

RE: 250620-02KM - Mitch Brown

MiTek, Inc.

16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200

Site Information:

Customer Info: Mitch Brown Project Name: .. Model: ..
Lot/Block: . Subdivision: .
Address: Old Bellamy Rd., ..
City: Fort White State: FL.

Name Address and License # of Structural Engineer of Record, If there is one, for the building.

Name: License #:
Address:
City: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: FBC2023/TPI2014

Design Program: MiTek 20/20 8.7

Wind Code: ASCE 7-22

Wind Speed: 130 mph

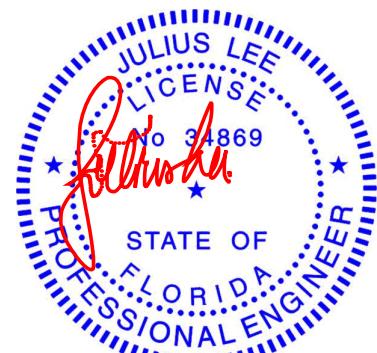
Roof Load: 34.0 psf

Floor Load: N/A psf

This package includes 52 individual, Truss Design Drawings and 0 Additional Drawings.

With my seal affixed to this sheet, I hereby certify that I am the Truss Design Engineer and this index sheet conforms to 61G15-31.003, section 5 of the Florida Board of Professional Engineers Rules.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	T37696790	GE01	6/23/25 23	6	T37696812	T09	6/23/25
2	T37696791	G01	6/23/25 24	7	T37696813	T10	6/23/25
3	T37696792	S01	6/23/25 25	8	T37696814	T11	6/23/25
4	T37696793	S02	6/23/25 26	9	T37696815	T12	6/23/25
5	T37696794	H02	6/23/25 27	10	T37696816	T13	6/23/25
6	T37696795	H03	6/23/25 28	11	T37696817	T14	6/23/25
7	T37696796	H04	6/23/25 29	12	T37696818	T15	6/23/25
8	T37696797	H05	6/23/25 30	13	T37696819	T16	6/23/25
9	T37696798	H06	6/23/25 31	14	T37696820	GE03	6/23/25
10	T37696799	T01	6/23/25 32	15	T37696821	T17	6/23/25
11	T37696800	T02	6/23/25 33	16	T37696822	SGE01	6/23/25
12	T37696801	H07	6/23/25 34	17	T37696823	H01	6/23/25
13	T37696802	J05	6/23/25 35	18	T37696824	CJ01	6/23/25
14	T37696803	GE02	6/23/25 36	19	T37696825	J01	6/23/25
15	T37696804	T03	6/23/25 37	20	T37696826	J02	6/23/25
16	T37696805	T04	6/23/25 38	21	T37696827	J03	6/23/25
17	T37696806	T05	6/23/25 39	22	T37696828	J04	6/23/25
18	T37696807	M02	6/23/25 40	23	T37696829	H08	6/23/25
19	T37696808	H15	6/23/25 41	24	T37696830	H09	6/23/25
20	T37696809	T06	6/23/25 42	25	T37696831	H10	6/23/25
21	T37696810	T07	6/23/25 43	26	T37696832	H11	6/23/25
22	T37696811	T08	6/23/25 44	27	T37696833	H12	6/23/25



The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Coastal Truss & Vinyl Siding.

Truss Design Engineer's Name: Lee, Julius

My license renewal date for the state of Florida is February 28, 2027.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

June 23,2025

Lee, Julius

1 of 2

RE: 250620-02KM - Mitch Brown

MiTek, Inc.

16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200

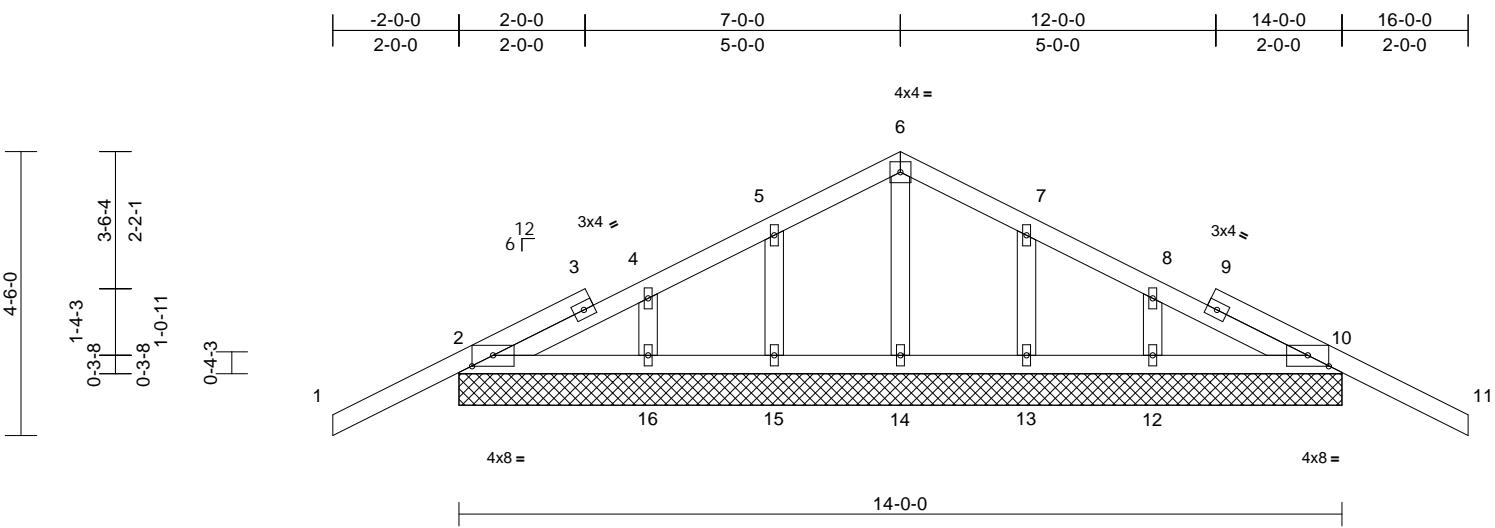
Site Information:

Customer Info: Mitch Brown Project Name: . Model: ..

Lot/Block: . Subdivision: .

Address: Old Bellamy Rd., .

City: Fort White State: FL


No.	Seal#	Truss Name	Date
45	T37696834	H13	6/23/25
46	T37696835	H14	6/23/25
47	T37696836	CJ02	6/23/25
48	T37696837	J06	6/23/25
49	T37696838	J07	6/23/25
50	T37696839	J08	6/23/25
51	T37696840	J09	6/23/25
52	T37696841	J10	6/23/25

Job 250620-02KM	Truss GE01	Truss Type Common Supported Gable	Qty 1	Ply 1	Mitch Brown Job Reference (optional)	T37696790
--------------------	---------------	--------------------------------------	----------	----------	---	-----------

Coastal Truss & Vinyl Siding, Patterson, GA - 31577,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 20 12:42:42
ID:QRQeUdX6ypzR8LDceuWkdbz4Ocy-Rfc?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?

Page: 1

Scale = 1:36.5

Plate Offsets (X, Y): [2:0-4-0,0-2-1], [10:0-4-0,0-2-1]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	Horz(CT)	0.00	20	n/a	n/a		
BCDL	7.0	Code	FBC2023/TPI2014	Matrix-MS						Weight: 69 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
OTHERS 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.
BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc bracing.

REACTIONS (size) 2=14-0-0, 10=14-0-0, 12=14-0-0, 13=14-0-0, 14=14-0-0, 15=14-0-0, 16=14-0-0
Max Horiz 2=-107 (LC 10)
Max Uplift 2=-173 (LC 12), 10=-173 (LC 12), 12=-27 (LC 8), 13=-78 (LC 12), 15=-78 (LC 12), 16=-26 (LC 9)
Max Grav 2=242 (LC 1), 10=242 (LC 1), 12=147 (LC 18), 13=147 (LC 18), 14=121 (LC 17), 15=148 (LC 17), 16=143 (LC 17)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/48, 2-4=-97/69, 4-5=-57/101, 5-6=-58/188, 6-7=-58/188, 7-8=-31/99, 8-10=-90/39, 10-11=0/48

BOT CHORD 2-16=-38/155, 15-16=-33/133, 14-15=-33/133, 13-14=-33/133, 12-13=-33/133, 10-12=-43/165

WEBS 6-14=-93/0, 5-15=-121/184, 4-16=-114/157, 7-13=-120/184, 8-12=-116/155

NOTES

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-22; Vult=130mph (3-second gust)
Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=18ft;
B=50ft; L=30ft; eave=2ft; Cat. II; Exp C; Enclosed;
MWFRS (directional) and C-C Zone3 zone; cantilever
left and right exposed ; end vertical left and right
exposed; C-C for members and forces & MWFRS for
reactions shown; Lumber DOL=1.60 plate grip
DOL=1.60
- Truss designed for wind loads in the plane of the truss
only. For studs exposed to wind (normal to the face),
see Standard Industry Gable End Details as applicable,
or consult qualified building designer as per ANSI/TPI 1.
- Building Designer / Project engineer responsible for
verifying applied roof live load shown covers rain loading
requirements specific to the use of this truss component.
- All plates are 1.5x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom
chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf
on the bottom chord in all areas where a rectangle
3-06-00 tall by 2-00-00 wide will fit between the bottom
chord and any other members.
- All bearings are assumed to be SP No.2 .
- Provide mechanical connection (by others) of truss to
bearing plate capable of withstanding 173 lb uplift at joint
2, 173 lb uplift at joint 10, 78 lb uplift at joint 15, 26 lb
uplift at joint 16, 78 lb uplift at joint 13, 27 lb uplift at joint
12, 173 lb uplift at joint 2 and 173 lb uplift at joint 10.

LOAD CASE(S)

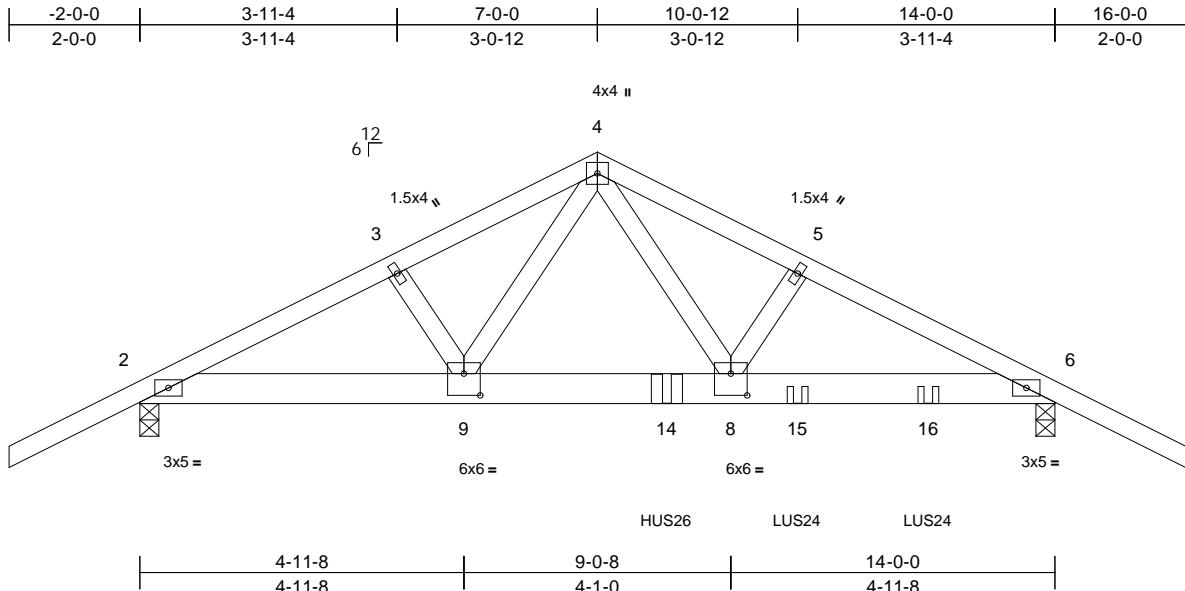
Standard

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

June 23,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpiinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)


MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com

Job 250620-02KM	Truss G01	Truss Type Common Girder	Qty 1	Ply 2	Mitch Brown	T37696791
--------------------	--------------	-----------------------------	----------	-----------------	-------------	-----------

Coastal Truss & Vinyl Siding, Patterson, GA - 31577,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 20 12:42:42
ID:07GwQQiuf7kSqVHuTqm0BYz4Ock-RFC?PsB70Hq3NsgPqnL8w3uITxbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:35.2

Plate Offsets (X, Y): [8:0-3-0,0-4-0], [9:0-3-0,0-4-0]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	-0.05	8-9	>999	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	Vert(CT)	-0.09	8-9	>999	180		
BCLL	0.0*	Rep Stress Incr	NO	WB	Horz(CT)	0.02	6	n/a	n/a		
BCDL	7.0	Code	FBC2023/TPI2014	Matrix-MS						Weight: 159 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x6 SP No.2
WEBS 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.
BOT CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing.

REACTIONS (size) 2=0-3-8, 6=0-3-8

Max Horiz 2=115 (LC 7)
Max Uplift 2=-492 (LC 8), 6=-762 (LC 8)
Max Grav 2=1417 (LC 1), 6=2300 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension
TOP CHORD 1-2=0/48, 2-3=-2687/778, 3-4=-2599/784, 4-5=-3820/1156, 5-6=-3968/1152, 6-7=0/48
BOT CHORD 2-9=-588/2366, 8-9=-479/2058, 6-8=-929/3480
WEBS 4-8=-774/2609, 5-8=-196/112, 4-9=-121/498, 3-9=-138/122

NOTES

- 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:
Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc.
Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-7-0 oc.
Web connected as follows: 2x4 - 1 row at 0-9-0 oc.
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.

- 4) Wind: ASCE 7-22; Vult=130mph (3-second gust)
Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=18ft;
B=50ft; L=30ft; eave=4ft; Cat. II; Exp C; Enclosed;
MWFRS (directional); cantilever left and right exposed;
end vertical left and right exposed; Lumber DOL=1.60
plate grip DOL=1.60
- 5) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 8) All bearings are assumed to be SP No.2 .
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 492 lb uplift at joint 2 and 762 lb uplift at joint 6.
- 10) Use Simpson Strong-Tie HUS26 (14-16d Girder, 4-16d Truss) or equivalent at 8-0-12 from the left end to connect truss(es) to back face of bottom chord.
- 11) Use Simpson Strong-Tie LUS24 (4-10d Girder, 2-10d Truss) or equivalent spaced at 2-0-0 oc max. starting at 10-0-12 from the left end to 12-0-12 to connect truss(es) to back face of bottom chord.
- 12) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S) Standard

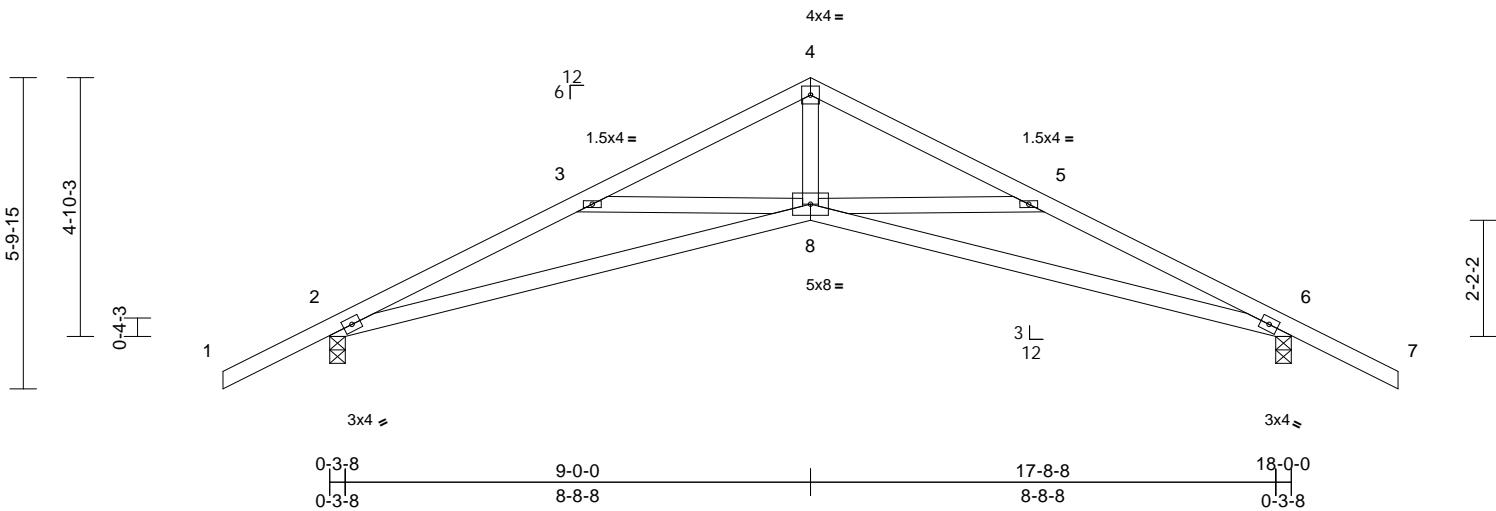
- 1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25
Uniform Loads (lb/ft)
Vert: 1-4=-54, 4-7=-54, 2-6=-14
Concentrated Loads (lb)
Vert: 14=-1391 (B), 15=-579 (B), 16=-579 (B)

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

June 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from the Truss Plate Institute (www.tpiinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)


Job 250620-02KM	Truss S01	Truss Type Scissor	Qty 4	Ply 1	Mitch Brown Job Reference (optional)	T37696792
--------------------	--------------	-----------------------	----------	----------	---	-----------

Coastal Truss & Vinyl Siding, Patterson, GA - 31577,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 20 12:42:46
ID:ICf9K?ad02TtdzWztkagnRz4Ocu-RfC?PsB70Hq3NSgPqnL8w3uITxGKWrCDoi7J4zJC?f

Page: 1

-2-0-0 4-10-15 9-0-0 13-1-1 18-0-0 20-0-0
2-0-0 4-10-15 4-1-1 4-1-1 4-10-15 2-0-0

Scale = 1:43.1

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	-0.16	8-14	>999	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	Vert(CT)	-0.30	8-14	>729	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	Horz(CT)	0.13	6	n/a	n/a		
BCDL	7.0	Code	FBC2023/TPI2014	Matrix-MS						Weight: 80 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 4-3-5 oc purlins.
BOT CHORD Structural wood sheathing directly applied or 7-7-0 oc bracing.

REACTIONS (size) 2=0-3-8, 6=0-3-8
Max Horiz 2=-141 (LC 10)
Max Uplift 2=-276 (LC 12), 6=-276 (LC 12)
Max Grav 2=720 (LC 1), 6=720 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension
TOP CHORD 1-2=0/48, 2-3=-1796/723, 3-4=-1350/456, 4-5=-1350/447, 5-6=-1796/758, 6-7=0/48
BOT CHORD 2-8=-528/1626, 6-8=-595/1626
WEBS 4-8=-207/917, 5-8=-452/373, 3-8=-443/376

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust)
Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=18ft;
B=50ft; L=30ft; eave=4ft; Cat. II; Exp C; Enclosed;
MWFRS (directional) and C-C Zone3 -2-0-0 to 0-9-15,
Zone1 0-9-15 to 9-0-0, Zone2 9-0-0 to 13-4-14, Zone1
13-4-14 to 20-0-0 zone; cantilever left and right
exposed; end vertical left and right exposed; C-C for
members and forces & MWFRS for reactions shown;
Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

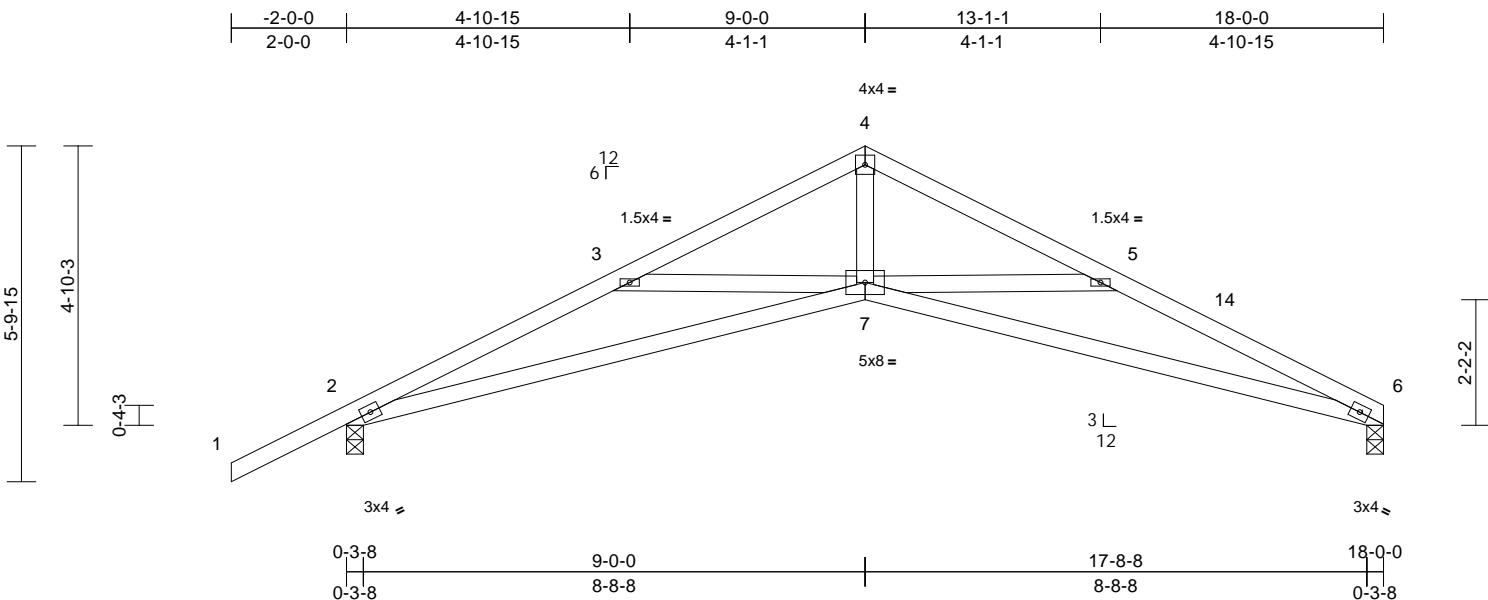
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be SP No.2 .
- 7) Bearing at joint(s) 2, 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 276 lb uplift at joint 2 and 276 lb uplift at joint 6.

LOAD CASE(S) Standard

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

June 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from the Truss Plate Institute ([www.tpiinst.org](#)) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association ([www.sbcsccomponents.com](#))

Job 250620-02KM	Truss S02	Truss Type Scissor	Qty 10	Ply 1	Mitch Brown Job Reference (optional)	T37696793
--------------------	--------------	-----------------------	-----------	----------	---	-----------

Coastal Truss & Vinyl Siding, Patterson, GA - 31577,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 20 12:42:46
ID:nPDXLBFnMbKF759RR5vKez4Oct-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:40

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	-0.16	7-10	>999	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	Vert(CT)	-0.30	7-10	>712	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	Horz(CT)	0.14	6	n/a	n/a		
BCDL	7.0	Code	FBC2023/TPI2014	Matrix-MS						Weight: 77 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 4-1-7 oc purlins.
BOT CHORD Structural wood sheathing directly applied or 6-9-10 oc bracing.

REACTIONS (size) 2=0-3-8, 6=0-3-8
Max Horiz 2=135 (LC 11)
Max Uplift 2=-283 (LC 12), 6=-174 (LC 12)
Max Grav 2=726 (LC 1), 6=606 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/48, 2-3=-1821/855, 3-4=-1376/550, 4-5=-1378/564, 5-6=-1855/882
BOT CHORD 2-7=-717/1649, 6-7=-733/1698
WEBS 4-7=-310/945, 5-7=-493/399, 3-7=-443/367

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust)
Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=18ft;
B=50ft; L=30ft; eave=4ft; Cat. II; Exp C; Enclosed;
MWFRS (directional) and C-C Zone3 -2-0 to 0-9-15,
Zone1 0-9-15 to 9-0-0, Zone2 9-0-0 to 13-4-14, Zone1
13-4-14 to 18-0-0 zone; cantilever left and right
exposed; end vertical left and right exposed; C-C for
members and forces & MWFRS for reactions shown;
Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be SP No.2 .
- 7) Bearing at joint(s) 6, 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 174 lb uplift at joint 6 and 283 lb uplift at joint 2.

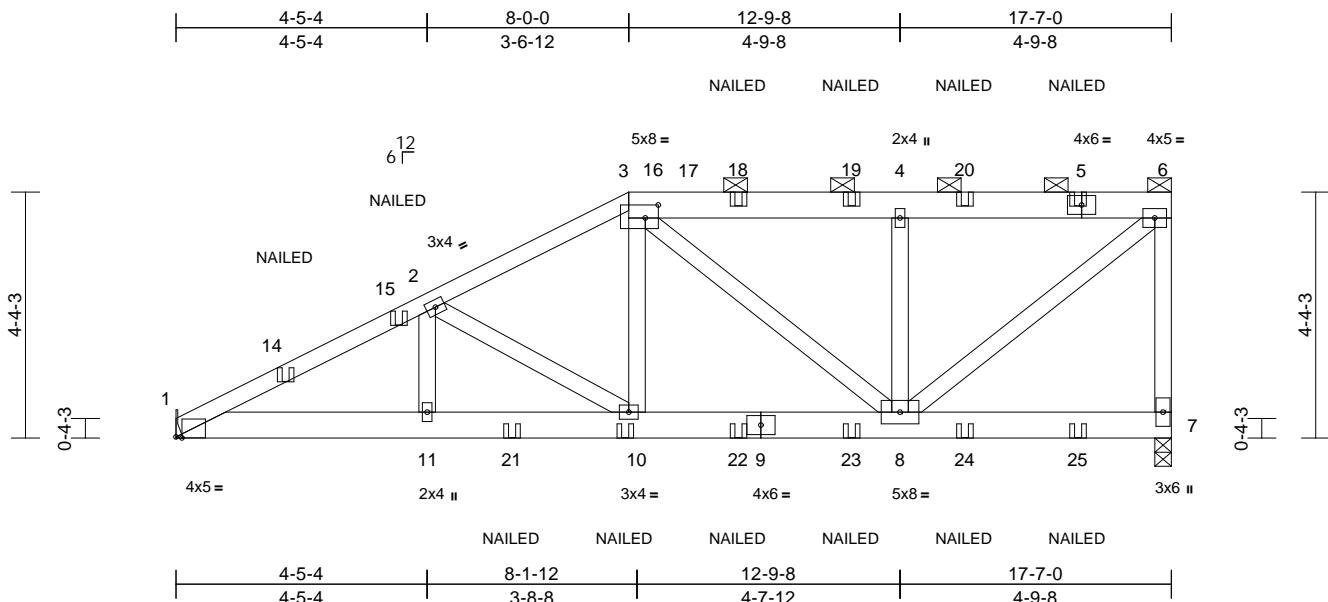
LOAD CASE(S) Standard

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

June 23, 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from the Truss Plate Institute ([www.tpiinst.org](#)) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association ([www.sbcsccomponents.com](#))


MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / [MiTek-Us.com](#)

Job 250620-02KM	Truss H02	Truss Type Half Hip Girder	Qty 1	Ply 1	Mitch Brown Job Reference (optional)	T37696794
--------------------	--------------	-------------------------------	----------	----------	---	-----------

Coastal Truss & Vinyl Siding, Patterson, GA - 31577,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 20 12:42:43
ID:07GwQQiuf7kSqVHuTqm0BYz4Ock-RFC?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJcf

Page: 1

Scale = 1:40.7

Plate Offsets (X, Y): [1:0-1-4,0-0-3], [3:0-2-12,0-2-12]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	-0.06	10-11	>999	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	Vert(CT)	-0.11	10-11	>999	180		
BCLL	0.0*	Rep Stress Incr	NO	WB	Horz(CT)	0.03	7	n/a	n/a		
BCDL	7.0	Code	FBC2023/TPI2014	Matrix-MS						Weight: 117 lb	FT = 20%

LUMBER

TOP CHORD 2x6 SP No.2 *Except* 1-3:2x4 SP No.2
BOT CHORD 2x6 SP No.2
WEBS 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 3-1-10 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 3-6.
BOT CHORD Structural wood sheathing directly applied or 8-3-2 oc bracing.

