DATE 02/22/2011		ty Building Permit Posted on Premises During Construct	OD00029204
APPLICANT SCOTT	ROSENBOOM	PHONE 352-	538-3877
ADDRESS 19802	NW 190TH AVE	HIGH SPRINGS	FL 32643
OWNER CLAUE	DIO & GRACIEF CONDE	PHONE 386-	454-8651
ADDRESS 245	SW WAFFLE GLN	FORT WHITE	FL 32038
CONTRACTOR S	COTT ROSENBOOM	PHONE 352-	538-3877
LOCATION OF PROPE	RTY 47 SOUTH, L 27, L WAFF	LE GLN, 1ST HOUSE ON LEFT	
TYPE DEVELOPMENT	SFD, UTILITY	ESTIMATED COST OF CONSTRU	JCTION 160300.00
HEATED FLOOR ARE	A 2138.00 TOTA	LAREA 3206.00 HE	IGHT 22.00 STORIES 1
FOUNDATION CON	VCRETE WALLS FRAMED	ROOF PITCH 7/12	FLOOR SLAB
LAND USE & ZONING	AG-3	MAX. HEIG	HT 35
Minimum Set Back Requ	uirments: STREET-FRONT	30.00 REAR 25.00	SIDE 25.00
NO. EX.D.U. <u>1</u>	FLOOD ZONE X	DEVELOPMENT PERMIT NO	
ARCEL ID 18-7S-1	7-10021-009 SUBD	VISION	
OT BLOCK	PHASE UN	IT TOTAL ACK	ES 6.45
Subsent Dennit Ma	<u>CBC1257076</u>	- r Coor	Kosinto
ulvert Permit No. XISTING	Culvert Waiver Contractor's Licen 11-0014 BK	ppca	nt/Owner/Contractor
riveway Connection		Zoning checked by Approved for	<u>Y</u> or Issuance New Resident
	ONE FOOT ABOVE THE ROAD	e Zoning checked by Approved is	issuance new resident
OC ON FILE	ONE TOOT ADOVE THE ROAD		
	EMOVED 45 DAYS OF CO DATE	Chaol	c # or Cash 11903
		ONING DEPARTMENT ONLY	(footer/Slab)
emporary Power	Foundation date/app. by	Mon	
nder slab rough-in plum		date/app. by	date/app. by
nder stab rough-in plun	date/app. by	Slab S date/app. by	heathing/Nailing date/app. by
raming		date/app. by	date/app. by
10 Co. 10			
date/a	pp. by	date/app. by	
	pp. by	A STOLEN OF DESCRIPTION (SUPPORT	ough-in
ough-in plumbing above	pp. by	date/app. by Electrical date/app. by	ough-in
ough-in plumbing above eat & Air Duct	pp. by slab and below wood floor Peri. beam	Electrical date/app. by (Lintel)	date/app. by
ough-in plumbing above eat & Air Duct	pp. by e slab and below wood floor Peri. beam date/app. by	Electrical date/app. by (Lintel) date/app. by by	date/app. by Pool date/app. by
ough-in plumbing above eat & Air Duct rmanent powerd	pp. by slab and below wood floor Peri. beam	Electrical date/app. by (Lintel)	date/app. by Pool
ough-in plumbing above eat & Air Duct rmanent power d mp pole	pp. by e slab and below wood floor e peri. beam date/app. by ate/app. by Utility Pole M/I	Electrical date/app. by (Lintel) date/app. by Culver	date/app. by Pool
ough-in plumbing above eat & Air Duct rmanent power d mp pole <u>date/app. by</u>	pp. by e slab and below wood floor Peri. beam date/app. by C.O. Final ate/app. by Utility Pole M/I date/app. by	Electrical date/app. by (Lintel) date/app. by Culver date/app. by H tie downs, blocking, electricity and plu	date/app. by Pool date/app. by t date/app. by umbing date/app. by
ough-in plumbing above eat & Air Duct rmanent power d np pole <u>date/app. by</u> connection	pp. by e slab and below wood floor e peri. beam date/app. by ate/app. by Utility Pole M/I	Electrical for date/app. by (Lintel) date/app. by Culver date/app. by H tie downs, blocking, electricity and plue	date/app. by Pool date/app. by t date/app. by
ough-in plumbing above eat & Air Duct rmanent powerd mp poled date/app. by connection	pp. by e slab and below wood floor date/app. by ate/app. by Utility Pole M/I date/app. by RV date/app. by	Electrical for date/app. by (Lintel) date/app. by Culver date/app. by H tie downs, blocking, electricity and plu date/app. by	date/app. by Pool
ough-in plumbing above eat & Air Duct ermanent powerd mp poled date/app. by econnection	pp. by pp. by pp. by peri. beam date/app. by C.O. Final ate/app. by Utility Pole Utility Pole RV date/app. by S	Electrical for date/app. by (Lintel) date/app. by Culver Culver date/app. by H tie downs, blocking, electricity and plu date/app. by N FEE \$16.03 SURC	date/app. by Pool date/app. by t date/app. by mbing date/app. by Re-roof date/app. by
Lough-in plumbing above leat & Air Duct ermanent powerd imp poled date/app. by econnection	pp. by pp. by slab and below wood floor Peri. beam date/app. by Utility Pole Utility Pole RV date/app. by S 805.00 CERTIFICATIO CONING CERT. FEE \$	Electrical for date/app. by (Lintel) date/app. by date/app. by H tie downs, blocking, electricity and plu date/app. by N FEE \$ 16.03 SURC 50.00 FIRE FEE \$0.00	date/app. by Pool date/app. by t date/app. by mbing date/app. by Re-roof date/app. by CHARGE FEE \$ 16.03
Lough-in plumbing above leat & Air Duct ermanent powerd ump poled date/app. by econnection UILDING PERMIT FEE ISC. FEES \$0.00	pp. by pp. by slab and below wood floor Peri. beam date/app. by Utility Pole Utility Pole RV date/app. by S 805.00 CERTIFICATIO CONING CERT. FEE \$	Electrical for date/app. by (Lintel) date/app. by date/app. by H tie downs, blocking, electricity and plu date/app. by N FEE \$ 16.03 SURC 50.00 FIRE FEE \$0.00	date/app. by Pool date/app. by t date/app. by mbing date/app. by Re-roof date/app. by CHARGE FEE \$ 16.03 WASTE FEE \$

"WARNING TO OWNER: YOUR FAILURE TO RECORD A NOTICE OF COMMENCEMENT MAY RESULT IN YOUR PAYING TWICE FOR IMPROVEMENTS TO YOUR PROPERTY. IF YOU INTEND TO OBTAIN FINANCING, CONSULT WITH YOUR LENDER OR AN ATTORNEY

BEFORE RECORDING YOUR NOTICE OF COMMENCEMENT."

EVERY PERMIT ISSUED SHALL BECOME INVALID UNLESS THE WORK AUTHORIZED BY SUCH PERMIT IS COMMENCED WITHIN 180 DAYS AFTER ITS ISSUANCE, OR IF THE WORK AUTHORIZED BY SUCH PERMIT IS SUSPENDED OR ABANDONED FOR A PERIOD OF 180 DAYS AFTER THE TIME THE WORK IS COMMENCED. A VALID PERMIT RECIEVES AN APPROVED INSPECTION EVERY 180 DAYS. WORK SHALL BE CONSIDERED NOT SUSPENDED, ABANDONED OR INVALID WHEN THE PERMIT HAS RECIEVED AN APPROVED INSPECTION WITHIN 180 DAYS OT THE PREVIOUS INSPECTION.

The Issuance of this Permit Does Not Waive Compliance by Permittee with Deed Restrictions.

	INCRECTION
AND	E OF INSPECTION OR TREATMENT
atts	SW Wattle Glewn
	29204 Date of Inspection
Date	311111 of Treatment - Full A Spot
Duto	Pesticide Used
Woo	d-Destroying Organisms Treated
	ion of Florida State Law (Chap. 482-22) yone other than the property owner to remove this notice.
	 Lawn Spraying Household Pest Control Tree & Shrub Spraying Termite Control

Prepared for:

ROSENBOOM CONSTRUCTION THE CONDE RESIDENCE ALACHUA COUNTY, FLORIDA

By:

Schafer Engineering, LLC

386-462-1340 / 352-375-6329

NO COPIES ARE TO BE PERMITTED

SCHAFER ENGINEERING, LLC 7104 NW 42ND LANE \ GAINESVILLE FL. 32606 PHONE: 386-462-1340 \ 352-375-6329 Trusses: Pre-engineered, pre-fabracated with the manufacturers required bracing system installed. Roof Sheathing: Type: 051 Size: 7/16 Fastener type nails: 8d / .113 Ring Shank Interior zone spacing: Interior: <u>6"</u> Periphery: ____ Edge and end zone spacing: Interior: _____ Periphery:-Double Top Plate: Type: Spruce_Grade: #1 #2 Size: 2 x 4 Nail Spacing: _ _ in Stud Type: Spruce Grade: <u>#1 #2</u> Size: <u>2 x 4</u> Interior stud spacing: 16" End stud spacing: 16" Shear Wall Siding: Type: 050 Thickness: 7/16 6 ft Trans: Fastener <u>8d/131</u> Spacing: Int: _____ Edge: ____ ft Trans: Fastener <u>8d/131</u> Spacing: Int: ______ Edge: _____ Allowable Unit Shear on Shear Walls: <u>314</u> pounds per linear foot Unit Shear Transferred from Diaphragm: Trans: <u>252</u> Long: 62 Wall Tension Transferred by: Siding Nails: <u>8d/131</u> @ <u>4</u> O.C. Edges Foundation Anchor Bolts: Concrete Strength: 3000 psi Size: 1/2" Washer: <u>2"</u> Embedment: <u>7"</u> Location of first anchor bolt from corner: <u>8"</u> Anchor Bolts @ 48" o.c. Model: A307 Loc. from corner: 8" Type of Foundation: (1) — #5 rebar continuous required in bond beam. Floor Slab: <u>4"</u> Cmu size: <u>8" x 16"</u> Height: <u>24"</u> Rein.: <u>#5</u> at <u>72"</u> o.c. Monolithic Footing: Depth: 20" Bottom Width: /2_Rein.: 2_ #5 rebars Stemwall Footing: Width: 20 Depth: 10 Rein.: 2 #5 rebar interior Footings 16" Wide X 10" Deep with 2-#5 rebar continuous Porch Columns: 6×6×8 Syp PT C 152'0. Lass Column Fasteners: Super ABU66/PC 66 OR 60000 Special Comments: Tustell Certing displaga and screened porch USing man nails; nail patton, & same Grade material Notes: 1. Balloon frame all gable ends unless accompanied by gable end detail Balloon trame all gable ends unless accompanied by gable end detail
 All trusses must bear on exterior walls and parch beams.
 All trusses must bear on exterior walls and parch beams.
 All walls to be nailed with same nailing pattern as the shear walls.
 This is a wind load ONLY not a structural analysis.
 This wind load is not valid without a raised, embossed seal.
 It is assumed that ideal soil conditions and pad preparations are provided.
 Fiber mesh or WWM may be used in concrete slab.
 Trusses must be installed and anchored in accordance to the truss engined. 8. Trusses must be installed and anchored in accordance to the truss engineering. 9. All headers spanning over 12' must be pre-engineered. 10. The foundation and walls are minimum design use, and may be increased. 11. Wind load is for one use only $\$ FBC-2007 $\$ No copies permitted -10-11 Bruce Schafer, P. E. #48984 7104 NW 42ND LN GAINESVILLE, FL. 32606

lotal each truss uplift on the header divide by 2 for header anchorage

SCHAFER ENGINEERING, LLC 7104 NW 42ND LANE \ GAINESVILLE FL. 32606 PHONE: 386-462-1340 \ 352-375-6329

Uplift LDS	Top Connector	Rating Lbs	Bottom Connector	Rating Lbs
to 455	LSTA19	635	нз	320
to 910	LSTA12	795	2-н3	640
to 1265	LSTA18	1110	LTT19	1305
to 1750	2-LSTA12	1810	LTT20	1750
ιο 2530	2-LSTA18	2530	HD2A-2.5	2165
10 2865	3-LSTA18	3255	HD2A-3.5	2865
10 3700	3-LSTA24	3880	HD5A-3	3130

the uplift on the header. Use proper bolt anchors sufficient to support required uplift loads.

TRUSSES	GIRDERS		
Uplift Lbs	Top Connector	Bottom Connector	Rating Lbs
to 535	H2.5A	NA	
to 1015	HIDA	NA	
to 1215	TS22	LTT19	1305
to 1750	2-TS22	LTT20	1750
to 2570	2-TS22	HD2A	2775
to 3665	3-TS22	HD5A	4010
to 5420	2-MST37	HTT22	5250
to 9660	2-MST60	HDIOA	9540

Two 12d common toenials are required per truss for each bearing point into top plate. It is the contractors responsibility to provide a continuous load path from truss to foundation.

	TOP CONNECTOR	RATING LBS	BOTTOM	RATING LBS
BEAM SEATS	LSTA18	1110	LTT19	1305
POSTS	2-LSTA18	2220	ABU44	2300

 Simpson or equivient hardware may be used. For nailing into spruce members, multiply table values by .86

2. See truss engineering for anchor uplift values.

 This schedule is not meant to be a replacement to the specified values of any manufactures values.

User Input Data					
Structure Type	Building				
Basic Wind Speed (V)	110	mph			
Structural Category	Ш				
Exposure	В				
Struc Nat Frequency (n1)	1	Hz			
Slope of Roof (Theta)	30.3	Deg			
Type of Roof	Hipped				
Eave Height (Eht)	8.00	ft			
Ridge Height (RHt)	18.84	ft			
Mean Roof Height (Ht)	13.51	ft			
Width Perp. to Wind (B)	66.33	ft			
Width Parallel to Wind (L)	74.33	ft			
Damping Ratio (beta)	0.01				

.

*

Red values should be changed only through "Main Menu"

Calculated Paramete	rs
Type of Structure	
Height/Least Horizontal Dim	0.20
Flexible Structure	No

Calculated	Parameters	
Importance Factor	1	
Hurricane Prone I	Region (V>100 m	ph)
Table C	6-4 Values	
Alpha =	7.000	
zg =	1200.000	
		_
At = Bt = Am =	0.143 0.840 0.250	
Bt =	0.840	
Bt = Am =	0.840	
Bt = Am = Bm =	0.840 0.250 0.450	ft
Bt = Am = Bm =	0.840 0.250 0.450 0.300	ft

	Gust Factor Category I: Rigid Structures - Simplified Met	hod	
Gust1	For rigid structures (Nat Freq > 1 Hz) use 0.85	0.85	
	Gust Factor Category II: Rigid Structures - Complete Anal	ysis	
Zm	Zmin	30.00	ft
lzm	Cc * (33/z)^0.167	0.3048	
Lzm	I*(zm/33)^Epsilon	309.99	ft
Q	(1/(1+0.63*((B+Ht)/Lzm)^0.63))^0.5	0.8880	
Gust2	0.925*((1+1.7*lzm*3.4*Q)/(1+1.7*3.4*lzm))	0.8589	
	Gust Factor Category III: Flexible or Dynamically Sensitive St	ructures	
Vhref	V*(5280/3600)	161.33	ft/s
Vzm	bm*(zm/33)^Am*Vhref	70.89	ft/s
NF1	NatFreq*Lzm/Vzm	4.37	Hz
Rn	(7.47*NF1)/(1+10.302*NF1)^1.667	0.0552	
Nh	4.6*NatFreq*Ht/Vzm	0.88	
Nb	4.6*NatFreq*B/Vzm	4.30	
Nd	15.4*NatFreq*Depth/Vzm	16.15	
Rh	1/Nh-(1/(2*Nh^2)*(1-Exp(-2*Nh)))	0.6028	
Rb	1/Nb-(1/(2*Nb^2)*(1-Exp(-2*Nb)))	0.2054	
Rd	1/Nd-(1/(2*Nd^2)*(1-Exp(-2*Nd)))	0.0600	
RR	((1/Beta)*Rn*Rh*Rb*(0.53+0.47*Rd))^0.5	0.6175	
gg	+(2*LN(3600*n1))^0.5+0.577/(2*LN(3600*n1))^0.5	4.19	
Gust3	0.925*((1+1.7*lzm*(3.4^2*Q^2+GG^2*RR^2)^0.5)/(1+1.7*3.4*lzm))	1.02	

	Gust	Factor Summary	
Main Wind-force resis	sting system:	Components and Cladding:	
Gust Factor Category:		Gust Factor Category:	1
Gust Factor (G)	0.86	Gust Factor (G)	0.86

ASCE 7-05 6.5.12.2.1 Design Wind Pressure - Buildings of All Heights (Non-flexible)

Elev.	Kz	Kzt	Kd	Windward W		
ft			1.00		+GCpi	-GCpi
18.84	0.70	1.00	1.00	21.70	11.71	18.12
15	0.70	1.00	1.00	21.70	11.71	18.12

Figure 6-3 - External Pressure Coefficients, Cp

Loads on Main Wind-Force Resisting Systems

Variable	Formula	Value	Units
Kh	2.01*(15/zg)^(2/Alpha)	0.57	
Kht	Topographic factor (Fig 6-2)	1.00	
Qh	.00256*(V)^2*ImpFac*Kh*Kht*Kd	17.80	psf

Wall Pressure Coefficients, Cp		
Surface Cp		
Windward Wall (See Figure 6.5.12.2.1 for Pressures)	0.80	

Roof Pressure Coefficients, Cp			
Roof Area (sq. ft.)			
Reduction Factor	1.00		

Description	Ср	Pressure (psf)		
		+GCpi	-GCpi	
Leeward Walls (Wind Dir Parallel to 66.33 ft wall)	-0.48	-10.48	-4.07	
Leeward Walls (Wind Dir Parallel to 74.33 ft wall)	-0.50	-10.85	-4.44	
Side Walls	-0.70	-13.91	-7.50	
Roof - Normal to Ridge (T	heta>=10)			
Windward - Max Negative	-0.19	-6.08	0.33	
Windward - Max Positive	0.31	1.47	7.88	
Leeward Normal to Ridge	-0.60	-12.38	-5.97	
Overhang Top	-0.19	-2.87	-2.87	
Overhang Bottom	0.80	0.69	0.69	
Roof - Parallel to Ridge (A	All Theta)			
Dist from Windward Edge: 0 ft to 6.755 ft	-0.90	-16.97	-10.56	
Dist from Windward Edge: 6.755 ft to 13.51 ft	-0.90	-16.97	-10.56	
Dist from Windward Edge: 13.51 ft to 27.02 ft	-0.50	-10.85	-4.44	

Page No. 2 of 6

-1.38

Dist from Windward Edge: > 27.02 ft -0.30 -7.79

* Horizontal distance from windward edge

Figure 6-4 - External Pressure Coefficients, GCpf

Loads on Main Wind-Force Resisting Systems w/ Ht <= 60 ft

Kh =	2.01*(15/zg)^(2/Alpha)	=	0.57
Kht =	Topographic factor (Fig 6-2)	=	1.00
Qh =	0.00256*(V)^2*ImpFac*Kh*Kht*Kd	=	17.80

	Case A							
Surface	GCpf	+GCpi	-GCpi	qh (psf)	Min P (psf)	Max P (psf)		
1	0.56	0.18	-0.18	21.70	8.25	16.06		
2	0.21	0.18	-0.18	21.70	0.65	8.46		
3	-0.43	0.18	-0.18	21.70	-13.24	-5.43		
4	-0.37	0.18	-0.18	21.70	-11.94	-4.12		
5	0.00	0.18	-0.18	21.70	-3.91	3.91		
6	0.00	0.18	-0.18	21.70	-3.91	3.91		
1E	0.69	0.18	-0.18	21.70	11.07	18.88		
2E	0.27	0.18	-0.18	21.70	1.95	9.77		
3E	-0.53	0.18	-0.18	21.70	-15.41	-7.60		
4E	-0.48	0.18	-0.18	21.70	-14.32	-6.51		
5E	0.00	0.18	-0.18	21.70	-3.91	3.91		
6E	0.00	0.18	-0.18	21.70	-3.91	3.91		

* p = qh * (GCpf - GCpi)

Figure 6-4 - External Pressure Coefficients, GCpf

Loads on Main Wind-Force Resisting Systems w/ Ht <= 60 ft

Kh =	2.01*(15/zg)^(2/Alpha)	=	0.57
Kht =	Topographic factor (Fig 6-2)	=	1.00
Qh =	0.00256*(V)^2*ImpFac*Kh*Kht*Kd	=	17.80

	Case B							
Surface	GCpf	+GCpi	-GCpi	qh (psf)	Min P (psf)	Max P (psf)		
1	-0.45	0.18	-0.18	21.70	-13.67	-5.86		
2	-0.69	0.18	-0.18	21.70	-18.88	-11.07		
3	-0.37	0.18	-0.18	21.70	-11.94	-4.12		
4	-0.45	0.18	-0.18	21.70	-13.67	-5.86		
5	0.40	0.18	-0.18	21.70	4.77	12.59		
6	-0.29	0.18	-0.18	21.70	-10.20	-2.39		
1E	-0.48	0.18	-0.18	21.70	-14.32	-6.51		
2E	-1.07	0.18	-0.18	21.70	-27.13	-19.31		
3E	-0.53	0.18	-0.18	21.70	-15.41	-7.60		
4E	-0.48	0.18	-0.18	21.70	-14.32	-6.51		
5E	0.61	0.18	-0.18	21.70	9.33	17.14		
6E	-0.43	0.18	-0.18	21.70	-13.24	-5.43		

* p = qh * (GCpf - GCpi)

> Figure 6-5 - External Pressure Coefficients, GCp Loads on Components and Cladding for Buildings w/ Ht <= 60 ft

Hipped Roof 10 < Theta <= 30

a = 5	.404
-------	------

==>

5.40 ft

Component	Width	Length	Area	Zone	G	Ср	Wind Pres	ss (lb/ft^2)
	(ft)	(ft)	(ft^2)		Max	Min	Max	Min
	16	7	112.00	5	0.81	-1.03	17.71	-21.53
	0	0	0.00					
	0	0	0.00					
	0	0	0.00			1.15		
2	0	0	0.00					
	0	0	0.00					
	0	0	0.00					
	0	0	0.00					
	0	0	0.00					
	0	0	0.00					
	0	0	0.00					
	0	0	0.00					
	0	0	0.00					
	0	0	0.00					
	0	0	0.00					
	0	0	0.00					
	0	0	0.00					
	0	0	0.00					
	0	0	0.00					
10	0	0	0.00					
	0	0	0.00					
	0	0	0.00					
	0	0	0.00					

Note: * Enter Zone 1 through 5, or 1H through 3H for overhangs.

