

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

2797510 - LIPSCOMB EAGLE - LOT 24 EC

MiTek USA, Inc.

6904 Parke East Blvd. Tampa, FL 33610-4115

Site Information:

Customer Info: Lipscomb Eagle Project Name: Spec Hse Model: 1703 GR

Lot/Block: 24

Subdivision: Emerald Cove

Address: TBD, TBD

City: Columbia Cty

State: FL

Name Address and License # of Structural Engineer of Record, If there is one, for the building.

Name:

License #:

Address:

City:

State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: FBC2020/TPI2014

Design Program: MiTek 20/20 8.4

Wind Code: ASCE 7-16

Wind Speed: 130 mph

Roof Load: 37.0 psf

Floor Load: N/A psf

This package includes 31 individual, Truss Design Drawings and 0 Additional Drawings. With my seal affixed to this sheet, I hereby certify that I am the Truss Design Engineer and this index sheet conforms to 61G15-31.003, section 5 of the Florida Board of Professional Engineers Rules.

		15000 202	V2001 01				
No. 1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 6 17	Seal# T23985710 T23985711 T23985713 T23985714 T23985716 T23985716 T23985717 T23985719 T23985719 T23985721 T23985721 T23985722 T23985722 T23985724 T23985724 T23985724 T23985725	Truss Name CJ01 CJ03 CJ03A CJ05 EJ01 EJ02 HJ08 HJ10 PB01 PB01G T01 T01G T02 T03 T04 T05 T06	Date 5/18/21 5/18/21 5/18/21 5/18/21 5/18/21 5/18/21 5/18/21 5/18/21 5/18/21 5/18/21 5/18/21 5/18/21 5/18/21 5/18/21 5/18/21 5/18/21 5/18/21 5/18/21 5/18/21	No. 23 24 25 26 27 28 29 30 31	Seal# T23985732 T23985734 T23985735 T23985735 T23985737 T23985738 T23985739 T23985740	Truss Name T11 T11G T12 T12G T13G T14 T14G T15 T15G	Date 5/18/21 5/18/21 5/18/21 5/18/21 5/18/21 5/18/21 5/18/21 5/18/21

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Builders FirstSource-Jacksonville.

5/18/21

Truss Design Engineer's Name: Velez, Joaquin

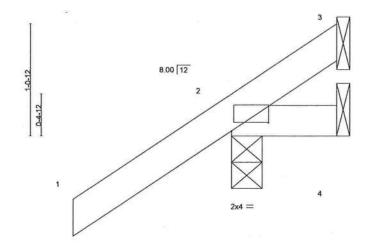
T08 T09

T09A

T23985730 T23985731

My license renewal date for the state of Florida is February 28, 2023.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.


Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

May 18,2021

Job	Truss	Truss Type	Qty	Ply	LIPSCOMB EAGLE - LOT 24 EC	T00005740
2797510	CJ01	Jack-Open	6	1		T23985710
L				1	Job Reference (optional)	
Builders FirstSour	ce (Jacksonville, FL), Jacks	conville, FL - 32244,	ID:osZ6TzOUpx		or 20 2021 MiTek Industries, Inc. Fri May 14 15:19:12 20 Z9DzF_pg-b67AFew09rRN4?yls?Wi2TTK3iHrhVJKygD	

1-6-0

Scale = 1:10.5

1	1-0-0	- 5
	1-0-0	

1-0-0

Plate Off	sets (X,Y)	[2:0-4-4,0-0-15]											
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL	20.0	Plate Grip DOL	1.25	TC	0.18	Vert(LL)	0.00	7	>999	240	MT20	244/190	
TCDL	7.0	Lumber DOL	1.25	BC	0.05	Vert(CT)	0.00	7	>999	180			
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a	100		
BCDL	10.0	Code FBC2020/T	PI2014	Matri	x-MP	1000					Weight: 6 lb	FT = 20%	

LUMBER-

TOP CHORD 2x4 SP No.2

2x4 SP No.2 **BOT CHORD**

BRACING-

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 1-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

(size) 3=Mechanical, 2=0-3-8, 4=Mechanical

Max Horz 2=51(LC 12)

Max Uplift 3=-5(LC 1), 2=-66(LC 12), 4=-20(LC 1) Max Grav 3=7(LC 8), 2=179(LC 1), 4=21(LC 16)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2, 4.

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

May 18,2021

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ucallapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/P11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

8.00 12

3-0-0 3-0-0

BRACING-

TOP CHORD

BOT CHORD

Plate Off	sets (X,Y)	[2:0-1-13,0-1-0]										
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.16	Vert(LL)	-0.00	4-7	>999	240	MT20	244/190
CDL	7.0	Lumber DOL	1.25	BC	0.07	Vert(CT)	-0.01	4-7	>999	180	2000 A 2000 A 2000	
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code FBC2020/T	PI2014	Matri	x-MP						Weight: 13 lb	FT = 20%

2x4 =

LUMBER-

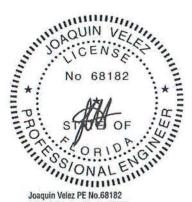
REACTIONS.

TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP No.2

(size) 3=Mechanical, 2=0-3-8, 4=Mechanical

Max Horz 2=94(LC 12)


Max Uplift 3=-42(LC 12), 2=-47(LC 12)

Max Grav 3=64(LC 19), 2=210(LC 1), 4=51(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior(1) 1-6-0 to 2-11-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.

Structural wood sheathing directly applied or 3-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Scale = 1:17.3

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

May 18,2021

Qty LIPSCOMB EAGLE - LOT 24 EC Job Truss Truss Type Ply T23985712 2797510 CJ03A Jack-Open Job Reference (optional) 8.430 s Apr 20 2021 MiTek Industries, Inc. Fri May 14 15:19:13 2021 Page 1 Builders FirstSource (Jacksonville, FL), Jacksonville, FL - 32244.

 $ID: osZ6TzOUpxPd_JW0Sy_Z9DzF_pg-3lhZT_xew8ZEi9XxQi1xag0W76bVQyYUBKz8Q?zGYGy\\$

Structural wood sheathing directly applied or 3-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

8.00 12 0-4-12

LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.10	Vert(LL)	0.01	3-6	>999	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.09	Vert(CT)	-0.01	3-6	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.00	2	n/a	n/a	1	
BCDL	10.0	Code FBC2020/T	PI2014	Matri	x-MP						Weight: 10 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

REACTIONS.

TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP No.2

(size) 1=0-3-8, 2=Mechanical, 3=Mechanical

Max Horz 1=65(LC 12) Max Uplift 1=-4(LC 12), 2=-47(LC 12), 3=-4(LC 12)

Max Grav 1=109(LC 1), 2=73(LC 19), 3=54(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 2, 3.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

May 18,2021

MARNING - Verify design parameters end READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply LIPSCOMB FAGLE - LOT 24 FC T23985713 2797510 CJ05 Jack-Open Job Reference (optional) B.430 s Apr 20 2021 MiTek Industries, Inc. Fri May 14 15:19:14 2021 Page 1 ID:osZ6TzOUpxPd_JW0Sy_Z9DzF_pg-XUFxgKyHhSh5KJ68zQYA7uZexWwG9PodQ_ihyRzGYGx Builders FirstSource (Jacksonville, FL), Jacksonville, FL - 32244, 1-6-0 5-0-0 1-6-0 5-0-0 Scale: 1/2"=1" 8.00 12 0-4-12

				-		5-0-0				1		
LOADING	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.28	Vert(LL)	0.03	4-7	>999	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.24	Vert(CT)	-0.06	4-7	>999	180		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a	24	
BCDL	10.0	Code FBC2020/T	PI2014	Matri	x-MP	2 2 2					Weight: 19 lb	FT = 20%

5.0.0

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

REACTIONS.

TOP CHORD 2x4 SP No.2

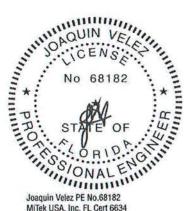
BOT CHORD 2x4 SP No.2

(size) 3=Mechanical, 2=0-3-8, 4=Mechanical

Max Horz 2=139(LC 12)

Max Uplift 3=-78(LC 12), 2=-46(LC 12)

Max Grav 3=119(LC 19), 2=276(LC 1), 4=89(LC 3)


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior(1) 1-6-0 to 4-11-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific
 to the use of this truss component.

3x4 =

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) *This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.

Structural wood sheathing directly applied or 5-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

May 18,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MITEK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSITP1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LIPSCOMB EAGLE - LOT 24 EC Job Truss Truss Type Qty Ply T23985714 9 2797510 EJ01 Jack-Partial Job Reference (optional) 8.430 s Apr 20 2021 MiTek Industries, Inc. Fri May 14 15:19:15 2021 Page 1 Builders FirstSource (Jacksonville, FL), Jacksonville, FL - 32244. ID:osZ6TzOUpxPd_JW0Sy_Z9DzF_pg-?hpJtgyvSmpyxSgKX74Pf55ofwCRurrneeSEUtzGYGw

1-6-0 3-6-7 1-6-0 3-6-7 3-5-9

Scale = 1:30.2

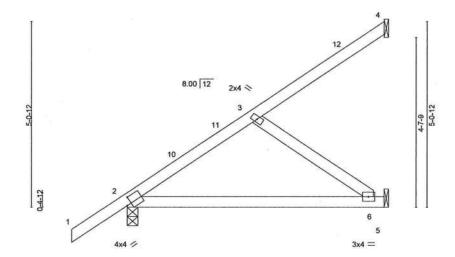


Plate Offsets (X,Y)--[2:0-1-9,0-2-5] LOADING (psf) **PLATES** SPACING-CSI. DEFL GRIP 2-0-0 l/defi L/d in (loc) Plate Grip DOL TCLL 200 1.25 TC 0.35 Vert(LL) -0.08 6-9 >999 240 244/190 MT20 BC TCDL 7.0 Lumber DOL 1.25 0.44 Vert(CT) -0.166-9 >529 180 WB 0.08 BCLL 0.0 Rep Stress Incr YES Horz(CT) 0.00 2 n/a n/a Code FBC2020/TPI2014 BCDL 10.0 Matrix-MS Weight: 32 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 BRACING-

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

(size) 4=Mechanical, 2=0-3-8, 5=Mechanical

Max Horz 2=177(LC 12)

Max Uplift 4=-46(LC 12), 2=-51(LC 12), 5=-55(LC 12) Max Grav 4=76(LC 19), 2=346(LC 1), 5=183(LC 19)

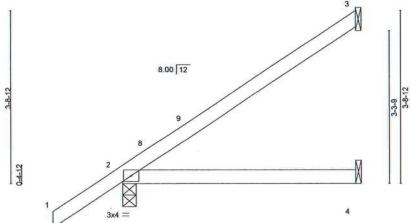
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior(1) 1-6-0 to 6-11-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2, 5.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

May 18,2021


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MITEK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, crection and bracing of trusses and truss systems, see

ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LIPSCOMB EAGLE - LOT 24 EC Truss Type Job Truss Qty T23985715 2797510 EJ02 Jack-Partial Job Reference (optional) 8.430 s Apr 20 2021 MiTek Industries, Inc. Fri May 14 15:19:15 2021 Page 1 Builders FirstSource (Jacksonville, FL), Jacksonville, FL - 32244 ID:osZ6TzOUpxPd_JW0Sy_Z9DzF_pg-?hpJtgyvSmpyxSgKX74Pf55phwFVus2neeSEUtzGYGw -1-6-0 1-6-0 Scale: 1/2"=1"

						5-0-0		_				
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.28	Vert(LL)	0.03	4-7	>999	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.24	Vert(CT)	-0.06	4-7	>999	180	200424463000	
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code FBC2020/T	PI2014	Matri	x-MP	Grant Constant					Weight: 19 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BRACING-

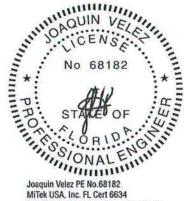
5-0-0

TOP CHORD **BOT CHORD**

Structural wood sheathing directly applied or 5-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

3=Mechanical, 2=0-3-8, 4=Mechanical (size)

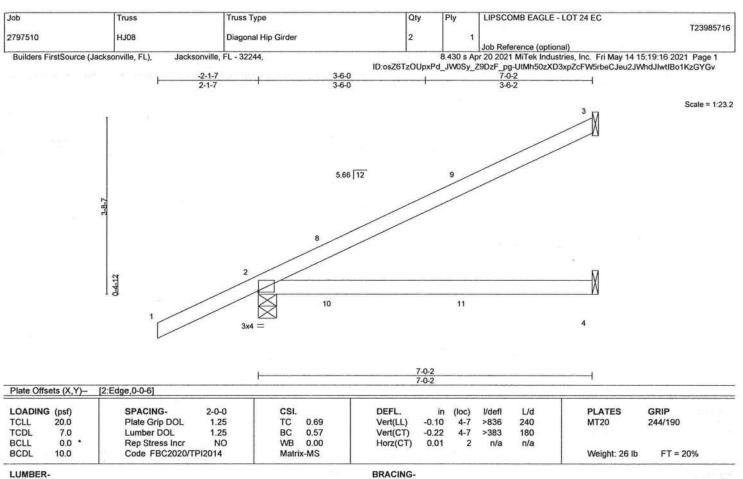

Max Horz 2=139(LC 12)

Max Uplift 3=-78(LC 12), 2=-46(LC 12)

Max Grav 3=119(LC 19), 2=276(LC 1), 4=89(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior(1) 1-6-0 to 4-11-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) *This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.



6904 Parke East Blvd. Tampa FL 33610

May 18,2021

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITEMS connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/PH Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TOP CHORD

BOT CHORD

LUMBER-

REACTIONS.

TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP No.2

(size) 3=Mechanical, 2=0-4-9, 4=Mechanical

Max Horz 2=138(LC 26)

Max Uplift 3=-100(LC 8), 2=-136(LC 8), 4=-3(LC 8) Max Grav 3=160(LC 1), 2=391(LC 1), 4=126(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4 except (jt=lb) 2=136
- 7) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 60 lb down and 73 lb up at 1-6-1, 60 lb down and 73 lb up at 1-6-1, and 77 lb down and 45 lb up at 4-4-0, and 77 lb down and 45 lb up at 4-4-0 on top chord. and 20 lb down and 45 lb up at 1-6-1, 20 lb down and 45 lb up at 1-6-1, and 25 lb down at 4-4-0, and 25 lb down at 4-4-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)

Vert: 1-3=-54, 4-5=-20

Concentrated Loads (lb) Vert: 11=-4(F=-2, B=-2) Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

May 18,2021

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters and roperty area. Single design extended to the connectors are seen to the connectors are seen to the connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LIPSCOMB EAGLE - LOT 24 EC Qty Ply Truss Type Job Truss T23985717 2797510 **HJ10** Diagonal Hip Girder Job Reference (optional) 8.430 s Apr 20 2021 MiTek Industries, Inc. Fri May 14 15:19:17 2021 Page 1 Jacksonville, FL - 32244 Builders FirstSource (Jacksonville, FL), ID:osZ6TzOUpxPd_JW0Sy_Z9DzF_pg-y3w3IM_9_N4gBmqifY6tlWB4bjrgMho46yxLZmzGYGu 9-10-1 4-6-0 Scale = 1:29 4 12 5.66 12 3x4 = 3 04-12 15 14 6 7 5 2x4 || 3x4 = 3x4 = 4-6-0 4-6-0 GRIP LOADING (psf) SPACING-2-0-0 CSI. DEFL. I/defl L/d **PLATES** 244/190 TCLL 20.0 Plate Grip DOL 1.25 TC 0.58 Vert(LL) -0.05 6-7 >999 240 MT20 Lumber DOL 1.25 BC 0.58 Vert(CT) -0.11 6-7 >999 180 TCDL 7.0 Rep Stress Incr NO WB 0.37 Horz(CT) 0.01 5 n/a n/a BCLL 0.0 Weight: 45 lb FT = 20%Code FBC2020/TPI2014 Matrix-MS BCDL 10.0 LUMBER-BRACING-TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

(size) 4=Mechanical, 2=0-4-9, 5=Mechanical

Max Horz 2=176(LC 8)

Max Uplift 4=-90(LC 8), 2=-184(LC 8), 5=-109(LC 8) Max Grav 4=148(LC 1), 2=526(LC 1), 5=300(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-660/199 TOP CHORD

2-7=-274/553, 6-7=-274/553 **BOT CHORD**

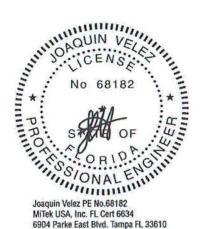
3-7=0/285, 3-6=-604/300 WEBS

NOTES-

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Refer to girder(s) for truss to truss connections.

- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb)
- 7) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 60 lb down and 73 lb up at 1-6-1, 60 lb down and 73 lb up at 1-6-1, 77 lb down and 45 lb up at 4-4-0, 77 lb down and 45 lb up at 4-4-0, and 106 lb down and 89 lb up at 7-1-15, and 106 lb down and 89 lb up at 7-1-15 on top chord, and 20 lb down and 45 lb up at 1-6-1, 20 lb down and 45 lb up at 1-6-1, 25 lb down at 4-4-0, 25 lb down at 4-4-0, and 47 lb down and 15 lb up at 7-1-15, and 47 lb down and 15 lb up at 7-1-15 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.


8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)

Vert: 1-4=-54, 5-8=-20 Concentrated Loads (lb)

Vert: 7=-4(F=-2, B=-2) 12=-73(F=-36, B=-36) 15=-59(F=-29, B=-29)

6904 Parke East Blvd. Tampa FL 33610

May 18,2021

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSITPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty LIPSCOMB EAGLE - LOT 24 EC T23985718 9 2797510 PB01 Piggyback Job Reference (optional) Builders FirstSource (Jacksonville, FL), Jacksonville, FL - 32244, 8.430 s Apr 20 2021 MiTek Industries, Inc. Fri May 14 15:19:18 2021 Page 1 ID:osZ6TzOUpxPd_JW0Sy_Z9DzF_pg-QGUSWi?nlhCWowPvCGd6HkjMy7JN5DNDKcgv5CzGYGt Scale = 1:17.8 4x4 = 3 8.00 12 0-4-7 0-1-10 2x4 || 2x4 = 2x4 = 8-0-0 LOADING (psf) SPACING-2-0-0 CSI DEFL **Vdefl** L/d **PLATES** GRIP TCLL 20.0 Plate Grip DOL 1.25 TC 0.16 Vert(LL) 0.01 n/r 120 MT20 244/190 TCDL 7.0 Lumber DOL 1.25 BC 0.11 Vert(CT) 0.01 5 n/r 120 BCLL 0.0 Rep Stress Incr YES WB 0.03 Horz(CT) 0.00 4 n/a n/a BCDL 10.0 Code FBC2020/TPI2014 Matrix-P Weight: 27 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 **OTHERS**

2x4 SP No.3

BRACING-

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

(size) 2=6-5-12, 4=6-5-12, 6=6-5-12

Max Horz 2=53(LC 11)

Max Uplift 2=-47(LC 12), 4=-54(LC 13), 6=-14(LC 12) Max Grav 2=156(LC 1), 4=156(LC 1), 6=219(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II: Exp B: Encl.. GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-3-5 to 3-3-5, Interior(1) 3-3-5 to 4-0-0, Exterior(2R) 4-0-0 to 7-2-14, Interior(1) 7-2-14 to 7-8-11 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

4) Gable requires continuous bottom chord bearing.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4, 6.
- 8) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

May 18,2021

🛦 WARNING - Verify dasign parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MT ek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly design. Practice of the overall building designer must be a true of the overall building designer must be a true of the overall building designer must be a true overall building designer must be a true overall building designer must be a true. The overall building designer must be a true overall building designer and true overall building designer must be a true overall building designer

LIPSCOMB EAGLE - LOT 24 EC Truss Type Qty Ply Job Truss T23985719 2797510 PB01G GABLE 2 Job Reference (optional) 8.430 s Apr 20 2021 MiTek Industries, Inc. Fri May 14 15:19:18 2021 Page 1 Builders FirstSource (Jacksonville, FL), Jacksonville FL - 32244 ID:osZ6TzOUpxPd_JW0Sy_Z9DzF_pg-QGUSWi?nlhCWowPvCGd6HkjM_7Js5DMDKcgv5CzGYGt Scale = 1:15.6 4x4 = 3 8.00 12 0-4-7 0-1-10 6 2x4 || 2x4 = 2x4 = 6-11-6 LOADING (psf) GRIP SPACING-2-0-0 CSI. DEFL l/defi L/d PLATES 244/190 TCLL 20.0 Plate Grip DOL 1.25 TC 0.15 Vert(LL) 0.00 5 n/r 120 MT20 TCDL 7.0 Lumber DOL 1.25 BC 0.07 Vert(CT) 0.00 5 n/r 120 BCLL 0.0 Rep Stress Incr YES WB 0.03 Horz(CT) 0.00 n/a n/a Code FBC2020/TPI2014 FT = 20%BCDL 10.0 Matrix-P Weight: 23 lb BRACING-LUMBER-Structural wood sheathing directly applied or 6-0-0 oc purlins. TOP CHORD

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x4 SP No.2 2x4 SP No.2 **BOT CHORD** 2x4 SP No.3 OTHERS

(size) 2=5-5-2, 4=5-5-2, 6=5-5-2

Max Horz 2=-46(LC 10) Max Uplift 2=-42(LC 12), 4=-48(LC 13), 6=-11(LC 12) Max Grav 2=136(LC 1), 4=136(LC 1), 6=182(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

REACTIONS.