REACTIONS (size) 1= Mechanical, 7=0-3-8

Max Horiz 1=181 (LC 7)

Max Uplift 1=419 (LC 8), 7=511 (LC 5)

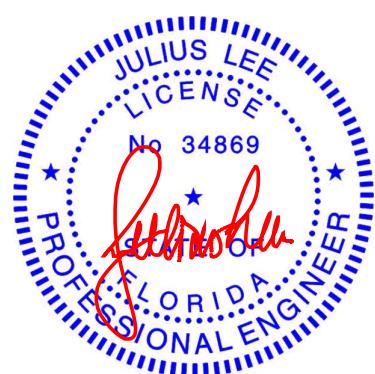
Max Grav 1=1405 (LC 1), 7=1411 (LC 13)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-2719/829, 2-3=-1907/666, 3-4=-1366/541, 4-6=-1364/539, 6-7=-1258/487

BOT CHORD 1-11=-781/2364, 10-11=-781/2364, 8-10=-618/1727, 7-8=-54/69

WEBS 2-11=-40/281, 2-10=-778/244, 3-10=-248/937, 3-8=-440/115, 4-8=-388/274, 6-8=-632/1766


NOTES

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-22; Vult=130mph (3-second gust)
Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=18ft; B=50ft; L=30ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding.

- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearings are assumed to be: , Joint 7 SP No.2 .
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 419 lb uplift at joint 1 and 511 lb uplift at joint 7.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidelines.
- In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

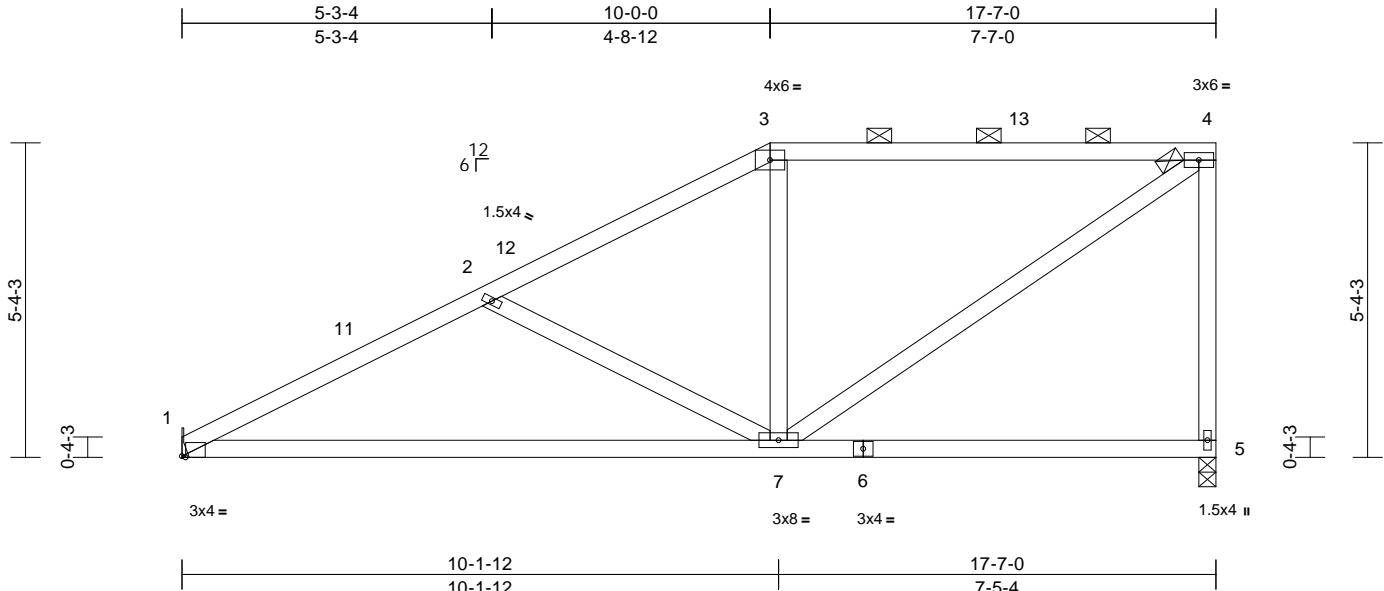
LOAD CASE(S) Standard

- Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25
Uniform Loads (lb/ft)
Concentrated Loads (lb)
Vert: 1-3=-54, 3-6=-54, 1-7=-14
Vert: 5=-29 (B), 10=-239 (B), 14=-199 (B), 15=-199 (B), 18=-29 (B), 19=-29 (B), 20=-29 (B), 21=-239 (B), 22=-159 (B), 23=-159 (B), 24=-159 (B), 25=-159 (B)

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

June 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpiinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

Job 250620-02KM	Truss H03	Truss Type Half Hip	Qty 1	Ply 1	Mitch Brown Job Reference (optional)	T37696795
--------------------	--------------	------------------------	----------	----------	---	-----------

Coastal Truss & Vinyl Siding, Patterson, GA - 31577,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 20 12:42:43
ID:QRQeUdX6ypzR8LDceuWkdbz4Ocy-RfC?PsB70Hq3NSgPqnL8w3uTxbGKWrCDoi7J4zJC?d

Page: 1

Scale = 1:39.2

Plate Offsets (X, Y): [1:0-0-12,Edge]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	-0.19	7-10	>999	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	Vert(CT)	-0.35	7-10	>602	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	Horz(CT)	0.01	5	n/a	n/a		
BCDL	7.0	Code	FBC2023/TPI2014	Matrix-MS						Weight: 89 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 5-4-14 oc purlins, except end verticals, and 2-0-0 oc purlins (4-10-5 max.): 3-4.
BOT CHORD Structural wood sheathing directly applied or 7-10-1 oc bracing.

REACTIONS (size) 1= Mechanical, 5=0-3-8

Max Horiz 1=234 (LC 11)
Max Uplift 1=170 (LC 12), 5=-196 (LC 9)
Max Grav 1=593 (LC 1), 5=593 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-964/402, 2-3=-666/291, 3-4=-540/297,
4-5=-554/298

BOT CHORD 1-7=-556/860, 5-7=-99/113

WEBS 2-7=-357/233, 3-7=-64/150, 4-7=-305/624

NOTES

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-22; Vult=130mph (3-second gust)
Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=18ft;
B=50ft; L=30ft; eave=4ft; Cat. II; Exp C; Enclosed;
MWFRS (directional) and C-C Zone3 0-0-0 to 3-0-0,
Zone1 3-0-0 to 10-0-0, Zone2 10-0-0 to 14-2-15, Zone1
14-2-15 to 17-5-4 zone; cantilever left and right
exposed; end vertical left and right exposed; C-C for
members and forces & MWFRS for reactions shown;
Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

7) Bearings are assumed to be: , Joint 5 SP No.2 .

8) Refer to girder(s) for truss to truss connections.
9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 170 lb uplift at joint 1 and 196 lb uplift at joint 5.

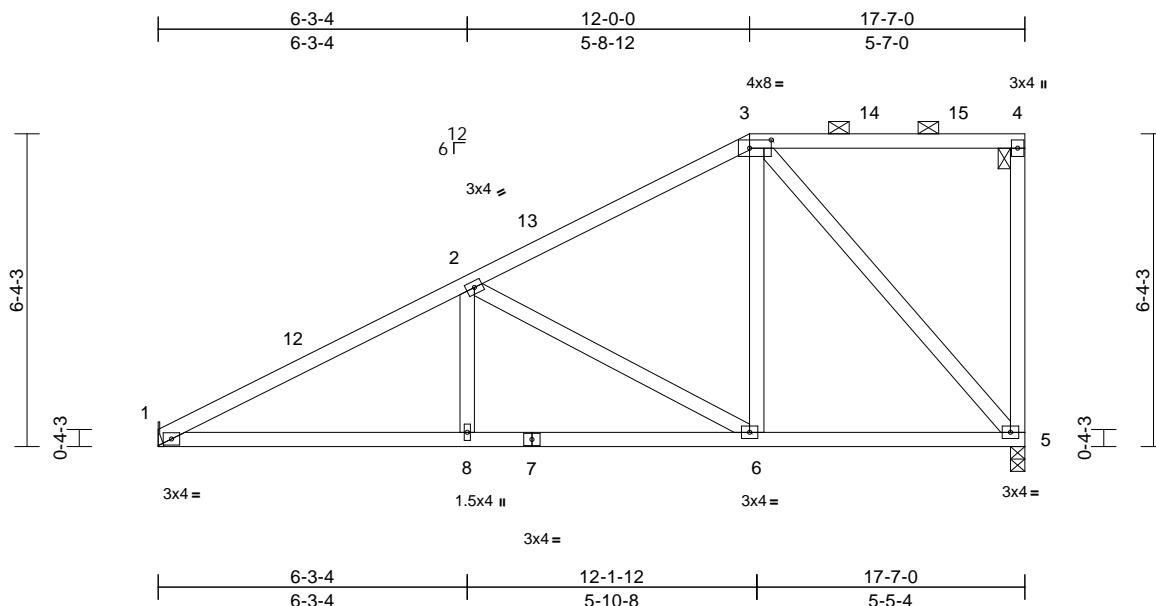
10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

June 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpiinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

Job 250620-02KM	Truss H04	Truss Type Half Hip	Qty 1	Ply 1	Mitch Brown Job Reference (optional)	T37696796
--------------------	--------------	------------------------	----------	----------	---	-----------

Coastal Truss & Vinyl Siding, Patterson, GA - 31577,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 20 12:42:43
ID:ud_0hzYkj75ImVoOCb1z9oz4Ocx-Rfc?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJCf

Page: 1

Scale = 1:46.7

Plate Offsets (X, Y): [3:0-5-4,0-2-0]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	0.05	8-11	>999	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	Vert(CT)	-0.09	8-11	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	Horz(CT)	0.02	5	n/a	n/a		
BCDL	7.0	Code	FBC2023/TPI2014	Matrix-MS						Weight: 97 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.2

BRACING

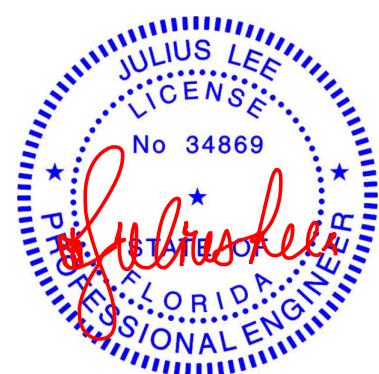
TOP CHORD Structural wood sheathing directly applied or 5-6-6 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 3-4.
BOT CHORD Structural wood sheathing directly applied or 7-11-0 oc bracing.

REACTIONS (size) 1= Mechanical, 5=0-3-8
Max Horiz 1=280 (LC 11)
Max Uplift 1=168 (LC 12), 5=-195 (LC 9)
Max Grav 1=593 (LC 1), 5=593 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-971/368, 2-3=-501/261, 3-4=-144/154, 4-5=-145/101

BOT CHORD 1-8=-535/865, 6-8=-535/865, 5-6=-305/424
WEBS 2-8=0/219, 2-6=-531/263, 3-6=-79/369, 3-5=-563/307


NOTES

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-22; Vult=130mph (3-second gust)
Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=18ft;
B=50ft; L=30ft; eave=4ft; Cat. II; Exp C; Enclosed;
MWFRS (directional) and C-C Zone3 0-0-0 to 3-0-0,
Zone1 3-0-0 to 12-0-0, Zone2 12-0-0 to 16-2-15, Zone1
16-2-15 to 17-5-4 zone; cantilever left and right
exposed; end vertical left and right exposed; C-C for
members and forces & MWFRS for reactions shown;
Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding.

- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearings are assumed to be: , Joint 5 SP No.2 .
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 168 lb uplift at joint 1 and 195 lb uplift at joint 5.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

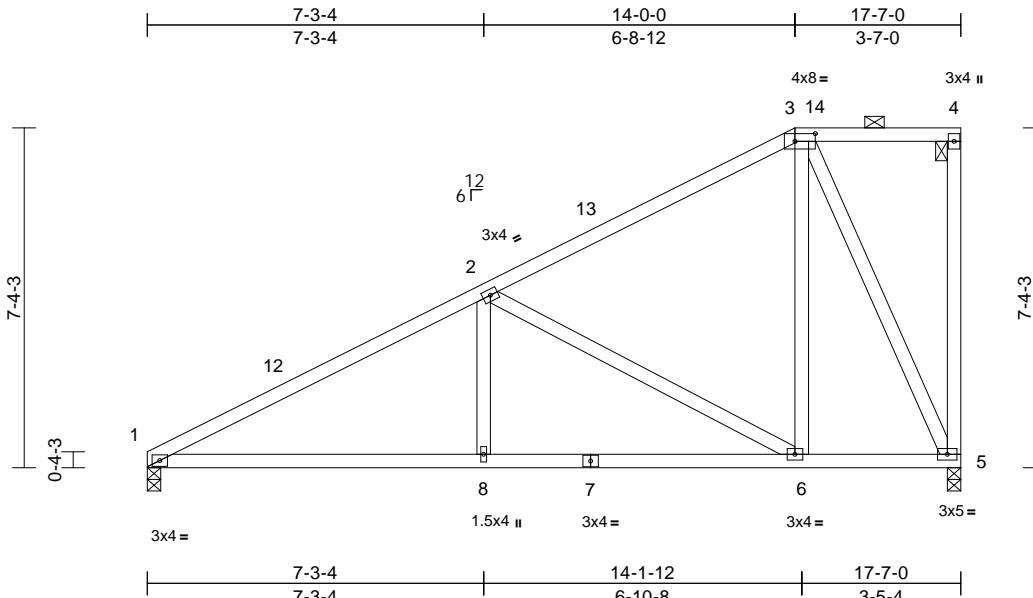
LOAD CASE(S)

Standard

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

June 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from the Truss Plate Institute ([www.tpiinst.org](#)) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association ([www.sbcsccomponents.com](#))

Job 250620-02KM	Truss H05	Truss Type Half Hip	Qty 1	Ply 1	Mitch Brown Job Reference (optional)	T37696797
--------------------	--------------	------------------------	----------	----------	---	-----------

Coastal Truss & Vinyl Siding, Patterson, GA - 31577,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 20 12:42:43
ID:ud_0hzYkj75ImVoOcb1z9oz4Ocx-Rfc?PsB70Hq3NSgPqnL8w3uiTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:49.8

Plate Offsets (X, Y): [3:0-5-4,0-2-0]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	0.08	8-11	>999	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	Vert(CT)	-0.14	8-11	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	Horz(CT)	0.02	5	n/a	n/a		
BCDL	7.0	Code	FBC2023/TPI2014	Matrix-MS						Weight: 102 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 5-5-3 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 3-4.
BOT CHORD Structural wood sheathing directly applied or 7-11-7 oc bracing.

REACTIONS (size) 1=0-3-8, 5=0-3-8
Max Horiz 1=327 (LC 11)
Max Uplift 1=-165 (LC 12), 5=-193 (LC 9)
Max Grav 1=593 (LC 1), 5=593 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-927/351, 2-3=-365/225, 3-4=-158/172, 4-5=-81/80

BOT CHORD 1-8=-518/831, 6-8=-518/831, 5-6=-250/328
WEBS 2-8=0/267, 2-6=-637/305, 3-6=-120/390, 3-5=-569/321

NOTES

1) Wind: ASCE 7-22; Vult=130mph (3-second gust)
Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=18ft;
B=50ft; L=30ft; eave=4ft; Cat. II; Exp C; Enclosed;
MWFRS (directional) and C-C Zone3 0-0-0 to 3-0-0,
Zone1 3-0-0 to 14-0-0, Zone3 14-0-0 to 17-5-4 zone;
cantilever left and right exposed; end vertical left and
right exposed; C-C for members and forces & MWFRS
for reactions shown; Lumber DOL=1.60 plate grip
DOL=1.60

2) Building Designer / Project engineer responsible for
verifying applied roof live load shown covers rain loading
requirements specific to the use of this truss component.

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom
chord live load nonconcurrent with any other live loads.

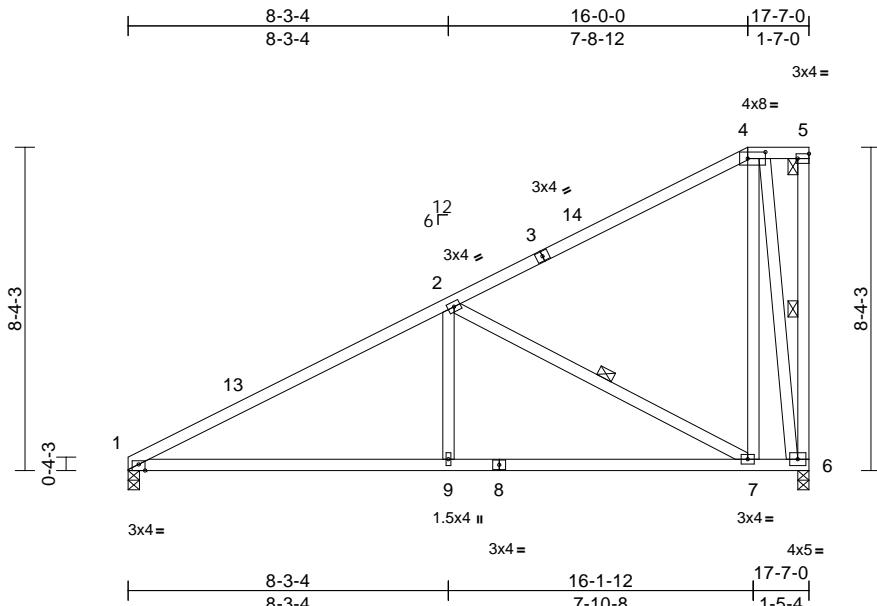
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.2 .
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 165 lb uplift at joint 1 and 193 lb uplift at joint 5.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

June 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from Truss Plate Institute (www.tpiinst.org) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association (www.sbcsccomponents.com)

Job 250620-02KM	Truss H06	Truss Type Half Hip	Qty 1	Ply 1	Mitch Brown Job Reference (optional)	T37696798
--------------------	--------------	------------------------	----------	----------	---	-----------

Coastal Truss & Vinyl Siding, Patterson, GA - 31577,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 20 12:42:43
ID:ud_0hzYkj75ImVoOcb1z9oz4Ocx-Rfc?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:59.5

Plate Offsets (X, Y): [1:0-2-0,Edge], [4:0-5-8,0-2-0], [5:Edge,0-1-8]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	0.13	9-12	>999	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	Vert(CT)	-0.22	9-12	>956	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	Horz(CT)	0.02	6	n/a	n/a		
BCDL	7.0	Code	FBC2023/TPI2014	Matrix-MS						Weight: 109 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 5-2-5 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 4-5.
BOT CHORD Structural wood sheathing directly applied or 8-0-8 oc bracing.
WEBS 1 Row at midpt 5-6, 2-7

REACTIONS (size) 1=0-3-8, 6=0-3-8
Max Horiz 1=373 (LC 11)
Max Uplift 1=-162 (LC 12), 6=-192 (LC 9)
Max Grav 1=593 (LC 1), 6=608 (LC 17)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-899/339, 2-4=-294/191, 4-5=-177/192,
5-6=-109/101
BOT CHORD 1-9=-489/788, 7-9=-489/788, 6-7=-182/230
WEBS 2-9=0/307, 2-7=-734/346, 4-7=-197/462,
4-6=-657/352

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust)
Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=18ft;
B=50ft; L=30ft; eave=4ft; Cat. II; Exp C; Enclosed;
MWFRS (directional) and C-C Zone3 0-0-0 to 3-0-0,
Zone1 3-0-0 to 16-0-0, Zone3 16-0-0 to 17-5-4 zone;
cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS
for reactions shown; Lumber DOL=1.60 plate grip
DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.

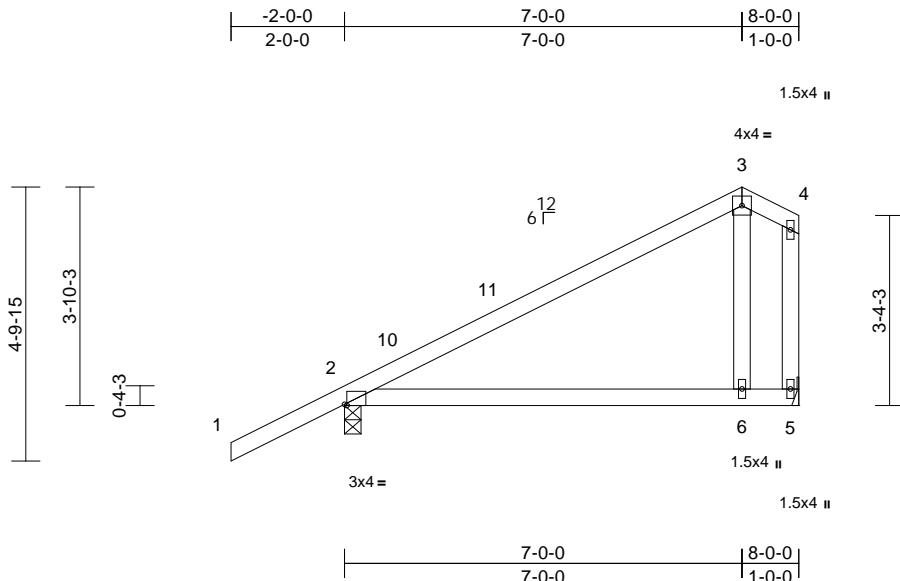
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 7) All bearings are assumed to be SP No.2 .
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 192 lb uplift at joint 6 and 162 lb uplift at joint 1.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

June 23,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from Truss Plate Institute ([www.tpiinst.org](#)) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association ([www.sbcsccomponents.com](#))

Job 250620-02KM	Truss T01	Truss Type Common	Qty 2	Ply 1	Mitch Brown Job Reference (optional)	T37696799
--------------------	--------------	----------------------	----------	----------	---	-----------

Coastal Truss & Vinyl Siding, Patterson, GA - 31577,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 20 12:42:46
ID:FbnvkhctYfjbsGgL?9c8ssz4Ocs-RfC?PsB70Hq3NSgPqnL8w3u1TxbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:40.6

Plate Offsets (X, Y): [2:0-0-8,Edge]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	0.33	6-9	>283	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	Vert(CT)	-0.35	6-9	>273	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	Horz(CT)	-0.01	2	n/a	n/a		
BCDL	7.0	Code	FBC2023/TPI2014	Matrix-MP						Weight: 38 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.2
OTHERS 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 5-6-9 oc purlins.
BOT CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing.

REACTIONS (size) 2=0-3-8, 5= Mechanical
Max Horiz 2=175 (LC 11)
Max Uplift 2=186 (LC 12), 5=-67 (LC 12)
Max Grav 2=389 (LC 1), 5=253 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/48, 2-3=-348/118, 3-4=-89/113, 4-5=-57/90

BOT CHORD 2-6=-72/305, 5-6=-72/78

WEBS 3-6=-231/343

NOTES

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-22; Vult=130mph (3-second gust)
Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=18ft; B=50ft; L=30ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Zone3 2-0-0 to 1-0-0, Zone1 1-0-0 to 7-0-0, Zone3 7-0-0 to 7-10-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearings are assumed to be: Joint 2 SP No.2 .
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 186 lb uplift at joint 2 and 67 lb uplift at joint 5.

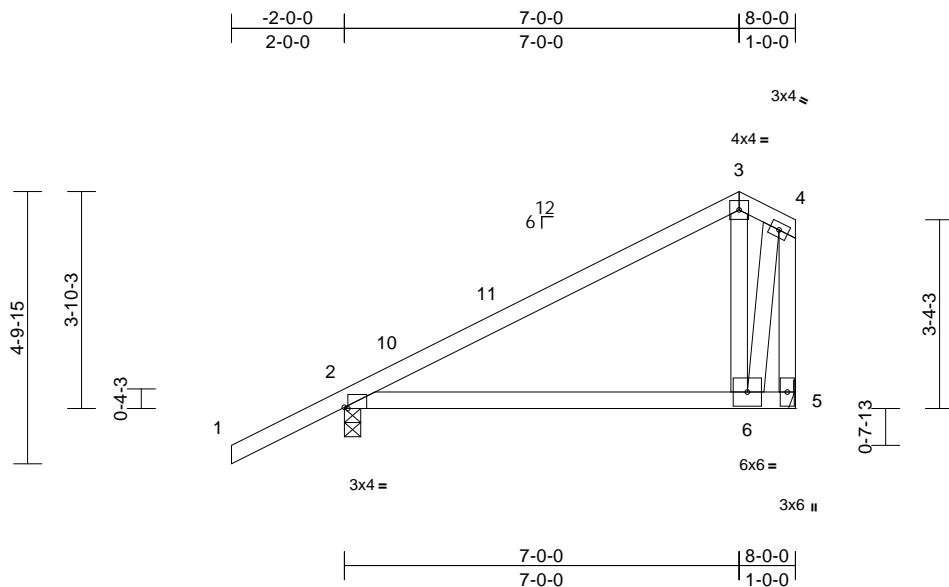
LOAD CASE(S)

Standard

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

June 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from Truss Plate Institute ([www.tpiinst.org](#)) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association ([www.sbcsccomponents.com](#))

Job 250620-02KM	Truss T02	Truss Type Common	Qty 1	Ply 1	Mitch Brown Job Reference (optional)	T37696800
--------------------	--------------	----------------------	----------	----------	---	-----------

Coastal Truss & Vinyl Siding, Patterson, GA - 31577,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 20 12:42:46
ID:FbnvkhctYfjbsGgL?9c8ssz4Ocs-RfC?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:40.9

Plate Offsets (X, Y): [2:0-0-12,Edge]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	0.11	6-9	>821	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	Vert(CT)	-0.12	6-9	>792	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	Horz(CT)	0.00	2	n/a	n/a		
BCDL	7.0	Code	FBC2023/TPI2014	Matrix-MP						Weight: 43 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.
BOT CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing.

REACTIONS (size) 2=0-3-8, 5= Mechanical

Max Horiz 2=175 (LC 11)
Max Uplift 2=186 (LC 12), 5=67 (LC 12)
Max Grav 2=389 (LC 1), 5=253 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/48, 2-3=-351/83, 3-4=-165/133, 4-5=-485/469

BOT CHORD 2-6=-150/302, 5-6=-72/78

WEBS 3-6=-112/234, 4-6=-407/452

NOTES

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-22; Vult=130mph (3-second gust)
Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=18ft; B=50ft; L=30ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Zone3 2-0-0 to 1-0-0, Zone1 1-0-0 to 7-0-0, Zone3 7-0-0 to 7-10-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearings are assumed to be: Joint 2 SP No.2 .
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 186 lb uplift at joint 2 and 67 lb uplift at joint 5.

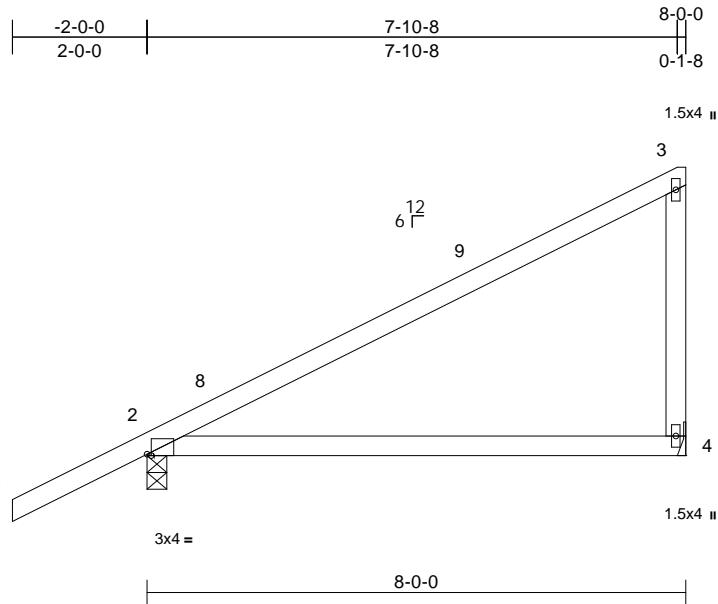
LOAD CASE(S)

Standard

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

June 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from Truss Plate Institute ([www.tpiinst.org](#)) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association ([www.sbcsccomponents.com](#))

Job 250620-02KM	Truss H07	Truss Type Half Hip	Qty 1	Ply 1	Mitch Brown Job Reference (optional)	T37696801
--------------------	--------------	------------------------	----------	----------	---	-----------

Coastal Truss & Vinyl Siding, Patterson, GA - 31577,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 20 12:42:43
ID: MqYOvJZNURD9OfMamJYCi0z4Ocw-RfC?PsB70Hq3NSgPqnL8w3u1TxbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:34.2

Plate Offsets (X, Y): [2:0-0-12,Edge]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	0.19	4-7	>500	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	Vert(CT)	-0.31	4-7	>308	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	Horz(CT)	0.01	2	n/a	n/a		
BCDL	7.0	Code	FBC2023/TPI2014	Matrix-MP						Weight: 34 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.2

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 82 lb uplift at joint 4 and 183 lb uplift at joint 2.

LOAD CASE(S) Standard

BRACING

TOP CHORD Structural wood sheathing directly applied or 6'-0" oc purlins, except end verticals.
BOT CHORD Structural wood sheathing directly applied or 10'-0" oc bracing.

