

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

RE: 2708484 - WOODMAN PARK - DAWES RES.

MiTek USA, Inc.

6904 Parke East Blvd. Tampa, FL 33610-4115

Site Information:

Customer Info: Woodman Park Project Name: Dawes Res. Model: Custom

Lot/Block: N/A

Subdivision: N/A

Address: TBD Squirrel Court, N/A

City: Columbia Cty

State: FL

Name Address and License # of Structural Engineer of Record, If there is one, for the building,

Name:

License #:

Address:

City:

State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: FBC2020/TPI2014

Design Program: MiTek 20/20 8.4

Wind Code: N/A

Wind Speed: 130 mph Floor Load: N/A psf

Roof Load: 37.0 psf

This package includes 11 individual, Truss Design Drawings and 0 Additional Drawings. With my seal affixed to this sheet, I hereby certify that I am the Truss Design Engineer and this index sheet

conforms to 61G15-31.003, section 5 of the Florida Board of Professional Engineers Rules.

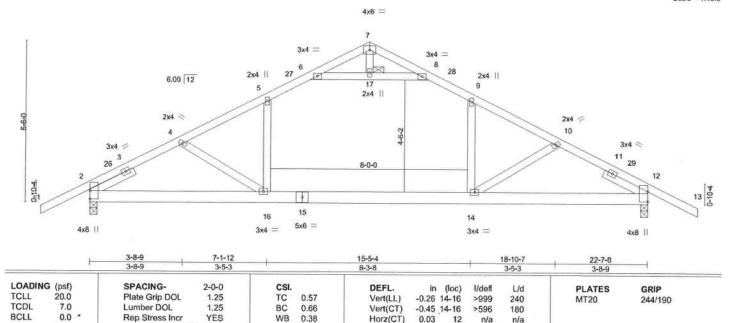
		Date
23190288 23190289 23190290 23190291 23190292 23190293 23190294 23190295 23190296 23190298	T01 T01G T02 T02G T03G T03G T04 T05 T06 T06	3/12/21 3/12/21 3/12/21 3/12/21 3/12/21 3/12/21 3/12/21 3/12/21 3/12/21 3/12/21
֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜	23190288 23190289 23190290 23190291 23190292 23190293 23190294 23190295 23190296	23190289 T01G 23190290 T02 23190291 T02G 23190292 T03 23190293 T03G 23190294 T04 23190295 T05 23190296 T06 23190297 T06G

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Builders FirstSource-Jacksonville.

Truss Design Engineer's Name: Finn, Walter

My license renewal date for the state of Florida is February 28, 2023.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.



Walter P. Finn PE No.22839 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

March 12,2021

Job Qty Truss WOODMAN PARK - DAWES RES. Truss Type Ply T23190288 2708484 T01 ATTIC Job Reference (optional) Builders FirstSource (Jacksonville, FL), Jacksonville, FL - 32244. 8.430 s Feb 12 2021 MiTek Industries, Inc. Fri Mar 12 12:55:25 2021 Page 1 ID:fRijugoliQj9qlqT_5CiYdzq7NP-IP3KQAGpc88uWnNnFSB2AWTrNxsMlsrgRQxcTRzbfVW 13-4-15 22-7-0 3-8-9 18-10-7 24-7-0

Scale = 1:43.9

Attic

BRACING-

TOP CHORD

BOT CHORD

JOINTS

-0.13 14-16

748

1 Brace at Jt(s): 17

360

Rigid ceiling directly applied or 10-0-0 oc bracing.

Structural wood sheathing directly applied or 4-11-9 oc purlins.

Weight: 134 lb

FT = 20%

LUMBER-

BCDL

TOP CHORD 2x4 SP M 31 BOT CHORD 2x6 SP No.2 *Except*

12-15: 2x6 SP M 26

WEBS 2x4 SP No.3

10.0

SLIDER Left 2x4 SP No.3 -t 1-11-8, Right 2x4 SP No.3 -t 1-11-8

REACTIONS.

(size) 2=0-3-8, 12=0-3-8 Max Horz 2=-99(LC 13)

Max Uplift 2=-100(LC 12), 12=-100(LC 13)

Max Grav 2=1224(LC 2), 12=1224(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Code FBC2020/TPI2014

2-4=-1915/99, 4-5=-1790/64, 5-6=-1463/119, 6-7=0/357, 7-8=0/359, 8-9=-1461/120, 9-10=-1801/65, 10-12=-1934/97

BOT CHORD 2-16=-68/1657, 14-16=0/1523, 12-14=-24/1674

WEBS 6-17=-1884/69, 8-17=-1884/69, 5-16=0/611, 9-14=0/624, 10-14=-260/149

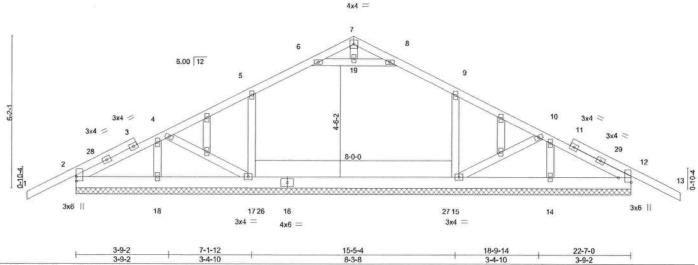
TOP CHORD

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II: Exp B; End., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -2-0-0 to 1-0-0, Interior(1) 1-0-0 to 11-3-8, Exterior(2R) 11-3-8 to 14-3-8, Interior(1) 14-3-8 to 24-7-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Matrix-MS

- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Ceiling dead load (5.0 psf) on member(s). 5-6, 8-9, 6-17, 8-17; Wall dead load (5.0psf) on member(s).5-16, 9-14
- 7) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 14-16 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=100, 12=100,
- 9) Attic room checked for L/360 deflection.

Walter P. Finn PE No.22839 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610


March 12,2021

🛦 WARNING - Verily design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE U.S.C.