Table 6-7 Internal Pressure Coefficients for Buildings, Gcpi

Condition	Go	:pi
	Max +	Max -

Open Buildings Partially Enclosed Buildings	0.00 0.55	0.00 -0.55
Enclosed Buildings	0.18	-0.18
Enclosed Buildings	0.18	-0.18

Table 6-8 External Pressure Coefficients for Arched Roofs, Cp

0.3

		Ср			
Condition	Variable	Windward Quarter	Center Half	Leeward Quarter	
Roof on Elevated Structure	Ср	0.13	-1	-0.5	
	P (+GCpi) - psf	-1.29	-18.50	-10.85	
	P (-GCpi) -psf	5.12	-12.09	-4.44	
Roof Springing from Ground	Ср	0.42	-1	-0.5	
	P (+GCpi) - psf	3.22	-18.50	-10.85	
	P (-GCpi) -psf	3.22	-18.50	-10.85	

r (Rise-to-Span Ratio) =

Table 6-9 Force Coefficients for Monoslope Roofs over Open Buildings, Cf

Variable	Description	Value	
L	Roof dimension normal to wind direction	74.33	ft
В	Roof dimension parallel to wind direction	66.33	ft
L/B	Ratio of L to B	1.121	
Theta	Slope of Roof	30.3	Deg
Cf	Force Coefficient	0.00	
Х	Distance to center of pressure from windward edge	0.00	ft

FLORIDA ENERGY EFFICIENCY CODE FOR BUILDING CONSTRUCTION

Florida Department of Community Affairs Residential Performance Method A

Project Name: conde res Street: City, State, Zip: , fl , Owner: Design Location: FL, Gainesville		Builder Name: rosenboom Permit Office: Permit Number: Jurisdiction:	
 New construction or existing Single family or multiple family Number of units, if multiple family Number of Bedrooms Is this a worst case? Conditioned floor area (ft²) Windows(324.0 sqft.) Description a. U-Factor: Dbl, U=0.55 SHGC: SHGC: SHGC: U-Factor: N/A SHGC: U-Factor: N/A SHGC: U-Factor: N/A SHGC: E. U-Factor: N/A SHGC: E. U-Factor: N/A SHGC: SHGC: SHGC: SHGC: N/A SHGC: SHGC: N/A 	New (From Plans) Single-family 1 3 Yes 2138 Area 324.00 ft ² ft ³ ft ² ft ² ft ² ft ² ft	 9. Wall Types (2214.0 sqft.) a. Frame - Wood, Exterior b. Frame - Wood, Adjacent c. N/A d. N/A 10. Ceiling Types (2571.0 sqft.) a. Under Attic (Vented) b. Knee Wall (Vented) c. N/A 11. Ducts a. Sup: Attic Ret: Attic AH: Garage S 12. Cooling systems a. Central Unit 13. Heating systems a. Electric Heat Pump 14. Hot water systems a. Electric b. Conservation features None 15. Credits 	Insulation Area R=13.0 1944.00 ft ² R=13.0 270.00 ft ² R= ft ² R= ft ² Insulation Area R=30.0 2138.00 ft ² R=19.0 433.00 ft ² R= ft ² Sup. R= 6, 224 ft ² Cap: 48.0 kBtu/hr SEER: 14 Cap: 48.0 kBtu/hr HSPF: 8.4 Cap: 40 gallons EF: 0.87
Glass/Floor Area: 0.152	Total As-Built Modifie Total Baselin	d Loads: 38.53 e Loads: 45.30	PASS
I hereby certify that the plans and spectrum this calculation are in compliance with Code. PREPARED BY: Press Certify Code. I hereby certify that this building, as de with the Florida Energy Code. OWNER/AGENT: DATE:	the Florida Energy	Review of the plans and specifications covered by this calculation indicates compliance with the Florida Energy Code. Before construction is completed this building will be inspected for compliance with Section 553.908 Florida Statutes.	

- Compliance requires certification by the air handler unit manufacturer that the air handler enclosure qualifies as certified factory-sealed in accordance with N1110.A.3.

	*		1		PRO	DJECT						
Title: Building Owner: # of Unit Builder N Permit C Jurisdict Family T New/Exi Commen	ts: Name: Office: tion: Type: sting:	conde res FLAsBuilt 1 rosenboom Single-fami New (From	ily	Con Tota Woi Rota Cros	rooms: ditioned Area al Stories: rst Case: ate Angle: ss Ventilation: ole House Far	1 Yes 45	ŝ	7)	Adress Lot # Block/St PlatBoo Street: County: City, Sta	ubDivision: k:	Street Add alachua , fl ,	ress
					CLI	MATE						
\checkmark	Des	ign Location	т	MY Site	IECC Zone	Design 97.5 %	Temp 2.5 %	Int Desig Winter		Heatin Degree D		n Daily Tem ire Range
	FL,	Gainesville	FL_GAIN	ESVILLE_REGI	2	32	92	75	70	1305.	5 51	Medium
			1		FLO	OORS						
\checkmark	#	Floor Type		Perime	eter	R-Valu	Э	Area			Tile W	lood Carpet
	1	Slab-On-Grad	de Edge Insulat	io 247 f	ť	0		2138 ft²			0	0 1
				E.	R	OOF						
\checkmark	#	Туре	Mat	erials		Gable Area	Roof Color	Solar Absor.	Tested	Deck Insul.	Pitch	
	1	Hip	Composit	ion shingles 2	2316 ft² (D ft²	Medium	0.96	No	0	22.6 deg	
			i i		A	ттіс						
\checkmark	#	Туре		Ventilation	Vent	Ratio (1 in)	Area	RBS	IRCC		
	1	Full attic		Vented		300	2	138 ft²	N	N		
					CE	ILING						
\checkmark	#	Ceiling Typ	e		R-Value	Ð	Are	a	Framin	ig Frac	Trus	s Type
	1	Under Attic	(Vented)		30		2138	ft²	0.	11	Ŵ	lood
	2	Knee Wall	(Vented)		19		433 f	t²	0.	11	W	lood
·					W	ALLS						
\checkmark	#	Ornt	Adjacent To	Wall Type			Cavi R-Val	ty ue Area	She R-V	athing /alue	Framing Fraction	Solar Absor.
	1	N=>NE	Garage	Frame - Wood	ł		13		2		0.23	0.01
	2	S=>SW	Exterior	Frame - Wood	ł		13	648 f	2		0.23	0.75
	3	W=>NW	Exterior	Frame - Wood	ł		13	648 f	2		0.23	0.75
	4	E=>SE	Exterior	Frame - Wood			13	648 f	2		0.23	0.75

	*					DO	ORS						
V	#	Orr	nt	Door Type				Storm	3	U-1	Value	Area	
	1	N=>	NE	Insulated				None		0.4	60000	21 ft²	
				Orientation	n shown is ti	WINI he entered ori	DOWS entation	(=>) chanç	jed to W	/orst Case.			
\checkmark	#	Ornt	Frame	Panes	NFRC	U-Factor	SHGC	Storms	Area		hang Separation	Int Shade	Screeni
		N=>NE	Metal	Low-E Double	Yes	0.55	0.45	N	90 ft ²	0 ft 0 in	0 ft 0 in	HERS 2006	None
	2	S=>SW	Metal	Low-E Double	Yes	0.55	0.45	N	180 ft²	0 ft 0 in	0 ft 0 in	HERS 2006	None
		N=>NW	Metal	Low-E Double	Yes	0.55	0.45	N	30 ft²	0 ft 0 in	0 ft 0 in	HERS 2006	None
		E=>SE	Metal	Low-E Double	Yes	0.55	0.45	Ν	24 ft²	0 ft 0 in	0 ft 0 in	HERS 2006	None
					IN	FILTRATIC	0N & V	ENTING					
\checkmark	Metho	d		SLA	CFM 50	ACH 50	ELA	EqLA	s		Ventilation Exhaust CFM		Fan Watts
	Defau	t		0.00036	2019	7.08	110.8	208.4	() cfm	0 cfm	0	0
						GA	RAGE						
	#	Flo	or Area	Ceili	ng Area	Exposed \	Nall Per	imeter	Avg. W	/all Height	Exposed	Wall Insulation	
	1	38	32.8 ft²	382	2.8 ft²		64 ft		1	8 ft		1	
						COOLIN	G SYS	ТЕМ					
\checkmark	#	System	Туре		Subtype			Efficiency		Capacity	Air Flov	v SHR	Ducts
	1	Central	Unit	1	None		9	SEER: 14	4	8 kBtu/hr	1440 cfr	m 0.75	sys#
						HEATING	G SYS	TEM					
\checkmark	#	System	Туре	:	Subtype			Efficiency		Capacity	Ducts		
	1	Electric	Heat Pur	np I	None			HSPF: 8.4	4	18 kBtu/hr	sys#0		
						НОТ WAT	ER SY	STEM					
\checkmark	#	Syste	m Type			EF	Ca	р	Use	SetPr	nt	Conservation	
	1	Electi	ric			0.87	40 g	al 6	i0 gal	120 de	g	None	
					SOL	AR HOT V	ATER	SYSTE	M				
\checkmark	FSE Cert		mpany Na	me		System Mo	del #	Col	lector M		Collector Area	Storage Volume	FEF
	Nor	e Nor									ft²		

4	b.						DUCTS						
\checkmark	#	S _ocation	upply R-Value	Area	Re	eturn n Area	Leaka	де Туре	Air Handler	CFM 25	Percen Leakag		RLF
	1	Attic	6 2	24 ft²	Attic	106.9 ft	Default	Leakage	Garage	(Default	(Default)	%	
						TEM	PERATU	RES					
Program	able Thern	nostat: Y			(Ceiling Fans	3:						
Cooling Heating Venting	[X] Jan [X] Jan [X] Jan	X Fe X Fe X Fe		Mar (X Mar X Mar (X	Apr Apr Apr	[X] May [X] May [X] May	X Jun X Jun X Jun	X Jul X Jul X Jul	X Aug X Aug X Aug	X Sep X Sep X Sep	X Oct X Oct X Oct	X Nov X Nov X Nov	X Dec X Dec X Dec
Thermosta	t Schedule	: HERS	2006 Refer	rence				Но	urs				
Schedule 7	Гуре		1	2	3	4	5	6	7	8	9 10	11	12
Cooling (W	/D)	AN PN	1 78 1 80	78 80	78 78	78 78	78 78	78 78	78 78	78 8 78 7	80 80 78 78	80 78	80 78
Cooling (W	/EH)	AN PN	1 78 1 78	78 78	78 78	78 78	78 78	78 78	78 78	78 78	78 78 78 78	78 78	78 78
Heating (W	/D)	AN PN	1 66 1 68	66 68	66 68	66 68	66 68	68 68	68 68	68 6 68 6	68 68 68	68 66	68 66
Heating (W	/EH)	AN PN	1 66 1 68	66 68	66 68	66 68	66 68	68 68	68 68	68 6 68 6	68 68 68	68 66	68 66

.

Code Compliance Checklist

Residential Whole Building Performance Method A - Details

Ą	D	DI	RI	E	SS	3:

, fl,

PERMIT #:

INFILTRATION REDUCTION COMPLIANCE CHECKLIST

COMPONENTS	SECTION	REQUIREMENTS FOR EACH PRACTICE	CHECK
Exterior Windows & Doors	N1106.AB.1.1	Maximum: .3 cfm/sq.ft. window area; .5 cfm/sq.ft. door area.	
Exterior & Adjacent Walls	N1106.AB.1.2	Caulk, gasket, weatherstrip or seal between: windows/doors & frames, surrounding wall; foundation & wall sole or sill plate; joints between exterior wall panels at corners; utility penetrations; between wall panels & top/bottom plates; between walls and floor. EXCEPTION: Frame walls where a continuous infiltration barrier is installed that extends from, and is sealed to, the foundation to the top plate.	
Floors	N1106.AB.1.2	Penetrations/openings > 1/8" sealed unless backed by truss or joint members. EXCEPTION: Frame floors where a continuous infiltration barrier is installed that is sealed to the perimeter, penetrations and seams.	
Ceilings	N1106.AB.1.2	Between walls & ceilings; penetrations of ceiling plane to top floor; around shafts, chases, soffits, chimneys, cabinets sealed to continuous air barrier; gaps in gyp board & top plate; attic access. EXCEPTION: Frame ceilings where a continuous infiltration barrier is installed that is sealed at the perimeter, at penetrations and seams.	
Recessed Lighting Fixtures	N1106.AB.1.2	Type IC rated with no penetrations, sealed; or Type IC or non-IC rated, installed inside a sealed box with 1/2" clearance & 3" from insulation; or Type IC with < 2.0 cfm from conditioned space, tested.	
Multi-story Houses	N1106.AB.1.2	Air barrier on perimeter of floor cavity between floors.	
Additional Infiltration reqts	N1106.AB.1.3	Exhaust fans vented to outdoors, dampers; combustion space heaters comply with NFPA, have combustion air.	

OTHER PRESCRIPTIVE MEASURES (must be met or exceeded by all residences.)

COMPONENTS	SECTION	REQUIREMENTS	CHECK
Water Heaters	N1112.AB.3	Comply with efficiency requirements in Table N1112.ABC.3 Switch or clearly marked circuit breaker (electric) or cutoff (gas) must be provided. External or built-in heat trap required.	
Swimming Pools & Spas	N1112.AB.2.3	Spas & heated pools must have covers (except solar heated). Non-commercial pools must have a pump timer. Gas spa & pool heaters must have a minimum thermal efficiency of 78%. Heat pump pool heaters shall have a minimum COP of 4.0.	
Shower heads	N1112.AB.2.4	Water flow must be restricted to no more than 2.5 gallons per minute at 80 PSIG.	
Air Distribution Systems	N1110.AB	All ducts, fittings, mechanical equipment and plenum chambers shall be mechanically attached, sealed, insulated and installed in accordance with the criteria of Section N1110.AB. Ducts in unconditioned attics: R-6 min. insulation.	
HVAC Controls	N1107.AB.2	Separate readily accessible manual or automatic thermostat for each system.	
Insulation	N1104.AB.1 N1102.B.1.1	Ceilings-Min. R-19. Common walls-frame R-11 or CBS R-3 both sides. Common ceiling & floors R-11.	

ENERGY PERFORMANCE LEVEL (EPL) DISPLAY CARD

ESTIMATED ENERGY PERFORMANCE INDEX* = 85 The lower the EnergyPerformance Index, the more efficient the home.

, , fl,

1. New construction or existing	New (From Plans)	9. Wall Types Insulation Area
2. Single family or multiple family	Single-family	a. Frame - Wood, Exterior R=13.0 1944.00 ft ²
 Number of units, if multiple family Number of Bedrooms 	1	b. Frame - Wood, Adjacent R=13.0 270.00 ft ² c. N/A R= ft ² d. N/A R= ft ²
5. Is this a worst case?	Yes	10. Ceiling Types Insulation Area a. Under Attic (Vented) R=30.0 2138.00 ft ²
 6. Conditioned floor area (ft²) 7. Windows** Descript a. U-Factor: Dbl, U=0 		b. Knee Wall (Vented) R=19.0 433.00 ft² c. N/A R= ft²
SHGC: SHGC=(b. U-Factor: N/A SHGC:	0.45 ft²	 11. Ducts a. Sup: Attic Ret: Attic AH: Garage Sup. R= 6, 224 ft² 12. Cooling systems
c. U-Factor: N/A SHGC:	ft²	a. Central Unit Cap: 48.0 kBtu/hr SEER: 14
d. U-Factor: N/A SHGC: e. U-Factor: N/A	ft² ft²	13. Heating systems a. Electric Heat Pump Cap: 48.0 kBtu/hr HSPF: 8.4
SHGC: 8. Floor Types a. Slab-On-Grade Edge Insulation		14. Hot water systems a. Electric Cap: 40 gallons EF: 0.87
b. N/A c. N/A	R= ft ² R= ft ²	b. Conservation features None
		15. Credits Pstat

I certify that this home has complied with the Florida Energy Efficiency Code for Building Construction through the above energy saving features which will be installed (or exceeded) in this home before final inspection. Otherwise, a new EPL Display Card will be completed based on installed Code compliant features.

Builder Signature:	Date:	and a little
Address of New Home:	City/FL Zip:	1

*Note: The home's estimated Energy Performance Index is only available through the EnergyGauge USA -FlaRes2008 computer program. This is not a Building Energy Rating. If your Index is below 100, your home may qualify for incentives if you obtain a Florida Energy Gauge Rating. Contact the Energy Gauge Hotline at (321) 638-1492 or see the Energy Gauge web site at energygauge.com for information and a list of certified Raters. For information about Florida's Energy Efficiency Code for Building Construction, contact the Department of Community Affairs at (850) 487-1824.

**Label required by Section 13-104.4.5 of the Florida Building Code, Building, or Section B2.1.1 of Appendix G of the Florida Building Code, Residential, if not DEFAULT.

Hogle's Heating & Air

Project Summary Entire House HOGLE'S HEATING & AIR

13815 NW 39TH AVE, GAINESVILLE, FL 32606 Phone: 352-332-1508 Fax: 352-332-1501

Project Information

For: SCOTT ROSENBOOM CONSTRUCTION INC.

Notes:

Design Information

Weather: Gainesville, FL, US

Winter Design Conditions

Outside db	33	°F
Inside db	70	°F
Design TD	37	°F

Heating Summary

Structure Ducts	22318 9574	
Central vent (0 cfm)	0	Btuh
Humidification	0	Btuh
Piping		Btuh
Equipment load	31892	Btuh

Infiltration

Method Construction quality Fireplaces		Simplified Average 1 (Average)
Area (ft²) Volume (ft³) Air changes/hour Equiv. AVF (cfm)	Heating 2106 19210 0.38 122	Cooling 2106 19210 0.16 51

Heating Equipment Summary

	ang Ederbrue.				3 1 1	
Make Trade	AMANA			Make Trade	AMANA	
Model ARI ref no.	ASX130481 3186673			Cond Coil ARI ref no.	ASX130481 ASPF426016 3186673	
Efficiency		8.4 H	ISPF	Efficiency		14 SEER
Heating inp	out			Sensible co	ooling	32200
Heating ou		44000	Btuh @ 47°F	Latent cool	ing	13800
Temperatu		25	°F	Total coolir	าตั	46000
Actual air flow		1600	cfm	Actual air f	low	1600
Air flow fac		0.050		Air flow fac		0.045
Static pres			in H2O	Static pres		0
Space ther	mostat	-			ble heat ratio	0.85

Printout certified by ACCA to meet all requirements of Manual J 8th Ed.

Right-Suite® Universal 7.1.25 RSU08963

Btuh Btuh cfm cfm/Btuh in H2O

Outside db	92	°F
Inside db	75	°F
Design TD	17	°F
Daily range	M	
Relátive humidity	50	%
Moisture difference	52	gr/lb

Sensible Cooling Equipment Load Sizing

Structure	23529 Btuh
Ducts	11821 Btuh
Central vent (0 cfm)	0 Btuh
Blower	0 Btuh
Use manufacturer's data	n
Rate/swing multiplier	0.97
Equipment sensible load	34290 Btuh

Latent Cooling Equipment Load Sizing

Structure Ducts Central vent (0 cfm) Equipment latent load	3401 2773 0 6174	Btuh Btuh	
Equipment total load	40464	Btuh	
Req. total capacity at 0.70 SHR	4.1	ton	

Cooling Equipment Summary

Hogle's

AED Assessment Entire House HOGLE'S HEATING & AIR

Cooling

75 17

50

52.0

Heating

70

37

50 32.8

Heating & Air

13815 NW 39TH AVE, GAINESVILLE, FL 32606 Phone: 352-332-1508 Fax: 352-332-1501

Project Information

SCOTT ROSENBOOM CONSTRUCTION INC. For:

Design Conditions

Location:	Lindoor:
Gainesville, FL, US	Indoor temperature (°F)
Elevation: 151 ft	Design TD (°F)
Latitude: 30°N	Relative humidity (%)
Outdoor: Heating	Moisture difference (gr/lb)
Dry bulb (°F) 33	92
Daily range (°F) -	19 (M)
Wet bulb (°F) -	77
Wind speed (mph) 15.0	7.5

Test for Adequate Exposure Diversity

Hourly Glazing Load

Maximum hourly glazing load exceeds average by 94.2%.

House does not have adequate exposure diversity (AED), based on AED limit of 30%. AED excursion: 8014 Btuh (PFG - 1.3*AFG)

Right-J® Worksheet Entire House HOGLE'S HEATING & AIR

Job: CONDE RESIDENCE Date: Jan 04, 2011 By: W.D.HOGLE

13815 NW 39TH AVE, GAINESVILLE, FL 32606 Phone: 352-332-1508 Fax: 352-332-1501

1 2 3 4 5	Ceiling	ed wall) height dimensions					9.1 2106.0	228.0 ft	House ft	ł	8.0 156.0	12.0 X	ft	/cool
	Ту	Construction number	U-value (Btuh/ft ² -°F)	Or	HT (Btul	FM h/ft²)	Area (1 or perim	ft²) neter (ft)	Load (Btul		Area (or perim	ft²) neter (ft)	Load (Btul	
					Heat	Cool	Gross	N/P/S	Heat	Cool	Gross	N/P/S	Heat	Cool
6 11	ع المالية المالية الع عليم المالية الم	12C-0sw 1D-c2ob 1D-c2ob 1D-c2ob 1D-c2ob 1D-c2ob 1D-c2obd 1D-c2obd 1E-c2fw 11J0 16B-30ad 22A-tpl	0.091 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.560 0.089	SW SW SW SW	3.37 24.05 24.05 24.05 24.05 24.05 24.05 20.72 22.20 1.18 36.59	2.20 32.09 24.99 47.87 49.98 19.21 19.21 23.26 17.49 1.68 0.00	0 35 18 16 90 30 84 5 5 42 2106 2106	-320 55 36 10 45 60 336 10 42 2106 228	-1077 842 433 385 2164 721 2020 104 932 2494 8343	-703 1123 450 766 4498 576 1614 116 735 3548 0	0 10 0 30 0 0 0 156 156	-40 8 0 8 0 0 0 0 156 34	-135 240 0 721 0 0 0 185 1244	-88 321 0 1499 0 0 0 263 0
									8000 a 1900 a 19					
	no gola Belorioù Mergehe Record d Record d				turi († 1844 – 1844 – 1844 – 1844 – 1844 – 1844 – 1844 – 1844 – 1844 – 1844 – 1844 – 1844 – 1844 – 1844 – 1844 1844 –							n China Chin		
	i a di Califi Reference Reference							n i si Ngana na Ngana na na	in constant constant feisite const feisite const feisite const				1000 - 2018 2007 - 2013 2007 - 2013 2007 - 2014 2017 - 2014	
				\$26523 12		12539.000	i Blank					an Cheise 	n la sectión de la sectión	
	in official	RUPARA NEW ALEA	CARRENCE THE	Cer 28	and a loop	and a start of	aller i litter offense	A State of the Local Condi-	14+ okultari ini ka					
6		D excursion							17361	8014 20737			2256	1109 3104
12	a) In	ope loss/gain							4957	953			644	149
13	-	oom ventilation al gains:	Occupant Appliance	s @	230		8		0	0 1840	2		0	460
	Subto	tal (lines 6 to 13)	Appliance	es/othe	er				22318	23529			2900	3713
14 15	Less Less Redis Subto	external load transfer tribution tal					43%	50%	0 0 22318 9574	0 0 23529 11821		50%	0 0 2900 1244	0 0 0 3713 1865
	Total Air re	room load quired (cfm)							31892 1600	35350 1600			4145 208	5578 252

