

RE: 1453-A - Tyre Residence

Site Information:

Customer Info: JBC Builders Project Name: Tyre Residence Model: . Lot/Block: . Subdivision: . Address: ., . City: . State: FL

MiTek, Inc. 16023 Swinalev Ridae Rd. Chesterfield, MO 63017 314.434.1200

Name Address and License # of Structural Engineer of Record, If there is one, for the building. Name: License #: Address:

City:

State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: FBC2023/TPI2014 Wind Code: ASCE 7-22 Roof Load: 40.0 psf

Design Program: MiTek 20/20 8.7 Wind Speed: 140 mph Floor Load: N/A psf

This package includes 10 individual, Truss Design Drawings and 0 Additional Drawings. With my seal affixed to this sheet, I hereby certify that I am the Truss Design Engineer and this index sheet conforms to 61G15-31.003, section 5 of the Florida Board of Professional Engineers Rules.

No.	Seal#	Truss Name	Date
1	T34118307	BJ3	6/10/24
2	T34118308	BJ5	6/10/24
3	T34118309	BJ7	6/10/24
4	T34118310	CJ9	6/10/24
5	T34118311	EJ7	6/10/24
6	T34118312	G1	6/10/24
7	T34118313	G2	6/10/24
8	T34118314	T1	6/10/24
9	T34118315	T2	6/10/24
10	T34118316	T3	6/10/24

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by 19 Lumber, Inc..

Truss Design Engineer's Name: Velez, Joaquin My license renewal date for the state of Florida is February 28, 2025.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Velez, Joaquin

Job	Truss	Truss Type	Qty	Ply	Tyre Residence	
1453-A	BJ3	Corner Jack	4	1	Job Reference (optional)	T34118307

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 13:19:02 ID:Z8jI0UFsRQvIX5cgi4c9qnzX0bI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3x5 =

Scale = 1:18.5 Plate Offsets (X, Y): [2:0-5-0,Edge]

Plate Olisets (.	A, T). [2.0-5-0,Euge]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES FBC2023/TPI2014	CSI TC BC WB Matrix-MP	0.54 0.07 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 7 7 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 12 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 Structural wood she 3-0-0 oc purlins. Rigid ceiling directly bracing.	applied or 10-0-0 or	bearing plat 3 and 250 ll LOAD CASE(S ed or	chanical connection e capable of withsto puplift at joint 2.) Standard								
	(size) 2=0-5-8, 3 Mechanic Max Horiz 2=57 (LC Max Uplift 2=-250 (L Max Grav 2=281 (LC (LC 3) (lb) - Maximum Com	8) C 8), 3=-32 (LC 12) C 1), 3=49 (LC 1), 4=	-42									
Vasd=108 II; Exp C; I zone and 0 2-11-4 zon vertical left forces & M DOL=1.60	Tension 1-2=0/20, 2-3=-205/. 2-4=-19/195 CE 7-22; Vult=140mph imph; TCDL=5.0psf; Bi Enclosed; MWFRS (er C-C Zone3 -2-0-5 to 0- ne; cantilever left and r t and right exposed;C- MVFRS for reactions s o plate grip DOL=1.60 lesigner / Project engir	(3-second gust) CDL=5.0psf; h=25ft; tvelope) exterior (2) -11-11, Zone1 0-11- ight exposed ; end C for members and hown; Lumber								* PF	No 68	VELEX SE 182 * H
 verifying a requirement This truss chord live * This truss on the bott 3-06-00 tal chord and Bearings a 	pplied roof live load sh ints specific to the use has been designed for load nonconcurrent wi s has been designed f tom chord in all areas all by 2-00-00 wide will any other members. are assumed to be: , Jo irder(s) for truss to tru	nown covers rain loa of this truss compor r a 10.0 psf bottom th any other live loa or a live load of 20.0 where a rectangle fit between the botto bint 2 SP No.2.	nent. ds.)psf						Ja M 10	oaquin V liTek In	Velez PE No.68182 to. DBA MiTek US/	LENGINIT

June 10,2024

Job	Truss	Truss Type	Qty	Ply	Tyre Residence	
1453-A	BJ5	Corner Jack	4	1	Job Reference (optional)	T34118308