REACTIONS (size) 2=0-3-8, 4= Mechanical
Max Horiz 2=203 (LC 11)
Max Uplift 2=183 (LC 12), 4=82 (LC 9)
Max Grav 2=389 (LC 1), 4=269 (LC 17)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/48, 2-3=-299/154, 3-4=-211/269
BOT CHORD 2-4=-91/225

NOTES

- Wind: ASCE 7-22; Vult=130mph (3-second gust)
Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=18ft;
B=50ft; L=30ft; eave=4ft; Cat. II; Exp C; Enclosed;
MWFRS (directional) and C-C Zone3 -2-0-0 to 1-0-0,
Zone1 1-0-0 to 7-10-4 zone; cantilever left and right
exposed; end vertical left and right exposed; C-C for
members and forces & MWFRS for reactions shown;
Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearings are assumed to be: Joint 2 SP No.2 .
- Refer to girder(s) for truss to truss connections.

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

June 23, 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from Truss Plate Institute ([www.tpiinst.org](#)) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association ([www.sbcsccomponents.com](#))

Job 250620-02KM	Truss J05	Truss Type Jack-Partial	Qty 4	Ply 1	Mitch Brown Job Reference (optional)	T37696802
--------------------	--------------	----------------------------	----------	----------	---	-----------

Coastal Truss & Vinyl Siding, Patterson, GA - 31577,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 20 12:42:45
ID:ICf9K?ad02TtdzWztkagnRz4Ocu-RfC?PsB70Hq3NSgPqnL8w3uITxGKWrCDoI7J4zJC?f

Page: 1

Scale = 1:32.9

Plate Offsets (X, Y): [2:0-2-10,0-1-8]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	-0.13	6-9	>762	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	Vert(CT)	-0.22	6-9	>442	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	Horz(CT)	0.00	5	n/a	n/a		
BCDL	7.0	Code	FBC2023/TPI2014	Matrix-MP						Weight: 35 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.
BOT CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing.

REACTIONS (size) 2=0-3-8, 4= Mechanical, 5= Mechanical
Max Horiz 2=203 (LC 12)
Max Uplift 2=-154 (LC 12), 4=-66 (LC 12), 5=-36 (LC 12)
Max Grav 2=391 (LC 1), 4=86 (LC 17), 5=180 (LC 17)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/48, 2-3=-297/110, 3-4=-76/32
BOT CHORD 2-6=-285/266, 5-6=0/0
WEBS 3-6=-302/324

NOTES

- Wind: ASCE 7-22; Vult=130mph (3-second gust)
Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=18ft; B=50ft; L=30ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Zone3 -2-0-0 to 1-0-0, Zone1 1-0-0 to 7-11-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

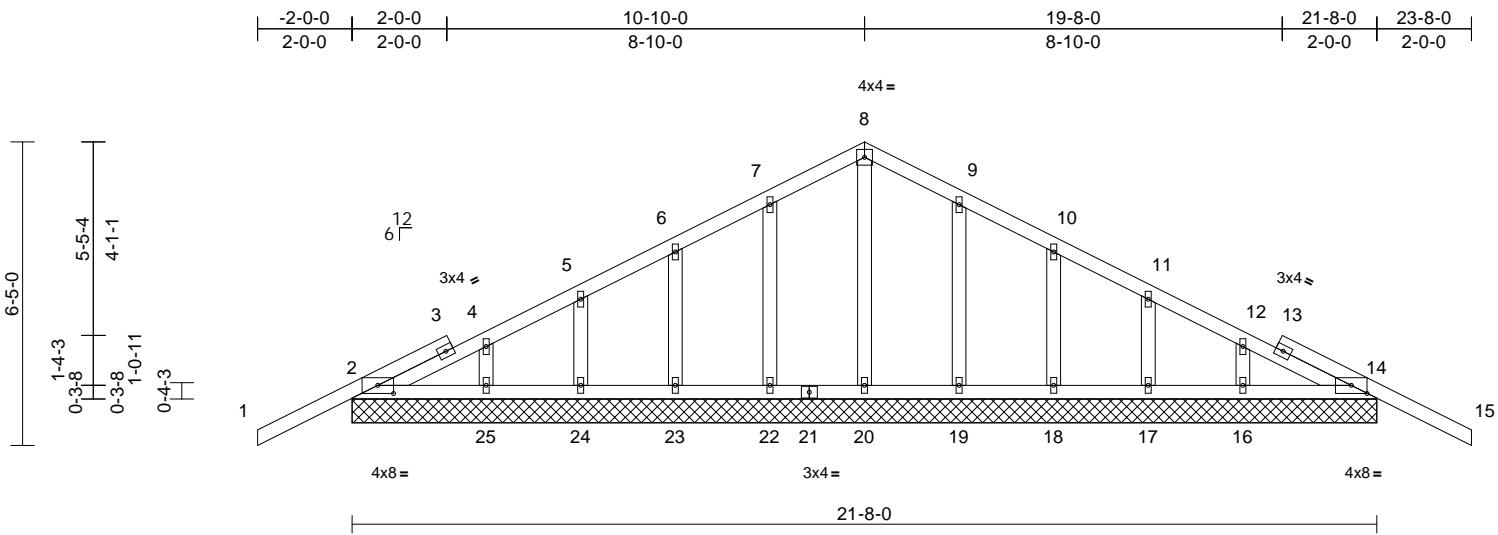
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearings are assumed to be: , Joint 2 SP No.2 .
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 66 lb uplift at joint 4, 154 lb uplift at joint 2 and 36 lb uplift at joint 5.

LOAD CASE(S)

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

June 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from Truss Plate Institute (www.tpiinst.org) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association (www.sbcsccomponents.com)

Job 250620-02KM	Truss GE02	Truss Type Common Supported Gable	Qty 1	Ply 1	Mitch Brown Job Reference (optional)	T37696803
--------------------	---------------	--------------------------------------	----------	----------	---	-----------

Coastal Truss & Vinyl Siding, Patterson, GA - 31577,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 20 12:42:42
ID:QRQeUdX6ypzR8LDceuWkdbz4Ocy-RfC?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?

Page: 1

Scale = 1:48.7

Plate Offsets (X, Y): [2:0-4-0,0-2-1], [14:0-4-0,0-2-1]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	Horz(CT)	0.00	29	n/a	n/a		
BCDL	7.0	Code	FBC2023/TPI2014	Matrix-MS						Weight: 116 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
OTHERS 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.
BOT CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing.

REACTIONS (size) 2=21-8-0, 14=21-8-0, 16=21-8-0, 17=21-8-0, 18=21-8-0, 19=21-8-0, 20=21-8-0, 22=21-8-0, 23=21-8-0, 24=21-8-0, 25=21-8-0

Max Horiz 2=156 (LC 10)

Max Uplift 2=164 (LC 12), 14=164 (LC 12), 16=22 (LC 8), 17=76 (LC 12), 18=55 (LC 12), 19=60 (LC 12), 22=60 (LC 12), 23=55 (LC 12), 24=76 (LC 12), 25=20 (LC 9)

Max Grav 2=240 (LC 1), 14=240 (LC 1), 16=136 (LC 18), 17=144 (LC 18), 18=138 (LC 18), 19=147 (LC 18), 20=125 (LC 17), 22=149 (LC 17), 23=137 (LC 17), 24=144 (LC 17), 25=131 (LC 17)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/48, 2-4=-105/104, 4-5=-91/92, 5-6=-77/105, 6-7=-66/174, 7-8=-79/243, 8-9=-79/243, 9-10=-56/174, 10-11=-35/105, 11-12=-37/31, 12-14=-99/44, 14-15=0/48

BOT CHORD 2-25=-41/155, 24-25=-41/155, 23-24=-41/155, 22-23=-41/155, 20-22=-41/155, 19-20=-41/155, 18-19=-41/155, 17-18=-41/155, 16-17=-41/155, 14-16=-48/161

WEBS

8-20=-111/9, 7-22=-120/139, 6-23=-109/137, 5-24=-115/149, 4-25=-106/118, 9-19=-119/139, 10-18=-110/137, 11-17=-115/149, 12-16=-109/116

LOAD CASE(S)

Standard

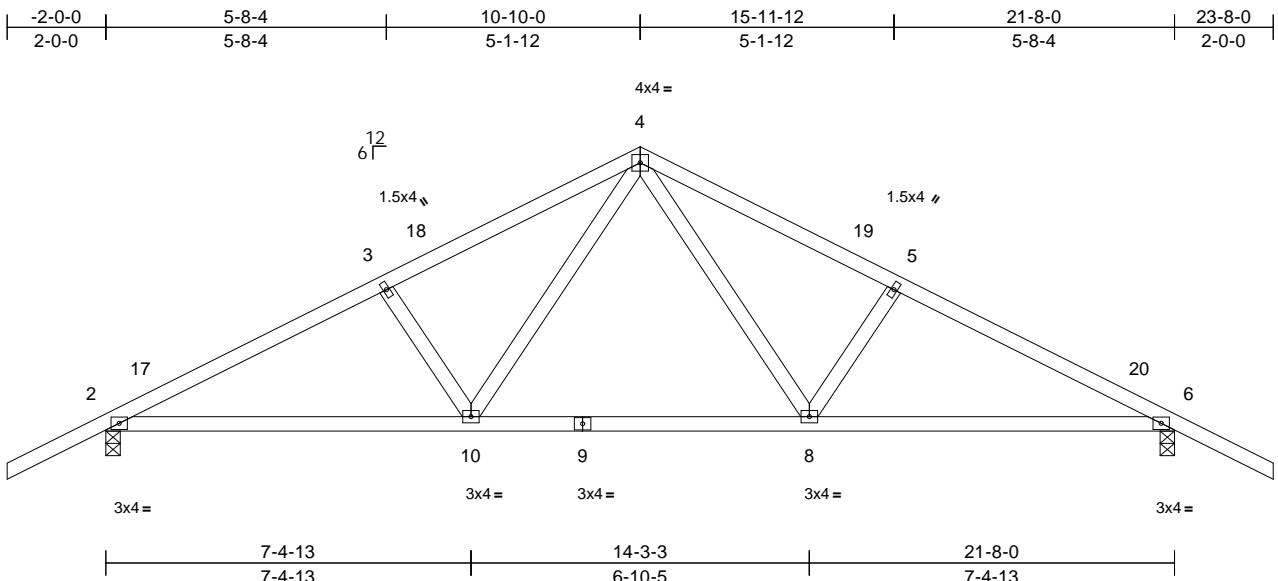
NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust)
Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=18ft; B=50ft; L=30ft; eave=2ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Zone3 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) All plates are 1.5x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) All bearings are assumed to be SP No.2.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 164 lb uplift at joint 2, 164 lb uplift at joint 14, 60 lb uplift at joint 22, 55 lb uplift at joint 23, 76 lb uplift at joint 24, 20 lb uplift at joint 25, 60 lb uplift at joint 19, 55 lb uplift at joint 18, 76 lb uplift at joint 17, 22 lb uplift at joint 16, 164 lb uplift at joint 2 and 164 lb uplift at joint 14.

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

June 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpiinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

Job 250620-02KM	Truss T03	Truss Type Common	Qty 2	Ply 1	Mitch Brown Job Reference (optional)	T37696804
--------------------	--------------	----------------------	----------	----------	---	-----------

Coastal Truss & Vinyl Siding, Patterson, GA - 31577,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 20 12:42:46
ID:FbnvkhctYfjbsGgL?9c8ssz4Ocs-RfC?PsB70Hq3NSgPqnL8w3u1TxbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:46.7

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	-0.07	10-13	>999	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	Vert(CT)	-0.13	10-13	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	Horz(CT)	0.03	6	n/a	n/a		
BCDL	7.0	Code	FBC2023/TPI2014	Matrix-MS						Weight: 103 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 5-0-7 oc purlins.
BOT CHORD Structural wood sheathing directly applied or 9-11-3 oc bracing.

REACTIONS (size) 2=0-3-8, 6=0-3-8
Max Horiz 2=-164 (LC 10)
Max Uplift 2=-313 (LC 12), 6=-313 (LC 12)

Max Grav 2=845 (LC 1), 6=845 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/48, 2-3=-1262/506, 3-4=-1112/502, 4-5=-1112/502, 5-6=-1262/506, 6-7=0/48

BOT CHORD 2-10=-319/1082, 8-10=-132/719, 6-8=-353/1082

WEBS 4-8=-174/420, 5-8=-296/240, 4-10=-174/420, 3-10=-296/240

NOTES

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-22; Vult=130mph (3-second gust)
Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=18ft; B=50ft; L=30ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Zone3 -2-0-0 to 1-0-0, Zone1 1-0-0 to 10-10-0, Zone2 10-10-0 to 15-0-15, Zone1 15-0-15 to 23-8-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

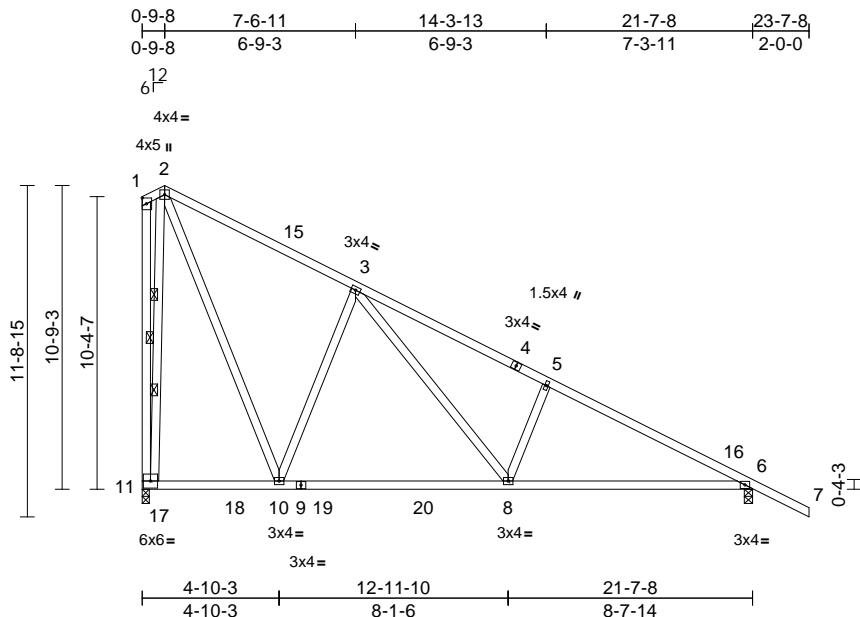
6) All bearings are assumed to be SP No.2 .
7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 313 lb uplift at joint 2 and 313 lb uplift at joint 6.

LOAD CASE(S) Standard

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

June 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from Truss Plate Institute ([www.tpiinst.org](#)) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association ([www.sbcsccomponents.com](#))

Job 250620-02KM	Truss T04	Truss Type Common	Qty 1	Ply 1	Mitch Brown Job Reference (optional)	T37696805
--------------------	--------------	----------------------	----------	----------	---	-----------

Coastal Truss & Vinyl Siding, Patterson, GA - 31577,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 20 12:42:46
ID:jnLHy1dVJzrRUQFYZs8NP3z4Ocr-RfC?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:81.6

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	-0.15	8-10	>999	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	Vert(CT)	-0.24	8-14	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	Horz(CT)	0.02	6	n/a	n/a		
BCDL	7.0	Code	FBC2023/TPI2014	Matrix-MS						Weight: 147 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 4-5-4 oc purlins, except end verticals.
BOT CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing.

WEBS 1 Row at midpt 2-11
WEBS 2 Rows at 1/3 pts 1-11

REACTIONS (size) 6=0-3-8, 11=0-3-0

Max Horiz 11=-498 (LC 10)

Max Uplift 6=-301 (LC 12), 11=-225 (LC 12)

Max Grav 6=968 (LC 18), 11=983 (LC 18)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-366/398, 2-3=-587/367, 3-5=-1284/482, 5-6=-1371/432, 6-7=0/48, 1-11=-395/403

BOT CHORD 10-11=-286/555, 8-10=0/730, 6-8=-200/1185

WEBS 2-10=-354/983, 3-10=-720/404,

3-8=-234/814, 5-8=-370/257, 2-11=-1069/864

NOTES

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-22; Vult=130mph (3-second gust)
Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=18ft;
B=50ft; L=30ft; eave=4ft; Cat. II; Exp C; Enclosed;
MWFRS (directional) and C-C Zone3 20-2-4 to 20-10-0,
Zone2 20-10-0 to 25-0-15, Zone1 25-0-15 to 43-8-0
zone; cantilever left and right exposed ; end vertical left
and right exposed; C-C for members and forces &
MWFRS for reactions shown; Lumber DOL=1.60 plate
grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

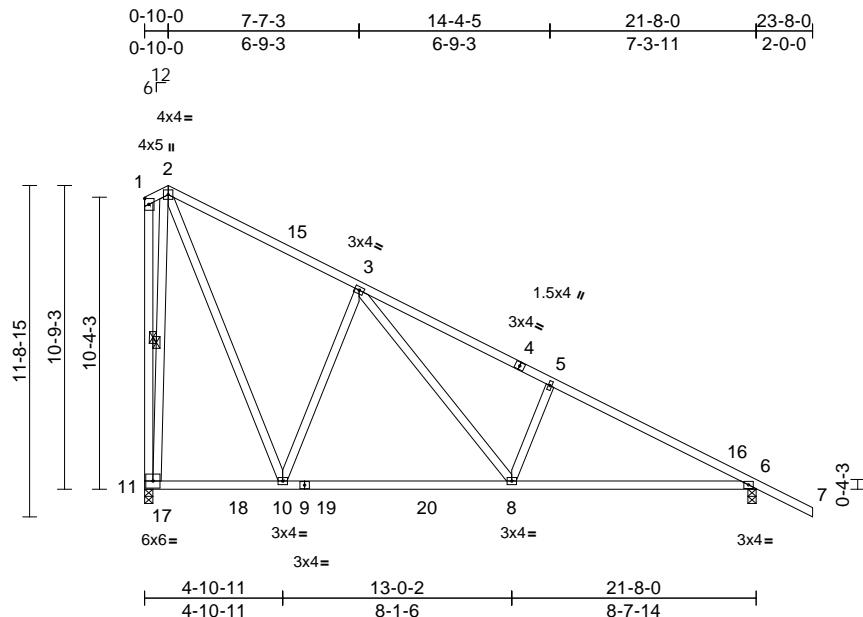
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 7.0psf.
- All bearings are assumed to be SP No.2 .
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 225 lb uplift at joint 11 and 301 lb uplift at joint 6.

LOAD CASE(S) Standard

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

June 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpiinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

Job 250620-02KM	Truss T05	Truss Type Common	Qty 7	Ply 1	Mitch Brown Job Reference (optional)	T37696806
--------------------	--------------	----------------------	----------	----------	---	-----------

Coastal Truss & Vinyl Siding, Patterson, GA - 31577,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 20 12:42:47
ID:jnLHy1dVJzrRUQFYZs8NP3z4Ocr-RfC?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:81.6

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	-0.15	8-10	>999	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	Vert(CT)	-0.24	8-14	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	Horz(CT)	0.02	6	n/a	n/a		
BCDL	7.0	Code	FBC2023/TPI2014	Matrix-MS						Weight: 147 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 4-5-4 oc purlins, except end verticals.
BOT CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing.

WEBS 1 Row at midpt 1-11, 2-11

REACTIONS (size) 6=0-3-8, 11=0-3-8

Max Horiz 11=497 (LC 10)

Max Uplift 6=301 (LC 12), 11=226 (LC 12)

Max Grav 6=970 (LC 18), 11=984 (LC 18)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=360/392, 2-3=590/369, 3-5=1288/483, 5-6=1376/433, 6-7=0/48, 1-11=378/390

BOT CHORD 10-11=282/551, 8-10=0/733, 6-8=-200/1187

WEBS 2-10=-353/984, 3-10=-719/403,

3-8=-234/814, 5-8=-370/257, 2-11=-1064/847

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust)
Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=18ft;
B=50ft; L=30ft; eave=4ft; Cat. II; Exp C; Enclosed;
MWFRS (directional) and C-C Zone3 20-1-12 to
20-10-0, Zone2 20-10-0 to 25-0-15, Zone1 25-0-15 to
43-8-0 zone; cantilever left and right exposed; end
vertical left and right exposed; C-C for members and
forces & MWFRS for reactions shown; Lumber
DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for
verifying applied roof live load shown covers rain loading
requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom
chord live load nonconcurrent with any other live loads.

- 5) * This truss has been designed for a live load of 20.0psf
on the bottom chord in all areas where a rectangle
3-06-00 tall by 2-00-00 wide will fit between the bottom
chord and any other members, with BCDL = 7.0psf.
- 6) All bearings are assumed to be SP No.2 .
- 7) Provide mechanical connection (by others) of truss to
bearing plate capable of withstanding 226 lb uplift at joint
11 and 301 lb uplift at joint 6.

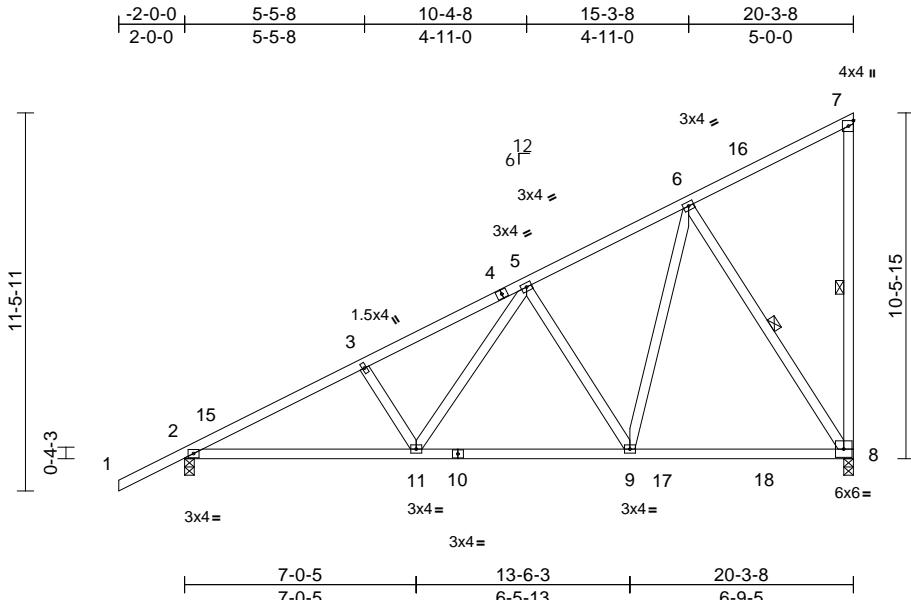
LOAD CASE(S) Standard

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

June 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from the Truss Plate Institute ([www.tpiinst.org](#)) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association ([www.sbcsccomponents.com](#))


MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / [MiTek-Us.com](#)

Job 250620-02KM	Truss M02	Truss Type Monopitch	Qty 2	Ply 1	Mitch Brown Job Reference (optional)	T37696807
--------------------	--------------	-------------------------	----------	----------	---	-----------

Coastal Truss & Vinyl Siding, Patterson, GA - 31577,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 20 12:42:45
ID:ICf9K?ad02TtdzWztkagnRz4Ocu-RfC?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:69.9

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	-0.10	8-9	>999	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	Vert(CT)	-0.15	8-9	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	Horz(CT)	0.02	8	n/a	n/a		
BCDL	7.0	Code	FBC2023/TPI2014	Matrix-MS						Weight: 128 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 4-11-6 oc purlins, except end verticals.
BOT CHORD Structural wood sheathing directly applied or 7-1-1 oc bracing.

WEBS 1 Row at midpt 7-8, 6-8

REACTIONS (size) 2=0-3-8, 8=0-3-8

Max Horiz 2=488 (LC 11)

Max Uplift 2=287 (LC 12), 8=218 (LC 9)

Max Grav 2=900 (LC 17), 8=906 (LC 17)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/48, 2-3=-1310/423, 3-5=-1202/428, 5-6=-721/349, 6-7=-224/203, 7-8=-124/177

BOT CHORD 2-11=-692/1302, 9-11=-505/882, 8-9=-345/473

WEBS 3-11=-276/202, 5-11=-154/513, 5-9=-498/255, 6-9=-208/680, 6-8=-807/377

NOTES

- Wind: ASCE 7-22; Vult=130mph (3-second gust)
Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=18ft;
B=50ft; L=30ft; eave=4ft; Cat. II; Exp C; Enclosed;
MWFRS (directional) and C-C Zone3 -2-0-0 to 1-0-0,
Zone1 1-0-0 to 20-1-12 zone; cantilever left and right
exposed; end vertical left and right exposed; C-C for
members and forces & MWFRS for reactions shown;
Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for
verifying applied roof live load shown covers rain loading
requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom
chord live load nonconcurrent with any other live loads.

- * This truss has been designed for a live load of 20.0psf
on the bottom chord in all areas where a rectangle
3-06-00 tall by 2-00-00 wide will fit between the bottom
chord and any other members, with BCDL = 7.0psf.
- All bearings are assumed to be SP No.2 .
- Provide mechanical connection (by others) of truss to
bearing plate capable of withstanding 218 lb uplift at joint
8 and 287 lb uplift at joint 2.

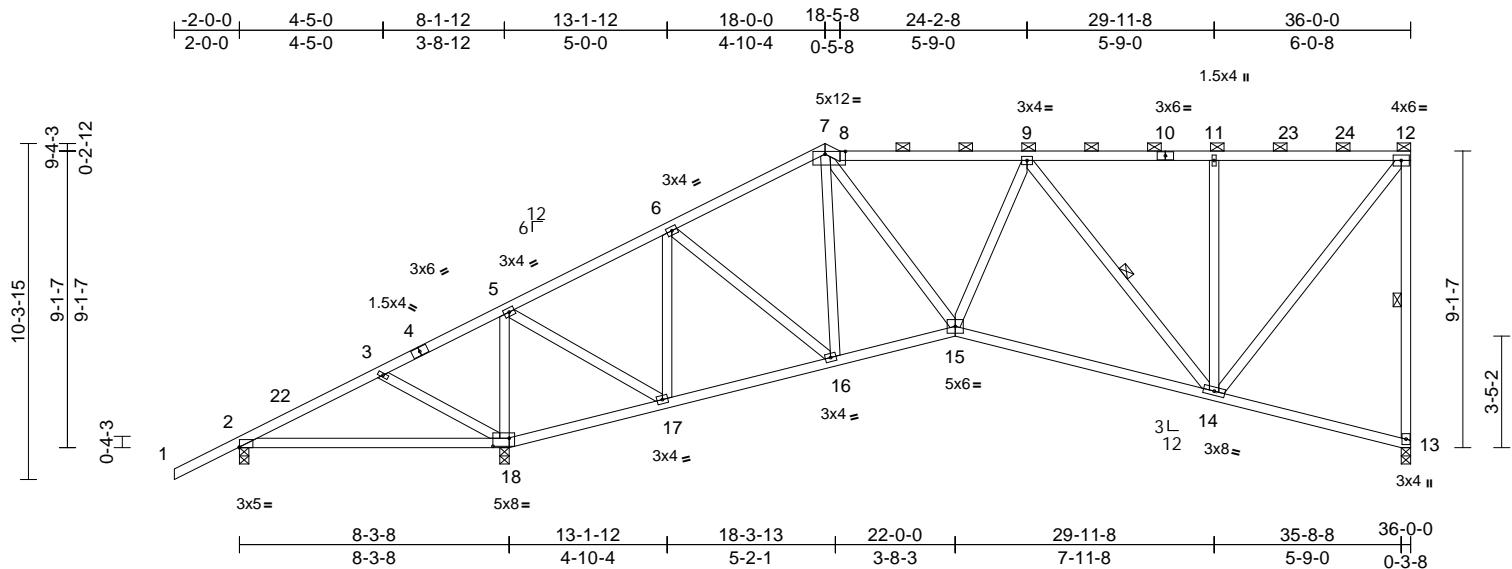
LOAD CASE(S) Standard

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

June 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from Truss Plate Institute ([www.tpiinst.org](#)) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association ([www.sbcsccomponents.com](#))



Job 250620-02KM	Truss T06	Truss Type Roof Special	Qty 1	Ply 1	Mitch Brown Job Reference (optional)	T37696809
--------------------	--------------	----------------------------	----------	----------	---	-----------

Coastal Truss & Vinyl Siding, Patterson, GA - 31577,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 20 12:42:47
ID:Bzvf9Nd74H_I6aqk6afcyHz4Ocq-Rfc?PsB70Hq3NSgPqnL8w3uITxbGKWrCd0i7J4zJC?f

Page: 1

Scale = 1:70.8

Plate Offsets (X, Y): [2:Edge,0-0-4], [7:0-7-8,0-1-0], [18:0-6-0,0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	-0.13	14-15	>999	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	Vert(CT)	-0.24	14-15	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	Horz(CT)	0.06	13	n/a	n/a		
BCDL	7.0	Code	FBC2023/TPI2014	Matrix-MS						Weight: 230 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 5-11-12 oc purlins, except end verticals, and 2-0-0 oc purlins (5-0-13 max.): 8-12.
BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc bracing.

