BASED ON REACTIONS, UPLIFTS, AND BEARING LOCATIONS IN TRUSS ENGINEERING SUBMITTED TO THE WIND LOAD ENGINEER. IT IS THE RESPONSIBILITY OF THE BUILDER TO CHECK ALL DETAILS OF THE COMPLETE ROOF SYSTEM DESIGN SUBMITTED BY THE TRUSS MANUFACTURER AND HAVE IT SIGNED, AND SEALED BY A DESIGN PROFESSIONAL FOR CORRECT APPLICATION OF FBC 2001 REQUIRED LOADS AND ANY SPECIAL LOADS. THE BUILDER IS RESPONSIBLE TO REVIEW EACH INDIVIDUAL TRUSS MEMBER AND THE TRUSS ROOF SYSTEM AS A WHOLE AND TO PROVIDE RESTRAINT FOR ANY LATERAL BRACING. THE BUILDER SHOULD USE CARE CHECKING THE ROOF DESIGN BECAUSE THE WIND LOAD ENGINEER IS SPECIFICALLY NOT RESPONSIBLE FOR THE TRUSS LAYOUT WHICH WAS CREATED BY THE TRUSS MANUFACTURER AND THE TRUSS DESIGNER ALSO DENIES RESPONSIBILITY FOR THE LAYOUT PER NOTES ON THEIR SEALED TRUSS SHEETS.

**MASONRY NOTES:** 

Mortar

Grout

3.3.E.7 | Movement joints

CMU standard

Clay brick standard

Reinforcing bars, #3 - #11

Coating for corrosion protection

Coating for corrosion protection

ACI530.1-02 Section

IN WRITING.

(1) 2X6 SPF #2 SILL UPTO 11'-0" U.N.O.

(1) 2X4 SPIF #2 SILL UP TO 7'-3" U.N.O.

(FOR: 110 MPH, 10'-0" WALL HIGHT U.N.O.)

TYPICAL HEADER STRAPING DETAIL

SCALE: 1/2" = 1'-0"

MASONRY CONSTRUCTION AND MATERIALS FOR THIS PROJECT SHALL CONFORM TO ALL REQUIREMENTS OF "SPECIFICATION FOR MASONRY

MUST IMMEDIATELY, BEFORE PROCEDING, NOTIFY THE ENGINEER OF

ANY CONFLICTS BETWEEN ACI 530.1-02 AND THESE DESIGN DRAWINGS. ANY EXCEPTIONS TO ACI 530.1-02 MUST BE APPROVED BY THE ENGINEER

STRUCTURES" (ACI 530.1/ASCE 6/TMS 602). THE CONTRACTOR AND MASON

Specific Requirements

5.5"x2.75"x11.5"

or 304SS

3.3.E.2 Pipes, conduits, and accessories Any not shown on the project drawings

ASTM C 270, Type N, UNO

8" block bearing walls F"m = 1500 psi

ASTM C 476, admixtures require approva

medium surface finish, 8"x8"x16" running

ASTM C 90-02, Normal weight, Hollow,

bond and 12"x12" or 16"x16" column

ASTM C 216-02, Grade SW, Type FBS

ASTM 615, Grade 60, Fy = 60 ksi, Lap

splices min 48 bar dia. (30" for #5)

Anchors, sheet metal ties completely

embedded in mortar or grout, ASTM

A525, Class G60, 0.60 oz/ft2 or 304SS

Joint reinforcement in walls exposed to

moisture or wire ties, anchors, sheet metal

ties not completely embedded in mortar or

grout, ASTM A153, Class B2, 1.50 oz/ft2

Contractor assumes responsibility for type and location of movement joints if not

require engineering approval.

detailed on project drawlings.