19 Lumber, Inc., Old Town, FL - 32680

5-0-0

5-0-0

12

1-1-13

3

4

PLATES

Weight: 18 lb

MT20

GRIP

244/190

FT = 20%

8 2 1-5-9 Q-3-13 3x5 = 5-0-0 Scale = 1:19.2 Plate Offsets (X, Y): [2:0-5-4,Edge] Loading Spacing 2-0-0 CSI DEFL in l/defl L/d (psf) (loc) TCLL (roof) 20.0 Plate Grip DOL 1.25 TC 0.54 Vert(LL) 0.05 4-7 >999 240 TCDL 10.0 Lumber DOL 1.25 BC 0.31 Vert(CT) -0.05 4-7 >999 180 BCLL 0.0* Rep Stress Incr YES WB Horz(CT) 0.00 0.00 2 n/a n/a BCDL 10.0 Code FBC2023/TPI2014 Matrix-MP LUMBER 6) Refer to girder(s) for truss to truss connections. TOP CHORD 2x4 SP No.2 7) Provide mechanical connection (by others) of truss to 2x4 SP No.2 bearing plate capable of withstanding 83 lb uplift at joint BOT CHORD 3, 268 lb uplift at joint 2 and 4 lb uplift at joint 4. BRACING LOAD CASE(S) Standard TOP CHORD Structural wood sheathing directly applied or 5-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. **REACTIONS** (size) 2=0-5-8, 3= Mechanical, 4= Mechanical Max Horiz 2=77 (LC 8) Max Uplift 2=-268 (LC 8), 3=-83 (LC 12), 4=-4 (LC 12) Max Grav 2=344 (LC 1), 3=112 (LC 1), 4=83 (LC 3) FORCES (Ib) - Maximum Compression/Maximum

-2-0-0

2-0-0

Tension TOP CHORD 1-2=0/20, 2-3=-184/57 BOT CHORD 2-4=-91/191

NOTES

- Wind: ASCE 7-22; Vult=140mph (3-second gust) 1) Vasd=108mph; TCDL=5.0psf; BCDL=5.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior (2) zone and C-C Zone3 -2-0-5 to 0-11-11. Zone1 0-11-11 to 4-11-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown: Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component. 3)

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 4)

on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

5) Bearings are assumed to be: , Joint 2 SP No.2 .

Joaquin Velez PE No.68182 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

June 10,2024

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	Tyre Residence	
1453-A	BJ7	Corner Jack	4	1	Job Reference (optional)	T34118309

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 13:19:04 ID:zjPtfWHkkLHKOYKENDAsSPzX0bF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1-5-13

7-0-0

Scale = 1:21.3

Plate Offsets (X, Y): [2:0-4-12,Edge]

	(, 1). [2:0 1 12,20g0	,j										
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES FBC2023/TPI20	CSI TC BC WB 4 Matrix-MP	0.67 0.64 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.19 -0.21 0.00	(loc) 4-7 4-7 2	l/defl >434 >390 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 24 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=0-5-8, 3 Mechanic Max Horiz 2=97 (LC Max Uplift 2=-298 (L 4=-4 (LC Max Grav 2=417 (LC (LC 3)	applied or 10-0-0 or 3= Mechanical, 4= al 8) 	7) Provide bearing 3, 298 ed or LOAD CAS	o girder(s) for truss to e mechanical connection plate capable of with b uplift at joint 2 and 4 E(S) Standard	on (by oth standing 1	ers) of truss t 30 lb uplift at						
Vasd=108r II; Exp C; E zone and C 6-11-4 zon vertical left forces & M DOL=1.60 2) Building De verifying a requiremer 3) This truss I chord live I 4) * This truss on the bott 3-06-00 tal chord and	(lb) - Maximum Com Tension 1-2=0/20, 2-3=-281/ 2-4=-163/292 CE 7-22; Vult=140mph mph; TCDL=5.0psf; B Enclosed; MWFRS (er 2-C Zone3 -2-0-5 to 0 re; cantilever left and r ex and right exposed; C- WFRS for reactions s plate grip DOL=1.60 esigner / Project engir pplied roof live load sh ths specific to the use has been designed fo load nonconcurrent wis s has been designed fo on chord in all areas Il by 2-00-00 wide will any other members. Ire assumed to be: , Ju	A (3-second gust) CDL=5.0psf; h=25ft; hvelope) exterior (2) -11-11, Zone1 0-11- right exposed ; end -C for members and shown; Lumber heer responsible for hown covers rain load of this truss compon r a 10.0 psf bottom ith any other live load for a live load of 20.0 where a rectangle fit between the bottom	11 to ding ient. ds. psf						M 10	oaquin V liTek In	Velez PE No.68182 ic. DBA MiTek US.	DF H

June 10,2024

Job	Truss	Truss Type	Qty	Ply	Tyre Residence	
1453-A	CJ9	Diagonal Hip Girder	2	1	Job Reference (optional)	T34118310

Scale = 1:36.4

Plate Offsets (X, Y): [2:0-7-3,Edge]

chord and any other members.