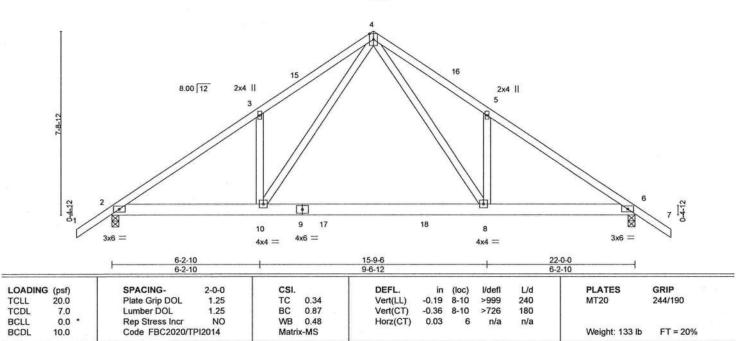
1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Corner(3E) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4, 6.
- 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

May 18,2021

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MTTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Job	Truss		Truss Type		Qty	Ply		LIPSCOMB EAGLE - LOT 24 EC	700005
2797510	T01		Common		6		1		T239857
								Job Reference (optional)	
Builders FirstSe	ource (Jacksonville, FL),	Jacksonville	FL - 32244,			8.430	s Ap	or 20 2021 MiTek Industries, Inc. Fri M	ay 14 15:19:19 2021 Page 1
					ID:osZ6TzOUpxPd_	JW0Sy_	Z9D	zF_pg-uS2qj2?PW_KNQ4_5mz8LqxG	UrXSgqZaMZFQSdfzGYGs
	-1-6-0	6-2-10		11-0-0	15-9	9-6		22-0-0	23-6-0
	1-6-0	6-2-10		4-9-6	4-9	-6		6-2-10	1-6-0

4x6 ||

Structural wood sheathing directly applied or 4-0-5 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Scale = 1:46.7

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2

WEBS 2x4 SP No.3

REACTIONS.

(size) 2=0-3-8, 6=0-3-8

Max Horz 2=178(LC 11)

Max Uplift 2=-257(LC 12), 6=-257(LC 13) Max Grav 2=1295(LC 19), 6=1295(LC 20)

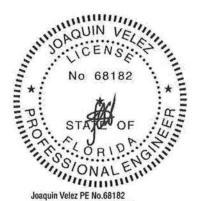
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1972/355, 3-4=-2004/502, 4-5=-2004/502, 5-6=-1971/355

BOT CHORD 2-10=-302/1689, 8-10=-119/1020, 6-8=-213/1591

WEBS 4-8=-334/1224, 5-8=-305/224, 4-10=-334/1224, 3-10=-305/224

NOTES-


1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior(1) 1-6-0 to 11-0-0, Exterior(2R) 11-0-0 to 14-0-0, Interior(1) 14-0-0 to 23-6-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific
 to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=257, 6=257.
- 7) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

 Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)

Vert: 1-4=-54, 4-7=-54, 2-10=-20, 8-10=-80(F=-60), 6-8=-20

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

May 18,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, cerction and bracing of trusses and truss systems, see

ANSITYPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	LIPSCOMB EAGLE - LOT 24 EC	T2398572
2797510	T01G	Common Supported Gable	1	1		12390372
	02.000				Job Reference (optional)	9.
Builders FirstSourc	e (Jacksonville, FL),	Jacksonville, FL - 32244,			pr 20 2021 MiTek Industries, Inc. Fi	
			ID:osZ6TzOUpxPo	d_JW0Sy_Z	9DzF_pg-MecCxN01HISE2EZHKhf	aM9piqx?bZ6PWov9?A5zGYGr
	-1-6-0	11-0-0			22-0-0	23-6-0
	1-6-0	11-0-0			11-0-0	1-6-0

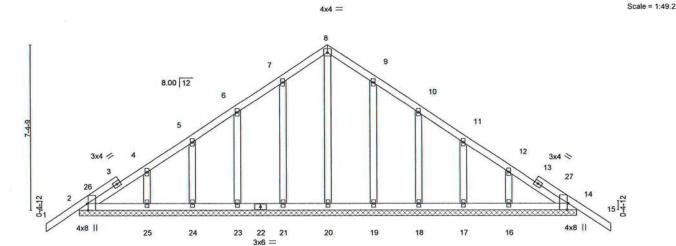


Plate Offsets (X,Y)-- [2:0-3-8,Edge], [14:0-3-8,Edge] **PLATES** GRIP LOADING (psf) SPACING-2-0-0 CSI. DEFL. l/defl L/d Plate Grip DOL 1.25 TC 120 MT20 244/190 20.0 0.13 Vert(LL) -0.01 TCLL 15 n/r 1.25 BC -0.01 120 TCDL 7.0 Lumber DOL 0.06 Vert(CT) 15 n/r 0.0 * WB 0.12 BCLL Rep Stress Incr YES Horz(CT) 0.00 n/a n/a FT = 20% BCDL Code FBC2020/TPI2014 Matrix-S Weight: 134 lb 10.0

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 OTHERS 2x4 SP No.3 BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 22-0-0.

(lb) - Max Horz 2=-171(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 2, 14, 21, 23, 24, 25, 19, 18, 17, 16

Max Grav All reactions 250 lb or less at joint(s) 2, 14, 20, 21, 23, 24, 25, 19, 18, 17, 16

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Corner(3E) -1-6-0 to 1-6-0, Exterior(2N) 1-6-0 to 11-0-0, Corner(3R) 11-0-0 to 14-0-0, Exterior(2N) 14-0-0 to 23-6-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 14, 21, 23, 24, 25, 19, 18, 17, 16.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

May 18,2021

Job	Truss	Truss Type		Qty	Ply	LIPSCOMB EAGLE	- LOT 24 EC	
2797510	T02	Common		4	1	Job Reference (option	naal)	T2398572
Builders FirstSource (Jack	sonville, FL), Jacksonv	ille, FL - 32244,			8.430 s A		ustries, Inc. Fri May 14	15:19:21 2021 Page 1
			44.00	ID:osZ6TzOU	pxPd_JW0S	y_Z9DzF_pg-qrAa8j1g	2ca5fN8UuOBpvMLqKI	K8ylTqf1ZvZiXzGYGq
1-1	6-0 6-2-1 6-0 6-2-1	0	11-0-0 4-9-6		15-9-6 4-9-6		22-0-0 6-2-10	
								0-14-0
				4x6				Scale = 1:48
Ť				4				
				-				
			//					
			14	// \\		15		
	8.0	0 12 2x4 II	// /		1	2x4 II		
	0.0	3 /	// //		1)	5		
2) N				Na .		
Z-8-12			//					
٦			//		//			
		//	//		//			
			//					
		- 11	//					
187		17				///		6
164-12	2/2	10/	The state of the s			<u>A</u>		14 6 22
\$1/			8 16		17			14
	3x6 =	9	446 -		1052	7	3	3x6 =
		4x4	=			4x4 =		
	6-2-1			15-9-6 9-6-12			22-0-0 6-2-10	
Plate Offsets (X,Y)- [2	:0-3-9,0-1-8], [6:0-3-9,0-1-			9-0-12	112 2211		0-2-10	
	001000		.	DEE!				0010
OADING (psf)		2-0-0 CS		DEFL. Vert(LL) -(in (loc) 0.19 7-9	l/defl L/d >999 240	PLATES MT20	GRIP 244/190
TOD! 20.0	Plate Grip DOL	1.25			0.19 7-9	>999 240	WITZU	244/190

LUMBER-

TCDL

BCLL

BCDL

TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.3

7.0

10.0

0.0 *

BRACING-

TOP CHORD BOT CHORD

Vert(CT)

Horz(CT)

-0.36

0.03

7-9

>730

Structural wood sheathing directly applied or 3-11-15 oc purlins.

Weight: 130 lb

FT = 20%

Rigid ceiling directly applied or 10-0-0 oc bracing.

180

REACTIONS.

(size) 6=0-3-8, 2=0-3-8

Max Horz 2=171(LC 11) Max Uplift 6=-225(LC 13), 2=-257(LC 12) Max Grav 6=1218(LC 20), 2=1296(LC 19)

Lumber DOL

Rep Stress Incr

Code FBC2020/TPI2014

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1973/356, 3-4=-2006/503, 4-5=-2020/512, 5-6=-1986/365

BOT CHORD 2-9=-317/1680, 7-9=-134/1012, 6-7=-230/1587

WEBS 4-7=-345/1240, 5-7=-308/226, 4-9=-334/1223, 3-9=-305/225

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior(1) 1-6-0 to 11-0-0, Exterior(2R) 11-0-0 to 14-0-0, Interior(1) 14-0-0 to 22-0-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

BC

WB 0.49

Matrix-MS

0.88

- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific
 to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

1.25

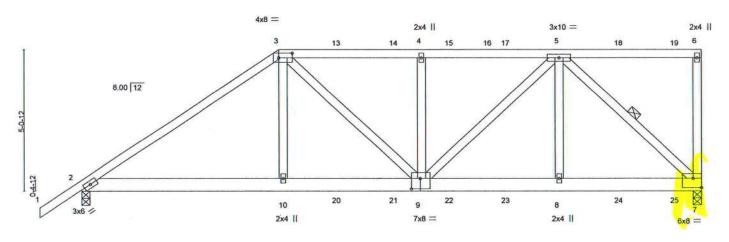
NO

- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=225, 2=257.
- 7) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25
 Uniform Loads (plf)

Vert: 1-4=-54, 4-6=-54, 2-9=-20, 7-9=-80(F=-60), 6-7=-20


MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

May 18,2021

Job	Truss	Truss Type		Qty	Ply	LIPSCOMB EAGLE - LO	OT 24 EC	Market Courts
	<u> </u>	000 000 000 000 00		-				T23985723
2797510	T03	Half Hip Girder		1	1			
						Job Reference (optional)	l:	
Builders FirstSource	(Jacksonville, FL), Jackson	rville, FL - 32244,			8.430 s Ap	pr 20 2021 MiTek Industrie	s, Inc. Fri May 14 15:19:23	3 2021 Page 1
	5 5 5		ID:osZ6	TzOUpxPd_J	W0Sy_Z9Da	zF_pg-mDHKZP2wZDqpvt	nls?pDH_nR1q8u0mL5yUt0	OgmQzGYGo
, -1-6-0	7-0-0		12-0-9	1	16-	11-7	22-0-0	1
1-6-0	7-0-0		5-0-9		4-1	0-13	5-0-9	7.4

Scale = 1:39.5

List and the second	7-0-0			12-0-3	I		10-	1 174		22-0-0	
	7-0-0			5-0-9			4-1	0-13		5-0-9	1
sets (X,Y)	[3:0-5-12,0-2-0], [7:Edge,	0-4-0], [9:0-3-1	2,0-4-8]							p	
G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	I/defl	L/d	PLATES	GRIP
20.0	Plate Grip DOL	1.25	TC	0.91	Vert(LL)	-0.07	9-10	>999	240	MT20	244/190
7.0	Lumber DOL	1.25	BC	0.59	Vert(CT)	-0.13	9-10	>999	180		
0.0 *	Rep Stress Incr	NO	WB	0.57	Horz(CT)	0.04	7	n/a	n/a		
10.0	Code FBC2020/TI	PI2014	Matri	x-MS	2354 M					Weight: 143 lb	FT = 20%
	G (psf) 20.0 7.0 0.0	7-0-0 sets (X,Y)- [3:0-5-12,0-2-0], [7:Edge, G (psf) SPACING- 20.0 Plate Grip DOL 7.0 Lumber DOL 0.0 Rep Stress Incr	7-0-0 sets (X,Y) [3:0-5-12,0-2-0], [7:Edge,0-4-0], [9:0-3-1 G (psf) SPACING- 2-0-0 20.0 Plate Grip DOL 1.25 7.0 Lumber DOL 1.25 0.0 Rep Stress Incr NO	7-0-0 sets (X,Y)- [3:0-5-12,0-2-0], [7:Edge,0-4-0], [9:0-3-12,0-4-8] G (psf) SPACING- 2-0-0 CSI. 20.0 Plate Grip DOL 1.25 TC 7.0 Lumber DOL 1.25 BC 0.0 Rep Stress Incr NO WB	7-0-0 5-0-9 sets (X,Y) [3:0-5-12,0-2-0], [7:Edge,0-4-0], [9:0-3-12,0-4-8] G (psf) SPACING- 2-0-0 CSI. 20.0 Plate Grip DOL 1.25 TC 0.91 7.0 Lumber DOL 1.25 BC 0.59 0.0 Rep Stress Incr NO WB 0.57	7-0-0 5-0-9 sets (X,Y) [3:0-5-12,0-2-0], [7:Edge,0-4-0], [9:0-3-12,0-4-8] G (psf) SPACING- 2-0-0 CSI. DEFL. 20.0 Plate Grip DOL 1.25 TC 0.91 Vert(LL) 7.0 Lumber DOL 1.25 BC 0.59 Vert(CT) 0.0 Rep Stress Incr NO WB 0.57 Horz(CT)	7-0-0 5-0-9 sets (X,Y) [3:0-5-12,0-2-0], [7:Edge,0-4-0], [9:0-3-12,0-4-8] G (psf) SPACING- 2-0-0 CSI. DEFL. in 20.0 Plate Grip DOL 1.25 TC 0.91 Vert(LL) -0.07 7.0 Lumber DOL 1.25 BC 0.59 Vert(CT) -0.13 0.0 Rep Stress Incr NO WB 0.57 Horz(CT) 0.04	7-0-0 5-0-9 4-1 sets (X,Y) [3:0-5-12,0-2-0], [7:Edge,0-4-0], [9:0-3-12,0-4-8] G (psf) SPACING- 2-0-0 CSI. DEFL. in (loc) 20.0 Plate Grip DOL 1.25 TC 0.91 Vert(LL) -0.07 9-10 7.0 Lumber DOL 1.25 BC 0.59 Vert(CT) -0.13 9-10 0.0 Rep Stress Incr NO WB 0.57 Horz(CT) 0.04 7	7-0-0 5-0-9 4-10-13 sets (X,Y)- [3:0-5-12,0-2-0], [7:Edge,0-4-0], [9:0-3-12,0-4-8] G (psf) SPACING- 2-0-0 CSI. DEFL. in (loc) l/defl 20.0 Plate Grip DOL 1.25 TC 0.91 Vert(LL) -0.07 9-10 >999 7.0 Lumber DOL 1.25 BC 0.59 Vert(CT) -0.13 9-10 >999 0.0 * Rep Stress Incr NO WB 0.57 Horz(CT) 0.04 7 n/a	7-0-0 5-0-9 4-10-13 sets (X,Y) [3:0-5-12,0-2-0], [7:Edge,0-4-0], [9:0-3-12,0-4-8] G (psf) SPACING- 2-0-0 CSI. DEFL. in (loc) l/defl L/d 20.0 Plate Grip DOL 1.25 TC 0.91 Vert(LL) -0.07 9-10 >999 240 7.0 Lumber DOL 1.25 BC 0.59 Vert(CT) -0.13 9-10 >999 180 0.0 * Rep Stress Incr NO WB 0.57 Horz(CT) 0.04 7 n/a n/a	7-0-0 5-0-9 4-10-13 5-0-9 sets (X,Y) [3:0-5-12,0-2-0], [7:Edge,0-4-0], [9:0-3-12,0-4-8] G (psf) SPACING- 2-0-0 CSI. DEFL. in (loc) l/defl L/d PLATES 20.0 Plate Grip DOL 1.25 TC 0.91 Vert(LL) -0.07 9-10 >999 240 MT20 7.0 Lumber DOL 1.25 BC 0.59 Vert(CT) -0.13 9-10 >999 180 0.0 * Rep Stress Incr NO WB 0.57 Horz(CT) 0.04 7 n/a n/a

BRACING-

WEBS

TOP CHORD

BOT CHORD

16.11.7

1 Row at midpt

1200

LUMBER-

TOP CHORD 2x4 SP No.2 2x6 SP No.2 **BOT CHORD**

2x4 SP No.3

REACTIONS. (size) 7=0-3-8, 2=0-3-8

Max Horz 2=185(LC 23)

Max Uplift 7=-700(LC 5), 2=-527(LC 8) Max Grav 7=1844(LC 1), 2=1572(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2362/818, 3-4=-2120/798, 4-5=-2123/799

2-10=-733/1877, 9-10=-740/1900, 8-9=-560/1519, 7-8=-560/1519 **BOT CHORD** WEBS

7.0.0

3-10=-222/757, 3-9=-225/326, 4-9=-314/194, 5-9=-342/832, 5-8=-132/586,

5-7=-2075/764

NOTES-

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 7=700, 2=527.
- 7) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 64 lb down and 50 lb up at 7-0-0, 64 lb down and 47 lb up at 9-0-12, 64 lb down and 47 lb up at 11-0-12, 64 lb down and 47 lb up at 13-0-12, 64 lb down and 45 lb up at 15-0-12, 64 lb down and 47 lb up at 17-0-12, 64 lb down and 47 lb up at 19-0-12, and 61 lb down and 48 lb up at 21-0-12, and 53 lb down and 48 lb up at 21-10-4 on top chord, and 427 lb down and 212 lb up at 7-0-0, 156 lb down and 75 lb up at 9-0-12, 156 lb down and 75 lb up at 11-0-12, 156 lb down and 75 lb up at 13-0-12, 156 lb down and 75 lb up at 15-0-12, 156 lb down and 75 lb up at 17-0-12, and 156 lb down and 75 lb up at 19-0-12, and 158 lb down and 73 lb up at 21-0-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)

Vert: 1-3=-54, 3-6=-54, 2-7=-20

22.0.0

Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied or 8-4-1 oc bracing.

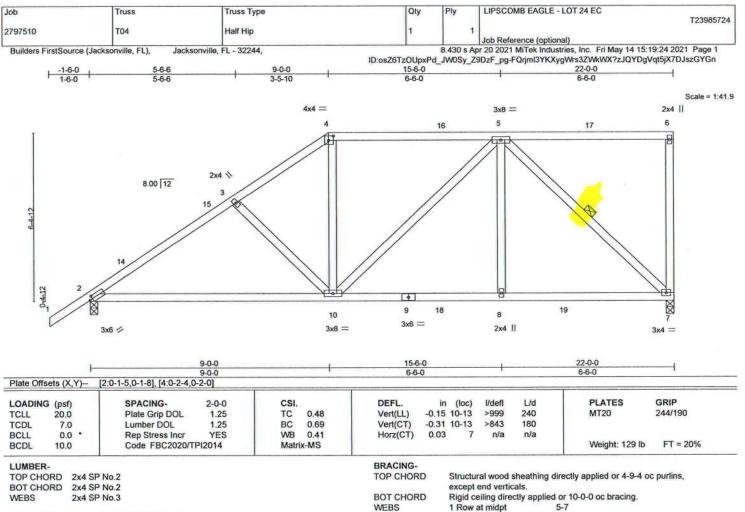
Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

May 18,2021

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/for chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <a href="https://doi.org/10.1007/JRT.1007

Job	Truss	Truss Type	Qty	Ply	LIPSCOMB EAGLE - LOT 24 EC	
0707540	700	III-WIJE- OI-I			T239	985723
2/9/510	T03	Half Hip Girder	1	1	Job Reference (optional)	

Builders FirstSource (Jacksonville, FL),


Jacksonville, FL - 32244,

8.430 s Apr 20 2021 MiTek Industries, Inc. Fri May 14 15:19:23 2021 Page 2 ID:osZ6TzOUpxPd_JW0Sy_Z9DzF_pg-mDHKZP2wZDqpvhls?pDH_nR1q8u0mL5yUt0gmQzGYGo

LOAD CASE(S) Standard Concentrated Loads (lb)

Vert: 3=-18(B) 6=-47(B) 10=-427(B) 8=-156(B) 5=-18(B) 13=-18(B) 14=-18(B) 15=-18(B) 17=-18(B) 18=-18(B) 19=-24(B) 20=-156(B) 21=-156(B) 22=-156(B) 23=-156(B) 24=-156(B) 25=-158(B)

REACTIONS.

