

REVISIONS

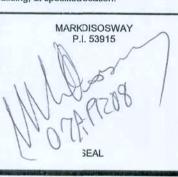
SOF PIXN ARCHITECTUAL DESIGN SOFTWARE

ELECTRICAL PLAN NOTES

- E -1 WIRE ALL APPLIANCES, HVAC UNITS AND OTHER EQUIPMENT PER MANUF. SPECIFICATIONS.
- E -2 CONSULT THE OWNER FOR THE NUMBER OF SEPERATE TELEPHONE LINES TO BE INSTALLED.
- E -3 ALL INSTALLATIONS SHALL BE PER NAT'L. ELECTRIC CODE.
- E -4

 ALL SMOKE DETECTORS SHALL BE 120V W/ BATTERY
 BACKUP OF THE PHOTOELECTRIC TYPE, AND SHALL
 BE INTERLOCKED TOGETHER. INSTALL INSIDE AND
 NEAR ALL BEDROOMS.
- E -5
 TELEPHONE, TELEVISION AND OTHER LOW VOLTAGE
 DEVICES OR OUTLETS SHALL BE AS PER THE OWNER'S
 DIRECTIONS, & IN ACCORDANCE W/ APPLICABLE
 SECTIONS OF NEC-LATEST EDITION.
- E -6 ELECTRICAL CONT'R SHALL BE RESPONSIBLE FOR THE DESIGN & SIZING OF ELECTRICAL SERVICE AND CIRCUITS.
- E -7 ENTRY OF SERVICE (UNDERGROUND OR OVERHEAD) TO BE DETERMINED BY POWER COMPANY.
- E -8 ALL BEDROOM RECEPTACLES SHALL BE AFCI (ARC FAULT CIRCUIT INTERRUPT)
- E -9 ALL OUTLETS TO BE LOCATED ABOVE BASE FLOOD ELEVATION
- A SERVICE DISCONNECT WITH OVER CURRENT PROTECTION SHALL BE INSTALLED OUTSIDE OF THE BUILDING, ON THE LOAD SIDE OF THE METER, AT THE PLACE ELECTRIC CONDUCTORS ENTER THE BUILDING.
- E -10
 CONDUCTORS ENTER THE BUILDING.
 SERVICE ENTRANCE CONDUCTORS MAY NOT BE LOCATED
 INSIDE OF THE OF THE BUILDING WITHOUT SPECIAL
 APPROVAL OF THE BUILDING OFFICIAL

	ELECTRICAL LEGEND
	CEILING FAN (PRE-WIRE FOR LIGHT KIT)
90	DOUBLE SECURITY LIGHT
	2X4 FLUORESCENT LIGHT FIXTURE
0	RECESSED CAN LIGHT
- ∲-₩	BATH EXAUST FAN WITH LIGHT
₩	BATH EXAUST FAN
-	LIGHT FIXTURE
Ф	DUPLEX OUTLET
•	220v OUTLET
Фан	GFI DUPLEX OUTLET
•	SMOKE DETECTOR
\$	WALL SWITCH
\$3	3 WAY WALL SWITCH
\$4	4 WAY WALL SWITCH
₩ _{WP/GFI}	WATER PROOF GFI OUTLET
∇	PHONE JACK
0	TELEVISION JACK
里	GARAGE DOOR OPENER
	WALL HEATER


WINDLOAD ENGINER: Mark Disosway, PE No.53915, POB &8, Lake City, FL 32056, 386-754-541!

DIMENSIONS: Stated dimensions spercede scaled dimensions. Refer al questions to Mark Disosway, P.E.for resolution. Do not proceed withut clarification.

COPYRIGHTS AND PROPERTY RIGHTS:
Mark Disosway, P.E.hereby expressly reserves
its common law copyights and property right in
these instruments of service. This document is
not to be reproduced altered or copied in any
form or manner without first the express written
permission and consint of Mark Disosway.

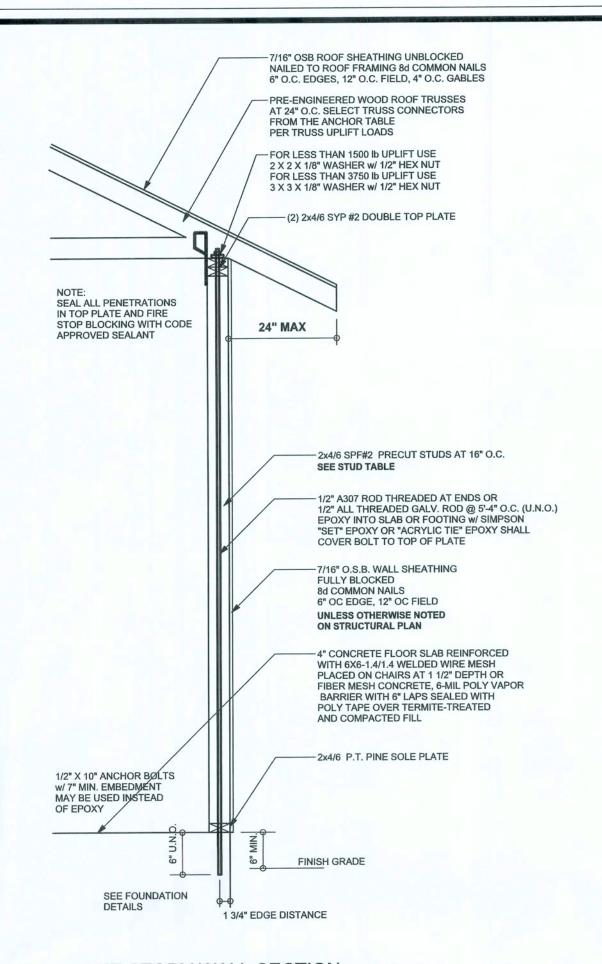
CERTIFICATION: I breby certify that I have examined this plan, and that the applicable portions of the plan, slating to wind engineering comply with section 1301.2.1, florida building code residential 2004 to the best of my knowledge.