Hogle's Heating & Air

Right-J® Worksheet Entire House HOGLE'S HEATING & AIR

Job: CONDE RESIDENCE Date: Jan 04, 2011 By: W.D.HOGLE

3815 NW 39TH AVE, GAINESVILLE, FL 32606 Phone: 352-332-1508 Fax: 352-332-1501

1	Room	name						HALL BAT 13.0			BEDROOM 3 27.0 ft				
2345	Expose	ed wall height dimensions					8.0 72.0	ft 12.0 x	heat 6.0 ft		8.0 182.0	ft 13.0 x	heat/ 14.0 ft	cool	
	Ту	Construction	U-value (Btuh/ft ² -°F)	Or	H1 (Btul		Area (f or perim	t²) eter (ft)	Load (Btul		Area (or perim	ft²) neter (ft)	Load (Btuh		
					Heat	Cool	Gross	N/P/S	Heat	Cool	Gross	N/P/S	Heat	Cool	
6 11	999999	12C-0sw 1D-c2ob 1D-c2ob 1D-c2ob 1D-c2ob 1D-c2ob 1D-c2ob 1D-c2obd 1E-c2fw 11J0 16B-30ad 22A-tpl	0.091 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.660 0.032 0.989	SW SW SW SW SW SW SW	3.37 24.05 24.05 24.05 24.05 24.05 24.05 20.72 22.20 1.18 36.59	2.20 32.09 24.99 47.87 49.98 19.21 19.21 19.21 23.26 17.49 1.68 0.00	0 5 0 0 0 0 0 0 72 72 72	-5 4 0 0 0 0 0 0 72 13	-17 120 0 0 0 0 0 0 0 85 476	-11 160 0 0 0 0 0 0 0 0 0 121 0	0 10 0 15 0 0 0 182 182	-25 8 0 4 0 0 0 182 27	-84 240 0 361 0 0 0 215 988	-55 321 0 750 0 0 0 307 0	
	g.ellai	MULLATER FOR	santan di	812:08	a Red Lander Sta	st sea S	Spin-Sta	6-22438		1/2/15/065	126/151/	an tan	K(RAASTS		
	La US	an a	1978 BARLANDE	182			Skiller Alter			17 (MAR 12)	and the second	10× 7498	adamat 200	0.027.57	
6	c) AE	D excursion								148				70	
	Enve	lope loss/gain							664				1721	202	
12	a) li b) F	nfiltration Room ventilation							190 0				491 0	9	
13		nal gains:	Occupan Applianc	ts @ es/oth	230 Ier)	0			0		2		46	
	Subt	otal (lines 6 to 13)							854	439)		2212	258	
14 15	Less Redi Subt	external load transfer stribution otal loads					43%	6 50%	0 0 854 366	439		50%	0 0 2212 949	258 129	
	Total Air re	l room load equired (cfm)							1220 61	660 30	8		3161 159	388 17	

Right-J® Worksheet Entire House HOGLE'S HEATING & AIR

Job: CONDE RESIDENCE Date: Jan 04, 2011 By: W.D.HOGLE

13815 NW 39TH AVE, GAINESVILLE, FL 32606 Phone: 352-332-1508 Fax: 352-332-1501

1	Room name Exposed wall							HALL	AREA		FOYER 14.0 ft				
2345	Expose Ceiling Room Room) height dimensions					8.0 40.0	ft 4.0 x		t/cool t	8.0 70.0	ft 14.0 x	heat	/cool	
	Ту	Construction number	U-value (Btuh/ft ² -°F)	Or	HT (Btuł		Area (1 or perim	ft²) leter (ft)	Loa (Btu		Area (or perim	ft²) neter (ft)	Loa (Btu		
					Heat	Cool	Gross	N/P/S	Heat	Cool	Gross	N/P/S	Heat	Cool	
6 11	3000000000000000000000000000000000000	12C-0sw 1D-c2ob 1D-c2ob 1D-c2ob 1D-c2ob 1D-c2ob 1D-c2ob 1D-c2obd 1E-c2fw 11J0 16B-30ad 22A-tpl	0.091 0.650 0.650 0.650 0.650 0.650 0.650 0.560 0.650 0.032 0.989	SW SW SW SW	3.37 24.05 24.05 24.05 24.05 24.05 24.05 24.05 24.05 20.72 22.20 1.18 36.59	2.20 32.09 24.99 47.87 49.98 19.21 19.21 23.26 17.49 1.68 0.00	0 0 0 0 0 0 0 0 40 40	0 0 0 0 84 0 40 0	0 0 0 0 0 0 0 0 47 0	0 0 0 0 0 0 0 67 0	0 0 0 30 0 21 70 70	-51 0 0 30 0 21 70 14	-172 0 0 0 721 0 466 83 512	-112 0 0 576 0 0 367 118	
56															
	KALO (P)		an a	229529	10-052	844.24			3.52768	0.257-215	6.57.28	579-1723 579-1723	e e e e e e e e e e e e e e e e e e e		
	15.63		and the sea	61521	94-13768 1	Sec. 14	1.1	19. A 19	8 24 35eM	a ann a'	1999	P., 199	261125		
6	c) AEI	D excursion								0				909	
	Envelo	ope loss/gain							47	67			1611	1859	
12	a) Ini b) Ro	filtration oom ventilation							14 0	5 0			460 0	71	
13	Interna	al gains:	Occupant: Appliance	s @ s/othe	230 er		0			0	0			(
	Subto	tal (lines 6 to 13)							61	72			2071	1930	
14 15	Less t						43%	50%	0 0 61 26	0 0 72 36	43%	50%	0 0 2071 889	((193(969	
		room load juired (cfm)							87 4	109 5			2960 148	2899 131	

Hogle's Heating & Air

Right-J® Worksheet Entire House HOGLE'S HEATING & AIR

Job: CONDE RESIDENCE Date: Jan 04, 2011 By: W.D.HOGLE

13815 NW 39TH AVE, GAINESVILLE, FL 32606 Phone: 352-332-1508 Fax: 352-332-1501

1	Room name Exposed wall							LIVING/D	INING RM		KITCHEN 16.0 ft				
2345	Ceiling Room Room	g height dimensions					12.0 480.0	ft 24.0 x		t/cool t	10.0 ft		heat/cool c 17.0 ft		
	Ту	Construction number	U-value (Btuh/ft ² -°F)	Or	H1 (Btul		Area (or perim	ft²) neter (ft)	Loa (Btu		Area (or perin	ft²) neter (ft)	Loa (Btu		
					Heat	Cool	Gross	N/P/S	Heat	Cool	Gross	N/P/S	Heat	Cool	
6 11	^{∎ດ}	12C-0sw 1D-c2ob 1D-c2ob 1D-c2ob 1D-c2ob 1D-c2ob 1D-c2obd 1E-c2fw 11J0 16B-30ad 22A-tpl	0.091 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.560 0.560 0.032 0.989	SW SW SW SW SW SW SW SW	3.37 24.05 24.05 24.05 24.05 24.05 24.05 24.05 20.72 22.20 1.18 36.59	2.20 32.09 24.99 47.87 49.98 19.21 19.21 23.26 17.49 1.68 0.00	- 0 0 0 0 84 0 480 480	-84 0 0 0 84 0 480 24	-283 0 0 0 0 2020 0 568 878	-185 0 0 0 1614 0 809 0	0 0 18 0 0 0 0 0 221 221	-18 0 18 0 0 0 0 0 221 16	-61 0 433 0 0 0 0 0 262 585	-40 (0 450 (0 (0 (0 (0 (0 (0 (0)))))))))))))))))	
		nangana series ang tao tao tao tao tao tao tao ta	anterio Antorio da Antorio da A			2014-72 24 - 122 142		5374 WA		1967 (19 19 - 19 19 - 19					
6	c) AE	D excursion								2202				789	
_	Envelo	ope loss/gain							3184	4440			1219	1571	
12		filtration com ventilation							909 0	168 0			348 0	59 0	
13	Interna	al gains:	Occupants Appliances	@ s/othe	230 r		0			0	0			C	
	Subto	tal (lines 6 to 13)							4093	4608			1568	1630	
14 15	Less t						43%	50%	0 0 4093 1756	0 0 4608 2315	43%	50%	0 0 1568 672	0 0 1630 819	
		oom load juired (cfm)							5849 293	6923 313			2240 112	2449 111	

Hogle's Heating & Air

Right-J® Worksheet Entire House HOGLE'S HEATING & AIR

Job: CONDE RESIDENCE Date: Jan 04, 2011 By: W.D.HOGLE

13815 NW 39TH AVE, GAINESVILLE, FL 32606 Phone: 352-332-1508 Fax: 352-332-1501

1	Room							MASTER 34.0	SUITE		MASTER BATHROOM 34.0 ft				
2345	Expos Ceiling Room Room	ed wall height dimensions area					8.0 289.0	ft 17.0 x	n heat 17.0 f	t/cool t	8.0 204.0	ft 12.0 x	heat 17.0 ft	l/cool	
	Ту	Construction number	U-value (Btuh/ft ² -°F)	Or	H1 (Btul		Area (i or perim	ft²) leter (ft)	Loa (Btu		Area (or perim	ft²) neter (ft)	Loa (Btu		
					Heat	Cool	Gross	N/P/S	Heat	Cool	Gross	N/P/S	Heat	Cool	
6 11	000000	12C-0sw 1D-c2ob 1D-c2ob 1D-c2ob 1D-c2ob 1D-c2ob 1D-c2obd 1E-c2fw 11J0 16B-30ad 22A-tpl	0.091 0.650 0.650 0.650 0.650 0.650 0.650 0.560 0.560 0.032 0.989	SW SW SW SW SW	3.37 24.05 24.05 24.05 24.05 24.05 24.05 20.72 22.20 1.18 36.59	2.20 32.09 24.99 47.87 49.98 19.21 19.21 19.21 23.26 17.49 1.68 0.00	0 10 0 30 0 0 0 289 289	-40 8 0 0 8 0 0 0 0 289 34	-135 240 0 721 0 0 0 0 342 1244	-88 321 0 1499 0 0 0 487 0	0 0 16 0 0 204 204	-21 0 0 5 0 0 0 0 0 5 0 0 204 34	-71 0 385 0 104 0 242 1244	-46 0 766 0 116 0 344 0	
				88.89 8534 11 yr 11	1993) 1943) 1957) 1957)					6 9 2 5 6 7 4 5 5 7 5 1 - 1 - 1 1 - 1 - 1					
	Research Research		1		t man	A-1 - 1		1.1							
	esti si		Neolor total	1 and	81.) P	$\log r = 1$	(A	ni synt	5-13775	2 C		10.03	i – nih		
	的增加	BANG STATISTICS	agnist - part	NG S	915 Erst	894° 19	19 a - 88	Carlor Star	11-58	64- C- B	10.00	10,0223,6	900028		
			a service and	estuga	EN COL	14 N.S.B.	000000	設定の時代	R. 699.328	Printing a		R HIMA	NUMPER AND		
	(FS)		19 (de 1977) (de 1	신지	W. Carda	8-1,24	Real Control of	10-15-21-02	1215-15	19 C. C. 1	-3924	5 F 1(6	17 a 11 4 3		
	MARARA	to Enderstreet weeks to	dan strat	Fell M	絶対の	100.000 440	04257	2.224	100	an say	6 - D1		S. 177.000		
1		3.47%的1.66%的1.6%	a lichtaite, ra	10.03	\$15/4/34	8407	12/11	1.1.1	51.04	r - 1			1.1		
	服設的問題	2. 通过10.00000000000000000000000000000000000	CONSECTOR M	\$3/18	했고가라	Bartiza	0.00	er - 17.55		11-12		1.1.4	1.1.1.1		
	1843/13)	Galler March 1973		20293	Richards, A	Si	112-1-1-1-2	1.313.4	12, 5, 23	86 I I I I I I	Regelier-A	U	N 20192		
	Edit Viri		N ACCULUMNA	SOL!	Second Second	6-22	ine Acas	internet and	No	Strate Size	対応時期	82.4GB	N. S. S. S. S. 1922		
	0.0249	ENGEN STERNARD OF SOM	14 8 9 . Se 4 9 3	11/3	90, Vinite 1	1001203				No Provident	Reading and				
	1974 JH	0	aners, com	6454.00	CISA ASIN	ann i rins	2 CM 200.00								
				1999 1999	fer Start			in a s In a suite	n na na Na na na						
6	c) AEI	D excursion								1109				640	
	Envel	ope loss/gain							2414	3328			1903	1820	
12	a) In b) R	filtration oom ventilation							689 0	166 0			543 0	88 0	
13		al gains:	Occupant	s @ s/othe	230 er		2			460 0	0			0	
	Subto	tal (lines 6 to 13)							3103	3954			2447	1908	
14 15	Less	external load transfer tribution tal oads					43%	50%	0 0 3103 1331	0 0 0 3954 1986	1000	50%	0 0 2447 1050	0 0 1908 959	
		room load quired (cfm)							4434 222	5940 269			3497 175	2867 130	

Right-J® Worksheet Entire House HOGLE'S HEATING & AIR

Job: CONDE RESIDENCE Date: Jan 04, 2011 By: W.D.HOGLE

13815 NW 39TH AVE, GAINESVILLE, FL 32606 Phone: 352-332-1508 Fax: 352-332-1501

1 2 3 4 5	Room Expose Ceiling Room Room	ed wall) height dimensions					8.0 78.0	6.0 X	ft	l/cool t	8.0 72.0	80 X	ft heat	/cool
	Ту	Construction	U-value (Btuh/ft²-°F)	Or	H1 (Btul	rM h/ft²)	Area (1 or perim	t²) eter (ft)	Loa (Btu		Area (or perim	ft²) neter (ft)	Loa (Btu	
					Heat	Cool	Gross	N/P/S	Heat	Cool	Gross	N/P/S	Heat	Cool
6 11	GG	12C-0sw 1D-c2ob 1D-c2ob 1D-c2ob 1D-c2ob 1D-c2ob 1D-c2ob 1D-c2obd 1E-c2fw 11J0 16B-30ad 22A-tpl	0.091 0.650 0.650 0.650 0.650 0.650 0.560 0.560 0.560 0.589	SW SW SW SW SW SW SW -	3.37 24.05 24.05 24.05 24.05 24.05 24.05 20.72 22.20 1.18 36.59	2.20 32.09 24.99 47.87 49.98 19.21 23.26 17.49 1.68 0.00	0 0 0 0 0 0 0 78 78 78	0 0 0 0 0 0 0 78 6	0 0 0 0 0 0 0 0 92 220	0 0 0 0 0 0 0 0 0 131 0	0 0 0 0 0 0 0 0 0 21 72 72	-21 0 0 0 0 0 0 21 72 8	-71 0 0 0 0 0 0 466 85 293	-46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
													2 (2) (3/5 1) (3/5 4) (3/5 4) (3/5 4) (3/5 4) (3/5 4)	
				ichei Ionisia	483153.88 1997 - 199			end d'anal Miterrati	a de regel Transcette		dir tana			
	-				- 11 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -					0				
6		D excursion ope loss/gain							312	131			773	442
12	a) In	filtration oom ventilation							89	10			221	33
13		al gains:	Occupant	s @ s/othe	230 er		0			0	0			0
	Subto	tal (lines 6 to 13)							401	141			994	476
14 15	Less e Less t Redis Subto	external load ransfer tribution tal					43%	50%	0 0 401 172	0 0 141 71	43%	50%	0 0 994 427	0 0 0 476 239
	Total Air red	room load quired (cfm)							573 29	212 10			1421 71	714 32

Hogle's Heating & Air

Right-J® Worksheet Entire House HOGLE'S HEATING & AIR

Job: CONDE RESIDENCE Date: Jan 04, 2011 By: W.D.HOGLE

13815 NW 39TH AVE, GAINESVILLE, FL 32606 Phone: 352-332-1508 Fax: 352-332-1501

12345	Room Expose Ceiling Room Room	ed wall height dimensions					8.0 80.0	ft 20.0 x) ft heat	/cool	8.0 108.0	12.0 X	ft heat	/cool
	Ту	Construction number	U-value (Btuh/ft ² -°F)	Or	H1 (Btul		Area (f or perim	t²) eter (ft)	Loa (Btu		Area (or perim	ft²) neter (ft)	Loa (Btul	
					Heat	Cool	Gross	N/P/S	Heat	Cool	Gross	N/P/S	Heat	Cool
6 11	0000	12C-0sw 1D-c2ob 1D-c2ob 1D-c2ob 1D-c2ob 1D-c2ob 1D-c2obd 1D-c2obd 1E-c2fw 11J0 16B-30ad 22A-tpl	0.091 0.650 0.650 0.650 0.650 0.650 0.650 0.560 0.560 0.032 0.989	SW SW SW SW SW SW SW SW SW	3.37 24.05 24.05 24.05 24.05 24.05 24.05 24.05 20.72 22.20 1.18 36.59	2.20 32.09 24.99 47.87 49.98 19.21 19.21 23.26 17.49 1.68 0.00	0 0 0 0 0 0 0 0 80 80 80	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 95 0	0 0 0 0 0 0 0 135 0	0 0 0 15 0 0 0 0 108 108	-15 0 0 4 0 0 0 0 108 12	-51 0 0 361 0 0 0 0 128 439	-33 0 750 0 0 750 0 0 0 0 0 0 0
6	c) AEI	Dexcursion								0				400
	Envel	ope loss/gain							95	135			877	1304
12		filtration oom ventilation							27 0	10 0			250 0	67 (
13		al gains:	Occupant Appliance	s @ s/othe	230 er		0			0	2			460
_	Subto	tal (lines 6 to 13)							122	145			1128	1832
14 15	Less t						43%	50%	0 0 122 52	0 0 145 73	43%	50%	0 0 1128 484	((1832 920
	Total Air rec	room load quired (cfm)							174 9	218 10			1611 81	2752 125

Right-J® Worksheet Entire House HOGLE'S HEATING & AIR

Job: CONDE RESIDENCE Date: Jan 04, 2011 By: W.D.HOGLE

3815 NW 39TH AVE, GAINESVILLE, FL 32606 Phone: 352-332-1508 Fax: 352-332-1501

1 2 3 4 5	Room	ed wall height dimensions					8.0 54.0	6.0 X	ft heat	/cool				
	Ту	Construction number	U-value (Btuh/ft²-°F)	Or	HT (Btul		Area (f or perim	t²) eter (ft)	Load (Btul		Area or peri	meter	Loa	d
					Heat	Cool	Gross	N/P/S	Heat	Cool	Gross	N/P/S	Heat	Cool
6 11	G	12C-0sw 1D-c2ob 1D-c2ob 1D-c2ob 1D-c2ob 1D-c2ob 1D-c2obd 1E-c2fw 11J0 16B-30ad 22A-tpl	0.091 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.600 0.032 0.989	SW SW SW SW SW SW	3.37 24.05 24.05 24.05 24.05 24.05 24.05 20.72 22.20 1.18 36.59	2.20 32.09 24.99 47.87 49.98 19.21 19.21 23.26 17.49 1.68 0.00	0 0 0 0 0 0 0 54 54	0 0 0 0 0 0 54 6	0 0 0 0 0 0 0 0 64 220	0 0 0 0 0 0 0 0 91 0				
				970 873 871 871 871 871 871 871 871 871 871 871										
6	c) AE	D excursion								0				
	Envel	ope loss/gain							283	91				
12	a) Ir b) R	filtration oom ventilation							81 0	7				
13		al gains:	Occupan Appliance	ts @ es/oth	230 er		0			0				
	Subto	otal (lines 6 to 13)							364	98				
14 15	Less Redis Subto	external load transfer stribution stal loads					43%	50%	0 0 0 364 156	0 0 98				
	Total	room load quired (cfm)							521 26					

PRODUCT APPROVAL SPECIFICATION

Location:

SHEET

-

5

Project Name:

<u>As required by Florida Statute 553.842</u> and Florida Administrative Code 9B-72, please provide the information and the product approval number(s) on the building components listed below if they will be utilized on the construction project for which you are **applying for a building permit on or after April 1, 2004**. We recommend you contact your local product supplier should you not know the product approval number for any of the applicable listed products. More information about statewide product approval can be obtained at www.floridabuilding.org

Category/Subcategory	Manufacturer	Product Description	Approval Number(s)
A. EXTERIOR DOORS	1		
1. Swinging	MASONITE		FC 4940
2. Sliding	//		
3. Sectional			
4. Roll up			
5. Automatic			1
6. Other			
B. WINDOWS	GENEMAL	ALAUMINUM	
1. Single hung		, 10,401,11,	FL 8171
2. Horizontal Slider			
3. Casement			Charles and
4. Double Hung		CONTY BUILDING	
5. Fixed		INTY BUILD	F1 8164
6. Awning		C Bacci G	- FC SICI
7. Pass -through		for for	
8. Projected		FILE COPY	
9. Mullion		THE COPY	
10. Wind Breaker		Code 75	
11 Dual Action		Compliance	
12. Other		ANS EXAMINER	
C. PANEL WALL	-		and and a second se
1. Siding	HARD		FL 8892
2. Soffits	1.114-1		
3. EIFS			
4. Storefronts			the second s
5. Curtain walls			
6. Wall louver			
7. Glass block			
8. Membrane			
9. Greenhouse			
10. Other	2	en e	
D. ROOFING PRODUCTS			
1. Asphalt Shingles	TAMED	AREFICEFUR	17 IMEL I
2. Underlayments	INARKIOL	3016	R. 1956.1
3. Roofing Fasteners	undur m		FC 2346
4. Non-structural Metal		Ĺ	
Rf 5. Built-Up Roofing			
6. Modified Bitumen		£7	
7. Single Ply Roofing Sys			
8. Roofing Tiles		2.4 V	
9. Roofing Insulation	~ .		
10. Waterproofing			
11. Wood shingles /shakes			
12. Roofing Slate			
12. Rooning State			

02/02/04-1 of 2

1

Category/Subcategory (cont.)	Manufacturer	Product Description	Approval Number(s)
13. Liquid Applied Roof Sys			
14. Cements-Adhesives Coatings			
15. Roof Tile Adhesive			
16. Spray Applied Polyurethane Roof			
17. Other			
E. SHUTTERS	LNA		
1. Accordion			
2. Bahama			
3. Storm Panels			
4. Colonial			
5. Roll-up			
6. Equipment			
7. Others			and the second
F. SKYLIGHTS	W1A		
1. Skylight			
2. Other			
G. STRUCTURAL			
COMPONENTS		1	
1. Wood connector/anchor	1		
2. Truss plates			01-032704
3. Engineered lumber			
4. Railing			
5. Coolers-freezers			
6. Concrete Admixtures			
7. Material		· · · ·	
8. Insulation Forms			
9. Plastics			
10. Deck-Roof		the second se	
11. Wall			
12. Sheds			
13. Other			The second s
H. NEW EXTERIOR			
ENVELOPE PRODUCTS			
1.			
2.			

The products listed below did not demonstrate product approval at plan review. I understand that at the time of inspection of these products, the following information must be available to the inspector on the jobsite; 1) copy of the product approval, 2) the performance characteristics which the product was tested and certified to comply with, 3) copy of the applicable manufacturers installation requirements.

I understand these products may have to be removed if approval cannot be demonstrated during inspect

*

AN 26/2 Date Print Name Contractor or Contractor's Authorized Agent Signature 16

Permit # (FOR STAFF USE ONLY)

Certificate of Product Ratings

AHRI Certified Reference Number: 3186673

Date: 1/6/2011

Product: Split System: Heat Pump with Remote Outdoor Unit-Air-Source

Outdoor Unit Model Number: ASZ130481A*

Indoor Unit Model Number: ASPF426016B*+TXV

Manufacturer: AMANA HEATING AND AIR CONDITIONING

Trade/Brand name: ASZ13 SERIES

Manufacturer responsible for the rating of this system combination is AMANA HEATING AND AIR CONDITIONING

Rated as follows in accordance with AHRI Standard 210/240-2006 for Unitary Air-Conditioning and Air-Source Heat Pump Equipment and subject to verification of rating accuracy by AHRI-sponsored, independent, third party testing:

Cooling Capacity (Btuh):	46000	
EER Rating (Cooling):	11.50	
SEER Rating (Cooling):	14.00	
Heating Capacity(Btuh) @ 47 F:	44000	
Region IV HSPF Rating (Heating):	8.40	
Heating Capacity(Btuh) @ 17 F;	27000	

* Ratings followed by an asterisk (*) indicate a voluntary rerate of previously published data, unless accompanied with a WAS, which indicates an involuntary rerate.