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25		тс	0.64	Vert(LL)	0.21	7-10	>632	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.25		BC	0.90	Vert(CT)	-0.28	7-10	>479	180		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.49	Horz(CT)	0.03	5	n/a	n/a		
BCDL	10.0	Code	FBC20	23/TPI2014	Matrix-MS							Weight: 44 lb	FT = 20%
LUMBER			6		assumed to be:								
TOP CHORD	2x4 SP No.2		7		er(s) for truss to								
BOT CHORD			8		hanical connectio								
WEBS	2x4 SP No.2				capable of withs			t joint					
BRACING			0		ft at joint 2 and 2								
TOP CHORD		eathing directly applie	ed or 9	nails per ND	dicates Girder: 3-	160 (0.16	2" X 3.5") to	e-					
	3-3-7 oc purlins.		1		CASE(S) section	loade a	onlied to the	face					
BOT CHORD		/ applied or 5-6-10 o	C I		are noted as front			lace					
DE LOTIONO	bracing.		1	OAD CASE(S)		(1) 01 04	on (D).						
REACTIONS		4= Mechanical, 5=	1	• • • •	of Live (balanced)). Lumber	Increase=1	25					
	Mechanie Max Horiz 2=107 (L			Plate Increa			increace in	20,					
	Max Uplift 2=-501 (L	,		Uniform Loa	ads (lb/ft)								
	5=-270 (l		,	Vert: 1-4	=-60, 5-8=-20								
	Max Grav 2=725 (L		5=601	Concentrate	ed Loads (lb)								
	(LC 1)	- //		Vert: 12=	-54 (F=-27, B=-2	7), 13=-1	78 (F=-89,						
FORCES	(lb) - Maximum Con	npression/Maximum		<i>,</i> ,	4=-10 (F=-5, B=-	·5), 15=-6	5 (F=-33, B=	-33),				No 68	
	Tension			16=-125	(F=-63, B=-63)								1111 A
TOP CHORD	1-2=0/20, 2-3=-204	5/1014, 3-4=-27/18											
BOT CHORD	2-7=-1052/2021, 6-	7=-1052/2021, 5-6=0	0/0									AQUIN	VEI
WEBS	3-6=-2095/1091, 3-	7=-55/399									N.	CEA	10 5 1
NOTES											5		°E ·
1) Wind: ASC	CE 7-22; Vult=140mph	n (3-second gust)									-	· No 60	100
	8mph; TCDL=5.0psf; B		Cat.								i neni	10 00	102
	Enclosed; MWFRS (e										*:		* =
	tilever left and right ex		left									AL AL	
DOL=1.60	exposed; Lumber DOL	_=1.60 plate grip									D	<u> </u>	Ω.
) Designer / Project engi	noor rosponsible for									7	STATE	OF
	applied roof live load s		dina								-0	NA.	A:23
	ents specific to the use										1	COR	10.01.5
	are MT20 plates unles										1	Si	ENIN
4) This truss	has been designed for	or a 10.0 psf bottom									2	UNA	Luin
	load nonconcurrent w												innin
	s has been designed)psf									Velez PE No.68182	
	tom chord in all areas											ic. DBA MiTek US	
	all by 2-00-00 wide will	tit between the botto	om								6023 Sw ate:	ingley Klage Rd. C	hesterfield, MO 63017

June 10,2024

Date:

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	Tyre Residence	
1453-A	EJ7	Jack-Open	9	1	Job Reference (optional)	T34118311

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 13:19:04 ID:zjPtfWHkkLHKOYKENDAsSPzX0bF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:23.7

Plate Offsets (X, Y): [2:0-5-4, Edge]

	1). [2.0 0 4,Edge]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES FBC2023/TPI2014	CSI TC BC WB Matrix-MP	0.70 0.34 0.17	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.03 -0.06 0.01	(loc) 7-10 7-10 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 31 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2 BOT CHORD 2 BOT CHORD 2 BRACING TOP CHORD 5 BOT CHORD 5 BOT CHORD 6 BOT CHORD 7 BOT CHORD 6 REACTIONS (si REACTIONS (si REACTIONS (si AMA MA MA FORCES ((T TOP CHORD 1 BOT CHORD 2 WEBS 3 NOTES 1) Wind: ASCE Vasd=108mp II; Exp C; Enc zone and C-C 8-0-0 zone; c vertical left ar forces & MW DOL=1.60 pl 2) Building Desi verifying appl requirements 3) This truss has chord live load 4) * This truss has chord and an 5) Bearings are	2x4 SP No.2 2x4 SP	athing directly applie applied or 6-0-11 oc 5= Mechanical C 8) C 8), 5=-140 (LC 12 C 1), 5=306 (LC 1) pression/Maximum 819, 3-4=-26/0 898/816, 5-6=0/0 //193 (3-second gust) CDL=5.0psf; h=25ft; velope) exterior (2) -11-11, Zone1 0-11 jht exposed ; end C for members and hown; Lumber neer responsible for nown covers rain load of this truss compon r a 10.0 psf bottom r a 10.0 psf bottom r a 10.0 psf bottom r a live load of 20.0 where a rectangle fit between the botto nt 2 SP No.2.	 7) Provide merebearing plat 2 and 140 lt LOAD CASE(S) ed or cat. 11 to ding tent. ds. to the set of the set of	chanical connection e capable of withst o uplift at joint 5.					Ja M 10	oaquin liTek In	No 68 STORA Velez PE No.68182 S O R S O R S O NA Velez PE No.68182 S O R S O R	VELCert 6634 Chesterfield, MO 63017
											June	e 10,2024

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MITek-US.com

Page: 1

Job	Truss	Truss Type	Qty	Ply	Tyre Residence	
1453-A	G1	Common Supported Gable	1	1	Job Reference (optional)	T34118312

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 13:19:04 ID:1KH7EqGUCk1c8FBsGo7OM_zX0bH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:67.5