WEBS 1 Row at midpt 12-13, 9-14

REACTIONS (size) 2=0-3-8, 13=0-3-8, 18=0-3-8
Max Horiz 2=436 (LC 11)
Max Uplift 2=113 (LC 24), 13=258 (LC 9), 18=479 (LC 12)
Max Grav 2=212 (LC 23), 13=840 (LC 1), 18=1627 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/48, 2-3=-588/619, 3-5=-662/769, 5-6=-409/220, 6-7=-807/342, 7-8=-798/339, 8-9=-930/403, 9-11=-543/331, 11-12=-543/331, 12-13=-810/434

BOT CHORD 2-18=-438/256, 17-18=-678/318, 16-17=-424/470, 15-16=-582/770, 14-15=-644/933, 13-14=-193/213

WEBS 3-18=-274/152, 5-18=-1252/703, 5-17=-579/1103, 6-17=-724/460, 6-16=-211/473, 7-15=-171/482, 9-15=-121/196, 9-14=-571/367, 11-14=-330/244, 12-14=-411/861, 7-16=-322/205

NOTES

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-22; Vult=130mph (3-second gust)
Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=18ft;
B=50ft; L=36ft; eave=5ft; Cat. II; Exp C; Enclosed;
MWFRS (directional) and C-C Zone3 2-0-0 to 1-7-3,
Zone1 1-7-3 to 18-0-0, Zone3 18-0-0 to 18-5-8, Zone1
18-5-8 to 35-10-4 zone; cantilever left and right
exposed; end vertical left and right exposed; C-C for
members and forces & MWFRS for reactions shown;
Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for
verifying applied roof live load shown covers rain loading
requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom
chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf
on the bottom chord in all areas where a rectangle
3-0-0 tall by 2-0-0 wide will fit between the bottom
chord and any other members.
- All bearings are assumed to be SP No.2 .
- Bearing at joint(s) 13 considers parallel to grain value
using ANSI/TPI 1 angle to grain formula. Building
designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to
bearing plate capable of withstanding 258 lb uplift at joint
13, 113 lb uplift at joint 2 and 479 lb uplift at joint 18.
- Graphical purlin representation does not depict the size
or the orientation of the purlin along the top and/or
bottom chord.

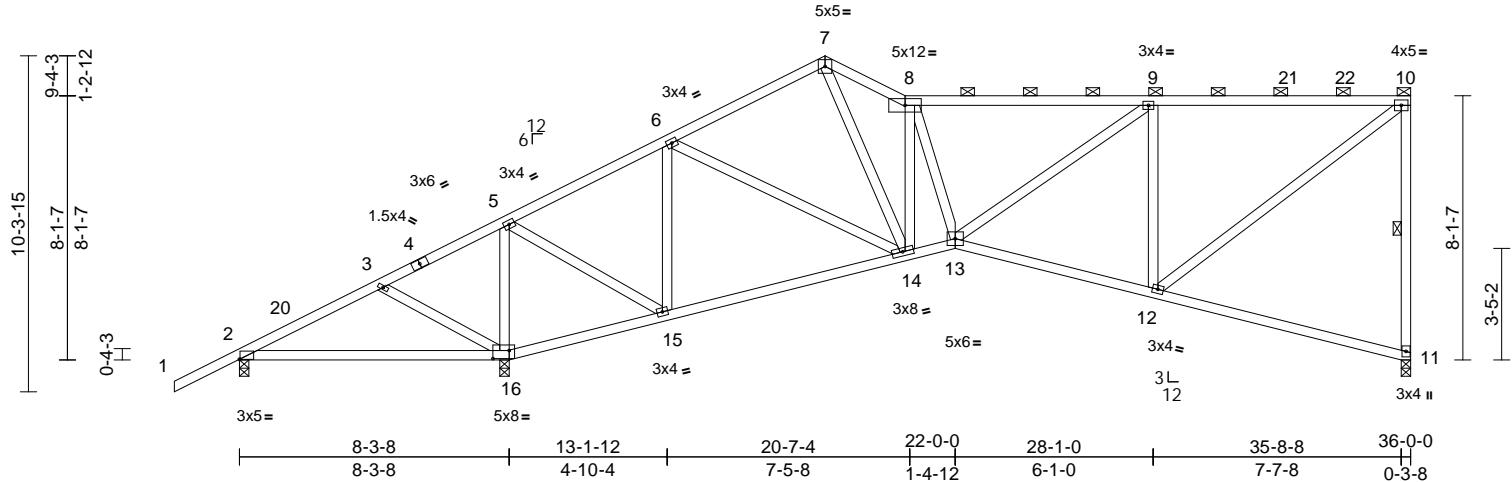
LOAD CASE(S) Standard

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

June 23, 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DS-B-22** available from the Truss Plate Institute (www.tpiinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbccomponents.com)


Job 250620-02KM	Truss T07	Truss Type Roof Special	Qty 1	Ply 1	Mitch Brown Job Reference (optional)	T37696810
--------------------	--------------	----------------------------	----------	----------	---	-----------

Coastal Truss & Vinyl Siding, Patterson, GA - 31577,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 20 12:42:47
ID:Bzvf9Nd74H_I6aqk6afcyHz4Ocq-Rfc?PsB70Hq3NSgPqnL8w3uITxbGKWrCd0i7J4zJC?f

Page: 1

-2-0-0 4-5-0 8-1-12 13-1-12 18-0-0 20-5-8 28-1-0 36-0-0
2-0-0 4-5-0 3-8-12 5-0-0 4-10-4 2-5-8 7-7-8 7-11-0

Scale = 1:70.8

Plate Offsets (X, Y): [2:0-0-4,Edge], [16:0-6-0,0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	-0.12	16-19	>865	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	Vert(CT)	-0.20	11-12	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	Horz(CT)	0.06	11	n/a	n/a		
BCDL	7.0	Code	FBC2023/TPI2014	Matrix-MS						Weight: 222 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 5-3-5 oc purlins, except end verticals, and 2-0-0 oc purlins (4-7-11 max.): 8-10.
BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc bracing.
WEBS 1 Row at midpt 10-11

REACTIONS (size) 2=0-3-8, 11=0-3-8, 16=0-3-8
Max Horiz 2=416 (LC 11)
Max Uplift 2=133 (LC 24), 11=-248 (LC 12), 16=-492 (LC 12)
Max Grav 2=185 (LC 23), 11=830 (LC 1), 16=1668 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/48, 2-3=-578/635, 3-5=-652/803, 5-6=-380/225, 6-7=-884/387, 7-8=-1180/519, 8-9=-1106/473, 9-10=-816/399, 10-11=-785/432

BOT CHORD 2-16=-487/274, 15-16=-744/374, 14-15=-373/428, 13-14=-687/1043, 12-13=-520/847, 11-12=-174/195

WEBS 3-16=-280/154, 5-16=-1278/700, 5-15=-581/1145, 6-15=-737/472, 6-14=-232/504, 7-14=-299/767, 8-14=-1008/474, 8-13=-141/274, 9-13=-261/369, 9-12=-697/461, 10-12=-467/1009

NOTES

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-22; Vult=130mph (3-second gust)
Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=18ft;
B=50ft; L=36ft; eave=5ft; Cat. II; Exp C; Enclosed;
MWFRS (directional) and C-C Zone3 2-0-0 to 1-7-3,
Zone1 1-7-3 to 18-0-0, Zone3 18-0-0 to 20-5-8, Zone1
20-5-8 to 35-10-4 zone; cantilever left and right
exposed ; end vertical left and right exposed; C-C for
members and forces & MWFRS for reactions shown;
Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for
verifying applied roof live load shown covers rain loading
requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom
chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf
on the bottom chord in all areas where a rectangle
3-0-6 tall by 2-0-0 wide will fit between the bottom
chord and any other members.
- All bearings are assumed to be SP No.2 .
- Bearing at joint(s) 11 considers parallel to grain value
using ANSI/TPI 1 angle to grain formula. Building
designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to
bearing plate capable of withstanding 248 lb uplift at joint
11, 133 lb uplift at joint 2 and 492 lb uplift at joint 16.
- Graphical purlin representation does not depict the size
or the orientation of the purlin along the top and/or
bottom chord.

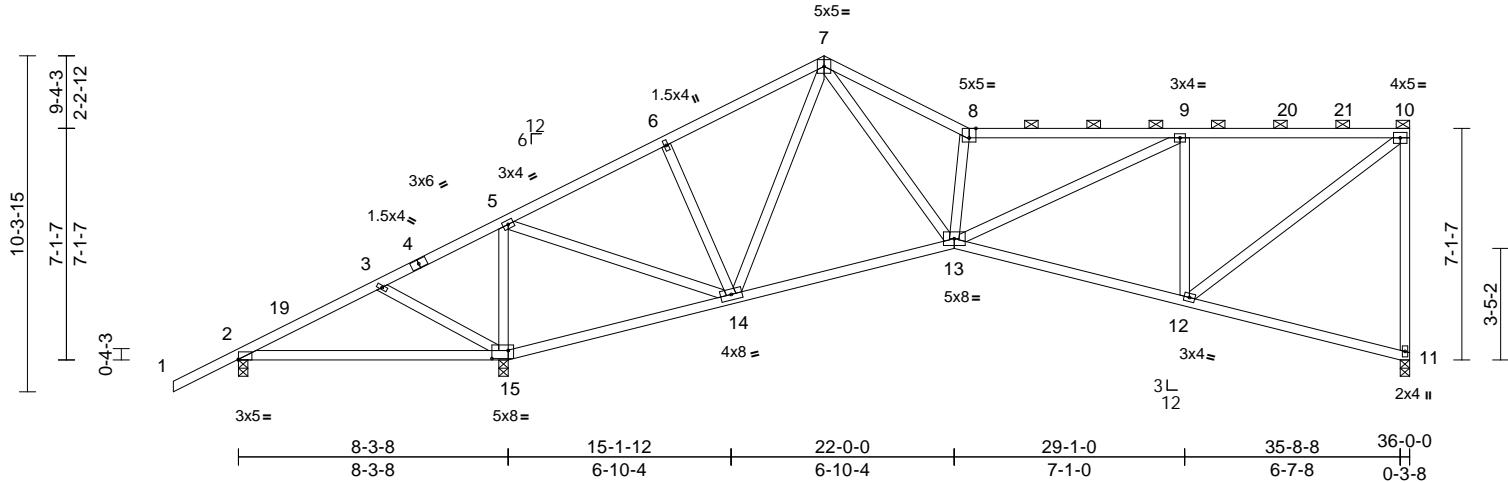
LOAD CASE(S) Standard

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

June 23, 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DS-B-22** available from Truss Plate Institute (www.tpiinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)


Job 250620-02KM	Truss T08	Truss Type Roof Special	Qty 1	Ply 1	Mitch Brown Job Reference (optional)	T37696811
--------------------	--------------	----------------------------	----------	----------	---	-----------

Coastal Truss & Vinyl Siding, Patterson, GA - 31577,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 20 12:42:47
ID:fAT2Niemra69kkPwgHArUUz4Ocp-RfC?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?f

Page: 1

-2-0-0 4-5-0 8-1-12 13-1-12 18-0-0 22-5-8 29-1-0 36-0-0
2-0-0 4-5-0 3-8-12 5-0-0 4-10-4 4-5-8 6-7-8 6-11-0

Scale = 1:70.8

Plate Offsets (X, Y): [2:Edge,0-0-4], [8:0-2-8,Edge], [15:0-6-0,0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	-0.11	15-18	>909	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	Vert(CT)	-0.19	15-18	>534	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	Horz(CT)	0.08	11	n/a	n/a		
BCDL	7.0	Code	FBC2023/TPI2014	Matrix-MS						Weight: 212 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 4-6-5 oc purlins, except end verticals, and 2-0-0 oc purlins (4-4-2 max.): 8-10.
BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc bracing.

REACTIONS (size) 2=0-3-8, 11=0-3-8, 15=0-3-8
Max Horiz 2=396 (LC 11)
Max Uplift 2=194 (LC 24), 11=241 (LC 12), 15=514 (LC 12)
Max Grav 2=155 (LC 23), 11=811 (LC 1), 15=1752 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/48, 2-3=-595/705, 3-5=-671/935, 5-6=-596/308, 6-7=-489/335, 7-8=-1515/661, 8-9=-1433/602, 9-10=-826/404, 10-11=-773/406

BOT CHORD 2-15=-598/316, 14-15=-879/462, 13-14=-463/629, 12-13=-490/862, 11-12=-154/173

WEBS 3-15=-280/155, 5-15=-1316/717, 5-14=-708/1396, 6-14=-272/236, 7-14=-490/258, 7-13=-539/1298, 8-13=-927/492, 9-13=-383/673, 9-12=-715/439, 10-12=-447/1025

NOTES

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-22; Vult=130mph (3-second gust)
Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=18ft;
B=50ft; L=36ft; eave=5ft; Cat. II; Exp C; Enclosed;
MWFRS (directional) and C-C Zone3 -2-0-0 to 1-7-3,
Zone1 1-7-3 to 18-0-0, Zone3 18-0-0 to 22-5-8, Zone1
22-5-8 to 35-10-4 zone; cantilever left and right
exposed ; end vertical left and right exposed; C-C for
members and forces & MWFRS for reactions shown;
Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for
verifying applied roof live load shown covers rain loading
requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom
chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf
on the bottom chord in all areas where a rectangle
3-0-0 tall by 2-0-0 wide will fit between the bottom
chord and any other members.
- All bearings are assumed to be SP No.2 .
- Bearing at joint(s) 11 considers parallel to grain value
using ANSI/TPI 1 angle to grain formula. Building
designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to
bearing plate capable of withstanding 241 lb uplift at joint
11, 194 lb uplift at joint 2 and 514 lb uplift at joint 15.
- Graphical purlin representation does not depict the size
or the orientation of the purlin along the top and/or
bottom chord.

LOAD CASE(S) Standard

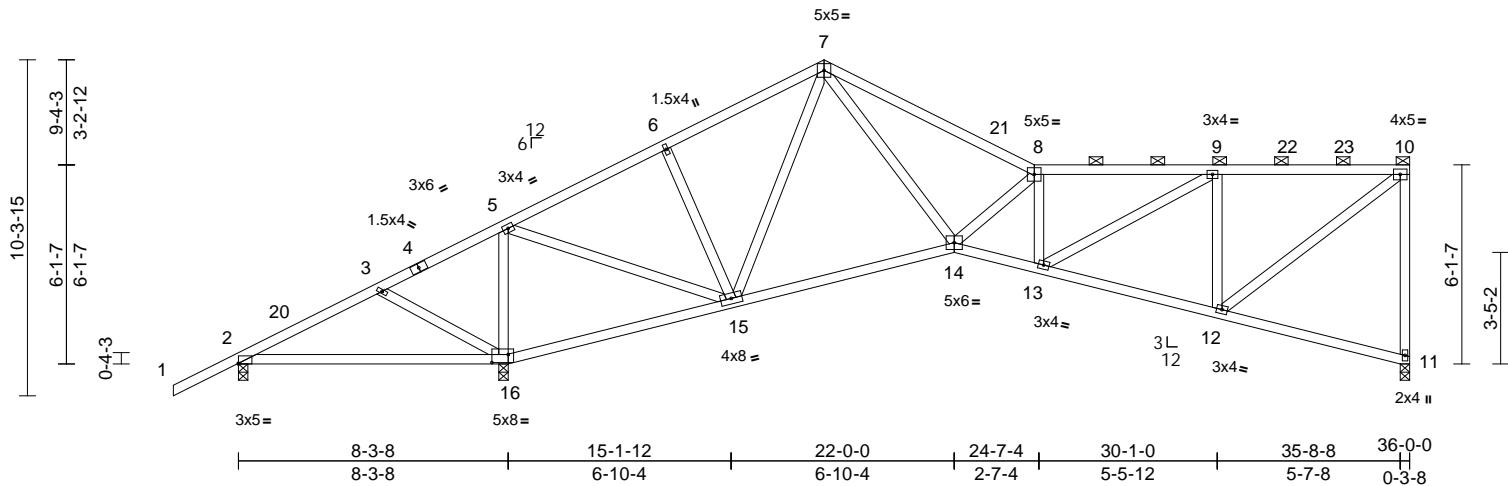
Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

June 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpiinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com

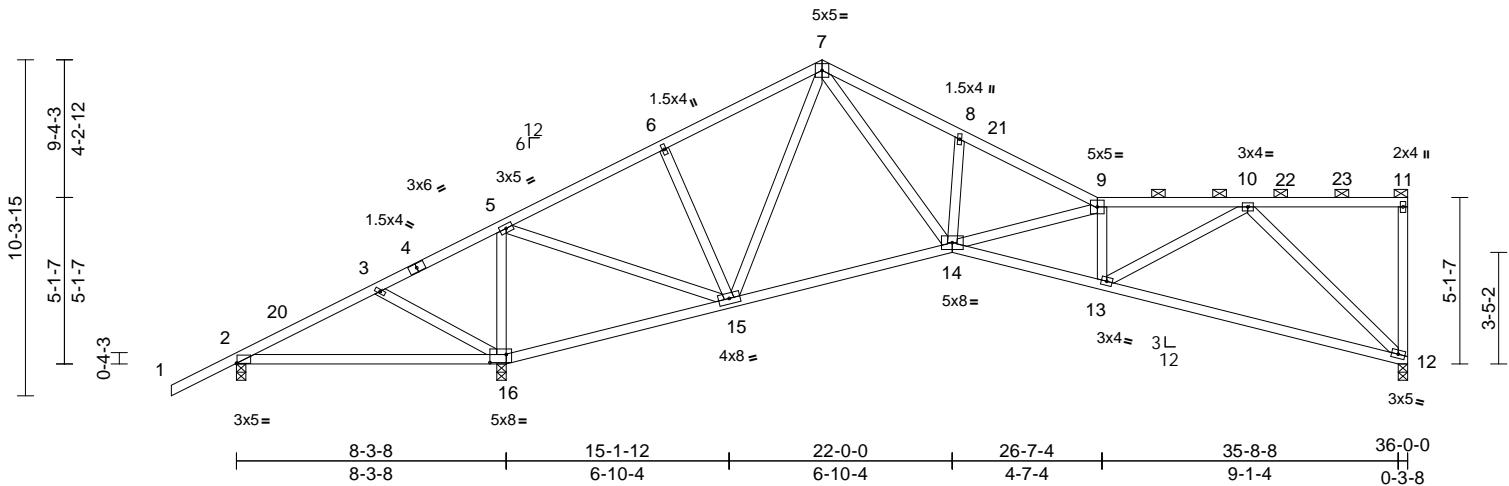

Job 250620-02KM	Truss T09	Truss Type Roof Special	Qty 1	Ply 1	Mitch Brown Job Reference (optional)	T37696812
--------------------	--------------	----------------------------	----------	----------	---	-----------

Coastal Truss & Vinyl Siding, Patterson, GA - 31577,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 20 12:42:47
ID:fAT2Niemra69kkPwgHArUUz4Ocp-RfC?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?f

Page: 1

-2-0-0 4-5-0 8-1-12 13-1-12 18-0-0 24-5-8 30-1-0 36-0-0
2-0-0 4-5-0 3-8-12 5-0-0 4-10-4 6-5-8 5-7-8 5-11-0


Job 250620-02KM	Truss T10	Truss Type Roof Special	Qty 1	Ply 1	Mitch Brown Job Reference (optional)	T37696813
--------------------	--------------	----------------------------	----------	----------	---	-----------

Coastal Truss & Vinyl Siding, Patterson, GA - 31577,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 20 12:42:47
ID:fAT2Niemra69kkPwgHArUUz4Ocp-Rfc?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?f

Page: 1

-2-0-0 4-5-0 8-1-12 13-1-12 18-0-0 22-2-12 26-5-8 31-1-0 36-0-0
2-0-0 4-5-0 3-8-12 5-0-0 4-10-4 4-2-12 4-2-12 4-7-8 4-11-0

Scale = 1:70.8

Plate Offsets (X, Y): [2:0-0-4,Edge], [16:0-6-0,0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	-0.24	12-13	>999	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	Vert(CT)	-0.43	12-13	>771	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	Horz(CT)	0.11	12	n/a	n/a		
BCDL	7.0	Code	FBC2023/TPI2014	Matrix-MS						Weight: 206 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.2

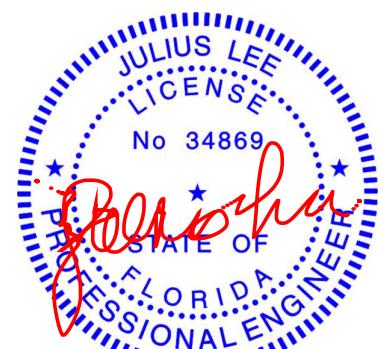
BRACING

TOP CHORD Structural wood sheathing directly applied or 4-8-11 oc purlins, except end verticals, and 2-0-0 oc purlins (4-3-1 max.): 9-11.
BOT CHORD Structural wood sheathing directly applied or 5-9-1 oc bracing.

REACTIONS (size) 2=0-3-8, 12=0-3-8, 16=0-3-8
Max Horiz 2=356 (LC 11)
Max Uplift 2=260 (LC 24), 12=235 (LC 12), 16=530 (LC 12)
Max Grav 2=121 (LC 23), 12=790 (LC 1), 16=1842 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/48, 2-3=-560/839, 3-5=-636/1087, 5-6=-515/268, 6-7=-409/296, 7-8=-1443/688, 8-9=-1451/605, 9-10=-1766/630, 10-11=-128/122, 11-12=-110/102
BOT CHORD 2-16=-727/320, 15-16=-1021/467, 14-15=-334/521, 13-14=-809/1863, 12-13=-473/870


WEBS 3-16=-282/155, 5-16=-1370/700, 5-15=-687/1467, 6-15=-272/238, 7-15=-531/245, 7-14=-561/1283, 8-14=-263/241, 9-14=-573/244, 9-13=-662/333, 10-13=-350/1079, 10-12=-1157/537

NOTES

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-22; Vult=130mph (3-second gust)
Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=18ft;
B=50ft; L=36ft; eave=5ft; Cat. II; Exp C; Enclosed;
MWFRS (directional) and C-C Zone3 -2-0-0 to 1-7-3,
Zone1 1-7-3 to 18-0-0, Zone2 18-0-0 to 23-1-2, Zone1
23-1-2 to 35-10-4 zone; cantilever left and right
exposed ; end vertical left and right exposed; C-C for
members and forces & MWFRS for reactions shown;
Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for
verifying applied roof live load shown covers rain loading
requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom
chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf
on the bottom chord in all areas where a rectangle
3-06-0 tall by 2-00-00 wide will fit between the bottom
chord and any other members.
- All bearings are assumed to be SP No.2 .
- Bearing at joint(s) 12 considers parallel to grain value
using ANSI/TPI 1 angle to grain formula. Building
designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to
bearing plate capable of withstanding 235 lb uplift at joint
12, 260 lb uplift at joint 2 and 530 lb uplift at joint 16.
- Graphical purlin representation does not depict the size
or the orientation of the purlin along the top and/or
bottom chord.

LOAD CASE(S) Standard

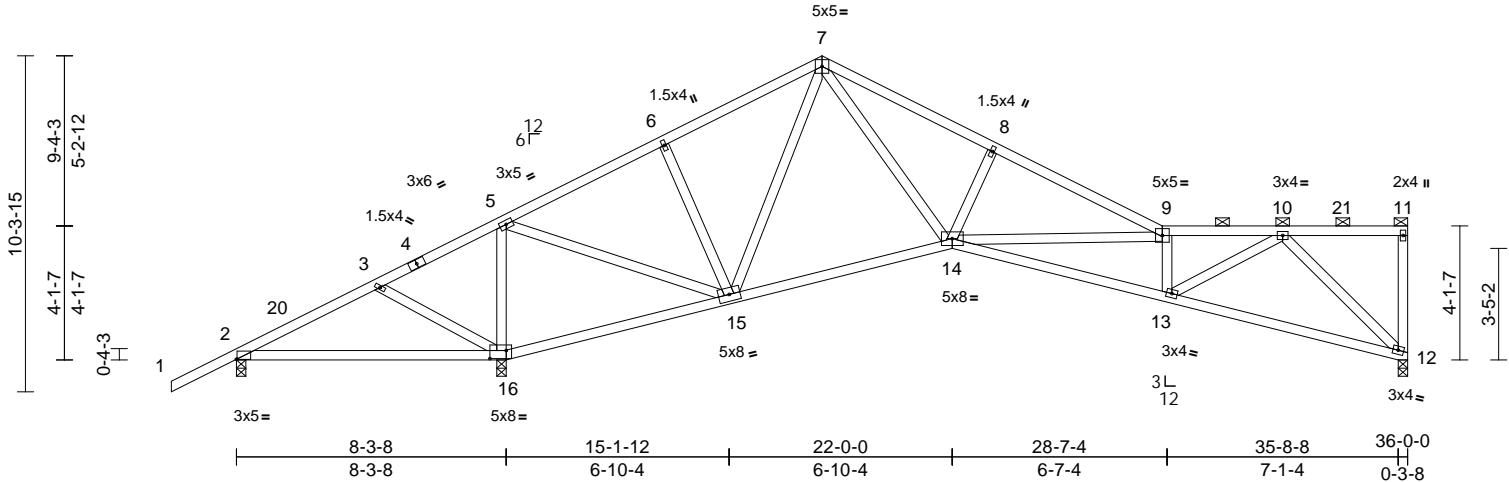
Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

June 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpiinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com


Job 250620-02KM	Truss T11	Truss Type Roof Special	Qty 1	Ply 1	Mitch Brown Job Reference (optional)	T37696814
--------------------	--------------	----------------------------	----------	----------	---	-----------

Coastal Truss & Vinyl Siding, Patterson, GA - 31577,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 20 12:42:48
ID:7M1Qa2fOcuE0Lu_7E_h41iz4Oco-RfC?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?!

Page: 1

-2-0-0 4-5-0 8-1-12 13-1-12 18-0-0 23-2-12 28-5-8 32-1-14 36-0-0
2-0-0 4-5-0 3-8-12 5-0-0 4-10-4 5-2-12 5-2-12 3-8-6 3-10-2

Scale = 1:70.8

Plate Offsets (X, Y): [2:0-0-4,Edge], [16:0-6-0,0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	-0.13	13-14	>999	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	Vert(CT)	-0.24	13-14	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	Horz(CT)	0.12	12	n/a	n/a		
BCDL	7.0	Code	FBC2023/TPI2014	Matrix-MS						Weight: 203 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 4-5-15 oc purlins, except end verticals, and 2-0-0 oc purlins (4-2-2 max.): 9-11.
BOT CHORD Structural wood sheathing directly applied or 5-6-9 oc bracing.

REACTIONS (size) 2=0-3-8, 12=0-3-8, 16=0-3-8
Max Horiz 2=336 (LC 11)
Max Uplift 2=297 (LC 24), 12=231 (LC 12), 16=544 (LC 12)
Max Grav 2=102 (LC 23), 12=778 (LC 1), 16=1894 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/48, 2-3=-546/927, 3-5=-621/1176, 5-6=-467/250, 6-7=-361/278, 7-8=-1393/647, 8-9=-1502/616, 9-10=-1915/682, 10-11=-102/98, 11-12=-87/83
BOT CHORD 2-16=-804/345, 15-16=-1104/494, 14-15=-258/496, 13-14=-837/2043, 12-13=-444/866

WEBS 3-16=-283/155, 5-16=-1401/689, 5-15=-672/1506, 6-15=-272/236, 7-15=-564/235, 7-14=-513/1232, 8-14=-311/267, 9-14=-680/280, 9-13=-811/369, 10-12=-1177/527, 10-13=-404/1254

NOTES

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-22; Vult=130mph (3-second gust)
Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=18ft;
B=50ft; L=36ft; eave=5ft; Cat. II; Exp C; Enclosed;
MWFRS (directional) and C-C Zone3 -2-0-0 to 1-7-3,
Zone1 1-7-3 to 18-0-0, Zone2 18-0-0 to 23-3-8, Zone1
23-3-8 to 35-10-4 zone; cantilever left and right
exposed ; end vertical left and right exposed; C-C for
members and forces & MWFRS for reactions shown;
Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for
verifying applied roof live load shown covers rain loading
requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom
chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf
on the bottom chord in all areas where a rectangle
3-06-00 tall by 2-00-00 wide will fit between the bottom
chord and any other members.
- All bearings are assumed to be SP No.2 .
- Bearing at joint(s) 12 considers parallel to grain value
using ANSI/TPI 1 angle to grain formula. Building
designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to
bearing plate capable of withstanding 231 lb uplift at joint
12, 297 lb uplift at joint 2 and 544 lb uplift at joint 16.
- Graphical purlin representation does not depict the size
or the orientation of the purlin along the top and/or
bottom chord.