Job		Truss		Truss Type			Qty	Ply	WOODMAN PARK - DAW	ES RES.	
2708484		T01G		GABLE			1	1			T23190289
									Job Reference (optional)		
Builders FirstSou	urce (Jacks	onville, FL),	Jacksonville,	FL - 32244,				8.430 s Fe	b 12 2021 MiTek Industries,	Inc. Fri Mar 12 12:55:	26 2021 Page 1
							ID:fR	ijugoliQj9qlq7	_5CiYdzq7NP-EbdieWHRM	SGI8xyzpAiHjk07eLIIU	Oppf4g90tzbfVV
-2	2-0-0	3-9-2		7-1-12	9-9-15	11-3-8	12-9-1	15-5-4	18-9-14	22-7-0	24-7-0
2	-0-0	3-9-2		3-4-10	2-8-3	1-5-9	1-5-9	2-8-3	3-4-10	3-9-2	2-0-0

Scale = 1:44.1

Plate Off	fsets (X,Y)	[12:Edge,0-6-3]				4					3-3-2	
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.09	Vert(LL)	-0.01	13	n/r	120	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.30	Vert(CT)	-0.01	13	n/r	120		
BCLL	0.0	Rep Stress Incr	YES	WB	0.08	Horz(CT)	0.01	12	n/a	n/a		
BCDL	10.0	Code FBC2020/T	PI2014	Matri	x-S						Weight: 141 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP M 31 BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3 BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 22-7-0.

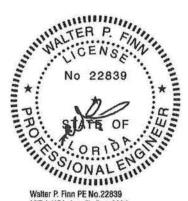
(lb) - Max Horz 2=-94(LC 13)

Max Uplift All uplift 100 lb or less at joint(s) 17, 15 except 2=-104(LC 12), 12=-108(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 18, 14 except 2=488(LC 1), 12=488(LC 1), 17=636(LC 26), 15=636(LC 27)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-538/134, 4-5=-358/66, 5-6=-377/137, 8-9=-377/137, 9-10=-358/66,


10-12=-538/131

BOT CHORD 2-18=-82/424, 17-18=-82/424, 15-17=0/289, 14-15=-50/424, 12-14=-50/424

WEBS 5-17=-283/90, 9-15=-283/89

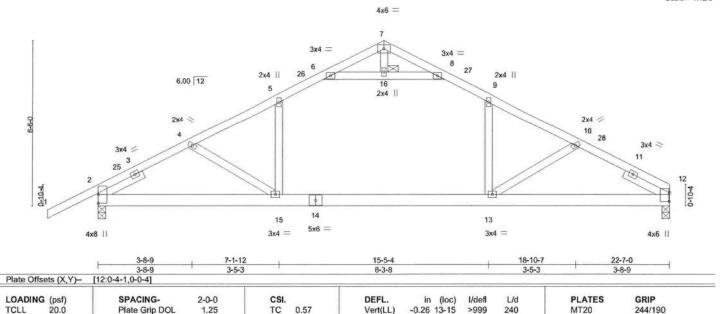
NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; End., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Corner(3E) -2-0-0 to 1-0-0, Exterior(2N) 1-0-0 to 11-3-8, Corner(3R) 11-3-8 to 14-3-8, Exterior(2N) 14-3-8 to 24-7-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For stude exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- y) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) Ceiling dead load (5.0 psf) on member(s). 5-6, 8-9, 6-19, 8-19; Wall dead load (5.0psf) on member(s).5-17, 9-15
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 17, 15 except (jt=lb) 2=104, 12=108.
- 12) Attic room checked for L/360 deflection.

Walter P. Finn PE No.22839 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

March 12,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent building of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WOODMAN PARK - DAWES RES. Job Truss Type Qty Ply Truss T23190290 2708484 T02 ATTIC Job Reference (optional) 8.430 s Feb 12 2021 MiTek Industries, Inc. Fri Mar 12 12:55:27 2021 Page 1 Builders FirstSource (Jacksonville, FL). Jacksonville, FL - 32244, ID:fRijugoliQj9qlqT_5CiYdzq7NP-ioB5rsl37mOcm5X9MtDWFxZBqlYtDmJyukQjYJzbfVU 13-4-15 18-10-7 3-5-3 7-1-12 3-5-3

Scale = 1:42.8

Vert(CT)

Horz(CT)

BRACING-

JOINTS

TOP CHORD

BOT CHORD

Attic

-0.45 13-15

-0.13 13-15

12

0.03

>596

n/a

748

1 Brace at Jt(s): 16

180

n/a

360

Rigid ceiling directly applied or 10-0-0 oc bracing.

Structural wood sheathing directly applied or 4-11-0 oc purlins.

Weight: 131 lb

FT = 20%

LUMBER-

TCDL

BCLL

BCDL

TOP CHORD 2x4 SP M 31

7.0

10.0

0.0

2x6 SP No.2 *Except* **BOT CHORD**

12-14: 2x6 SP M 26 WEBS 2x4 SP No.3

SLIDER

Left 2x4 SP No.3 -t 1-11-8, Right 2x4 SP No.3 -t 1-11-8

Lumber DOL

Rep Stress Incr

Code FBC2020/TPI2014

REACTIONS.

(size) 2=0-3-8, 12=0-3-8

Max Horz 2=113(LC 16) Max Uplift 2=-101(LC 12), 12=-56(LC 13)

Max Grav 2=1228(LC 2), 12=1132(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD

2-4=-1924/110, 4-5=-1801/70, 5-6=-1472/123, 6-7=0/358, 7-8=0/361, 8-9=-1470/131,

1.25

YES

9-10=-1815/83, 10-12=-1960/129

BOT CHORD 2-15=-84/1656, 13-15=0/1533, 12-13=-76/1704 WEBS

6-16=-1898/86, 8-16=-1898/86, 5-15=0/611, 9-13=0/629, 10-13=-289/160

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; End., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -2-0-0 to 1-0-0, Interior(1) 1-0-0 to 11-3-8, Exterior(2R) 11-3-8 to 14-3-8, Interior(1) 14-3-8 to 22-7-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

BC

WB 0.39

Matrix-MS

0.66

3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Ceiling dead load (5.0 psf) on member(s). 5-6, 8-9, 6-16, 8-16; Wall dead load (5.0psf) on member(s).5-15, 9-13
- 7) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 13-15
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12 except (jt=lb) 2=101.
- 9) Attic room checked for L/360 deflection.

