

Lymber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

RE: 1223-007 -

MiTek, Inc.

314.434.1200

16023 Swingley Ridge Rd.

Chesterfield, MO 63017

Site Information:

Customer Info: JACOB Project Name: . Model: .

Lot/Block: .

Subdivision: .

Address: .,

City: FT. WHITE

State: FL

Name Address and License # of Structural Engineer of Record, If there is one, for the building.

Name:

License #:

Address:

City:

State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: FBC2020/TPI2014

Wind Code: ASCE 7-16

Design Program: MiTek 20/20 8.7 Wind Speed: 130 mph

Roof Load: 40.0 psf

Floor Load: N/A psf

This package includes 17 individual, Truss Design Drawings and 0 Additional Drawings. With my seal affixed to this sheet, I hereby certify that I am the Truss Design Engineer and this index sheet conforms to 61G15-31.003, section 5 of the Florida Board of Professional Engineers Rules.

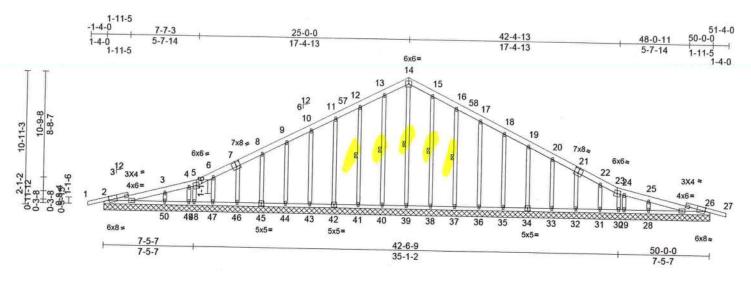
No.	Seal#	Truss Name	Date
1	T32516117	A01	1/4/24
1 2 3 4 5 6 7 8 9 10	T32516118	A02	1/4/24
3	T32516119	A2A	1/4/24
4	T32516120	A03	1/4/24
5	T32516121 T32516122	A04 B01	1/4/24
7	T32516123	B02	1/4/24 1/4/24
8	T32516124	B03	1/4/24
9	T32516125	C01	1/4/24
10	T32516126	C02	1/4/24
11	T32516127	D01	1/4/24
12	T32516128	D02	1/4/24
13	T32516129	D03	1/4/24
14	T32516130	F01	1/4/24
15	T32516131	F02	1/4/24
16 17	T32516132 T32516133	F03 GO1	1/4/24 1/4/24
11	132310133	GOT	1/4/24

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Mayo Truss Company, Inc.,

Truss Design Engineer's Name: Lee, Julius

My license renewal date for the state of Florida is February 28, 2025.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.



MITek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

Job	Truss	Truss Type	Qtv	Plv		
1223-007	A01	Roof Special Supported Gable		1		T32516117
Mayo Trues Company		The Product Capported Caple	1	1	Job Reference (optional)	102010111

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Wed Jan 03 11:10:13 ID:YZ8rO8OJjnCdP8INbhtNmkyBhEc-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?rdefined and the control of the cont

Page: 1

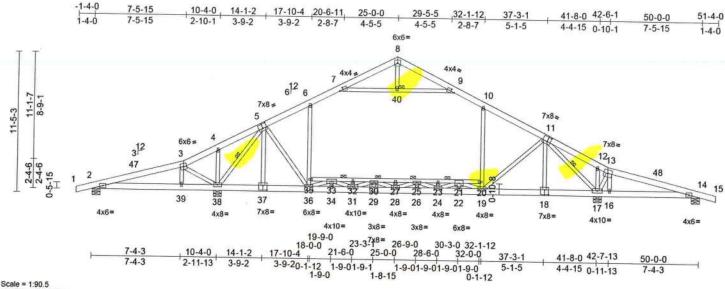
Scale = 1:91

Loading (psf) TCLL (roof) 20.0 TCDL 10.0 BCLL 0.0° BCDL 10.0	Plate Grip DOL 1 Lumber DOL 1 Rep Stress Incr Y	-0-0 .25 .25 ES	CSI TC BC WB	0.12 0.19 0.11	Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01		l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
LUMBER TOP CHORD BOT CHORD BOT CHORD WEBS OTHERS STRACING TOP CHORD BOT CHORD STRUCTURE BOT CHORD BOT CHORD TOP CHOR	athing directly applied. applied. 14-39, 13-40, 12-41, 15-38, 16-37 26-50-0-0, 28-50-0-0, 33-50-0-0, 33-50-0-0, 36-50-0-0, 49-50-0-0, 45-50-0-0, 45-50-0-0, 45-50-0-0, 51-50-0-0	FORCES TOP CHORD	30=1 32=1 34=1: 36=1: 40=1: 42=1: 46=1: 48=1: 50=4	23 (LC 24), 22 (LC 1), 52 (LC 18), 59 (LC 17), 69 (LC 1), 33 (LC 17), 60 (LC 1), 49 (LC 17), 60 (LC 1), 44 (LC 23), 5 (LC 1) compression 48/127, 3-46=-153/12(10=-125/11, 11-12=-11, 11	29=-13 (LC 8 31=139 (LC 1 31=139 (LC 1 31=139 (LC 1 31=16) (LC 1 31=163 (LC 1 31=160 (LC 1) 41=163 (LC 1) 41=163 (LC 1) 45=167 (LC 4 47=141 (LC 1 47	3),), 11), 11), 8), 17), 23), 17), 23), 11), 11), 11), 18,	NOTES 1) Unbathis (2) Winco Vasco B=45 MWF 3-8-0 left a	Juli Mil	14-39:12-41:10-43:7-46:-110-43:3-50:-16-37:18-35:20-33:-15-48:-17-16:17:18-35:	=-136/49, 13-40= =-123/105, 11-42= -120/50, 9-44=122/53, 6-47=-1, 122/53, 6-47=-1, 123/106, 17-36=123/106, 17-36=120/50, 19-34=128/53, 21-32=103/41, 24-29=- 71/18, 23-30=-74 //e loads have bed bed bed bed bed bed bed bed bed be	=-120/59, 119/51, 8-45=-127/5, 106/43, 4-49=0/17, 119/66, =-120/59, -119/51, -121/53, -3/15, 25-28=-290/73, 1/16 en considered for second gust) =-6.0psf; h=15ft; b=6.0psf; h=15ft; b=6.0psf; h=15ft; b=7, 120, 120, 120, 120, 120, 120, 120, 120

Job	Truss	Truss Type	Qty	Ply		
1223-007	A01	Roof Special Supported Gable	1	1	Job Reference (optional)	T32516117

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Wed Jan 03 11:10:13 ID:YZ8rO8OJjnCdP8INbhtNmkyBhEc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) All bearings are assumed to be SP No.2
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 45 lb uplift at joint 2, 27 lb uplift at joint 26, 19 lb uplift at joint 41, 12 lb uplift at joint 42, 12 lb uplift at joint 43, 12 lb uplift at joint 44, 13 lb uplift at joint 45, 13 lb uplift at joint 46, 7 lb uplift at joint 47, 88 lb uplift at joint 49, 10 lb uplift at joint 50, 19 Ib uplift at joint 37, 12 lb uplift at joint 36, 12 lb uplift at joint 35, 12 lb uplift at joint 34, 13 lb uplift at joint 33, 13 Ib uplift at joint 32, 7 lb uplift at joint 31, 47 lb uplift at joint 29, 45 lb uplift at joint 2 and 27 lb uplift at joint 26.
- 12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.


LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply		
1223-007	A02	Attic	16	1	Job Reference (optional)	T32516118
	PER HOLD BUILDING TO THE PER HOLD BUILDING TON		0.00	V 62	Job Reference (optional)	

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Wed Jan 03 11:10:14 ID:bi9yBaJvf0uofnUS00A7LryBh9Z-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Utisets (X Y): 15:0-4-0 0-4-81 17:0-3 10 0 3 01 10:0 3 10 0 3 0], [11:0-3-4,0-4-8], [18:0-4-0,0-4-8], [29:0-4-0,0-4-8], [36:0-4-0,0-4-4], [37:0-4-0,0-4-8]
1.0-3-10,0-2-0], [9.0-3-10,0-2-0]	11110-3-4.0-4-81 118:0-4-0 0-4-81 129:0-4-0 0-4-91 136:0-4-0 0-4-41 127:0-4-0 0-4-0
and the second s	7, [10.0 + 0,0 + 0], [20.0 + 0,0 + 0], [30,0 + 0,0 + 41, [37,1] - 4-1) [1-4-8]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.25 1.25 YES	CSI TC BC WB	0.68 0.86 0.61	Vert(LL) Vert(CT) Horz(CT)		(loc) 25-27 25-27	l/defl >999 >865 n/a	L/d 240 180 n/a		GRIP 244/190
DODL	10.0	Code	FBC2020/TPI2014	Matrix-AS		Attic	-0.16	20-35	>999	360	Weight: 400 lb	ET - 200/

6-35=-86/468, 19-20=-53/376,

12-17=-169/35, 13-17=-167/205,

3-39=0/219, 3-38=-563/110, 35-36=-113/386,

10-20=-20/472, 13-16=0/173, 7-40=-1432/0.

9-40=-1432/0, 8-40=0/172, 4-38=-184/70,

5-37=-281/0, 5-38=-2404/0, 5-36=0/1088,

11-18=-89/88, 11-19=0/883, 11-17=-3407/0,

21-22=-232/0, 19-21=-1315/0, 21-24=0/1191,

33-34=-532/0, 31-32=-149/0, 29-30=-6/85,

27-28=-160/0, 25-26=0/98, 23-24=-159/0.

24-25=-786/0, 25-28=-9/79, 28-30=0/250.

30-31=-926/0, 31-33=0/1427, 33-36=-895/0

LUMBER

TOP CHORD 2x6 SP No.2

BOT CHORD 2x6 SP No.2 *Except* 35-20:2x4 SP No.2,

29-18,37-29:2x6 SP SS

WEBS 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied. **BOT CHORD** Rigid ceiling directly applied.

1 Row at midpt WEBS 5-38, 11-17 **JOINTS** 1 Brace at Jt(s): 40

REACTIONS (size)

2=0-8-0, 14=0-8-0, 17=0-8-0, 38=0-8-0

Max Horiz 2=-185 (LC 10)

Max Uplift 2=-55 (LC 12), 14=-201 (LC 16) Max Grav

17=2775 (LC 19), 38=2525 (LC 18)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD

1-2=0/19, 2-3=-572/377, 13-14=0/1602, 14-15=0/19, 3-4=-295/701, 4-6=-1939/716,

6-7=-1704/42, 7-8=-481/91, 8-9=-473/93, 9-10=-1669/38, 10-12=-1905/1683,

12-13=0/1659

BOT CHORD 2-39=-322/550, 38-39=-332/542,

36-38=0/971, 34-36=0/2125, 31-34=0/2125, 28-31=0/4145, 26-28=0/4297, 24-26=0/4297, 22-24=0/2613, 19-22=0/2613, 17-19=0/1010, 16-17=-1514/0, 14-16=-1510/0, 33-35=0/174,

32-33=-1965/0, 30-32=-1965/0,

27-30=-2980/0, 25-27=-2980/0 23-25=-2244/0, 21-23=-2244/0, 20-21=-30/64

2=446 (LC 1), 14=119 (LC 1),

NOTES

WEBS

Unbalanced roof live loads have been considered for 1) this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=50ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-4-0 to 3-8-0, Interior (1) 3-8-0 to 25-0-0, Exterior(2R) 25-0-0 to 29-9-13, Interior (1) 29-9-13 to 51-4-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip
- DOL=1.60 Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- All plates are 2x4 MT20 unless otherwise indicated.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Ceiling dead load (10.0 psf) on member(s). 7-40, 9-40,

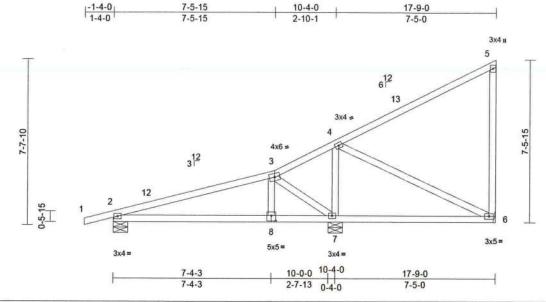
- Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 33-35, 32-33, 30-32, 27-30, 25-27, 23-25, 21-23, 20-21
- All bearings are assumed to be SP No.2
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 55 lb uplift at joint 2 and 201 lb uplift at joint 14.
- This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 12) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

Julius Lee PE No. 34869 MITek Inc. DBA MITek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

January 4,2024

Design valid for use only with MITel® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Barcing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)


Job	Truss	Truss Type	Qty	Ply		
1223-007	A2A	Jack-Closed	3	1	Job Reference (optional)	T32516119

7-5-15

Mayo Truss Company, Inc., Mayo, FL - 32066

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Wed Jan 03 11:10:11 ID:LuSOm7cGO90X0jdv7mT9kLyB2jn-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:51.1

Plate Offsets (X, Y): [8:0-2-8,0-3-0]

	* 0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-												
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.54	Vert(LL)	-0.08	6-7	>999	240	MT20	244/190	
TCDL	10.0	Lumber DOL	1.25	BC	0.44	Vert(CT)	-0.16	6-7	>553	180		210100	
BCLL	0.0*	Rep Stress Incr	YES	WB	0.12	Horz(CT)	0.01	2	n/a	n/a			
BCDL	10.0	Code	FBC2020/TPI2014	Matrix-AS	(Internitors)	IN THE PROPERTY OF THE PARTY OF	/3-E34(EXIT)		100000	A-month)	Weight: 91 lb	FT = 20%	

LUMBER

TOP CHORD 2x4 SP No 2 2x4 SP No.2 BOT CHORD 2x4 SP No.2

BRACING TOP CHORD

WEBS

Structural wood sheathing directly applied, except end verticals.