LOAD CASE(S) Standard

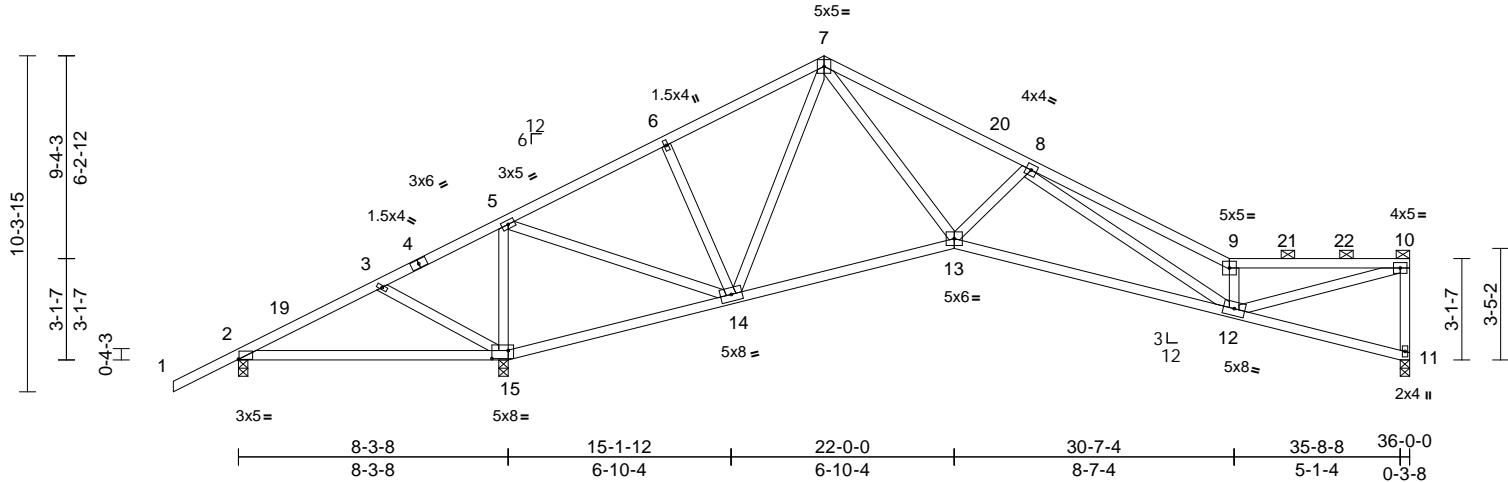
Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

June 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpiinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com


Job 250620-02KM	Truss T12	Truss Type Roof Special	Qty 1	Ply 1	Mitch Brown Job Reference (optional)	T37696815
--------------------	--------------	----------------------------	----------	----------	---	-----------

Coastal Truss & Vinyl Siding, Patterson, GA - 31577,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 20 12:42:48
ID:7M1Qa2fOcuE0Lu_7E_h41iz4Oco-RfC?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?f

Page: 1

-2-0-0 4-5-0 8-1-12 13-1-12 18-0-0 24-2-12 30-5-8 36-0-0
2-0-0 4-5-0 3-8-12 5-0-0 4-10-4 6-2-12 6-2-12 5-6-8

Scale = 1:70.8

Plate Offsets (X, Y): [2:0-0-4,Edge], [15:0-6-0,0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	-0.24	12-13	>999	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	Vert(CT)	-0.47	12-13	>706	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	Horz(CT)	0.12	11	n/a	n/a		
BCDL	7.0	Code	FBC2023/TPI2014	Matrix-MS						Weight: 198 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 3-2-4 oc purlins, except end verticals, and 2-0-0 oc purlins (3-6-9 max.): 9-10.

BOT CHORD Structural wood sheathing directly applied or 5-1-1 oc bracing.

REACTIONS (size) 2=0-3-8, 11=0-3-8, 15=0-3-8
Max Horiz 2=316 (LC 11)
Max Uplift 2=391 (LC 24), 11=223 (LC 12), 15=578 (LC 12)
Max Grav 2=54 (LC 23), 11=748 (LC 1), 15=2023 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/48, 2-3=-571/1144, 3-5=-647/1395, 5-6=-376/208, 6-7=-270/236, 7-8=-1264/565, 8-9=-2406/891, 9-10=-1975/681, 10-11=-721/342

BOT CHORD 2-15=-991/401, 14-15=-1310/553, 13-14=-163/433, 12-13=-644/1470, 11-12=-72/85

WEBS 3-15=-285/156, 5-15=-1477/689, 5-14=-671/1603, 6-14=-270/233, 7-14=-640/237, 7-13=-437/1144, 8-13=-543/368, 8-12=-315/866, 9-12=-1329/582, 10-12=-732/2023

NOTES

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-22; Vult=130mph (3-second gust)
Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=18ft;
B=50ft; L=36ft; eave=5ft; Cat. II; Exp C; Enclosed;
MWFRS (directional) and C-C Zone3 -2-0-0 to 1-7-3,
Zone1 1-7-3 to 18-0-0, Zone2 18-0-0 to 23-1-2, Zone1
23-1-2 to 35-10-4 zone; cantilever left and right
exposed ; end vertical left and right exposed; C-C for
members and forces & MWFRS for reactions shown;
Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for
verifying applied roof live load shown covers rain loading
requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom
chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf
on the bottom chord in all areas where a rectangle
3-0-6 tall by 2-0-0 wide will fit between the bottom
chord and any other members.
- All bearings are assumed to be SP No.2 .
- Bearing at joint(s) 11 considers parallel to grain value
using ANSI/TPI 1 angle to grain formula. Building
designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to
bearing plate capable of withstanding 223 lb uplift at joint 11,
391 lb uplift at joint 2 and 578 lb uplift at joint 15.
- Graphical purlin representation does not depict the size
or the orientation of the purlin along the top and/or
bottom chord.

LOAD CASE(S) Standard

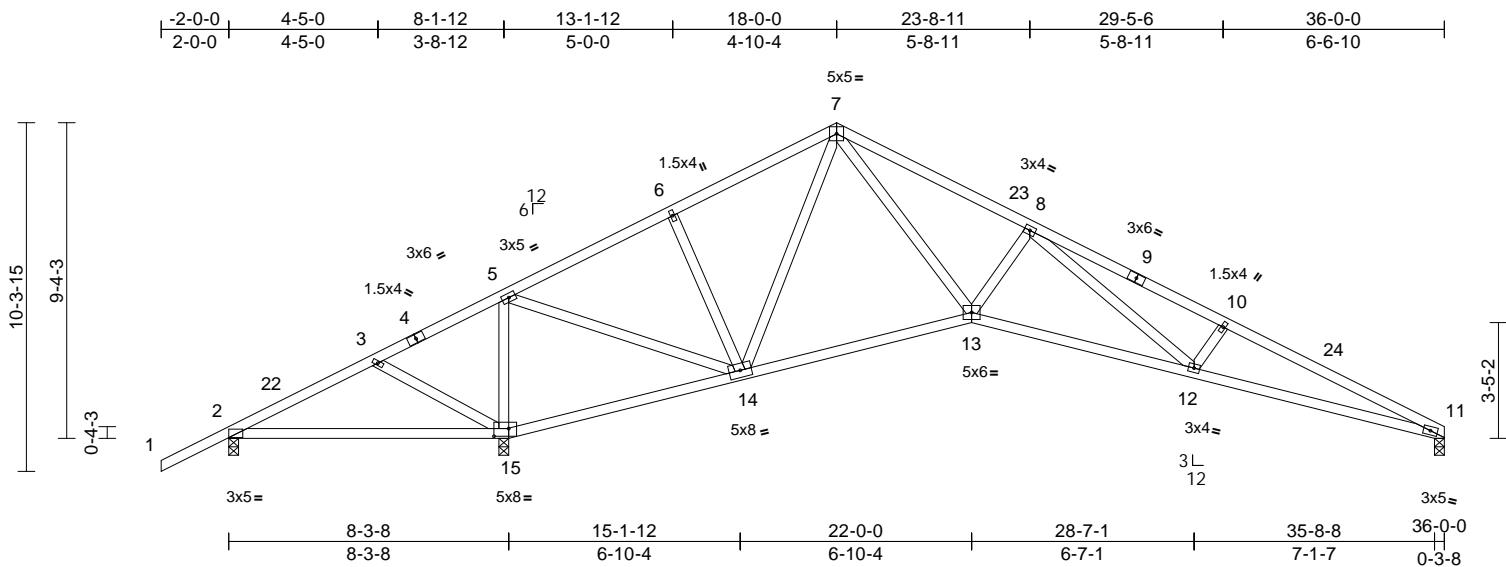
Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

June 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DS-B-22** available from Truss Plate Institute (www.tpiinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com



Job 250620-02KM	Truss T14	Truss Type Roof Special	Qty 2	Ply 1	Mitch Brown Job Reference (optional)	T37696817
--------------------	--------------	----------------------------	----------	----------	---	-----------

Coastal Truss & Vinyl Siding, Patterson, GA - 31577,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 20 12:42:48
ID:bYaoOg0MCMtz2YJoicJZvz4Ocn-RfC?PsB70Hq3NSgPqnL8w3uITxbGKWrCd0i7J4zJC?f

Page: 1

Scale = 1:68.2

Plate Offsets (X, Y): [15:0-5-4,0-2-12]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	-0.17	12-13	>999	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	Vert(CT)	-0.31	12-13	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	Horz(CT)	0.13	11	n/a	n/a		
BCDL	7.0	Code	FBC2023/TPI2014	Matrix-MS						Weight: 186 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 3-4-5 oc purlins.
BOT CHORD Structural wood sheathing directly applied or 5-0-2 oc bracing.

REACTIONS (size) 2=0-3-8, 11=0-3-8, 15=0-3-8

Max Horiz 2=258 (LC 11)
Max Uplift 2=-407 (LC 24), 11=-225 (LC 12), 15=-576 (LC 12)
Max Grav 2=44 (LC 23), 11=748 (LC 1), 15=2053 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/48, 2-3=-355/1187, 3-5=-430/1438, 5-6=-368/199, 6-7=-263/230, 7-8=-1250/512, 8-10=-2191/882, 10-11=-2356/885

BOT CHORD 2-15=-1033/402, 14-15=-1350/556, 13-14=0/430, 12-13=-336/1373, 11-12=-714/2127

WEBS 3-15=-286/153, 5-15=-1497/565, 5-14=-512/1629, 6-14=-271/235, 7-14=-649/182, 7-13=-370/1158, 8-13=-539/344, 8-12=-384/821, 10-12=-298/234

NOTES

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-22; Vult=130mph (3-second gust)
Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=18ft;
B=50ft; L=36ft; eave=5ft; Cat. II; Exp C; Enclosed;
MWFRS (directional) and C-C Zone3 -2-0-0 to 1-7-3,
Zone1 1-7-3 to 18-0-0, Zone2 18-0-0 to 23-1-2, Zone1
23-1-2 to 36-0-0 zone; cantilever left and right exposed ;
end vertical left and right exposed; C-C for members and
forces & MWFRS for reactions shown; Lumber
DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for
verifying applied roof live load shown covers rain loading
requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom
chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf
on the bottom chord in all areas where a rectangle
3-06-00 tall by 2-00-00 wide will fit between the bottom
chord and any other members.
- All bearings are assumed to be SP No.2 .
- Bearing at joint(s) 11 considers parallel to grain value
using ANSI/TPI 1 angle to grain formula. Building
designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to
bearing plate capable of withstanding 407 lb uplift at joint
2, 576 lb uplift at joint 15 and 225 lb uplift at joint 11.

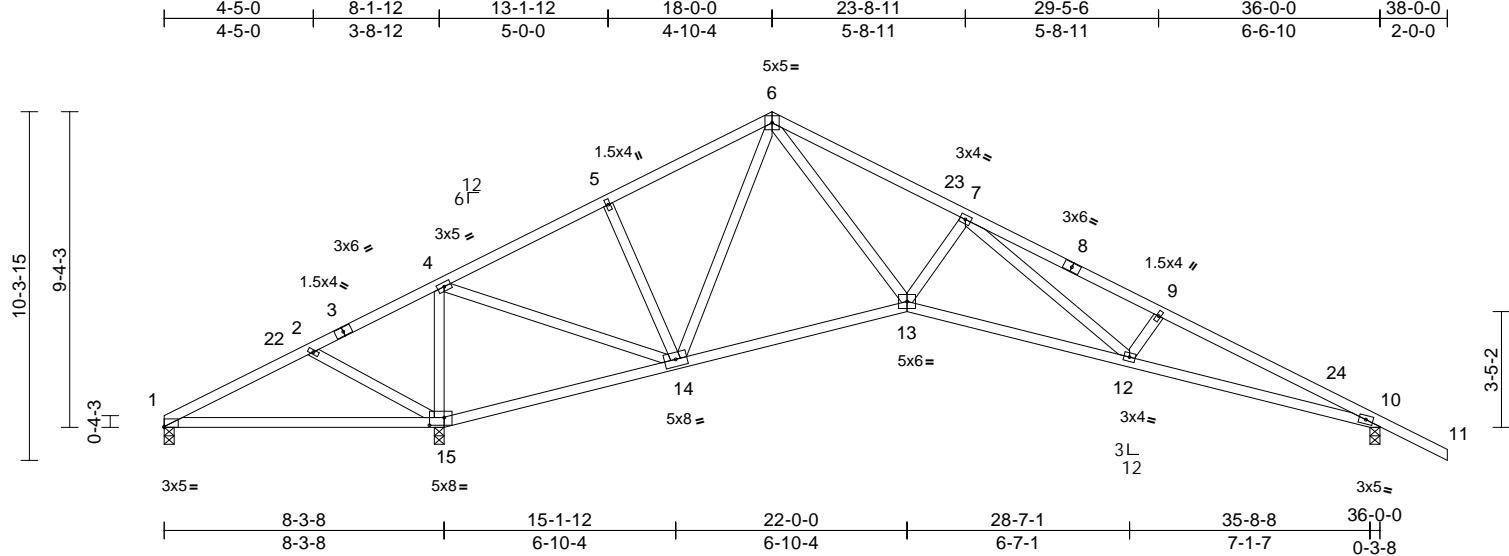
LOAD CASE(S) Standard

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

June 23, 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DS-B-22** available from Truss Plate Institute (www.tpiinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)



Job 250620-02KM	Truss T16	Truss Type Roof Special	Qty 1	Ply 1	Mitch Brown Job Reference (optional)	T37696819
--------------------	--------------	----------------------------	----------	----------	---	-----------

Coastal Truss & Vinyl Siding, Patterson, GA - 31577,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 20 12:42:48

Page: 1

Scale = 1:68.2

Plate Offsets (X, Y): [1:Edge,0-0-4], [15:0-5-4,0-2-12]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.62	Vert(LL)	-0.17	12-13	>999	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.56	Vert(CT)	-0.31	12-13	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.69	Horz(CT)	0.13	10	n/a	n/a		
BCDL	7.0	Code	FBC2023/TPI2014	Matrix-MS							Weight: 186 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.2

WEBS BRACING

BRACING	
TOP CHORD	Structural wood sheathing directly applied or 3-6-14 oc purlins.
BOT CHORD	Structural wood sheathing directly applied or 5-0-5 oc bracing.
	23-1-2 to 38-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

REACTIONS

REACTIONS (size)	$1=0-3-8$, $10=0-3-8$, $15=0-3-8$
Max Horiz	$1=258$ (LC 10)
Max Uplift	$1=434$ (LC 24), $10=-335$ (LC 12), $15=-543$ (LC 12)
Max Grav	$1=61$ (LC 12), $10=861$ (LC 1), $15=2057$ (LC 1)

FORCES

TOP CHORD **Tension**
1-2=-256/1159, 2-4=-371/1428,

4-5=-367/218, 5-6=-262/249, 6-7=-1239/489,
 7-9=-2135/755, 9-10=-2299/753, 10-11=0/48
BOT CHORD 1-15=-1013/319, 14-15=-1343/560,

$$\begin{array}{ll}
 13-14=0/442, & 12-13=-280/1358, \\
 10-12=-587/2068 & \\
 \hline
 \text{WEBS} & 2-15=-315/225, \quad 4-15=-1483/520.
 \end{array}$$

4-14=-458/1621, 5-14=-272/236,
6-14=-644/164, 6-13=-340/1147,
7-13=-531/340, 7-12=-265/778,
9-12=-287/192

NOTES

NOTES

- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust)
Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=18ft;
B=50ft; L=36ft; eave=5ft; Cat. II; Exp C; Enclosed;
MWFRS (directional) and C-C Zone3 0-0 to 3-7-3,
Zone1 3-7-3 to 18-0-0, Zone2 18-0-0 to 23-1-2, Zone1
23-1-2 to 38-0-0 zone; cantilever left and right exposed ;
end vertical left and right exposed;C-C for members and
forces & MWFRS for reactions shown; Lumber
DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for
verifying applied roof live load shown covers rain loading
requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom
chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf
on the bottom chord in all areas where a rectangle
3-06-00 tall by 2-00-00 wide will fit between the bottom
chord and any other members.
- 6) All bearings are assumed to be SP No.2 .
- 7) Bearing at joint(s) 10 considers parallel to grain value
using ANSI/TPI 1 angle to grain formula. Building
designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to
bearing plate capable of withstanding 434 lb uplift at joint
1, 543 lb uplift at joint 15 and 335 lb uplift at joint 10.

LOAD CASE(S) Standard

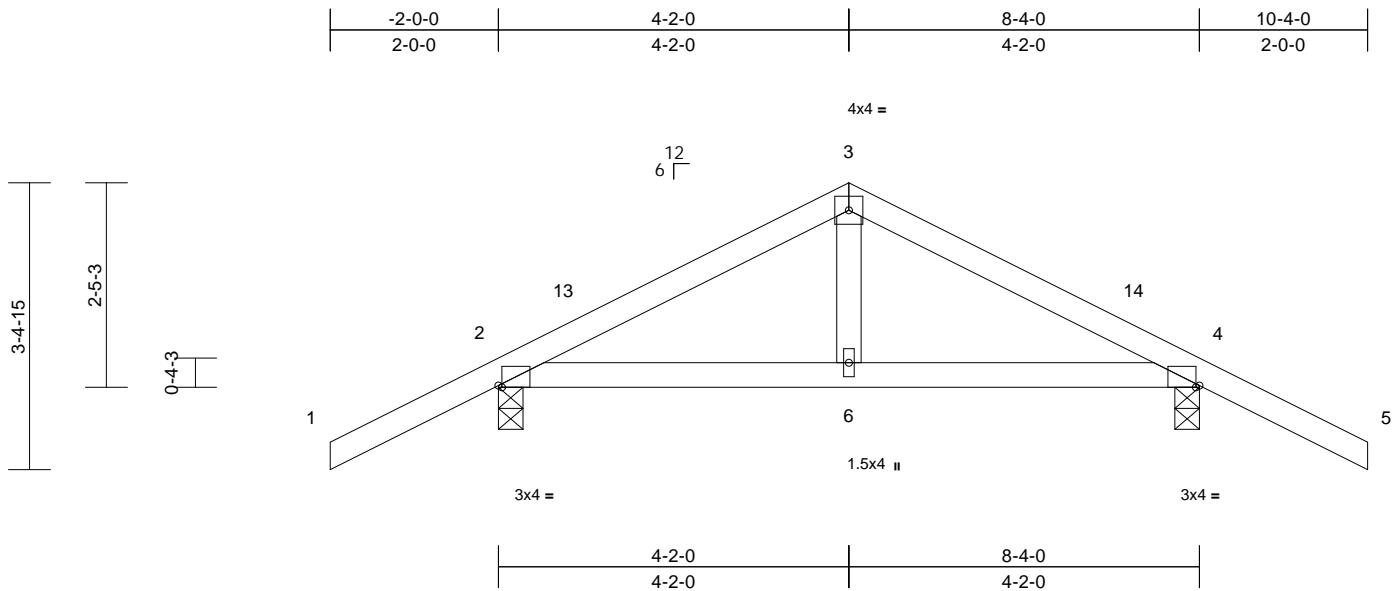
Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

June 23,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2023 BEFORE USE.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER KEY REFERENCE PAGE MI-1473 Rev. 1/2/2023 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP1 Quality Criteria and DS8-22** available from Truss Plate Institute (www.tpiinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbscomponents.com).

MiTek[®]
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com



Job 250620-02KM	Truss T17	Truss Type Common	Qty 1	Ply 1	Mitch Brown Job Reference (optional)	T37696821
--------------------	--------------	----------------------	----------	----------	---	-----------

Coastal Truss & Vinyl Siding, Patterson, GA - 31577,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 20 12:42:48
ID:318A?kge7VUkbB7VLPjY67z4Ocm-RfC?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:27.4

Plate Offsets (X, Y): [2:0-0-8,Edge], [4:0-0-8,Edge]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	0.02	6-12	>999	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	Vert(CT)	-0.02	6-12	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	Horz(CT)	0.00	4	n/a	n/a		
BCDL	7.0	Code	FBC2023/TPI2014	Matrix-MP						Weight: 36 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.
BOT CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing.

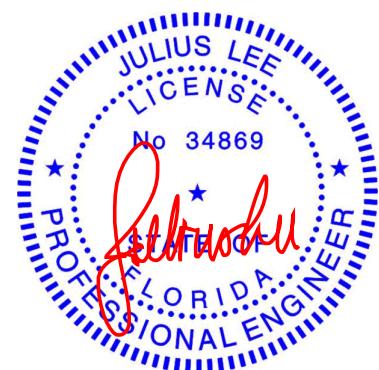
REACTIONS (size) 2=0-3-8, 4=0-3-8

Max Horiz 2=-79 (LC 10)
Max Uplift 2=-179 (LC 12), 4=-179 (LC 12)
Max Grav 2=391 (LC 1), 4=391 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/48, 2-3=-322/199, 3-4=-322/199, 4-5=0/48

BOT CHORD 2-6=-29/332, 4-6=-29/350


WEBS 3-6=0/156

NOTES

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-22; Vult=130mph (3-second gust)
Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=18ft; B=50ft; L=30ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Zone3 2-0-0 to 1-0-0, Zone1 1-0-0 to 4-2-0, Zone2 4-2-0 to 8-4-0, Zone1 8-4-0 to 10-4-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

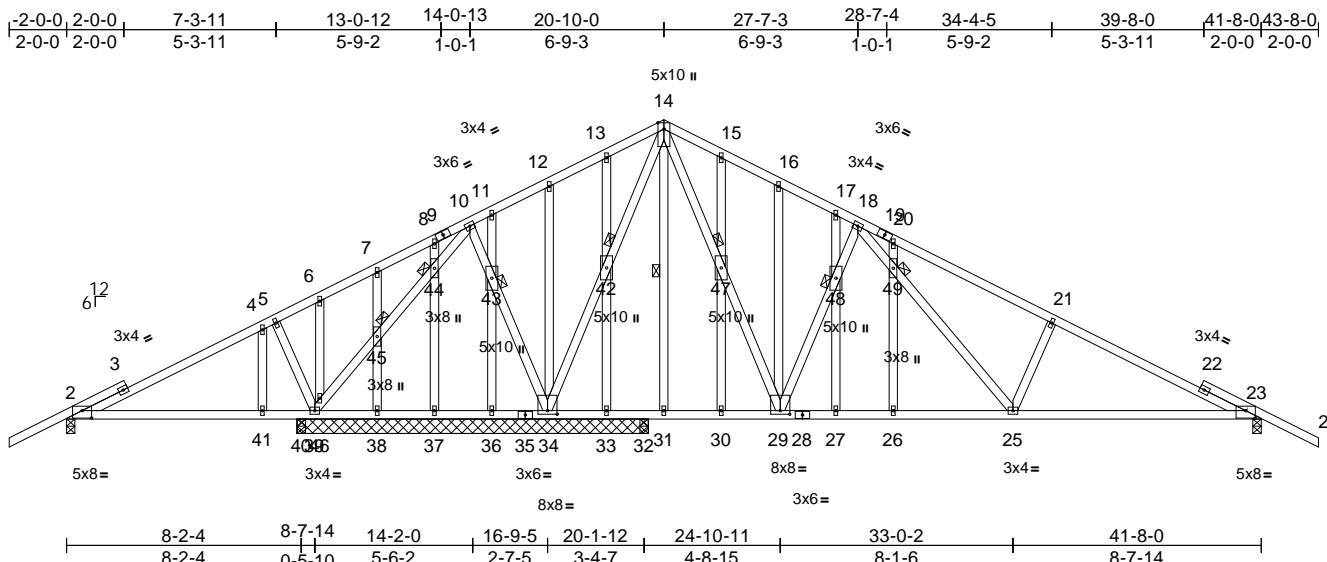
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.2 .
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 179 lb uplift at joint 2 and 179 lb uplift at joint 4.

LOAD CASE(S) Standard

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

June 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from Truss Plate Institute ([www.tpiinst.org](#)) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association ([www.sbcsccomponents.com](#))

Job 250620-02KM	Truss SGE01	Truss Type Common Structural Gable	Qty 1	Ply 1	Mitch Brown Job Reference (optional)	T37696822
--------------------	----------------	---------------------------------------	----------	----------	---	-----------

Coastal Truss & Vinyl Siding, Patterson, GA - 31577,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 20 12:42:46
ID:nPDXLbFnMbK759RR5vKez4Oct-RfC?PsB70Hq3NSgPqnL8w3uTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:80.4

Plate Offsets (X, Y): [2:0-4-0,0-3-1], [23:0-4-0,0-3-1], [29:0-4-0,0-1-8], [34:0-4-0,0-1-8]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	-0.12	25-55	>999	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	Vert(CT)	-0.25	25-55	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	Horz(CT)	0.01	23	n/a	n/a		
BCDL	7.0	Code	FBC2023/TPI2014	Matrix-MS						Weight: 347 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP No.2

WEBS 2x4 SP No.2

OTHERS 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 5-1-14 oc purlins.

BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc bracing. Except:

10-0-0 oc bracing: 27-29, 26-27, 25-26, 23-25.

WEBS 1 Row at midpt 14-31

JOINTS 1 Brace at Jt(s): 42, 43, 44, 45, 47, 48, 49

REACTIONS (size) 2=0-3-8, 23=0-3-8, 32=0-3-8, 33=12-3-0, 34=12-3-0, 36=12-3-0, 37=12-3-0, 38=12-3-0, 40=0-3-8

Max Horiz 2=302 (LC 11)

Max Uplift 2=133 (LC 12), 23=292 (LC 12), 32=113 (LC 12), 33=116 (LC 24), 34=299 (LC 12), 36=16 (LC 9), 37=22 (LC 9), 38=78 (LC 12), 40=100 (LC 9)

Max Grav 2=272 (LC 23), 23=704 (LC 24), 32=607 (LC 1), 33=63 (LC 23), 34=1052 (LC 1), 36=95 (LC 23), 37=98 (LC 23), 38=192 (LC 17), 40=345 (LC 23)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD

1-2=0/52, 2-4=-310/393, 4-5=-111/421, 5-6=-100/428, 6-7=-99/497, 7-8=-48/469,

8-10=-22/465, 10-11=-68/625, 11-12=-45/659, 12-13=-2/665, 13-14=0/648, 14-15=-106/306,

15-16=-121/276, 16-17=-67/209, 17-18=-118/219, 18-20=-733/418,

20-21=-795/370, 21-23=-885/334, 23-24=0/52

BOT CHORD

2-41=-330/345, 40-41=-330/253, 39-40=-330/253, 38-39=-563/359,

37-38=-563/359, 36-37=-563/359, 34-36=-563/359, 33-34=-349/328,

32-33=-349/328, 31-32=-349/328, 30-31=-354/329, 29-30=-354/329,

27-29=0/230, 26-27=0/230, 25-26=0/230, 23-25=-196/779

WEBS

14-47=-412/809, 29-47=-439/861, 29-48=-517/241, 18-48=-550/255,

18-49=-278/725, 25-49=-248/668, 21-25=-392/239, 34-42=-787/248,

14-42=-828/261, 10-43=-205/114, 34-43=-198/111, 39-46=-85/310,

45-46=-87/274, 44-45=-82/264, 10-44=-91/286, 5-39=-388/159,

14-31=-339/90, 13-42=-140/118, 33-42=-182/127, 12-34=-104/123,

11-43=-69/47, 36-43=-70/48, 8-44=-75/41, 37-44=-78/42, 7-45=-151/100,

38-45=-150/105, 6-46=-13/86, 4-41=0/172, 15-47=-15/51, 30-47=-71/80,

16-29=-214/167, 17-48=-40/94, 27-48=-22/59, 20-49=-111/98, 26-49=-39/60

NOTES

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=18ft; B=50ft; L=42ft; eave=5ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Zone3 2-0-0 to 2-2-0, Zone1 2-2-0 to 20-8-4, Zone2 20-8-4 to 26-10-0, Zone1 26-10-0 to 43-8-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- All plates are 1.5x4 MT20 unless otherwise indicated.
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for 100 psf bottom chord live load nonconcurrent with any other live loads.