(size) 7=0-3-8, 2=0-3-8

Max Horz 2=230(LC 12) Max Uplift 7=-196(LC 9), 2=-198(LC 12)

Max Grav 7=911(LC 2), 2=952(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 2-3=-1186/240, 3-4=-1031/226, 4-5=-818/217 2-10=-327/964, 8-10=-157/734, 7-8=-157/734 TOP CHORD

BOT CHORD

3-10=-283/155, 4-10=-11/372, 5-8=0/337, 5-7=-998/218 WEBS

NOTES-

1) Unbalanced roof live loads have been considered for this design.

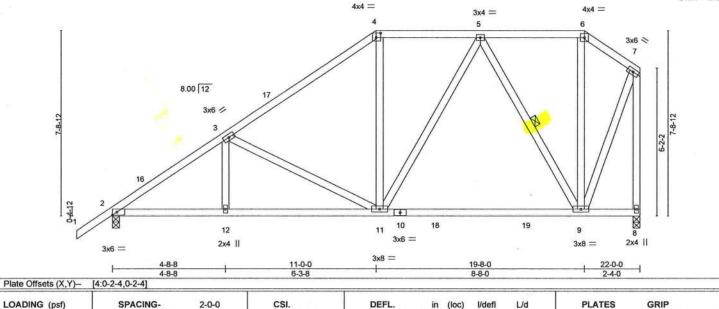

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior(1) 1-6-0 to 9-0-0, Exterior(2R) 9-0-0 to 13-2-15, Interior(1) 13-2-15 to 21-10-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

4) Provide adequate drainage to prevent water ponding.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) *This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 7=196, 2=198.


MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

May 18,2021

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/ITP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20501

Job Truss Truss Type Qty LIPSCOMB EAGLE - LOT 24 EC T23985725 2797510 T05 Hip Job Reference (optional) Builders FirstSource (Jacksonville, FL), Jacksonville, FL - 32244, 8.430 s Apr 20 2021 MiTek Industries, Inc. Fri May 14 15:19:24 2021 Page 1 ID:osZ6TzOUpxPd_JW0Sy_Z9DzF_pg-FQrjml3YKXygWrs3ZWkWX?zlBYDtVpg5jX7DJszGYGn 11-0-0 6-3-8 19-8-0 22-0-0 Scale = 1:46.2 4x4 = 3x4 =

Vert(LL)

Vert(CT)

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

WEBS

-0.18 9-11

-0.29 9-11

0.03

>999

>908

except end verticals

1 Row at midpt

n/a

8

240

180

n/a

Rigid ceiling directly applied or 6-0-0 oc bracing.

Structural wood sheathing directly applied or 5-1-2 oc purlins,

5-9

MT20

Weight: 151 lb

244/190

FT = 20%

LUMBER-

REACTIONS.

TCLL

TCDL

BCLL

BCDL

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 WEBS

20.0

10.0

7.0

0.0 *

(size) 2=0-3-8, 8=0-3-8

Max Horz 2=246(LC 12) Max Uplift 2=-192(LC 12), 8=-160(LC 12) Max Grav 2=970(LC 19), 8=901(LC 2)

Plate Grip DOL

Rep Stress Incr

Code FBC2020/TPI2014

Lumber DOL

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1316/238, 3-4=-913/184, 4-5=-693/205, 5-6=-285/79, 6-7=-364/73, 7-8=-954/152 2-12=-361/1125, 11-12=-361/1125, 9-11=-130/546 BOT CHORD

3-11=-500/205, 4-11=0/263, 5-11=-96/368, 5-9=-538/180, 7-9=-112/777 WEBS

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior(1) 1-6-0 to 11-0-0, Exterior(2R) 11-0-0 to 15-4-0, Interior(1) 15-4-0 to 19-8-0, Exterior(2E) 19-8-0 to 21-10-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

TC

BC

WR 0.49

Matrix-MS

0.56

0.67

- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

1.25

1.25

YES

- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb)

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

May 18,2021

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ucliapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LIPSCOMB EAGLE - LOT 24 EC Job Truss Truss Type Qty Ply T23985726 2797510 T06 Hip Job Reference (optional) 8.430 s Apr 20 2021 MiTek Industries, Inc. Fri May 14 15:19:25 2021 Page 1 Builders FirstSource (Jacksonville, FL), Jacksonville, FL - 32244, ID:osZ6TzOUpxPd_JW0Sy_Z9DzF_pg-jcP5_54A5q4X8?RF7EFI3CWSRyWtED8FxBtmrlzGYGm 13-0-0 17-8-0 22-0-0 Scale = 1:53.7 4x4 = 5x6 = 4 16 17 185 8.00 12 2x4 II 5x6 / 3 6-2-2 9 20 21 8 3x6 = 2x4 || 3x6 = 3x6 = 3x8 = 22-0-0 13-0-0 Plate Offsets (X,Y)-[3:0-3-0,0-3-0], [4:0-2-4,0-2-4], [5:0-3-12,0-2-0] DEFL PLATES GRIP LOADING (psf) SPACING-2-0-0 CSI. (loc) l/defl 1 /d 244/190 TC BC TCLL 20.0 Plate Grip DOL 1.25 0.59 Vert(LL) -0.317-8 >852 240 MT20 TCDL 7.0 Lumber DOL 1.25 0.88 Vert(CT) -0.487-8 >549 180 WB BCLL 0.0 Rep Stress Incr YES 0.67 Horz(CT) 0.02 n/a n/a Code FBC2020/TPI2014 Weight: 141 lb FT = 20% Matrix-MS BCDL 10.0 BRACING-LUMBER-TOP CHORD Structural wood sheathing directly applied or 5-0-6 oc purlins,

BOT CHORD

WEBS

except end verticals.

1 Row at midpt

Rigid ceiling directly applied or 10-0-0 oc bracing.

5-7

TOP CHORD 2x4 SP No.2 2x4 SP No.2 **BOT CHORD**

2x4 SP No.3 WEBS

REACTIONS.

(size) 2=0-3-8, 7=0-3-8 Max Horz 2=266(LC 12)

Max Uplift 2=-185(LC 12), 7=-167(LC 12) Max Grav 2=986(LC 19), 7=917(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD

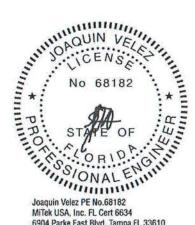
2-3=-1231/207, 3-4=-771/166, 4-5=-570/187

BOT CHORD

2-10=-324/1051, 8-10=-324/1051, 7-8=-72/330

WEBS

3-8=-571/234, 5-8=-133/577, 5-7=-711/168


1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior(1) 1-6-0 to 13-0-0, Exterior(2R) 13-0-0 to 17-2-15, Interior(1) 17-2-15 to 17-8-0, Exterior(2E) 17-8-0 to 21-10-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

4) Provide adequate drainage to prevent water ponding.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=185, 7=167.

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

May 18,2021

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MIL-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LIPSCOMB EAGLE - LOT 24 EC Job Truss Truss Type Qty Ply T23985727 2797510 T07 Hip Job Reference (optional) 8.430 s Apr 20 2021 MiTek Industries, Inc. Fri May 14 15:19:26 2021 Page 1 Jacksonville, FL - 32244, Builders FirstSource (Jacksonville, FL), ID:osZ6TzOUpxPd_JW0Sy_Z9DzF_pg-BozTBR5os8COm90Rgxm_cQ2cQLv4zmzOArcKNlzGYGI 22-0-0 15-8₁0 0-8-0 Scale = 1:65.3 4x4 = 4x6 = 4 5 17 8.00 12 3x6 > 5x8 / 6 10 20 98 11 3x6 = 2x4 || 2x4 || 3x4 = 3x6 = 3x4 = 15-0-0 22-0-0

LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	I/defl	L/d	PLATES	GRIP	
TCLL	20.0	Plate Grip DOL	1.25	TC	0.64	Vert(LL)	-0.09	11-14	>999	240	MT20	244/190	
TCDL	7.0	Lumber DOL	1.25	BC	0.63	Vert(CT)	-0.18	11-14	>999	180	AC41020-0-9		
BCLL	0.0	Rep Stress Incr	YES	WB	0.31	Horz(CT)	0.02	7	n/a	n/a			
BCDL	10.0	Code FBC2020/T	PI2014	Matri	x-MS						Weight: 145 lb	FT = 20%	

BRACING-

TOP CHORD

BOT CHORD

WEBS

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

WEBS 2x4 SP No.3

REACTIONS.

(size) 2=0-3-8, 7=0-3-8

Max Horz 2=285(LC 12)

Max Uplift 2=-176(LC 12), 7=-175(LC 12) Max Grav 2=989(LC 19), 7=926(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1219/188, 3-4=-611/147, 4-5=-428/169, 5-6=-602/167, 6-7=-818/196

BOT CHORD 2-11=-318/1054, 9-11=-318/1054, 8-9=-90/458

WEBS 3-11=0/333, 3-9=-722/275, 6-8=-119/608

NOTES

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior(1) 1-6-0 to 15-0-0, Exterior(2E) 15-0-0 to 15-8-0, Exterior(2R) 15-8-0 to 19-10-15, Interior(1) 19-10-15 to 21-10-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific
 to the use of this truss component.

4) Provide adequate drainage to prevent water ponding.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=176, 7=175.

Structural wood sheathing directly applied or 4-10-13 oc purlins,

3-9, 4-9, 5-8

Rigid ceiling directly applied or 10-0-0 oc bracing.

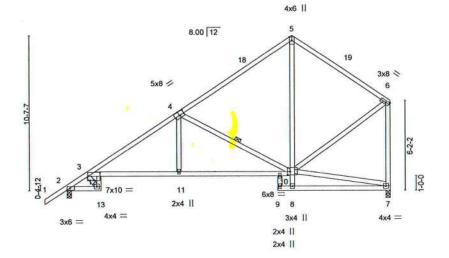
except end verticals.

1 Row at midpt

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

May 18,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.


Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSITPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Type Qty LIPSCOMB EAGLE - LOT 24 EC Truss T23985728 2797510 TOS Common Job Reference (optional) 8.430 s Apr 20 2021 MiTek Industries, Inc. Fri May 14 15:19:27 2021 Page 1 ID:osZ6TzOUpxPd_JW0Sy_Z9DzF_pg-f_XrPn6QdSKFOIbdEfHD8dbk5IAQiCtYPVMtwBzGYGk Builders FirstSource (Jacksonville, FL), Jacksonville, FL - 32244, 15-4-0 7-8-14 22-0-0 1-6-0 2-3-8

14-4-0

6-8-14 [4:0-4-0,0-3-0], [10:0-2-4,0-2-12], [12:0-9-8,0-3-2] PLATES GRIP CSI. DEFL. I/defl L/d 2-0-0 (loc) 0.30 11-12 244/190 MT20

20.0 Plate Grip DOL 1.25 TC 0.77 Vert(LL) >868 240 TCLL 180 1.25 BC 0.94 Vert(CT) -0.52 11-12 >500 TCDL 7.0 Lumber DOL Rep Stress Incr YES WB 0.33 Horz(CT) 0.22 n/a n/a BCLL 0.0 Code FBC2020/TPI2014 BCDL 10.0 Matrix-MS

Weight: 144 lb FT = 20%

LUMBER-

Plate Offsets (X,Y)-

LOADING (psf)

2x4 SP No.2 TOP CHORD

2x4 SP No.2 *Except* **BOT CHORD**

12-13,5-8: 2x4 SP No.3, 3-10: 2x4 SP M 31

SPACING-

2x4 SP No.3 WEBS

BRACING-TOP CHORD

Structural wood sheathing directly applied or 3-0-7 oc purlins,

except end verticals.

BOT CHORD Rigid ceiling directly applied or 2-2-0 oc bracing. Except: 10-0-0 oc bracing: 8-10

WEBS

1 Row at midpt 4-10

REACTIONS. (size) 2=0-3-8, 7=0-3-8

Max Horz 2=288(LC 12)

Max Uplift 2=-173(LC 12), 7=-172(LC 12)

Max Grav 2=899(LC 1), 7=819(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

3-16=-1187/187, 3-4=-1369/286, 4-5=-638/158, 5-6=-598/174, 6-7=-753/187 TOP CHORD

2-13=-370/938, 12-13=-378/996, 3-12=-322/940, 11-12=-407/1152, 10-11=-407/1153, BOT CHORD

5-10=-32/339

4-11=-27/452, 4-10=-831/351, 6-10=-115/508, 3-13=-1199/471 WEBS

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-4-10, Interior(1) 1-4-10 to 15-4-0, Exterior(2R) 15-4-0 to 18-4-0, Interior(1) 18-4-0 to 21-10-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=173, 7=172.

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

May 18,2021

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job LIPSCOMB EAGLE - LOT 24 EC Truss Truss Type Qty Ply T23985729 2797510 T09 COMMON 2 Job Reference (optional) 8.430 s Apr 20 2021 MiTek Industries, Inc. Fri May 14 15:19:28 2021 Page 1 ID:osZ6TzOUpxPd_JW0Sy_Z9DzF_pg-7B5Dc763OlS6?SAqoMpShr8vM9bNRduhe95QSdzGYGj Builders FirstSource (Jacksonville, FL). Jacksonville FL - 32244 15-4-0 7-8-14 Scale = 1:73.0 4x6 =8.00 12 5x8 / 5x8 < 13 2x4 || 11 10 3x4 || 3x6 = 3x6 = 4x4 || 4x4 = 3x6 = 2x4 || 2x4 || 0-10-4 5-3-10 2-3-8 6-8-14 7-10-10 [2:0-1-10,0-4-8], [3:0-3-0,Edge], [5:0-4-0,0-3-0], [6:0-2-3,Edge], [12:0-2-0,0-2-12] Plate Offsets (X,Y)-LOADING (psf) SPACING-2-0-0 CSI. DEFL L/d **PLATES** GRIP in (loc) I/defl 20.0 TCLL Plate Grip DOL 1.25 TC 0.80 Vert(LL) -0.25 2-13 >999 240 244/190 MT20 TCDL 7.0 Lumber DOL 1.25 BC 0.64 Vert(CT) -0.47 2-13 >778 180 Horz(CT) BCLL 0.0 Rep Stress Incr YES WB 0.47 0.30 6 n/a n/a Code FBC2020/TPI2014 BCDL 10.0 Matrix-MS FT = 20% Weight: 180 lb LUMBER-BRACING-TOP CHORD Structural wood sheathing directly applied or 2-2-0 oc purlins.

BOT CHORD

WEBS

TOP CHORD 2x4 SP No.2 *Except* 1-3: 2x6 SP M 26

BOT CHORD 2x4 SP No.2 *Except*

2-14: 2x6 SP No.2, 2-12: 2x4 SP M 31, 4-10: 2x4 SP No.3

WEBS 2x4 SP No.3

REACTIONS. (size) 1=0-3-8, 6=0-3-8

Max Horz 1=-233(LC 10)

Max Uplift 1=-204(LC 12), 6=-239(LC 13) Max Grav 1=1144(LC 1), 6=1222(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown

TOP CHORD 2-19=-761/239, 2-3=-1975/369, 3-4=-1285/282, 4-5=-1274/289, 5-6=-1706/298

BOT CHORD 2-13=-376/1727, 12-13=-374/1735, 4-12=-162/906, 6-8=-143/1343 **WEBS** 3-13=0/344, 3-12=-894/345, 8-12=-147/1240, 5-12=-493/269

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 15-4-0, Exterior(2R) 15-4-0 to 18-4-0, Interior(1) 18-4-0 to 32-2-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=204, 6=239.

Rigid ceiling directly applied or 10-0-0 oc bracing. Except:

10-0-0 oc bracing: 10-12

1 Row at midpt

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

May 18,2021

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITEKS connectors. This design is based only upon parameters and only a building component, not a truss system. Before use, the building designer must verify the applicability of design parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Qty LIPSCOMB FAGLE - LOT 24 EC Job Truss Truss Type T23985730 2797510 T09A Common Job Reference (optional) Builders FirstSource (Jacksonville, FL), Jacksonville, FL - 32244, 8.430 s Apr 20 2021 MiTek Industries, Inc. Fri May 14 15:19:29 2021 Page 1 ID:osZ6TzOUpxPd_JW0Sy_Z9DzF_pg-bNfcpS7h93azdcl0M4KhE2g68ZxqA7Yrspr__3zGYGi 23-0-14 7-8-14 32-2-0 30-8-0 Scale = 1:67.3 4x6 = 8.00 12 5x8 / 5x8 > 5 10 8 9 3x6 = 2x4 || 5x8 = 2x4 II [3:0-4-0,0-3-0], [5:0-4-0,0-3-0], [6:0-2-3,Edge], [9:0-4-0,0-3-0] Plate Offsets (X,Y)--PLATES GRIP LOADING (psf) SPACING-CSI. DEFL in I/defl L/d 2-0-0 (loc) 244/190 20.0 Plate Grip DOL -0.08 8-16 >999 240 MT20 TC 0.67 Vert(LL) TCLL 1.25 BC -0.18 >999 180 TCDL 7.0 Lumber DOL 1.25 0.62 Vert(CT) 8-16 0.32 0.0 Rep Stress Incr YES WB Horz(CT) 0.06 6 n/a n/a BCLL Weight: 162 lb FT = 20% 10.0 Code FBC2020/TPI2014 Matrix-MS BCDL

BRACING-

WEBS

TOP CHORD **BOT CHORD**

LUMBER-

REACTIONS.

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2

2x4 SP No.3 WEBS

> Max Horz 2=-240(LC 10) Max Uplift 2=-242(LC 12), 6=-242(LC 13)

(size) 2=0-3-8, 6=0-3-8

Max Grav 2=1216(LC 1), 6=1216(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1694/305, 3-4=-1163/286, 4-5=-1163/286, 5-6=-1694/305 **BOT CHORD** 2-10=-293/1345, 9-10=-293/1345, 8-9=-147/1334, 6-8=-147/1333 WEBS 4-9=-156/772, 5-9=-599/276, 5-8=0/322, 3-9=-599/276, 3-10=0/322

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior(1) 1-6-0 to 15-4-0, Exterior(2R) 15-4-0 to 18-4-0, Interior(1) 18-4-0 to 32-2-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=242, 6=242.

Structural wood sheathing directly applied or 3-9-12 oc purlins.

5-9, 3-9

Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

May 18,2021

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPH Quality Criteria, DSB-99 and BCSI Building Composary information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply LIPSCOMB EAGLE - LOT 24 EC T23985731 2797510 T10 Roof Special Job Reference (optional) 8.430 s Apr 20 2021 MiTek Industries, Inc. Fri May 14 15:19:30 2021 Page 1 Builders FirstSource (Jacksonville, FL), Jacksonville, FL - 32244, ID:osZ6TzOUpxPd_JW0Sy_Z9DzF_pg-3ZD_1o8JwNiqFmKCvnrwmGDJpzIlvTu_5TaXWWzGYGh 19-0-0 3-8-0 23-0-14 4-0-14 Scale = 1:69.2 4x4 = 6 8.00 12 25 3x6 ❖ 3x6 / 3x6 / 5x6 < 2x4 < = 4×12 15 3x8 16 11 12 4.00 12 3x6 = 5x8 = 2x4 || 3x4 = 3x6 = 2x4 || 8-1-12 8-1-12 8-3-8 0-1-12 15-4-0 7-0-8 17-8-0 19-0-0 4-0-14 Plate Offsets (X,Y)-[2:0-6-4,0-0-15], [8:0-3-0,0-3-0], [9:0-2-3, Edge], [16:0-5-4,0-2-8] LOADING (psf) SPACING-DEFL. (loc) I/defl L/d PLATES GRIP TCLL 20.0 Plate Grip DOL 1.25 TC 0.55 Vert(LL) 0.20 16-20 >490 240 MT20 244/190 1.25 BC 0.52 Vert(CT) -0.24 16-20 >422 180 TCDL 7.0 Lumber DOL

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

0.06

LUMBER-

BCLL BCDL

TOP CHORD 2x4 SP No.2

0.0

10.0

BOT CHORD 2x4 SP No.2 *Except*

7-12: 2x4 SP No.3 2x4 SP No.3

WEBS WEDGE

Left: 2x4 SP No.3

REACTIONS. (size) 2=0-3-8, 16=0-3-8, 9=0-3-8

Max Horz 2=-240(LC 10)

Rep Stress Incr

Code FBC2020/TPI2014

Max Uplift 2=-154(LC 24), 16=-276(LC 12), 9=-196(LC 13) Max Grav 2=188(LC 23), 16=1631(LC 1), 9=792(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-52/487, 3-5=-75/655, 5-6=-455/150, 6-7=-371/163, 7-8=-1065/160, 8-9=-931/218 2-16=-414/154, 15-16=-588/210, 14-15=0/871, 7-14=-44/979, 9-11=-53/692 TOP CHORD **BOT CHORD**

5-16=-1205/246, 5-15=0/861, 7-15=-923/129, 11-14=-74/953, 8-11=-494/67 WEBS

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior(1) 1-6-0 to 15-4-0, Exterior(2R) 15-4-0 to 18-4-0, Interior(1) 18-4-0 to 32-2-0 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown: Lumber DOL=1.60 plate grip DOL=1.60

WB

Matrix-MS

0.76

- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=154, 16=276, 9=196.