BOT CHORD

Rigid ceiling directly applied. REACTIONS (size) 2=0-8-0, 6= Mechanical, 7=0-8-0

Max Horiz 2=214 (LC 11)

Max Uplift 2=-32 (LC 12), 6=-40 (LC 9) Max Grav 2=487 (LC 1), 6=279 (LC 17),

7=728 (LC 1)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/19, 2-3=-555/59, 3-4=-151/94,

4-5=-182/114, 5-6=-190/156

BOT CHORD 2-7=-220/489, 6-7=-186/146 WEBS

3-8=0/207, 3-7=-532/52, 4-7=-326/102,

4-6=-70/120

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-4-0 to 1-8-0, Interior (1) 1-8-0 to 17-7-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

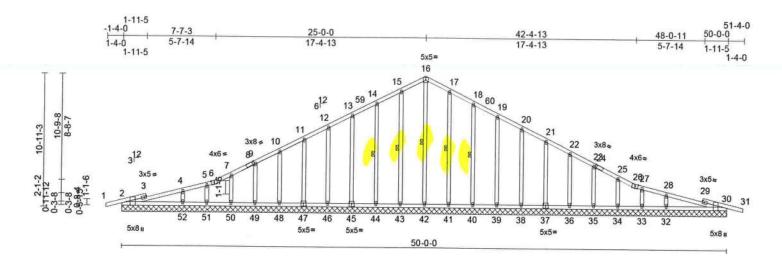
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearings are assumed to be: Joint 2 SP No.2, Joint 7 SP No.2
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 32 lb uplift at joint 2 and 40 lb uplift at joint 6.
- This truss design requires that a minimum of 7/16 structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

January 4,2024

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply		
1223-007	A03	Roof Special Supported Gable	1	1	Job Reference (optional)	T32516120

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Wed Jan 03 11:10:15 ID:CSweeZZeJgndR7Y9H0VClayBh5M-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Loading		(psf)	Spacing	2-0-0	001			200	. Indexes and	0 00-27-10-	B197200	TOTAL TRANSPORTER TO	Security Party (
TCLL (roof)		20.0	Plate Grip DOL	1.25	TC	0.40	DEFL	in	10000			PLATES	GRIP
TCDL		10.0	Lumber DOL	1.25	BC	0.18	(2) (3) (3) (4) (4) (4) (4) (4)	n/a		100		MT20	244/190
BCLL		0.0*	Rep Stress Incr	YES	10000000	0.18	The state of the s	n/a					
BCDL		10.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FBC2020/TPI2014	WB Matrix-A	0.12	Horz(CT)	0.01	30	n/a	n/a		-
		10.0	Ouc	1002020/11/2014	Iviauix-A	45						Weight: 324 lb	FT = 20%
.UMBER					Max Grav	2=258 (LC 23),	30=258 (LC	24).	WEBS		16-42	=-156/46, 15-43=	-126/93
TOP CHORD						32=387 (LC 24)	33=53 (LC	24),				=-119/101, 13-45	
BOT CHORD		50101 x				34=187 (LC 24)						=-120/51, 11-47=	
OTHERS	2x4 SP N	0.2				36=162 (LC 24).					10-48	=-121/51, 9-49=-	118/52, 7-50=-134/51,
BRACING						38=160 (LC 24).							3/60, 17-41=-126/92,
TOP CHORD		wood she	eathing directly applied.			40=160 (LC 18).						=-120/102, 19-39	
BOT CHORD	Rigid ceili	ing directly	applied.			42=158 (LC 17).					20-38	=-120/51, 21-37=	-120/51,
WEBS	1 Row at	midpt	16-42, 15-43, 14-44,			44=159 (LC 1),					22-36	=-121/51, 23-35=	-117/52,
			17-41, 18-40			46=160 (LC 23),					25-34	=-134/50, 27-33=	-61/30, 28-32=-253/61
REACTIONS	(size)	2=50-0-0.	, 30=50-0-0, 32=50-0-0).		48=162 (LC 23),	49=155 (LC	17),	NOTE	S			
			0, 34=50-0-0, 35=50-0-			50=187 (LC 23),			1) Ur	balance	d roof li	ve loads have be	en considered for
		36=50-0-0	0, 37=50-0-0, 38=50-0-	0.		52=387 (LC 23),	53=258 (LC	23),		s design			on contracted for
		39=50-0-0	0, 40=50-0-0, 41=50-0-	0,		56=258 (LC 24)			2) Wi	nd: ASC	E 7-16	Vult=130mph (3-	second gust)
		42=50-0-0	0, 43=50-0-0, 44=50-0-	O, FORCES		mum Compression	on/Maximum		Va	sd=101n	nph; To	CDL=6.0psf; BCD	L=6.0psf; h=15ft;
		45=50-0-0	0, 46=50-0-0, 47=50-0-	0,	Tension				B=	45ft; L=5	Oft; ear	ve=2ft; Cat. II; Ex	B: Enclosed:
			0, 49=50-0-0, 50=50-0-		The state of the s	2-4=-123/143, 4-	5=-128/126,		MV	VFRS (d	irection	al) and C-C Corn	er(3E) -1-4-0 to
		51=50-0-0	0, 52=50-0-0, 53=50-0-	0,		129, 6-7=-123/14		131,	3-8	3-0, Exte	rior(2N	3-8-0 to 25-0-0.	Corner(3R) 25-0-0 to
		56=50-0-0	0			/119, 10-11=-106			30	-0-0, Ext	erior(2)	N) 30-0-0 to 51-4-	0 zone; cantilever
	Max Horiz	2=-182 (L	C 10), 53=-182 (LC 10)		/133, 12-13=-87/			left	and righ	it expos	sed : end Vertical	leftrand right
	Max Uplift	2=-24 (LC	(12), 30=-24 (LC 12),			/199, 14-15=-110			ex	osed;C-	C for n	netribers and force	S & MWERS for
		33=-3 (LC	(12), 34=-8 (LC 12),			6/262, 16-17=-12			rea	ctions sl	nown	umber DOL=1.60	plate grip
		35=-13 (L	C 12), 36=-12 (LC 12),			0/214, 18-19=-91			DC	L=1.60	100	···CEN	8: 1
			C 12), 38=-12 (LC 12),			/146, 20-21=-54/					5	. r.	E
			C 12), 40=-16 (LC 12),		21-22=-36	79, 22-23=-42/4	7, 23-25=-50	/55,				No 349	260 : =
			12), 43=-2 (LC 12),			/67, 26-27=-66/5		/53,		-	1	7140 340	plategrip *** *** *** *** ** ** ** **
		44=-16 (L	C 12), 45=-11 (LC 12),	DOT OUGER		3/73, 30-31=0/19				Allen Marie	7		/) : * =
			C 12), 47=-12 (LC 12),	BOT CHORD		18, 51-52=-56/1		6/118,		-	1	(n *	
			0 101 10 10 10 10										

49-50=-56/118, 48-49=-56/118.