DISCLAIMER

AHRI does not endorse the product(s) listed on this Certificate and makes no representations, warranties or guarantees as to, and assumes no responsibility for, the product(s) listed on this Certificate. AHRI expressly disclaims all liability for damages of any kind arising out of the use or performance of the product(s), or the unauthorized alteration of data listed on this Certificate. Certified ratings are valid only for models and configurations listed in the directory at www.ahridirectory.org. TERMS AND CONDITIONS

This Certificate and its contents are proprietary products of AHRI. This Certificate shall only be used for individual, personal and confidential reference purposes. The contents of this Certificate may not, in whole or in part, be reproduced; copied; disseminated; entered into a computer database; or otherwise utilized, in any form or manner or by any means, except for the user's individual, personal and confidential reference.

CERTIFICATE VERIFICATION

The information for the model cited on this certificate can be verified at www.ahridirectory.org, click on "Verify Certificate" link and enter the AHRI Certified Reference Number and the date on which the certificate was issued, which is listed above, and the Certificate No., which is listed below.

Air-Conditioning, Heating, and Refrigeration Institute

©2010 Air-Conditioning, Heating, and Refrigeration Institute

CERTIFICATE NO.: 129387922389684446

Important Notice: If visually graded lumber is used for the trusses covered by these designs, see "SPIB Important Notice, Dated July 28, 2010" (reprinted at www.mii.com) before use. Trenco does not warrant third-party lumber design values.

RE: RSNCONDE -

Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

City: FT WHITE

Project Customer: SCOTT ROSENBOOM Project Name: CONDE RES Lot/Block: Subdivision: Address: 245 SW WAFFLE GLEN

State: FL

Name Address and License # of Structural Engineer of Record, If there is one, for the building. Name: License #: Address:

City:

State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: FBC2007/TPI2002 Wind Code: ASCE 7-05 Wind Speed: 110 mph Design Program: MiTek 20/20 7.2 Floor Load: N/A psf

Roof Load: 40.0 psf

This package includes 43 individual, dated Truss Design Drawings and 0 Additional Drawings. With my seal affixed to this sheet, I hereby certify that I am the Truss Design Engineer and this index sheet conforms to 61G15-31.003, section 5 of the Florida Board of Professional Engineers Rules. This document processed per section 61G15-23.003 of the Florida Board of Professionals Rules

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	E5927665	A1	1/10/011	18	E5927682	CJ03	1/10/011
2	E5927666	A1ET	1/10/011	19	E5927683	CJ09	1/10/011
3	E5927667	A2	1/10/011	20	E5927684	D1	1/10/011
4	E5927668	A3	1/10/011	21	E5927685	D	1/10/011
5	E5927669	A4	1/10/011	22	E5927686	DET	1/10/011
6	E5927670	A5	1/10/011	23	E5927687	E1	1/10/011
7	E5927671	A6	1/10/011	24	E5927688	E2	1/10/011
8	E5927672	A6ET	1/10/011	25	E5927689	E3	1/10/011
9	E5927673	A	1/10/011	26	E5927690	EJ2	1/10/011
10	E5927674	B1	1/10/011	27	E5927691	EJ5	1/10/011
11	E5927675	B2	1/10/011	28	E5927692	EJ5GT	1/10/011
12	E5927676	B3	1/10/011	29	E5927693	EJ7	1/10/011
13	E5927677	B4	1/10/011	30	E5927694	EJ7A	1/10/011
14	E5927678	B5	1/10/011	31	E5927695	EJ7B	1/10/011
15	E5927679	C1	1/10/011	32	E5927696	EJ7C	1/10/011
16	E5927680	C	1/10/011	33	E5927697	EJ7GT	1/10/011
17	E5927681	CET	1/10/011	34	E5927698	F1	1/10/011

The truss drawing(s) referenced above have been prepared by TRENCO under my direct supervision based on the parameters provided by Santa Fe Truss.

Truss Design Engineer's Name: Strzyzewski, Marvin My license renewal date for the state of is February 28, 2013.

NOTE: The seal on these drawings indicate acceptance of professional engineering responsibility solely for the truss components shown. The suitability and use of this component for any particular building is the responsibility of the building designer, per ANSI/TPI-1 Chapter 2.

Strzyzewski, Marvin

RE: RSNCONDE -

···· 1

Site Information:

Project Customer: SCOTT ROSENBOOM Project Name: CONDE RES Lot/Block: Subdivision: Address: 245 SW WAFFLE GLEN State: FL

City: FT WHITE

-

No.	Seal#	Truss Name	Date
35	E5927699	F	1/10/011
36	E5927700	FET	1/10/011
37	E5927701	FGT	1/10/011
38	E5927702	G1	1/10/011
39	E5927703	G	1/10/011
40	E5927704	GET	1/10/011
41	E5927705	J01	1/10/011
42	E5927706	J03	1/10/011
43	E5927707	J05	1/10/011

FL Cert. #7239

January 10,2011

meters and READ MOTES ON THIS AND INCL. 1-7478 rsp. 10-08 8820R8 USR. A Watchield for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not trust designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult **ANSI/TPI Quality Criteria, DSB-89** and **BCSI Building Component Safety Information** available from Trus Plate institute, 281 N. Lee Street, Suite 312, Alexandria, VA 22314,

818 Soundside Roa Edenton, NC 27932

A Watchind - Verify design parameters and REED WOTES ON THIS AND INCLODED ATTER REPAIRINGE PACE MIL-7678 percent. Design valid for use only with Milek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult. ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 281 N, Lee Street, Suite 312, Alexandria, VA 22314.

MARGING - Verige design parameters and JEBAD HOTER ON THE AND INCLUDED WITHIN REPARTMENT PAGE 200-7478 rep. 10-08 SEPORE USE:
 Design valid for use only with Millek connectors. This design is based only upon parameters shown, and is for an individual building component.
 Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown
 is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the overall structure is the responsibility of the building designer - for general guidance regarding
 fobrication, quality control, storage, delivery, erection and bracing, consult
 ANSI/TPI (Quality Criteria, DS8-89 and **BCSI Building Component** Safety Information available from Truss Plate Institute, 281 N, Lee Street, Suite 312, Alexandria, VA 22314.

	7-10-6	12-1-12	20-10-9		28-4-12	2	36	
Plate Offsets (X,Y):	[2:0-0-4.0-1-8], [9:0-2-4.0-3	4-3-6 3-0]. [10:0-0-5.Edg	8-8-13 e]. [10:0-0-4,1-0-6]	L	7-6-3		8-	1-8 ' 3-9-12 1-0-0'
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING Plates Increase Lumber Increase Rep Stress Incr Code FBC2007/TPI	1.25 YES	CSI TC 0.77 BC 0.80 WB 0.58 (Matrix)		0.20	2-18 >7 12-13 >9	defi L/d 727 240 986 180 n/a n/a	PLATES GRIP MT20 244/190 Weight: 224 lb FT = 15%
WEBS 2X4S				BRACING TOP CHOR BOT CHOR WEBS	D	Rigid ceilir 1 Row at n	ng directly applie nidpt	directly applied or 5-4-0 oc purlins. d or 6-0-0 oc bracing. 12-14 Stabilizers and required cross bracing
WEDGE Right: 2 X 8 SYP No.2	2						ed during truss	erection, in accordance with Stabilizer
Max Uj Max Gi FORCES (Ib) - Maxir TOP CHORD 1-2= 9-10 BOT CHORD 2-18	orz 2=327(LC 4) plift 17=-527(LC 3), 12=-164 rav 17=1654(LC 1), 12=171 mum Compression/Maximu :0/26, 2-3=-218/381, 3-4=-4 =-35/1160, 10-11=0/45 :=-442/158, 17-18=-403/148	12(LC 1), 2=395(L m Tension 91/1175, 4-5=-468	C 7) 8/1289, 5-6=-995/3	3, 6-7=-1113/127,				
WEBS 3-18	3=0/16, 10-12=-902/74 =-195/252, 3-17=-1234/853 4=-262/13, 9-14=0/1217, 9-	8, 5-17=-1733/398	, 5-15=-104/941, 6	-15=-530/151, 7-18	5=-72/	490, 7-14=	-35/655,	R No 43144

LOAD CASE(S) Standard

January 10,2011

WARGING - Verify design parameters and RIAD NOTES ON THIS AND INCLOUND AFTER REPAIRINGS PAUE AND -7678 new. 10-08 SEPORE USE. Design valid for use only with Millek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the esponsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANS//PTI Quality Criteria, DS8-89 and BCSI Building Component Safety information available from Truss Plate Institute, 281 N. Lee Street, Suite 312. Alexandria, VA 22314.

FL Cert. #7239

WARNING - Verify design parameters and IRAD HOTES ON THIS AND INCLUDED ATTEX RAPSIDES MIT 7679 nm. 10-08 BEFORE
 Design valid for use only with Millek connectors. This design is based only upon parameters shown, and is for an individual building component.
 Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Racing shown
 is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the building designer. For general guidance regarding
 fabrication, quality control, storage, delivery, erection and bracing, consult
 ANSI/FIT Quality Criteria, DSB-89 and BCSI Building Component
 Safety Information available from Truss Plate Institute, 281 N. Lee Street, Suite 312. Alexandria, VA 22314.

ł.

ł	7-10-6	12-1-12	20-10-9	22-10-8			-1	36-6-4	40-4-0	41-4-0
Plate Offsets (X.Y): [2:0-0-4.0-1-8]. [7:0	4-3-6	8-8-13 8 0-2-11 (10:0-2-4 0-3-0)	1-11-15	5-6	-4	31	8-1-8	3-9-12	1-0-0
THUR BUILDENIE A	turn faire ine i sh fris	a ore a thread	0.0 £ 1j. [10.0 £ 4.0 0 0].	111.0-0-0,E0961	111.0-0		51	T		
LOADING (psf	50000000000000000000000000000000000000	2-0-0	CSI	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.			TC 0.76	Vert(LL)		2-20	>730	240	MT20	244/190
CDL 10.			BC 0.76	Vert(TL)		17-19	>982	180		
BCLL 0.0 BCDL 10.0	0 * Rep Stress	ncr YES 007/TP12002	WB 0.58	Horz(TL)	0.11	13	n/a	n/a		
500L 10.1		007/1912002	(Matrix)						Weight: 229 lb	FT = 15%
UMBER				BRACING						
	2 X 4 SYP No.2			TOP CHO	RD	Structu	Iral wood	I sheathing dir	ectly applied or 5-2-	11 oc purlins, except
	2 X 4 SYP No.2 *Except*					2-0-0 0	oc purlins	(6-0-0 max.):	7-8.	
	9-14: 2 X 4 SYP No.3			BOT CHO	RD	Rigid o	eiling dir	ectly applied c	or 6-0-0 oc bracing.	
VEBS	2 X 4 SYP No.3			WEBS			at midpt		-15	
Right: 2 X 8 SY	'P No.2					MiTe	k recomm	nends that Sta	bilizers and required	cross bracing
									ction, in accordance	with Stabilizer
EACTIONS	(Ib/size) 19=1646/0-3-8	(min 0-1-15) 13=	1677/0-3-8 (min 0.2.0)		0 1 0		lation gu	ide.		
	0-1-8)	(1111. 0-1-10), 10-	10///0-0-0 (min. 0-2-0), 2	2-300/0-3-0 (1111	1. 0-1-0), 11=-2	31/0-3-8	(min.		
1	Max Horz 2=290(LC 4)									
1	Max Uplift 19=-585(LC 3),	13=-181(LC 3), 2=	-296(LC 3), 11=-269(LC 7	7)						
1	Max Grav 19=1646(LC 1),	13=1677(LC 1), 2	=400(LC 7)							
ORCES (IL)	- Maximum Compression/	Maniation Transie								
OP CHORD	1-2=0/26 2-3=-240/328	3_4=_507/1110 A	5=-484/1224, 5-6=-1022/	E4 6 7- 074/04	7 0- 0	00/70		5107		
or oriona	9-10=-1320/59, 10-11=-	33/1097 11-12=0/	45	51, 6-7=-974/91,	1-8=-8	20/70, 0	5-9=-124	5/97,		
BOT CHORD			5/283, 17-18=-57/290, 16	-17=-28/928 15-	16=-6/9	02 14-	15=0/14	n		
	9-15=-222/140, 13-14=0	/19, 11-13=-848/7	4			02, 14	10 0/14			
VEBS	3-20=-196/245, 3-19=-1	223/858, 5-19=-17	12/473, 5-17=-135/917, 6	-17=-243/100, 6-	16=-200	6/35.7-	16=-7/29	3		IIIIII.
	8-16=-164/21, 8-15=-38	/555, 13-15=-233/3	5, 10-15=0/1211, 10-13=	-1556/165	avoc 1973			-,	Why S	TRZU
									STRATIN A. S	····· 2/4
IOTES									S.J C	NSAC

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-05; 110mph (3-second gust); TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise); cantilever right exposed ; porch left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Provide adequate drainage to prevent water ponding.
 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

- will fit between the bottom chord and any other members. 6) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 585 lb uplift at joint 19, 181 lb uplift at joint 13, 296 lb uplift at joint 2 and 269 lb uplift at joint 11.
- 8) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 19.
- 9) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

FL Cert. #7239

January 10,2011

meters and RRAD WOYSE ON THIS AND INT 7478 rep. 10-08 8020000 0800 Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult Safety Information available from Truss Plate institute, 281 N. Lee Street, Suite 312, Alexandria, VA 22314.

Scale = 1:67.6

.....

		7-10-6	12-1-12 4-3-6	20-10-7 8-8-11		<u>28-4-12</u> 7-6-5		36-4-8 7-11-12	
Plate Of	fsets (X.Y):	[2:0-0-4.0-1-8]. [6:0-5-4.0				1-9-9		74(14)2	and the second
CADIN CLL CDL CDL BCLL BCDL	G (psf) 20.0 10.0 0.0 * 10.0	SPACING Plates Increase Lumber Increase Rep Stress Incr Code FBC2007/TI	2-0-0 1.25 1.25 YES	CSI TC 0.76 BC 0.51 WB 0.51 (Matrix)	Vert(LL) 0.18	10-11 >7	efi L/d 11 240 72 180 n/a n/a	PLATES MT20	GRIP 244/190
SCDL	10.0	Code FBC200//11	P12002	(Matnx)				Weight: 194 lb	FT = 15%
	ORD 2X4 ORD 2X4 7-11:2 2X4	SYP No.2 SYP No.2 *Except* 2 X 4 SYP No.3 SYP No.3 *Except* 2 X 4 SYP No.2			BRACING TOP CHORD BOT CHORD WEBS	end vertica Rigid ceilin 1 Row at n	ls, and 2-0-0 oc p g directly applied hidpt 9	lirectly applied or 3-9- ourlins (3-10-7 max.): or 6-0-0 oc bracing. -11	6-8.
		 e) 10=853/Mechanical, 1 					ed during truss er	tabilizers and required ection, in accordance	
TOP CH	Max G (Ib) - Maxii ORD 1-2= 9-10 ORD 2-16 10-1	plift 10=-79(LC 3), 15=-53 rav 10=853(LC 1), 15=17 mum Compression/Maxim 0/26, 2-3=-96/264, 3-4=-5 =-774/102 =-350/42, 15-16=-312/33, 1=-15/51	75(LC 1), 2=3 num Tension 544/1275, 4-5= , 14-15=-192/2	70(LC 7) =-522/1386, 5-6=-1238/12 201, 13-14=-164/208, 12-	13=-98/1122, 11-12=0/	158, 7-12=-	457/287,		
NEBS		=-192/243, 3-15=-1242/7 =-29/18, 9-12=-124/1583		4/461, 5-13=-247/1274, 6	3-13=-276/145, 6-12=-1	30/929, 8-1	6 - 1 - C - T - C - C - C - C - C - C - C - C	mm	TDSI
 Wind: left ex 3) Provid This tr 5) * This will fit Refer Refer Bearin of bea Provid 	ASCE 7-05; posed; Lumb e adequate d uss has beer truss has beer truss has beer between the to girder(s) for g at joint(s) 2 ring surface. e mechanica	e loads have been consid 110mph (3-second gust); er DOL=1.60 plate grip D Irainage to prevent water a designed for a 10.0 psf I en designed for a live load bottom chord and any oth r truss to truss connection considers parallel to grai	TCDL=6.0psf OL=1.60 ponding. bottom chord I d of 20.0psf or ter members. ns. in value using	; BCDL=3.0psf; h=25ft; C ive load nonconcurrent w the bottom chord in all a ANSI/TPI 1 angle to grain	ith any other live loads. reas where a rectangle n formula. Building des	3-6-0 tall b	d verify capacity	No No No No No	43144 * 05 05 44 R 10 0 0
15 and 9) Bevele 10) "Sem	206 lb uplift d plate or sh ii-rigid pitchbi	at joint 2. im required to provide full reaks with fixed heels" Me presentation does not de	bearing surfa	ce with truss chord at joir ty model was used in the	nt(s) 15. analysis and design of	this truss.		IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	VALENI

LOAD CASE(S) Standard

6

7 40 0

10 1 10

A

WARNEND - Verify design parameters and READ NOTES ON THIS AND INCLUDED WITH REFISIENCE PAOB MI-7479 nm. 10-08 BBPORE USE.
 Design valid for use only with Milek connectors. This design is based only upon parameters shown, and is for an individual building component.
 Applicability of design parameters and proper incorporation of component is reponsibility of building designer - not truss designer. Racing shown
 is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the
 erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding
 fabrication, quality control, storage, delivery, erection and bracing, consult
 ANSI/TPII Quality Criteria, DSB-89 and BCSI Building Component
 Safety Information available from Truss Plate Institute, 281 N. Lee Street, Suite 312, Alexandria, VA 22314.

FL Cert. #7239

January 10,2011

WARMING - Perify design parameters and RIAD NOTES ON THIS AND INCLUDED ATTER REPORTANCE PAGE NEL-7478 new. 10-08 BEFOR Design valid for use only with MITek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design paramenters and proper incorporation of component is responsibility of building designer. For an Individual building component is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the building designer. For general guidance regarding tobication, quality control, storage, delivery, erection and bracing, consult ANSI/FPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 281 N, Lee Street, Suite 312, Alexandria, VA 22314. Engineering by EREENCO AMITER Alfiliale 818 Soundside Road Edenton, NC 27932 .

Job	Truss	Truss Type	Qty	Ply		E5927672
RSNCONDE	AGET	GABLE	1	1		23321012
SANTA FE TRUSS (COMPANY, INC., HIGH S	PRINGS, FL, .		250 s Nov	Job Reference (optional) 19 2010 MiTek Industries, Inc. Mon Jan 10 15:52:51 Mzgzwjnn-xMbFRw3fquDo71xAKbZIPW?dmt5s1Rq	

NOTES

14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

WARNEND - Verify distign parameters and KIBAD ROTISE ON TIME AND INCLUDIO NETTER REPORTED FACE AND -7478 percent 0005.
 Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component.
 Applicability of design parameters and proper incorporation of component is responsibility of building designer - not itrus designer. Reacing shown
 is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the building designer. For general guidance regarding
 fabrication, quality control, storage, delivery, erection and bracing, consult
 ANSI/FPI Quality Cittered, DSE-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 281 N. Lee Street, Suite 312. Alexandria, VA 22314.

LOAD CASE(S) Standard

mailans mad \$721 man. 171. 1718 Design valid for use only with MITek connectors. This design is based only upon parameters shown, and is for an individual building component. Design valid for use only with with exconnectors. Inside agin is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult **ANSI/TPI Quality Criteria, DSS-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 281 N. Lee Street, Suite 312. Alexandria, VA 22314.

FL Cert. #7239

-	7-0-0	11-9-10	16-7-4		23-5-10	30-4-0	
Diata Offecte (X	7-0-0 Y): [2:0-1-8.Edge]	4-9-10	4-9-10		6-10-6	6-10-6	
-idle Olisets (A	.1). [2.0-1-0.Edge]					and the second	
LOADING (psf)	SPACING	2-0-0 C	SI	DEFL ir	n (loc) l/defl L	/d PLATES	GRIP
TCLL 20.0	Plates Increase	1.25 T				40 MT20	244/190
TCDL 10.0	Lumber Increase	1.1.0-T.1.2	C 1.00	Vert(TL) -0.64	13-15 >560 18	80 MT20H	187/143
BCLL 0.0 BCDL 10.0	* Rep Stress Incr Code FBC2007/TP		/B 0.95 Aatrix)	Horz(TL) 0.20) 11 n/a n	Veight: 173 lb	FT = 15%
4	2 X 4 SYP No.2 *Except* -7: 2 X 4 SYP No.2D			BRACING TOP CHORD	end verticals, and 2	eathing directly applied or 2-8 -0-0 oc purlins (2-2-3 max.): -	4-10.
	X 4 SYP No.2D X 4 SYP No.3			BOT CHORD WEBS	Rigid ceiling directly 1 Row at midpt 2 Rows at 1/3 pts	v applied or 6-0-12 oc bracing 5-16 8-11	J.
				JOINTS	1 Brace at Jt(s): 9	•	
						is that Stabilizers and require truss erection, in accordance	
Ň	b/size) 11=2425/0-3-8 (min. 0 lax Horz 2=175(LC 5) lax Uplift11=-582(LC 4), 2=-590		(min. 0-2-11)				
FORCES (lb) -	Maximum Compression/Maxim	um Tension					
TOP CHORD	1-2=0/45, 2-3=-4612/977, 3-4=	-4480/994, 4-17=-39				Э,	
BOT CHORD	19-20=-5559/1209, 6-20=-5559 2-16=-887/3865, 16-21=-1167/ 14-24=-1167/5193, 13-24=-110	5193, 21-22=-1167/	5193, 15-22=-1167/	5193, 15-23=-1167/		193,	
WEBS	3-16=-112/51, 4-16=-253/1681 8-12=0/293, 8-11=-3751/832	, 5-16=-1732/471, 5-	15=0/413, 5-13=-85	5/484, 6-13=-486/22	1, 8-13=-630/2756,	anna A.	STRZY
NOTES						11 11 iC	ENS
Lumber DOL=	7-05; 110mph (3-second gust); 1.60 plate grip DOL=1.60 uate drainage to prevent water p		=3.0psf; h=25ft; Cat	. II; Exp B; enclosed	; MWFRS (low-rise);	No *	43144 .7
	MT20 plates unless otherwise in					=	
	been designed for a 10.0 psf b		nonconcurrent with	any other live loads	1	= 7 :	* / :'
5) * This truss ha	as been designed for a live load in the bottom chord and any other	of 20.0psf on the bo				vide = 0	TEOF
 Provide mech joint 2. 	anical connection (by others) of	truss to bearing plat	e capable of withsta	inding 582 lb uplift a	t joint 11 and 590 lb u	plift at	BIDANT

- 7) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

S/ONAL ENGLIS

FL Cert. #7239

4x8 =

Continued on page 2

January 10,2011

ebert and READ WOTES ON THIS AND INCLODED MITTER R NCE PAGE MIL 7478 rev. 10-08 SEPORE USG. Design valid for use only with MITek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding tablecation, quality control, storage, delivery, erection and bracing, consult ANSUTPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate institute, 281 N. Lee Street. Suite 312. Alexandria, VA 22314.

6

Job	Truss	Truss Type	Qty	Ply	E5927674
RSNCONDE	B1	MONO HIP	1	1	E592/6/4
					Job Reference (optional)
SANTA FE TRUSS (COMPANY INC. HIGH SPE	INGS FL		7.250 s	Nov 19 2010 MiTek Industries, Inc. Mon. Jan 10 13:49:22 2011 Page 1

ID:7YLn73J_fwmWszxxtKHTC6zwlbB-7YLn73J_fwmWszxxtKHTC6eO2FLObaAVO6Fm2_zwlbB

NOTES

9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 230 lb down and 156 lb up at 7-0-0, 129 lb down and 88 lb up at 9-0-12, 129 lb down and 88 lb up at 11-0-12, 129 lb down and 88 lb up at 11-0-12, 129 lb down and 88 lb up at 13-0-12, and 129 lb down and 88 lb up at 15-0-12, and 27 lb down and 34 lb up at 16-7-4 on top chord, and 390 lb down and 42 lb up at 7-0-0, 96 lb down at 9-0-12, 96 lb down at 11-0-12, 96 lb down at 13-0-12, and 96 lb down at 15-0-12, and 1104 lb down and 181 lb up at 16-7-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

ŝ.