Plate Offsets (X, Y): [2:0-1-10,)-2-0], [2:0-3-8,Edge], [16:0-	1-10,0-2-0], [16:0-3	-8,Edge]							-	
Loading (p	, , , , , , ,	-0-0	CSI TC	0.00	DEFL	in	(loc)	l/defl	L/d	PLATES MT20	GRIP
TCLL (roof) 20 TCDL 10		.25 .25	BC	0.98 0.42	Vert(LL) Vert(CT)	n/a n/a	-	n/a n/a	999 999	101120	244/190
		ES	WB	0.42	Horz(CT)	0.01	16	n/a	999 n/a		
BCDL 10		BC2023/TPI2014	Matrix-MS	0.00	11012(01)	0.01	10	n/a	n/a	Weight: 179 lb	FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 30T CHORD 2x4 SP No.2 2x4 SP No.2 DTHERS 2x4 SP No.2 NEDGE Left: 2x4 SP No.2 Neddet Structural wood STOP CHORD STOP CHORD STOP STOP CHORD STOP CHORD STOP STOP CHORD STOP CHORD STOP STOP CHORD STOP CHORD STOP STOP CH	.2 lo.2 sheathing directly applied. ectly applied or 10-0-0 oc -0-0, 16=34-0-0, 18=34-0-0, 4-0-0, 20=34-0-0, 21=34-0-0 4-0-0, 23=34-0-0, 25=34-0-0 4-0-0, 30=34-0-0, 31=34-0-0 8 (LC 12) 55 (LC 8), 16=-377 (LC 9), 31 (LC 13), 19=-152 (LC 9),	TOP CHORD BOT CHORD	Matrix-MS 1-2=0/50, 2-3=-122 4-5=-48/134, 5-6=- 7-8=-82/330, 8-9=- 10-11=-82/330, 11 12-13=-49/195, 13 14-15=-25/57, 15- 2-31=-44/194, 30-2 29-30=-38/195, 28 27-28=-38/195, 26 27-28=-38/195, 19 12-21=-38/195, 16 9-25=-121/0, 8-26 6-28=-120/193, 5-2 4-30=-112/205, 3-2 10-23=-129/195, 1 12-21=-120/193, 1 14-19=-112/205, 1 4-30=-112/205, 1 14-19=-112/205,	50/195, 99/398, -12=-65, -14=-32, 16=-59/4 31=-38/1 -22=-38/ -22=-38, -22=-38, -22=-38, -22=-38, -22=-38, -22=-38, -22=-38, -22=-38, -18=-41, =-122, -22=-11, -23=-11	6-7=-65/262, 9-10=-99/398 262, 129, 1, 16-17=0/50 95, 195, 195, 195, 195, 195, 195, 195,	194,	cho 9) * Th on t 3-06 cho 10) All b 11) Pro bea 2, 3 uplii 29, uplii 29, uplii 21, b u	rd live lo is truss he botto 6-00 tall rd and a bearings vide me ring plat 77 lb up ft at join 152 lb u ft at join 89 lb up plift at jo	bad noi has be om cho by 2-0 any oth s are as chanic te capa blift at ju t 27, 9 uplift at t 23, 9 blift at jo blift at jo blift at jo blift at jo blift at jo blift at jo blift at jo	en designed for a nconcurrent with een designed for rd in all areas wi 0-00 wide will fit er members. ssumed to be SF al connection (by able of withstand oint 16, 99 lb upl 8 lb uplift at joint joint 30, 70 lb up 5 lb uplift at joint point 20, 152 lb up	10.0 psf bottom any other live loads a live load of 20.0 p here a rectangle between the bottom P No.2 . y others) of truss to ing 365 lb uplift at joi fit at joint 26, 94 lb 28, 89 lb uplift at joi lift at joint 31, 97 lb 22, 98 lb uplift at joi blift at joint 19 and 8
22=- 26=- 30=- 04 22=1 22=1 22=1 25=1 27=1 27=1 29=1 31=1	39 (LC 13), 21=-98 (LC 9), 39 (LC 13), 23=-97 (LC 13), 39 (LC 12), 27=-94 (LC 12), 38 (LC 8), 29=-89 (LC 12), 152 (LC 8), 31=-70 (LC 12) 9 (LC 1), 16=409 (LC 1), 94 (LC 3), 19=165 (LC 26), 58 (LC 1), 21=161 (LC 26), 58 (LC 1), 23=169 (LC 25), 58 (LC 1), 28=161 (LC 25), 58 (LC 1), 30=165 (LC 25), 94 (LC 3) Compression/Maximum	 this design Wind: ASC Vasd=108 II; Exp C; I zone and I exposed; members Lumber Dr 3) Truss des only. For see Stand or consult 4) Building D verifying a 	ed roof live loads hav	the been of BCDL=5 envelopentilever lo right exp S for rea OL=1.60 in the p od (norm ind Deta signer as jineer rea shown of	considered for ond gust) .0psf; h=25ft;) exterior (2) eft and right iosed;C-C for ctions shown;) ane of the tru: al to the face) Is as applicab s per ANSI/TP sponsible for overs rain load	le, I 1. Jing			1. K	No 68 STATE SOR STATE SOR	

All plates are 2x4 MT20 unless otherwise indicated.

Gable requires continuous bottom chord bearing.

Gable studs spaced at 2-0-0 oc.