46-48=-56/118, 44-46=-56/118,

43-44=-56/118, 42-43=-56/118,

41-42=-56/118, 40-41=-56/118, 39-40=-56/118, 38-39=-56/118, 36-38=-56/118, 35-36=-56/118, 34-35=-56/118, 33-34=-56/118, 32-33=-56/118, 30-32=-56/118

> Julius Lee PE No. 34869 MITek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

> > January 4,2024

48=-12 (LC 12), 49=-13 (LC 12),

53=-24 (LC 12), 56=-24 (LC 12)

50=-8 (LC 12), 51=-5 (LC 8),

Continued on page 2

WARRING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

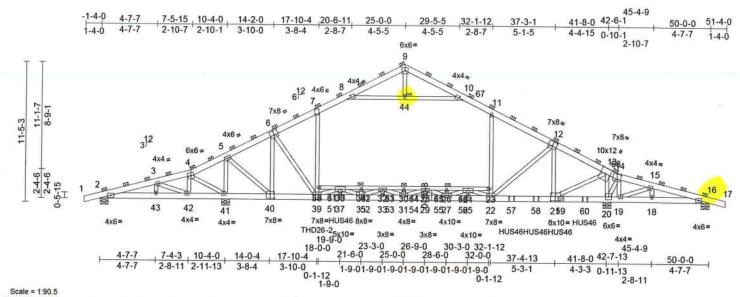
Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designser must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chd members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Truss Type	Qty	Ply		
Roof Special Supported Gable	1	1		T32516120
	Roof Special Supported Gable	Roof Special Supported Gable 1	Roof Special Supported Gable 1 1	Roof Special Supported Gable 1 1 Job Reference (optional)

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Wed Jan 03 11:10:15 ID:CSweeZZeJgndR7Y9H0VClayBh5M-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) All bearings are assumed to be SP No.2.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 24 lb uplift at joint 2, 24 lb uplift at joint 30, 2 lb uplift at joint 43, 16 lb uplift at joint 44, 11 lb uplift at joint 45, 12 lb uplift at joint 46, 12 lb uplift at joint 47, 12 lb uplift at joint 48, 13 lb uplift at joint 49, 8 lb uplift at joint 50, 5 lb uplift at joint 51, 2 lb uplift at joint 41, 16 lb uplift at joint 40, 11 lb uplift at joint 39, 12 lb uplift at joint 38, 12 lb uplift at joint 37, 12 lb uplift at joint 36, 13 lb uplift at joint 35, 8 lb uplift at joint 34, 3 lb uplift at joint 33, 24 lb uplift at joint 2 and 24 lb uplift at joint 30.
- 12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.


LOAD CASE(S) Standard

Job Truss Truss Type Qty Ply T32516121 1223-007 A04 Attic Girder 6 Job Reference (optional)

Mayo Truss Company, Inc., Mayo, FL - 32066,

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Wed Jan 03 11:10:16 ID:bi9yBaJvf0uofnUS00A7LryBh9Z-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

[6:0-4-0,0-4-8], [7:0-5-10,Edge], [8:0-3-10,0-2-0], [10:0-3-10,0-2-0], [12:0-4-0,0-4-8], [14:0-3-4,0-5-0], [21:0-4-8,0-4-8], [22:0-4-0,0-4-8], [35:0-3-8,0-5-0], Plate Offsets (X, Y): [39:0-4-0,0-4-12], [40:0-4-0,0-4-8]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr Code	3-7-0 1.25 1.25 NO FBC2020/TPI2014	TC BC WB Matrix-MS	0.83 0.95 0.77	Vert(LL) Vert(CT) Horz(CT) Attic		(loc) 26-28 26-28 20	l/defl >874 >574 n/a		PLATES MT20	GRIP 244/190	
--	---------------------------------------	---	--	-----------------------------	----------------------	----------------------------------	--	-------------------------------	-------------------------------	--	----------------	---------------------	--

LUMBER TOP CHORD 2x6 SP SS *Except* 4-6:2x6 SP No.2 **BOT CHORD** 2x6 SP No.2 *Except* 38-23:2x4 SP No.2, 35-21,40-35:2x6 SP SS WEBS 2x4 SP No.2 *Except* 7-39,11-22:2x4 SP No.1, 13-21:2x4 SP SS BRACING TOP CHORD 2-0-0 oc purlins (5-1-10 max.) (Switched from sheeted: Spacing > 2-0-0). **BOT CHORD** Rigid ceiling directly applied or 3-10-15 oc bracing. JOINTS 1 Brace at Jt(s): 4, 14, 9, 44 REACTIONS (size) 2=0-8-0, 16=0-8-0, 20=0-8-0,

41=0-8-0 Max Horiz 2=-331 (LC 6) Max Uplift 2=-217 (LC 27), 16=-1736 (LC 12)

Max Grav 2=931 (LC 1), 16=-14 (LC 25), 20=10985 (LC 15), 41=5439 (LC

FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/35, 2-3=-2033/644, 3-4=-1436/788,

14-15=0/8407, 15-16=0/7247, 16-17=0/35, 4-5=-990/764, 5-7=-5479/0, 7-8=-4610/0, 8-9=-733/174, 9-10=-705/224,

10-11=-4669/0, 11-13=-5907/0, 13-14=0/8222 BOT CHORD 2-43=-482/1718, 42-43=-482/1718, 41-42=-590/1379, 39-41=-470/3298, 37-39=0/5420, 33-37=0/11297,

31-33=0/11297, 29-31=0/11992, 27-29=0/11992, 25-27=0/7619, 22-25=0/7619, 20-22=-7519/3221, 19-20=-8092/0, 18-19=-6967/0, 16-18=-6967/0, 36-38=0/647, 34-36=-4891/0, 32-34=-4891/0, 30-32=-7817/0,

28-30=-7817/0, 26-28=-6169/0 24-26=-6169/0, 23-24=-130/72

3-43=0/262, 3-42=-857/15, 4-42=0/337, 4-41=-828/187, 38-39=0/1788, 7-38=0/1944, 22-23=-130/1111, 11-23=-61/1306, 12-22=0/2100, 12-21=-5197/0, 14-19=-449/7, 15-19=-1255/0, 15-18=0/421, 8-44=-4658/0, 10-44=-4658/0, 9-44=0/386, 36-37=-1388/0. 34-35=-245/0, 32-33=-14/324, 30-31=-272/0. 28-29=0/381, 26-27=-284/0, 24-25=-175/105, 22-24=-3745/0, 24-27=0/2953, 27-28=-1847/0, 28-31=-75/105, 31-32=0/821. 32-35=-2487/0, 35-36=0/4034, 36-39=-2018/2, 5-41=-4557/0, 6-40=-3552/0, 5-40=0/4061, 6-39=0/2300, 13-20=-11121/0,

NOTES

WEBS

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc, 2x4 - 1 row at 0-9-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc.

14-20=0/1477, 13-21=0/11714

All loads are considered equally applied to all plies except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated

Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=50ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

- All plates are 2x4 MT20 unless otherwise indicated.
- This truss has been designed for a 10.0 psf bottom 7) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Ceiling dead load (10.0 psf) on member(s). 8-44, 10-44, 7-8, 10-11
- 10) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 36-38, 34-36, 32-34, 30-32, 28-30, 26-28, 24-26, 23-24
- 11) All bearings are assumed to be SP No.2
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 217 lb uplift at joint 2 and 1736 lb uplift at joint 16.