LIMITATION: This deign is valid for one building, at specified ocation.

Fred & Ann Elfers Residence

ADDRESS: Lot 31 CannonCreek Airpark S/D Columbia County, Florida

Mark Disosway P.E. P.O.Box 868 Lake City,Florida 32056 Phone: (386) 754 - 5419 Fax: (386) 269 - 4871

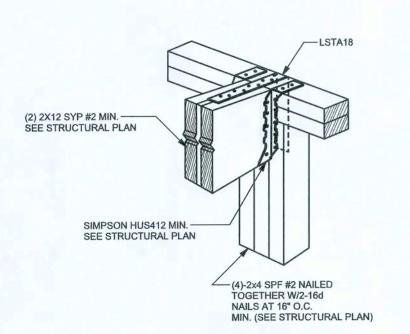

> PRIN'ED DATE: April 0ξ 2008

DRAWN BY: STRUCTURAL BY:
David Disosway David Disosway

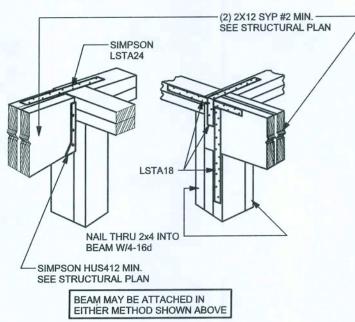
FINALS DATE: 31 / Mar / 08

> JOB NUMBER: 8(3121 DRAWING NUMBER

> > **3** OF 6SHEETS

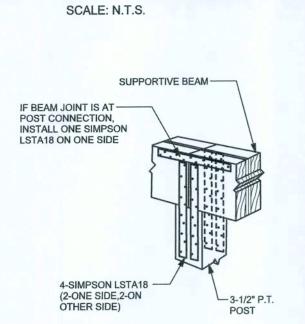


ONE STORY WALL SECTION SCALE: 3/4" = 1'-0"


EXTERIOR WALL STUD TABLE FOR SPF #2 STUDS

(1) 2x4 @ 16" OC	TO 11'-9" STUD HEIGHT
(1) 2x4 @ 12" OC	TO 13'-0" STUD HEIGHT
(1) 2x6 @ 16" OC	TO 18'-10' STUD HEIGHT
(1) 2x6 @ 12" OC	TO 20.0' STUD HEIGHT

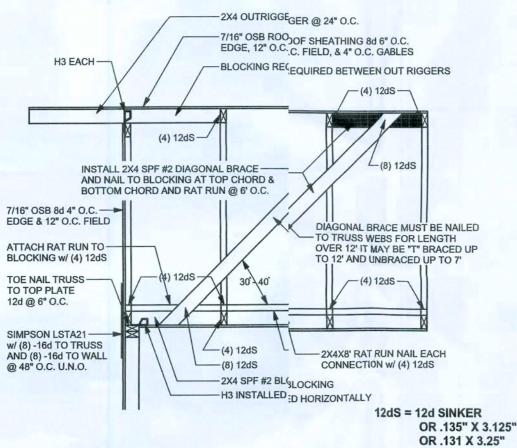
THIS STUD HEIGHT TABLE IS PER WFCM 2001, TABLE 3.20B, EXTERIOR LOAD BEARING & NON LOAD BEARING STUD LENGTHS RESISTING INTERIOR ZONE WINDLOADS 110 MPH EXPOSURE B. STUD SPACINGS SHALL BE MULTIPLIED BY 0.85 FOR FRAMING LOCATED WITHIN 4 FEET OF CORNERS FOR END ZONE LOADING. EXAMPLE 16" O.C. x 0.85 = 13.6" O.C.


BEAM MID-WALL CONNECTION DETAIL SCALE: N.T.S.