Walter P. Finn PE No.22839 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

March 12.2021

🛦 WARNING - Verily design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MTLeke connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSITEMPL Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20801

Job Truss Type Qty Ply WOODMAN PARK - DAWES RES. Truss T23190291 1 2708484 T02G Monopitch Supported Gable 1 Job Reference (optional) 8.430 s Feb 12 2021 MiTek Industries, Inc. Fri Mar 12 12:55:28 2021 Page 1 Builders FirstSource (Jacksonville, FL), Jacksonville, FL - 32244, ID:fRijugoliQj9qlqT_5CiYdzq7NP-A_kT3Clhu3WTNF6Mwbllo95Rz822yJu67O9G4mzbfVT 2-0-0 Scale = 1:27.9 7 6 6.00 12 5 3x4 < 3×4 -0-10-4 13 12 11 10 9 3x6 || 10-0-8 10-0-8 LOADING (psf) SPACING-2-0-0 CSI. DEFL. I/defl L/d **PLATES** GRIP (loc) Plate Grip DOL 1.25 Vert(LL) 0.01 244/190 TCLL 20.0 TC 0.23 n/r 120 MT20 Vert(CT) -0.00 120 TCDL 7.0 Lumber DOL 1.25 BC 0.03 n/r WB 0.05 BCLL 0.0 Rep Stress Incr YES Horz(CT) -0.00 n/a n/a Code FBC2020/TPI2014 Weight: 72 lb FT = 20% BCDL 10.0 Matrix-S LUMBER-BRACING-TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, 2x6 SP No.2 **BOT CHORD** except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing. BOT CHORD WERS

2x4 SP No.3 2x4 SP No.3 OTHERS

REACTIONS. All bearings 10-0-8.

Max Horz 2=191(LC 12) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 2, 9, 12, 13, 11, 10

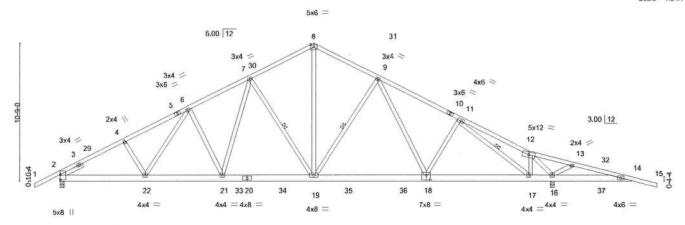
Max Grav All reactions 250 lb or less at joint(s) 2, 9, 12, 13, 11, 10

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-282/99

NOTES-

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; End., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Corner(3E) -2-0-0 to 1-0-0, Exterior(2N) 1-0-0 to 9-10-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 9, 12, 13, 11, 10.

Walter P. Finn PE No.22839 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610


March 12,2021

🛦 WARNING - Verily design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MTEAS connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability to design parameters and properly incorporate this design into the overall building designer must verify the applicability truss when and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent uccliapse with possible personal injury and properly damage. For general guidance regarding the flatification, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/IPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job		Truss		Truss Type			Qty	Ply	WOODMAN PARK - DA	AWES RES.		
							2					T23190292
2708484		T03		Roof Special			2	1 1				
									Job Reference (optional)		
Builders Fi	irstSource (Jack	sonville, FL),	Jacksonville	, FL - 32244,				8.430 s Fe	b 12 2021 MiTek Industri	es, Inc. Fri Mai	12 12:55:29	2021 Page 1
48						ID:	Rijugoli	Qj9qlqT_5Ci	Ydzq7NP-eAlrGXJJfNeK	?PhYUIG_LMe	WpYCehe4FI	M2vqcCzbfVS
	-2-0-0	5-0-0	10-1-0	14-9-11	19-9-8	24-9-5	1	31-2-0	36-7-0	39-11-9	44-7-0	46-7-0
	2-0-0	5-0-0	5-1-0	4-8-11	4-11-13	4-11-13		6-4-11	5-5-0	3-4-10	4-7-7	2-0-0

Scale = 1:84.7

		6-7-0	12-8-0	19-9-8	28-7-0	36-7-0	38-7-0, 44-7-0	F - 1
		6-7-0	6-1-0	7-1-8	8-9-8	8-0-0	2-0-0 6-0-0	1
Plate Offse	ts (X,Y)-	[18:0-4-0,0-4-8]						
LOADING	(psf)	SPACING-	2-0-0	CSI.	DEFL. in (loc)	I/defl L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC 0.61	Vert(LL) -0.16 18-19	>999 240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC 0.77	Vert(CT) -0.27 18-19	>999 180		
BCLL	0.0 *	Rep Stress Incr	YES	WB 0.56	Horz(CT) 0.07 16	n/a n/a		
BCDL	10.0	Code FBC2020/T	PI2014	Matrix-MS			Weight: 300 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x6 SP No.2 2x4 SP No.3 WEBS

SLIDER

Left 2x4 SP No.3 -t 1-11-8

BRACING-

WEBS

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 2-10-4 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

6-0-0 oc bracing: 14-16.

1 Row at midpt 7-19, 9-19, 11-17

REACTIONS.

(size) 2=0-3-8, 16=0-3-8 Max Horz 2=165(LC 16)

Max Uplift 2=-335(LC 12), 16=-471(LC 13) Max Grav 2=1607(LC 2), 16=2206(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-2489/539, 4-6=-2407/553, 6-7=-2178/550, 7-8=-1627/462, 8-9=-1631/454,

9-11=-2005/381, 11-12=-863/138, 12-13=-1275/1354, 13-14=-1156/1107

2-22=-505/2195, 21-22=-408/2056, 19-21=-288/1765, 18-19=-184/1639, 17-18=-200/1758, **BOT CHORD**

16-17=-51/850, 14-16=-1048/1165

WEBS 6-21=-343/188, 7-21=-144/596, 7-19=-645/269, 8-19=-276/1211, 9-19=-446/220,

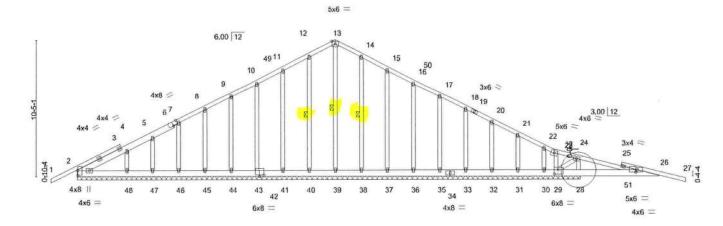
9-18=-44/335, 11-17=-1662/1061, 12-17=-526/1137, 12-16=-2465/807, 13-16=-289/182

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; End., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -2-0-0 to 2-5-8, Interior(1) 2-5-8 to 19-9-8, Exterior(2R) 19-9-8 to 24-3-0, Interior(1) 24-3-0 to 46-7-0 zone; cantilever right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=335, 16=471.