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

June 10,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

5)

6)

7)

Job	Truss	Truss Type	Qty	Ply	Tyre Residence	
1453-A	G2	Common Girder	1	1	Job Reference (optional)	T34118313

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 13:19:05 ID:1KH7EqGUCk1c8FBsGo7OM_zX0bH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

> NAILED NAILED 34-0-0

Special

-2-0-0 1-10-12 2-0-0 1-10-12 17-0-0 5-0-0 29-0-0 32-1-4 34-0-0 36-0-0 3-1-4 12-0-0 3-1-4 12-0-0 1-10-12 2-0-0 4x4 =10 9 11 8 12 13 Special 7 5-10-6 I-8-12 4¹² 6 14 6-4-0 3x4 = 3x4**≈** 5 15 16 3x4 = 4 3x4 **≥** 3 17 3x4= 54 35 42 43 34 \$ 40 5 18 2 $\overline{\mathbb{X}}$ $\times\!\!\times\!\!\times\!\!\times$ $\times\!\!\times\!\!\times$ \otimes \sim X 33 32 51 31 30 29 28 27 26 25 24 23 22 52 21 20 5x10 u 3x8= 5x10 II NAILED NAILED NAILED NAILED NAILED NAILED Special 4x6=

NAILED

Scale = 1:67.5

Plate Offsets	(X, Y): [2:0-5-8,Edge], [2:Edge,0-4-2], [18	:0-5-8,Edg	e], [18:Edge,(0-5-2]											
Loading TCLL (roof) TCDL BCLL	(psf) 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.25 1.25 NO		CSI TC BC WB	0.61 0.08 0.21	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 18	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190			
BCDL	10.0	Code	FBC202	23/TPI2014	Matrix-MS							Weight: 231 lb	FT = 20%			
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	UMBER OP CHORD 2x4 SP No.2 OOT CHORD 2x6 SP 2400F 2.0E VEBS 2x4 SP No.2 DTHERS 2x4 SP No.2 SRACING OP CHORD OP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. SOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS (size) 2=34-0-0, 18=34-0-0, 20=34-0-0, 24=34-0-0, 24=34-0-0, 24=34-0-0, 28=34-0-0, 31=34-0-0, 31=34-0-0, 31=34-0-0, 31=34-0-0, 31=34-0-0, 31=34-0-0, 31=34-0-0, 45=34-0-0, 45=34-0-0, 45=34-0-0, 45=34-0-0, 45=34-0-0, 45=34-0-0, 45=34-0-0, 45=34-0-0, 45=34-0-0, 45=34-0-0, 45=34-0-0, 45=34-0-0, 45=34-0-0, 24=34-0-0, 24=34-0-0, 24=34-0-0, 24=34-0-0, 24=34-0-0, 24=34-0-0, 24=34-0-0, 32=34-0-0, 32=34-0-0, 31=34-0-0, 24=34-0-0, 45=34-		ed or B ⁴ -0-0, 4-0-0, 4-0-0, 4-0-0, 27) 5), C 5), 5),	OP CHORD	Matrix-MS 1-2=0/39, 2-4=-195/116, 4-5=-107/49, 5-6=-72/64, 6-7=-33/72, 7-8=-8/92, 8-9=-7/118, 9-10=-10/147, 10-11=-9/141, 11-12=-7/98, 12-13=-7/66, 13-14=-9/52, 14-15=-45/44, 15-16=-78/28, 16-18=-136/119, 18-19=0/46 2-33=-146/222, 32-33=-40/167, 31-32=-38/165, 30-31=-37/164, 29-30=-37/163, 28-29=-37/163, 27-28=-37/163, 23-24=-38/164, 22-23=-39/165, 21-22=-40/167, 20-21=-42/169, 18-20=-180/254 27-39=-119/3, 10-39=-119/3, 28-38=-129/120, 9-38=-129/120, 29-37=-118/114, 8-37=-118/114, 30-36=-119/113, 7-36=-119/113, 31-35=-214/152, 6-35=-126/119, 32-34=-174/131, 5-34=-90/95, 4-33=-206/156, 25-40=-129/119, 11-40=-129/119,					 3) Truss designed for wind loads in the plane of the true only. For studs exposed to wind (normal to the face see Standard Industry Gable End Details as applica or consult qualified building designer as per ANSI/T 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loar equirements specific to the use of this truss compo 5) All plates are 2x4 MT20 unless otherwise indicated. 6) Gable requires continuous bottom chord bearing. 7) Gable studs spaced at 2-0-0 oc. 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live load of 20. on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bott chord and any other members. 10) All bearings are assumed to be SP 2400F 2.0E . 						
$\begin{array}{c} 24 = -254 \ (LC \ 9), \ 25 = -246 \ (LC \ 9), \ 27 = -134 \ (LC \ 8), \ 28 = -246 \ (LC \ 8), \ 29 = -254 \ (LC \ 8), \ 30 = -206 \ (LC \ 4), \ 31 = -459 \ (LC \ 8), \ 32 = -270 \ (LC \ 4), \ 33 = -196 \ (LC \ 27), \ 45 = -233 \ (LC \ 4), \ 33 = -196 \ (LC \ 27), \ 45 = -233 \ (LC \ 4), \ 33 = -196 \ (LC \ 27), \ 45 = -237 \ (LC \ 2), \ 20 = 316 \ (LC \ 1), \ 21 = 397 \ (LC \ 2), \ 20 = 316 \ (LC \ 1), \ 21 = 397 \ (LC \ 2), \ 20 = 316 \ (LC \ 1), \ 22 = 816 \ (LC \ 1), \ 23 = 366 \ (LC \ 1), \ 22 = 816 \ (LC \ 1), \ 23 = 366 \ (LC \ 1), \ 22 = 816 \ (LC \ 1), \ 23 = 366 \ (LC \ 1), \ 22 = 816 \ (LC \ 1), \ 23 = 366 \ (LC \ 1), \ 29 = 465 \ (LC \ 1), \ 30 = 367 \ (LC \ 1), \ 31 = 903 \ (LC \ 1), \ 33 = 316 \ (LC \ 1), \ 33 = 316 \ (LC \ 1), \ 48 = 297 \ (LC \ 22) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$				this design Wind: ASC Vasd=108r II; Exp C; E zone; canti	23-42=-119/113, 22-43=-126/119, 21-44=-88/101, 1 16-20=-203/145, 35-36=0/67, 36-3 38-39=0/69, 39-2 41-42=0/67, 42-4 16-44=0/57 d roof live loads ha E 7-22; Vult=140n mph; TCDL=5.0ps Enclosed; MWFRS lever left and right xposed; Lumber D	14-43=-1: 15-44=-91, 4-34=0/6: 37=0/68, 3 40=0/69, 4 43=0/65, 4 ave been of nph (3-sec f; BCDL=5 6 (envelope e exposed	26/119, (95, 2, 34-35=0/65, 7-38=0/69, 0-41=0/68, 3-44=0/62, considered for cond gust) .0psf; h=25ft; a) exterior (2); end vertical I	Cat.		Ja M 14	Daquin LiTek In	STAU OR SONA Velez PE No.68182 vingley Ridge Rd. C	OF DAGE LENGIN			