BEAM CORNER CONNECTION. DETAIL

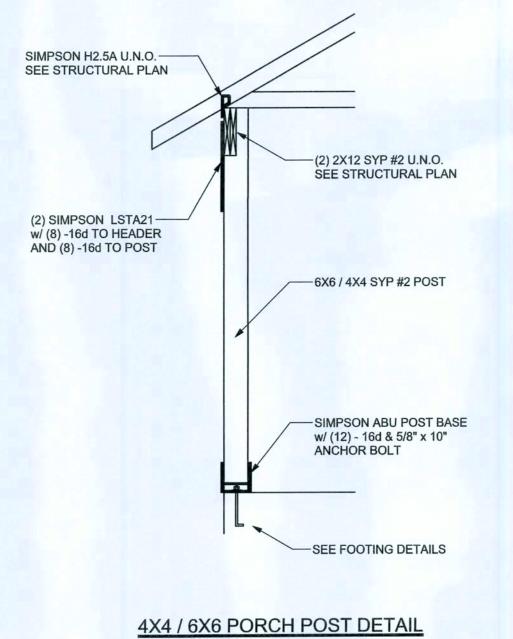
- NON-SUPPORTIVE 2X4 LADDER BEAM

SUPPORTIVE CENTER POST TO BEAIDETAIL


FOR LEESS THAN 1500 Ib UPLIFT USE 2 X 2 X (1/8" WASHER IF TRUSS TO WALL STRAPS ARE NAILED FOR LEESS THAN 3750 Ib UPLIFT USE TO THE HEADER THE SPH4/6 @ 48" O.C. 3 X 3 X (1/8" WASHER ARE NOT REQUIRED -NAIL SHHEATHING TO HEADER AND TOP PLATE V: WITH 8d AT 3" O.C. FOR UPLIFT (7) .131 x 3 1/4" GUN NAILS -—SPH4/6 5 @ 48" O.C. (U.N.O.)/——(7) .131 x 3 1/4" GUN NAILS TOE NAILED THRU HEADER TOE NAILED THRU HEADER INTO KING STUD INTO KING STUD CRIPPLES IF REQUIFIRED (5) .131 x 3 1/4" GUN NA_{IAILS} TOE NAILED THRU SILILL INTO JACK STUD U.N. (I.O. TYPICAL STRAPPING (L(U.N.O.) (SEE STRUCTURAL PLA AN)

TYPICAL HEADER STRRAPING DETAIL

(1) 2X6 SPF #2 SILL UP TO 7, 7'-6" U.N.O.


(2) 2X4 SPF #2 SILL UP TO 7, 7'-8" U.N.O. (1) 2X4 SPF #2 SILL UP TO 5 5'-1" U.N.O.

(FOR: 120 MPH, 10'-0" WALL HEIGHT U.N.O.)

SPACE RAT RUN & DIAGONAL_{AL} BRACE 6'-0" O.C. FOR GABLE HEIGHT UP TO 25₂5'-0" 110 MPH, EXP. C, ENCLOSED GABLE BRACING DETAIL

SCALE: 1/2" = 1'-0"

ANCHOR TABLE OBTAIN UPLIFT REQUIREMENTS FROM TRUSS MANUFACTURER'S ENGINEERING

UPLIFT LBS. SYP	UPLIFT LBS. SPF		TO PLATES	TO RAFTER/TRUSS	TO STUDS
< 420	< 245	H5A	3-8d	3-8d	
< 455	< 265	H5	4-8d	4-8d	
< 360	< 235	H4	4-8d	4-8d	
< 455	< 320	H3	4-8d	4-8d	
< 415	< 365	H2.5	5-8d	5-8d	
< 600	< 535	H2.5A	5-8d	5-8d	
< 950	< 820	H6	8-8d	8-8d	
< 745	< 565	H8	5-10d, 1 1/2"	5-10d, 1 1/2"	
< 1465	< 1050	H14-1	13-8d	12-8d, 1 1/2"	
< 1465	< 1050	H14-2	15-8d	12-8d, 1 1/2"	100
< 990	< 850	H10-1	8-8d, 1 1/2"	8-8d, 1 1/2"	
< 760	< 655	H10-2	6-10d	6-10d	
< 1470	< 1265	H16-1	10-10d, 1 1/2"	2-10d, 1 1/2"	
< 1470	< 1265	H16-2	10-10d, 1 1/2"	2-10d, 1 1/2"	
< 1000	< 860	MTS24C	7-10d 1 1/2"	7-10d 1 1/2"	
< 1450	< 1245	HTS24	12-10d 1 1/2"	12-10d 1 1/2"	
< 2900	< 2490	2 - HTS24			
< 2050	< 1785	LGT2	14 -16d	14 -16d	
		HEAVY GIRDER TIEDOWNS*			TO FOUNDATION
< 3965	< 3330	MGT		22 -10d	1-5/8" THREADED I 12" EMBEDMEN
< 10980	< 6485	HGT-2		16 -10d	2-5/8" THREADED I 12" EMBEDMEN
< 10530	< 9035	HGT-3		16 -10d	2-5/8" THREADED I 12" EMBEDMEN
< 9250	< 9250	HGT-4		16 -10d	2-5/8" THREADED I 12" EMBEDMEN
		STUD STRAP CONNECTOR*			TO STUDS
< 435	< 435	SSP DOUBLE TOP PLATE	3 -10d		4 -10d
< 455	< 420	SSP SINGLE SILL PLATE	1 -10d		4 -10d
< 825	< 825	DSP DOUBLE TOP PLATE	6 -10d		8 -10d
< 825	< 600	DSP SINGLE SILL PLATE	2 -10d		8 -10d
< 885	< 760	SP4			6-10d, 1 1/2"
< 1240	< 1065	SPH4			10-10d, 1 1/2"
< 885	< 760	SP6			6-10d, 1 1/2"
< 1240	< 1065	SPH6			10-10d, 1 1/2"
< 1235	< 1165	LSTA18	14-10d		
< 1235	< 1235	LSTA21	16-10d		
< 1030	< 1030	CS20	18-8d		
< 1705	< 1705	CS16	28-8d		
		STUD ANCHORS*	TO STUDS	50 140	TO FOUNDATION
< 1350	< 1305	LTT19	8-16d	Maria and	1/2" AB
< 2310	< 2310	LTTI31	18-10d, 1 1/2"		1/2" AB
< 2775	< 2570	HD2A	2-5/8" BOLTS		5/8" AB
< 4175	< 3695	HTT16	18 - 16d		5/8" AB
< 1400	< 1400	PAHD42	16-16d		
< 3335	< 3335	HPAHD22	16-16d		
< 2200	< 2200	ABU44	12-16d		1/2" AB
< 2300	< 2300	ABU66	12-16d		1/2" AB
< 2320	< 2320	ABU88	18 - 16d		2-5/8" AB