Walter P. Finn PE No.22839 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610


March 12,2021

🛦 WARNING - Verily design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ucellapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/PH Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - DAWES	RES.		
2708484	T03G	GABLE	4	1				T23190293
2708484	103G	GABLE	1	9,000	Job Reference (optional)			
Builders FirstSource	ce (Jacksonville, FL), Ja-	cksonville, FL - 32244,		8.430 s Fe	b 12 2021 MiTek Industries, Inc	Fri Mar 12	12:55:32 202	1 Page 1
	(A)		ID:fRijugoli	Qj9qlqT_5	CiYdzq7NP-2I_uZMCyl0ussP7	79Qphy_G31	mK0uz9i207L	JDXzbfVP
1.5	-2-0-0	19-9-8		36-7	7-0	39-7-0	44-7-0	46-7-0
	2-0-0	19-9-8		16-9	9-8	3-0-0	5-0-0	2-0-0

Scale = 1:83.1

		-	36-7-0 36-7-0								39-7-0	5-0-0
Plate Offse	ets (X,Y)-	[2:0-4-4,0-0-5], [6:0-3-14,	Edge], [26:0-1-	-4,0-2-0], [26	130,44.17		, [42:0-4	-0,0-1-4	1]			
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	I/defi	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.48	Vert(LL)	-0.05	26-27	n/r	120	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.34	Vert(CT)	-0.09	26-27	n/r	120		
BCLL	0.0	Rep Stress Incr	YES	WB	0.67	Horz(CT)	0.01	28	n/a	n/a		
BCDL	10.0	Code FBC2020/T	PI2014	Matrix	x-S						Weight: 342 lb	FT = 20%

BRACING-TOP CHORD

WEBS

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 *Except*

2-6: 2x6 SP No.2

BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.3

WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3

REACTIONS. All bearings 38-7-0.

(lb) - Max Horz 2=157(LC 12)

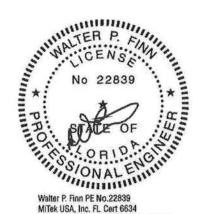
Max Uplift All uplift 100 lb or less at joint(s) 2, 40, 41, 43, 44, 45, 46, 47, 48, 38, 37, 36, 35, 33, 32, 31,

30 except 29=-1303(LC 1), 28=-998(LC 9)

Max Grav All reactions 250 lb or less at joint(s) 39, 40, 41, 43, 44, 45, 46, 47, 48, 38, 37, 36, 35, 33, 32,

31, 30 except 2=253(LC 23), 29=739(LC 9), 28=1879(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


TOP CHORD 24-26=-1154/1567

BOT CHORD 28-29=-1500/1165, 26-28=-1500/1165 WEBS 24-28=-1545/993, 24-29=-1189/1753

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; End., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Corner(3E) -2-0-0 to 2-5-8, Exterior(2N) 2-5-8 to 19-9-8, Corner(3R) 19-9-8 to 24-3-0, Exterior(2N) 24-3-0 to 46-7-0 zone; cantilever right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For stude exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 40, 41, 43, 44, 45, 46, 47, 48, 38, 37, 36, 35, 33, 32, 31, 30 except (jt=lb) 29=1303, 28=998.
- 10) Non Standard bearing condition. Review required.
- 11) Following joints to be plated by qualified designer: Joint(s) 28, not plated.
- 12) This truss has large uplift reaction(s) from gravity load case(s). Proper connection is required to secure truss against upward movement at the bearings. Building designer must provide for uplift reactions indicated.

Structural wood sheathing directly applied or 5-3-1 oc purlins.

13-39, 12-40, 14-38

Rigid ceiling directly applied or 5-8-3 oc bracing.

1 Row at midpt

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

March 12,2021

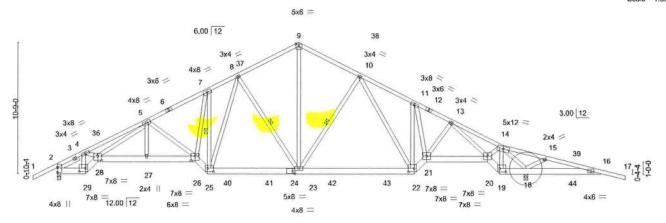
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5:19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSITYPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20801

Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - DAWES RES. T23190
2708484	T04	Roof Special	3	1	123130
		- N			Job Reference (optional)
Builders FirstSour	ce (Jacksonville, FL), Ja	cksonville, FL - 32244,		8.430 s Fe	eb 12 2021 MiTek Industries, Inc. Fri Mar 12 12:55:34 2021 Page 1
			ID:fRijugoliQ	j9qlqT_5Ci	Ydzq7NP-?86kJFNSUvGc6AZVHrs92PLM1ZwEMpM_VKcalPzbfVN

Scale = 1:88.9


32-3-8 35-3-8 36-7-0 39-11-9 44-7-0 46-7-0 3-0-0 3-0-0 1-3-8 3-4-10 4-7-7 2-0-0

Structural wood sheathing directly applied or 2-2-15 oc purlins.

7-25, 8-23, 10-23

Rigid ceiling directly applied or 6-0-0 oc bracing.