(ENCLOSED SIMPLE DIAPHRAGM BUILDINGS WITH FLAT, HIPPED, OR GABLE ROOFS; MEAN ROOF HEIGHT NOT EXCEEDING LEAST HORIZONTAL DIMENSION OR 60 FT; NOT ON UPPER HALF OF HILL OR ESCARPMENT 60FT IN EXP. B, 30FT IN EXP. C AND >10% SLOPE AND UNOBSTRUCTED UPWIND FOR 50x HEIGHT OR 1 MILE WHICHEVER IS LESS. BUILDING IS NOT IN THE HIGH VELOCITY HURRICANE ZONE

BUILDING IS NOT IN THE WIND-BORNE DEBRIS REGION

WIND LOADS PER FLORIDA BUILDING CODE 2001, SECTION 1606.2

1.) BASIC WIND SPEED = 110 MPH

**DESIGN DATA** 

ANCHOR TABLE

MANUFACTURER'S ENGINEERING

< 420

< 455

< 360

< 455

< 415

< 600

< 950

< 745

< 1465

< 1465

< 990

< 760

< 1470

< 1470

< 1000

< 1450

< 2900

< 2050

< 3965

< 10980

< 10530

< 9250

< 435

< 455

< 825

< 825

< 885

< 1240

< 885

< 1240

< 1235

< 1235

< 1030

< 1705

< 1350

< 2310

< 2775

< 4175

< 1400

< 3335

< 2200

< 2300

< 2320

OBTAIN UPLIFT REQUIREMENTS FROM TRUSS

< 245

< 265

< 235

< 320

< 365

< 535

< 820

< 565

< 1050

< 1050

< 850

< 655

< 1265

< 1265

< 860

< 1245

< 2490

< 1785

< 3330

< 6485

< 9035

< 9250

< 435

< 420

< 825

< 600

< 760

< 1065

< 760

< 1065

< 1165

< 1235

< 1030

< 1705

< 1305

< 2310

< 2570

< 3695

< 1400

< 3335

< 2200

< 2300

< 2320

TRUSS CONNECTOR\*

H2.5A

H14-1

H14-2

H10-1

H10-2

H16-1

H16-2

MTS240

HTS24

2 - HTS24

LGT2

HEAVY GIRDER TIEDOWNS

MGT

HGT-2

HGT-3

HGT-4

STUD STRAP CONNECTOR

SSP SINGLE SILL PLATE

DSP DOUBLE TOP PLATE

DSP SINGLE SILL PLATE

SPH4

SP6

SPH6

LSTA18

LSTA21

CS20

CS16

STUD ANCHORS\*

LTTI31

HTT16

PAHD42

HPAHD22

ABU44

ABU66

ABU88

SSP DOUBLE TOP PLATE

TO PLATES TO RAFTER/TRUSS

4-8d

4-8d

4-8d

5-8d

5-8d

8-8d

5-10d, 1 1/2'

12-8d, 1 1/2'

12-8d, 1 1/2

8-8d, 1 1/2°

6-10d

7-10d 1 1/2"

12-10d 1 1/2"

14 -16d

22 -10d

16 -10d

16 -10d

4-8d

4-8d

4-8d

5-8d

8-8d

13-8d

15-8d

8-8d, 1 1/2"

6-10d

7-10d 1 1/2"

12-10d 1 1/2"

14 -16d

1-10d

6-10d

2-10d

14-10d

16-10d

18-8d

28-8d

TO STUDS

8-16d

18-10d, 1 1/2'

2-5/8" BOLTS

16-16d

16-16d

12-16d

12-16d

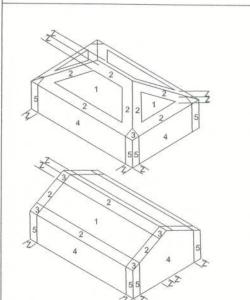
18 - 16d

10-10d, 1 1/2" 2-10d, 1 1/2"

10-10d, 1 1/2" 2-10d, 1 1/2"