1) Regular: Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

Vert: 1-4=-60, 4-9=-60, 9-10=-60, 2-11=-20

Concentrated Loads (lb)

Vert: 4=-230(F) 16=-357(F) 6=-27(F) 13=-1104(F) 17=-129(F) 18=-129(F) 19=-129(F) 20=-129(F) 21=-48(F) 22=-48(F) 23=-48(F) 24=-48(F) 24=-

 VARMING - Verify design parameters and REED NOTES OR THE AND INCLODED AFTER REPORTS PAGE MIL-7473 new. 10-08 IderOrds Design valid for use only with Millek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the events the responsibility of the building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the provide designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component**Safety Information available from Truss Plate institute, 281 N. Lee Street, Suite 312, Alexandria, VA 22314.

F	9-0-0	16-1-15		23-2				30-4-0	
Plate Offsets (X,Y): [7-1-15		7-0	-3			7-1-15	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING 2-0-0 Plates Increase 1.25 Lumber Increase 1.25 Rep Stress Incr YES Code FBC2007/TPI2002	CSI TC 0.67 BC 0.69 WB 0.49 (Matrix)		in -0.14 -0.39 0.07	(loc) 2-13 2-13 9	l/defl >999 >932 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 174 lb	GRIP 244/190 FT = 15%
LUMBER TOP CHORD 2X4S 30T CHORD 2X4S WEBS 2X4S			BRACING TOP CHORI BOT CHORI WEBS JOINTS		end ve Rigid c 1 Row 1 Brace MiTel be ins	erticals, an ceiling dire at midpt e at Jt(s): k recomm	d 2-0-0 oc ctly applie 7 ends that \$ ing truss e	directly applied or 4-4- purlins (4-8-15 max.): d or 10-0-0 oc bracing. 5-13, 5-10 Stabilizers and requirec prection, in accordance	4-8.
Max Ho	9=1389/0-3-8 (min. 0-1-10), 2=12 rz 2=213(LC 5) lift9=-332(LC 4), 2=-174(LC 5)	94/0-3-8 (min. 0-1-8)							
TOP CHORD 1-2=0 BOT CHORD 2-13=	um Compression/Maximum Tension /45, 2-3=-1955/249, 3-4=-1717/244, -286/1629, 12-13=-298/1720, 11-12= -238/127, 4-13=-29/543, 5-13=-353/	4-5=-1439/230, 5-6=-123 298/1720, 10-11=-298/1	720, 9-10=-6/13				3/350		
NOTES 1) Wind: ASCE 7-05; 1 Lumber DOL=1.60 p	10mph (3-second gust); TCDL=6.0ps state grip DOL=1.60	sf; BCDL=3.0psf; h=25ft; (Cat. II; Exp B; enclo	osed;	MWFR	S (low-rise	e);	111111	TRZVIII

2) Provide adequate drainage to prevent water ponding.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 332 lb uplift at joint 9 and 174 lb uplift at joint 2. 6) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss.

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

đ

FL Cert. #7239

January 10,2011

 MATCHING - Verify dissign parameters and RIBD HOTES ON THIS AND INCLUDID INTER REPARANCE FACE FOR THE AVE DESIGN VIEW OF THE AVERAGE AND INCLUDID INTER REPARANCE FACE FOR THE AVERAGE AND INCLUDID INTER REPARANCE FACE FOR THE AVERAGE AND INCLUDID INTER REPARANCE FACE FOR THE AVERAGE AND THE AVERAG ORB OBB

- 1-1 CDV27 CV-	(psf) 20.0 10.0	SPACING Plates Increase Lumber Increase	2-0-0 1.25 1.25	CSI TC BC	0.53 0.48	DEFL Vert(LL) Vert(TL)	in -0.10 -0.22	l/defi >999 >999	L/d 240 180	PLATES MT20	GRIP 244/190
BCLL	0.0 * 10.0	Rep Stress Incr Code FBC2007/T	YES	WB (Matr	0.63	Horz(TL)	0.08	n/a	n/a	Weight: 189 lb	FT = 15%
UMBER						BRACING					
	RD 2X4S					TOP CHO				lirectly applied or 4-0- ourlins (4-8-0 max.): 4	
WEBS	2 X 4 S	YP No.3				BOT CHO WEBS	RD	eiling dir at midot		or 10-0-0 oc bracing.	

JOINTS

1 Brace at Jt(s): 8

Installation guide.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer

REACTIONS (Ib/size) 10=1594/0-3-8 (min. 0-1-14), 2=1398/0-3-8 (min. 0-1-10) Max Horz 2=250(LC 5) Max Uplift 10=-331(LC 4), 2=-182(LC 5)

FORCES (Ib) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/45, 2-3=-2191/203, 3-4=-1779/219, 4-5=-1579/227, 5-6=-1578/227, 6-7=-1578/227, 7-8=-9/3, 8-9=0/0, 8-10=-386/196

BOT CHORD 2-15=-284/1804, 14-15=-284/1804, 14-16=-208/1471, 13-16=-208/1471, 12-13=-208/1471, 12-17=-161/1121, 11-17=-161/1121, 11-18=-161/1121, 10-18=-161/1121

WEBS 3-15=0/227, 3-14=-405/141, 4-14=-41/428, 4-12=-152/151, 5-12=-413/179, 7-12=-121/654, 7-11=0/318, 7-10=-1599/226

NOTES

6

1) Wind: ASCE 7-05; 110mph (3-second gust); TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise); Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 331 lb uplift at joint 10 and 182 lb uplift at joint 2.

"Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss. 6)

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

A. STR2) ICENSE No 43144 * * PROSTATE CH STATE CH STATE CH STRZY 0

FL Cert. #7239

January 10,2011

the second second second AD NOTES ON THIS AND INCLODED MITRY R NUB FAOS MI-7473 rev. 10-08 SEFORE USE. Design valid for use only with Millek connectors. This design is based only upon parameters shown, and is for an individual building component. Design valid for use only with Miller connectors. This design is dased only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer. For this designer, Braching shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and braching, consult **ANSI/TPI (Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 281 N. Lee Street, Suite 312. Alexandria, VA 22314.

	7-0-12	13-0-0	19-4-0		25-3-4	Contract of the local division of the local	32-4-0	
Plate Offsets (X,Y):	7-0-12 [2:0-3-3.0-1-8]. [3:0-2-8.0-3	5-11-4 -0], [4:0-5-4,0-2-0], [7:0	-3-3,0-1-8]		5-11-4		7-0-12	
DADING (psf) FCLL 20.0 FCDL 10.0 GCLL 0.0 * GCLL 10.0	SPACING Plates increase Lumber increase Rep Stress incr Code FBC2007/TPI	2-0-0 CSI 1.25 TC 1.25 BC YES WB 2002 (Matr	0.41 Vert(LL) 0.57 Vert(TL) 0.51 Horz(TL) ix)	in (-0.12 1 -0.27 1 0.10	0-11 >999	180	PLATES MT20 Weight: 174 lb	GRIP 244/190 FT = 15%
OT CHORD 2X4	SYP No.2 SYP No.2 SYP No.3		BRACING TOP CHC BOT CHC WEBS	RD S 2 RD F	2-0-0 oc purli	ns (4-9-14 ma lirectly applied	directly applied or 3-8-1 x.): 4-5. I or 10-0-0 oc bracing. I-10	
EACTIONS (Ib/size	e) 7=1333/0-3-8 (min. 0-1	0) 2-1449/0 2 9 (min	0.1.11)			during truss e	tabilizers and required rection, in accordance	

Max Horz 2=228(LC 4)

Max Uplift7=-147(LC 6), 2=-213(LC 5)

FORCES (Ib) - Maximum Compression/Maximum Tension

- TOP CHORD 1-2=0/45, 2-3=-2242/225, 3-4=-1740/208, 4-5=-1405/217, 5-6=-1719/214, 6-7=-2239/244
- 2-13=-247/1835, 12-13=-248/1833, 11-12=-248/1833, 11-14=-147/1425, 10-14=-147/1425, 9-10=-127/1836, BOT CHORD
- 8-9=-127/1836, 7-8=-127/1836
- WEBS 3-13=0/284, 3-11=-514/172, 4-11=-62/509, 4-10=-168/128, 5-10=-43/472, 6-10=-537/188, 6-8=0/287

NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-05; 110mph (3-second gust); TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise); Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 147 lb uplift at joint 7 and 213 lb uplift at joint 2. 7) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

FL Cert. #7239

January 10,2011

nations and D GET WOTTRE ON THIS AND INCLUD 1.7470 mm. 10.08 4 RE USH Design valid for use only with Millek connectors. This design is based only upon parameters shown, and is for an individual building component. Design valid for use only with Miller connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer. In on thus designer, Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult **ANSI/TPII Quality Criteria**, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 281 N. Lee Street, Suite 312. Alexandria, VA 22314.

	7-8-13	15-0-0 7-3-3	17-4-0		24-7-3 7-3-3		-1	<u>32-4-0</u> 7-8-13	
Plate Offsets (X,Y):	[2:0-1-5.0-0-2], [3:0-2-8.0-3-0], [4:0-5				1-5-5			1-0-13	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING2-0-0Plates Increase1.25Lumber Increase1.25Rep Stress IncrYESCode FBC2007/TPI2002	CSI TC 0.48 BC 0.58 WB 0.25 (Matrix)		in -0.09 -0.29 0.10	(loc) 7-8 7-8 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 182 lb	GRIP 244/190 FT = 15%
TOP CHORD 2X45 SOT CHORD 2X45 WEBS 2X45			BRACING TOP CHORI BOT CHORI WEBS	DI	2-0-0 or Rigid ce	c purlins	(5-7-5 max ectly applie	directly applied or 3-8-): 4-5. d or 10-0-0 oc bracing. 3-12, 4-10, 6-10	1
) 2=1383/0-3-8 (min (1-10) 7=1				be inst		ring truss e	Stabilizers and required rection, in accordance	

2=1383/0-3-8 (min. 0-1-10), 7=1279/0-3-8 (min. 0-1-8) ACTIONS Max Horz 2=260(LC 4) Max Uplift 2=-223(LC 5), 7=-157(LC 6)

FORCES (Ib) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/45, 2-3=-2105/244, 3-4=-1474/226, 4-5=-1173/231, 5-6=-1477/222, 6-7=-2118/260

BOT CHORD 2-13=-222/1715, 12-13=-223/1712, 11-12=-56/1170, 10-11=-56/1170, 9-10=-134/1725, 8-9=-134/1725, 7-8=-133/1728

WEBS 3-13=0/339, 3-12=-652/206, 4-12=-79/427, 4-10=-153/173, 5-10=-79/427, 6-10=-665/220, 6-8=0/340

NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-05; 110mph (3-second gust); TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise); Lumber DOL=1.60 plate grip DOL=1.60

a) Provide adequate drainage to prevent water ponding.
b) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 223 lb uplift at joint 2 and 157 lb uplift at joint 7. 7) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

FL Cert. #7239

January 10,2011

BPORE USE. Design valid for use only with Milek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design paramenters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult **ANSI/TPI Quality Criteria**, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 281 N. Lee Street, Suite 312, Alexandria, VA 22314.

.

LOAD CASE(S) Standard

FL Cert. #7239

January 10,2011

anters and R AD HOTES ON THES AND IPCLODED MITEX I CE PAGS MII-7470 rev. 10-08 SER ORE USE Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component's responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding tabrication, quality control, storage, delivery, erection and bracing, consult **ANSI/TPII Quality Criteria**, DSB-89 and BCSI Building Component Salety Information available from Truss Plate Institute, 281 N. Lee Street, Suite 312, Alexandria, VA 22314.

	7-11-15 7-11-15		16-4-1 8-4-3	24-4-0 7-11-15	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING 2-0-0 Plates Increase 1.25 Lumber Increase 1.25 Rep Stress Incr YES	CSI TC 0.29 BC 0.64 WB 0.21	DEFL in (lo Vert(LL) -0.22 8- Vert(TL) -0.35 8- Horz(TL) 0.05	10 >999 240	PLATES GRIP MT20 244/190
BCDL 10.0	Code FBC2007/TPI2002	(Matrix)	0.5-1 %		Weight: 119 lb FT = 15%
LUMBER TOP CHORD 2X	SYP No.2		BRACING TOP CHORD Str	ructural wood sheathing direc	ctly applied or 4-7-7 oc purlins.

BOT CHORD 2 X 4 SYP No.2 WEBS 2 X 4 SYP No.3 BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing. MiTek recommends that Stabilizers and required cross bracing

be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS (Ib/size) 2=1134/0-3-8 (min. 0-1-8), 6=1134/0-3-8 (min. 0-1-8) Max Horz 2=-197(LC 3) Max Uplift2=-187(LC 5), 6=-187(LC 6)

FORCES (Ib) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/45, 2-3=-1673/186, 3-4=-1514/238, 4-5=-1514/238, 5-6=-1673/186, 6-7=0/45

BOT CHORD 2-10=-157/1359, 10-11=-22/898, 9-11=-22/898, 8-9=-22/898, 6-8=-71/1358

WEBS 4-8=-122/654, 5-8=-330/172, 4-10=-122/655, 3-10=-330/172

NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-05; 110mph (3-second gust); TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise); Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 187 lb uplift at joint 2 and 187 lb uplift at joint 6.

6) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss.

LOAD CASE(S) Standard

FL Cert. #7239

January 10,2011

 WARNING - Yangy design parameters and READ NOTES ON THIS AND INCLUDED WITHIN REPERENCE PAGE ME-7479 nm, 10-08 B
 Design valid for use only with Millek connectors. This design is based only upon parameters shown, and is for an individual building component. CE PAGE MI-7478 Set. 10-08 ARPORE USE Design valid for use only with miller connectors this design is based only upon parameters shown, and is for an individual building component, Applicability of design parameters and proper incorporation of component is responsibility of building designer. For one fruss designer, Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult **ANSI/TPII Quality Criteria, DSS-89** and **BCSI Building Component Safety information** available from Truss Plate Institute, 281 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Rose Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply		E5927681
RSNCONDE	CET	GABLE	1	1	Job Reference (optional)	2092/001
SANTA FE TRUSS	COMPANY, INC., HIGH S	PRINGS, FL	ID:yii207h	7.250 s	Nov 19 2010 MiTek Industries, Inc. Mon Jan 10 13:49:28 5Eb0tRNzwlb5-yii207NiEmWfau05Eb0tRNuc6ger?UaN	

NOTES

\$

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 79 lb uplift at joint 2, 102 lb uplift at joint 16, 86 lb uplift at joint 25, 90 lb uplift at joint 26, 85 lb uplift at joint 27, 89 lb uplift at joint 28, 40 lb uplift at joint 29, 84 lb uplift at joint 22, 91 lb uplift at joint 21, 85 lb uplift at joint 20, 91 lb uplift at joint 19 and 41 lb uplift at joint 18.

10) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss.

LOAD CASE(S) Standard

à

parameters and READ NOTES ON THIS AND INCLODED MITER REPERSINCE PAGE ME-7474 res. 10-08 SEFORE USE. WARDENG - Vertity design Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an Individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult **ANSI/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Intornation** available from Truss Plate institute, 281 N. Lee Street, Suite 312, Alexandria, VA 22314.

					H			2-9-4				
LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	l/defi	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.27	Vert(LL)	-0.00	2-4	>999	240	MT20	244/190
TCDL	10.0	Lumber Increase	1.25	BC	0.06	Vert(TL)	-0.01	2-4	>999	180	Sector Sector	
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(TL)	-0.00	3	n/a	n/a		
BCDL	10.0	Code FBC2007/TI	PI2002	(Matr	ix)						Weight: 12 lb	FT = 15%

LUMBER

TOP CHORD 2 X 4 SYP No.2 BOT CHORD 2 X 4 SYP No.2 BRACING TOP CHORD BOT CHORD 2.0.4

Structural wood sheathing directly applied or 2-9-4 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS (Ib/size) 3=11/Mechanical, 2=288/0-5-12 (min. 0-1-8), 4=25/Mechanical Max Horz 2=81(LC 5) Max Uplift 3=-14(LC 4), 2=-137(LC 5) Max Grav 3=17(LC 3), 2=288(LC 1), 4=50(LC 2)

- FORCES (Ib) Maximum Compression/Maximum Tension TOP CHORD 1-2=0/46, 2-3=-60/6
- BOT CHORD 2-4=0/0

NOTES

1) Wind: ASCE 7-05; 110mph (3-second gust); TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise); Lumber DOL=1.60 plate grip DOL=1.60

- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 14 lb uplift at joint 3 and 137 lb uplift at joint 2.

6) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss.

LOAD CASE(S) Standard

679 per. 10-08 BEPORE USE. Design valid for use only with Milek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not trus designer. Fracing shown is for lateral support of Individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult **ANSI/TPI (Quality Certeried, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 281 N. Lee Street, Suite 312, Alexandria, VA 22314.

January 10,2011

 WARDENC - Varity dialog parameters and KIAD INTES ON THE AND INCLOUED INTER REPORTINGS (%408 MI-7478 nm. 10-08 ADPORE URE: Design valid for use only with NiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is to lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the building designer. For general guidance regarding tabication, quality control, storage, delivery, erection and bracing, consult — ANSI/TPI (Quality Criteria, DS8-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 281 N. Lee Street, Suite 312. Alexandrio, VA 22314.

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	E5927683
RSNCONDE	C109	MONO TRUSS	1	1	
SANTA FE TRUSS	COMPANY, INC., HIGH SI	PRINGS, FL			Job Reference (optional) Nov 19 2010 MiTek Industries, Inc. Mon Jan 10 13:49:30 2011 Page 2

ID:u4qpppP0mNmNqBYTL0RLXozwib3-u4qpppP0mNmNqBYTL0RLXozvib3-u4qpppP0mNmNqByTL0RLXozvib3-u4qppp0-u4qpppP0mNmNqByTL0RLXozvib3-u4qppp0-u4qppp0-u4qppp0-u4qppp0-u4qppp0-u4qp0-u4qpp0-u4qpp0-u4qpp0-u4qp0-u4qpp0-u4qpp0-u4qpp0-u4qp0-u4q

LOAD CASE(S) Standard Concentrated Loads (Ib)

. 6

4

Vert: 8=68(F=34, B=34) 9=15(F=7, B=7) 10=-130(F=-65, B=-65) 11=20(F=10, B=10) 12=-17(F=-8, B=-8) 13=-57(F=-28, B=-28)

1) Unbalanced roof live loads have been considered for this design.

 Wind: ASCE 7-05; 110mph (3-second gust); TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise); Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 84 lb uplift at joint 1 and 84 lb uplift at joint 5.

6) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss.

LOAD CASE(S) Standard

FL Cert. #7239

January 10,2011

A WARMO- Verify design parameters and READ HOTES ON THIS AND HOLOMO HIT IS KID HITMED FACE HEAD HIT / 54'D em. 18''OF HEAD HIT / 54''D em. 18''D em.

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-05; 110mph (3-second gust); TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise);

Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 151 lb uplift at joint 2 and 151 lb uplift at joint 6.

6) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss.

LOAD CASE(S) Standard

WARDENO - Verify design parameters and READ BOTED ON THE AND INCLUDED BITES REPERENCE PAGE ALL-7479 net. 10-08 BEFORE LEE Design valid for use only with Millek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not huss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/RFI Quality Critteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 281 N. Lee Street, Suite 312, Alexandria, VA 22314.

TRENCO AMTek Alfillate 818 Soundside Road Edenton, NC 27932

January 10,2011

January 10,2011

WARNENG: Yeargy design parameters and RIAD NOTES ON THIS AND INCLUDED SETTER REFORMACE PAGE BUT-7679 net. 10-08 BEPORE I Design volid for use only with MITE connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the utiliding designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult Safety Information available from Truss Plate Insitute, 281 N. Lee Street, Suite 312, Alexandria, VA 22314.

A MiTek Affili 818 Soundside Road Edenton, NC 27932

	5-9-10	12-8-0	14-4-0	20-4-4	26-4-8
	5-9-10	6-10-6	1-8-0	6-0-4	6-0-4
OADING (psf) CLL 20.0 CDL 10.0 SCLL 0.0 BCLL 0.0 BCDL 10.0	Plates Increase 1.25 Lumber Increase 1.25 Rep Stress Incr NO	CSI TC 0.91 BC 0.62 WB 0.69 (Matrix)	Vert(LL) -0.19	n (loc) l/defi L/d 11-12 >999 240 10-11 >677 180 2 9 n/a n/a	PLATES GRIP MT20 244/190 Weight: 146 lb FT = 15%
SOT CHORD	2 X 4 SYP No.2 *Except* 6-8: 2 X 4 SYP No.2D 2 X 4 SYP SS 2 X 4 SYP No.3 *Except* 6-10,8-10: 2 X 4 SYP No.2		BRACING TOP CHORD BOT CHORD WEBS JOINTS	end verticals, and 2-0-0 oc Rigid ceiling directly applied 1 Row at midpt 1 Brace at Jt(s): 8 MiTek recommends that S	directly applied or 2-7-13 oc purlins, except purlins (2-10-6 max.): 3-5, 6-8. d or 6-1-15 oc bracing. 3-10 Stabilizers and required cross bracing rection, in accordance with Stabilizer
1	(lb/size) 9=2064/Mechanical, 2=2309/0-3- Max Horz 2=156(LC 5) Max Uplift9=-524(LC 4), 2=-527(LC 5)	8 (min. 0-2-12)		Interanteuron garrier	
FORCES (IB) TOP CHORD BOT CHORD	 Maximum Compression/Maximum Tension 1-2=0/43, 2-3=-3207/755, 3-15=-2584/656 5-18=-4113/1017, 6-18=-4138/1022, 6-19 8-21=-3315/836, 8-9=-1984/544 2-22=-651/2535, 22-23=-651/2535, 14-23 13-26=-864/3273, 12-26=-864/3273, 12-26 10-29=-14/52, 29-30=-14/52 	3, 4-15=-2583/658, 4-16=- =-3315/836, 7-19=-3315/8 =-651/2535, 14-24=-864/3 7=-1159/4648, 11-27=-11	36, 7-20=-3315/836, 2 273, 24-25=-864/3273,	0-21=-3315/836, , 13-25=-864/3273,	
WEBS	3-14=-261/1392, 4-14=-1165/373, 4-12=- 7-10=-662/322, 8-10=-935/3711		9-12=-2155/555, 6-11=-	81/345, 6-10=-1523/369,	A. STRZY
2) Wind: ASCE Lumber DOL	roof live loads have been considered for thi 7-05; 110mph (3-second gust); TCDL=6.0p =1.60 plate grip DOL=1.60	s design. sf; BCDL=3.0psf; h=25ft;	Cat. II; Exp B; enclosed	; MWFRS (low-rise);	No 43144
 4) This truss has 5) * This truss has will fit betwee 6) Refer to gird 	quate drainage to prevent water ponding. Is been designed for a 10.0 psf bottom chor has been designed for a live load of 20.0psf en the bottom chord and any other members er(s) for truss to truss connections. hanical connection (by others) of truss to be	on the bottom chord in all 3.	areas where a rectang		PP STATE OF
joint 2. 8) "Semi-rigid p	itchbreaks with fixed heels" Member end fix rlin representation does not depict the size	ity model was used in the	analysis and design of	this truss.	SONAL ENGLIS
Continued on pa	age 2				FL Cert. #7239

.