Weight: 193 lb

Structural wood sheathing directly applied or 4-11-11 oc purlins.

Rigid ceiling directly applied or 6-0-0 oc bracing. Except:

10-0-0 oc bracing: 12-14

FT = 20%

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

May 18,2021

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITEK® connectors. This design is based only upon parameters and roperly a rev. \$192,000 BEFORE USE.

Design valid for use only with MITEK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing individual to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LIPSCOMB EAGLE - LOT 24 EC Job Truss Truss Type Qty T23985732 6 2797510 T11 Common Job Reference (optional) Builders FirstSource (Jacksonville, FL), Jacksonville, FL - 32244, 8.430 s Apr 20 2021 MiTek Industries, Inc. Fri May 14 15:19:31 2021 Page 1 ID:osZ6TzOUpxPd_JW0Sy_Z9DzF_pg-XmmME89xhgqgswvPTUM9JTmSfMdfe0b7K7K53yzGYGg 20-5-12 7-8-14 28-0-14 29-6-14 1-6-0 Scale = 1:62.1 4x6 = 8.00 12 3x6 / 5x8 > 7-7-01 2-1-8 9 8 7 3x6 = 2x4 || 5x8 = 2x4 || 3x4 = 20-5-12 7-8-14 [4:0-4-0,0-3-0], [5:0-2-3,Edge], [8:0-4-0,0-3-0] Plate Offsets (X,Y)-**PLATES** GRIP CSL DEFL. I/defl L/d LOADING (psf) SPACING-2-0-0 in (loc) 240 MT20 244/190 0.67 Vert(LL) -0.08 8-9 >999 TCLL 20.0 Plate Grip DOL 1 25 TC BC 180 TCDL 7.0 Lumber DOL 1.25 0.60 Vert(CT) -0.177-13 >999 0.0 WB 0.35 Horz(CT) 0.04 n/a n/a BCLL Rep Stress Incr YES Weight: 161 lb FT = 20% Code FBC2020/TPI2014 Matrix-MS BCDL 10.0 BRACING-LUMBER-Structural wood sheathing directly applied or 4-0-12 oc purlins, TOP CHORD 2x4 SP No.2 TOP CHORD 2x4 SP No.2 except end verticals. BOT CHORD **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing. 2x4 SP No.3 WEBS 1 Row at midpt 2-8, 4-8 WEBS REACTIONS. (size) 10=Mechanical, 5=0-3-8 Max Horz 10=-228(LC 8)

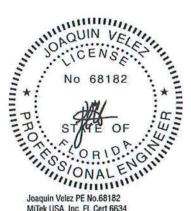
Max Uplift 10=-179(LC 12), 5=-227(LC 13) Max Grav 10=1031(LC 1), 5=1116(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-1089/210, 2-3=-983/259, 3-4=-987/255, 4-5=-1518/278, 1-10=-994/188

BOT CHORD 8-9=-197/920, 7-8=-122/1187, 5-7=-122/1187

3-8=-124/607, 4-8=-599/276, 4-7=0/320, 1-9=-141/912 WEBS

1) Unbalanced roof live loads have been considered for this design.


- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl. GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 12-8-14, Exterior(2R) 12-8-14 to 15-8-14, Interior(1) 15-8-14 to 29-6-14 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 10=179. 5=227.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

May 18,2021

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty LIPSCOMB EAGLE - LOT 24 EC Ply T23985733 GABLE 2797510 T11G Job Reference (optional) 8.430 s Apr 20 2021 MiTek Industries, Inc. Fri May 14 15:19:33 2021 Page 1 Builders FirstSource (Jacksonville, FL), Jacksonville, FL - 32244, ID:osZ6TzOUpxPd_JW0Sy_Z9DzF_pg-U8u6fqABDI5O6D3nbvOdOurwZAQQ6_iQnRpB7rzGYGe 28-0-14 Scale: 3/16"=1" 4x4 = 8.00 12 10 3x6 📎 11 12 13 3x6 / 3x4 > 15 1-9-5 16 4x8 || 31 30 29 28 27 26 25 24 23 22 21 20 19 18 3x4 = 5x6 = 28-0-14 Plate Offsets (X,Y)-- [16:0-3-8,Edge], [24:0-3-0,0-3-0]

LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	I/defl	L/d	PLATES	GRIP	
TCLL	20.0	Plate Grip DOL	1.25	TC	0.13	Vert(LL)	-0.00	17	n/r	120	MT20	244/190	
TCDL	7.0	Lumber DOL	1.25	BC	0.07	Vert(CT)	-0.01	17	n/r	120	1700000000		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.12	Horz(CT)	0.01	16	n/a	n/a			
BCDL	10.0	Code FBC2020/T	PI2014	Matri	x-S	100000000000000000000000000000000000000					Weight: 207 lb	FT = 20%	

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3 BRACING-

TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly a

Rigid ceiling directly applied or 10-0-0 oc bracing

WEBS 1 Row at midpt

7-24, 6-25, 8-23

REACTIONS. All bearings 28-0-14.

(lb) - Max Horz 31=-222(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 25, 26, 27, 28, 23, 22, 21, 20, 19, 18, 16 except 31=-118(LC

10), 29=-182(LC 12)

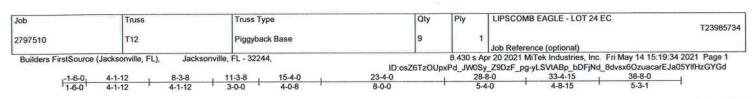
Max Grav All reactions 250 lb or less at joint(s) 31, 24, 25, 26, 27, 28, 29, 30, 23, 22, 21, 20, 19, 18, 16

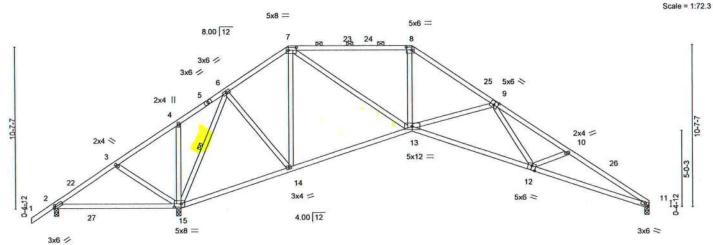
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Corner(3E) 0-1-12 to 3-1-12, Exterior(2N) 3-1-12 to 12-8-14, Corner(3R) 12-8-14 to 15-8-14, Exterior(2N) 15-8-14 to 29-6-14 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 25, 26, 27, 28, 23, 22, 21, 20, 19, 18, 16 except (jt=lb) 31=118, 29=182.

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:


May 18,2021


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MITEK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, crection and bracing of trusses and truss systems, see

ANSITPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	1	8-1-12	8-3-8	15-4-0		23-4-0		31-2-0		38-8-0	
		8-1-12	0-1-12	7-0-8		8-0-0		7-10-0		7-6-0	
Plate Offse	ets (X,Y)	[2:0-1-5,0-1-8], [7:0-6-4	,0-2-4], [8:0	-4-4,0-2-4], [9:0-	3-0,0-3-0], [1	1:0-2-10,0-1-8], [12	2:0-3-0,0-3-4], [15:0-5-4,	0-2-8]	7	
LOADING	(psf)	SPACING-	2-0-0	CSI		DEFL.	in (loc)	Vdefl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.67	Vert(LL)	0.17 15-18	>586	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.72	Vert(CT)	-0.36 12-13	>999	180		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.92	Horz(CT)	0.19 11	n/a	n/a	0.000	
BCDL	10.0	Code FBC2020/	/TPI2014	Mat	rix-MS					Weight: 217 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 *Except*

7-8: 2x4 SP M 31

BOT CHORD 2x4 SP No.2

2x4 SP No.3 WEBS

TOP CHORD

BOT CHORD WEBS

BRACING-

Structural wood sheathing directly applied or 3-6-6 oc purlins, except 2-0-0 oc purlins (6-0-0 max.): 7-8.

Rigid ceiling directly applied or 5-8-14 oc bracing. 1 Row at midpt 6-15

REACTIONS.

(size) 2=0-3-8, 15=0-3-8, 11=0-3-8

Max Horz 2=233(LC 9)

Max Uplift 2=-498(LC 24), 15=-415(LC 12), 11=-214(LC 13) Max Grav 2=49(LC 13), 15=2335(LC 1), 11=928(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-140/1092, 3-4=-181/1296, 4-6=-86/1285, 6-7=-388/141, 7-8=-1079/219,

8-9=-1380/207, 9-10=-2256/468, 10-11=-2515/547

2-15=-871/257, 14-15=-455/276, 13-14=-147/348, 12-13=-181/1734, 11-12=-412/2158 **BOT CHORD**

3-15=-258/146, 6-14=-44/940, 7-14=-761/93, 7-13=-126/1031, 8-13=-2/445,

9-13=-615/301, 9-12=-109/495, 6-15=-1865/233

NOTES-

WEBS

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior(1) 1-6-0 to 15-4-0, Exterior(2R) 15-4-0 to 19-6-15, Interior(1) 19-6-15 to 23-4-0, Exterior(2R) 23-4-0 to 27-6-15, Interior(1) 27-6-15 to 38-8-0 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

4) Provide adequate drainage to prevent water ponding.

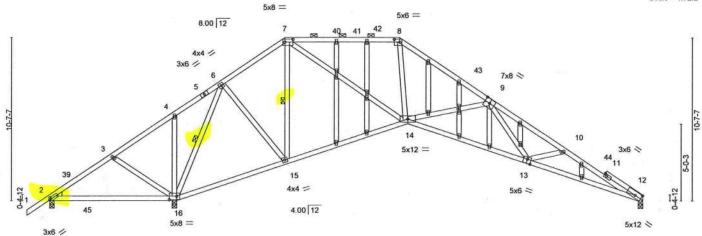
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Bearing at joint(s) 11 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=498, 15=415, 11=214.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

May 18,2021

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information


ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information

6904 Parke East Blvd

Job	Truss		Truss Type)		Qty	Ply	LIPSCOM	IB EAGLE - LOT 24 EC		
2797510	T12G		GABLE			1	1				T23985735
				Contract Livers				Job Refere	ence (optional)		
Builders FirstSource (Ja	acksonville, FL),	Jacksonvi	lle, FL - 32244,	9			8.430 s A	pr 20 2021 N	MiTek Industries, Inc. F	ri May 14 15:19:36	2021 Page 1
						ID:osZ6TzOUp	oxPd_JW0Sy_	Z9DzF_pg-u	jaFlsD4VDTzzhnMG2	yK0XTG?NIIJB4sTI	P1skAzGYGb
,-1-6-0,	4-1-12	8-3-8	11-3-8	15-4-0	1	22-9-11	, 28	3-8-0	33-4-15	38-8-0	Charles of Bostonian I
160	4 4 40	4 1 12	200	400		7 5 44	- E	10.5	4 0 4E	E 2 4	—

Scale = 1:72.2

L	0-1-12	0-9-0	13-4-0		23-4-0			31-2-	U	30-0-0	- 1	
	8-1-12	0-1-12	7-0-8		8-0-0	,		7-10-	0	7-6-0		
sets (X,Y)-	[2:0-1-5,0-1-8], [7:0-6-4,0)-2-4], [8:0-4	-4,0-2-4], [9:0-4	-0,0-3-4], [12:	Edge,0-3-0], [13:	0-3-0,0-3	3-4], [16	6:0-5-12,0	0-2-12], [24:0	-1-9,0-1-0]		
G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP	
20.0	Plate Grip DOL	1.25	TC	0.89	Vert(LL)	0.17 1	16-35	>584	240	MT20	244/190	
7.0	Lumber DOL	1.25	BC	0.76	Vert(CT)	-0.39 1	13-14	>929	180			
0.0	Rep Stress Incr	YES	WB	0.72	Horz(CT)	0.20	12	n/a	n/a			
10.0	Code FBC2020/T	PI2014	Matri	x-MS						Weight: 257 lb	FT = 20%	
	7.0	8-1-12 Sets (X,Y)- [2:0-1-5,0-1-8], [7:0-6-4,0 3 (psf) SPACING- 20.0 Plate Grip DOL 17.0 Lumber DOL 0.0 Rep Stress Incr	8-1-12 0-1-12 sets (X,Y)- [2:0-1-5,0-1-8], [7:0-6-4,0-2-4], [8:0-4 3 (psf) SPACING- 2-0-0 20.0 Plate Grip DOL 1.25 7.0 Lumber DOL 1.25 0.0 Rep Stress Incr YES	8-1-12 0-1-12 7-0-8 sets (X,Y)- [2:0-1-5,0-1-8], [7:0-6-4,0-2-4], [8:0-4-4,0-2-4], [9:0-4 3 (psf) SPACING- 2-0-0 CSI. 20.0 Plate Grip DOL 1.25 TC 7.0 Lumber DOL 1.25 BC 0.0 Rep Stress Incr YES WB	8-1-12 0-1-12 7-0-8 sets (X,Y)- [2:0-1-5,0-1-8], [7:0-6-4,0-2-4], [8:0-4-4,0-2-4], [9:0-4-0,0-3-4], [12: 3 (psf) SPACING- 2-0-0 CSI. 20.0 Plate Grip DOL 1.25 TC 0.89 7.0 Lumber DOL 1.25 BC 0.76 0.0 Rep Stress Incr YES WB 0.72	8-1-12 0-1-12 7-0-8 8-0-0 sets (X,Y)— [2:0-1-5,0-1-8], [7:0-6-4,0-2-4], [8:0-4-4,0-2-4], [9:0-4-0,0-3-4], [12:Edge,0-3-0], [13: G (psf) SPACING- 2-0-0 CSI. DEFL. 20.0 Plate Grip DOL 1.25 TC 0.89 Vert(LL) 7.0 Lumber DOL 1.25 BC 0.76 Vert(CT) 0.0 Rep Stress Incr YES WB 0.72 Horz(CT)	8-1-12 0-1-12 7-0-8 8-0-0 sets (X,Y)— [2:0-1-5,0-1-8], [7:0-6-4,0-2-4], [8:0-4-4,0-2-4], [9:0-4-0,0-3-4], [12:Edge,0-3-0], [13:0-3-0,0-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-	8-1-12 0-1-12 7-0-8 8-0-0 sets (X,Y)— [2:0-1-5,0-1-8], [7:0-6-4,0-2-4], [8:0-4-4,0-2-4], [9:0-4-0,0-3-4], [12:Edge,0-3-0], [13:0-3-0,0-3-4], [16:0-3-4], [16:0-4-4,0-2-4], [16:0-4-0,0-3-4], [16:0-3-	8-1-12 0-1-12 7-0-8 8-0-0 7-10- sets (X,Y)— [2:0-1-5,0-1-8], [7:0-6-4,0-2-4], [8:0-4-4,0-2-4], [9:0-4-0,0-3-4], [12:Edge,0-3-0], [13:0-3-0,0-3-4], [16:0-5-12,0-3-2], [16:0-5-12,0-3-2], [16	8-1-12 0-1-12 7-0-8 8-0-0 7-10-0 sets (X,Y)— [2:0-1-5,0-1-8], [7:0-6-4,0-2-4], [8:0-4-4,0-2-4], [9:0-4-0,0-3-4], [12:Edge,0-3-0], [13:0-3-0,0-3-4], [16:0-5-12,0-2-12], [24:0 3 (psf) SPACING- 2-0-0 CSI. DEFL. in (loc) l/defl L/d 20.0 Plate Grip DOL 1.25 TC 0.89 Vert(LL) 0.17 16-35 >584 240 7.0 Lumber DOL 1.25 BC 0.76 Vert(CT) -0.39 13-14 >929 180 0.0 Rep Stress Incr YES WB 0.72 Horz(CT) 0.20 12 n/a n/a	8-1-12 0-1-12 7-0-8 8-0-0 7-10-0 7-8-0 sets (X,Y)— [2:0-1-5,0-1-8], [7:0-6-4,0-2-4], [8:0-4-4,0-2-4], [9:0-4-0,0-3-4], [12:Edge,0-3-0], [13:0-3-0,0-3-4], [16:0-5-12,0-2-12], [24:0-1-9,0-1-0] 3 (psf) SPACING- 2-0-0 CSI. DEFL. in (loc) I/defl L/d PLATES 20.0 Plate Grip DOL 1.25 TC 0.89 Vert(LL) 0.17 16-35 >584 240 MT20 7.0 Lumber DOL 1.25 BC 0.76 Vert(CT) -0.39 13-14 >929 180 0.0 Rep Stress Incr YES WB 0.72 Horz(CT) 0.20 12 n/a n/a	8-1-12 0-1-12 7-0-8 8-0-0 7-10-0 7-8-0 sets (X,Y)— [2:0-1-5,0-1-8], [7:0-6-4,0-2-4], [8:0-4-4,0-2-4], [9:0-4-0,0-3-4], [12:Edge,0-3-0], [13:0-3-0,0-3-4], [16:0-5-12,0-2-12], [24:0-1-9,0-1-0] 3 (psf) SPACING- 2-0-0 CSI. DEFL. in (loc) I/defl L/d PLATES GRIP 20.0 Plate Grip DOL 1.25 TC 0.89 Vert(LL) 0.17 16-35 >584 240 MT20 244/190 7.0 Lumber DOL 1.25 BC 0.76 Vert(CT) -0.39 13-14 >929 180 0.0 Rep Stress Incr YES WB 0.72 Horz(CT) 0.20 12 n/a n/a

BRACING-

TOP CHORD

BOT CHORD

WEBS

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 2x4 SP No.3

OTHERS WEDGE

Left: 2x4 SP No.3

REACTIONS. (size) 2=0-3-8, 16=0-3-8, 12=0-3-8

Max Horz 2=233(LC 9)

Max Uplift 2=-627(LC 24), 16=-434(LC 12), 12=-204(LC 13)

Max Grav 2=81(LC 13), 16=2500(LC 1), 12=886(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-166/1318, 3-4=-207/1530, 4-6=-115/1520, 6-7=-306/126, 7-8=-984/203, TOP CHORD

8-9=-1312/176, 9-10=-2424/486, 10-12=-2757/606

BOT CHORD 2-16=-1058/300, 15-16=-615/311, 14-15=-183/278, 13-14=-204/1781, 12-13=-487/2484 **WEBS**

3-16=-263/147, 6-16=-1977/249, 6-15=-61/1014, 7-15=-828/109, 7-14=-138/1049,

9-14=-710/337, 9-13=-121/617, 10-13=-388/215, 8-14=0/415

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl. GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior(1) 1-6-0 to 15-4-0, Exterior(2R) 15-4-0 to 19-6-15, Interior(1) 19-6-15 to 22-9-11, Exterior(2R) 22-9-11 to 27-0-10, Interior(1) 27-0-10 to 38-6-4 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) Provide adequate drainage to prevent water ponding.
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Bearing at joint(s) 12 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=627, 16=434, 12=204,
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Structural wood sheathing directly applied or 2-2-0 oc purlins, except

6-16, 7-15

2-0-0 oc purlins (2-4-4 max.): 7-8.

1 Row at midpt

Rigid ceiling directly applied or 5-1-15 oc bracing.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

May 18,2021

JW0Sy_Z9DzF_pg-Mw8dVCDiGWbqarMYqITZYk0UpnbQ2hX0i3nPGczGYGa 12-8-14 30-9-13 4-8-15 3-0-0 4-0-8 5-10-5

Scale = 1:68.4 5x8 = 5x6 = 36 8.00 12 3x4 / 7x8 > 11 4x6 / 5x8 = 3x10 < 10 12 3x4 = 5x8 < 4.00 12 13 5x12 >

	L.	5-8-6	12-8-14			-8-14			6-14		36-0-14	
	100	5-8-6	7-0-8			-0-0			10-0		7-6-0	
Plate Offs	sets (X,Y)-	[4:0-6-4,0-2-4], [5:0-4-4,0	-2-4], [6:0-4-0,0	-3-4], [9:0-4	-12,0-2-14],	[10:0-4-0,0-3-4], [1	1:0-2-1	2,0-3-8	, [13:0-5-	4,0-2-8], [22	0-1-9,0-1-0]	
LOADING	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.69	Vert(LL)	-0.27	10-11	>999	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.90	Vert(CT)	-0.58	10-11	>737	180	The contract of	
BCLL	0.0 *	Rep Stress Incr Code FBC2020/T	YES PI2014	WB Matri	0.57 x-MS	Horz(CT)	0.36	9	n/a	n/a	Weight: 250 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 *Except* 4-5,6-9: 2x4 SP M 31

BOT CHORD 2x4 SP No.2 *Except*

9-10: 2x4 SP M 31

WEBS 2x4 SP No.3

OTHERS 2x4 SP No.3 BRACING-BOT CHORD

Structural wood sheathing directly applied or 2-2-0 oc purlins, TOP CHORD

except end verticals, and 2-0-0 oc purlins (4-6-12 max.): 4-5.