June 10,2024

Page: 1

4x4=

19

Job	Truss	Truss Type	Qty	Ply	Tyre Residence	
1453-A	G2	Common Girder	1	1	Job Reference (optional)	T34118313

- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 233 lb uplift at joint 2, 267 lb uplift at joint 18, 134 lb uplift at joint 27, 246 lb uplift at joint 28, 254 lb uplift at joint 29, 206 lb uplift at joint 30, 459 lb uplift at joint 31, 270 lb uplift at joint 32, 196 lb uplift at joint 33, 246 lb uplift at joint 25, 254 lb uplift at joint 24, 205 lb uplift at joint 23, 427 lb uplift at joint 22, 232 lb uplift at joint 21, 190 lb uplift at joint 20, 233 lb uplift at joint 2 and 267 lb uplift at joint 18.
- 12) "NAILED" indicates Girder: 3-16d (0.162" x 3.5") toenails per NDS guidelines.
- 13) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 573 lb down and 284 lb up at 8-0-0, and 573 lb down and 284 lb up at 26-0-0 on bottom chord. The design/ selection of such connection device(s) is the responsibility of others.
- 14) Special hanger(s) or other connection device(s) shall be provided at 8-0-0 from the left end sufficient to connect trusses to front face of top chord, skewed 45.0 deg. to the left, sloping -6.7 deg down.. The design/selection of such special connection device(s) is the responsibility of others.
- In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (lb/ft) Vert: 1-10=-60, 10-19=-60, 45-53=-20

Concentrated Loads (lb)

Vert: 27=-286 (F), 28=-286 (F), 29=-286 (F), 30=-286 (F), 31=-286 (F), 25=-286 (F), 24=-286 (F), 23=-286 (F), 22=-286 (F), 51=-573 (F), 52=-573 (F), 54=-175 (F) Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 13:19:05 ID:1KH7EqGUCk1c8FBsGo7OM_zX0bH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	Tyre Residence	
1453-A	T1	Common	9	1	Job Reference (optional)	T34118314

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 13:19:05 ID:VWrVRAG6z29TmOm2pVfdvCzX0bG-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Scale = 1:65.8

Plate Offsets (X, Y): [2:Edge,0-0-7], [10:Edge,0-0-7]