UPLIFT LBS. SYP	UPLIFT LBS. SPF	TRUSS CONNECTOR*	TO PLATES	TO RAFTER/TRUSS	TO STUDS
< 420	< 245	H5A	3-8d	3-8d	
< 455	< 265	H5	4-8d	4-8d	
< 360	< 235	H4	4-8d	4-8d	
< 455	< 320	H3	4-8d	4-8d	
< 415	< 365	H2.5	5-8d	5-8d	
< 600	< 535	H2.5A	5-8d	5-8d	
< 950	< 820	H6	8-8d	8-8d	
< 745	< 565	H8	5-10d, 1 1/2"	5-10d, 1 1/2"	
< 1465	< 1050	H14-1	13-8d	12-8d, 1 1/2"	
< 1465	< 1050	H14-2	15-8d	12-8d, 1 1/2"	
< 990	< 850	H10-1	8-8d, 1 1/2"	8-8d, 1 1/2"	
< 760	< 655	H10-2	6-10d	6-10d	
< 1470	< 1265	H16-1	10-10d, 1 1/2"	2-10d, 1 1/2"	
< 1470	< 1265	H16-2	10-10d, 1 1/2"	2-10d, 1 1/2"	
< 1000	< 860	MTS24C	7-10d 1 1/2"	7-10d 1 1/2"	
< 1450	< 1245	HTS24	12-10d 1 1/2"	12-10d 1 1/2"	
< 2900	< 2490	2 - HTS24			
< 2050	< 1785	LGT2	14 -16d	14 -16d	
		HEAVY GIRDER TIEDOWNS*			TO FOUNDATION
< 3965	< 3330	MGT		22 -10d	1-5/8" THREADED ROI 12" EMBEDMENT
< 10980	< 6485	HGT-2		16 -10d	2-5/8" THREADED RO 12" EMBEDMENT
< 10530	< 9035	HGT-3		16 -10d	2-5/8" THREADED ROI 12" EMBEDMENT
< 9250	< 9250	HGT-4		16 -10d	2-5/8" THREADED ROI 12" EMBEDMENT
		STUD STRAP CONNECTOR*			TO STUDS
< 435	< 435	SSP DOUBLE TOP PLATE	3 -10d		4 -10d
< 455	< 420	SSP SINGLE SILL PLATE	1 -10d		4 -10d
< 825	< 825	DSP DOUBLE TOP PLATE	6 -10d		8 -10d
< 825	< 600	DSP SINGLE SILL PLATE	2 -10d		8 -10d
< 885	< 760	SP4			6-10d, 1 1/2"
< 1240	< 1065	SPH4	1046		10-10d, 1 1/2"
< 885	< 760	SP6	74-2, 33		6-10d, 1 1/2"
< 1240	< 1065	SPH6			10-10d, 1 1/2"
< 1235	< 1165	LSTA18	14-10d		
< 1235	< 1235	LSTA21	16-10d		
< 1030	< 1030	CS20	18-8d		
< 1705	< 1705	CS16	28-8d		
		STUD ANCHORS*	TO STUDS	90	TO FOUNDATION
< 1350	< 1305	LTT19	8-16d	Market September 1	1/2" AB
< 2310	< 2310	LTTI31	18-10d, 1 1/2"		1/2" AB
< 2775	< 2570	HD2A	2-5/8" BOLTS	100 5%	5/8" AB
< 4175	< 3695	HTT16	18 - 16d	170	5/8" AB
< 1400	< 1400	PAHD42	16-16d		
< 3335	< 3335	HPAHD22	16-16d		
< 2200	< 2200	ABU44	12-16d	Ph.	1/2" AB
< 2300	< 2300	ABU66	12-16d		1/2" AB
< 2320	< 2320	ABU88	18 - 16d		2-5/8" AB

GRADE & SPECIES TABLE

SYP #2

SYP#2

SYP #2

24F-V3 SP

TIMBERSTRAND

MICROLAM

PARALAM

PRE ENGINEERED ROOF TRUSS -

DOUBLE 2x4 SPF TOP PLATE NAILED -

TOGETHER W/2-16d NAILS AT 16" O.C.

4' MIN. LAP w/ (12) - 16d OR 4" LAP w/ CS20 w/ (4) - 16d &(14) - 10d

SPECIFIED ON FLOOR PLAN

AND BOTTOM PLATES WITH 2-16d NAILS

CONTINUOUS FRAME TO

CEILING DIAPHRAGM DETAIL

CONTINUOUS FRAME -

TO TOP PLATE AT BOTTOM CHORD OF TRUSS Fb (psi) E (10⁶ psi)

1.6

1.6

1.6

1.8

2.0

1200

1050

975

2400

1700

2900

2900

GENERAL NOTES:

TRUSSES: TRUSSES SHALL BE DESIGNED BY A FLORIDA LICENSED ENGINEER IN ACCORDANCE WITH THE FBCR 2004. TRUSS ENGINEERING SHALL INCLUDE TRUSS DESIGN, PLACEMENT PLANS, TEMPORARY AND PERMANENT BRACING DETAILS, TRUSS-TO-TRUSS CONNECTIONS, AND UPLIFT AND REACTION LOADS FOR ALL BEARING LOCATIONS. TRUSS ENGINEERING IS THE RESPONSIBILITY OF THE TRUSS MANUFACTURER AND SHALL BE SIGNED & SEALED BY THE MANUFACTURER'S DESIGN ENGINEER. IT IS THE BUILDER'S RESPONSIBILITY VERIFY THE TRUSS DESIGNER FULLY SATISFIED ALL THE ABOVE REQUIREMENTS AND TO SELECT UPLIFT CONNECTIONS BASED ON TRUSS ENGINEERING LIPITET AND DECYMER FOR SELECT UPLIFT CONNECTIONS BASED ON TRUSS ENGINEERING UPLIFT AND PROVIDE FOOTINGS FOR INTERIOR BEARING WALLS. BUILDER IS TO FURNISH TRUSS ENGINEERING TO WIND LOAD ENGINEER FOR REVIEW OF TRUSS REACTIONS ON THE BUILDING STRUCTURE. STRAP 2X6 RAFTERS WITH MIN UPLIFT CONNECTION 415LB EACH END; 2X8 RAFTERS 700 LB EACH END.

SITE PREPARATION: SITE ANALYSIS AND PREPARATION IS NOT PART OF THIS PLAN

FOUNDATION: CONFIRM THAT THE FOUNDATION DESIGN & SITE CONDITIONS MEET GRAVITY LOAD REQUIREMENTS (ASSUME 1000 PSF BEARING CAPACITY UNLESS VISUAL OBSERVATION OR SOILS TEST PROVES OTHERWISE

CONCRETE: MINIMUM COMPRESSIVE STRENGTH OF CONCRETE AT 28 DAYS, F'c = 3000 PSI.

WELDED WIRE REINFORCED SLAB: 6" × 6" W1.4 × W1.4, FB = 85KSI, WELDED WIRE REINFORCEMENT FABRIC (W.W.M.) CONFORMING TO ASTM A185; LOCATED IN MIDDLE OF THE SLAB; SUPPORTED WITH APPROVED MATERIALS OR SUPPORTS AT SPACINGS NOT TO EXCEED 3'.

FIBER CONCRETE SLAB: CONCRETE SLABS ON GROUND CONTAINING SYNTHETIC FIBER REINFORCEMENT. FIBER LENGTH 1/2 INCH TO 2 INCHES. DOSAGE AMOUNTS FROM 0.75 TO 1.5 POUNDS PER CUBIC YARD PER THE MANUFACTURER'S RECOMMENDATIONS. FIBERS TO COMPLY WITH ASTM C 1116. SUPPLIER TO PROVIDE ASTM C 1116 CERTIFICATION OF COMPLIANCE WHEN REQUESTED BY BUILDING OFFICIAL.

CONTROL JOINTS: WHERE SPECIFIED, SAWN CONTROL JOINTS IN SLAB-ON-GRADE SHALL BE CUT IN ACCORDANCE WITH ACI 302. JOINTS SHALL BE CUT WITHIN 12 HOURS OF SLAB PLACEMENT. THE LENGTH / WIDTH RATIOS OF SLAB AREAS SHALL NOT EXCEED 1.5 AND TYPICAL SPACING OF CUTS TO BE 12FT. DO NOT CUT WWM OR REINFORCING STEEL. (RECOMMENDED LOCATION OF CONTROL JOINTS IS SUBJECT TO OWNER AND CONTRACTOR'S APPROVAL. THE CONTROL JOINTS ARE NOT INTENDED TO PREVENT CRACKS BUT RATHER TO ENCOURAGE THE SLAB TO CRACK ON A GIVEN LINE.)

REBAR: ASTM A 615, GRADE 60, DEFORMED BARS, FY = 60 KSI. ALL LAP SPLICES 40 * DB (25" FOR #5 BARS); UNO. ALL REINFORCEMENT SHALL BE DETAILED AND PLACED IN ACCORDANCE WITH ACI 315-96, U.N.O.

GLULAM BEAM, GLB, 24F-V3SP, Fb = 2.4ksi, E = 1800ksi; UNO. SUPPLIER MAY SUPPLY AN ALTERNATE BEAM WITH EQUAL PROPERTIES OR MAY SUBMIT THEIR OWN SIZING CALCS. ROOF SHEATHING: ALL ROOFS ARE HORIZONTAL DIAPHRAGMS; 7/16" OSB SHEATHING, UNBLOCKED, APPLIED PERPENDICULAR TO FRAMING, OVER A MINIMUM OF 3 FRAMING MEMBERS, WITH PANEL EDGES STAGGERED, FASTENED WITH 8d COMMON NAILS (.131), 6"OC PANEL EDGES, 12"0C INTERMEDIATE MEMBERS, GABLE ENDS AND DIAPHRAGM BOUNDARY; 4"OC, UNO.

STRUCTURAL CONNECTORS: MANUFACTURERS AND PRODUCT NUMBER FOR CONNECTORS, ANCHORS, AND REINFORCEMENT ARE LISTED FOR EXAMPLE NOT ENDORSEMENT. AN EQUIVALENT DEVICE OF THE SAME OR OTHER MANUFACTURER CAN BE SUBSTITUTED FOR ANY DEVICES LISTED IN THE EXAMPLE TABLES AS LONG AS IT MEETS THE REQUIRED LOAD CAPACITIES. MANUFACTURER'S INSTALLATION INSTRUCTIONS MUST BE FOLLOWED TO ACHIEVE RATED LOADS.