Rigid ceiling directly applied or 9-3-8 oc bracing.

REACTIONS.

(size) 14=Mechanical, 9=0-3-8

Max Horz 14=-213(LC 8) Max Uplift 14=-244(LC 12), 9=-264(LC 13) Max Grav 14=1324(LC 1), 9=1324(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

5x8 =

1-2=-1445/278, 2-3=-1422/393, 3-4=-1721/380, 4-5=-2236/374, 5-6=-2928/425, TOP CHORD

6-7=-4081/711, 7-9=-4436/834, 1-14=-1268/259

12-13=-258/1394, 11-12=-185/1484, 10-11=-401/3222, 9-10=-689/3974 BOT CHORD WEBS

2-13=-270/189, 3-13=-459/22, 4-11=-135/1028, 6-11=-730/341, 6-10=-122/638, 7-10=-421/219, 1-13=-151/1145, 5-11=-148/1224

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 12-8-14, Exterior(2R) 12-8-14 to 16-11-13, Interior(1) 16-11-13 to 20-2-9, Exterior(2R) 20-2-9 to 24-5-8, Interior(1) 24-5-8 to 35-11-2 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding.
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Refer to girder(s) for truss to truss connections.
- 11) Bearing at joint(s) 9 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

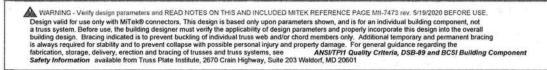
May 18,2021

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	LIPSCOMB EAGLE - LOT 24 EC
2797510	T13G	GABLE	1	1	T2398573
					Job Reference (optional)

Builders FirstSource (Jacksonville, FL),


Jacksonville, FL - 32244,

8.430 s Apr 20 2021 MiTek Industries, Inc. Fri May 14 15:19:37 2021 Page 2 ID:osZ6TzOUpxPd_JW0Sy_Z9DzF_pg-Mw8dVCDiGWbqarMYqITZYk0UpnbQ2hX0i3nPGczGYGa

NOTES-

12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 14=244, 9=264.

13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Qty LIPSCOMB EAGLE - LOT 24 EC Job Truss Truss Type T23985737 2 T14 2797510 Common Job Reference (optional) 8.430 s Apr 20 2021 MiTek Industries, Inc. Fri May 14 15:19:38 2021 Page 1 Builders FirstSource (Jacksonville, FL), Jacksonville, FL - 32244, ID:osZ6TzOUpxPd_JW0Sy_Z9DzF_pg-q6h?iXEK1qjhC?xiNS_o5yYjdBxpn8L9xjWyo2zGYGZ 21-6-0 1-6-0 10-0-0 4-11-11 5-0-5 Scale = 1:45.0 4x4 = 8.00 12 2x4 > 2x4 / 0-4-12 17 8 5x8 = 3x6 > 3x6 / 20-0-0 Plate Offsets (X,Y)-[2:0-1-5,0-1-8], [6:0-1-5,0-1-8], [8:0-4-0,0-3-4] GRIP SPACING-CSI. DEFL I/defl L/d **PLATES** LOADING (psf) Plate Grip DOL 1.25 TC 0.43 Vert(LL) 0.26 8-14 >907 240 MT20 244/190 TCLL 20.0 1.25 BC 0.89 Vert(CT) -0.33 8-14 >730 180 TCDL 7.0 Lumber DOL

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

0.02

6 n/a n/a

Rigid ceiling directly applied or 7-1-14 oc bracing.

Structural wood sheathing directly applied or 5-6-13 oc purlins.

LUMBER-

BCLL

BCDL

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3

0.0 *

10.0

REACTIONS.

(size) 2=0-3-8, 6=0-3-8 Max Horz 2=-164(LC 10)

Max Uplift 2=-169(LC 12), 6=-169(LC 13) Max Grav 2=821(LC 1), 6=821(LC 1)

Rep Stress Incr

Code FBC2020/TPI2014

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1014/702, 3-4=-779/649, 4-5=-779/649, 5-6=-1014/702 BOT CHORD 2-8=-527/817, 6-8=-538/817

4-8=-623/563, 5-8=-295/209, 3-8=-295/209 WEBS

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior(1) 1-6-0 to 10-0-0, Exterior(2R) 10-0-0 to 13-0-0, Interior(1) 13-0-0 to 21-6-0 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WB 0.54

Matrix-MS

3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

YES

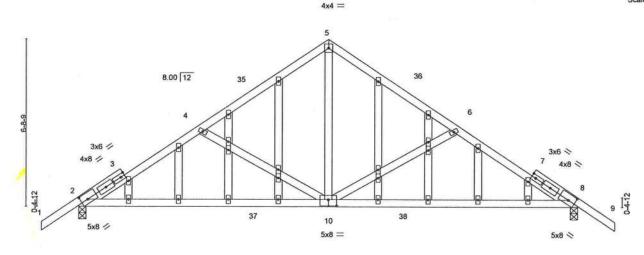
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb)

FT = 20%

Weight: 98 lb

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

May 18,2021


WARNING - Verity design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIN-4/3 FeV. 5/19/2020 BEFORE USE.

Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-99 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Typ	oe .	Qty	Ply	LIPSCOMB EAGLE - LOT 24 EC		
2797510	T14G	GABLE		1	1			T23985738
		Street Street				Job Reference (optional)		
Builders FirstSour	rce (Jacksonville, FL),	Jacksonville, FL - 32244	١,	ID:osZ6TzOUpxPd		Apr 20 2021 MiTek Industries, Inc. Fri 9DzF pg-IIFOwtFyo8rYq8WxxAV1e9		
	-1-6-0	4-11-11	10-0-0		15-0-5	20-0-0	, 21-6-0 ,	
	1-6-0	4-11-11	5-0-5		5-0-5	4-11-11	1.6.0	

Scale = 1:44.5

Dieta Off	sets (X,Y)-	12:0.2 E	10-0-0 3-5,0-3-0], [8:0-3-5,0-3-0], [10:0-4-0,0-3-0]							10-	0-0			
Flate Oils	sets (A, 1)-	[2.0-3-3,	0-3-0], [0.0-3-3,0	-3-0], [10.0-4-0	7,0-3-0]							r		-
LOADING	G (psf)	S	PACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL	20.0	P	late Grip DOL	1.25	TC	0.57	Vert(LL)	0.24	10-34	>999	240	MT20	244/190	
TCDL	7.0	Li	umber DOL	1.25	BC	0.81	Vert(CT)	-0.29	10-31	>814	180	0.400000000		
BCLL	0.0 *	R	ep Stress Incr	YES	WB	0.49	Horz(CT)	0.02	8	n/a	n/a			
BCDL	10.0	l c	ode FBC2020/TI	PI2014	Matri	x-MS	1.400000 A. M. C. C. F. C.					Weight: 136 lb	FT = 20%	

LUMBER-

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 WEBS 2x4 SP No.3 2x4 SP No.3 **OTHERS**

BRACING-

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 4-8-9 oc purlins. Rigid ceiling directly applied or 6-11-2 oc bracing.

20-0-0

REACTIONS.

(size) 2=0-3-8, 8=0-3-8 Max Horz 2=-156(LC 10)

Max Uplift 2=-171(LC 12), 8=-171(LC 13) Max Grav 2=818(LC 1), 8=818(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-1045/738, 4-5=-795/653, 5-6=-795/653, 6-8=-1045/737

BOT CHORD

2-10=-585/882, 8-10=-597/882

WEBS

5-10=-633/579, 6-10=-342/259, 4-10=-342/259

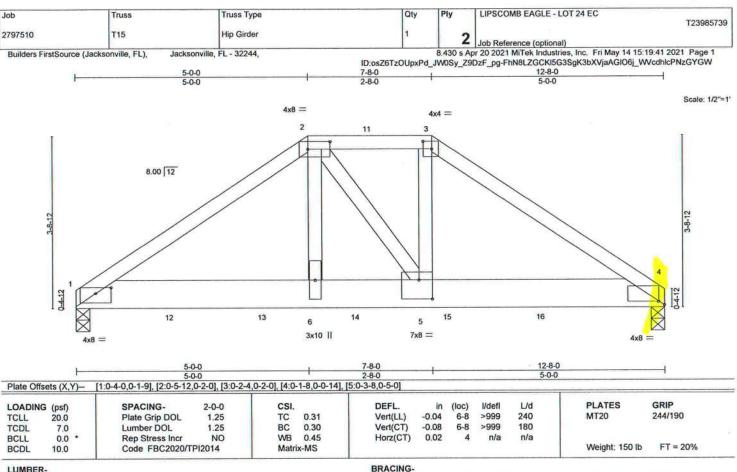
NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior(1) 1-6-0 to 10-0-0, Exterior(2R) 10-0-0 to 13-0-0, Interior(1) 13-0-0 to 21-6-0 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

10-0-0

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=171, 8=171.



Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

May 18,2021

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MTTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ucliapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 2x8 SP 2400F 2.0E BOT CHORD

2x4 SP No.3 WEBS

REACTIONS

(size) 1=0-3-8, 4=0-3-8

Max Horz 1=-72(LC 25) Max Uplift 1=-695(LC 8), 4=-814(LC 9) Max Grav 1=3371(LC 1), 4=4034(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1-2=-4637/990, 2-3=-4033/895, 3-4=-4772/1011 TOP CHORD 1-6=-796/3814, 5-6=-813/3908, 4-5=-791/3929 **BOT CHORD**

WEBS NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

2-6=-385/2132, 2-5=-91/275, 3-5=-420/2349

Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc.

Bottom chords connected as follows: 2x8 - 2 rows staggered at 0-9-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Unbalanced roof live loads have been considered for this design.

- 4) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone; Lumber DOL=1.60 plate grip DOL=1.60
- 5) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

Provide adequate drainage to prevent water ponding.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=695, 4=814.
- 10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 97 lb down and 85 lb up at 5-0-0, and 97 lb down and 75 lb up at 6-4-0, and 97 lb down and 85 lb up at 7-8-0 on top chord, and 1011 lb down and 199 lb up at 2-0-12, 1011 lb down and 199 lb up at 4-0-12, 131 lb down and 34 lb up at 5-0-0, 1011 lb down and 199 lb up at 6-0-12, 49 lb down and 15 lb up at 6-4-0, 131 lb down and 34 lb up at 7-7-4, 1011 lb down and 199 lb up at 8-0-12, and 1011 lb down and 199 Ib up at 10-0-12, and 1015 lb down and 195 lb up at 12-0-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

No 6818

No 6818

No 6818

Daquin Velez PE No.68182

Mitek USA. Inc. 5 SOAQUIN VEL

Structural wood sheathing directly applied or 5-6-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

May 18,2021

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITe& connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify a true. The overall building designer must verify and properly demands. Per general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and trues systems, see ANSI/TH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Tampa, FL 36610

Job	Truss	Truss Type	Qty	Ply	LIPSCOMB EAGLE - LOT 24 EC	
2797510	T15	Hip Girder	1	2	Job Reference (optional)	3985739

Builders FirstSource (Jacksonville, FL),

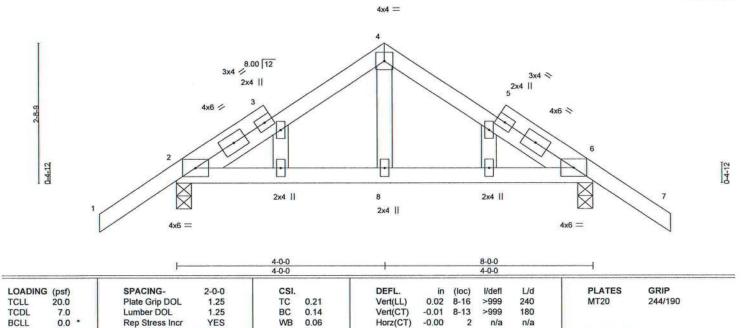
Jacksonville, FL - 32244,

8.430 s Apr 20 2021 MiTek Industries, Inc. Fri May 14 15:19:41 2021 Page 2 $ID:osZ6TzOUpxPd_JW0Sy_Z9DzF_pg-FhN8LZGCKI5G3SgK3bXVjaAGI06j_WVcdhlcPNzGYGW$

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)


Vert: 1-2=-54, 2-3=-54, 3-4=-54, 1-4=-20

Concentrated Loads (lb)
Vert: 2=-59(B) 3=-59(B) 5=-91(B) 10=-1015(F) 11=-59(B) 12=-1011(F) 13=-1011(F) 14=-1049(F=-1011, B=-38) 15=-1011(F) 16=-1011(F)

LIPSCOMB EAGLE - LOT 24 EC Truss Type Qtv .lob Truss T23985740 2797510 T15G GABLE Job Reference (optional) 8.430 s Apr 20 2021 MiTek Industries, Inc. Fri May 14 15:19:42 2021 Page 1 Jacksonville, FL - 32244. Builders FirstSource (Jacksonville, FL), ID:osZ6TzOUpxPd_JW0Sy_Z9DzF_pg-jtxWYvHr53D7hcFWcl3kFojR6oUQj3nlsLUAxpzGYGV 4-0-0 8-0-0 9-6-0 4-0-0 1-6-0

Scale = 1:21.4

LUMBER-

BCDL

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3

10.0

BRACING-

BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

Weight: 42 lb

FT = 20%

REACTIONS.

(size) 2=0-3-8, 6=0-3-8

Max Horz 2=-71(LC 10)

Max Uplift 2=-91(LC 12), 6=-91(LC 13) Max Grav 2=374(LC 1), 6=374(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Code FBC2020/TPI2014

TOP CHORD 2-4=-303/360, 4-6=-303/361

NOTES-

Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior(1) 1-6-0 to 4-0-0, Exterior(2R) 4-0-0 to 7-1-5, Interior(1) 7-1-5 to 9-6-0 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Matrix-MS

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

5) Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

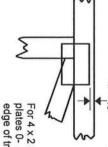
8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

May 18,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see __ANSITPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Symbols

PLATE LOCATION AND ORIENTATION

Dimensions are in ft-in-sixteenths. Apply plates to both sides of truss Center plate on joint unless x, y and fully embed teeth. offsets are indicated

edge of truss. plates 0- 1/16" from outside For 4 x 2 orientation, locate

œ

0

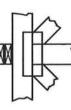
G

required direction of slots in connector plates This symbol indicates the

* Plate location details available in MiTek 20/20 software or upon request.

PLATE SIZE

4 × 4

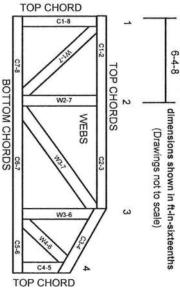

the length parallel to slots. width measured perpendicular to slots. Second dimension is The first dimension is the plate

LATERAL BRACING LOCATION

output. Use T or I bracing if indicated. by text in the bracing section of the Indicated by symbol shown and/or

BEARING

number where bearings occur. reaction section indicates joint Min size shown is for crushing only (supports) occur. Icons vary but Indicates location where bearings


Industry Standards:

ANSI/TPI1: National Design Specification for Metal Plate Connected Wood Truss Construction Design Standard for Bracing.

DSB-89: BCSI:

Connected Wood Trusses. Installing & Bracing of Metal Plate Guide to Good Practice for Handling, Building Component Safety Information,

Numbering System

THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

PRODUCT CODE APPROVALS

ICC-ES Reports:

truss unless otherwise shown. Trusses are designed for wind loads in the plane of the

section 6.3 These truss designs rely on lumber values established by others. Lumber design values are in accordance with ANSI/TPI 1

MiTek Engineering Reference Sheet: MII-7473 rev. 5/19/2020

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO

ER-3907, ESR-2362, ESR-1397, ESR-3282 ESR-1311, ESR-1352, ESR1988

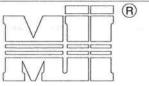
© 2012 MiTek® All Rights Reserved

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building all other interested parties. designer, erection supervisor, property owner and
- Cut members to bear tightly against each other
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to

camber for dead load deflection


- Plate type, size, orientation and location dimensions ndicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that
- Top chords must be sheathed or purlins provided at spacing indicated on design
- . Bottom chords require lateral bracing at 10 ft. spacing. or less, if no ceiling is installed, unless otherwise noted
- Connections not shown are the responsibility of others.
- . Do not cut or alter truss member or plate without prior approval of an engineer
- Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable project engineer before use. environmental, health or performance risks. Consult with
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.

					κ.	76
				NF.		

T-BRACE / I-BRACE DETAIL WITH 2X BRACE ONLY

MII-T-BRACE 2

MiTek USA, Inc. Page 1 of 1

MiTek USA, Inc.

Note: T-Bracing / I-Bracing to be used when continuous lateral bracing is impractical. T-Brace / I-Brace must cover 90% of web length.

Note: This detail NOT to be used to convert T-Brace / I-Brace webs to continuous lateral braced webs.

Nailing Pattern						
T-Brace size	Nail Size	Nail Spacing				
2x4 or 2x6 or 2x8	10d (0.131" X 3")	6" o.c.				

Note: Nail along entire length of T-Brace / I-Brace (On Two-Ply's Nail to Both Plies)

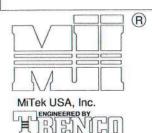
	,, \	Nails	
		SPAC	ING
WEB	+	1+ 1-1	
		T	-BRACE
Nails	T-Brace Web		

Nails	
Web	I-Brace
Nails	

	Brace Size for One-Ply Truss				
	Specified Continuous Rows of Lateral Bracing				
Web Size	1	2			
2x3 or 2x4	2x4 T-Brace	2x4 I-Brace			
2x6	2x6 T-Brace	2x6 I-Brace			
2x8	2x8 T-Brace	2x8 I-Brace			

	Brace Size for Two-Ply Truss Specified Continuous Rows of Lateral Bracing				
Web Size	1	2			
2x3 or 2x4	2x4 T-Brace	2x4 I-Brace			
2x6	2x6 T-Brace	2x6 I-Brace			
2x8	2x8 T-Brace	2x8 I-Brace			

T-Brace / I-Brace must be same species and grade (or better) as web member.

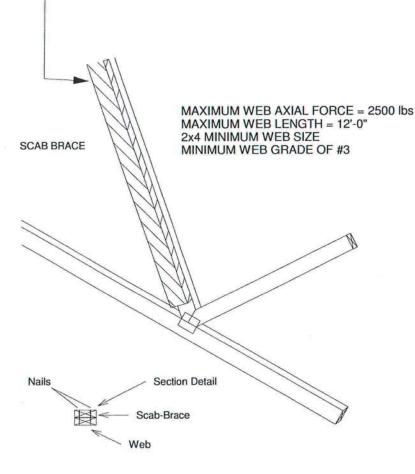

Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

SCAB-BRACE DETAIL

MII-SCAB-BRACE

MiTek USA, Inc.

Page 1 of 1



Note: Scab-Bracing to be used when continuous lateral bracing at midpoint (or T-Brace) is impractical.

Scab must cover full length of web +/- 6".

*** THIS DETAIL IS NOT APLICABLE WHEN BRACING IS *** REQUIRED AT 1/3 POINTS OR I-BRACE IS SPECIFIED.

APPLY 2x___ SCAB TO ONE FACE OF WEB WITH 2 ROWS OF 10d (0.131" X 3") NAILS SPACED 6" O.C. SCAB MUST BE THE SAME GRADE, SIZE AND SPECIES (OR BETTER) AS THE WEB.

Scab-Brace must be same species grade (or better) as web member.