January 10,2011

 WARKING - Yanify clesting parameters and KDAD ROTES ON TIDE AND INCLODED WITER REPARENCE PAGE MI-7478 cm. 10-VIS BARVIN Design valid for use only with Milek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is reponsibility of building designer - not hus designer. Recing shown is for lateral support of individual web members only. Additional temporary bracing to inverse stability of the responsibility of the sublicing designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/[PI] Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 281 N. Lee Street, Suile 312, Alexandria, VA 22314. ters and READ HOTES ON THIS AND INCLODED MITER REPERENCE PAGE MI-7473 cer. 10-98 BEPORE URL

Job	Truss	Truss Type	Qty	Ply	E5927687
RSNCONDE	E1	SPECIAL	1	1	E392/00/
SANTA FE TRUSS	COMPANY, INC., HIGH S	SPRINGS, FL			Job Reference (optional) Nov 19 2010 MiTek Industries, Inc. Mon Jan 10 13:49:34 2011 Page 2
			ID:ms3JfASWqb	GpJpsFar	WHhezwib?-ms3JfASWqbGpJpsFarVHhe8SM5YAP3HG9z9PTHzwib?

NOTES

10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 129 lb down and 88 lb up at 5-9-10, 129 lb down and 88 lb up at 7-10-6, 129 lb down and 88 lb up at 9-10-6, 129 lb down and 88 lb up at 11-10-6, 9 lb down and 34 lb up at 13-7-4, 131 lb down and 72 lb up at 19-8-12, 115 lb down and 59 lb up at 20-3-4, and 115 lb down and 59 lb up at 22-3-4, and 115 lb down and 59 lb up at 24-3-4 on top chord, and 168 lb down and 45 lb up at 1-10-6, 236 lb down and 55 lb up at 3-10-6, 96 lb down at 5-10-6, 96 lb down at 9-10-6, 96 lb down at 11-10-6, 498 lb down and 121 lb up at 13-7-4, 217 lb down and 21 lb up at 19-8-12, 63 lb down at 20-3-4, and 63 lb down at 22-3-4, and 63 lb down at 24-3-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

.

1) Regular: Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

Vert: 1-3=-60, 3-5=-60, 5-6=-60, 6-8=-60, 2-9=-20

Concentrated Loads (Ib)

Vert: 3=-129(B) 14=-48(B) 7=-75(B) 10=-31(B) 15=-129(B) 16=-129(B) 17=-129(B) 18=34(B) 19=-91(B) 20=-75(B) 21=-75(B) 22=-168(B) 23=-236(B) 24=-48(B) 25=-48(B) 26=-48(B) 26=-48(B) 27=-498(B) 28=-217(B) 29=-31(B) 30=-31(B) 30=-3

WARNENG - Yeryly design parameters and RBAD NOTES ON TILLS AND INCLOUND ATTEX PARE BUDYCH PAGE AD-7479 Net. 10-08 BBPORD UKK
Design valid for use only with Milek connectors. This design is based only upon parameters shown, and is for an individual building component.
Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown
is for lateral support of individual web members only. Additional temporary bracing to huiding designer. For general guidance regarding
fabrication, quality control, storage, delivery, erection and bracing, consult
 ANSI/TP11 Quality Criteria, DS8-89 and BCS1 Building Component
Safety Information available from Truss Plate institute, 281 N, Lee Street, Suite 312, Alexandria, VA 22314.

ñ

 	7-5-8	12-4-0	18-2-0	Construction of the local data in the local data		4-8
Plate Offsets (X,Y):	7-5-8 [2:0-1-0.0-0-0], [4:0-2-8.0-2-1], [7:0-5-	4.0-2-0]	. 5-10-0		5-10-0 2	4-8
OADING (psf) FGLL 20.0 FGDL 10.0 3GLL 0.0 * 3GCDL 10.0	SPACING 2-0-0 Plates Increase 1.25 Lumber Increase 1.25 Rep Stress Incr YES Code FBC2007/TPI2002	CSI TC 0.49 BC 0.58 WB 0.37 (Matrix)	DEFL ii Vert(LL) -0.11 Vert(TL) -0.25 Horz(TL) 0.03	9 2-14 >999 180		UP 4/190 FT = 15%
UMBER TOP CHORD 2X4 BOT CHORD 2X4 WEBS 2X4			BRACING TOP CHORD BOT CHORD		g directly applied or 4-2-6 oc oc purlins (4-11-12 max.): 3-4 ied or 10-0-0 oc bracing.	
	X 4 SYP No.2				t Stabilizers and required cro erection, in accordance with	

REACTIONS (lb/size) 2=1196/0-3-8 (min. 0-1-8), 9=1063/Mechanical Max Horz 2=166(LC 5) Max Uplift 2=-150(LC 5), 9=-158(LC 6)

FORCES (Ib) - Maximum Compression/Maximum Tension

1-2=0/43, 2-3=-1562/213, 3-4=-1173/219, 4-5=-1969/357, 5-6=-1437/284, 6-7=-1437/284, 7-8=-656/111, 8-9=-1052/159, 3-1052/150, 3-1052/150, 3-1052/150, 3-1052/150, 3-1052/150, 3-1052/150, 3-1052/150, 3-1000TOP CHORD

- BOT CHORD
- 2-15--22/1160, 14-15--222/1160, 13-14-234/1297, 12-13--294/1637, 11-12--294/1637, 10-11=-90/527, 9-10--2/6 3-14=-43/536, 4-14=-337/114, 4-13=-208/1162, 5-13=-1040/232, 5-11=-283/35, 6-11=-401/174, 7-11=-243/1134, WEBS 7-10=-598/150, 8-10=-156/875
- NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-05; 110mph (3-second gust); TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise); Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 150 lb uplift at joint 2 and 158 lb uplift at

joint 9. 8) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

FL Cert. #7239

January 10,2011

RE GER SS ON THIS AND INCLES 17-7474 mm. 10-08 A Design valid for use only with MiTek connectors. This design is based only upon parameters hown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permonent bracing of the overall structure is the responsibility of the ultiding designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, cansult **ANSI/TP11 Quality Criteria**, DS8-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 281 N. Lee Street, Suite 312, Alexandria, VA 22314.

	7-8-13				14-10-6				22-0-0	and the second second second	26-4	and the second
7-8-13 Plate Offsets (X,Y); [2:0-1-0.0-0-0], [3:0-5-4.0-2-0], [5:0-5-4.0				0-2-0]	7-1-10				7-1-10)	4-4-	8
TCDL ·	psf) 20.0 10.0 0.0 * 10.0	SPACING Plates Increase Lumber Increase Rep Stress Incr Code FBC2007/TF	2-0-0 1.25 1.25 YES Pl2002	CSI TC BC WB (Matr	0.53 0.61 0.30 ix)	DEFL Vert(LL) Vert(TL) Horz(TL)	in -0.13 -0.31 0.04	2-11	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 145 lb	GRIP 244/190 FT = 15%
	D 2X4S D 2X4S 2X4S					BRACING TOP CHO BOT CHO	RD	end ve	erticals, a	nd 2-0-0 oc	lirectly applied or 4-0- purlins (5-0-0 max.): 3 I or 10-0-0 oc bracing	3-5.
	6-7: 2 X	4 SYP No.2						MiTe be in	k recomr	nends that S uring truss er	tabilizers and require rection, in accordance	d cross bracing

REACTIONS (Ib/size) 2=1204/0-3-8 (min. 0-1-8), 7=1066/Mechanical Max Horz 2=169(LC 5) Max Uplift 2=-165(LC 4), 7=-159(LC 3)

FORCES (Ib) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/43, 2-3=-1563/253, 3-4=-1325/287, 4-5=-1325/287, 5-6=-906/162, 6-7=-1036/167

- 2-12=.256/1158, 11-12=.256/1158, 10-11=.256/1166, 9-10=.117/724, 8-9=.117/724, 7-8=-7/15 3-11=0/329, 3-10=-188/301, 4-10=-485/220, 5-10=-218/785, 5-8=-365/122, 6-8=-154/873 BOT CHORD
- WEBS

NOTES

 Unbalanced roof live loads have been considered for this design.
 Wind: ASCE 7-05; 110mph (3-second gust); TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise); Lumber DOL=1.60 plate grip DOL=1.60

- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 165 lb uplift at joint 2 and 159 lb uplift at joint 7. 8) "Semi-rigid pitchbreaks with fixed heets" Member end fixity model was used in the analysis and design of this truss.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

22 UA URS AND 7478 rev. 10-08 BBPORG USB. Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabricality on the output of the overall structure is the responsibility of the building designer. For general guidance regarding fabricality output output of the overall structure is the responsibility of the building designer. For general guidance regarding fabricality output output on the structure is the responsibility of the building designer. For general guidance regarding fabricality control, storage, delivery, erection and bracing, consult antis/firefat, DSB-89 and BCSI Building Component Safety Information available from Truss Plate institute, 281 N. Lee Street, Suite 312, Alexandria, VA 22314,

							-9-10					
LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.09	Vert(LL)	-0.00	2	>999	240	MT20	244/190
TCDL	10.0	Lumber Increase	1.25	BC	0.03	Vert(TL)	-0.00	2-4	>999	180	Contraction of the second s	
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(TL)	-0.00	3	n/a	n/a		
BCDL	10.0	Code FBC2007/TI	912002	(Matr	ix)						Weight: 9 lb	FT = 15%

LUMBER

.

TOP CHORD 2 X 4 SYP No.2 BOT CHORD 2 X 4 SYP No.2 BRACING TOP CHORD BOT CHORD

1.0.10

Structural wood sheathing directly applied or 1-9-10 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

4

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS (lb/size) 2=174/0-3-8 (min. 0-1-8), 4=18/Mechanical, 3=25/Mechanical Max Horz 2=84(LC 5) Max Uplift2=-74(LC 5), 3=-15(LC 4) Max Grav 2=174(LC 1), 4=35(LC 2), 3=25(LC 1)

 FORCES
 (lb) - Maximum Compression/Maximum Tension

 TOP CHORD
 1-2=0/42, 2-3=-47/11

 BOT CHORD
 2-4=0/0

NOTES

1) Wind: ASCE 7-05; 110mph (3-second gust); TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise); Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 74 lb uplift at joint 2 and 15 lb uplift at joint 3.

6) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss.

LOAD CASE(S) Standard

January 10,2011

WARNENCE - Verify design parameters and RDAD KOTSE ON THIS AND INCLOUED WITTER REPORTING PAGE SUI-7478 new. 10-06 BEFORE CEE.
 Design valid for use only with Millek connectors. This design is based only upon parameters shown, and is for an individual building component.
 Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the suiding designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult
 ANS/TFI Multip Quality Criteria, DSS-89 and BCSI Building Component
 Safety Information available from Truss Plate Institute, 281 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.28	Vert(LL)	-0.04	2-4	>999	240	MT20	244/190
TCDL	10.0	Lumber Increase	1.25	BC	0.25	Vert(TL)	-0.09	2-4	>679	180		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(TL)	-0.00	3	n/a	n/a	1	
BCDL	10.0	Code FBC2007/TI	PI2002	(Matr	ix)	1 10 22					Weight: 20 lb	FT = 15%

LUMBER

TOP CHORD 2 X 4 SYP No.2 BOT CHORD 2 X 4 SYP No.2 BRACING TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 5-4-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS (Ib/size) 3=135/Mechanical, 2=317/0-3-8 (min. 0-1-8), 4=51/Mechanical Max Horz 2=141(LC 5) Max Horz 2=141(LC 5)

Max Uplift 3=-67(LC 5), 2=-83(LC 5) Max Grav 3=135(LC 1), 2=317(LC 1), 4=102(LC 2)

FORCES (Ib) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/45, 2-3=-87/55 BOT CHORD 2-4=0/0

NOTES

1) Wind: ASCE 7-05; 110mph (3-second gust); TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise);

Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 67 lb uplift at joint 3 and 83 lb uplift at joint 2.

6) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss.

LOAD CASE(S) Standard

FL Cert. #7239

January 10,2011

 WARDENC - Verify design parameters and IRED HOTER ON TELE AND INCLODED WITER REVISIONCE PADE IN1-7476 res. 10-98 Serons Desc Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer. In on thus designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult MNSI/TPII Quality Criteria, DSB-89 and BCSI Building Component Safety Intornation available from Truss Plate Institute, 281 N. Lee Street, Suite 312. Alexandria, VA 22314.

REACTIONS (lb/size) 1=440/0-3-8 (min. 0-1-8), 2=151/Mechanical, 3=237/Mechanical Max Horz 1=99(LC 5) Max Uplift 1=-44(LC 5), 2=-81(LC 5), 3=-15(LC 3)

FORCES (Ib) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-70/63

BOT CHORD 1-4=0/0, 4-5=0/0, 3-5=0/0

NOTES

1) Wind: ASCE 7-05; 110mph (3-second gust); TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise);

Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 44 lb uplift at joint 1, 81 lb uplift at joint 2 and 15 lb uplift at joint 3.

6) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss.
7) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 212 lb down and 35 lb up at

1-4-12, and 212 lb down and 35 lb up at 3-4-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Regular: Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

Vert: 1-2=-60, 1-3=-20 Concentrated Loads (Ib)

Vert: 4=-212(F) 5=-212(F)

WARNENU - Verify dissign parameters and READ HOTES ON TIME AND INCLUDED ANTEX REFERENCE PAGE ME-7478 res. 10-08 REFORE DE
 Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component.
 Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual building designer - not make the responsibility of the building designer. For general guidance regarding
 fabrication, quality control, storage, delivery, erection and bracing, consult
 ANSI/TEN Quality Criteria, DSB-89 and BCSI Building Component
 Safety Information available from Truss Plate Institute, 281 N. Lee Street, Suite 312, Alexandria, VA 22314.

						7-0-0						
LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.54	Vert(LL)	-0.11	2-4	>730	240	MT20	244/190
TCDL	10.0	Lumber Increase	1.25	BC	0.44	Vert(TL)	-0.28	2-4	>292	180	L-1047-1079-1012	
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(TL)	-0.00	3	n/a	n/a		
BCDL	10.0	Code FBC2007/TI	PI2002	(Mate	ix)						Weight: 25 lb	FT = 15%

LUMBER

TOP CHORD 2 X 4 SYP No.2 BOT CHORD 2 X 4 SYP No.2

BRACING TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS (lb/size) 3=189/Mechanical, 2=380/0-3-8 (min. 0-1-8), 4=68/Mechanical Max Horz 2=172(LC 5) Max Uplift 3=-96(LC 5), 2=-82(LC 5)

Max Grav 3=189(LC 1), 2=380(LC 1), 4=136(LC 2)

FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/45, 2-3=-110/77

BOT CHORD 2-4=0/0

NOTES

1) Wind: ASCE 7-05; 110mph (3-second gust); TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise); Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 96 lb uplift at joint 3 and 82 lb uplift at joint 2. 6) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss.

LOAD CASE(S) Standard

FL Cert. #7239

January 10,2011

7479 rev. 10-08 BBPORE USE. Design valid for use only with MITek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate institute, 281 N. Lee Street, Suite 312, Alexandria, VA 22314.

1

WARDEND - Verify design parameters and ROAD ROTSE ON THE AND INCLOOID WITTER REPARENCE PADE MIL-7479 rep. 10-06 BEFORE VER.
 Design valid for use only with Millek connectors. This design is based only upon parameters shown, and Is for an individual building component.
 Applicability of design parameters and proper Incorporation of component is responsibility of building designer. For one truss designer, Bracing shown
 is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the building component bracing of the overall structure is the responsibility of the building designer. For general guidance regarding
 tabracing, quality control, storage, delivery, erection and bracing, consult
 MASI/TPII Quality Criteria, DS8-89 and BCSI Building Component
 Safety Information
 available from Truss Plate Institute, 281 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	E5927694
RSNCONDE	EJ7A	MONO HIP	1	1	E3927694
The second s	10000			1	Job Reference (optional)
SANTA FE TRUSS	COMPANY, INC., HIGH SI	PRINGS, FL		7.250 s	Nov 19 2010 MiTek Industries, Inc. Mon Jan 10 13:49:39 2011 Page 2
			ID:7ptCitV	We8v5Pak	CNP5SOhzwlaw-7ptCitWfe8v5PakCNP5SOhrR56Li4Uo?IFs97Vzwlaw

LOAD CASE(S) Standard

*

4

1) Regular: Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

Vert: 1-3=-60, 3-4=-60, 2-5=-20 Concentrated Loads (lb) Vert: 3=84(F) 6=-3(F) 7=35(F) 8=35(F) 9=2(F) 10=2(F)

WARTURNO - Verify design parameters and READ NOTES ON THIS AND INCLODED BITTER REPERENCE FACE NOTE: 10-08 BEIPOT Design valid for use only with Milek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of Individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the rector. Additional permanent bracing of the overal structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult Safety Information available from Truss Plate Institute, 281 N, Lee Street, Suite 312, Alexandria, VA 22314. RE USB.

7) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

FL Cert. #7239

January 10,2011

WARKING - Verify design parameters and RBAD NOTES ON THIS AND INCLOUED BITTLE REFISIONUS PAGE PEI-7479 net. 10-08 BBPORE USE
Design valid for use only with Millek connectors. This design is based only upon parameters shown, and is for an individual building component.
Applicability of design parameters and proper incorporation of component is responsibility of building designer. In one trust designer, Bracing shown
is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the
erector. Additional permanent bracing of the overall shucture is the responsibility of the building designer. For general guidance regarding
tabication, quality control, storage, delivery, erection and bracing, consult
 AMSI/TPIT Quality Criteria, DSB-89 and BCSI Building Component
 Safety Information available from Truss Plate institute, 281 N. Lee Street, Suite 312. Alexandria, VA 22314.

A WARMAG - Yengy diseign parameters and RIAD MOTES ON THIS AND INCLOSED ATTER REPAIDING PARS MIT-7479 rem. 10-08 SUPPOR Design valid for use only with MITek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult. ANSI/TRIT Quality Citteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 281 N. Lee Street, Suite 312. Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply		E5927696
RSNCONDE	EJ7C	MONO HIP	1		1	Job Reference (optional)
SANTA FE TRUSS	COMPANY, INC., HIGH S	PRINGS, FL	ID LODE DYL) s N	Nov 19 2010 MiTek Industries, Inc. Mon Jan 10 13:49:40 2011 Page 2

7.250 s Nov 19 2010 MiTek Industries, Inc. Mon Jan 10 13:49:40 2011 Page 2 ID:b?RbvDXHPR1y1kJOx6chwvzwlav-b?RbvDXHPR1y1kJOx6chwvOYmWeHpuN8Xvcjfxzwlav

LOAD CASE(S) Standard

.

1) Regular: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)

4

Vert: 1-2=-60, 2-3=-60, 1-5=-20 Concentrated Loads (lb)

Vert: 7=-212(B) 8=-212(B) 9=-212(B)

 wardward - Verige design parameters and Klab Horse ON TELE AND INCLUDED MITTER REPARTED PACE FOR THE AC- VERSION Design valid for use only with Milek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not hus designer. Racing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult Safety Information available from Truss Plate Institute, 281 N. Lee Street, Suite 312, Alexandria, VA 22314. 1-7470 rep. 10-'08 B TE URE.

WARNING - Very's design parameters and READ NOTES ON THIS AND INCLUDED MITER REPORTED PAGE MIT-7479 nm. 10-08 deponents on Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer. For thus designer, Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/PTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 281 N. Lee Street, Suite 312, Alexandria, VA 22314.

TRENCED AMitek Affiliate 818 Soundside Road Edenton, NC 27932

6

FL Cert. #7239

January 10,2011

WARMENT: Yanifu design parameters and READ ROTED ON THIS AND INCLUDED WITH REPARENCE PAGE ALL-PAGE ALL-PAG

Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 131 lb uplift at joint 2 and 131 lb uplift at

joint 4. 6) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss.

LOAD CASE(S) Standard

January 10,2011

- 10.08 PORE URR. Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Satety information** available from Truss Plate Institute, 281 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARGENEY - Yangin assign parameters and RIAD HOTES ON THIS AND INCLOOED BETER REPARANCE PAUS MIL-7479 new. 10-08 BBPORE USE
Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component.
Applicability of design parameters and proper incorporation of component is responsibility of building designer. For one trust designer, Bracing shown
is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the
erector. Additional permanent bracing of the overal structure is the responsibility of the building designer. For general guidance regarding
fabrication, quality control, storage, delivery, erection and bracing, consult
 ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component
Safety Information available from Truss Plate Institute, 281 N. Lee Street, Suite 312, Alexandria, VA 22314.

1) Regular: Lumber Increase=1.25, Plate Increase=1.25

Continued on page 2

FL Cert. #7239 January 10,2011

4 78 res. 10-08 SEFORE USA Design valid for use only with Mifek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design paramenters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing show is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fobrication, quality control, storage, deferey, erection and bracing, consult **ANSI/PTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 281 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	E5927701
RSNCONDE	FGT	COMMON	1	1	2592/701
SANTA FE TRUSS CO	OMPANY, INC., HIGH SF	PRINGS, FL			Job Reference (optional) Nov 19 2010 MiTek Industries, Inc. Mon Jan 10 13:49:44 2011 Page 2

ID:Ung5ibaoTgXOVLdAAyhd5izwlar-Ung5ibaoTgXOVLdAAyhd5iYCs7uLlankSXawoizwlar

LOAD CASE(S) Standard

×.

Uniform Loads (plf) Vert: 1-4=-60, 4-6=-60, 2-6=-20

Concentrated Loads (lb) Vert: 9=-1043(F) 8=-1046(F) 10=-2044(F) 7=-832(F) 12=-1063(F)

 wartened - Yangy design parameters and READ HOTES ON THIS AND INCLOUED MITER REPARENCE FACE NO. 10-09 SUPPO Design valid for use only with Milek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not trus designer. Bracing shown is for lateral support of Individual web members only. Additional temporary bracing to insue stability during construction is the responsibility of the building designer. For general guidance responsibility of the reactor. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/IPII Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate institute, 281 N. Lee Street, Suite 312. Alexandria, VA 22314. CE PAGE ME-7479 rev. 10-08 BEFORE USE.

TOP CHORD 1-2=-202/53, 2-3=-201/52

BOT CHORD 1-3=-20/140

NOTES

1) Unbalanced roof live loads have been considered for this design.

 Wind: ASCE 7-05; 110mph (3-second gust); TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise); Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 29 lb uplift at joint 1 and 29 lb uplift at joint 3.

7) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss.

LOAD CASE(S) Standard

January 10,2011

WARNING - Verify sizeign parameters and KBAD NOTES ON THUS AND INCLODED BITER REFERENCE PAGE ML-79-79 new. 10-08 BEFORE USE
 Design valid for use only with Millek connectors. This design is based only upon parameters shown, and is for an individual building component.
 Applicability of design parameters and proper incorporation of component is responsibility of building designer - not fruss designers. Reacing shown
 is for lateral support of individual web members only. Additional temporary bracing to hulding designer. For general guidance responsibility of the
 erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding
 fabrication, quality control, storage, delivery, erection and bracing, consult
 ANSI/IPI1 Quality Criteria, DSB-89 and BCSI Building Component
 Safety Information
 available from Truss Plate institute, 281 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.16	Vert(LL)	-0.06	2-4	>999	240	MT20	244/190
TCDL	10.0	Lumber Increase	1.25	BC	0.31	Vert(TL)	-0.14	2-4	>492	180		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code FBC2007/TF	PI2002	(Matr	ix)						Weight: 25 lb	FT = 15%

LUMBER TOP CHORD 2X4 SYP No.2 BOT CHORD 2X4 SYP No.2 BRACING TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing. MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS (lb/size) 2=327/0-3-8 (min. 0-1-8), 4=327/0-3-8 (min. 0-1-8) Max Horz 2=52(LC 5) Max Uplift2=-103(LC 5), 4=-103(LC 6)

FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/45, 2-3=-168/28, 3-4=-168/28, 4-5=0/45 BOT CHORD 2-4=0/91

NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-05; 110mph (3-second gust); TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise);

Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 103 lb uplift at joint 2 and 103 lb uplift at joint 4. 6) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss.