ANCHOR BOLTS: A-307 ANCHOR BOLTS WITH MINIMUM EMBEDMENT AS SPECIFIED IN DRAWINGS BUT NO LESS THAN 7" IN CONCRETE OR REINFORCED BOND BEAM OR 15" IN GROUTED CMU.

WASHERS: WASHERS USED WITH 1/2" BOLTS TO BE 2" x 2" x 9/64"; WITH 5/8" BOLTS TO BE 3" x 3" x 9/64"; WITH 3/4" BOLTS TO BE 3" x 3" x 9/64"; WITH 7/8" BOLTS TO BE 3" x 3" x 5/16"; UNO. NAILS: ALL NAILS ARE COMMON NAILS UNLESS OTHERWISE SPECIFIED OR ACCEPTED BY FBC TEST REPORTS AS HAVING EQUAL STRUCTURAL VALUES.

BUILDER'S RESPONSIBILITY

THE BUILDER AND OWNER ARE RESPONSIBLE FOR THE FOLLOWING, WHICH ARE SPECIFICALLY NOT PART OF THE WIND LOAD ENGINEER'S SCOPE OF WORK. CONFIRM SITE CONDITIONS, FOUNDATION BEARING CAPACITY, GRADE AND BACKFILL HEIGHT, WIND SPEED AND DEBRIS ZONE, AND FLOOD ZONE. PROVIDE MATERIALS AND CONSTRUCTION TECHNIQUES, WHICH COMPLY WITH FBCR 2004 REQUIREMENTS FOR THE STATED WIND VELOCITY AND DESIGN PRESSURES. PROVIDE A CONTINUOUS LOAD PATH FROM TRUSSES TO FOUNDATION. IF YOU BELIEVE THE PLAN OMITS A CONTINUOUS LOAD PATH CONNECTION, CALL

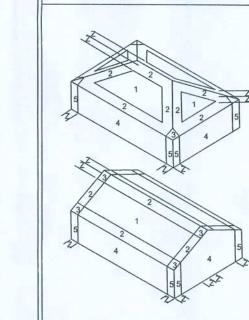
VERIFY THE TRUSS MANUFACTURER'S SEALED ENGINEERING INCLUDES TRUSS DESIGN, PLACEMENT PLANS, TEMPORARY AND PERMANENT BRACING DETAILS. TRUSS-TO-TRUSS CONNECTIONS, AND UPLIFT AND REACTION LOADS FOR ALL BEARING LOCATIONS.

ROOF SYSTEM DESIGN

THE WIND LOAD ENGINEER IMMEDIATELY.

THE SEAL ON THESE PLANS FOR COMPLIANCE WITH FBCR 2004, SECTION R301.2.1 IS BASED ON REACTIONS, UPLIFTS, AND BEARING LOCATIONS IN TRUSS ENGINEERING SUBMITTED TO THE WIND LOAD ENGINEER. IT IS THE RESPONSIBILITY OF THE BUILDER TO CHECK ALL DETAILS OF THE COMPLETE ROOF SYSTEM DESIGN SUBMITTED BY THE TRUSS MANUFACTURER AND HAVE IT SIGNED, AND SEALED BY A DESIGN PROFESSIONAL FOR CORRECT APPLICATION OF FBCR 2004 REQU LOADS AND ANY SPECIAL LOADS. THE BUILDER IS RESPONSIBLE TO REVIEW EACH INDIVIDUAL TRUSS MEMBER AND THE TRUSS ROOF SYSTEM AS A WHOLE AND TO PROVIDE RESTRAINT FOR ANY LATERAL BRACING. THE BUILDER SHOULD USE CARE CHECKING THE ROOF DESIGN BECAUSE THE WIND LOAD ENGINEER IS SPECIFICALLY NOT RESPONSIBLE FOR THE TRUSS LAYOUT WHICH WAS CREATED BY THE TRUSS MANUFACTURER AND THE TRUSS DESIGNER ALSO DENIES RESPONSIBILITY FOR THE LAYOUT PER NOTES ON THEIR SEALED TRUSS SHEETS.

DESIGN DATA


/ENI	CLOSED SIMPLE DIAPHRAGM BUILDINGS WITH FLAT, HIPPED, OR GABLE ROOFS;
MEA	N ROOF HEIGHT NOT EXCEEDING LEAST HORIZONTAL DIMENSION OR 60 FT; NOT
ON	UPPER HALF OF HILL OR ESCARPMENT 60FT IN EXP. B, 30FT IN EXP. C AND >10%
SIO	DE AND UNDESTRUCTED LIDINING FOR ESCALARIOR OF A MILE OF
SLO	PE AND UNOBSTRUCTED UPWIND FOR 50x HEIGHT OR 1 MILE WHICHEVER IS LESS.)
BUIL	DING IS NOT IN THE HIGH VELOCITY HURRICANE ZONE
BUIL	DING IS NOT IN THE WIND-BORNE DEBRIS REGION
1.)	BASIC WIND SPEED = 110 MPH
2.)	WIND EXPOSURE = B