1 Row at midpt

		2-3-8 3-3-8 7-3-8	11-3-8		-9-8	29-3-8		30-3-	8 35-	3-8 3	6-3-8 38-7-0	44-7-0	- 1
		2-3-8 1-0-0 4-0-0	4-0-0	1-0-0 7-	6-0	9-6-0		1-0-	0 5-0	HO 1	-0-0 2-3-8	6-0-0	
Plate Offse	ets (X,Y)-	[19:0-6-0,0-3-8], [22:0-6-0	0,0-3-8], [2	4:0-2-0,0-2-8], [2	5:0-6-0,0-3	-8], [26:0-4-0,0-4-8]	, [28:0-4	-0,0-4-8], [29:0-6	5-0,0-3-8	1		
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	I/defl	L/d		PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.64	Vert(LL)	-0.25	26	>999	240		MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.74	Vert(CT)	-0.43	26-27	>999	180			
BCLL	0.0	Rep Stress Incr	YES	WB	0.94	Horz(CT)	0.25	18	n/a	n/a			
BCDL	10.0	Code FBC2020/T	PI2014	Matri	x-MS	20.0					1	Weight: 336 lb	FT = 20%

BRACING-

WEBS

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x6 SP No.2

2x4 SP No.3 WEBS Left 2x4 SP No.3 -t 1-11-8 SLIDER

REACTIONS.

(size) 2=0-3-8, 18=0-3-8

Max Horz 2=165(LC 16)

Max Uplift 2=-335(LC 12), 18=-471(LC 13) Max Grav 2=1608(LC 2), 18=2208(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-2249/463, 4-5=-4117/881, 5-7=-2621/588, 7-8=-2181/582, 8-9=-1635/458,

9-10=-1636/450, 10-11=-2011/410, 11-13=-2392/377, 13-14=-2241/288, 14-15=-1283/1372, 15-16=-1158/1114

BOT CHORD 2-29=-482/1934, 28-29=-580/2334, 27-28=-634/2982, 26-27=-634/2981, 25-26=-443/2473,

23-25=-290/1769, 22-23=-185/1631, 21-22=-264/2344, 20-21=-244/2201, 19-20=-76/990,

18-19=-65/789, 16-18=-1054/1168

4-29=-1614/431, 4-28=-433/2133, 5-28=-253/926, 5-27=-19/373, 5-26=-849/271, 7-26=-407/2025, 7-25=-1928/468, 8-25=-192/621, 8-23=-636/275, 9-23=-265/1212,

10-23=-417/220, 10-22=-94/368, 11-22=-1572/218, 11-21=-182/1636, 13-20=-679/867,

14-20=-161/1690, 14-19=-753/64, 14-18=-2392/802, 15-18=-306/190

NOTES-

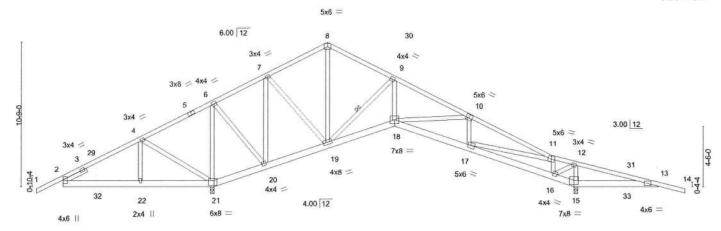
WEBS

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; End., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -2-0-0 to 2-5-8, Interior(1) 2-5-8 to 19-9-8, Exterior(2R) 19-9-8 to 24-3-0, Interior(1) 24-3-0 to 46-7-0 zone; cantilever right exposed (C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=335, 18=471.
- 7) Following joints to be plated by qualified designer: Joint(s) 18, not plated.

Walter P. Finn PE No.22839 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

March 12,2021


🛦 WARNING - Verily design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTokio connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSITYPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job		Truss		Truss Type			Qty	Ply	WOODMAN PARK - DAV	VES RES.		
2708484		T05		Roof Special			11	1				T2319029
2.00.00		1.00		Trees opeons			1		Job Reference (option	al)		
Builders Firs	rstSource, Lake (City, FL 32055					ID:fRijugo	liQj9qlqT_	8.430 s Nov 30 2020 MiTe 5CiYdzq7NP-hXqYdHso			
	-2-0-0	5-9-4	11-3-8	15-1-15	19-9-8	24-9-8	- 1	30-5-0	, 36-7-0	38-3-8	44-7-0	46-7-0
	2-0-0	5-9-4	5-6-4	3-10-7	4-7-9	5-0-0	7.8	5-7-8	6-2-0	1-8-8	6-3-8	2-0-0

Scale = 1:81.1

		5-9-4 5-1	6-4	3-10-7	4-7-9	5-0-0	5-7-8	4.	6-2-0	1-8-8	6-3-8
Plate Off	sets (X,Y)-	[10:0-3-0,0-3-0], [21:0-5-	4,0-4-4]							***************************************	MIN 28
LOADIN	G (psf)	SPACING-	2-0-0	CSI		DEFL.	in (loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.54	Vert(LL)	-0.10 17-18	>999	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.28	Vert(CT)	-0.18 17-18	>999	180	100000000	
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.95	Horz(CT)	0.12 15	n/a	n/a		
BCDL	10.0	Code FBC2020/T	PI2014	Mat	rix-MS	V0.00000000000000000000000000000000000				Weight: 292	Ib FT = 20%

24-9-8

BRACING-

TOP CHORD

BOT CHORD

30-5-0

36-7-0

Rigid ceiling directly applied or 5-11-5 oc bracing.

Sheathed or 4-3-5 oc purlins.

1 Row at midpt

38-3-8

44-7-0

LUMBER-

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x6 SP No.2

2x4 SP No.3 WEBS

SLIDER Left 2x4 SP No.3 -< 1-11-8

REACTIONS. (lb/size) 21=2083/0-3-8, 15=1432/0-3-8

5-9-4

Max Horz 21=165(LC 16)

Max Uplift 21=-474(LC 12), 15=-397(LC 13) Max Grav 21=2083(LC 1), 15=1509(LC 24)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-322/458, 3-29=-533/546, 4-29=-533/625, 4-5=-1027/1020, 5-6=-1013/1137, TOP CHORD

11-3-8

6-7=-670/522, 7-8=-392/151, 8-30=-393/117, 9-30=-439/89, 9-10=-1329/98, 10-11=-1463/181, 11-12=-1397/577, 12-31=-1326/1352, 13-31=-1333/1304

BOT CHORD 2-32=-493/575, 22-32=-493/575, 21-22=-493/575, 20-21=-1066/1184, 19-20=-460/907,

18-19-0/1194, 17-18--21/1317, 16-17--541/1538, 15-16--1446/1446, 15-33--1278/1347,