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

June 23, 2025

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from the Truss Plate Institute (www.tpiinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com

Job 250620-02KM	Truss SGE01	Truss Type Common Structural Gable	Qty 1	Ply 1	Mitch Brown Job Reference (optional)	T37696822
--------------------	----------------	---------------------------------------	----------	----------	---	-----------

Coastal Truss & Vinyl Siding, Patterson, GA - 31577,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 20 12:42:46
ID:nPDXXLbFnMbKF759RR5vKez4Oct-RfC?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?f

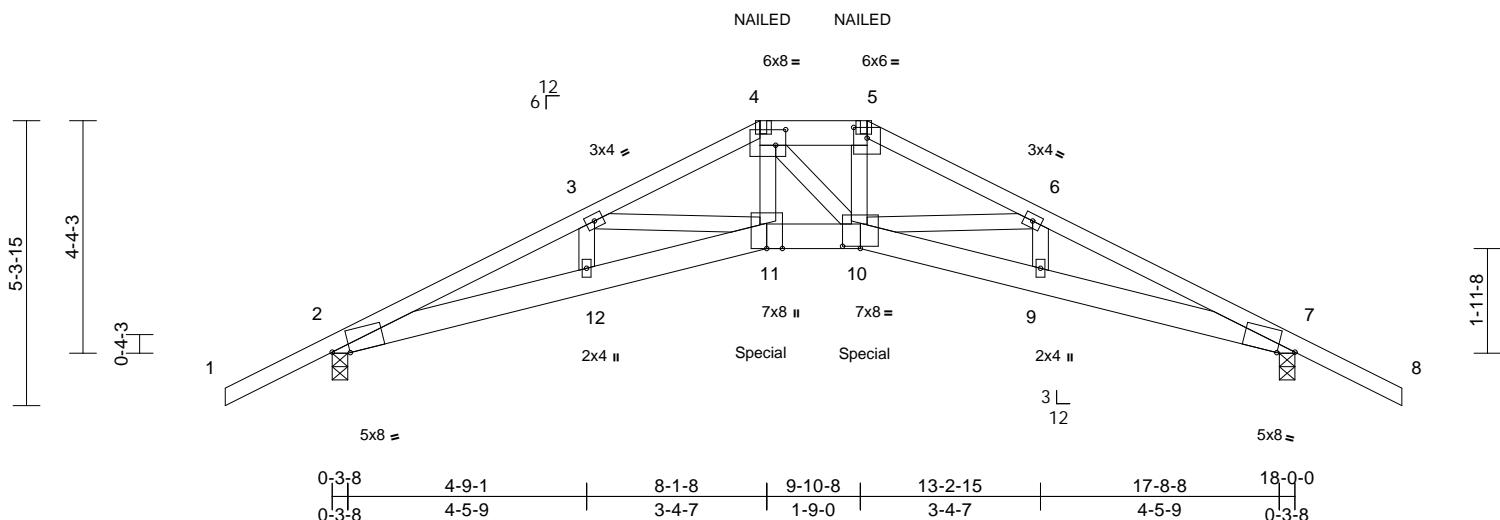
Page: 2

- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 9) All bearings are assumed to be SP No.2 .
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 133 lb uplift at joint 2, 299 lb uplift at joint 34, 116 lb uplift at joint 33, 16 lb uplift at joint 36, 22 lb uplift at joint 37, 78 lb uplift at joint 38, 292 lb uplift at joint 23, 100 lb uplift at joint 40 and 113 lb uplift at joint 32.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TP11 Quality Criteria and DSB-22](#) available from Truss Plate Institute (www.tpinst.org) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association (www.sbccomponents.com)


Job 250620-02KM	Truss H01	Truss Type Hip Girder	Qty 1	Ply 1	Mitch Brown Job Reference (optional)	T37696823
--------------------	--------------	--------------------------	----------	----------	---	-----------

Coastal Truss & Vinyl Siding, Patterson, GA - 31577,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 20 12:42:43
ID:UKqJdmjWQsJSfs41YHFklz4Ocj-RfC?PsB70Hq3NSgPqnL8w3uTxGKWrCDoi7J4zJC?f

Page: 1

-2-0-0 4-9-1 8-0-0 10-0-0 13-2-15 18-0-0 20-0-0
2-0-0 4-9-1 3-2-15 2-0-0 3-2-15 4-9-1 2-0-0

Scale = 1:43.1

Plate Offsets (X, Y): [2:0-3-15,Edge], [4:0-2-4,0-3-8], [5:0-3-0,0-2-7], [7:0-3-15,Edge], [10:0-4-0,0-0-8]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	-0.25	11	>868	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	Vert(CT)	-0.43	11	>506	180		
BCLL	0.0*	Rep Stress Incr	NO	WB	Horz(CT)	0.28	7	n/a	n/a		
BCDL	7.0	Code	FBC2023/TPI2014	Matrix-MS						Weight: 101 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 *Except* 4-5:2x6 SP No.2
BOT CHORD 2x6 SP No.2
WEBS 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 2-5-8 oc purlins, except 2-0-0 oc purlins (3-8-2 max.): 4-5.
BOT CHORD Structural wood sheathing directly applied or 6-8-8 oc bracing.

REACTIONS (size) 2=0-3-8, 7=0-3-8

Max Horiz 2=128 (LC 7)

Max Uplift 2=-530 (LC 8), 7=-530 (LC 8)

Max Grav 2=1395 (LC 1), 7=1395 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/48, 2-3=-4707/1414, 3-4=-4509/1398, 4-5=-4125/1313, 5-6=-4510/1404, 6-7=-4605/1412, 7-8=0/48

BOT CHORD 2-12=-1176/4387, 11-12=-1188/4409, 10-11=-1102/4190, 9-10=-1187/4228, 7-9=-1174/4202

WEBS 3-12=-51/77, 3-11=-191/280, 4-11=-504/1841, 4-10=-56/127, 5-10=-510/1844, 6-10=-178/297, 6-9=-71/81

NOTES

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-22; Vult=130mph (3-second gust)
Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=18ft; B=50ft L=30ft; eave=4ft Cat. II; Exp C; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding.

- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.2 .
- Bearing at joint(s) 2, 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 530 lb uplift at joint 2 and 530 lb uplift at joint 7.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidelines.
- Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 684 lb down and 214 lb up at 8-1-8, and 684 lb down and 214 lb up at 9-10-8 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

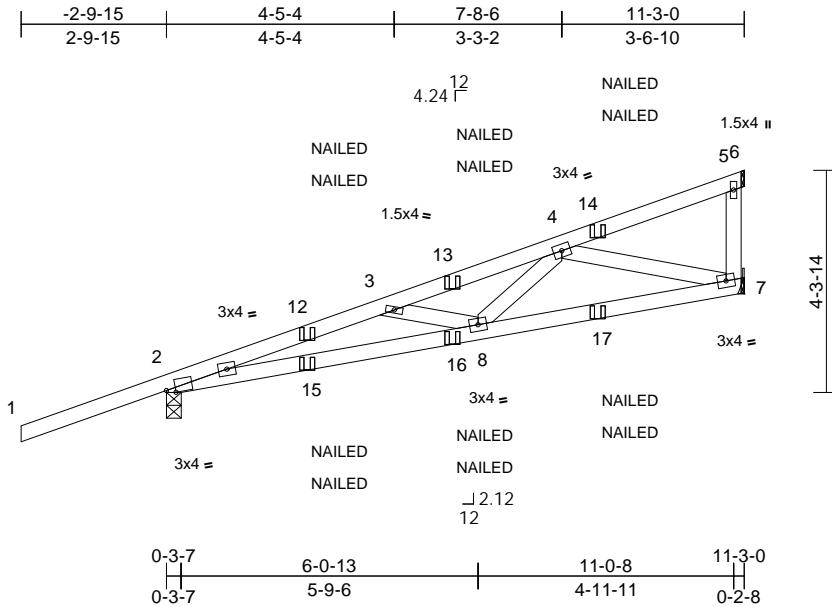
LOAD CASE(S) Standard

- Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25
Uniform Loads (lb/ft)
Vert: 1-4=-54, 4-5=-54, 5-8=-54, 11-13=-14, 10-11=-14, 10-16=-14
Concentrated Loads (lb)
Vert: 4=-34 (B), 5=-34 (B), 11=-641 (B), 10=-641 (B)

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

June 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from the Truss Plate Institute (www.tpiinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

Job 250620-02KM	Truss CJ01	Truss Type Diagonal Hip Girder	Qty 2	Ply 1	Mitch Brown Job Reference (optional)	T37696824
--------------------	---------------	-----------------------------------	----------	----------	---	-----------

Coastal Truss & Vinyl Siding, Patterson, GA - 31577,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 20 12:42:41
ID:YxiYC4hGupcbCLiiv7EnfKz4Ocl-Rfc?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:44.9

Plate Offsets (X, Y): [2:0-2-2,0-0-13]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	-0.06	8-11	>999	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	Vert(CT)	-0.09	7-8	>999	180		
BCLL	0.0*	Rep Stress Incr	NO	WB	Horz(CT)	0.02	7	n/a	n/a		
BCDL	7.0	Code	FBC2023/TPI2014	Matrix-MS						Weight: 53 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 4-6-7 oc purlins, except end verticals.
BOT CHORD Structural wood sheathing directly applied or 9-5-11 oc bracing.

REACTIONS (size) 2=0-3-7, 7= Mechanical

Max Horiz 2=165 (LC 23)
Max Uplift 2=265 (LC 8), 7=-159 (LC 5)
Max Grav 2=604 (LC 1), 7=542 (LC 13)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/51, 2-3=-1626/285, 3-4=-1343/203, 4-5=-150/63, 5-6=-10, 5-7=-89/54
BOT CHORD 2-8=-389/1493, 7-8=-321/946
WEBS 3-8=-258/110, 4-8=0/478, 4-7=-897/295

NOTES

- Wind: ASCE 7-22; Vult=130mph (3-second gust)
Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=18ft;
B=50ft; L=30ft; eave=4ft; Cat. II; Exp C; Enclosed;
MWFRS (directional); cantilever left and right exposed;
end vertical left and right exposed; Lumber DOL=1.60
plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearings are assumed to be: Joint 2 SP No.2 .
- Refer to girder(s) for truss to truss connections.

- Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 159 lb uplift at joint 7 and 265 lb uplift at joint 2.
- "NAILED" indicates 3-10d (0.148"x3") or 2-12d (0.148"x3.25") toe-nails per NDS guidelines.
- In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

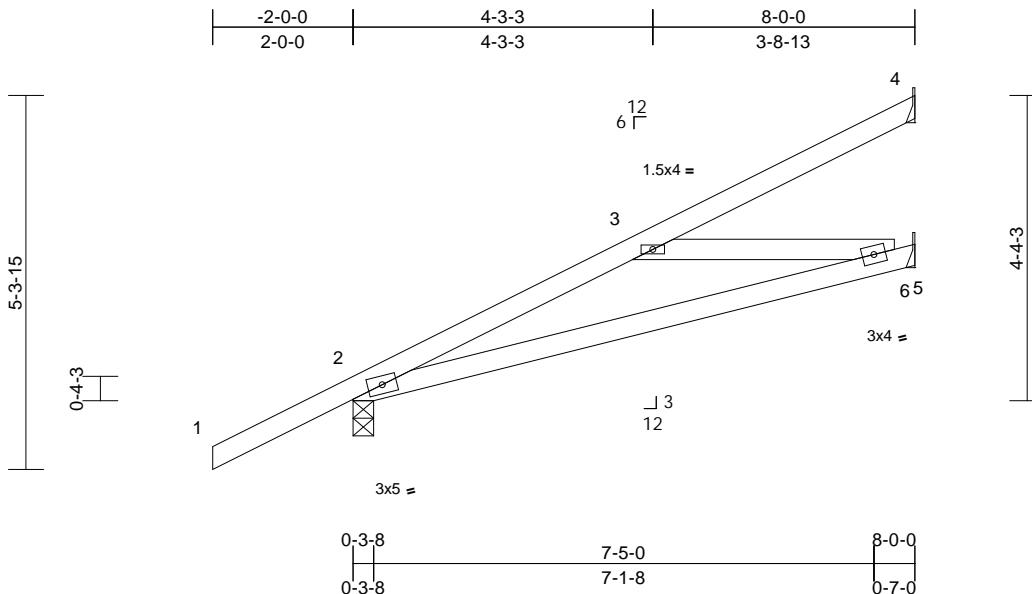
LOAD CASE(S) Standard

- Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25
Uniform Loads (lb/ft)
Vert: 1-5=-54, 5-6=-14, 7-9=-14
Concentrated Loads (lb)
Vert: 13=-8 (F=-4, B=-4), 14=-107 (F=-53, B=-53), 16=-20 (F=-10, B=-10), 17=-69 (F=-34, B=-34)

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

June 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from the Truss Plate Institute ([www.tpiinst.org](#)) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association ([www.sbcsccomponents.com](#))

Job 250620-02KM	Truss J01	Truss Type Jack-Partial	Qty 2	Ply 1	Mitch Brown Job Reference (optional)	T37696825
--------------------	--------------	----------------------------	----------	----------	---	-----------

Coastal Truss & Vinyl Siding, Patterson, GA - 31577,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 20 12:42:45
ID:07GwQQiuf7kSqVHuTqm0BYz4Ock-RFC?PsB70Hq3NSgPqnL8w3uITxGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:32.8

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	-0.11	6-9	>858	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	Vert(CT)	-0.19	6-9	>498	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	Horz(CT)	0.01	5	n/a	n/a		
BCDL	7.0	Code	FBC2023/TPI2014	Matrix-MP						Weight: 35 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.2

5) Bearings are assumed to be: , Joint 2 SP No.2 .

6) Refer to girder(s) for truss to truss connections.

7) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 68 lb uplift at joint 4, 152 lb uplift at joint 2 and 35 lb uplift at joint 5.

LOAD CASE(S) Standard

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.
BOT CHORD Structural wood sheathing directly applied or 7-11-15 oc bracing.

REACTIONS (size) 2=0-3-8, 4= Mechanical, 5= Mechanical
Max Horiz 2=203 (LC 12)
Max Uplift 2=152 (LC 12), 4=68 (LC 12), 5=35 (LC 12)
Max Grav 2=391 (LC 1), 4=90 (LC 17), 5=176 (LC 17)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/48, 2-3=-528/373, 3-4=-79/33
BOT CHORD 2-6=-537/515, 5-6=-29/44
WEBS 3-6=-494/515

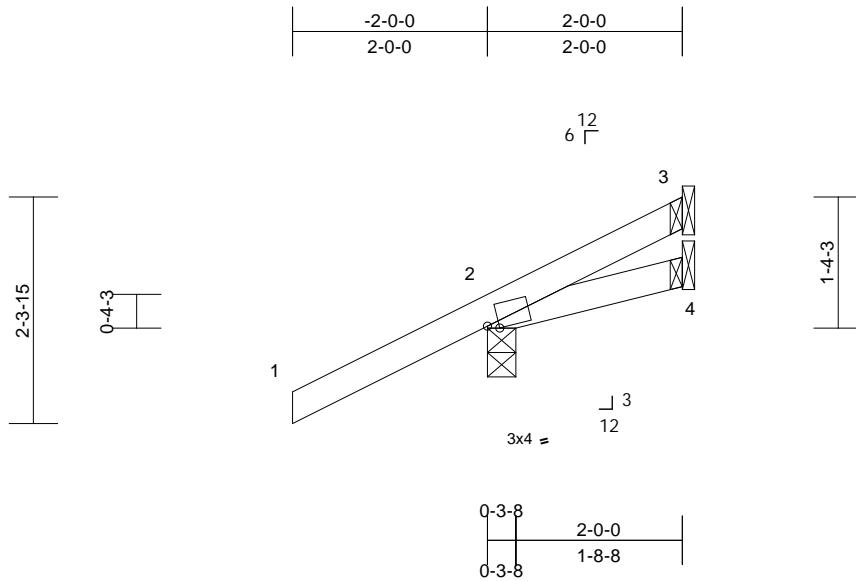
NOTES

- Wind: ASCE 7-22; Vult=130mph (3-second gust)
Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=18ft;
B=50ft; L=30ft; eave=4ft; Cat. II; Exp C; Enclosed;
MWFRS (directional) and C-C Zone3 -2-0-0 to 0-9-15,
Zone1 0-9-15 to 7-11-4 zone; cantilever left and right
exposed ; end vertical left and right exposed; C-C for
members and forces & MWFRS for reactions shown;
Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for
verifying applied roof live load shown covers rain loading
requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom
chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf
on the bottom chord in all areas where a rectangle
3-0-0 tall by 2-0-0 wide will fit between the bottom
chord and any other members.

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

June 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from Truss Plate Institute ([www.tpiinst.org](#)) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association ([www.sbcsccomponents.com](#))

Job 250620-02KM	Truss J02	Truss Type Jack-Open	Qty 4	Ply 1	Mitch Brown Job Reference (optional)	T37696826
--------------------	--------------	-------------------------	----------	----------	---	-----------

Coastal Truss & Vinyl Siding, Patterson, GA - 31577,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 20 12:42:45
ID:ICf9K?ad02TtdzWztkagnRz4Ocu-RfC?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:23.6

Plate Offsets (X, Y): [2:0-1-7,Edge]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.45	Vert(LL)	0.00	4-7	>999	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.10	Vert(CT)	0.00	4-7	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCDL	7.0	Code	FBC2023/TPI2014	Matrix-MP							Weight: 10 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 2-0-0 oc purlins.
BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc bracing.

6) Refer to girder(s) for truss to truss connections.

7) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 164 lb uplift at joint 2, 9 lb uplift at joint 3 and 4 lb uplift at joint 4.

LOAD CASE(S) Standard

REACTIONS (size) 2=0-3-8, 3= Mechanical, 4= Mechanical

Max Horiz 2=93 (LC 12)

Max Uplift 2=164 (LC 12), 3=-9 (LC 9), 4=-4 (LC 1)

Max Grav 2=230 (LC 1), 3=21 (LC 17), 4=26 (LC 12)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/48, 2-3=-312/111

BOT CHORD 2-4=-124/323

NOTES

1) Wind: ASCE 7-22; Vult=130mph (3-second gust); Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=18ft; B=50ft; L=30ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Zone3 -2-0-0 to 0-9-15, Zone1 0-9-15 to 1-11-14 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

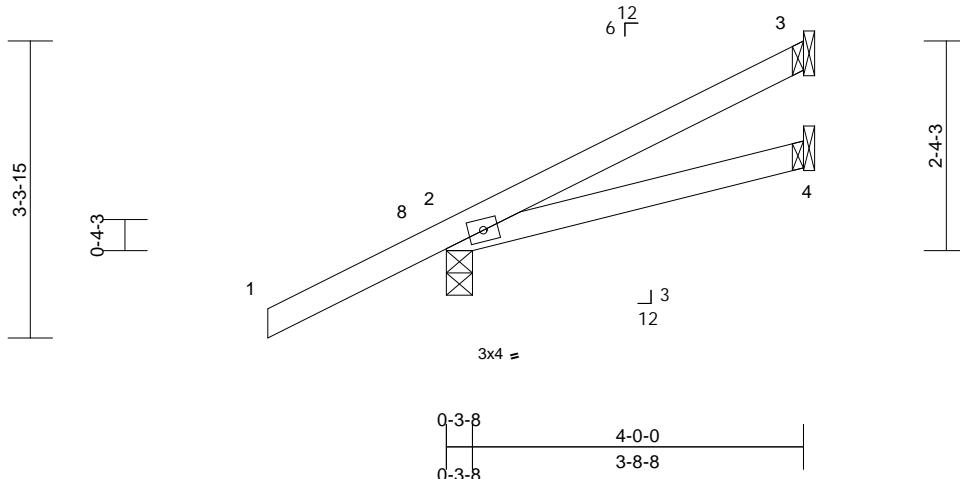
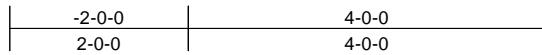
4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

5) Bearings are assumed to be: , Joint 2 SP No.2.

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

June 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.



Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpiinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

Job 250620-02KM	Truss J03	Truss Type Jack-Open	Qty 4	Ply 1	Mitch Brown Job Reference (optional)	T37696827
--------------------	--------------	-------------------------	----------	----------	---	-----------

Coastal Truss & Vinyl Siding, Patterson, GA - 31577,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 20 12:42:45
ID:ICf9K?ad02TtdzWztkagnRz4Ocu-RfC?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:25.8

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	0.02	4-7	>999	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	Vert(CT)	-0.02	4-7	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	Horz(CT)	0.00	3	n/a	n/a		
BCDL	7.0	Code	FBC2023/TPI2014	Matrix-MP						Weight: 16 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 4-0-0 oc purlins.

BOT CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing.

REACTIONS (size) 2=0-3-8, 3= Mechanical, 4= Mechanical

Max Horiz 2=129 (LC 12)

Max Uplift 2=145 (LC 12), 3=42 (LC 12)

Max Grav 2=269 (LC 1), 3=81 (LC 17), 4=56 (LC 3)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/48, 2-3=-344/85

BOT CHORD 2-4=-101/313

NOTES

1) Wind: ASCE 7-22; Vult=130mph (3-second gust)
Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=18ft;
B=50ft; L=30ft; eave=4ft; Cat. II; Exp C; Enclosed;
MWFRS (directional) and C-C Zone3 -2-0-0 to 0-9-15,
Zone1 0-9-15 to 3-11-4 zone; cantilever left and right
exposed; end vertical left and right exposed; C-C for
members and forces & MWFRS for reactions shown;
Lumber DOL=1.60 plate grip DOL=1.60

2) Building Designer / Project engineer responsible for
verifying applied roof live load shown covers rain loading
requirements specific to the use of this truss component.

3) This truss has been designed for a 10.0 psf bottom
chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf
on the bottom chord in all areas where a rectangle
3-06-00 tall by 2-00-00 wide will fit between the bottom
chord and any other members.

5) Bearings are assumed to be: , Joint 2 SP No.2 .

6) Refer to girder(s) for truss to truss connections.

7) Bearing at joint(s) 2 considers parallel to grain value
using ANSI/TPI 1 angle to grain formula. Building
designer should verify capacity of bearing surface.

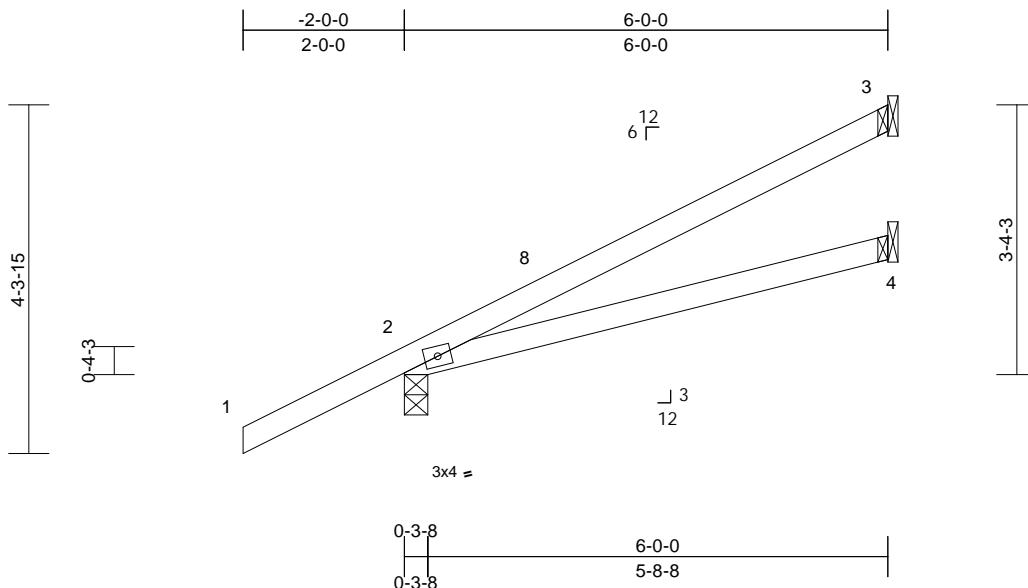
8) Provide mechanical connection (by others) of truss to
bearing plate capable of withstanding 42 lb uplift at joint
3 and 145 lb uplift at joint 2.

LOAD CASE(S) Standard

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

June 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from Truss Plate Institute ([www.tpiinst.org](#)) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association ([www.sbcsccomponents.com](#))

Job 250620-02KM	Truss J04	Truss Type Jack-Open	Qty 4	Ply 1	Mitch Brown Job Reference (optional)	T37696828
--------------------	--------------	-------------------------	----------	----------	---	-----------

Coastal Truss & Vinyl Siding, Patterson, GA - 31577,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 20 12:42:45
ID:ICf9K?ad02TtdzWztkagnRz4Ocu-RfC?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?

Page: 1

Scale = 1:28.6

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	0.09	4-7	>806	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	Vert(CT)	-0.10	4-7	>708	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	Horz(CT)	-0.01	3	n/a	n/a		
BCDL	7.0	Code	FBC2023/TPI2014	Matrix-MP						Weight: 23 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.

BOT CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing.

REACTIONS (size) 2=0-3-8, 3= Mechanical, 4= Mechanical

Max Horiz 2=166 (LC 12)

Max Uplift 2=146 (LC 12), 3=79 (LC 12)

Max Grav 2=328 (LC 1), 3=135 (LC 17), 4=89 (LC 3)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/48, 2-3=-343/61

BOT CHORD 2-4=-69/272

NOTES

1) Wind: ASCE 7-22; Vult=130mph (3-second gust)
Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=18ft;
B=50ft; L=30ft; eave=4ft; Cat. II; Exp C; Enclosed;
MWFRS (directional) and C-C Zone3-2-0-0 to 0-9-15,
Zone1 0-9-15 to 5-11-4 zone; cantilever left and right
exposed; end vertical left and right exposed; C-C for
members and forces & MWFRS for reactions shown;
Lumber DOL=1.60 plate grip DOL=1.60

2) Building Designer / Project engineer responsible for
verifying applied roof live load shown covers rain loading
requirements specific to the use of this truss component.

3) This truss has been designed for a 10.0 psf bottom
chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf
on the bottom chord in all areas where a rectangle
3-06-00 tall by 2-00-00 wide will fit between the bottom
chord and any other members.

5) Bearings are assumed to be: , Joint 2 SP No.2 .

6) Refer to girder(s) for truss to truss connections.

- 7) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 79 lb uplift at joint 3 and 146 lb uplift at joint 2.