forces & MWFRS for reactions shown; Lumber

DOL=1.60 plate grip DOL=1.60

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES FBC20	023/TPI2014	CSI TC BC WB Matrix-MS	0.76 0.48 0.61	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.31 -0.49 0.11	(loc) 13-15 12-13 10	l/defl >999 >833 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 165 lb	GRIP 244/190 FT = 20%
	2x4 SP 2400F 2.0E 2x4 SP No.2 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood she 2-3-3 oc purlins. Rigid ceiling directly bracing.	applied or 7-1-10 oc 10=0-6-0 C 12) C 8), 10=-743 (LC 9 .C 1), 10=1483 (LC	ed or c c	 verifying apprequirements This truss hat chord live load to be tood on the botton 3-06-00 tall lectord and an as All bearings Provide mean bearing plate 	signer / Project eng lied roof live load s specific to the us as been designed ad nonconcurrent has been designee m chord in all area by 2-00-00 wide w ny other members are assumed to be chanical connection e capable of withst uplift at joint 10. Standard	shown c e of this for a 10.1 with any f for a liv s where ill fit betw e SP 240 n (by oth	overs rain loa truss compo 0 psf bottom other live loa re load of 20.0 a rectangle veen the botto 00F 2.0E ers) of truss t	ading nent. ads. Opsf om to					
TOP CHORD	1-2=0/39, 2-3=-3239 5-6=-2154/978, 6-7= 7-9=-2962/1226, 9-1 10-11=0/39	2154/978, 0=-3239/1388,	225,								A.M.	No 68	VELEX III
WEBS	12-13=-957/2564, 10 6-13=-369/1031, 7-1 7-12=-95/444, 9-12= 5-13=-733/493, 5-15	0-12=-1183/3008 3=-733/493, 314/321,	4/321								*	No 68	182
this design 2) Wind: ASC Vasd=108 II; Exp C; I zone and 0 17-0-0, Zo 36-0-9 zor	ed roof live loads have n. CE 7-22; Vult=140mph imph; TCDL=5.0psf; Bf Enclosed; MWFRS (er C-C Zone3 -2-0-9 to 1- one2 17-0-0 to 21-9-11 ne; cantilever left and r ft and right exposed;C-	(3-second gust) CDL=5.0psf; h=25ft; ivelope) exterior (2) ·4-4, Zone1 1-4-4 to , Zone1 21-9-11 to ight exposed ; end								J	Daquin	STATE SONA Velez PE No.68182 c. DBA MITEK USA	P.A. CININ

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

June 10,2024

Page: 1

Job	Truss	Truss Type	Qty	Ply	Tyre Residence	
1453-A	T2	Roof Special	6	1	Job Reference (optional)	T34118315

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 13:19:05 ID:7_?Lf8B9kISU4VXd28fRirzX0kP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-2-0-0 <u>31-3-12</u> 36-0-0 11-5-2 17-0-0 20-10-4 26-0-4 34-0-0 5-10-5 2-0-0 5-10-5 5-6-14 5-6-14 3-10-4 5-2-0 5-3-8 2-8-4 2-0-0 4x5= 6 412 41 2x4 🛛 3x4 🚅 7 32 33 3x4 = 5 7x8≈ 4 2x4、 8 7x12 u 30 75

Scale = 1:65.8

Plate Offsets ((X, Y): [2:Edge,0-0-7]	, [8:0-4-0,0-3-4], [9:0-1	0-4,Edge	e], [11:1-0-0,0-	1-4], [11:0-0-4,Edg	ge], [16:0)-5-12,0-2-4]						
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.25 1.25 YES FBC202	23/TPI2014	CSI TC BC WB Matrix-MS	0.75 0.77 0.86	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.53 -0.84 0.33	(loc) 15-26 15-26 11	l/defl >770 >488 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 205 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS LBR SCAB WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 *Excep 2400F 2.0E 2x4 SP No.2 11-8 SP 2400F 2.0I Left: 2x4 SP No.3 Right: 2x4 SP No.2 Structural wood she 2-3-11 oc purlins. Rigid ceiling directly bracing. (size) 2=0-6-0, Max Horiz 2=-172 (L Max Uplift 2=-743 (L	E one side eathing directly applied applied or 5-10-2 oc 11=0-6-0 _C 13)	3) or 4) 5)	this design. Wind: ASCE Vasd=108mm II; Exp C; En zone and C- 17-0-0, Zone 36-0-14 zone vertical left a forces & MW DOL=1.60 p Building Des verifying app requirements This truss ha chord live loa * This truss h	roof live loads hav 7-22; Vult=140mp ph; TCDL=5.0psf; closed; MWFRS (C Zone3 -2-0-9 to 2: 217-0-0 to 21-9-1 e; cantilever left ar nd right exposed; (FRS for reactions late grip DOL=1.60 igner / Project eng lied roof live load s specific to the us is been designed f ad nonconcurrent has been designed in chord in all area	bh (3-sec BCDL=5 envelop 1-4-4, Z 1, Zone dright e C-C for r shown;) jineer re shown c e of this jor a 10. with any d for a liv	cond gust) i.Opsf; h=25ft; e) exterior (2) one1 1-4-4 to 1 21-9-11 to exposed ; end nembers and Lumber sponsible for overs rain loa truss compor 0 psf bottom other live loa re load of 20.0	c Cat. ding nent. ds.					
FORCES	(lb) - Maximum Com Tension 1-2=0/39, 2-3=-3236 5-6=-2457/1097, 6-7 7-9=-4684/1873, 9-7 10-11=-998/393, 11	6/1362, 3-5=-3065/131 7=-3192/1443, 10=-360/285,	, ,	chord and ar Bearings are Joint 11 SP I Provide mec	by 2-00-00 wide wi by other members. e assumed to be: J No.2. hanical connection e capable of withst	oint 2 Sl	P 2400F 2.0E ers) of truss t	, 0			S. S	No 68	VELES IIII
BOT CHORD	2-20=-1297/3004, 1	8-20=-1027/2572, 17=0/123, 7-16=-254/2 9-15=-1661/4553, 204/580	67, L(uplift at joint 11.						* 10	No 68	182 *
NOTES 1) Attached a 2400F 2.0 spaced 9"	5-18=-567/435, 6-18 16-18=-649/1911, 6 8-16=-1603/747, 8- 10-13=-135/400 8-4-15 scab 8 to 11, frr 9E with 2 row(s) of 10d	8=-240/482, -16=-654/1450, 15=0/313, ont face(s) 2x6 SP (0.131"x3") nails t 0-5-8 from end at join	ıt							Ja M	oaquin liTek li	Velez PE No.68182 nc. DBA MiTek US.	