15-1-15

19-9-8

13-33=-1278/1347

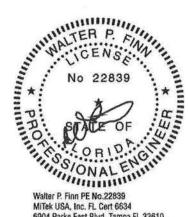
4-22=-384/289, 4-21=-552/628, 6-21=-1382/569, 6-20=-401/1062, 7-20=-969/431,

7-19=-267/680, 8-19=-239/471, 9-19=-1122/128, 9-18=0/892, 10-18=-268/175,

10-17=-269/186, 11-17=-587/1649, 11-16=-741/195, 12-16=-195/1040, 12-15=-937/226

NOTES-

WEBS


1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat, II; Exp B; End., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -2-0-0 to 2-5-8, Interior(1) 2-5-8 to 19-9-8, Exterior(2R) 19-9-8 to 24-3-0, Interior(1) 24-3-0 to 46-7-0 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 474 lb uplift at joint 21 and 397 lb uplift at joint 15.

LOAD CASE(S) Standard

Walter P. Finn PE No.22839 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

March 12,2021

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. WARNING - Verny design parameters and the AD NOTES ON THIS AND INCLUDED MITE PARE PLACE PLACE MITE PARE MITE PLACE BEFORE U.S. Design valid for use only with MITE kilo connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

**ABSITPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldoort, MD 20801

Job WOODMAN PARK - DAWES RES. Truss Truss Type Qty Ply T23190296 2708484 T06 ROOF SPECIAL 1 Job Reference (optional) Builders FirstSource (Jacksonville, FL). Jacksonville, FL - 32244

5-3-13

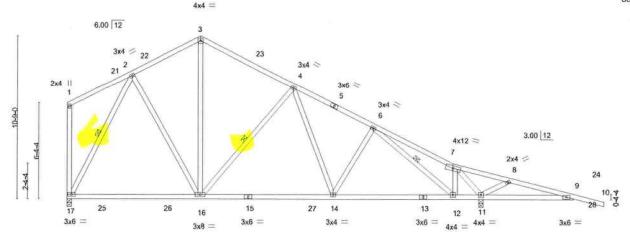
5-3-13

3-7-10

Structural wood sheathing directly applied or 5-2-0 oc purlins,

4-16, 6-12, 2-17

Rigid ceiling directly applied or 2-2-0 oc bracing.


except end verticals.

1 Row at midpt

6-1-13

Scale = 1:71.7

2-0-0

	8-9-8 17-7-4 8-9-8 8-9-12		25-7-0 7-11-12	27-7-0	33-7-0 6-0-0	
LOADING (psf) TCLL 20.0 TCDL 7.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.25 Lumber DOL 1.25 Rep Stress Incr YES	TC 0.50 V BC 0.95 V	EFL. in (loc) I/defl ert(LL) -0.24 16-17 >999 ert(CT) -0.39 16-17 >840 orz(CT) 0.03 11 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL 10.0	Code FBC2020/TPI2014	Matrix-MS	104414 S168 01 1349		Weight: 211 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

WEBS

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

WEBS 2x4 SP No.3

REACTIONS.

(size) 11=0-3-8, 17=0-3-8

Max Horz 17=-288(LC 13) Max Uplift 11=-400(LC 13), 17=-183(LC 13) Max Grav 11=1771(LC 2), 17=1085(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-746/238, 3-4=-767/219, 4-6=-1222/234, 6-7=-826/261, 7-8=-1241/1369,

4-5-13

BOT CHORD

16-17=-4/536, 14-16=-26/979, 12-14=-48/1094, 11-12=-111/832, 9-11=-988/1066

2-16=-55/425, 3-16=-67/411, 4-16=-497/223, 4-14=-34/350, 6-12=-1251/932,

7-12=-475/981, 7-11=-1976/674, 8-11=-365/255, 2-17=-940/222

NOTES-

WEBS

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; End., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-1-12 to 3-6-1, Interior(1) 3-6-1 to 8-9-8, Exterior(2R) 8-9-8 to 12-1-13, Interior(1) 12-1-13 to 35-7-0 zone; cantilever right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 11=400, 17=183.

Walter P. Finn PE No.22839 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

March 12,2021

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MIL-7473 rev. 5:19/2000 REFORE U.S. Design valid for use only with MTek8; connectors. This skip in based only upon parameters sharp, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design, Bracing indicated is to prevent buckling of individual truss web and/for chord members only. Additional temporary and permanent bracing is always required for stability and to prevent uccliapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/PH Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty WOODMAN PARK - DAWES RES T23190297 2708484 T06G GABLE | Job Reference (optional)
| 8.430 s Nov 30 2020 MTek Industries, Inc. Fri Mar 12 17:05:47 2021 Page 1
| ID:fRijugoliQj9qlqT_5CIYdzq7NP-H1F6GWlOhYxAYFckf4u9nhXo4DFAyg6uwTn?NOzbcj2
| 27-5-4 33-7-0 35 lob Reference (optional) Builders FirstSource, Lake City, FL 32055 1-10-4 Scale = 1:70.8 4x4 = 6.00 12 5 6 40 7 39 3 3x6 < 8 3x4 = 9 10 11 10-5-1 12 3.00 12 38 4x12 = 6-0-5 3x4 14 3x4 = 17 41 37 36 35 26 25 32 31 30 27 24 22 21 20 5x6 = 3x8 || 5x6 = 3x4 = 4x6 = 4x6 = 3x6 = 33-7-0 1-10-4 6-1-12 [18:0-1-4,0-2-2], [18:0-1-4,0-1-8], [20:0-3-0,0-3-8] Plate Offsets (X,Y)-SPACING-DEFL. PLATES GRIP LOADING (psf) 2-0-0 in (loc) I/defl L/d 20.0 Plate Grip DOL 1.25 TC -0.06 18-19 244/190 TCLL 0.49 Vert(LL) 120 MT20 n/r TCDL 1.25 BC 0.37 Vert(CT) -0.10 18-19 120 7.0 Lumber DOL n/r WB BCLL 0.0 Rep Stress Incr YES 0.41 Horz(CT) 0.01 20 n/a n/a Code FBC2020/TPI2014 BCDL Matrix-S Weight: 278 lb FT = 20%LUMBER-**BRACING-**TOP CHORD 2x4 SP No.2 TOP CHORD Sheathed or 5-2-6 oc purlins, except end verticals. **BOT CHORD** 2x6 SP No.2 BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing, Except: WERS 2v4 SP No 3 10-0-0 oc bracing: 36-37,35-36,20-21 2x4 SP No.3 OTHERS 5-8-9 oc bracing: 18-20. WEBS 5-32, 4-33, 6-30 1 Row at midpt

REACTIONS. All bearings 27-7-0.