Graphical purlin representation does not depict the size

MITek Inc. DBA MITek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

January 4,2024

Continued on page 2

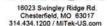
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply		
1223-007	A04	Attic Girder	6	2	Job Reference (optional)	T32516121

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Wed Jan 03 11:10:16 ID:bi9yBaJvf0uofnUS00A7LryBh9Z-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

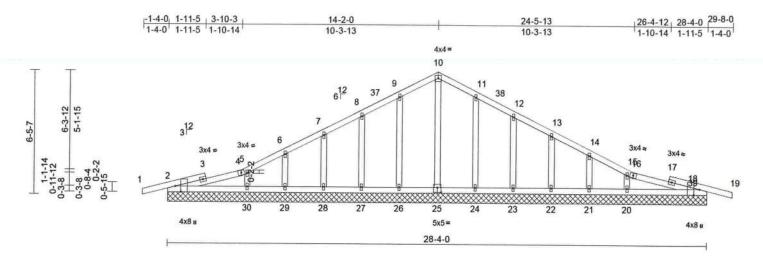
Page: 2


- 14) This truss has large uplift reaction(s) from gravity load case(s). Proper connection is required to secure truss against upward movement at the bearings. Building designer must provide for uplift reactions indicated.
- 15) Use MiTek THD26-2 (With 18-16d nails into Girder & 12-10d nails into Truss) or equivalent at 17-10-8 from the left end to connect truss(es) to back face of bottom chord.
- 16) Use MiTek HUS46 (With 4-16d nails into Girder & 4-16d nails into Truss) or equivalent spaced at 4-0-0 oc max. starting at 19-1-4 from the left end to 39-10-4 to connect truss(es) to back face of bottom chord.
- 17) Fill all nail holes where hanger is in contact with lumber.
- 18) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 214 lb down at 32-1-12 on bottom chord. The design/ selection of such connection device(s) is the responsibility of others.
- 19) Attic room checked for L/360 deflection.

to-68=-321 (F=-213)

LOAD CASE(S) Standard

Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (lb/ft) Vert: 1-4=-108, 14-17=-108, 45-48=-36, 23-38=-54, 8-44=-36, 10-44=-36, 4-7=-108, 7-8=-143, 8-9=-108, 9-10=-107, 10-67=-143, 14-68=-107


Concentrated Loads (Ib) Vert: 39=-266 (B), 22=-32 (B), 37=-32 (B), 51=-32 (B), 52=-32 (B), 53=-32 (B), 54=-32 (B), 55=-32 (B), 56=-32 (B), 57=-32 (B), 58=-32 (B), 59=-32 (B), 60=-32 (B) Trapezoidal Loads (lb/ft) Vert: 67=-287 (F=-144)-to-11=-296 (F=-152), Vert. 67=-267 (F=-144)-0-11--260 (F=-152)-to-12=-291 (F=-184), 12=-291 (F=-184)-to-13=-318 (F=-211), 13=-318 (F=-211)-

Job	Truss	Truss Type	Qty	Ply		
1223-007	B01	Roof Special Supported Gable	1	1	Job Reference (optional)	T32516122

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Wed Jan 03 11:10:17 ID:A0FpclECp4A2_K5gM?zZLgyBh3C-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:57.9

Loading	(psf)	Spacing	2-0-0	CCI		DEEL	625					2272
	(pai)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.26	Vert(LL)	n/a	0 10	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.25	BC	0.12	Vert(CT)	n/a		n/a	999		2111100
	4.00	724		The same					11164	000	1	

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.26	100 Com (100 Com)	n/a	(100)	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.25	BC	0.12	Vert(CT)	n/a		n/a	999	111120	244/130
BCLL	0.0*	Rep Stress Incr	YES	WB	0.08	Horz(CT)	0.00	18	n/a	n/a		
BCDL	10.0	Code	FBC2020/TPI2014	Matrix-AS	(21/2/21)	.,,	0.00	.0	1114		Weight: 147 lb	FT = 20%

TOP CHORD **BOT CHORD** 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2

OTHERS BRACING TOP CHORD

Structural wood sheathing directly applied. BOT CHORD Rigid ceiling directly applied.

Plate Offsets (X-V): 12:0-3-8 Edgel (18:0-3-8 Edgel (25:0-2-9.0-2.0)

REACTIONS (size)

2=28-4-0, 18=28-4-0, 20=28-4-0, 21=28-4-0, 22=28-4-0, 23=28-4-0, 24=28-4-0, 25=28-4-0, 26=28-4-0, 27=28-4-0, 28=28-4-0, 29=28-4-0. 30=28-4-0, 31=28-4-0, 34=28-4-0 Max Horiz 2=-95 (LC 10), 31=-95 (LC 10)

Max Uplift 2=-31 (LC 12), 18=-48 (LC 12), 21=-16 (LC 12), 22=-11 (LC 12), 23=-14 (LC 12), 24=-9 (LC 12), 26=-9 (LC 12), 27=-14 (LC 12), 28=-10 (LC 12), 29=-18 (LC 12), 31=-31 (LC 12), 34=-48 (LC 12) Max Grav 2=235 (LC 23), 18=220 (LC 24),

20=300 (LC 24), 21=107 (LC 18), 22=175 (LC 24), 23=155 (LC 1), 24=168 (LC 24), 25=160 (LC 1), 26=168 (LC 23), 27=155 (LC 1), 28=175 (LC 23), 29=107 (LC 17), 30=303 (LC 23), 31=235 (LC 23),

FORCES

34=220 (LC 24) (lb) - Maximum Compression/Maximum Tension

TOP CHORD

1-2=0/19, 2-4=-65/78, 4-5=-61/95, 5-6=-72/72, 6-7=-54/72, 7-8=-48/81 8-9=-49/115, 9-10=-68/146, 10-11=-68/137, 11-12=-49/104, 12-13=-31/70, 13-14=-23/43, 14-15=-41/40, 15-16=-51/68, 16-18=-55/48, 18-19=0/22

BOT CHORD

2-30=-36/70, 29-30=-36/70, 28-29=-36/70, 27-28=-36/70, 26-27=-36/70, 24-26=-36/70, 23-24=-36/70, 22-23=-36/70, 21-22=-36/70, 20-21=-36/70, 18-20=-36/243 10-25=-120/0. 9-26=-128/97, 8-27=-117/57, 7-28=-127/51, 6-29=-94/51, 5-30=-196/50, 11-24=-128/97, 12-23=-117/57, 13-22=-127/51, 14-21=-93/50, 15-20=-195/48

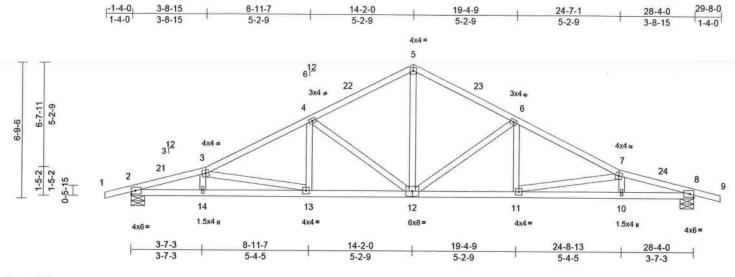
NOTES

WEBS

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=28ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) -1-4-0 to 1-7-3, Exterior(2N) 1-7-3 to 14-2-0, Corner(3R) 14-2-0 to 17-2-0, Exterior(2N) 17-2-0 to 29-8-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- All plates are 1.5x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members
- 10) All bearings are assumed to be SP No.2.

- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 31 lb uplift at joint 2, 48 lb uplift at joint 18, 9 lb uplift at joint 26, 14 lb uplift at joint 27, 10 lb uplift at joint 28, 18 lb uplift at joint 29, 9 Ib uplift at joint 24, 14 lb uplift at joint 23, 11 lb uplift at joint 22, 16 lb uplift at joint 21, 31 lb uplift at joint 2 and 48 lb uplift at joint 18.
- This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard



Julius Lee PE No. 34869 MITek Inc. DBA MITek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply		
1223-007	B02	Roof Special	13	1	Job Reference (optional)	T32516123

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Wed Jan 03 11:10:17 ID:QA22c8Bqfra3QDUps0tZvryBh0g-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:55.5

Loading TCLL (roof)	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl		PLATES	GRIP
	20.0	Plate Grip DOL	1.25	TC	0.51	Vert(LL)	-0.18	13-14	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.25	BC	0.83	Vert(CT)	-0.38	13-14	>904	180	Principalitation	ST05180.57CT0
BCLL	0.0*	Rep Stress Incr	YES	WB	0.59	Horz(CT)	0.09	8	n/a	n/a		
BCDL	10.0	Code	FBC2020/TPI2014	Matrix-AS	MESTOR)	Constant of the	(313.3)		20		Weight: 148 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.1 2x4 SP No.2 WEBS

BRACING

TOP CHORD Structural wood sheathing directly applied. **BOT CHORD** Rigid ceiling directly applied.

REACTIONS (size) 2=0-8-0, 8=0-8-0 Max Horiz 2=98 (LC 11)

Max Uplift 2=-32 (LC 12), 8=-32 (LC 12) Max Grav 2=1213 (LC 1), 8=1213 (LC 1)

FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD 1-2=0/19, 2-3=-3167/259, 3-4=-2180/221,

4-5=-1505/214, 5-6=-1505/214,

6-7=-2180/221, 7-8=-3167/259, 8-9=0/19 BOT CHORD 2-14=-223/3029, 13-14=-232/3040, 11-13=-114/1919, 10-11=-231/3040,

8-10=-222/3029

WEBS 7-10=-83/75, 3-14=-83/75, 4-13=0/444, 3-13=-1147/121, 4-12=-790/124, 5-12=-74/999, 6-12=-790/124, 6-11=0/444,

7-11=-1147/121

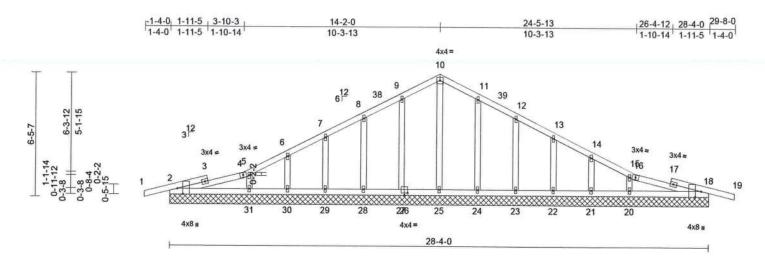
NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=28ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-4-0 to 1-8-0, Interior (1) 1-8-0 to 14-2-0, Exterior(2R) 14-2-0 to 17-2-0, Interior (1) 17-2-0 to 29-8-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.1.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 32 lb uplift at joint 2 and 32 lb uplift at joint 8.
- This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

THE THE STATE OF STAT ONAL


Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply		
1223-007	B03	Roof Special Supported Gable	1	1	Job Reference (optional)	T32516124

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Wed Jan 03 11:10:18 ID:z3bNg2?stR0ZzW6hHbaG7zyBh?d-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:57.9 Dista Officials (V. VV. 10.0.0.0.5.1...) 140.0.0.0.5.1...) 190.0.0.0.0.1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.12	Vert(LL)	n/a	(100)	n/a	999	MT20	244/190
CDL	10.0	Lumber DOL	1.25	BC	0.12	Vert(CT)	n/a	9	n/a	999	WIIZU	244/130
BCLL	0.0*	Rep Stress Incr	YES	WB	0.07	Horz(CT)	0.00	18	n/a	n/a		
BCDL	10.0	Code	FBC2020/TPI2014	Matrix-AS	0.01	11012(01)	0.00	10	ING	IIIa	Weight: 147 lb	ET - 20%

LUMBER	
TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
OTHERS	2x4 SP No.2
BRACING	
TOP CHORD	Structural wo

Structural wood sheathing directly applied. Rigid ceiling directly applied.

BOT CHORD REACTIONS (size) 2=28-4-0, 18=28-4-0, 20=28-4-0, 21=28-4-0, 22=28-4-0, 23=28-4-0, 24=28-4-0, 25=28-4-0, 27=28-4-0, 28=28-4-0, 29=28-4-0, 30=28-4-0, 31=28-4-0, 32=28-4-0, 35=28-4-0 Max Horiz 2=-95 (LC 10), 32=-95 (LC 10)

2=-32 (LC 12), 18=-32 (LC 12) Max Uplift 21=-18 (LC 12), 22=-10 (LC 12), 23=-14 (LC 12), 24=-9 (LC 12), 27=-9 (LC 12), 28=-14 (LC 12), 29=-10 (LC 12), 30=-18 (LC 12), 32=-32 (LC 12), 35=-32 (LC 12) Max Grav 2=235 (LC 23), 18=235 (LC 24), 22=175 (LC 24), 23=155 (LC 1),

20=304 (LC 24), 21=106 (LC 18), 24=168 (LC 24), 25=153 (LC 1), 27=168 (LC 23), 28=155 (LC 1), 29=175 (LC 23), 30=107 (LC 17), 31=304 (LC 23), 32=235 (LC 23), 35=235 (LC 24)

FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/19, 2-4=-64/75, 4-5=-59/90

5-6=-77/70, 6-7=-59/66, 7-8=-54/82, 8-9=-53/117, 9-10=-71/148, 10-11=-71/138, 11-12=-53/106, 12-13=-35/71, 13-14=-28/38, 14-15=-46/33, 15-16=-49/62, 16-18=-54/42, 18-19=0/19

BOT CHORD 2-31=-33/69, 30-31=-33/69, 29-30=-33/69, 28-29=-33/69, 27-28=-33/69, 25-27=-33/69,

24-25=-33/69, 23-24=-33/69, 22-23=-33/69, 21-22=-33/69, 20-21=-33/69, 18-20=-33/69 WEBS 10-25=-114/2, 9-27=-128/97, 8-28=-117/57, 7-29=-127/51, 6-30=-94/51, 5-31=-197/50, 11-24=-128/97, 12-23=-117/57 13-22=-127/50, 14-21=-93/50, 15-20=-197/47

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=28ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) -1-4-0 to 1-7-3, Exterior(2N) 1-7-3 to 14-2-0, Corner(3R) 14-2-0 to 17-2-0, Exterior(2N) 17-2-0 to 29-8-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOI = 1 60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- All plates are 1.5x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) All bearings are assumed to be SP No.2

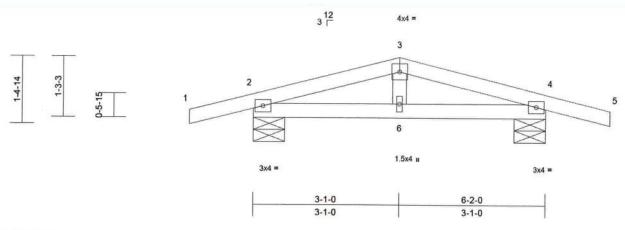
11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 32 lb uplift at joint 2, 32 lb uplift at joint 18, 9 lb uplift at joint 27, 14 lb uplift at joint 28, 10 lb uplift at joint 29, 18 lb uplift at joint 30, 9 lb uplift at joint 24, 14 lb uplift at joint 23, 10 lb uplift at joint 22, 18 lb uplift at joint 21, 32 lb uplift at joint 2 and 32 lb uplift at joint 18.