LOAD CASE(S) Standard

FL Cert. #7239

January 10,2011

LO HOYES ON THIS AND INCLU RE LEE WATHING . Venite deete (have seading 1.7 & 73 mm. 11. 118 3 Design valid for use only with MITek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fobrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 281 N. Lee Street, Suite 312, Alexandria, VA 22314.

128 0 REARD INCLOD MITRX R 17478 mm, 10-08 802002 LSR. Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not trust designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult **ANSI/TPI Quality Criteria**, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 281 N. Lee Street, Suite 312, Alexandria, VA 22314.

								1-0-7				
LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.13	Vert(LL)	-0.00	2	>999	240	MT20	244/190
TCDL	10.0	Lumber Increase	1.25	BC	0.01	Vert(TL)	-0.00	2	>999	180		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(TL)	-0.00	3	n/a	n/a		
BCDL	10.0	Code FBC2007/TI	PI2002	(Mat	ix)						Weight: 6 lb	FT = 15%

LUMBER

TOP CHORD 2 X 4 SYP No.2 BOT CHORD 2 X 4 SYP No.2 BRACING TOP CHORD BOT CHORD

1-0-7

Structural wood sheathing directly applied or 1-0-7 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS (lb/size) 2=203/0-3-8 (min. 0-1-8), 4=10/Mechanical, 3=-42/Mechanical Max Horz 2=62(LC 5) Max Uplift 2=-123(LC 5), 3=-42(LC 1) Max Grav 2=203(LC 1), 4=20(LC 2), 3=48(LC 5)

FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/44, 2-3=-55/25 BOT CHORD 2-4=0/0

NOTES

1) Wind: ASCE 7-05; 110mph (3-second gust); TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise); 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 123 lb uplift at joint 2 and 42 lb uplift at

joint 3. 6) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss.

LOAD CASE(S) Standard

January 10,2011

٨ 78 ren. 20-08 ORB USB Design volid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design paramenters and proper incorporation of component is responsibility of building designer - not trust designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding tabrication, quality control, storage, delivery, erection and bracing, consult Safety information available from Truss Plate Institute, 281 N. Lee Street, Suite 312, Alexandria, VA 22314.

19

							3-0-7 3-0-7					
LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	l/defi	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.16	Vert(LL)	-0.00	2-4	>999	240	MT20	244/190
TCDL	10.0	Lumber Increase	1.25	BC	0.08	Vert(TL)	-0.01	2-4	>999	180		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(TL)	-0.00	3	n/a	n/a		
BCDL	10.0	Code FBC2007/TI	PI2002	(Matr	ix)						Weight: 13 lb	FT = 15%

LUMBER

TOP CHORD 2X4 SYP No.2 BOT CHORD 2X4 SYP No.2 BRACING TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 3-0-7 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

Installation guide.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer

REACTIONS (lb/size) 3=53/Mechanical, 2=239/0-3-8 (min. 0-1-8), 4=28/Mechanical Max Horz 2=98(LC 5) Max Uplift 3=-23(LC 4), 2=-90(LC 5) Max Grav 3=53(LC 1), 2=239(LC 1), 4=57(LC 2)

FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/45, 2-3=-60/19

BOT CHORD 2-4=0/0

NOTES

1) Wind: ASCE 7-05; 110mph (3-second gust); TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise); Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 23 lb uplift at joint 3 and 90 lb uplift at joint 2.

6) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss.

LOAD CASE(S) Standard

January 10,2011

6 4 x

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS (Ib/size) 3=125/Mechanical, 2=307/0-3-8 (min. 0-1-8), 4=48/Mechanical Max Horz 2=135(LC 5) Max Uplift 3=-61(LC 5), 2=-83(LC 5) Max Grav 3=125(LC 1), 2=307(LC 1), 4=97(LC 2)

FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/45, 2-3=-83/50

BOT CHORD 2-4=0/0

NOTES

1) Wind: ASCE 7-05; 110mph (3-second gust); TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; enclosed; MWFRS (low-rise);

Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 61 lb uplift at joint 3 and 83 lb uplift at joint 2. 6) "Semi-rigid pitchbreaks with fixed heels" Member end fixity model was used in the analysis and design of this truss.

LOAD CASE(S) Standard

January 10,2011

ES ON IN AND IWCLOD abert o ST3218 4.72 10.VIR 160 RE USE Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design paramenters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for interal support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult **ANSI/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 281 N. Lee Street, Suite 312. Alexandria, VA 22314.

Ansir IFIT: National Design specification for Metal Plate Connected Wood Truss Construction. DSB-89: Design Standard for Bracing. BCSI: Building Component Safety Information, Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses.	ğ L	Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint	BEARING	Indicated by symbol shown and/or by text in the bracing section of the output. Use T, I or Eliminator bracing if indicated.	LATERAL BRACING LOCATION	to slots. Second dimension is the length parallel to slots.		PLATE SIZE	* Plate location details available in MiTek 20/20 software or upon request.	connector plates.	*This symbol indicates the	plates 0- ½* from outside edge of truss.	•For 4 x 2 orientation. locate		0- ¹ /16"	Dimensions are in ft-in-sixteenths. Apply plates to both sides of truss and fully embed teeth.	A 13¼ Center plate on joint unless x, y offsets are indicated.	Symbols PLATE LOCATION AND ORIENTATION
AMIek Engineering Reference Sheet: MII-7473 rev. 10-'08		© 2006 MiTek® All Rights Reserved		ESR-1311, ESR-1352, ER-5243, 9604B 9730, 95-43, 96-31, 9667A NER-487, NER-561 95110, 84-32, 96-67, ER-3907, 9432A	ICC-ES Reports:		CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.	AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.	JOINTS ARE GENERALLY NUMBERED /I FITTERED CLOCKWISE	5	BOTTOM CHORDS	TOP CH	W3-6	CI-2 C2-3 WEBS	1 2 3 TOP CHORDS	(Drawings not to scale)	6-4-8 dimensions shown in ft-in-sixteenths	Numbering System
is not proceed over over recomming process and the is not sufficient. 20. Design assumes manufacture in accordance with ANS/JTP11 Quality Criteria.	 Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use. Review all portions of this design (front, back, words and bicture) before use Reviewing pictures along 	 16. Do not cut or alter truss member or plate without prior approval of an engineer. 17. Install and load vertically unless indicated otherwise. 	15. Connections not shown are the responsibility of others.	 Top chords must be sheathed or purlins provided at spacing indicated on design. Bottom chords require lateral bracing at 10 ft. spacing, or less if no celling is installed unless otherwise nated 	 Lumber used shall be of the species and size, and in all respects, equal to or better than that specified. 	 Plate type, size, orientation and location dimensions indicated are minimum plating requirements. 	 Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection. 	Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.	Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.	Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.	 Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1. 	5. Cut members to bear tightly against each other.	Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.	Never exceed the design loading shown and never stack materials on inadequately braced trusses.	 Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative T, I, or Elminator bracing should be considered. 		Failure to Follow Could Cause Property Damage or Personal Injury	General Safety Notes

1 * .

Columbia County Building Permit Application Cloth 1903
For Office Use Only Application # 1101-38 Date Received 129 By Jlu Permit # 29204
Zoning Official BLK Date 08:02.11 Flood Zone X Land Use A-3 Zoning A-3
FEMA Map #A_ ElevationA_ MFEAux & RiverA Plans ExaminerC_ Date_2-2-11
Comments Fristing MH to be removed 45 days after CO is issued
la NOC _ EH + Deed or PA & Site Plan - State Road Info - Parent Parcel #
Dev Permit # In Floodway Letter of Auth. from Contractor F W Comp. letter
IMPACT FEES: EMS Fire Corr Road/Code D Gran AGE Vor Way
School= TOTAL @ Disparted VFID Insulativ Vignetin
Septic Permit No. 11-0014 Fax
Name Authorized Person Signing Permit Scott Rosenboon Phone 32-538-3877
Address 19802 WW 180+ AUE High Sprig, FC 32643
Owners Name CLAUDID & GRACIEF. CONDE Phone 386-454-8651
911 Address 245 SW WAFFLE GLN
Contractors Name Scott Rosewboom Phone 352-538-387
Address 19802 NW 190 AVE 14. jh Sprig, FC 32643
Fee Simple Owner Name & Address 20NDE, 245 SW WRIFFLE GLW
Bonding Co. Name & Address
Architect/Engineer Name & Address SCHAFER ENG 7104 NW 42nd LANE Guille
Mortgage Lenders Name & Address Complas RAWK 32606
Circle the correct power company - FL Power & Light - Clay Elec Progress Energy
Property ID Number 18-75-17-10021-009 Estimated Cost of Construction 225,000.00
Subdivision Name Lot Block Unit Phase
Driving Directions # EAST FROM FT WHITE ON 27 TO WAFFLE GLA
TURIN LEFT, 1ST 140015 ON LEFT (Sto BETREMUTTS?
Number of Existing Dwellings on Property
Construction of NEW HOMLE - SFO" - 25 FER CALLA Inter Total Acreage 6.45 Lot Size
Do you need a - <u>Culvert Permit</u> or <u>Culvert Waiver</u> or <u>Have an Existing Drive</u> Total Building Height
Actual Distance of Structure from Property Lines - Front 200 Side 200 Side 200 Rear 300
Number of Stories Heated Floor Area A 138 Total Floor Area Roof Pitch
Application is hereby made to obtain a permit to do work and installations on indicated. Leastify that no work on

Application is hereby made to obtain a permit to do work and installations as indicated. I certify that no work or installation has commenced prior to the issuance of a permit and that all work be performed to meet the standards of all laws regulating construction in this jurisdiction. <u>CODE:</u> Florida Building Code 2007 with 2009 Supplements and the 2008 National Electrical Code. Page 1 of 2 (Both Pages must be submitted together.) Revised 6-19-09

JW LEFT MERLIGE UN VM 2.8.11

Columbia County Building Permit Application

TIME LIMITATIONS OF APPLICATION : An application for a permit for any proposed work shall be deemed to have been abandoned 180 days after the date of filing, unless such application has been pursued in good faith or a permit has been issued; except that the building official is authorized to grant one or more extensions of time for additional periods not exceeding 90 days each. The extension shall be requested in writing and justifiable cause demonstrated.

TIME LIMITATIONS OF PERMITS: Every permit issued shall become invalid unless the work authorized by such permit is commenced within 180 days after its issuance, or if the work authorized by such permit is suspended or abandoned for a period of 180 days after the time work is commenced. A valid permit receives an approved inspection every 180 days. Work shall be considered not suspended, abandoned or invalid when the permit has received an approved inspection within 180 days of the previous approved inspection.

FLORIDA'S CONSTRUCTION LIEN LAW: Protect Yourself and Your Investment: According to Florida Law. those who work on your property or provide materials, and are not paid-in-full, have a right to enforce their claim for payment against your property. This claim is known as a construction lien. If your contractor fails to pay subcontractors or material suppliers or neglects to make other legally required payments, the people who are owed money may look to your property for payment, even if you have paid your contractor in full. This means if a lien is filed against your property, it could be sold against your will to pay for labor, materials or other services which your contractor may have failed to pay.

NOTICE OF RESPONSIBILITY TO BUILDING PERMITEE: YOU ARE HEREBY NOTIFIED as the recipient of a building permit from Columbia County, Florida, you will be held responsible to the County for any damage to sidewalks and/or road curbs and gutters, concrete features and structures, together with damage to drainage facilities, removal of sod, major changes to lot grades that result in ponding of water, or other damage to roadway and other public infrastructure facilities caused by you or your contractor, subcontractors, agents or representatives in the construction and/or improvement of the building and lot for which this permit is issued. No certificate of occupancy will be issued until all corrective work to these public infrastructures and facilities has been corrected.

WARNING TO OWNER: YOUR FAILURE TO RECORD A NOTICE OF COMMENCMENT MAY RESULT IN YOU PAYING TWICE FOR IMPROVEMENTS TO YOUR PROPERTY. A NOTICE OF COMMENCEMENT MUST BE RECORDED AND POSTED ON THE JOB SITE BEFORE THE FIRST INSPECTION. IF YOU INTEND TO OBTAIN FINANCING, CONSULT WITH YOUR LENDER OR ATTORNEY BEFORE RECORDING YOUR NOTICE OF COMMENCEMENT.

OWNERS CERTIFICATION: I CERTIFY THAT ALL THE FOREGOING INFORMATION IS ACCURATE AND THAT ALL WORK WILL BE DONE IN COMPLIANCE WITH ALL APPLICABLE LAWS REGULATING CONSTRUCTION AND ZONING.

NOTICE TO OWNER: There are some properties that may have deed restrictions recorded upon them. These restrictions may limit or prohibit the work applied for in your building permit. It may be to your advantage to check and see if your property is encumbered by any restrictions.

Owners Signature

MUST PERSONALLY APPEAR AND SIGN THE BUILDING PERMIT.

CONTRACTORS AFFIDAVIT: By my signature I understand and agree that I have informed and provided this written statement to the owner of all the above written responsibilities in Columbia County for obtaining this Building Permit including all application and permit time limitations.

Contractor's Signature (Permitee)

(Owners Must Sign All Applications Before Permit Issuance.)

Contractor's License Number CBC 12570 **Columbia County Competency Card Number** Affirmed under penalty of perjury to by the Contractor and subscribed before me this day of Personally known or Prøduced Identification SEAL: LAURIE HODSON COMMISSION # DD 805657 State of Florida Notary Signature (For the Contractor) EXPIRES: July 14, 2012 Bonded Thru Notary Public Underwi

Page 2 of 2 (Both Pages must be submitted together.)

Revised 6-19-09

This Document Prepared By and Return to: Darryl J. Tompkins, Esquire Darryl J. Tompkins, P.A. 14420 NW 151st Blvd. P.O. Box 519 Alachua, FL 32616

1 . .

281

Inst:2006030165 Date: 12/27/2006 Time: 11: 14 Doc Stamp-Deed : 630.00 DC,P.DeWitt Cason,Columbia County B:1105 P:2232

.....

Warranty Deed

Parcel ID Number: R10021-009

This Indenture, Made this 20 day of December , 2006 A.D., Between William B. Erwin and Beverly M. Erwin, husband and wife

, grantors, and of the County of Tarrebonne Sue of Louisiana Claudio Conde and Gracie F. Conde, husband and wife

whose address is: 245 SW Waffle Glen, Fort White, FL 32038

of the County of Columbia State of Plorida , grantees. ,

Witnesseth that the GRANTORS, for and in consideration of the sum of

and other good and valuable consideration to GRANTORS in hand paid by GRANTEES, the receipt whereof is hereby acknowledged, have granted, bargained and sold to the said GRANTEES and GRANTEES' hairs, successors and assigns forever, the following described land, situate, lying and being in the County of Columbia Saw of Florida to wit: See Exhibit "A" attached hereto.

SUBJECT TO THE FOLLOWING:

A. Zoning restrictions, prohibitions and other requirements imposed by governmental authority; B. Restrictions and matters appearing on the plat and/or common to

the subdivision; C. Taxes for the year 2007 and subsequent years.

and the grantors do hereby fully warrant the title to anid land, and will defend the same against lawful claims of all persons whomsoever. In Witness Whereof, the grantors have hereunto set their hands and scale the day and year fant above written.

Signed, scaled and delivered i	n our presence:	1-AL	:	
Printed Name: Sur Witness	drat Howe		Torin Cardens Drive, Houma, LA 7036	(Seal) 64
Printed Name: Ini Witness Printed Name: Lo. Witness Cindy Chille Printed Name: Cind Witness	Mar S-Perin Mar Milizan Way dy Ga Howay	Beverly A. E.	M. E.W.W. Gardens Drive, Houma, LA 7036	(Seal) 54
STATE OF Florida COUNTY OF Alachua The foregoing instrument was a William B. Erwin,	eknowledged before me this O	and day of D	ecember , 2	2006 ву
1	bas produced his Florida	Printed Name Notary Public My Commission Expire:	Sandrate HO	2
IN06-233	Later Generated by © Display Systems.	int., 2006 (663) 763-5555 Form FLWD-	1	

1 1		555		11-0014
	TATE OF FLORIDA EPARTMENT OF HEALTH N-SITE SEWAGE DISPOSA PPLICATION FOR CONSTRU			PERMIT NO. 989874 DATE PAID: 11/11 FEE PAID: 205.00 RECEIPT #: 253 796
APPLICATION FOR: [X] New System [] Repair	[] Existing Sys [] Abandonment	stem [] []	Holding Tank Temporary	[] Innovative []
AGENT: SCOTT	Rosenboom		TE	LEPHONE :352-538-3817
MAILING ADDRESS:	19802 100 1907	AVE HI	ch Sprig.	F1 32643
TO BE COMPLETED BY A BY A PERSON LICENSE	APPLICANT OR APPLICAN D PURSUANT TO 489.105	T'S AUTHORIZE (3)(m) OR 489	AGENT. SYST 552, FLORIDA	EMS MUST BE CONSTRUCTED STATUTES.
= = = = = = = = = = = = = = = = = = =	= = = = = = = = = = : N			
LOT: BLOCK:	: SUBDIVISION:			PLATTED :
PROPERTY ID #: 18	-75-17-10021-009	ZONING:_	AG1/M C	DR EQUIVALENT: (Y/N)
]<=2000GPD []>2000GPD
IS SEWER AVAILABLE A	S PER 381.0065, FS?	[¥ / 🕅]	DISTA	NCE TO SEWER:FT
PROPERTY ADDRESS:	45 SW WAF	re clen) Ft whit	TE 32038
DIRECTIONS TO PROPER	TY: FRM FT W	HITE GO	EAST ON	27 10
WAFFLE GLN	TURN LEFT	IT'S F	RST PCA	CE OL LEFT
BUILDING INFORMATION		DENTIAL	[] COMMERCI	IAL
BUILDING INFORMATION Unit Type of No Establishment	n Ng. of	Building Co		tutional System Design
Unit Type of	BR Bedrooms	Building Co	mmercial/Instible 1, Chapter	tutional System Design
Unit Type of No Establishment	BR Bedrooms	Building Co Area Sq Ft Ta 	mmercial/Institute ble 1, Chapter	tutional System Design 64E-6, FAC

[]	Floor/Equipment]	Other	(Specify)
SI	GNA	TURE: Catte	Rem	loc			

4

DATE: 1/10

DH 4015, 10/97 – Page 1 (Previous editions may be used) Stock Number: 5744-001-4015-1

Page 1 of 3

Scale: Each bl		FION FOR ONSIT	DEPARTMENT OF HE E SEWAGE DISPOSAL SY PART II - SITE PLAN 50 feet.	STEM CONSTRUCT		
Notes:					8	
Site Plan subm Plan Approved By	× #-Roa		Signature Not Approved PPROVED BY THE CO	DUNTY HEALTH D	Date County Heal	Title /25/11 Ith Departme

SUBCONTRACTOR VERIFICATION FORM

APPLICATION NUMBER _

1101-38

CONTRACTOR SCUT KOSENBOOM

PHONE 352.

THIS FORM MUST BE SUBMITTED PRIOR TO THE ISSUANCE OF A PERMIT

In Columbia County one permit will cover all trades doing work at the permitted site. It is <u>REQUIRED</u> that we have records of the subcontractors who actually did the trade specific work under the permit. Per Florida Statute 440 and Ordinance 89-6, a contractor shall require all subcontractors to provide evidence of workers' compensation or exemption, general liability insurance and a valid Certificate of Competency license in Columbia County.

Any changes, the permitted contractor is responsible for the corrected form being submitted to this office prior to the start of that subcontractor beginning any work. Violations will result in stop work orders and/or fines.

	ELECTRICAL	Print Nam	· DOWALD	DAVIS	Signature_	
V	380	License #:	EC ano.	2306		Phone #: 386-623-0499
	MECHANICAL/	Print Nam	e William Ho	igle	Signature_	Will Lego
6	A/C 460	License #:	CACOSTB 12	4		Phone #: 352-332-1508
	PLUMBING/			VIS	Signature_	
-	GAS 441	License #:	CFC OS	7.304	\mathcal{O}	Phone #: 386-633-3487
	ROOFING	Print Nam	1.4	Kee	Signature_	Tur Maker
V	373	License #:	CCC 580	50		Phone #: 352-339-4135
	SHEET METAL	Print Nam			Signature	
		License #:				Phone #:
	FIRE SYSTEM/	Print Nam	e		Signature	
	SPRINKLER	License#:	2			Phone #:
	SOLAR	Print Nam	e		Signature	
	ŀ	License #:				Phone #:
Ì	Specialty Lic	ense	License Number	Sub-Contractors Pr	inted Name	e Sub-Contractors Signature
	MASON		-	1		<u>^</u>
-	CONCRETE FIN	ISHER	CBC 125 2076	Scott Rosenlon		Battakent
-	FRAMING		00033	MICHAEL LH		- Mary 2 Hadd
	INSULATION		000 - 10	SEE attiched .	12	
	STUCCO					
Ļ	DRYWALL					
-	PLASTER		CBC 12570006	Scott Koserba-	-	Scitt Krester
	CABINET INSTA	LLER	CSE 1250000	Scotte Koenboon	-	Brit Koenter
-	PAINTING		CPU 12579006	Satt Kountoon		Catt Kount-
	ACOUSTICAL CI	EILING				
	GLASS					
-	CERAMIC TILE		000997	MIKE WRIGH	4	Mile, West
-	FLOOR COVERI	NG	000 998	MIKE WRIBH		in In In
			00778	Trince WEIDI	41	Inn Warsh
-	ALUM/VINYL SI	DING	CBC029025-	DAVID MEYE		Dain & Mare
-	ALUM/VINYL SI GARAGE DOOR	DING	CBC029025-	1	th	Dain & Mare

F. S. 440.103 Building permits; identification of minimum premium policy.--Every employer shall, as a condition to applying for and receiving a building permit, show proof and certify to the permit issuer that it has secured compensation for its employees under this chapter as provided in ss. 440.10 and 440.38, and shall be presented each time the employer applies for a building permit.

Record and Return to: T. Moody Integrity Title & Escrow 4731 NW 53rd Avenue, Suite 2 Gainesville, FL 32653 File # IT_1012.18

Permit No.

Tax Folio No._

201112000008 Date:1/3/2011 Time:10:47 AM ____DC,P.DeWitt Cason, Columbia County Page 1 of 4 B:1207 P:1536

. . ist sie desseert.

NOTICE OF COMMENCEMENT

State of FLORIDA County of COLUMBIA

THE UNDERSIGNED hereby gives notice that improvement will be made to certain real property, and in accordance with Chapter 713, Florida Statutes, the following information is provided in this Notice of Commencement.

1. Description of property: [legal description of the property and street address if available]

SEE EXHIBIT "A" ATTACHED HERETO AND INCORPORATED HEREIN FOR ALL PURPOSES.