UPLIFT LBS. SYP UPLIFT LBS. SPF

.) WIND EXPOSURE = B


3.) WIND IMPORTANCE FACTOR = 1.0 4.) BUILDING CATEGORY = II

5.) ROOF ANGLE = 10-45 DEGREES

6.) MEAN ROOF HEIGHT = <30 FT</p>

'.) INTERNAL PRESSURE COEFFICIENT = N/A (ENCLOSED BUILDING, 1606.2)

8.) COMPONENTS AND CLADDING DESIGN WIND PRESSURES (FBC TABLE 1606.2 B&C) Zone Effective Wind Area (ft2)



SOIL BEARING CAPACITY 1000PSF

NOT IN FLOOD ZONE (BUILDER TO VERIFY)

|        | 10      |       | 100  |       |
|--------|---------|-------|------|-------|
| 1      | 19.9    | -21.8 | 18.1 | -18.1 |
| 2      | 19.9    | -25.5 | 18.1 | -21.8 |
| 2 O'hg |         | -40.6 |      | -40.6 |
| 3      | 19.9    | -25.5 | 18.1 | -21.8 |
| 3 O'hg |         | -68.3 |      | -42.4 |
| 4      | 21.8    | -23.6 | 18.5 | -20.4 |
| 5      | 21.8    | -29.1 | 18.5 | -22.6 |
| Wor    | & Wind  | е     | 21.8 | -29.1 |
| (Zone  | : 5, 10 | 112)  |      |       |
| (Zone  |         |       | 19.5 | -22.9 |

| DESIGN | LOADS                                  |
|--------|----------------------------------------|
| FLOOR  | 40 PSF (ALL OTHER DWELLING ROOMS)      |
|        | 30 PSF (SLEEPING ROOMS)                |
|        | 30 PSF (ATTICS WITH STORAGE)           |
|        | 10 PSF (ATTICS WITHOUT STORAGE, <3:12) |
| ROOF   | 20 PSF (FLAT OR <4:12)                 |
|        | 16 PSF (4:12 TO <12:12)                |
|        | 12 PSF (12:12 AND GREATER)             |
| STAIRS | 40 PSF (ONE & TWO FAMILY DWELLINGS)    |

REVISIONS

TO STUDS

TO FOUNDATION

-5/8" THREADED ROD

-5/8" THREADED ROD

5/8" THREADED ROD

-5/8" THREADED ROD

12" EMBEDMENT

TO STUDS

4 -10d

4 -10d

8 -10d

8 -10d

6-10d, 1 1/2"

10-10d, 1 1/2"

6-10d, 1 1/2"

10-10d, 1 1/2"

TO FOUNDATION

1/2" AB

1/2" AB

5/8" AB

5/8" AB

1/2" AB

1/2" AB

2-5/8" AB

12" EMBEDMENT

12" EMBEDMENT

12" EMBEDMENT

NDLOAD ENGINEER: Mark Disosway. PE No.53915, POB 868, Lake City, FL 2056, 386-754-5419

mensions. Refer all questions to Mark Disosway, P.E. for resolution. not proceed without clarification. COPYRIGHTS AND PROPERTY RIGHTS:

ark Disosway, P.E. hereby expressly reserv common law copyrights and property right ese instruments of service. This document ot to be reproduced, altered or copied in any orm or manner without first the express writter mission and consent of Mark Disosway ERTIFICATION: I hereby certify that I have

amined this plan, and that the applicable

tions of the plan, relating to wind enginee mply with section 1606, florida building cod 001, to the best of my knowledge.

.IMITATION: This design is valid for one illding, at specified location.

P.E. 53915

Priest Residence

ADDRESS: Columbia County, Florida

Mark Disosway P.E. P.O. Box 868 Lake City, Florida 32056 Phone: (386) 754 - 5419 Fax: (386) 269 - 4871

PRINTED DATE: August 15, 2005 DRAWN BY: STRUCTURAL BY David Disosway David Disosway

FINALS DATE: 15 / Aug / 05 JOB NUMBER:

DRAWING NUMBER

506032

OF 6 SHEETS