3.) WIND IMPORTANCE FACTOR = 1.0 4.) BUILDING CATEGORY = II

5.) ROOF ANGLE = 10-45 DEGREES 6.) MEAN ROOF HEIGHT = <30 FT

7.) INTERNAL PRESSURE COEFFICIENT = N/A (ENCLOSED BUILDING)

8.) COMPONENTS AND CLADDING DESIGN WIND PRESSURES (TABLE R301.2(2))

		10		100	
	1	19.9	-21.8	18.1	-18.1
	2	19.9	-25.5	18.1	-21.8
	2 O'hg		-40.6		-40.6
	3	19.9	-25.5	18.1	-21.8
	3 O'hg		-68.3		-42.4
	4	21.8	-23.6	18.5	-20.4
	5	21.8	-29.1	18.5	-22.6
	Doors & Windows Worst Case (Zone 5, 10 ft2) 8x7 Garage Door 16x7 Garage Door		е	21.8	-29.1
			oor	19.5	-22.9
			18.5	-21.0	

Zone Effective Wind Area (ft2)

DESIGN LOADS

FLOOR 40 PSF (ALL OTHER DWELLING ROOMS) 30 PSF (SLEEPING ROOMS)

30 PSF (ATTICS WITH STORAGE)

10 PSF (ATTICS WITHOUT STORAGE, <3:12) ROOF 20 PSF (FLAT OR <4:12) 16 PSF (4:12 TO <12:12)

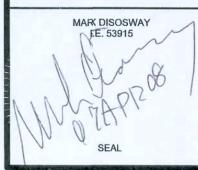
12 PSF (12:12 AND GREATER) STAIRS 40 PSF (ONE & TWO FAMILY DWELLINGS) SOIL BEARING CAPACITY 1000PSF

NOT IN FLOOD ZONE (BUILDER TO VERIFY)

WINDLOAD ENGINEER: Mark Disosway, PE No.53915, POE868, Lake City, FL 32056, 386-754-549 tated dimensions upercede scaled

dimensions. Refer II questions to Mark Disosway, P.I. for resolution.

REVISIONS


SOFTPLAN

Do not proceed wittout clarification. COPYRIGHTS ANI PROPERTY RIGHTS: Mark Disosway, P.I. hereby expressly reserve ts common law colyrights and property right in these instruments of service. This document is not to be reproduced, altered or copied in any form or manner witlout first the express written

mission and corsent of Mark Disosway.

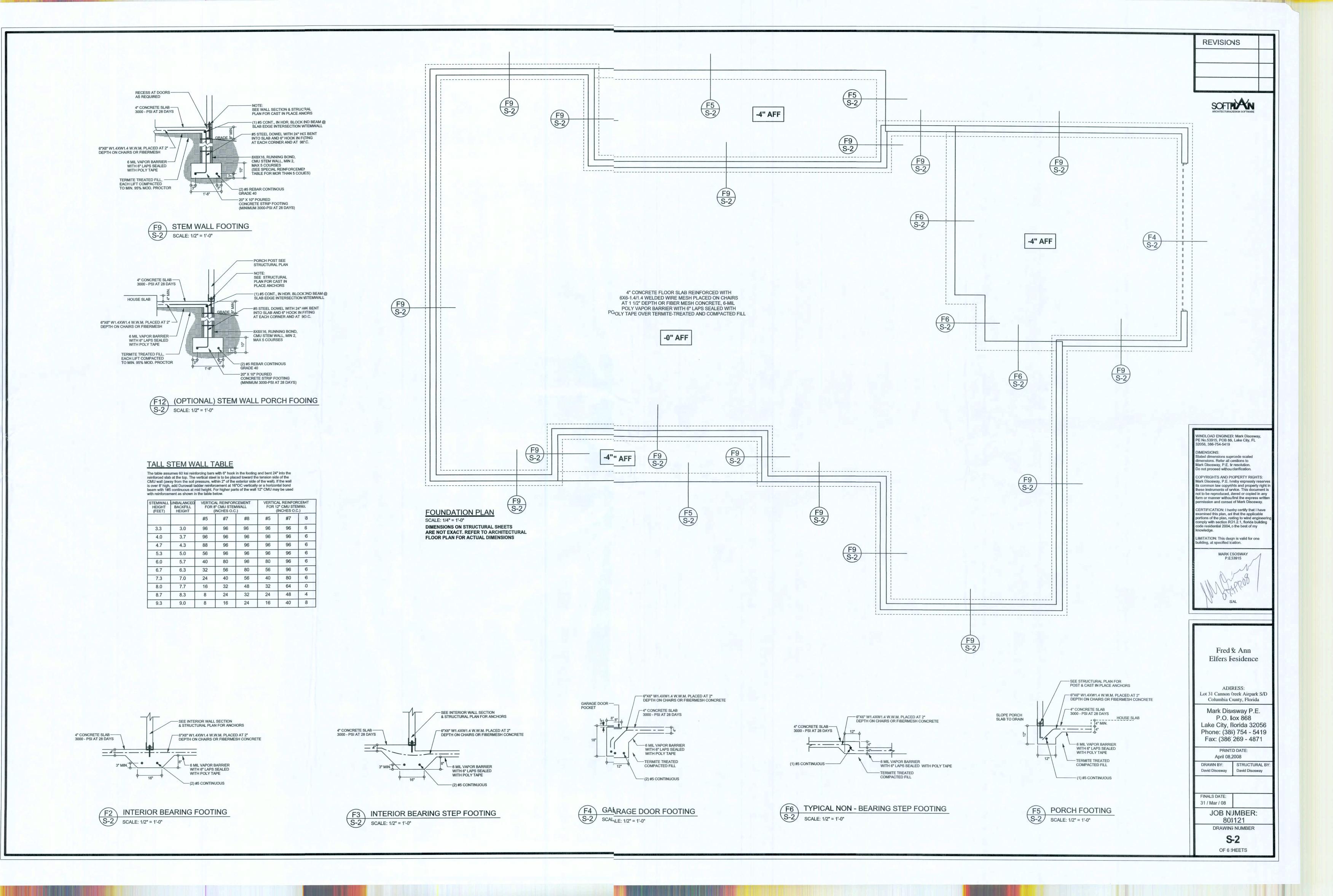
mined this plan and that the applicable ortions of the plan relating to wind engine comply with sectior R301.2.1, florida building le residential 204, to the best of my