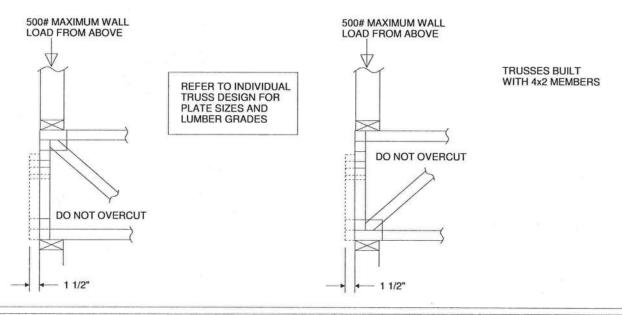
Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

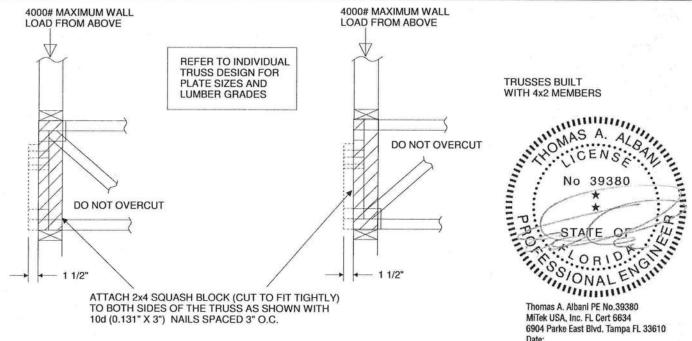
STANDARD REPAIR TO REMOVE END VERTICAL (RIBBON NOTCH VERTICAL)

MII-REP05

February 12, 2018

MiTek USA, Inc. Page 1 of 1

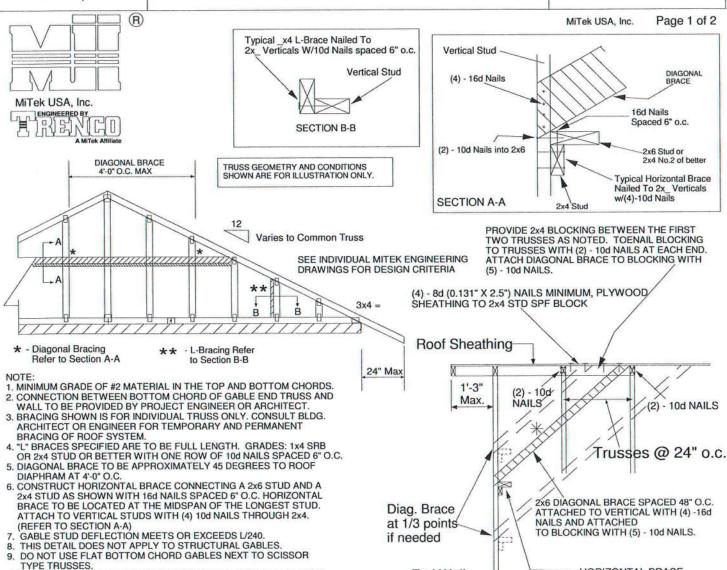

MiTek USA, Inc. ENGINEERED BY


- 1. THIS IS A SPECIFIC REPAIR DETAIL TO BE USED ONLY FOR ITS ORIGINAL INTENTION. THIS REPAIR DOES NOT IMPLY THAT THE REMAINING PORTION OF THE TRUSS IS UNDAMAGED. THE ENTIRE TRUSS SHALL BE INSPECTED TO VERIFY THAT NO FURTHER REPAIRS ARE REQUIRED. WHEN THE REQUIRED REPAIRS ARE PROPERLY APPLIED, THE TRUSS WILL BE CAPABLE OF SUPPORTING THE LOADS INDICATED.
- 2. ALL MEMBERS MUST BE RETURNED TO THEIR ORIGINAL POSITIONS BEFORE APPLYING REPAIR AND HELD IN PLACE DURING APPLICATION OF REPAIR.

 3. THE END DISTANCE, EDGE DISTANCE, AND SPACING OF NAILS SHALL BE
- SUCH AS TO AVOID SPLITTING OF THE WOOD.

 4. LUMBER MUST BE CUT CLEANLY AND ACCURATELY AND THE REMAINING WOOD MUST BE UNDAMAGED.

 5. THIS REPAIR IS TO BE USED FOR SINGLE PLY TRUSSES IN THE 4X_ORIENTATION ONLY.
- 6. CONNECTOR PLATES MUST BE FULLY IMBEDDED AND UNDISTURBED.



Standard Gable End Detail

MII-GE130-D-SP

End Wall

Minimum Stud Size	Stud Spacing	Without Brace	1x4 L-Brace	2x4 L-Brace	DIAGONAL BRACE	2 DIAGONAL BRACES AT 1/3 POINTS
Species and Grade			ngth			
2x4 SP No. 3 / Stud	12" O.C.	3-9-13	4-1-1	5-9-6	7-1-3	11-5-7
2x4 SP No. 3 / Stud	16" O.C.	3-5-4	3-6-8	5-0-2	6-10-8	10-3-13
2x4 SP No. 3 / Stud	24" O.C.	2-9-11	2-10-11	4-1-1	5-7-6	8-5-1

Diagonal braces over 6'-3" require a 2x4 T-Brace attached to one edge. Diagonal braces over 12'-6" require 2x4 I-braces attached to both edges. Fasten T and I braces to narrow edge of diagonal brace with 10d nails 8" o.c., with 3" minimum end distance. Brace must cover 90% of diagonal length.

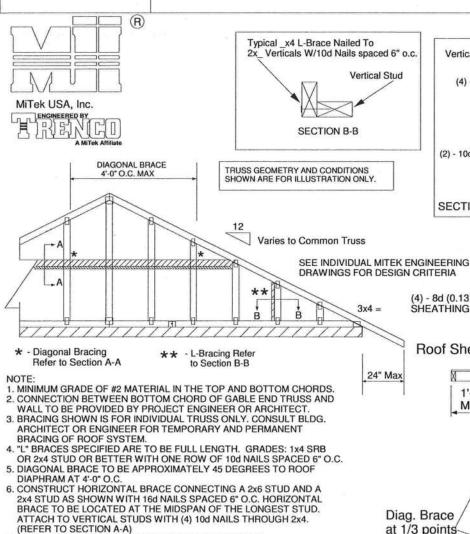
10. SOUTHERN PINE LUMBER DESIGN VALUES ARE THOSE EFFECTIVE

06-01-13 BY SPIB/ALSC.

11. NAILS DESIGNATED 10d ARE (0.131" X 3") AND NAILS DESIGNATED 16d ARE (0.131" X 3.5")

MAX MEAN ROOF HEIGHT = 30 FEET CATEGORY II BUILDING EXPOSURE D ASCE 7-98, ASCE 7-02, ASCE 7-05 130 MPH ASCE 7-10 160 MPH DURATION OF LOAD INCREASE: 1.60

STUD DESIGN IS BASED ON COMPONENTS AND CLADDING. CONNECTION OF BRACING IS BASED ON MWFRS.


HORIZONTAL BRACE

(SEE SECTION A-A)

Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

Standard Gable End Detail

MII-GE130-SP

MiTek USA, Inc. Page 1 of 2 Vertical Stud DIAGONAL BRACE (4) - 16d Nails 16d Nails Spaced 6" o.c. (2) - 10d Nails into 2x6 2x6 Stud or 2x4 No.2 of better Typical Horizontal Brace Nailed To 2x_ Verticals w/(4)-10d Nails SECTION A-A 2x4 Stud

> PROVIDE 2x4 BLOCKING BETWEEN THE FIRST TWO TRUSSES AS NOTED. TOENAIL BLOCKING TO TRUSSES WITH (2) - 10d NAILS AT EACH END. ATTACH DIAGONAL BRACE TO BLOCKING WITH (5) - 10d NAILS.

(4) - 8d (0.131" X2.5") NAILS MINIMUM, PLYWOOD SHEATHING TO 2x4 STD SPF BLOCK

Roof Sheathing

1'-3" (2) - 10d Max NAILS (2) - 10d NAILS Trusses @ 24" o.c.

NAILS AND ATTACHED

Diag. Brace at 1/3 points if needed

TO BLOCKING WITH (5) - 10d NAILS.

HORIZONTAL BRACE

End Wall

(SEE SECTION A-A)

2x6 DIAGONAL BRACE SPACED 48" O.C.

ATTACHED TO VERTICAL WITH (4) -16d

Minimum Stud Size	Stud Spacing	Without Brace	1x4 L-Brace	2x4 L-Brace	DIAGONAL BRACE	2 DIAGONAL BRACES AT 1/3 POINTS		
Species and Grade		Maximum Stud Length						
2x4 SP No. 3 / Stud	12" O.C.	4-0-7	4-5-6	6-3-8	8-0-15	12-1-6		
2x4 SP No. 3 / Stud	16" O.C.	3-8-0	3-10-4	5-5-6	7-4-1	11-0-1		
2x4 SP No. 3 / Stud	24" O.C.	3-0-10	3-1-12	4-5-6	6-1-5	9-1-15		

Diagonal braces over 6'-3" require a 2x4 T-Brace attached to one edge. Diagonal braces over 12'-6" require 2x4 I-braces attached to both edges. Fasten T and I braces to narrow edge of diagonal brace with 10d nails 8" o.c., with 3" minimum end distance. Brace must cover 90% of diagonal length.

GABLE STUD DEFLECTION MEETS OR EXCEEDS L/240.

NAILS DESIGNATED 10d ARE (0.131" X 3") AND NAILS DESIGNATED 16d ARE (0.131" X 3.5")

THIS DETAIL DOES NOT APPLY TO STRUCTURAL GABLES. DO NOT USE FLAT BOTTOM CHORD GABLES NEXT TO SCISSOR

10. SOUTHERN PINE LUMBER DESIGN VALUES ARE THOSE EFFECTIVE

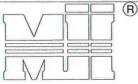
MAX MEAN ROOF HEIGHT = 30 FEET CATEGORY II BUILDING EXPOSURE B or C ASCE 7-98, ASCE 7-02, ASCE 7-05 130 MPH ASCE 7-10 160 MPH **DURATION OF LOAD INCREASE: 1.60**

TYPE TRUSSES.

06-01-13 BY SPIB/ALSC.

STUD DESIGN IS BASED ON COMPONENTS AND CLADDING. CONNECTION OF BRACING IS BASED ON MWFRS.

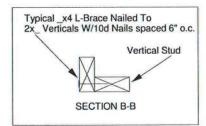
Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610



Standard Gable End Detail

MII-GE140-001

Page 1 of 2


MiTek USA, Inc.

MiTek USA, Inc.

ENGINEERED BY

DIAGONAL BRACE 4'-0" O.C. MAX

TRUSS GEOMETRY AND CONDITIONS SHOWN ARE FOR ILLUSTRATION ONLY. Varies to Common Truss SEE INDIVIDUAL MITEK ENGINEERING

DRAWINGS FOR DESIGN CRITERIA

3x4 =

Vertical Stud DIAGONAL BRACE (4) - 16d Nails Spaced 6" o.c. (2) - 10d Nails into 2x6 2x6 Stud or 2x4 No.2 of better Typical Horizontal Brace Nailed To 2x_ Verticals w/(4)-10d Nails SECTION A-A

> PROVIDE 2x4 BLOCKING BETWEEN THE FIRST TWO TRUSSES AS NOTED. TOENAIL BLOCKING TO TRUSSES WITH (2) - 10d NAILS AT EACH END. ATTACH DIAGONAL BRACE TO BLOCKING WITH

(5) - 10d NAILS. (4) - 8d (0.131" X 2.5") NAILS MINIMUM, PLYWOOD

SHEATHING TO 2x4 STD DF/SPF BLOCK

 Diagonal Bracing Refer to Section A-A

L-Bracing Refer to Section B-B

**

NOTE:

1. MINIMUM GRADE OF #2 MATERIAL IN THE TOP AND BOTTOM CHORDS. 2. CONNECTION BETWEEN BOTTOM CHORD OF GABLE END TRUSS AND

WALL TO BE PROVIDED BY PROJECT ENGINEER OR ARCHITECT. 3. BRACING SHOWN IS FOR INDIVIDUAL TRUSS ONLY. CONSULT BLDG. ARCHITECT OR ENGINEER FOR TEMPORARY AND PERMANENT BRACING OF ROOF SYSTEM.
"L" BRACES SPECIFIED ARE TO BE FULL LENGTH. GRADES: 1x4 SRB

OR 2x4 STUD OR BETTER WITH ONE ROW OF 10d NAILS SPACED 6" O.C.

DIAGONAL BRACE TO BE APPROXIMATELY 45 DEGREES TO ROOF

DIAPHRAM AT 4'-0" O.C.

6. CONSTRUCT HORIZONTAL BRACE CONNECTING A 2x6 STUD AND A 2x4 STUD AS SHOWN WITH 16d NAILS SPACED 6" O.C. HORIZONTAL BRACE TO BE LOCATED AT THE MIDSPAN OF THE LONGEST STUD. ATTACH TO VERTICAL STUDS WITH (4) 10d NAILS THROUGH 2x4. (REFER TO SECTION A-A)

GABLE STUD DEFLECTION MEETS OR EXCEEDS L/240.
THIS DETAIL DOES NOT APPLY TO STRUCTURAL GABLES.
DO NOT USE FLAT BOTTOM CHORD GABLES NEXT TO SCISSOR TYPE TRUSSES.

10. NAILS DESIGNATED 10d ARE (0.131" X 3") AND

NAILS DESIGNATED 16d ARE (0.131" X 3.5")

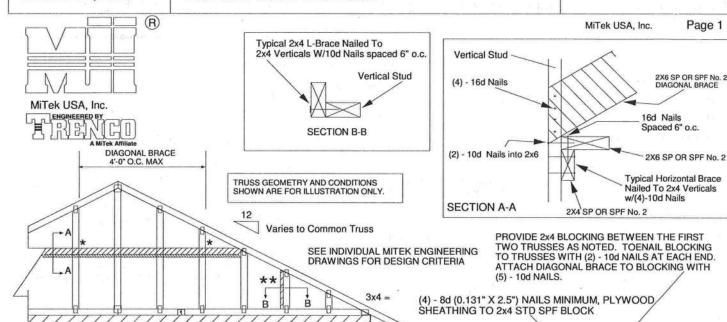
Roof Sheathi	ing
24" Max 1'-3" Max.	(2) - 10d NAILS
Diag. Brace	Trusses @ 24" o.c.
at 1/3 points if needed	ATTACHED TO VERTICAL WITH (4) -16d NAILS AND ATTACHED TO BLOCKING WITH (5) - 10d NAILS.
End Wall	HORIZONTAL BRACE (SEE SECTION A-A)

Minimum Stud Size	Stud Spacing	Without Brace	1x4 L-Brace	2x4 L-Brace	DIAGONAL BRACE	2 DIAGONAL BRACES AT 1/3 POINTS
Species and Grade						
2x4 DF/SPF Std/Stud	12" O.C.	3-10-1	3-11-7	5-7-2	7-8-2	11-6-4
2x4 DF/SPF Std/Stud	16" O.C.	3-3-14	3-5-1	4-10-2	6-7-13	9-11-11
2x4 DF/SPF Std/Stud	24" O.C.	2-8-9	2-9-8	3-11-7	5-5-2	8-1-12

Diagonal braces over 6'-3" require a 2x4 T-Brace attached to one edge. Diagonal braces over 12'-6" require 2x4 I-braces attached to both edges. Fasten T and I braces to narrow edge of web with 10d nails 8" o.c., with 3" minimum end distance. Brace must cover 90% of diagonal length.

MAXIMUM WIND SPEED = 140 MPH MAX MEAN ROOF HEIGHT = 30 FEET CATEGORY II BUILDING EXPOSURE B or C ASCE 7-98, ASCE 7-02, ASCE 7-05 DURATION OF LOAD INCREASE: 1.60

STUD DESIGN IS BASED ON COMPONENTS AND CLADDING. CONNECTION OF BRACING IS BASED ON MWFRS.



Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

Standard Gable End Detail

MII-GE170-D-SP

Page 1 of 2

- Diagonal Bracing Refer to Section A-A NOTE

to Section B-B

- L-Bracing Refer

MINIMUM GRADE OF #2 MATERIAL IN THE TOP AND BOTTOM CHORDS.
 CONNECTION BETWEEN BOTTOM CHORD OF GABLE END TRUSS AND WALL TO BE PROVIDED BY PROJECT ENGINEER OR ARCHITECT.
 BRACING SHOWN IS FOR INDIVIDUAL TRUSS ONLY. CONSULT BLDG.

ARCHITECT OR ENGINEER FOR TEMPORARY AND PERMANENT BRACING OF ROOF SYSTEM.

4. "L" BRACES SPECIFIED ARE TO BE FULL LENGTH, SPF or SP No.3

OR BETTER WITH ONE ROW OF 10d NAILS SPACED 6" O.C. 5. DIAGONAL BRACE TO BE APPROXIMATELY 45 DEGREES TO ROOF DIAPHRAM AT 4'-0" O.C.

6. CONSTRUCT HORIZONTAL BRACE CONNECTING A 2x6 AND A 2x4 AS SHOWN WITH 16d NAILS SPACED 6" O.C. HORIZONTAL BRACE TO BE LOCATED AT THE MIDSPAN OF THE LONGEST GABLE STUD. ATTACH TO VERTICAL GABLE STUDS WITH (4) 10d NAILS THROUGH 2x4.

(REFER TO SECTION A-A)
GABLE STUD DEFLECTION MEETS OR EXCEEDS L/240.
THIS DETAIL DOES NOT APPLY TO STRUCTURAL GABLES.

DO NOT USE FLAT BOTTOM CHORD GABLES NEXT TO SCISSOR TYPE TRUSSES.

10. SOUTHERN PINE LUMBER DESIGN VALUES ARE THOSE EFFECTIVE

06-01-13 BY SPIB/ALSC. 11. NAILS DESIGNATED 10d ARE (0.131" X 3") AND NAILS DESIGNATED 16d ARE (0.131" X 3.5")

Minimum Stud Size Species	Stud Spacing	Without Brace	2x4 L-Brace	DIAGONAL BRACE	2 DIAGONAL BRACES AT 1/3 POINTS		
and Grade	7.74	Maximum Stud Length					
2x4 SP No. 3 / Stud	12" O.C.	3-9-7	5-8-8	6-11-1	11-4-4		
2x4 SP No. 3 / Stud	16" O.C.	3-4-12	4-11-15	6-9-8	10-2-3		
2x4 SP No. 3 / Stud	24" O.C.	2-9-4	4-0-7	5-6-8	8-3-13		
2x4 SP No. 2	12" O.C.	3-11-13	5-8-8	6-11-1	11-11-7		
2x4 SP No. 2	16" O.C.	3-7-7	4-11-5	6-11-1	10-10-5		
2x4 SP No. 2	24" O.C.	3-1-15	4-0-7	6-3-14	9-5-14		

Diagonal braces over 6'-3" require a 2x4 T-Brace attached to one edge. Diagonal braces over 12'-6" require 2x4 I-braces attached to both edges. Fasten T and I braces to narrow edge of diagonal brace with 10d nails 6" o.c., with 3" minimum end distance. Brace must cover 90% of diagonal length. T or I braces must be 2x4 SPF No. 2 or SP No. 2.

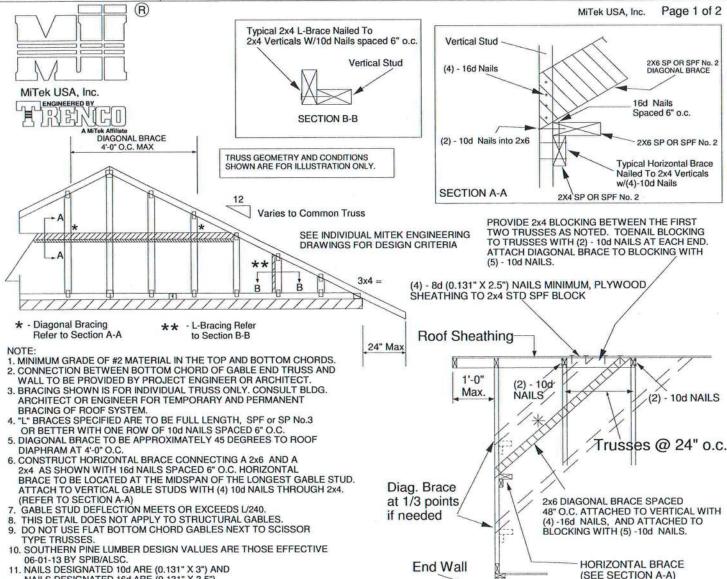
MAX MEAN ROOF HEIGHT = 30 FEET EXPOSURE D ASCE 7-10 170 MPH **DURATION OF LOAD INCREASE: 1.60**

STUD DESIGN IS BASED ON COMPONENTS AND CLADDING. CONNECTION OF BRACING IS BASED ON MWFRS.