Max Horz 37=-276(LC 13) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 33, 34, 30, 29, 28, 27, 26, 24, 23, 22 except 37=-123(LC 24), 35=-140(LC 12), 21=-1284(LC 24), 20=-998(LC 9)

All reactions 250 lb or less at joint(s) 37, 32, 33, 34, 36, 30, 29, 28, 27, 26, 24, 23, 22 except Max Grav

35=320(LC 1), 21=726(LC 9), 20=1886(LC 24)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD

15-16=-1146/1510, 16-17=-1170/1533, 17-18=-1173/1491

BOT CHORD 36-37=-79/276, 35-36=-79/276, 34-35=-104/255, 33-34=-104/255, 32-33=-104/255,

31-32=-104/255, 30-31=-104/255, 29-30=-104/255, 28-29=-104/255, 27-28=-104/255,

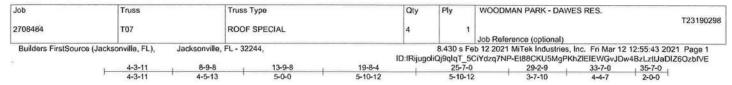
26-27=-104/255, 25-26=-104/255, 24-25=-104/255, 23-24=-104/255, 22-23=-104/255, 21-22=-104/255, 20-41=-1467/1184, 18-41=-1467/1184

15-21=-669/947, 15-20=-1998/1374

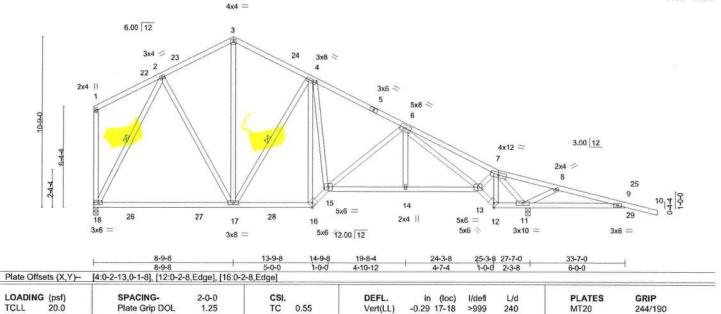
WEBS NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Corner(3E) 0-1-12 to 3-6-1, Exterior(2N) 3-6-1 to 8-9-8, Corner(3R) 8-9-8 to 12-1-13, Exterior(2N) 12-1-13 to 35-7-0 zone; cantilever right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For study exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 33, 34, 30, 29, 28. 27, 26, 24, 23, 22 except (jt=lb) 37=123, 35=140, 21=1284, 20=998.
- 10) Non Standard bearing condition. Review required.
- 11) This truss has large uplift reaction(s) from gravity load case(s). Proper connection is required to secure truss against upward movement at the bearings. Building designer must provide for uplift reactions indicated.


Walter P. Finn PE No.22839 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

March 12,2021


LOAD CASE(S) Standard

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an inividual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20801

Scale = 1:68.5

LUMBER-

TCDL

BCLL

BCDL

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3

7.0

10.0

0.0 *

BRACING-

BOT CHORD

WEBS

Vert(CT)

Horz(CT)

TOP CHORD

-0.46 17-18

11

0.06

Structural wood sheathing directly applied or 5-0-12 oc purlins,

Weight: 231 lb

FT = 20%

except end verticals.

>708

n/a

Rigid ceiling directly applied or 5-8-13 oc bracing. 1 Row at midpt 4-17, 2-18

180

n/a

REACTIONS.

(size) 18=0-3-8, 11=0-3-8

Max Horz 18=-288(LC 13)

Max Uplift 18=-179(LC 13), 11=-404(LC 13) Max Grav 18=1057(LC 2), 11=1777(LC 2)

Lumber DOL

Rep Stress Incr

Code FBC2020/TPI2014

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-713/231, 3-4=-720/221, 4-6=-1186/203, 6-7=-1019/67, 7-8=-1285/1410. TOP CHORD

8-9=-1081/1059 BOT CHORD

17-18=-4/521, 16-17=-12/883, 15-16=-14/1218, 14-15=-49/1312, 13-14=-49/1312,

1.25

YES

12-13=-456/1146, 11-12=-378/934, 9-11=-995/1079 2-17=-48/397, 3-17=-91/419, 4-17=-486/215, 4-16=-751/15, 4-15=-18/1145,

WEBS 6-15=-333/104, 6-13=-988/1012, 7-13=-16/977, 7-12=-666/254, 7-11=-1722/650,

8-11=-391/282, 2-18=-899/215

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; End. GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-1-12 to 3-6-1, Interior(1) 3-6-1 to 8-9-8, Exterior(2R) 8-9-8 to 12-1-13, Interior(1) 12-1-13 to 35-7-0 zone; cantilever right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

BC

WB 0.92

Matrix-MS

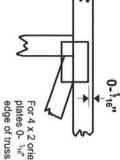
0.87

- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 18=179, 11=404.

Watter P. Finn PE No.22839 MiTek USA, Inc. FL. Cert 6634 6904 Parke East Blvd. Tampa FL 33610

March 12,2021

MARNING - Verily design parameters and READ NOTES ON THIS AND INCLUDED MITEX REFERENCE PAGE MII-7473 (INV. 5-19/20/20 REFORE U.S. WARNING - Very design parameters and READ NOTES ON THIS AND INCLUDED MITEX REPERENCE PAGE MIT-7473 (e.g., 5-19,2020 BEFORE USE. Design valid for use only with MiTe&B connectors. This design is based only upon parameters show and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal njury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20801



Symbols

PLATE LOCATION AND ORIENTATION

and fully embed teeth. offsets are indicated. Center plate on joint unless x, y Apply plates to both sides of truss Dimensions are in ft-in-sixteenths.