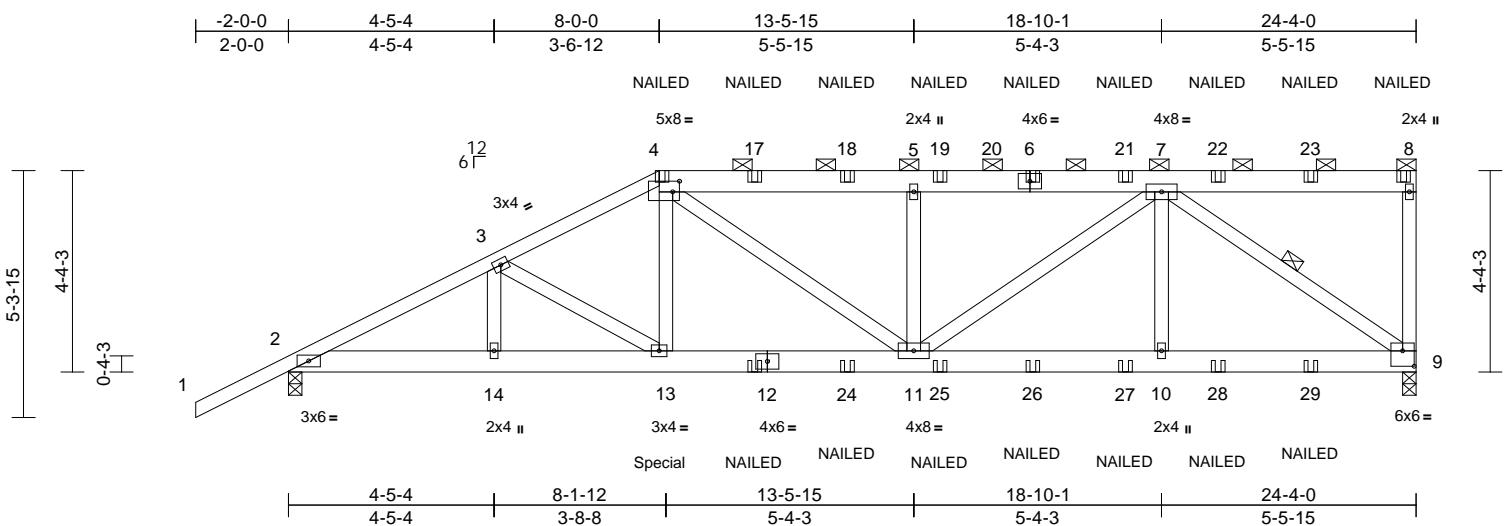
LOAD CASE(S)

Standard

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

June 23, 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from the Truss Plate Institute (www.tpiinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcsccomponents.com)

Job 250620-02KM	Truss H08	Truss Type Half Hip Girder	Qty 1	Ply 1	Mitch Brown Job Reference (optional)	T37696829
--------------------	--------------	-------------------------------	----------	----------	---	-----------

Coastal Truss & Vinyl Siding, Patterson, GA - 31577,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 20 12:42:44
ID:yWOh6k9Bk_A3pRGaFoUGzz4Oci-RfC?PsB70Hq3NSgPqnL8w3u1TxbGKWrCDoi7J4zJ?f

Page: 1

Scale = 1:49.7

Plate Offsets (X, Y): [4:0-1-12,0-2-12], [9:0-3-0,0-4-0]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.47	Vert(LL)	-0.13	11-13	>999	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.71	Vert(CT)	-0.22	11-13	>999	180		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.58	Horz(CT)	0.07	9	n/a	n/a		
BCDL	7.0	Code	FBC2023/TPI2014	Matrix-MS							Weight: 168 lb	FT = 20%

LUMBER

TOP CHORD 2x6 SP No.2 *Except* 1-4:2x4 SP No.2
BOT CHORD 2x6 SP No.2
WEBS 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 2-11-4 oc purlins, except end verticals, and 2-0-0 oc purlins (3-7-12 max.): 4-8.
BOT CHORD Structural wood sheathing directly applied or 7-2-15 oc bracing.
WEBS 1 Row at midpt 7-9

REACTIONS (size) 2=0-3-8, 9=0-3-8

Max Horiz 2=202 (LC 7)

Max Uplift 2=-646 (LC 8), 9=-716 (LC 5)

Max Grav 2=1838 (LC 13), 9=2095 (LC 13)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/48, 2-3=-3566/1090, 3-4=-3366/1079, 4-5=-3310/1098, 5-7=-3306/1095, 7-8=-81/67, 8-9=-365/220

BOT CHORD 2-14=-1040/3219, 13-14=-1040/3219, 11-13=-994/3052, 10-11=-769/2311, 9-10=-769/2311

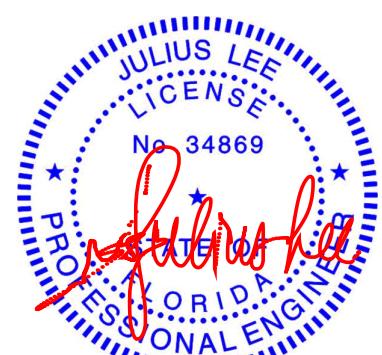
WEBS 3-14=0/99, 3-13=-230/143, 4-13=-152/867, 4-11=-151/461, 5-11=-711/421, 7-11=-397/1265, 7-10=0/443, 7-9=-2807/894

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust)
Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=18ft;
B=50ft; L=30ft; eave=4ft; Cat. II; Exp C; Enclosed;
MWFRS (directional); cantilever left and right exposed;
end vertical left and right exposed; Lumber DOL=1.60
plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 7) All bearings are assumed to be SP No.2 .
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 716 lb uplift at joint 9 and 646 lb uplift at joint 2.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 10) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidelines.
- 11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 594 lb down and 153 lb up at 8-0-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 12) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard


- 1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (lb/ft)

Vert: 1-4=-54, 4-8=-54, 2-9=-14

Concentrated Loads (lb)

Vert: 4=-128 (B), 6=-128 (B), 8=-152 (B), 12=-60 (B), 13=-551 (B), 17=-128 (B), 18=-128 (B), 19=-128 (B), 21=-128 (B), 22=-128 (B), 23=-128 (B), 24=-60 (B), 25=-60 (B), 26=-60 (B), 27=-60 (B), 28=-60 (B), 29=-60 (B)

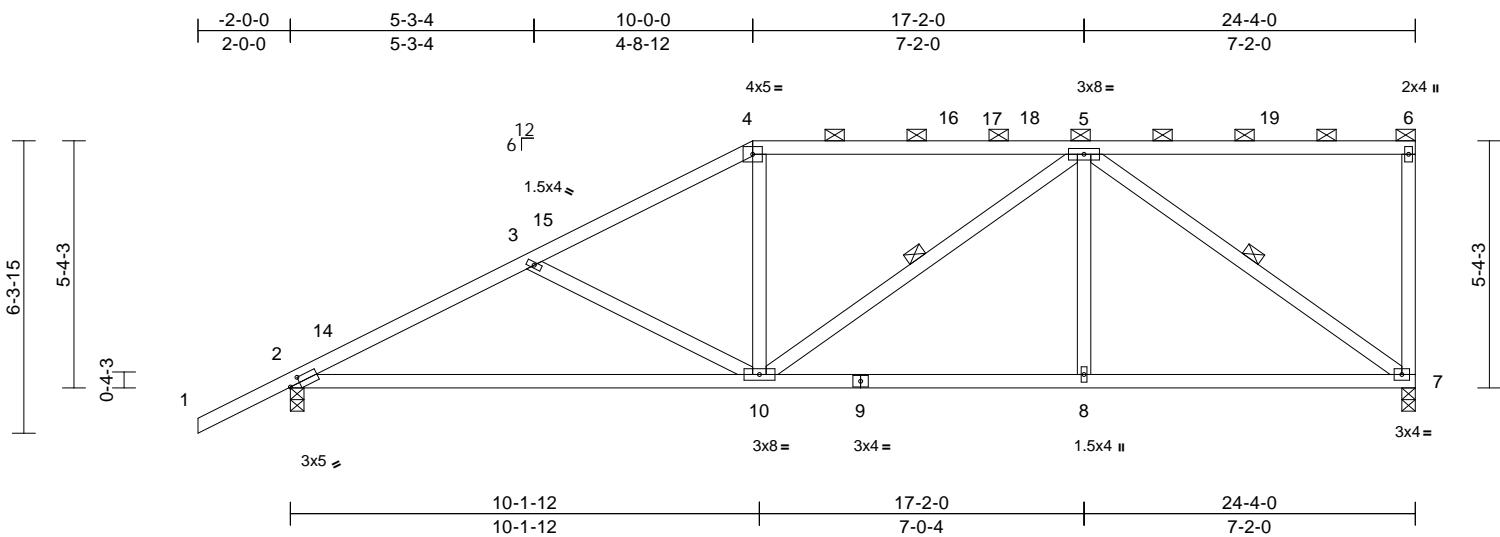
Julius Lee PE No. 34869

MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

June 23,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from the Truss Plate Institute (www.tpiinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)


MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-Us.com

Job 250620-02KM	Truss H09	Truss Type Half Hip	Qty 1	Ply 1	Mitch Brown Job Reference (optional)	T37696830
--------------------	--------------	------------------------	----------	----------	---	-----------

Coastal Truss & Vinyl Siding, Patterson, GA - 31577,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 20 12:42:44
ID: MqYovJNURD9OfMamJYCi0z4Ocw-Rfc?PsB70Hq3NSgPqnLw3uITxbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:49.8

Plate Offsets (X, Y): [2:0-2-10,0-1-8]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	-0.22	10-13	>999	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	Vert(CT)	-0.38	10-13	>763	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	Horz(CT)	0.04	7	n/a	n/a		
BCDL	7.0	Code	FBC2023/TPI2014	Matrix-MS						Weight: 131 lb	FT = 20%

LUMBER

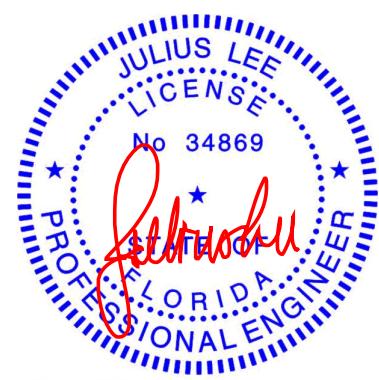
TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 4-8-9 oc purlins, except end verticals, and 2-0-0 oc purlins (5-2-3 max.): 4-6.
BOT CHORD Structural wood sheathing directly applied or 6-10-6 oc bracing.
WEBS 1 Row at midpt 5-10, 5-7

REACTIONS (size) 2=0-3-8, 7=0-3-8
Max Horiz 2=254 (LC 11)
Max Uplift 2=340 (LC 12), 7=261 (LC 9)
Max Grav 2=935 (LC 1), 7=818 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension


TOP CHORD 1-2=0/48, 2-3=-1439/516, 3-4=-1150/429, 4-5=-977/423, 5-6=-130/131, 6-7=-157/101
BOT CHORD 2-10=-719/1258, 8-10=-433/872, 7-8=-433/872
WEBS 3-10=-342/227, 4-10=0/296, 5-10=-103/163, 5-8=0/236, 5-7=-1051/425

NOTES

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-22; Vult=130mph (3-second gust)
Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=18ft;
B=50ft; L=30ft; eave=4ft; Cat. II; Exp C; Enclosed;
MWFRS (directional) and C-C Zone3 2-0-0 to 1-0-0,
Zone1 1-0-0 to 10-0-0, Zone2 10-0-0 to 14-2-15, Zone1
14-2-15 to 24-2-4 zone; cantilever left and right
exposed; end vertical left and right exposed; C-C for
members and forces & MWFRS for reactions shown;
Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for
verifying applied roof live load shown covers rain loading
requirements specific to the use of this truss component.

- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.2 .
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 261 lb uplift at joint 7 and 340 lb uplift at joint 2.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

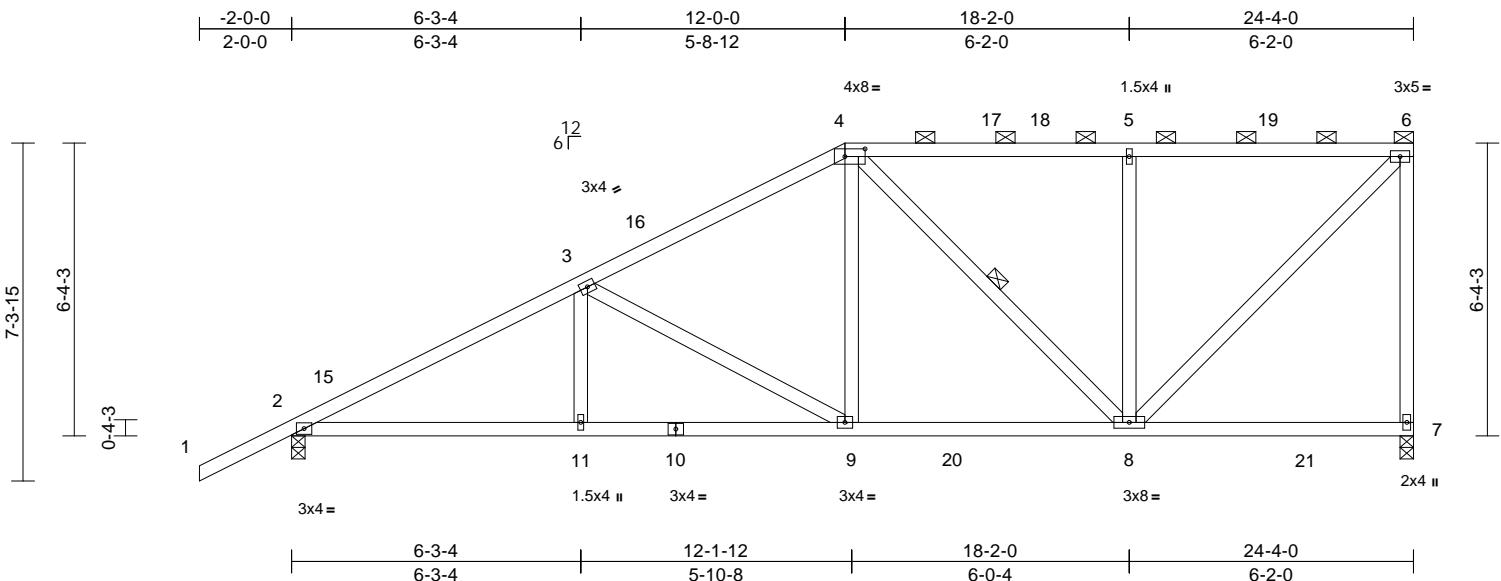
LOAD CASE(S) Standard

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

June 23, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from Truss Plate Institute ([www.tpiinst.org](#)) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association ([www.sbccomponents.com](#))


MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / [MiTek-US.com](#)

Job 250620-02KM	Truss H10	Truss Type Half Hip	Qty 1	Ply 1	Mitch Brown Job Reference (optional)	T37696831
--------------------	--------------	------------------------	----------	----------	---	-----------

Coastal Truss & Vinyl Siding, Patterson, GA - 31577,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 20 12:42:44
ID: MqYovJZNRD9OfMamJYCi0z4Ocw-RfC?PsB70Hq3NSgPqnLw3u1TxbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:50

Plate Offsets (X, Y): [4:0-5-4,0-2-0]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	-0.07	11-14	>999	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	Vert(CT)	-0.12	11-14	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	Horz(CT)	0.04	7	n/a	n/a		
BCDL	7.0	Code	FBC2023/TPI2014	Matrix-MS						Weight: 142 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 4-3-9 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 4-6.
BOT CHORD Structural wood sheathing directly applied or 6-11-15 oc bracing.
WEBS 1 Row at midpt 4-8

REACTIONS (size) 2=0-3-8, 7=0-3-8

Max Horiz 2=300 (LC 11)

Max Uplift 2=-338 (LC 12), 7=-264 (LC 9)

Max Grav 2=1076 (LC 17), 7=976 (LC 17)

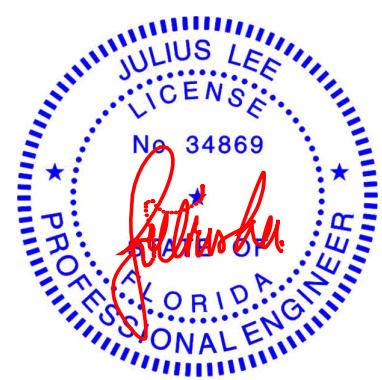
FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/48, 2-3=-1700/479, 3-4=-1157/412, 4-5=-753/363, 5-6=-753/363, 6-7=-873/360

BOT CHORD 2-11=-709/1564, 9-11=-709/1564,

8-9=-497/1044, 7-8=-130/146

WEBS 3-11=0/214, 3-9=-605/243, 4-9=-70/482, 4-8=-353/172, 5-8=-386/223, 6-8=-390/1074


NOTES

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-22; Vult=130mph (3-second gust)
Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=18ft;
B=50ft; L=30ft; eave=4ft; Cat. II; Exp C; Enclosed;
MWFRS (directional) and C-C Zone3 2-0-0 to 1-0-0,
Zone1 1-0-0 to 12-0-0, Zone2 12-0-0 to 16-2-15, Zone1
16-2-15 to 24-2-4 zone; cantilever left and right
exposed; end vertical left and right exposed; C-C for
members and forces & MWFRS for reactions shown;
Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for
verifying applied roof live load shown covers rain loading
requirements specific to the use of this truss component.

- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 7.0psf.
- All bearings are assumed to be SP No.2 .
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 264 lb uplift at joint 7 and 338 lb uplift at joint 2.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S)

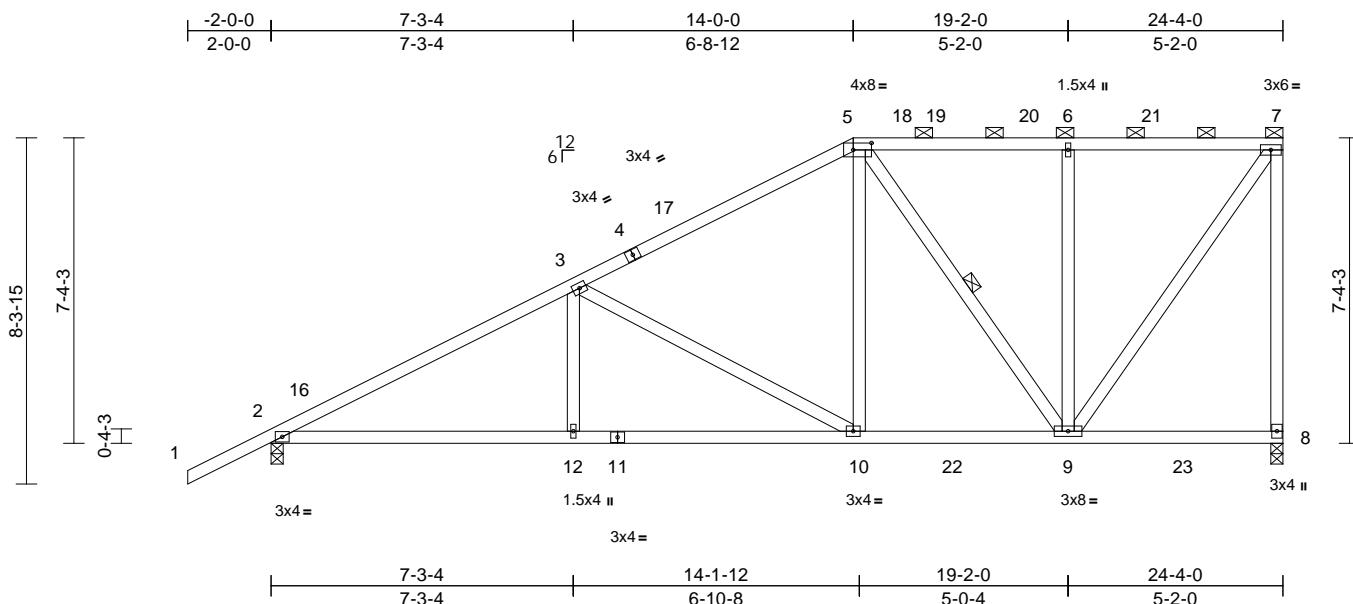
Standard

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

June 23, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpiinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)


MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-Us.com

Job 250620-02KM	Truss H11	Truss Type Half Hip	Qty 1	Ply 1	Mitch Brown Job Reference (optional)	T37696832
--------------------	--------------	------------------------	----------	----------	---	-----------

Coastal Truss & Vinyl Siding, Patterson, GA - 31577,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 20 12:42:44
ID: MqYovJNURD9OfMamJYCi0z4Ocw-RfC?PsB70Hq3NSgPqnLw3u1TxbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:55.4

Plate Offsets (X, Y): [5:0-5-4,0-2-0]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.87	Vert(LL)	-0.10	12-15	>999	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.56	Vert(CT)	-0.17	12-15	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.77	Horz(CT)	0.04	8	n/a	n/a		
BCDL	7.0	Code	FBC2023/TPI2014	Matrix-MS							Weight: 149 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 4-2-2 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 5-7.
BOT CHORD Structural wood sheathing directly applied or 6-10-14 oc bracing.
WEBS 1 Row at midpt 5-9

REACTIONS (size) 2=0-3-8, 8=0-3-8
Max Horiz 2=347 (LC 11)
Max Uplift 2=336 (LC 12), 8=267 (LC 9)
Max Grav 2=1077 (LC 17), 8=994 (LC 17)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/48, 2-3=-1656/474, 3-5=-993/382, 5-6=-582/330, 6-7=-582/330, 7-8=-902/372
BOT CHORD 2-12=-712/1533, 10-12=-712/1533, 9-10=-460/895, 8-9=-153/169
WEBS 3-12=0/260, 3-10=-736/287, 5-10=-88/540, 5-9=-484/223, 6-9=-322/190, 7-9=-377/994

NOTES

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-22; Vult=130mph (3-second gust)
Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=18ft; B=50ft; L=30ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Zone3 2-0-0 to 1-0-0, Zone1 1-0-0 to 14-0-0, Zone2 14-0-0 to 18-2-15, Zone1 18-2-15 to 24-2-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 7.0psf.
- All bearings are assumed to be SP No.2 .
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 267 lb uplift at joint 8 and 336 lb uplift at joint 2.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S)

Standard

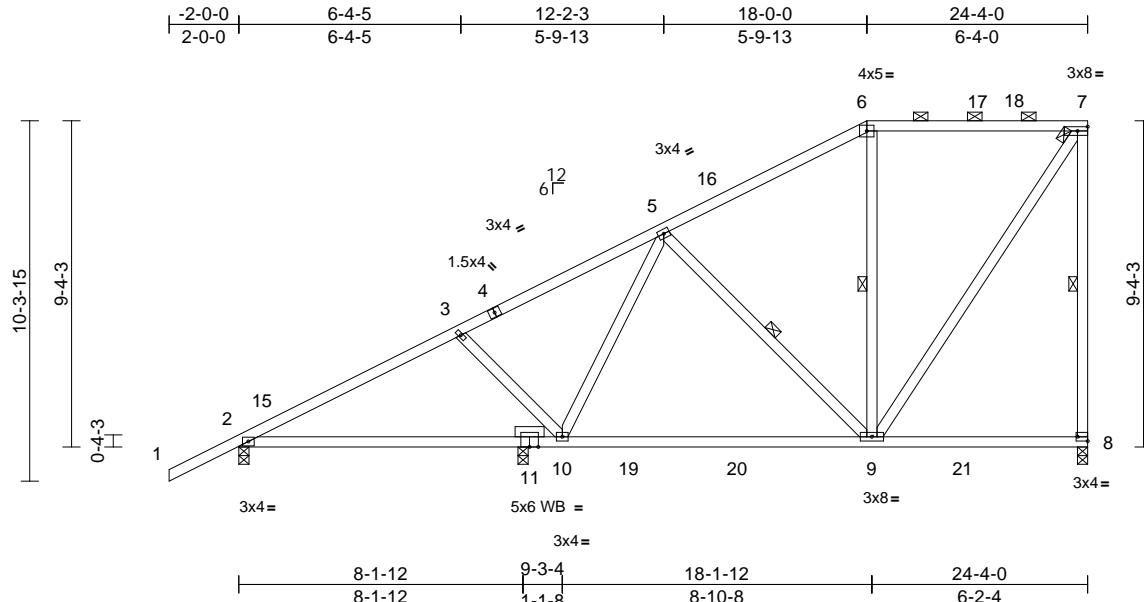
Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

June 23, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from the Truss Plate Institute ([www.tpiinst.org](#)) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association ([www.sbcsccomponents.com](#))

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / [MiTek-Us.com](#)



Job 250620-02KM	Truss H13	Truss Type Half Hip	Qty 1	Ply 1	Mitch Brown Job Reference (optional)	T37696834
--------------------	--------------	------------------------	----------	----------	---	-----------

Coastal Truss & Vinyl Siding, Patterson, GA - 31577,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 20 12:42:44
ID:q06m6fa?FkL0?pxnK03RFDz4Ocv-RfC?PsB70Hq3NSgPqnL8w3uTxGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:66

Plate Offsets (X, Y): [8:Edge,0-1-8]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	-0.22	9-10	>862	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	Vert(CT)	-0.34	9-10	>552	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	Horz(CT)	0.02	8	n/a	n/a		
BCDL	7.0	Code	FBC2023/TPI2014	Matrix-MS						Weight: 150 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.2
OTHERS 2x4 SP No.2

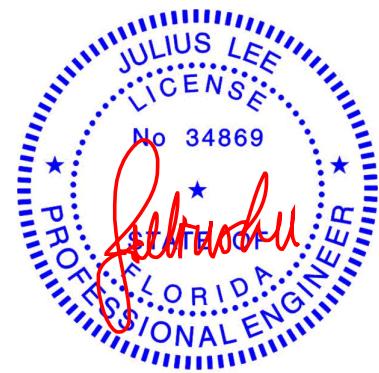
BRACING

TOP CHORD Structural wood sheathing directly applied or 5-3-15 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.); 6-7.

BOT CHORD Structural wood sheathing directly applied or 7-2-6 oc bracing.

WEBS 1 Row at midpt 7-8, 5-9, 6-9

REACTIONS (size) 2=0-3-8, 8=0-3-8, 11=0-3-8
Max Horiz 2=439 (LC 11)
Max Uplift 2=284 (LC 12), 8=253 (LC 9), 11=73 (LC 12)
Max Grav 2=813 (LC 17), 8=902 (LC 17), 11=422 (LC 17)


FORCES (lb) - Maximum Compression/Maximum Tension
TOP CHORD 1-2=0/48, 2-3=-1109/386, 3-5=-901/350, 5-6=-581/319, 6-7=-452/325, 7-8=-809/386
BOT CHORD 2-10=-639/1085, 9-10=-502/792, 8-9=-191/209
WEBS 3-10=-327/209, 5-10=0/197, 5-9=-422/234, 6-9=-156/217, 7-9=-361/821

NOTES

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-22; Vult=130mph (3-second gust)
Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=18ft; B=50ft; L=30ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Zone3 2-0-0 to 1-0-0, Zone1 1-0-0 to 18-0-0, Zone2 18-0-0 to 22-2-15, Zone1 22-2-15 to 24-2-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

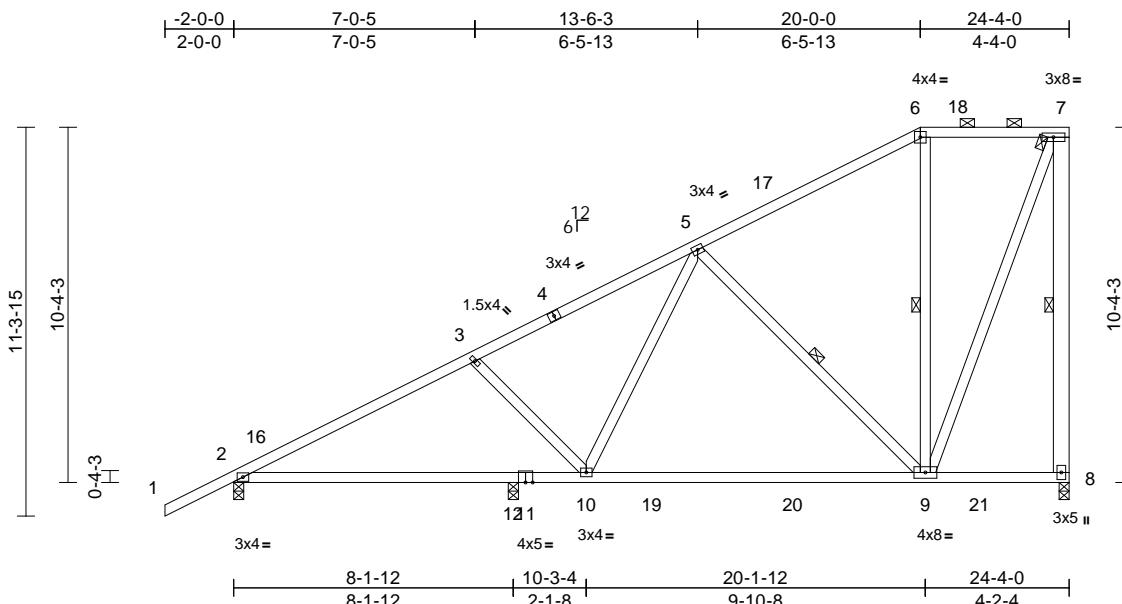
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 7.0psf.
- All bearings are assumed to be SP No.2.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 253 lb uplift at joint 8, 284 lb uplift at joint 2 and 73 lb uplift at joint 11.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

June 23, 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpiinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

Job 250620-02KM	Truss H14	Truss Type Half Hip	Qty 1	Ply 1	Mitch Brown Job Reference (optional)	T37696835
--------------------	--------------	------------------------	----------	----------	---	-----------

Coastal Truss & Vinyl Siding, Patterson, GA - 31577,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 20 12:42:44
ID:q06m6fa?FkL0?pxnK03RFDz4Ocv-RfC?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:67.1

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	-0.34	9-10	>568	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	Vert(CT)	-0.51	9-10	>376	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	Horz(CT)	0.03	8	n/a	n/a		
BCDL	7.0	Code	FBC2023/TPI2014	Matrix-MS						Weight: 164 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.2 *Except* 7-8:2x6 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 4-7-2 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 6-7.
BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc bracing.