(more commonly known as 245 SW Waffle Glen Fort White, FL 32038)

2. General description of improvement:

3. Owner information

a. Name and address

CLAUDIO CONDE and GRACIE F. CONDE 245 SW Waffle Glen Fort White, FL 32038

b. Interest in property

c. Name and address of fee simple titleholder [if other than owner]

4.

a. Contractor: [name and address]

ROSENBOOM, INC. 18266 US 441 High Springs, FL 32643

b. Contractor's phone number:

5. Surety

a. Name and address

b. Phone number

c. Amount of bond \$ _____
 6.

a. Lender [name and address]

COMPASS BANK P. O. Box 10687 Birmingham, AL 35202

b. Lender's phone number:

7.

a. Persons within the State of Florida designated by Owner upon whom notices or other documents may be served as provided by Section 713.13(1)(a)(7)., Florida Statutes:

and address]

b. Phone number

8.

a. In addition to himself, Owner designates Shane White of Compass Bank, 401 West Valley Avenue, Homewood, AL 35209 Mail Code ALBIHWGEX to receive a copy of the Lienor's Notice as provided in Section 713.13(1)(b), Florida Statutes.

b. Phone number of person or entity designated by owner: 205-524-5721

9. Expiration of date of Notice of Commencement: (the expiration date is 1 year from the date of recording unless a different date is specified)

WARNING TO OWNER: ANY PAYMENTS MADE BY THE OWNER AFTER THE EXPIRATION OF THE NOTICE OF COMMENCEMENT ARE CONSIDERED IMPROPER PAYMENTS UNDER CHAPTER 713, PART I, SECTION 713.13, FLORIDA STATUTES, AND CAN RESULT IN YOUR PAYING TWICE FOR IMPROVEMENTS TO YOUR PROPERTY. A NOTICE OF COMMENCEMENT MUST BE RECORDED AND POSTED ON THE JOB SITE BEFORE THE FIRST INSPECTION. IF YOU INTEND TO OBTAIN FINANCING, CONSULT WITH YOUR LENDER OR AN ATTORNEY BEFORE COMMENCING WORK OR RECORDING YOUR NOTICE OF COMMENCEMENT.

a tat salata di terena

Iname

(Signature of Owner or Owner's Authorized Officer/Director/Partner/Manager)

_ day of Dec, 2016 The foregoing instrument was acknowledged before me this <u>D</u> day of by <u>Claudis</u> Conde, and Gracie F. Conde (name of person) as (year), (type of authority, e.g. officer, trustee, attorney in fact) for Owners (name of party on behalf of whom instrument was executed), NOTARY PUBLIC-STATE OF FLUKUMA Terri Moody Commission #DD674033 (Signature of Notary Public) State of Florida) Expires: JUNE 02, 201.) D THRU ATLANTIC BONDING CO., INC BOND (Print, Type, or Stamp Commissioned Name of Notary Public) Personally Known Oniver License OR Produced Identification_ Guna Type of Identification Produced On Verification pursuant to Section 92.525, Florida Statutes.

Under penalties of perjury, I declare that I have read the foregoing and that the facts stated in it are true to the best of my knowledge and belief.

ed

(Signature of Natural Person Signing Above)

F.

EXHIBIT "A"

Part of Section 18, Township 7 South, Range 17 East, Columbia County, Florida, and being part of those lands described in Official Records Book 741, Page 898 of the Official Records of Columbia County, Florida, more particularly described as follows:

Commence at the Southeast corner of Section 18, Township 7 South, Range 17 East, Columbia County, Florida, and thence South 88°00'29" West, along the South line of said Section 18, a distance of 2641.60 feet to a concrete monument marking the Southeast 1/4 of the Southwest 1/4 of said Section 18; thence North 01°30'02" West, along the East line of said Southeast 1/4 of the Southwest 1/4, a distance of 210.00 feet to a concrete monument marking the Northeast corner of the South 210.00 feet of said Southeast 1/4 of the Southwest 1/4; thence South 88°00'29" West, along the North line of said South 210.00 feet, a distance of 166.33 feet to the Point of Beginning; thence North 45°01'45" West, along the Easterly line of those lands described in Official Records Book 741, Page 898, a distance of 660.72 feet; thence South 54°15'42" West, 790.37 feet; thence South 45°01'45" East, along the Northeasterly right of way line of State Road No. 20 (A.K.A. US Highway 27) to the aforementioned North line of the South 210.00 feet of the Southeast 1/4 of the Southwest 1/4; thence North 88°00'29" East, along said North line, 1067.16 feet to the Point of Beginning.

Together with and subject to an easement for ingress and egress over and across the South 40.00 feet of the above described lands.

Parcel ID#R10021-009

Ft.)

COLUMBIA COUNTY BUILDING DEPARTMENT RESIDENTIAL CHECK LIST REQUIRMENTS

6-25-09

MINIMUM PLAN REQUIREMENTS FOR THE FLORIDA BUILDING CODE RESIDENTIAL 2007 EFFECTIVE 1 MARCH 2009 & 2009

SUPPLEMENTS EFFECTIVE 1 MARCH 2009, ONE (1) AND TWO (2) FAMILY DWELLINGS with Supplements and Revision, OF THE NATIONAL ELECTRICAL 2008

ALL REQUIREMENTS ARE SUBJECT TO CHANGE

ALL BUILDING PLANS MUST INDICATE COMPLIANCE with the Current 2007 FLORIDA BUILDING CODES RESIDENTIAL EFFECTIVE 1 MARCH 2009 & 2009 SUPPLEMENTS EFFECTIVE 1 MARCH 2009. ALL PLANS OR DRAWINGS SHALL PROVIDE CALCULATIONS AND DETAILS THAT HAVE THE SEAL AND SIGNATURE OF A CERTIFIED ARCHITECT OR ENGINEER REGISTERED IN THE STATE OF FLORIDA, OR ALTERNATE METHODOLOGIES, APPROVED BY THE STATE OF FLORIDA BUILDING COMMISSION FOR ONE-AND-TWO FAMILY DWELLINGS.

FOR DESIGN PURPOSES THE FOLLOWING BASIC WIND SPEEDS ARE PER FIGURE R301.2(4) of the FLORIDA BUILDING CODES RESIDENTIAL (Florida Wind speed map) SHALL BE USED.

WIND SPEED LINE SHALL BE DEFINED AS FOLLOWS: THE CENTERLINE OF INTERSTATE 75.

ALL BUILDINGS CONSTRUCTED EAST OF SAID LINE SHALL BE ------ 100 MPH ALL BUILDINGS CONSTRUCTED WEST OF SAID LINE SHALL BE ------- 110 MPH NO AREA IN COLUMBIA COUNTY IS IN A WIND BORNE DEBRIS REGION

	GENERAL REQUIREMENTS: APPLICANT – PLEASE CHECK ALL APPLICABLE BOXES BEFORE SUBMITTAL		Each	Items to Include- Each Box shall be Circled as Applicable		
			Yes /	No	N/A	
1	Two (2) complete sets of plans contai	ning the following:		1	T	
2	All drawings must be clear, concise, c	lrawn to scale, details that are not used shall be marked void	V			
3	Condition space (Sq.	Total (Sq. Ft.) under roof	mm	пшш	mm	

Designers name and signature shall be on all documents and a licensed architect or engineer, signature and official embossed seal shall be affixed to the plans and documents as per the FLORIDA BUILDING CODES RESIDENTIAL R101.2.1

	te rian information including:	/	
4	Dimensions of lot or parcel of land	/	
5	Dimensions of all building set backs		
6	Location of all other structures (include square footage of structures) on parcel, existing or proposed well and septic tank and all utility easements.	V	7
7	Provide a full legal description of property.	V	

45	Show required amount of ventilation opening for under-floor spaces		V
46	Show required covering of ventilation opening		V
47	Show the required access opening to access to under-floor spaces		V
48	Show the sub-floor structural panel sheathing type, thickness and fastener schedule on the edges & inter of the areas structural panel sheathing		V
49	Show Draftstopping, Fire caulking and Fire blocking		V
50	Show fireproofing requirements for garages attached to living spaces, per FBCR section 309	V	
51	Provide live and dead load rating of floor framing systems (psf).		1

FBCR CHAPTER 6 WOOD WALL FRAMING CONSTRUCTION

	GENERAL REQUIREMENTS: APPLICANT – PLEASE CHECK ALL APPLICABLE BOXES BEFORE SUBMITTAL		clude- hall be as ible
		YES/NO) N/A
52	Stud type, grade, size, wall height and oc spacing for all load bearing or shear walls	1	
53	Fastener schedule for structural members per table FBCR 602.3 are to be shown	V	
54	Show Wood structural panel's sheathing attachment to studs, joist, trusses, rafters and structural members, showing fastener schedule attachment on the edges & intermediate of the areas structural panel sheathing		
55	Show all required connectors with a max uplift rating and required number of connectors and oc spacing for continuous connection of structural walls to foundation and roof trusses or rafter systems	\checkmark	
56	Show sizes, type, span lengths and required number of support jack studs, king studs for shear wall opening and girder or header per FBCR Table 502.5 (1) Header Studie	\checkmark	
57	Indicate where pressure treated wood will be placed	1	
58 59	Show all wall structural panel sheathing, grade, thickness and show fastener schedule for structural panel sheathing edges & intermediate areas A detail showing gable truss bracing, wall balloon framing details or/ and wall hinge bracing detail	/	

FBCR : ROOF SYSTEMS:

		1.	
60	Truss design drawing shall meet section FBCR 802.10 Wood trusses	VII	1
61	Include a layout and truss details, signed and sealed by Florida Professional Engineer	VI	
62	Show types of connector's assemblies' and resistance uplift rating for all trusses and rafters		
63	Show gable ends with rake beams showing reinforcement or gable truss and wall bracing details	1//	
64	Provide dead load rating of trusses	V	

FBCR 802:Conventional Roof Framing Layout

	Rafter and ridge beams sizes, span, species and spacing	
66	Connectors to wall assemblies' include assemblies' resistance to uplift rating	
67	Valley framing and support details	
68	Provide dead load rating of rafter system	

FBCR Table 602,3(2) & FBCR 803 ROOF SHEATHING

	Include all materials which will make up the roof decking, identification of structural panel sheathing, grade, thickness	
70	Show fastener Size and schedule for structural panel sheathing on the edges & intermediate areas	

FBCR ROOF ASSEMBLIES FRC Chapter 9

71	Include all materials which will make up the roof assembles covering	TVX	TIX
72	Submit Florida Product Approval numbers for each component of the roof assembles covering		Alt -

FBCR Chapter 11 Energy Efficiency Code for residential building

Residential construction shall comply with this code by using the following compliance methods in the FBCR chapter11 Residential buildings compliance methods. Two of the required forms are to be submitted, N1100.1.1.1 As an alternative to the computerized Compliance Method A, the Alternate Residential Point System Method hand calculation, Alternate Form 600A, may be used. All requirements specific to this calculation are located in Sub appendix C to Appendix G. Buildings complying by this alternative shall meet all mandatory requirements of this chapter. Computerized versions of the Alternate Residential Point System Method shall not be acceptable for code compliance.

	GENERAL REQUIREMENTS: APPLICANT – PLEASE CHECK ALL APPLICABLE BOXES BEFORE SUBMITTAL				
		YES/	NO	N/A	
73	Show the insulation R value for the following areas of the structure	V/			
74	Attic space				
75	Exterior wall cavity			/	
76	Crawl space			\checkmark	

HVAC information

The second second second			/		
77	Submit two copies of a Manual J sizing equipment or equivalent con	nputation study		1	1
78	Exhaust fans shown in bathrooms Mechanical exhaust capacity of	50 cfm intermittent or			
	20 cfm continuous required		×/		
79	Show clothes dryer route and total run of exhaust duct	10	V		

Plumbing Fixture layout shown

			/	
80	All fixtures waste water lines shall be shown on the foundation plan	V	1	
81	Show the location of water heater	V	-	

Private Potable Water

						/	
82	Pump motor horse power				100	1	
83	Reservoir pressure tank gallon capacity	Dis	32MAC	175	120gal	1//	
84	Rating of cycle stop valve if used		0	1	JONE		1

Electrical layout shown including

	the army out shown meruding		/	
85	Show Switches, receptacles outlets, lighting fixtures and Ceiling fans		T	
86	Show all 120-volt, single phase, 15- and 20-ampere branch circuits outlets required to be protected by Ground-Fault Circuit Interrupter (GFCI) Article 210.8 A	VI	K	
87	Show the location of smoke detectors & Carbon monoxide detectors	VI		
88	Show service panel, sub-panel, location(s) and total ampere ratings	\checkmark		
89	On the electrical plans identify the electrical service overcurrent protection device for the main electrical service. This device shall be installed on the exterior of structures to serve as a disconnecting means for the utility company electrical service. Conductors used from the exterior disconnecting means to a panel or sub panel shall have four-wire conductors, of which one conductor shall be used as an equipment ground. Indicate if the utility company service entrance cable will be of the overhead or underground type. For structures with foundation which establish new electrical utility companies service connection a Concrete Encased Electrode will be required within the foundation to serve as an Grounding electrode system. Per the National Electrical Code article 250.52.3			
90	Appliances and HVAC equipment and disconnects			
91	Show all 120-volt, single phase, 15- and 20-ampere branch circuits supplying outlets installed in dwelling unit family rooms, dining rooms, living rooms, parlors, libraries, dens, bedrooms, sunrooms, recreation rooms, closets, hallways, or similar rooms or areas shall be protected by a listed Combination arc-fault circuit interrupter , Protection device.			

Disclosure Statement for Owner Builders If you as the applicant will be acting as an owner/builder under section 489.103(7) of the Florida Statutes, submit the required owner builder disclosure statement form.

Notice Of Commencement

A notice of commencement form **recorded** in the Columbia County Clerk Office is required to be filed with the building department Before Any Inspections can be preformed.

GENERAL REQUIREMENTS:	Items to Include- Each Box shall be
APPLICANT – PLEASE CHECK ALL APPLICABLE BOXES BEFORE SUBMITTAL	Circled as Applicable

THE FOLLOWING ITEMS MUST BE SUBMITTED WITH BUILDING PLANS

		YES	NO	N/A
92	Building Permit Application A current Building Permit Application form is to be completed and submitted for all residential projects			
93	Parcel Number The parcel number (Tax ID number) from the Property Appraiser (386) 758-1084 is required. A copy of property deed is also requested			
94	Environmental Health Permit or Sewer Tap Approval A copy of a approved Columbia County Environmental Health (386) 758-1058			
95	City of Lake City A permit showing an approved waste water sewer tap			1
96	Toilet facilities shall be provided for all construction sites			
97	Town of Fort White (386) 497-2321 If the parcel in the application for building permit is within the Corporate city limits of Fort White an approval land use development letter issued by the Town of Fort is required to be submitted with the application for a building permit.			

98	Flood Information: All projects within the Floodway of the Suwannee or Santa Fe Rivers shall require permitting through the Suwannee River Water Management District, before submitting a application to this office. Any project located within a flood zone where the base flood elevation (100 year flood) has been established shall meet the requirements of Section 8.5.2 of the Columbia County Land Development Regulations. Any project located within a flood zone where the base flood elevation has not been established (Zone A) shall meet the requirements of Section 8.5.3 of the Columbia County Land Development Regulations	V
99	CERTIFIED FINISHED FLOOR ELEVATIONS will be required on any project where the base flood elevation (100 year flood) has been established	
100		
101	Driveway Connection: If the property does not have an existing access to a public road, then an application for a culvert permit (\$25.00) must be made. If the applicant feels that a culvert is not needed, they may apply for a culvert waiver (\$50.00). All culvert waivers are sent to the Columbia County Public Works Department for approval or denial.	\checkmark
102	911 Address: If the project is located in an area where a 911 address has not been issued, then application for a 911address must be applied for and received through the Columbia County Emergency Management Office of 911 Addressing Department (386) 758-1125	

Section R101.2.1 of the Florida Building Code Residential:

The provisions of Chapter 1, Florida Building Code, Building shall govern the administration and enforcement of the Florida Building Code, Residential.

Section 105 of the Florida Building Code defines the:

Time limitation of application.

An application for a permit for any proposed work shall be deemed to have been abandoned 180 days after the date of filing, unless such application has been pursued in good faith or a permit has been issued; except that the building official is authorized to grant one or more extensions of time for additional periods not exceeding 90 days each. The extension shall be requested in writing and justifiable cause demonstrated.

Single-family residential dwelling.

Section 105.3.4 A building permit for a single-family residential dwelling must be issued within 30 working days of application therefor unless unusual circumstances require a longer time for processing the application or unless the permit application fails to satisfy the Florida Building Code or the enforcing agency's laws or ordinances.

Permit intent.

Section 105.4.1: A permit issued shall be constructed to be a license to proceed with the work and not as authority to violate, cancel, alter or set aside any of the provisions of the technical codes, nor shall issuance of a permit prevent the building official from thereafter requiring a correction of errors in plans, construction or violations of this code. Every permit issued shall become invalid unless the work authorized by such permit is commenced within six months after its issuance, or if the work authorized by such permit is suspended or abandoned for a period of six months after the time the work is commenced.

JUL-09-2005 04:08 From:

To:3867582160

FROM : ROSENBOOM INC.

PHONE NO. : 904 454 2894

Jan. 31 2011 12:11PM P1

101-38 SUBCONTRACTOR VERIFICATION FORM

CONTRACTOR

352-538.3877 PHONE

APPLICATION NUMBER

THIS FORM MUST BE SUBMITTED PRIOR TO THE ISSUANCE OF A PERMIT

In Columbia County one permit will cover all trades doing work at the permitted site. It is <u>REQUIRED</u> that we have records of the subcontractors who actually did the trade specific work under the permit. Per Florida Statute 440 and Ordinance 89-6, a contractor shall require all subcontractors to provide evidence of workers' compensation or exemption, general liability insurance and a valid Certificate of Competency license in Columbia County.

Any changes, the permitted contractor is responsible for the corrected form being submitted to this office prior to the start of that subcontractor beginning any work. Violations will result in stop work orders and/or fines.

HECTRICAL	Print Name			Signature					
	License #:			Phone #:SignaturePhone #:					
MECHANICAL/	Print Name								
A/C	License #:								
PLUMBING/	Print Name	L		Signature					
ças	License #:			Phor	ne#:				
ROOFING	Print Name	·		Signature					
	License #:			Phor	ne#:				
SHEET METAL	Print Name	<u> </u>		Signature					
	License #:			Pho	ne #:				
FIRE SYSTEM/	Print Name	C	47 <u>20</u>	Signature					
SPRINKLER	Liçense#:			Pho	ne #:				
SOLAR	Print Name			Signature					
1.00	License #:			Phone #;					
Spi ciarry	L conse	Liceose Number	Sub-Conteactors Pr	inted Name	Sub-Contractory Signature				
MASON	and the second								
CONCRETE FI	NISHER								
FRAMING			A						
INSULATION	1694	CGCISI2179	Paul Wilson 1 Grale Insu	tash/	-tal Welson Itak				
STUCCO	1		- Gale Insu	lation	1				
DRYWALL									
PLASTER		·	• • • • • • • • • • • • • • • • • • •						
CABINET INST	TALLER		-		· · · · · · · · · · · · · · · · · · ·				
PAINTING	distant an est			the second s					
ACOUSTICAL GLASS	CEILING		······································						
CERAMIC TIL									
FLOOR COVE									
and the state of t			········						
GARAGE DOG	ALUM/VINYL SIDING								
	2R	1 1							

F. S. 440.103 Building permits; identification of minimum premium policy.--Every employer shall, as a condition to applying for and receiving a building permit, show proof and certify to the permit issuer that it has secured compensation for its employees under this chapter as provided in ss. 440.10 and 440.38, and shall be presented each time the employer applies for a building permit.

ID:

Reference - Paul Hash -

JAN-31-2011 09:56 From: 904 454 2894

2894

Pase:001 R=96%

2:03:18 PM 2/2/2011

Data Contained In Search Results Is Current As Of 02/02/2011 02:01 PM.

Search Results

Please see our <u>glossary of terms</u> for an explanation of the license status shown in these search results.

For additional information, including any complaints or discipline, click on the name.

License Type	Name	Name Type	License Number/ Rank	Status/Expires	
Professional Engineer	SCHAFER, BRUCE M	Primary	48984 Prof Engineer	Current, Active 02/28/2011	

Main Address*: 7104 NW 42ND LANE GAINESVILLE, FL 326060000

Back New Search

* denotes

Main Address - This address is the Primary Address on file.

Mailing Address - This is the address where the mail associated with a particular license will be sent (if different from the Main or License Location addresses).

License Location Address - This is the address where the place of business is physically located.

Contact Us :: 1940 North Monroe Street, Tallahassee FL 32399 :: Call.Center@dbpr.state.fl.us :: Customer Contact Center: 850.487.1395

The State of Florida is an AA/EEO employer. Copyright 2007-2010 State of Florida. Privacy Statement

Under Florida law, e-mail addresses are public records. If you do not want your e-mail address released in response to a public-records request, do not send electronic mail to this entity. Instead, contact the office by phone or by traditional mail. If you have any questions regarding CBPR's ADA web accessibility, please contact our Web Master at <u>webmaster@dbpr.state.fl.us</u>.

https://www.myfloridalicense.com/wl11.asp?mode=2&search=LicNbr&SID=&brd=&typ= 2/2/2011

POST IN A CONSPICUOUS PLACE (Business Places Only)	Date: 07/29/2011 Rever Date: Dilding Inspector	Owner of Building CLAUDIO & GRACIEF CONDE Total: 0.00 Location: 245 SW WAFFLE GLN, FORT WHITE, FL 32038 Total: 0.00	Use Classification SFD, UTILITY Fire: 0.00 Permit Holder SCOTT ROSENBOOM Waste:	This Certificate of Occupancy is issued to the below named permit holder for the building and premises at the below named location, and certifies that the work has been completed in accordance with the Columbia County Building Code. Parcel Number 18-7S-17-10021-009 Building permit No. 000029204	COLUMBIA COUNTY, FLORIDA	
	ctor		ALANDA Y	مىر مىر مى مى		

13618 NW 270th Ave. Alachua, FL 32615 (386) 418-4387

29204

CERTIFICATE OF COMPLIANCE FOR TERMITE PROTECTION

(As required by Florida Building Code (FBC) 1816.1.7)

Address of treatment or lot/block of treatment: <u>245 SW Waffle Glen High Springs, FL 32643</u> Describe method of termite prevention treatment: <u>Trench & Treat around structure</u>

The building has received a complete treatment for the prevention of subterranean termites. Treatment is in accordance with rules and laws, established by the Florida Department of Agriculture and Consumer Services.

Authorized Signature

Engineering Consultants in Geotechnical • Environmental • Construction Materials Testing

							292	04
FIEL	D DEN	SITY V	VORKS	SHEET				
CLIENT ROSEN boom		1			DATE	2/28	11.	
	3							
PROJECT NAME _ CONSE RES		and the second second			PERMI	T NO. 29	1204	
EARTH CONTRACTOR 245 50 D			1 1 1	Prostor	TESTE	D BY	21	
COMPACTION REQUIREMENT (%)	- T		odified P	roctor	- and the second		FIELD	CONTACT
TOTAL ON-SITE TIME		1999 (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1999) (1.0		MILES	FROM OF	FICE	
Limerock Subgrade Pipe Backfill	Building	Pad 🔟	Building	g Footing		ner		
		OCTOR		Dell'		WET	DRY	
TEST LOCATION	DENS.	OMC	TEST DEPTH	PROBE DEPTH	% MOIST.	DENSITY (PCF)	DENSITY (PCF)	% COMP.
5. 5i Ji of 72)	107,8	106	Ch	1211	4.9	189.3	103.1	95.6
	1	1	1					
n. side x pod	V	W	1	V	7.0	1126	105.2	97.6
in the second second			1.1.1					
The second s	1		- 2-				1042	
n. cta	12 5 1				64	1109	1042	967
).								
				2-		1	Ed +	
					l	2		
						0.47		
					51.1			The second
REMARKS						mini requ ** Rete dens obta	sity failed t mum proje irement est indicate sity require ined. nt is aware	ct s minimum ment was

unsatisfactory test results.

10

1016 S.E. 3RD AVENUE • OCALA, FLORIDA 34471 • (352) 694-7711