Roof Sheathing 24" Max 1'-0" (2) - 10d Max NAILS (2) - 10d NAILS Trusses @ 24" o.c. Diag. Brace at 1/3 points 2x6 DIAGONAL BRACE SPACED if needed 48" O.C. ATTACHED TO VERTICAL WITH (4) -16d NAILS, AND ATTACHED TO BLOCKING WITH (5) -10d NAILS. No 39380

STATE OF

ORIO


ORIO

VISA, Inc. FL Cerr

ve East Blvd End Wall

Standard Gable End Detail

MII-GE180-D-SP

11. NAILS DESIGNATED 10d ARE (0.131" X 3") AND NAILS DESIGNATED 16d ARE (0.131" X 3.5")

Minimum Stud Size	Stud Spacing	Without Brace	2x4 L-Brace	DIAGONAL BRACE	2 DIAGONAL BRACES AT 1/3 POINTS		
Species and Grade		Maximum Stud Length					
2x4 SP No. 3 / Stud	12" O.C.	3-7-12	5-4-11	6-2-1	10-11-3		
2x4 SP No. 3 / Stud	16" O.C.	3-2-8	4-8-1	6-2-1	9-7-7		
2x4 SP No. 3 / Stud	24" O.C.	2-7-7	3-9-12	5-2-13	7-10-4		
2x4 SP No. 2	12" O.C.	3-10-0	5-4-11	6-2-1	11-6-1		
2x4 SP No. 2	16" O.C.	3-5-13	4-8-1	6-2-1	10-5-7		
2x4 SP No. 2	24" O.C.	3-0-8	3-9-12	6-1-1	9-1-9		

Diagonal braces over 6'-3" require a 2x4 T-Brace attached to one edge. Diagonal braces over 12'-6" require 2x4 l-braces attached to both edges. Fasten T and I braces to narrow edge of diagonal brace with 10d nails 6in o.c., with 3in minimum end distance. Brace must cover 90% of diagonal length. T or I braces must be 2x4 SPF No. 2 or SP No. 2.

MAX MEAN ROOF HEIGHT = 30 FEET **EXPOSURE D** ASCE 7-10 180 MPH DURATION OF LOAD INCREASE: 1.60

STUD DESIGN IS BASED ON COMPONENTS AND CLADDING. CONNECTION OF BRACING IS BASED ON MWFRS.

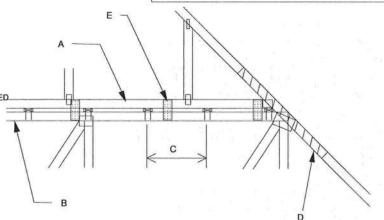
Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

R

MiTek USA, Inc.

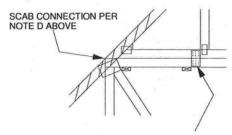
MiTek USA, Inc. Page 1 of 1

MAXIMUM WIND SPEED = REFER TO NOTES D AND OR E MAX MEAN ROOF HEIGHT = 30 FEET MAX TRUSS SPACING = 24 " O.C. CATEGORY II BUILDING EXPOSURE B or C **ASCE 7-10 DURATION OF LOAD INCREASE: 1.60**

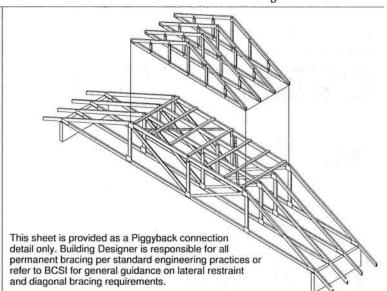

DETAIL IS NOT APPLICABLE FOR TRUSSES TRANSFERING DRAG LOADS (SHEAR TRUSSES). ADDITIONAL CONSIDERATIONS BY BUILDING ENGINEER/DESIGNER ARE REQUIRED.

A - PIGGBACK TRUSS, REFER TO MITEK TRUSS DESIGN DRAWING.

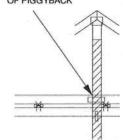
- PIGGBACK TRUSS, REFER TO MITEK TRUSS DESIGN DRAWING.
SHALL BE CONNECTED TO EACH PURLIN
WITH (2) (0.131" X 3.5") TOE-NAILED.
- BASE TRUSS, REFER TO MITEK TRUSS DESIGN DRAWING.
- PURLINS AT EACH BASE TRUSS JOINT AND A MAXIMUM 24" O.C.
UNLESS SPECIFIED CLOSER ON MITEK TRUSS DESIGN DRAWING.
CONNECT TO BASE TRUSS WITH (2) (0.131" X 3.5") NAILS EACH.
- 2 X __ X 4"-0" SCAB, SIZE TO MATCH TOP CHORD OF
PIGGYBACK TRUSS, MIN GRADE #2, ATTACHED TO ONE FACE, CENTERED.
ON INTERSECTION, WITH (2) ROWS OF (0.131" X 3") NAILS @ 4" O.C.
SCAB MAY BE OMITTED PROVIDED THE TOP CHORD SHEATHING
SCONTINI IOLIS OVER INTERSECTION AT LEAST 1.5 TIN BOTH IS CONTINUOUS OVER INTERSECTION AT LEAST 1 FT. IN BOTH DIRECTIONS AND:


1. WIND SPEED OF 115 MPH OR LESS FOR ANY PIGGYBACK SPAN, OR 2. WIND SPEED OF 116 MPH TO 160 MPH WITH A MAXIMUM

PIGGYBACK SPAN OF 12 ft. FOR WIND SPEEDS BETWEEN 126 AND 160 MPH, ATTACH MITEK 3X8 20 GA Nail-On PLATES TO EACH FACE OF TRUSSES AT 72" O.C. W/ (4) (0.131" X 1.5") NAILS PER MEMBER. STAGGER NAILS FROM OPPOSING FACES. ENSURE 0.5" EDGE DISTANCE. (MIN. 2 PAIRS OF PLATES REQ. REGARDLESS OF SPAN)



WHEN NO GAP BETWEEN PIGGYBACK AND BASE TRUSS EXISTS:

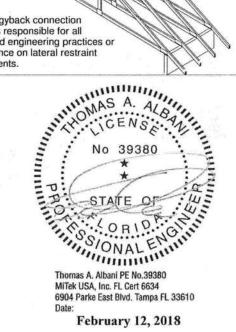

REPLACE TOE NAILING OF PIGGYBACK TRUSS TO PURLINS WITH Nail-On PLATES AS SHOWN, AND INSTALL PURLINS TO BOTTOM EDGE OF BASE TRUSS TOP CHORD AT SPECIFIED SPACING SHOWN ON BASE TRUSS MITEK DESIGN DRAWING.

FOR ALL WIND SPEEDS, ATTACH MITEK 3X6 20 GA Nail-On PLATES TO EACH FACE OF TRUSSES AT 48" O.C. W/ (4) (0.131" X 1.5") PER MEMBER. STAGGER NAILS FROM OPPOSING FACES ENSURE 0.5" EDGE DISTANCE.

VERTICAL WEB TO EXTEND THROUGH BOTTOM CHORD OF PIGGYBACK

FOR LARGE CONCENTRATED LOADS APPLIED TO CAP TRUSS REQUIRING A VERTICAL WEB:

VERTICAL WEBS OF PIGGYBACK AND BASE TRUSS MUST MATCH IN SIZE, GRADE, AND MUST LINE UP AS SHOWN IN DETAIL.


AS SHOWN IN DETAIL.

ATTACH 2 x ___ x 4*-0" SCAB TO EACH FACE OF
TRUSS ASSEMBLY WITH 2 ROWS OF 10d (0.131" X 3") NAILS
SPACED 4" O.C. FROM EACH FACE. (SIZE AND GRADE TO MATCH
VERTICAL WEBS OF PIGGYBACK AND BASE TRUSS.) (MINIMUM 2X4)

(WININION ZAME)
THIS CONNECTION IS ONLY VALID FOR A MAXIMUM
CONCENTRATED LOAD OF 4000 LBS (@1.15). REVIEW
BY A QUALIFIED ENGINEER IS REQUIRED FOR LOADS GREATER THAN 4000 LBS. FOR PIGGYBACK TRUSSES CARRYING GIRDER LOADS,

NUMBER OF PLYS OF PIGGYBACK TRUSS TO MATCH BASE TRUSS.

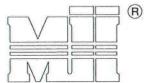
CONCENTRATED LOAD MUST BE APPLIED TO BOTH THE PIGGYBACK AND THE BASE TRUSS DESIGN.

STANDARD PIGGYBACK TRUSS CONNECTION DETAIL

MII-PIGGY-ALT 7-10

MiTek USA, Inc. Page 1 of 1

MAXIMUM WIND SPEED = REFER TO NOTES D AND OR E

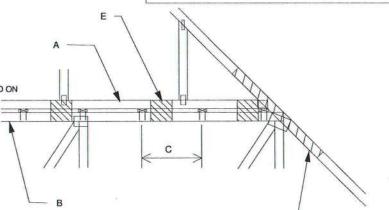

MAX MEAN ROOF HEIGHT = 30 FEET MAX TRUSS SPACING = 24 " O.C.

DURATION OF LOAD INCREASE: 1.60

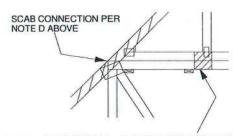
ENGINEER/DESIGNER ARE REQUIRED

DETAIL IS NOT APPLICABLE FOR TRUSSES TRANSFERING DRAG LOADS (SHEAR TRUSSES). ADDITIONAL CONSIDERATIONS BY BUILDING

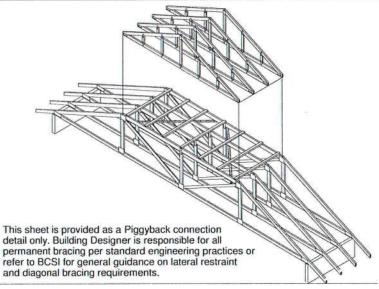
CATEGORY II BUILDING EXPOSURE B or C ASCE 7-10


MiTek USA, Inc.

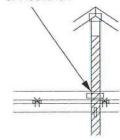
A - PIGGBACK TRUSS, REFER TO MITEK TRUSS DESIGN DRAWING.
SHALL BE CONNECTED TO EACH PURLIN
WITH (2) 0(0.131" X 3.5") TOE-NAILED.
B - BASE TRUSS, REFER TO MITEK TRUSS DESIGN DRAWING.
C - PURLINS AT EACH BASE TRUSS JOINT AND A MAXIMUM 24" O.C.
UNLESS SPECIFIED CLOSER ON MITEK TRUSS DESIGN DRAWING.
CONNECT TO BASE TRUSS WITH (2) (0.131" X 3.5") NAILS EACH.
D - 2 X _ X 4"0" SCAB, SIZE TO MATCH TOP CHORD OF
PIGGYBACK TRUSS, MIN GRADE #2, ATTACHED TO ONE FACE, CENTERED ON
INTERSECTION, WITH (2) ROWS OF (0.131" X 3") NAILS @ 4" O.C.
SCAB MAY BE OMITTED PROVIDED THE TOP CHORD SHEATHING
IS CONTRIVIOUS OVER INTERSECTION AT 1 FAST 1 FT IN BOTH IS CONTINUOUS OVER INTERSECTION AT LEAST 1 FT. IN BOTH DIRECTIONS AND


1. WIND SPEED OF 115 MPH OR LESS FOR ANY PIGGYBACK SPAN, OR
2. WIND SPEED OF 116 MPH TO 160 MPH WITH A MAXIMUM
PIGGYBACK SPAN OF 12 It.
E - FOR WIND SPEED IN THE RANGE 126 MPH - 160 MPH
ADD 9" x 9" x 1/2" PLYWOOD (or 7/16" OSB) GUSSET
EACH SIDE AT 48" O.C. OR LESS, ATTACH WITH

3 - 6d (0.113" X 2") NAILS INTO EACH CHORD FROM EACH SIDE (TOTAL - 12 NAILS)



WHEN NO GAP BETWEEN PIGGYBACK AND BASE TRUSS EXISTS:


REPLACE TOE NAILING OF PIGGYBACK TRUSS TO PURLINS WITH PLYWOOD GUSSETS AS SHOWN, AND INSTALL PURLINS TO BOTTOM EDGE OF BASE TRUSS TOP CHORD AT SPECIFIED SPACING SHOWN ON BASE TRUSS MITEK DESIGN DRAWING.

7" x 7" x 1/2" PLYWOOD (or 7/16" OSB) GUSSET EACH SIDE AT 24" O.C. ATTACH WITH 3 - 6d (0.113" X 2") NAILS INTO EACH CHORD FROM EACH SIDE (TOTAL - 12 NAILS)

VERTICAL WEB TO EXTEND THROUGH BOTTOM CHORD OF PIGGYBACK

FOR LARGE CONCENTRATED LOADS APPLIED TO CAP TRUSS REQUIRING A VERTICAL WEB:

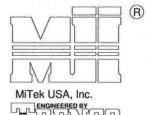
VERTICAL WEBS OF PIGGYBACK AND BASE TRUSS MUST MATCH IN SIZE, GRADE, AND MUST LINE UP AS SHOWN IN DETAIL.

AS SHOWN IN DE I AIL.
ATTACH 2 × __ x 4'-0" SCAB TO EACH FACE OF
TRUSS ASSEMBLY WITH 2 ROWS OF 10d (0.131" X 3") NAILS
SPACED 4" O.C. FROM EACH FACE. (SIZE AND GRADE TO MATCH
VERTICAL WEBS OF PIGGYBACK AND BASE TRUSS.) (MINIMUM 2X4)

THIS CONNECTION IS ONLY VALID FOR A MAXIMUM CONCENTRATED LOAD OF 4000 LBS (@1.15). REVIEW BY A QUALIFIED ENGINEER IS REQUIRED FOR LOADS GREATER THAN 4000 LBS.

FOR PIGGYBACK TRUSSES CARRYING GIRDER LOADS, NUMBER OF PLYS OF PIGGYBACK TRUSS TO MATCH BASE TRUSS.

CONCENTRATED LOAD MUST BE APPLIED TO BOTH THE PIGGYBACK AND THE BASE TRUSS DESIGN.

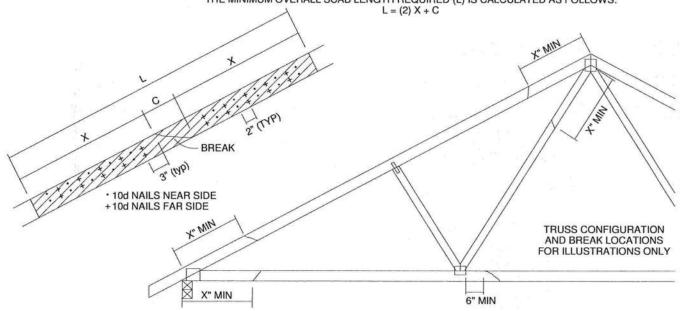

Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

STANDARD REPAIR DETAIL FOR BROKEN CHORDS, WEBS AND DAMAGED OR MISSING CHORD SPLICE PLATES

MII-REP01A1

MiTek USA, Inc.

Page 1 of 1



TOTAL NUMBER OF NAILS EACH SIDE OF BREAK *			MAXIMUM FORCE (lbs) 15% LOAD DURATION							
		X	SP		DF		SPF		HF	
2x4	2x6		2x4	2x6	2x4	2x6	2x4	2x6	2x4	2x6
20	30	24"	1706	2559	1561	2342	1320	1980	1352	2028
26	39	30"	2194	3291	2007	3011	1697	2546	1738	2608
32	48	36"	2681	4022	2454	3681	2074	3111	2125	3187
38	57	42"	3169	4754	2900	4350	2451	3677	2511	3767
44	66	48"	3657	5485	3346	5019	2829	4243	2898	4347

* DIVIDE EQUALLY FRONT AND BACK

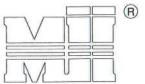
ATTACH 2x_SCAB OF THE SAME SIZE AND GRADE AS THE BROKEN MEMBER TO EACH FACE OF THE TRUSS (CENTER ON BREAK OR SPLICE) WITH 10d (0.131" X 3") NAILS (TWO ROWS FOR 2x4, THREE ROWS FOR 2x6) SPACED 4" O.C. AS SHOWN. STAGGER NAIL SPACING FROM FRONT FACE AND BACK FACE FOR A NET 0-2-0 O.C. SPACING IN THE MAIN MEMBER. USE A MIN. 0-3-0 MEMBER END DISTANCE.

THE LENGTH OF THE BREAK (C) SHALL NOT EXCEED 12". (C=PLATE LENGTH FOR SPLICE REPAIRS) THE MINIMUM OVERALL SCAB LENGTH REQUIRED (L) IS CALCULATED AS FOLLOWS:

THE LOCATION OF THE BREAK MUST BE GREATER THAN OR EQUAL TO THE REQUIRED X DIMENSION FROM ANY PERIMETER BREAK OR HEEL JOINT AND A MINIMUM OF 6" FROM ANY INTERIOR JOINT (SEE SKETCH ABOVE)

DO NOT USE REPAIR FOR JOINT SPLICES

- THIS REPAIR DETAIL IS TO BE USED ONLY FOR THE APPLICATION SHOWN. THIS REPAIR DOES
 NOT IMPLY THAT THE REMAINING PORTION OF THE TRUSS IS UNDAMAGED. THE ENTIRE TRUSS
 SHALL BE INSPECTED TO VERIFY THAT NO FURTHER REPAIRS ARE REQUIRED. WHEN THE REQUIRED
 REPAIRS ARE PROPERLY APPLIED, THE TRUSS WILL BE CAPABLE OF SUPPORTING THE LOADS INDICATED.
 ALL MEMBERS MUST BE RETURNED TO THEIR ORIGINAL POSITIONS BEFORE APPLING REPAIR
 AND HELD IN PLACE DURING APPLICATION OF REPAIR.
- THE END DISTANCE, EDGE DISTANCE AND SPACING OF NAILS SHALL BE SUCH AS TO AVOID UNUSUAL SPLITTING OF THE WOOD.
 WHEN NAILING THE SCABS, THE USE OF A BACKUP WEIGHT IS RECOMMENDED TO AVOID LOOSENING OF THE CONNECTOR PLATES AT THE JOINTS OR SPLICES.
 THIS REPAIR IS TO BE USED FOR SINGLE PLY TRUSSES IN THE 2x_ORIENTATION ONLY.
 THIS REPAIR IS LIMITED TO TRUSSES WITH NO MORE THAN THREE BROKEN MEMBERS.


Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

LATERAL TOE-NAIL DETAIL

MII-TOENAIL_SP

MiTek USA, Inc.

Page 1 of 1

MiTek USA, Inc. ENGINEERED BY NOTES:

- 1. TOE-NAILS SHALL BE DRIVEN AT AN ANGLE OF 45 DEGREES WITH THE MEMBER AND MUST HAVE FULL WOOD SUPPORT. (NAIL MUST BE DRIVEN THROUGH AND EXIT AT THE BACK CORNER OF THE MEMBER END AS SHOWN.

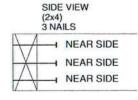
 2. THE END DISTANCE, EDGE DISTANCE, AND SPACING OF NAILS SHALL BE SUCH
- AS TO AVOID UNUSUAL SPLITTING OF THE WOOD.

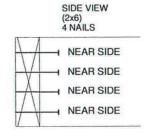
 3. ALLOWABLE VALUE SHALL BE THE LESSER VALUE OF THE TWO SPECIES
- FOR MEMBERS OF DIFFERENT SPECIES.

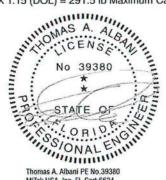
THIS DETAIL APPLICABLE TO THE THREE END DETAILS SHOWN BELOW

VIEWS SHOWN ARE FOR ILLUSTRATION PURPOSES ONLY

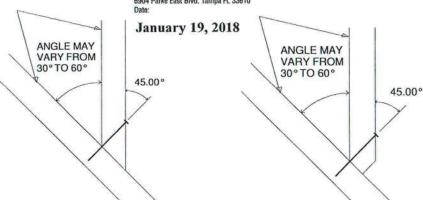
NEAR SIDE NEAR SIDE

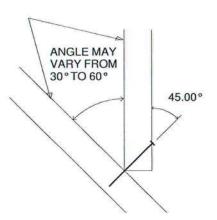

SIDE VIEW (2x3) 2 NAILS

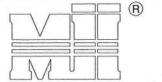

	DIAM.	SP	DF	HF	SPF	SPF-S
3.5" LONG	.131	88.0	80.6	69.9	68.4	59.7
	.135	93.5	85.6	74.2	72.6	63.4
	.162	108.8	99.6	86.4	84.5	73.8
3.25" LONG	.128	74.2	67.9	58.9	57.6	50.3
	.131	75.9	69.5	60.3	59.0	51.1
	.148	81.4	74.5	64.6	63.2	52.5


VALUES SHOWN ARE CAPACITY PER TOE-NAIL. APPLICABLE DURATION OF LOAD INCREASES MAY BE APPLIED.