WEBS 1 Row at midpt 7-8, 5-9, 6-9

REACTIONS (size) 2=0-3-8, 8=0-3-8, 12=0-3-8
Max Horiz 2=486 (LC 11)
Max Uplift 2=325 (LC 12), 8=266 (LC 9), 12=5 (LC 12)
Max Grav 2=958 (LC 17), 8=999 (LC 17), 12=190 (LC 17)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/48, 2-3=-1389/477, 3-5=-1155/435, 5-6=-515/302, 6-7=-383/314, 7-8=-980/421

BOT CHORD 2-12=-725/1346, 10-12=-725/1346,

9-10=-526/878, 8-9=-212/230

WEBS 3-10=-364/236, 5-10=-82/503, 5-9=-689/327, 6-9=-176/237, 7-9=-405/975

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust)
Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=18ft;
B=50ft; L=30ft; eave=4ft; Cat. II; Exp C; Enclosed;
MWFRS (directional) and C-C Zone3 2-0-0 to 1-0-0,
Zone1 1-0-0 to 20-0-0, Zone3 20-0-0 to 24-1-4 zone;
cantilever left and right exposed; end vertical left and
right exposed; C-C for members and forces & MWFRS
for reactions shown; Lumber DOL=1.60 plate grip
DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

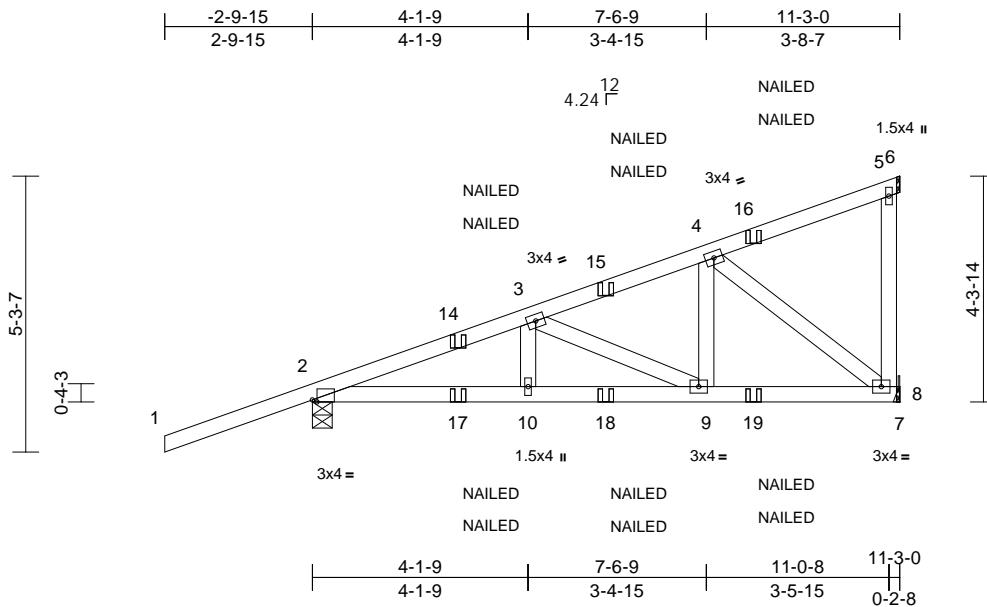
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 7.0psf.
- 7) All bearings are assumed to be SP No.2 .
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 266 lb uplift at joint 8, 325 lb uplift at joint 2 and 5 lb uplift at joint 12.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S)

Standard

June 23, 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpiinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

Job 250620-02KM	Truss CJ02	Truss Type Diagonal Hip Girder	Qty 1	Ply 1	Mitch Brown Job Reference (optional)	T37696836
--------------------	---------------	-----------------------------------	----------	----------	---	-----------

Coastal Truss & Vinyl Siding, Patterson, GA - 31577,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 20 12:42:42
ID:YxiYC4hGupcbCLiiv7EnfKz4Ocl-Rfc?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:44.1

Plate Offsets (X, Y): [2:0-1-1,Edge]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	-0.04	10-13	>999	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	Vert(CT)	-0.04	10-13	>999	180		
BCLL	0.0*	Rep Stress Incr	NO	WB	Horz(CT)	0.01	8	n/a	n/a		
BCDL	7.0	Code	FBC2023/TPI2014	Matrix-MS						Weight: 61 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 5-8-12 oc purlins, except end verticals.
BOT CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing.

REACTIONS (size) 2=0-4-9, 8= Mechanical

Max Horiz 2=203 (LC 7)
Max Uplift 2=-275 (LC 8), 8=-165 (LC 5)
Max Grav 2=602 (LC 13), 8=551 (LC 13)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/51, 2-3=-1023/132, 3-4=-668/172,
4-5=-148/89, 5-6=-10/0, 5-8=-103/63

BOT CHORD 2-10=-242/873, 9-10=-242/873,
8-9=-191/559, 7-8=0/0

WEBS 3-10=0/136, 3-9=-355/56, 4-9=0/312,
4-8=-662/190

NOTES

- Wind: ASCE 7-22; Vult=130mph (3-second gust)
Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=18ft;
B=50ft; L=30ft; eave=4ft; Cat. II; Exp C; Enclosed;
MWFRS (directional); cantilever left and right exposed;
end vertical left and right exposed; Lumber DOL=1.60
plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearings are assumed to be: Joint 2 SP No.2 .

- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 275 lb uplift at joint 2 and 165 lb uplift at joint 8.
- "NAILED" indicates 3-10d (0.148"x3") or 2-12d (0.148"x3.25") toe-nails per NDS guidelines.
- In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S)

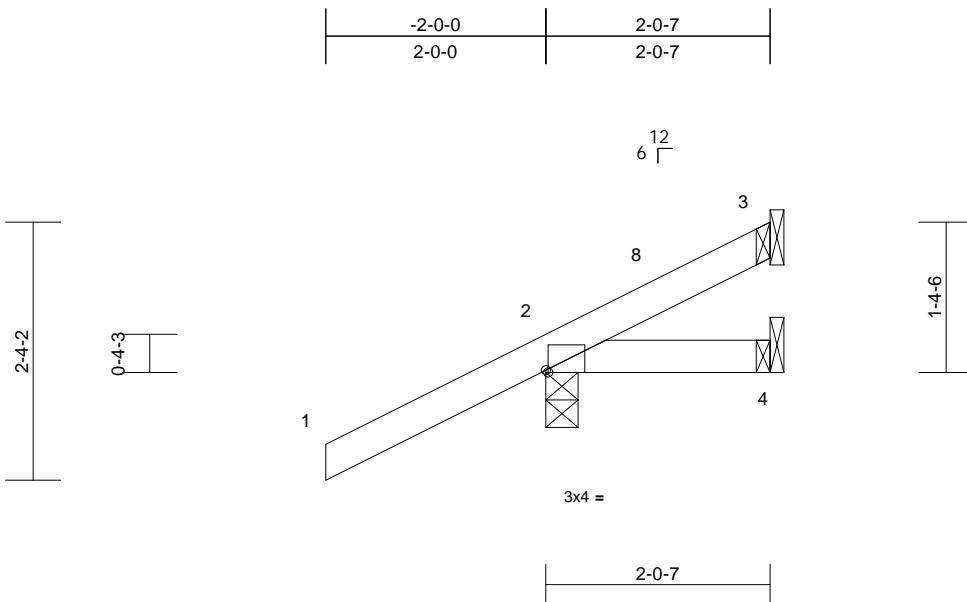
Standard

- Dead + Roof Live (balanced): Lumber Increase=1.25,
Plate Increase=1.25
Uniform Loads (lb/ft)
Vert: 1-5=-54, 5-6=-14, 7-11=-14
Concentrated Loads (lb)
Vert: 15=-8 (F=-4, B=-4), 16=-112 (F=-56, B=-56),
18=-17 (F=-8, B=-8), 19=-66 (F=-33, B=-33)

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

June 23,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from Truss Plate Institute ([www.tpiinst.org](#)) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association ([www.sbcsccomponents.com](#))

Job 250620-02KM	Truss J06	Truss Type Jack-Open	Qty 2	Ply 1	Mitch Brown Job Reference (optional)	T37696837
--------------------	--------------	-------------------------	----------	----------	---	-----------

Coastal Truss & Vinyl Siding, Patterson, GA - 31577,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 20 12:42:45
ID:ICf9K?ad02TtdzWztkagnRz4Ocu-RfC?PsB70Hq3NSgPqnL8w3uITxGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:20.9

Plate Offsets (X, Y): [2:0-0-4.Edge]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	0.00	4-7	>999	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	Vert(CT)	0.00	4-7	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	Horz(CT)	0.00	2	n/a	n/a		
BCDL	7.0	Code	FBC2023/TPI2014	Matrix-MP						Weight: 10 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 2-0-7 oc purlins.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 10 lb uplift at joint 3, 168 lb uplift at joint 2 and 6 lb uplift at joint 4.

LOAD CASE(S)

Standard

BOT CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing.

REACTIONS (size) 2=0-3-8, 3= Mechanical, 4= Mechanical
Max Horiz 2=93 (LC 12)
Max Uplift 2=168 (LC 12), 3=10 (LC 9), 4=-6 (LC 1)
Max Grav 2=230 (LC 1), 3=22 (LC 17), 4=31 (LC 12)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/48, 2-3=-269/89

BOT CHORD 2-4=-100/269

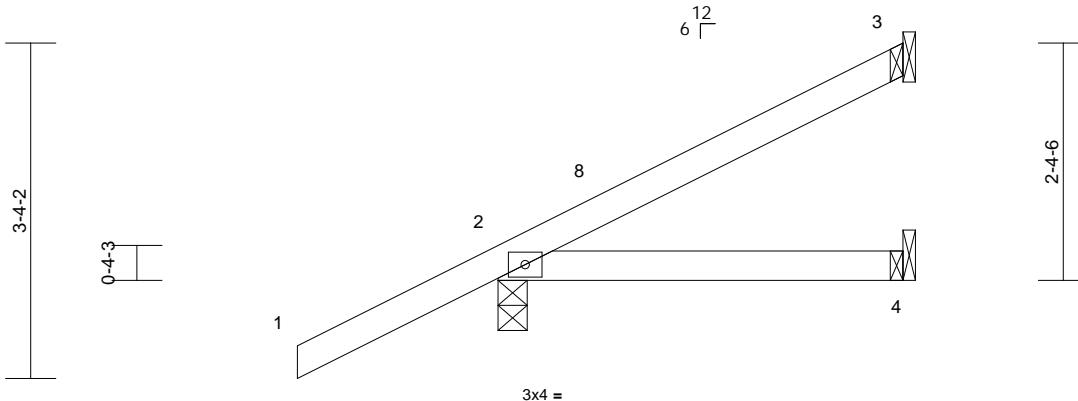
NOTES

- Wind: ASCE 7-22; Vult=130mph (3-second gust); Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=18ft; B=50ft; L=30ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Zone3 -2-0-0 to 1-0-0, Zone1 1-0-0 to 1-11-11 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearings are assumed to be: , Joint 2 SP No.2 .

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

June 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpiinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

Job 250620-02KM	Truss J07	Truss Type Jack-Open	Qty 2	Ply 1	Mitch Brown Job Reference (optional)	T37696838
--------------------	--------------	-------------------------	----------	----------	---	-----------

Coastal Truss & Vinyl Siding, Patterson, GA - 31577,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 20 12:42:45
ID:ICf9K?ad02TtdzWztkagnRz4Ocu-RfC?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?

Page: 1

Scale = 1:23

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	0.01	4-7	>999	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	Vert(CT)	-0.02	4-7	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	Horz(CT)	0.00	3	n/a	n/a		
BCDL	7.0	Code	FBC2023/TPI2014	Matrix-MP						Weight: 16 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 4-0-7 oc purlins.

BOT CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing.

REACTIONS (size) 2=0-3-8, 3= Mechanical, 4= Mechanical

Max Horiz 2=130 (LC 12)

Max Uplift 2=147 (LC 12), 3=45 (LC 12)

Max Grav 2=270 (LC 1), 3=84 (LC 17), 4=58 (LC 3)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/48, 2-3=-314/86

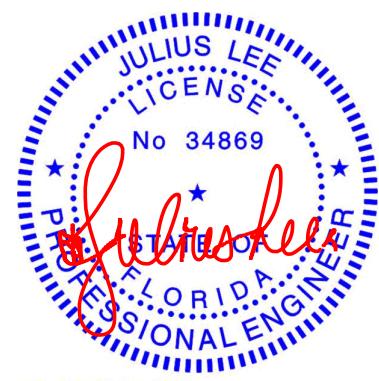
BOT CHORD 2-4=-82/258

NOTES

1) Wind: ASCE 7-22; Vult=130mph (3-second gust)
Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=18ft;
B=50ft; L=30ft; eave=4ft; Cat. II; Exp C; Enclosed;
MWFRS (directional) and C-C Zone3 -2-0-0 to 1-0-0,
Zone1 1-0-0 to 3-11-11 zone; cantilever left and right
exposed; end vertical left and right exposed; C-C for
members and forces & MWFRS for reactions shown;
Lumber DOL=1.60 plate grip DOL=1.60

2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

5) Bearings are assumed to be: , Joint 2 SP No.2 .

6) Refer to girder(s) for truss to truss connections.

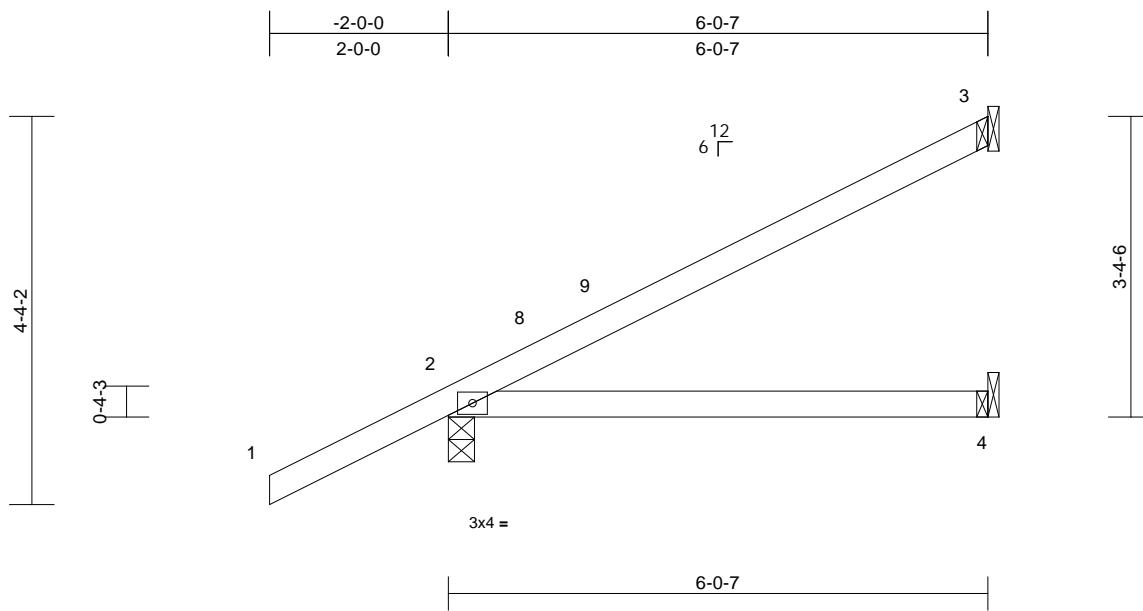
7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 45 lb uplift at joint 3 and 147 lb uplift at joint 2.

LOAD CASE(S) Standard

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

June 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from Truss Plate Institute ([www.tpiinst.org](#)) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association ([www.sbcsccomponents.com](#))

Job 250620-02KM	Truss J08	Truss Type Jack-Open	Qty 2	Ply 1	Mitch Brown Job Reference (optional)	T37696839
--------------------	--------------	-------------------------	----------	----------	---	-----------

Coastal Truss & Vinyl Siding, Patterson, GA - 31577,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 20 12:42:45
ID:ICf9K?ad02TtdzWztkagnRz4Ocu-RfC?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:25.8

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	0.08	4-7	>926	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	Vert(CT)	-0.10	4-7	>730	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	Horz(CT)	0.00	3	n/a	n/a		
BCDL	7.0	Code	FBC2023/TPI2014	Matrix-MP						Weight: 23 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 81 lb uplift at joint 3 and 148 lb uplift at joint 2.

LOAD CASE(S)

Standard

BRACING

TOP CHORD Structural wood sheathing directly applied or 6'-0" oc purlins.

BOT CHORD Structural wood sheathing directly applied or 10'-0" oc bracing.

REACTIONS (size) 2=0-3-8, 3= Mechanical, 4= Mechanical

Max Horiz 2=166 (LC 12)

Max Uplift 2=148 (LC 12), 3=81 (LC 12)

Max Grav 2=329 (LC 1), 3=138 (LC 17), 4=91 (LC 3)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/48, 2-3=-342/85

BOT CHORD 2-4=-56/219

NOTES

1) Wind: ASCE 7-22; Vult=130mph (3-second gust)
Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=18ft;
B=50ft; L=30ft; eave=4ft; Cat. II; Exp C; Enclosed;
MWFRS (directional) and C-C Zone3 -2-0-0 to 1-0-0,
Zone1 1-0-0 to 5-11-11 zone; cantilever left and right exposed;
end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown;
Lumber DOL=1.60 plate grip DOL=1.60

2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

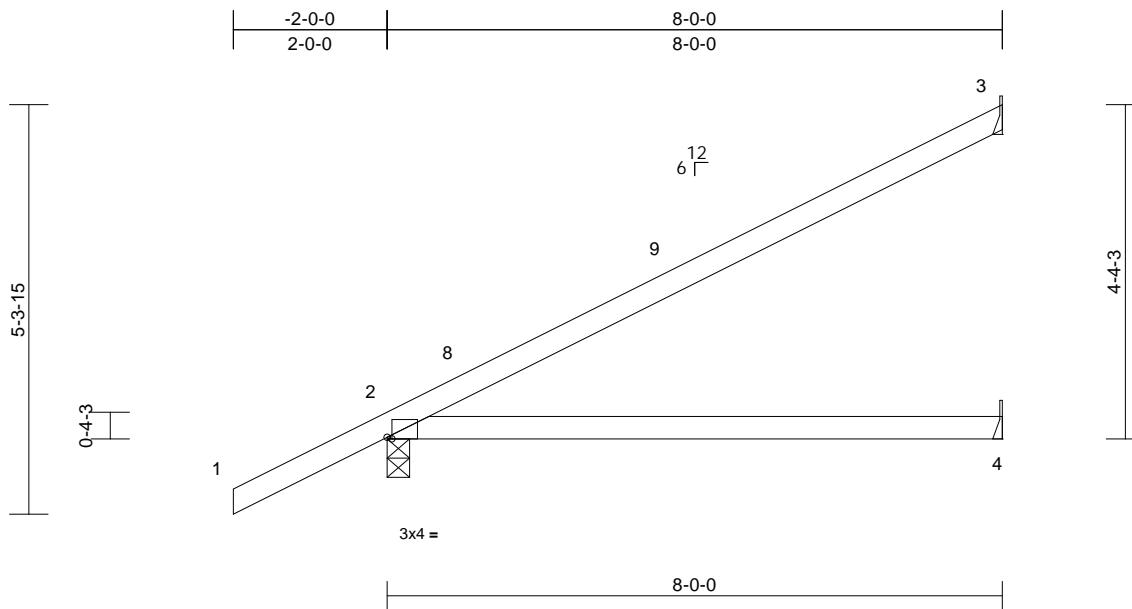
5) Bearings are assumed to be: , Joint 2 SP No.2 .

6) Refer to girder(s) for truss to truss connections.

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

June 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpiinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

Job 250620-02KM	Truss J09	Truss Type Jack-Open	Qty 8	Ply 1	Mitch Brown Job Reference (optional)	T37696840
--------------------	--------------	-------------------------	----------	----------	---	-----------

Coastal Truss & Vinyl Siding, Patterson, GA - 31577,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Fri Jun 20 12:42:45
ID:07GwQQiuf7kSqVHuTqm0BYz4Ock-RFC?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:30

Plate Offsets (X, Y): [2:0-0-12,Edge]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	0.21	4-7	>449	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	Vert(CT)	-0.32	4-7	>298	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	Horz(CT)	-0.01	3	n/a	n/a		
BCDL	7.0	Code	FBC2023/TPI2014	Matrix-MP						Weight: 29 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2

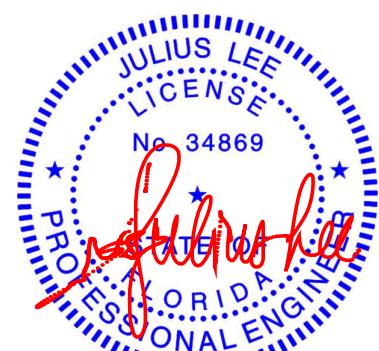
BRACING

TOP CHORD Structural wood sheathing directly applied.
BOT CHORD Structural wood sheathing directly applied or
10-0-0 oc bracing.

REACTIONS (size) 2=0-3-8, 3= Mechanical, 4= Mechanical

Max Horiz 2=203 (LC 12)
Max Uplift 2=-154 (LC 12), 3=-115 (LC 12)
Max Grav 2=391 (LC 1), 3=189 (LC 17),
4=123 (LC 3)

FORCES (lb) - Maximum Compression/Maximum Tension


TOP CHORD 1-2=0/48, 2-3=-351/78
BOT CHORD 2-4=-27/166

NOTES

- Wind: ASCE 7-22; Vult=130mph (3-second gust)
Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=18ft;
B=50ft; L=30ft; eave=4ft; Cat. II; Exp C; Enclosed;
MWFRS (directional) and C-C Zone3 -2-0-0 to 1-0-0,
Zone1 1-0-0 to 7-11-4 zone; cantilever left and right
exposed; end vertical left and right exposed; C-C for
members and forces & MWFRS for reactions shown;
Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for
verifying applied roof live load shown covers rain loading
requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom
chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf
on the bottom chord in all areas where a rectangle
3-06-00 tall by 2-00-00 wide will fit between the bottom
chord and any other members.
- Bearings are assumed to be: , Joint 2 SP No.2 .
- Refer to girder(s) for truss to truss connections.

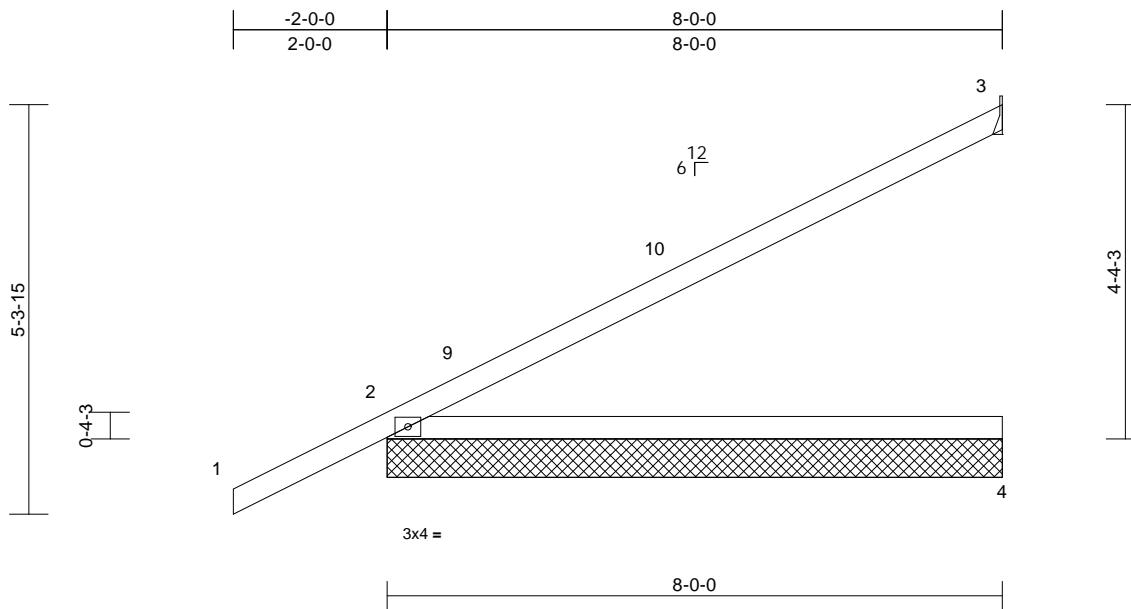
7) Provide mechanical connection (by others) of truss to
bearing plate capable of withstanding 115 lb uplift at joint
3 and 154 lb uplift at joint 2.

LOAD CASE(S) Standard

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

June 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from Truss Plate Institute ([www.tpiinst.org](#)) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association ([www.sbcsccomponents.com](#))

Job 250620-02KM	Truss J10	Truss Type Jack-Open	Qty 1	Ply 1	Mitch Brown Job Reference (optional)	T37696841
--------------------	--------------	-------------------------	----------	----------	---	-----------

Coastal Truss & Vinyl Siding, Patterson, GA - 31577,

Run: 8.73 E Nov 16 2023 Print: 8.730 E Nov 16 2023 MiTek Industries, Inc. Mon Jun 23 14:55:46
ID:ICf9K?ad02TtdzWztkagnRz4Ocu-wV_9qloaVrmTPBCIkBaAwa?nVYKDbJsOLqMwt5z3XPz

Page: 1

Scale = 1:30

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	Vert(LL)	0.22	7-8	>443	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	Vert(CT)	-0.33	7-8	>289	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	Horz(CT)	-0.01	3	n/a	n/a		
BCDL	7.0	Code	FBC2023/TPI2014	Matrix-MP						Weight: 29 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP No.2

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 153 lb uplift at joint 2, 114 lb uplift at joint 3 and 153 lb uplift at joint 2.

LOAD CASE(S)

Standard

BRACING

TOP CHORD Structural wood sheathing directly applied.

BOT CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing.

REACTIONS All bearings 8-0-0, except 3= Mechanical

(lb) - Max Horiz 2=203 (LC 12), 5=203 (LC 12)

Max Uplift All uplift 100 (lb) or less at joint(s) except 2=-154 (LC 12), 3=-115 (LC 12), 5=-154 (LC 12)

Max Grav All reactions 250 (lb) or less at joint (s) 3, 4 except 2=393 (LC 1), 5=393 (LC 1)

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-9=-351/77

NOTES

1) Wind: ASCE 7-22; Vult=130mph (3-second gust)

Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=18ft;

B=50ft; L=30ft; eave=4ft; Cat. II; Exp C; Enclosed;

MWFRS (directional) and C-C 1-0-0 to 7-11-4 zone;

cantilever left and right exposed; end vertical left and

right exposed; C-C for members and forces & MWFRS

for reactions shown; Lumber DOL=1.60 plate grip

DOL=1.60

2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

3) This truss has been designed for a 10.0 psf bottom

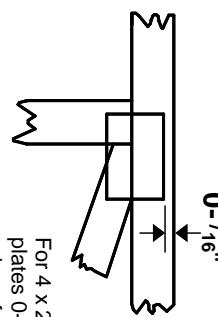
chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

5) Refer to girder(s) for truss to truss connections.

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

June 23,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from the Truss Plate Institute (www.tpiinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcsccomponents.com)

Symbols

PLATE LOCATION AND ORIENTATION

Center plate on joint unless X, Y offsets are indicated.
Dimensions are in ft-in-sixteenths.
Apply plates to both sides of truss and fully embed teeth.

For 4 x 2 orientation, locate plates 0-1/16" from outside edge of truss.

This symbol indicates the required direction of slots in connector plates.

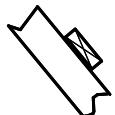
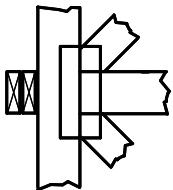

* Plate location details available in MiTek software or upon request.

PLATE SIZE

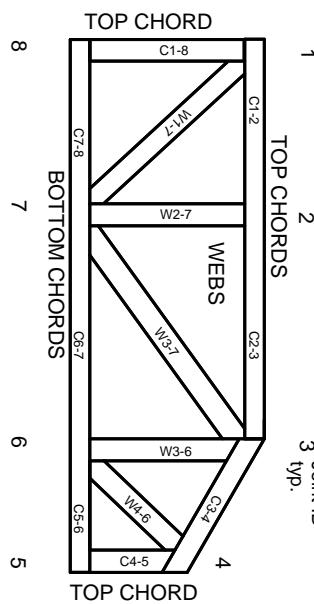
4 x 4


The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section or the output. Use T or I bracing if indicated.

BEARING


Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number/letter where bearings occur. Min size shown is for crushing only.

Industry Standards:

ANSI/TP1: National Design Specification for Metal Plate Connected Wood Truss Construction.
DSB-22: Design Standard for Bracing.
BCSI: Building Component Safety Information, Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses.

Numbering System

6-4-8 dimensions shown in ft-in-sixteenths
(Drawings not to scale)

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282
ESR-4722, ESL-1388

Design General Notes

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.
Lumber design values are in accordance with ANSI/TP1 section 6.3. These truss designs rely on lumber values established by others.

© 2023 MiTek® All Rights Reserved

Failure to Follow Could Cause Property Damage or Personal Injury

General Safety Notes

ANSI/TP1: National Design Specification for Metal Plate Connected Wood Truss Construction.
DSB-22: Design Standard for Bracing.
BCSI: Building Component Safety Information, Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses.

Failure to Follow Could Cause Property Damage or Personal Injury

1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.

2. Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I

3. Never exceed the design loading shown and never stack materials on inadequately braced trusses.

4. Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.

5. Cut members to bear tightly against each other.

6. Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TP1.

7. Design assumes trusses will be suitably protected from the environment in accord with ANSI/TP1.

8. Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.

9. Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.

10. Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.

11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.

12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.

13. Top chords must be sheathed or purlins provided at spacing indicated on design.

14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.

15. Connections not shown are the responsibility of others.

16. Do not cut or alter truss member or plate without prior approval of an engineer.

17. Install and load vertically unless indicated otherwise.

18. Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.

19. Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.

20. Design assumes manufacture in accordance with ANSI/TP1 Quality Criteria.

21. The design does not take into account any dynamic or other loads other than those expressly stated.