For 4 x 2 orientation, locate plates 0- 1/16" from outside

œ

0

S

required direction of slots in connector plates. This symbol indicates the

* Plate location details available in MiTek 20/20 software or upon request.

PLATE SIZE

4 × 4

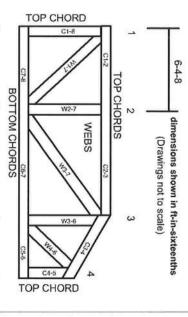
to slots. Second dimension is width measured perpendicular the length parallel to slots. The first dimension is the plate

LATERAL BRACING LOCATION

output. Use T or I bracing Indicated by symbol shown and/or by text in the bracing section of the if indicated.

BEARING

number where bearings occur. Min size shown is for crushing only reaction section indicates joint (supports) occur. Icons vary but Indicates location where bearings


Industry Standards:

ANSI/TPI1: National Design Specification for Metal Plate Connected Wood Truss Construction.

DSB-89:

Guide to Good Practice for Handling, Building Component Safety Information Installing & Bracing of Metal Plate Design Standard for Bracing.

Numbering System

THE LEFT JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

PRODUCT CODE APPROVALS

ICC-ES Reports:

ESR-1311, ESR-1352, ESR1988 ER-3907, ESR-2362, ESR-1397, ESR-3282

truss unless otherwise shown. Trusses are designed for wind loads in the plane of the

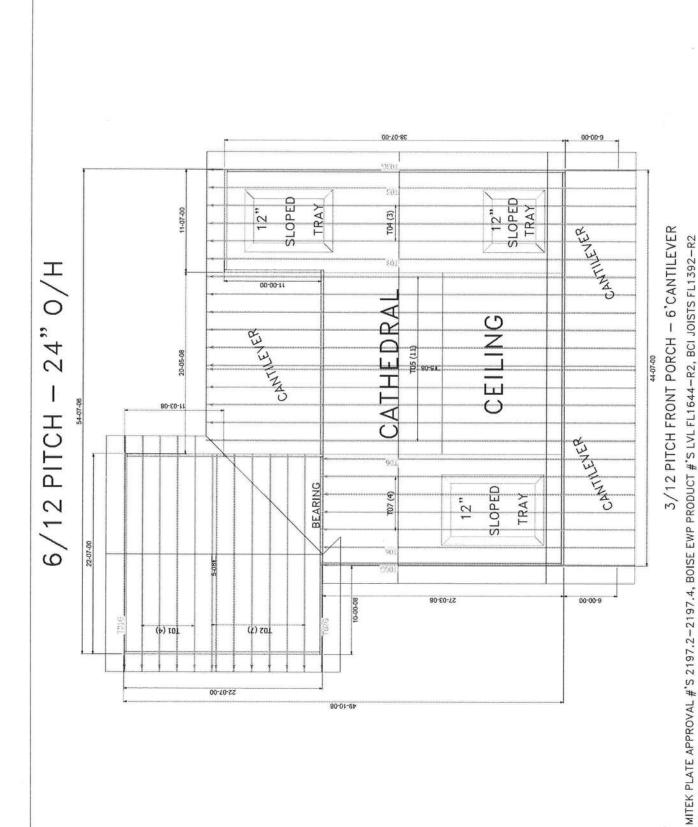
established by others. section 6.3 These truss designs rely on lumber values Lumber design values are in accordance with ANSI/TPI 1

© 2012 MiTek® All Rights Reserved

MiTek Engineering Reference Sheet: MII-7473 rev. 5/19/2020

General Safety Notes

Damage or Personal Injury Failure to Follow Could Cause Property


- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber,
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions ndicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that
- Top chords must be sheathed or purlins provided at spacing indicated on design.

13

or less, if no ceiling is installed, unless otherwise noted Bottom chords require lateral bracing at 10 ft, spacing,

14

- Connections not shown are the responsibility of others
- Do not cut or alter truss member or plate without prior approval of an engineer
- Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable project engineer before use. environmental, health or performance risks. Consult with
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- The design does not take into account any dynamic or other loads other than those expressly stated.

Builders 2708484 2708484 Roof deb # 2708484 Phy ASSETT 12705 all "Tons to Wall" connections in the Theorem Conference of the Life Conference All common framed reof or flour eyestems assure he designed as to NNY Impose, any battle an the flour treat before. The flow streams have not been designed to ear any additional lands from above. This two phoenorit plan was use around by an This property of the property of the property of is while to be treat as an invalidation golds and does a to subject to the treat as an invalidation golds and does an the property of the treatment of found on the treat these or increasing which may could by the stars dought expanse. It is the responsibility of the Constructe to make sure informers of known are adjusted for pluming them, littles set—as the transier do not interfere with these type of norms. ther transman.
Transmers are not the against to support break U.N.O.
Domeranous are Fort laidus. Stateogicke. ANQ himbor is corressor to true plates. Any ANQ that comes in contact with trace plates to, esubbod tailed must have an approved footier applied first. It is the responsibility of the finitivative to seiving they or other-limited of the trans procedured plans as constructive documents and field emilities of the arrestive centration. If a revened or fliggred keys transpired, it will be supplied at the centre made by the VivaScorve. Refer to RCSC P1 Summers ShoorGoads for leave Installing and Bracing of Metal Plate Composed Trook gene to and during trase metallation. Lake City PHONE: 386-755-6894 FAX: 386-755-7973 Jacksonville PHONE: 904-772-6100 FAX: 904-772-1973 WOODMAN PARK Tallahassee PHONE: 850-576-5177 No back charges will be accopted by Builders FredSource unken approved in writing limt. 859:810-4511 deble confirments require continuous buttons statistig. Refer to local codes for wall fraumn equivements. Dawes Res. PIR SHOWN READ AT THE GAUGO PTHE TRESS OS THEIR TRESS OS THEIR TRESS OS THEIR TRESS OS THEIR TRESS TANDING AT TRESS TRANSPORT TRESS TRANSPORT OF THE BREWATON CLIDB WHEN SETTING THE TRESSES OF THE KLH KLH Flore 2 debr Custom 3-8-21 N/A