spaced 9" o.c.except : starting at 0-5-8 from end at joint 11, nail 2 row(s) at 3" o.c. for 4-7-7.

June 10,2024

16023 Swingley Ridge Rd. Chesterfield, MO 63017

Date:

Page: 1

Job	Truss	Truss Type	Qty	Ply	Tyre Residence	
1453-A	ТЗ	Roof Special	8	1	Job Reference (optional)	T34118316

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Fri Jun 07 13:19:05 ID:VWrVRAG6z29TmOm2pVfdvCzX0bG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:65.8

Plate Offsets (X, Y): [3:0-1-12,Edge], [14:0-3-8,0-3-12], [16:Edge,0-3-8]

			.	-			· · · · ·						
Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.25		CSI TC	0.60	DEFL Vert(LL)	in 0.54	(loc) 3-15	l/defl >760	L/d 240	PLATES MT20	GRIP 244/190
TCDL	10.0	Lumber DOL	1.25		BC	1.00	Vert(CT)	-0.81	3-15	>506	180	-	
BCLL	0.0*	Rep Stress Incr	YES		WB	0.67	Horz(CT)	0.35	9	n/a	n/a		
BCDL	10.0	Code	FBC202	23/TPI2014	Matrix-MS							Weight: 235 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS LBR SCAB WEDGE BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2.0E 2x4 SP No.2 *Excep 2.0E, 3-14:2x6 SP 2 2x4 SP No.2 2-5 SP 2400F 2.0E Left: 2x4 SP No.2 Structural wood she 3-8-9 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt	t* 2-16:2x4 SP 2400 400F 2.0E one side athing directly applie applied or 2-2-0 oc 4-14, 11-14, 8-14	d or 4) 5)	Vasd=108m II; Exp C; En zone and C- 17-0-0, Zon 36-0-14 zon vertical left a forces & MW DOL=1.60 p Building Des verifying app requirements This truss ha chord live los	7-22; Vult=140m oh; TCDL=5.0psf; closed; MWFRS C Zone3 -2-0-14 / 22 17-0-0 to 21-9- e; cantilever left a nd right exposed; /FRS for reactions late grip DOL=1.6 igner / Project en lied roof live load s specific to the us is been designed ad nonconcurrent has been designe	BCDL=5 (enveloped to 1-3-15 11, Zone nd right e C-C for r s shown; 0 gineer re s shown c se of this for a 10.1 with any	i.0psf; h=25ff e) exterior (2 , Zone1 1-3- 1 21-9-11 to exposed ; end nembers and Lumber sponsible for overs rain loa 0 psf bottom other live loa) 15 to d l ading nent. ads.					
FORCES	(size) 2=0-6-0, 9 Max Horiz 2=-166 (L Max Uplift 2=-742 (L Max Grav 2=1493 (I (Ib) - Maximum Com Tension	.C 13) .C 8), 9=-742 (LC 9) .C 1), 9=1492 (LC 1)	''	3-06-00 tall I chord and ar Bearings are Joint 9 SP N	n chord in all area by 2-00-00 wide w by other members assumed to be: , o.2. hanical connectio	vill fit betw 5. Joint 2 Sl	veen the bott P 2400F 2.0E	Ξ,				No 68	
TOP CHORD		3=-2673/1108,	4,	bearing plate	e capable of withs uplift at joint 9.						S. S	SOR LICEN	SE
BOT CHORD	3-15=-1824/4489, 1 12-13=0/0, 11-12=-2	4-15=-1824/4488, 25/95, 9-11=-1098/30		(•)							*	NO 68	182
WEBS	4-15=-14/504, 4-14= 8-11=-202/235, 12-1 6-14=-392/1247, 11- 8-14=-720/529	4=0/179,									PRO	ST TH	OF HILL
2400F 2.0 spaced 9" 2, nail 2 ro	11-0-14 scab 2 to 5, fro DE with 2 row(s) of 10d co.c.except : starting a pw(s) at 2" o.c. for 2-0- at joint 2, nail 2 row(s)	(0.131"x3") nails t 2-0-6 from end at jo 0; starting at 9-0-14	int								oaquin	Velez PE No.68182 c. DBA MiTek USA	

2) Unbalanced roof live loads have been considered for this design.

June 10,2024

16023 Swingley Ridge Rd. Chesterfield, MO 63017

Date:

Page: 1

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- 1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor1 bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- 5. Cut members to bear tightly against each other
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- 12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- 14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.