12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

 Job
 Truss
 Truss Type
 Qty
 Ply


 1223-007
 C01
 Common
 4
 1
 Job Reference (optional)
 T32516125

Mayo Truss Company, Inc., Mayo, FL - 32066,

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Wed Jan 03 11:10:18 ID:J1OGjm3_izfr3I_f48ARq0yBh?Y-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

-1-4-0	3-1-0	6-2-0	7-6-0
1-4-0	3-1-0	3-1-0	1-4-0

Scale = 1:23.2

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.10	Vert(LL)	0.01	6-9	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.25	BC	0.10	Vert(CT)	-0.01	6	>999	180		2111100
BCLL	0.0*	Rep Stress Incr	YES	WB	0.02	The state of the s	0.00	4	n/a	n/a		
BCDL	10.0	Code	FBC2020/TPI2014	Matrix-AS	3.02	1.5.2(01)	0.00	-	illa	1114	Weight: 24 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied. BOT CHORD Rigid ceiling directly applied.

REACTIONS (si

(size) 2=0-8-0, 4=0-8-0 Max Horiz 2=13 (LC 8)

Max Uplift 2=-33 (LC 12), 4=-33 (LC 12) Max Grav 2=327 (LC 1), 4=327 (LC 1)

TOP CHORD

(lb) - Maximum Compression/Maximum Tension 1-2=0/19, 2-3=-368/180, 3-4=-368/180,

4-5=0/19

BOT CHORD 2-6=-123/334, 4-6=-123/334

WEBS 3-6=0/99

NOTES

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ff; B=45ff; L=24ff; eave=4ff; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-4-0 to 1-8-0, Interior (1) 1-8-0 to 3-1-0, Exterior(2R) 3-1-0 to 6-2-0, Interior (1) 6-2-0 to 7-6-0 zone; cantilever left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be SP No.2.

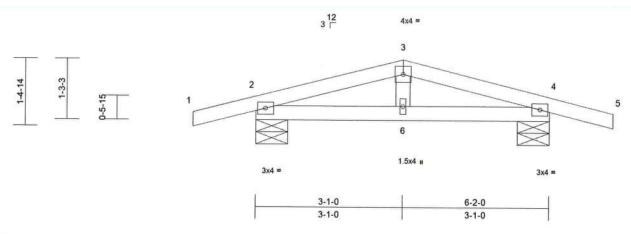
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 33 lb uplift at joint 2 and 33 lb uplift at joint 4.
- This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

January 4,2024

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



Job .	Truss	Truss Type	Qty	Ply		
1223-007	C02	Common	1	1	Job Reference (optional)	T32516126

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Wed Jan 03 11:10:18 ID:8BIYzp8lHpP?nDSoQPHr4HyBh?S-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

-1-4-0	3-1-0	6-2-0	7-6-0
1-4-0	3-1-0	3-1-0	1-4-0

Scale = 1:23.2

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.10	Vert(LL)	0.01	6-9	>999	1000100		244/190
TCDL	10.0	Lumber DOL	1.25	BC	0.10		-0.01	6	>999	180		2111100
BCLL	0.0*	Rep Stress Incr	YES	WB	0.02	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	FBC2020/TPI2014	Matrix-AS	0.02	1.0.2(01)	0.00	- 63	1110	ma	Weight: 24 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied.

Rigid ceiling directly applied.

REACTIONS (

(size) 2=0-8-0, 4=0-8-0 Max Horiz 2=13 (LC 8)

Max Uplift 2=-33 (LC 12), 4=-33 (LC 12) Max Grav 2=327 (LC 1), 4=327 (LC 1)

FORCES (lb)

(lb) - Maximum Compression/Maximum Tension 1-2=0/19, 2-3=-368/180, 3-4=-368/180,

TOP CHORD 1-2=0/19, 4-5=0/19

BOT CHORD 2-6=-123/334, 4-6=-123/334

WEBS 3-6=0/99

NOTES

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-4-0 to 1-8-0, Interior (1) 1-8-0 to 3-1-0, Exterior(2R) 3-1-0 to 6-2-0, Interior (1) 6-2-0 to 7-6-0 zone; cantilever left and right exposed; c-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.2 .

- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 33 lb uplift at joint 2 and 33 lb uplift at joint 4.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

PRO 34869

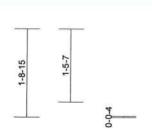
**
ORIDANIAN
ONALEMBRIA

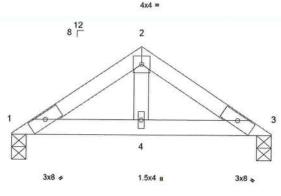
Julius Lee PE No. 34869 MITek Inc. DBA MITek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

January 4,2024

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

 Job
 Truss
 Truss Type
 Qty
 Ply


 1223-007
 D01
 Common
 1
 1
 Job Reference (optional)
 T32516127


Mayo Truss Company, Inc., Mayo, FL - 32066,

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Wed Jan 03 11:10:18 ID:5IV?aYZvqE0vpiLApk7OqVyB0hR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3.00	
2-7-0	5-2-0
2-7-0	2-7-0

Scale = 1:21.9

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.06	Vert(LL)	0.00	4-7	>999		MT20	244/190
TCDL	10.0	Lumber DOL	1.25	BC	0.14	Vert(CT)	-0.01	4-7	>999	180		211/100
BCLL	0.0*	Rep Stress Incr	YES	WB	0.03	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	FBC2020/TPI2014	Matrix-AS			0.00		100	100	Weight: 17 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied.

BOT CHORD Rigid ceiling directly applied.

REACTIONS (size) 1=0-3-8, 3=0-3-8 Max Horiz 1=29 (LC 11)

Max Grav 1=195 (LC 1), 3=195 (LC 1)

FORCES (Ib) - N

(lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-268/89, 2-3=-268/89 BOT CHORD 1-4=-55/206, 3-4=-55/206

WEBS 2-4=-31/135

NOTES

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be SP No.2.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

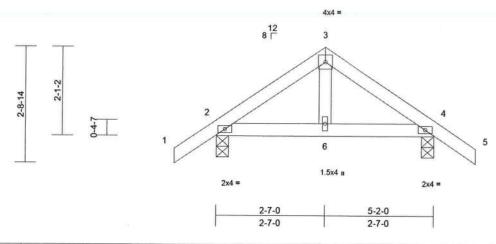
LOAD CASE(S) Standard

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

January 4,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property anage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



Job	Truss	Truss Type	Qty	Ply		
1223-007	D02	Common	14	1	DE 12 12 12 12 12 12 12 1	516128

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Wed Jan 03 11:10:19 ID:95sqb2L?JPdb1nOWCEHxZUyB0hk-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

-1-0-0	2-7-0	5-2-0	6-2-0
1-0-0	2-7-0	2-7-0	1-0-0

Scale = 1:26.1

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.25	CSI TC	0.06	DEFL Vert(LL)	in 0.00	(loc) 6-12	l/defl >999	L/d 240	The state of the s	GRIP 244/190
TCDL	10.0	Lumber DOL	1.25	BC	0.08	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	0.00	6-12	>999	180	111120	244/100
BCLL	0.0*	Rep Stress Incr	YES	WB	0.03	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	FBC2020/TPI2014	Matrix-AS				-	1		Weight: 23 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 WEBS 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied. **BOT CHORD** Rigid ceiling directly applied.