(3) - 16d (0.162" X 3.5") NAILS WITH SPF SPECIES BOTTOM CHORD


For load duration increase of 1.15: 3 (nails) X 84.5 (lb/nail) X 1.15 (DOL) = 291.5 lb Maximum Capacity




Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

MiTek USA, Inc.

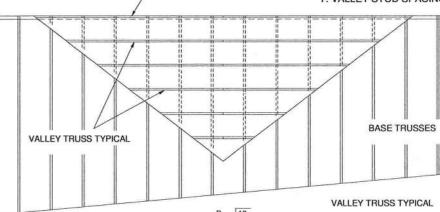
Page 1 of 1

MiTek USA, Inc.

ENGINEERED BY

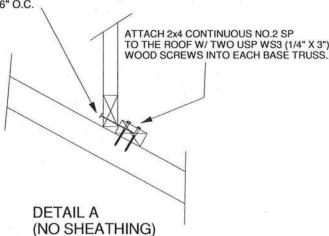
GABLE END, COMMON TRUSS OR GIRDER TRUSS

GENERAL SPECIFICATIONS


1. NAIL SIZE 10d (0.131" X 3") 2. WOOD SCREW = 3" WS3 USP OR EQUIVALENT DO NOT USE DRYWALL OR DECKING TYPE SCREW
3. INSTALL VALLEY TRUSSES (24" O.C. MAXIMUM) AND
SECURE PER DETAIL A

4. BRACE VALLEY WEBS IN ACCORDANCE WITH THE INDIVIDUAL DESIGN DRAWINGS.

5. BASE TRUSS SHALL BE DESIGNED WITH A PURLIN SPACING EQUILIVANT TO THE RAKE DIMENSION OF THE VALLEY TRUSS SPACING.


6. NAILING DONE PER NDS - 01

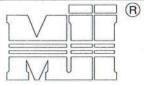
7. VALLEY STUD SPACING NOT TO EXCEED 48" O.C.

GABLE END, COMMON TRUSS OR GIRDER TRUSS 12 SEE DETAIL A BELOW (TYP.)

SECURE VALLEY TRUSS W/ ONE ROW OF 10d NAILS 6" O.C.

N.T.S.

WIND DESIGN PER ASCE 7-98, ASCE 7-02, ASCE 7-05 146 MPH WIND DESIGN PER ASCE 7-10 160 MPH MAX MEAN ROOF HEIGHT = 30 FEET ROOF PITCH = MINIMUM 3/12 MAXIMUM 6/12 CATEGORY II BUILDING EXPOSURE C WIND DURATION OF LOAD INCREASE: 1.60 MAX TOP CHORD TOTAL LOAD = 50 PSF MAX SPACING = 24" O.C. (BASE AND VALLEY) MINIMUM REDUCED DEAD LOAD OF 6 PSF ON THE TRUSSES

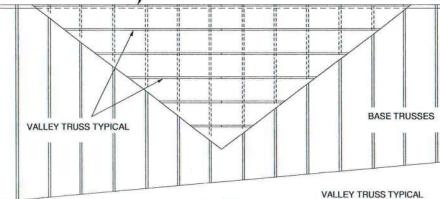

Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

TRUSSED VALLEY SET DETAIL

MII-VALLEY HIGH WIND2

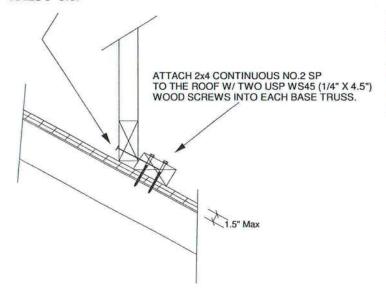
MiTek USA, Inc.

Page 1 of 1



MiTek USA, Inc.

GABLE END, COMMON TRUSS OR GIRDER TRUSS


GENERAL SPECIFICATIONS

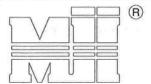
- NAIL SIZE 10d (0.131" X 3")
 WOOD SCREW = 4.5" WS45 USP OR EQUILIVANT
 INSTALL SHEATHING TO TOP CHORD OF BASE TRUSSES.
 INSTALL VALLEY TRUSSES (24" O.C. MAXIMUM) AND SECURE TO BASE TRUSSES AS PER DETAIL A
- 5. BRACE VALLEY WEBS IN ACCORDANCE WITH THE INDIVIDUAL DESIGN DRAWINGS.
- 6. NAILING DONE PER NDS-01
- 7. VALLEY STUD SPACING NOT TO EXCEED 48" O.C.

GABLE END, COMMON TRUSS OR GIRDER TRUSS P 12 SEE DETAIL A BELOW (TYP.)

SECURE VALLEY TRUSS W/ ONE ROW OF 10d NAILS 6" O.C.

WIND DESIGN PER ASCE 7-98, ASCE 7-02, ASCE 7-05 146 MPH WIND DESIGN PER ASCE 7-10 160 MPH MAX MEAN ROOF HEIGHT = 30 FEET ROOF PITCH = MINIMUM 3/12 MAXIMUM 6/12 CATEGORY II BUILDING **EXPOSURE C** WIND DURATION OF LOAD INCREASE: 1.60 MAX TOP CHORD TOTAL LOAD = 50 PSF MAX SPACING = 24" O.C. (BASE AND VALLEY) MINIMUM REDUCED DEAD LOAD OF 6 PSF

ON THE TRUSSES


No 39380

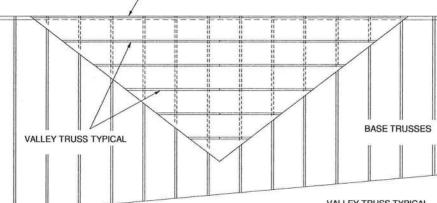
STATE OF ST WOMAS A. ALBY

Thomas A. Albani PE No.39380 MITek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

MiTek USA, Inc.

Page 1 of 1

MiTek USA, Inc.


ENGINEERED BY

A MITCH Affiliate

GABLE END, COMMON TRUSS OR GIRDER TRUSS

GENERAL SPECIFICATIONS

- 1. NAIL SIZE 16d (0.131" X 3.5")
- INSTALL VALLEY TRUSSES (24" O.C. MAXIMUM) AND SECURE PER DETAIL A
- BRACE VALLEY WEBS IN ACCORDANCE WITH THE INDIVIDUAL DESIGN DRAWINGS.
- BASE TRUSS SHALL BE DESIGNED WITH A PURLIN SPACING EQUILIVANT TO THE RAKE DIMENSION OF THE VALLEY TRUSS SPACING.
- 5. NAILING DONE PER NDS 01 6. VALLEY STUD SPACING NOT TO EXCEED 48" O.C.
- 7. ALL LUMBER SPECIES TO BE SP.

VALLEY TRUSS TYPICAL

GABLE END, COMMON TRUSS
OR GIRDER TRUSS

SEE DETAIL
A BELOW (TYP.)

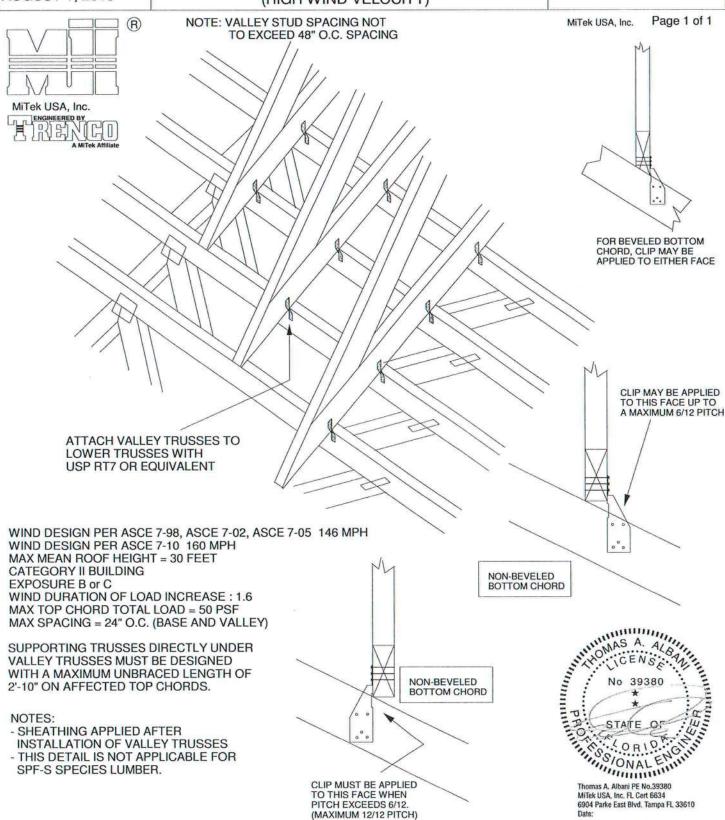
SECURE VALLEY TRUSS
W/ ONE ROW OF 16d
NAILS 6" O.C.

ATTACH 2x4 CONTINUOUS NO.2 SP
TO THE ROOF W/ TWO 16d NAILS
INTO EACH BASE TRUSS.

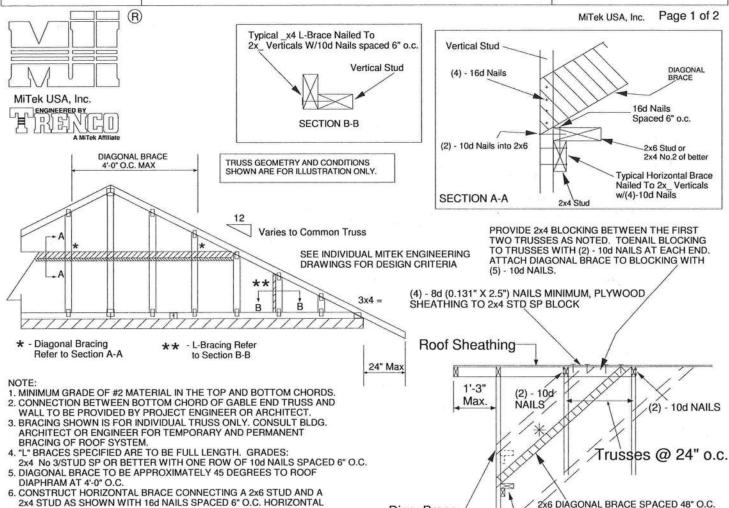
DETAIL A

(MAXIMUM 1" SHEATHING)

N.T.S.


WIND DESIGN PER ASCE 7-98, ASCE 7-02, ASCE 7-05 120 MPH WIND DESIGN PER ASCE 7-10 150 MPH MAX MEAN ROOF HEIGHT = 30 FEET ROOF PITCH = MINIMUM 3/12 MAXIMUM 10/12 CATEGORY II BUILDING EXPOSURE C OR B WIND DURATION OF LOAD INCREASE: 1.60 MAX TOP CHORD TOTAL LOAD = 60 PSF MAX SPACING = 24" O.C. (BASE AND VALLEY) MINIMUM REDUCED DEAD LOAD OF 4.2 PSF ON THE TRUSSES

Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:


TRUSSED VALLEY SET DETAIL (HIGH WIND VELOCITY)

MII-VALLEY

Standard Gable End Detail

MII-GE146-001

Diag. Brace

at 1/3 points

End Wall

if needed

2x4 STUD AS SHOWN WITH 16d NAILS SPACED 6" O.C. HORIZONTAL BRACE TO BE LOCATED AT THE MIDSPAN OF THE LONGEST STUD. ATTACH TO VERTICAL STUDS WITH (4) 10d NAILS THROUGH 2x4. (REFER TO SECTION A-A)

7. GABLE STUD DEFLECTION MEETS OR EXCEEDS L/240.

THIS DETAIL DOES NOT APPLY TO STRUCTURAL GABLES.
DO NOT USE FLAT BOTTOM CHORD GABLES NEXT TO SCISSOR

TYPE TRUSSES.

10. NAILS DESIGNATED 10d ARE (0.131" X 3") AND NAILS DESIGNATED 16d ARE (0.131" X 3.5")

Minimum Stud Size	Stud Spacing	Without Brace	2x4 L-Brace	DIAGONAL BRACE	2 DIAGONAL BRACES AT 1/3 POINTS		
Species and Grade		Maximum Stud Length					
2x4 SP No 3/Stud	12" O.C.	3-11-3	6-8-0	7-2-14	11-9-10		
2x4 SP No 3/Stud	16" O.C.	3-6-14	5-9-5	7-1-13	10-8-11		
2x4 SP No 3/Stud	24" O.C.	3-1-8	4-8-9	6-2-15	9-4-7		

Diagonal braces over 6'-3" require a 2x4 T-Brace attached to one edge. Diagonal braces over 12'-6" require 2x4 I-braces attached to both edges. Fasten T and I braces to narrow edge of web with 10d nails 8" o.c., with 3" minimum end distance. Brace must cover 90% of diagonal length.

MAXIMUM WIND SPEED = 146 MPH MAX MEAN ROOF HEIGHT = 30 FEET CATEGORY II BUILDING EXPOSURE B or C ASCE 7-98, ASCE 7-02, ASCE 7-05 **DURATION OF LOAD INCREASE: 1.60**

STUD DESIGN IS BASED ON COMPONENTS AND CLADDING CONNECTION OF BRACING IS BASED ON MWFRS.

ATTACHED TO VERTICAL WITH (4) -16d

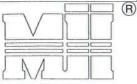
HORIZONTAL BRACE

(SEE SECTION A-A)

TO BLOCKING WITH (5) - 10d NAILS.

NAILS AND ATTACHED

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610


OCTOBER 5, 2016

REPLACE BROKEN OVERHANG

MII-REP13B

MiTek USA, Inc.

Page 1 of 1

MiTek USA, Inc.

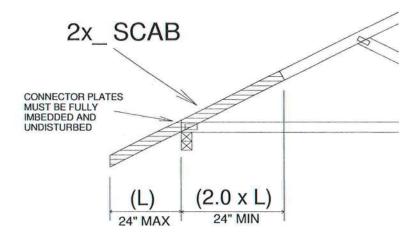
TRUSS CRITERIA:

LOADING: 40-10-0-10 **DURATION FACTOR: 1.15** SPACING: 24" O.C. TOP CHORD: 2x4 OR 2x6

PITCH: 4/12 - 12/12 HEEL HEIGHT: STANDARD HEEL UP TO 12" ENERGY HEEL

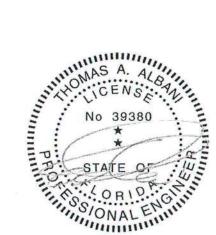
END BEARING CONDITION

NOTES:


1. ATTACH 2x_SCAB (MINIMUM NO.2 GRADE SPF, HF, SP, DF) TO ONE FACE OF

TRUSS WITH TWO ROWS OF 10d (0.131" X 3") SPACED 6" O.C.

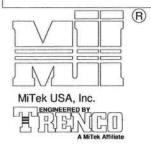
2. THE END DISTANCE, EDGE DISTANCE, AND SPACING OF NAILS SHALL BE SUCH


AS TO AVOID UNUSUAL SPLITTING OF THE WOOD.

3. WHEN NAILING THE SCABS, THE USE OF A BACKUP WEIGHT IS RECOMMENDED TO AVOID LOOSENING OF THE CONNECTOR PLATES AT THE JOINTS OR SPLICES.

This detail to be used only with trusses (spans less than 40') spaced 24" o.c. maximum and having pitches between 4/12 and 12/12 and total top chord loads not exceeding 50 psf. Trusses not fitting these criteria should be examined individually.

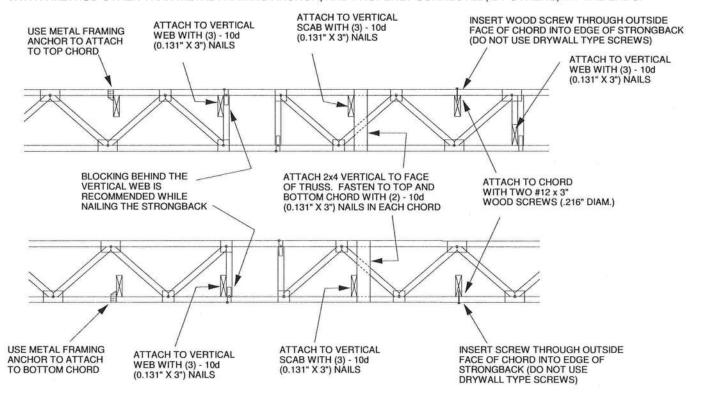
REFER TO INDIVIDUAL TRUSS DESIGN FOR PLATE SIZES AND LUMBER GRADES

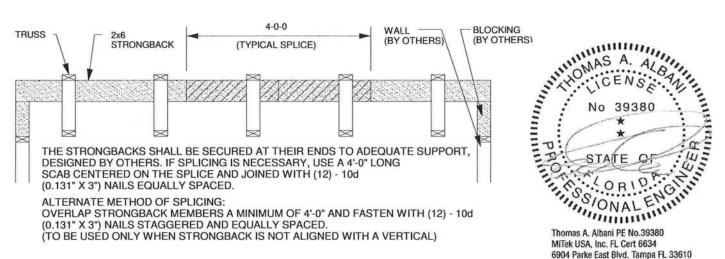

Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd, Tampa FL 33610 Date:

LATERAL BRACING RECOMMENDATIONS

MII-STRGBCK

MiTek USA, Inc.

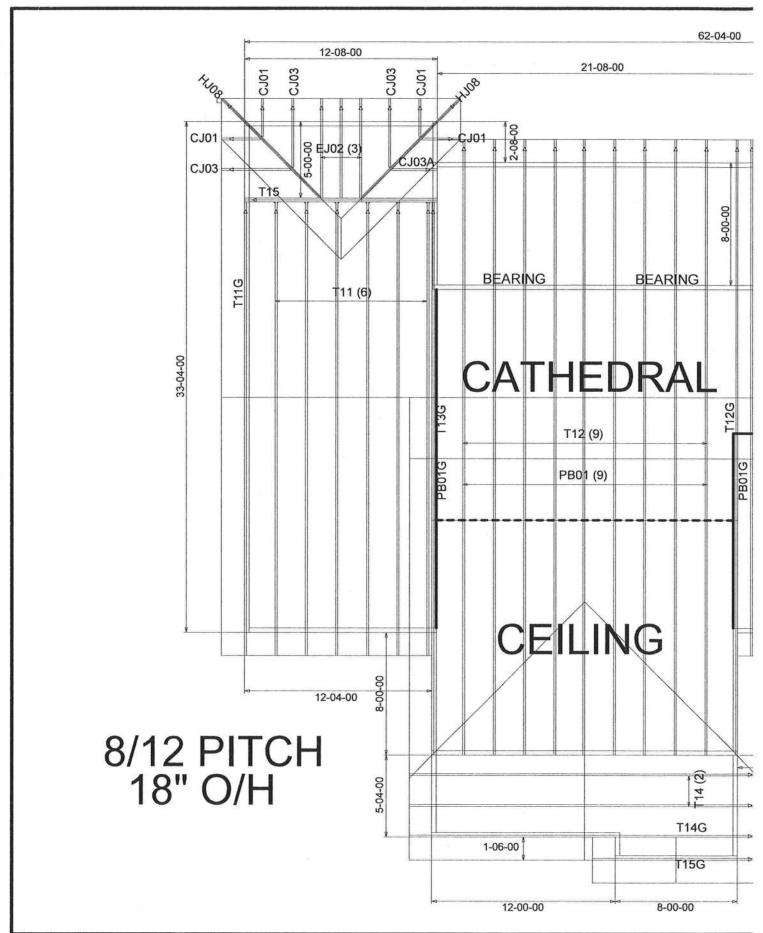

Page 1 of 1



TO MINIMIZE VIBRATION COMMON TO ALL SHALLOW FRAMING SYSTEMS, 2x6 "STRONGBACK" IS RECOMMENDED, LOCATED EVERY 8 TO 10 FEET ALONG A FLOOR TRUSS.

NOTE 1: 2X6 STRONGBACK ORIENTED VERTICALLY MAY BE POSITIONED DIRECTLY UNDER THE TOP CHORD OR DIRECTLY ABOVE THE BOTTOM CHORD. SECURELY FASTENED TO THE TRUSS USING ANY OF THE METHODS ILLUSTRATED BELOW.

NOTE 2: STRONGBACK BRACING ALSO SATISFIES THE LATERAL BRACING REQUIREMENTS FOR THE BOTTOM CHORD OF THE TRUSS WHEN IT IS PLACED ON TOP OF THE BOTTOM CHORD, IS CONTINUOUS FROM END TO END, CONNECTED WITH A METHOD OTHER THAN METAL FRAMING ANCHOR, AND PROPERLY CONNECTED, BY OTHERS, AT THE ENDS.



February 12, 2018

Date:

			# ¿ * #

FL Approval Codes - Mitek Plates #'s 2197.2 - 2197.4, V