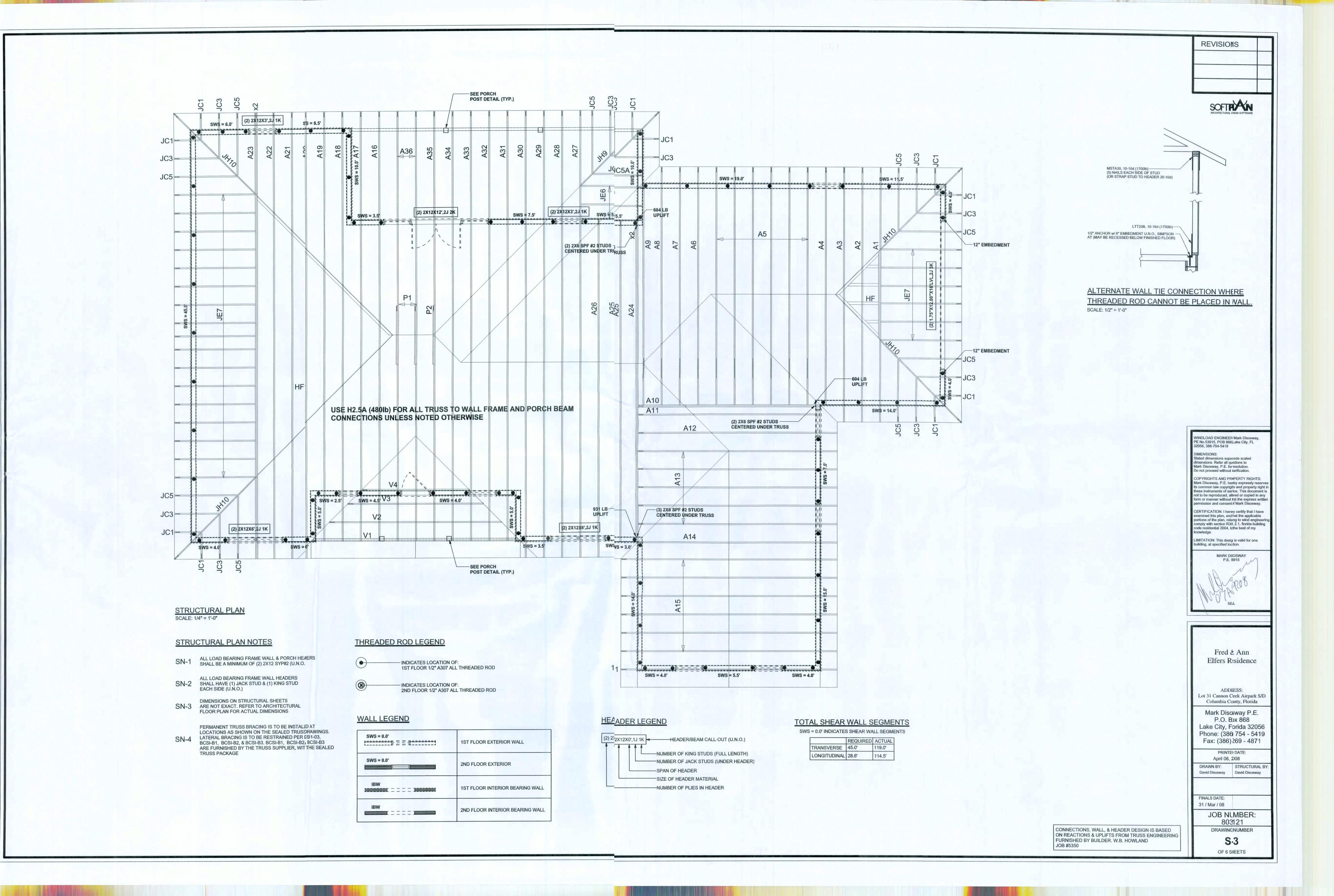
LIMITATION: This esign is valid for one building, at specifiel location.

Fred & Ann Elfers Residence

Lot 31 Canno Creek Airpark S/D Columbi County, Florida

Mark Dsosway P.E. P.O. Box 868 Lake City, Florida 32056 Phone: (386) 754 - 5419 Fax: (366) 269 - 4871


April 18, 2008 DRAWN BY: STRUCTURAL BY David Disosway


FINALS DATE: 31 / Mar / 08

> JOB NUMBER: 803121 DRAWNG NUMBER

> > **S-1** OF3 SHEETS

4X4 / 6X6 PORCH POST DETAIL SCALE: 1/2" = 1'-0"