REACTIONS (size)

2=0-3-8, 4=0-3-8 Max Horiz 2=44 (LC 11)

Max Uplift 2=-25 (LC 12), 4=-25 (LC 12) Max Grav 2=267 (LC 1), 4=267 (LC 1)

(lb) - Maximum Compression/Maximum

FORCES

Tension TOP CHORD 1-2=0/33, 2-3=-213/61, 3-4=-213/61,

4-5=0/33 2-6=0/148, 4-6=0/148

BOT CHORD WEBS 3-6=0/114

NOTES

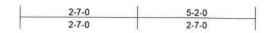
- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 2-7-0, Exterior(2R) 2-7-0 to 5-7-0, Interior (1) 5-7-0 to 6-2-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be SP No.2.

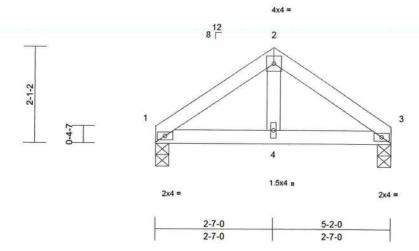
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 25 lb uplift at joint 2 and 25 lb uplift at joint 4.
- This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

Julius Lee PE No. 34869 MITek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

January 4,2024


Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



Job Truss Truss Type Qty Ply T32516129 1223-007 D03 Common Job Reference (optional)

Mayo Truss Company, Inc., Mayo, FL - 32066,

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Wed Jan 03 11:10:19 ID:KyUYK?GEjZsSJsxNr_AXKDyB0hq-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Scale = 1:24.2

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.25	TC	0.07	DEFL Vert(LL)	in 0.00	(loc) 4-10	l/defl >999		PLATES MT20	GRIP 244/190
TCDL	10.0	Lumber DOL	1.25	BC	0.10	Vert(CT)	0.00	4-10	>999	180	WIIZU	244/190
BCLL	0.0	Rep Stress Incr	YES	WB	0.03	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	FBC2020/TPI2014	Matrix-AS							Weight: 20 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.2 WEBS

BRACING

TOP CHORD Structural wood sheathing directly applied. **BOT CHORD** Rigid ceiling directly applied.

REACTIONS (size) 1=0-3-8, 3=0-3-8 Max Horiz 1=-32 (LC 10)

Max Grav 1=207 (LC 1), 3=207 (LC 1) (lb) - Maximum Compression/Maximum

FORCES

Tension

TOP CHORD 1-2=-229/85, 2-3=-229/85

1-4=-24/165, 3-4=-24/165 **BOT CHORD**

WEBS 2-4=-15/121

NOTES

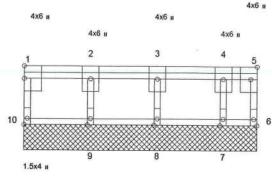
- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOI =1 60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.2.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord

LOAD CASE(S) Standard

THE THE PARTY OF T ONAL

Julius Lee PF No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017


Job Truss Truss Type Qty Ply T32516130 1223-007 F01 Floor Supported Gable 1 Job Reference (optional)

Mayo Truss Company, Inc., Mayo, FL - 32066,

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Thu Jan 04 08:27:30 ID:8sgFZAZGTdlhqTQr34svmHyB2hG-CygpB41YpI5cLm2XJKZZ2piHTtv511HrUinyc8zyosy

Page: 1

1-2-0

1.5x4 II

1.5x4 II

1.5x4 II

1-2-0

1.5x4 II

4-8-0 4-8-0

Scale = 1:22.1

Plate Offsets (X, Y): [5:0-3-0,Edge], [6:Edge,0-0-12], [10:Edge,0-0-12]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.03	Vert(LL)	n/a	CHECKE CO.	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.01	Vert(TL)	n/a	-	n/a	999		2111100
BCLL	0.0	Rep Stress Incr	YES	WB	0.02	Horiz(TL)	0.00	6	n/a	n/a		
BCDL	5.0	Code	FBC2020/TPI2014	Matrix-R		,					Weight: 27 lb	FT = 20%F, 11%E

LUMBER

TOP CHORD 2x4 SP No.2(flat) **BOT CHORD** 2x4 SP No.2(flat) WEBS 2x4 SP No.2(flat) **OTHERS** 2x4 SP No.2(flat)

BRACING

TOP CHORD Structural wood sheathing directly applied or 4-8-0 oc purlins, except end verticals

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS All bearings 4-8-0.

(lb) - Max Grav All reactions 250 (lb) or less at joint (s) 6, 7, 8, 9, 10

FORCES


(lb) - Max. Comp./Max. Ten. - All forces 250

(lb) or less except when shown.

NOTES

- Gable requires continuous bottom chord bearing.
- 2) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- Gable studs spaced at 1-4-0 oc.
- Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

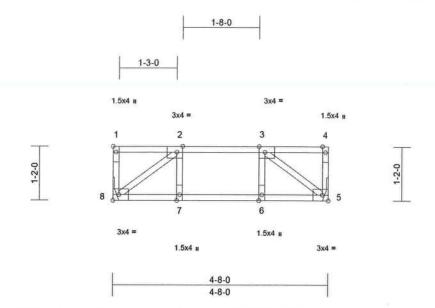
LOAD CASE(S) Standard

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

January 4,2024

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 (ev. 1/2/2023 BEFORE USE.

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property dange. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



Job Truss Truss Type Qty Ply T32516131 1223-007 F02 Floor 36 1 Job Reference (optional)

Mayo Truss Company, Inc., Mayo, FL - 32066,

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Wed Jan 03 11:10:19 ID:X0cY4ulAoXPzrPy0GZ9khfyB2jc-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:23.9

Plate Offsets (X, Y):	[1:Edge,0-0-12],	[2:0-1-8,Edge],	[3:0-1-8,Edge]
-----------------------	------------------	-----------------	----------------

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.15	Vert(LL)	-0.01	7	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.13	Vert(CT)	-0.01	7	>999	240		
BCLL	0.0	Rep Stress Incr	YES	WB	0.05	Horz(CT)	0.00	5	n/a	n/a		
BCDL	5.0	Code	FBC2020/TPI2014	Matrix-S		1					Weight: 24 lb	FT = 20%F, 11%

LUMBER

TOP CHORD 2x4 SP No 2(flat) BOT CHORD 2x4 SP No.2(flat) 2x4 SP No.2(flat) WEBS

BRACING

BOT CHORD

TOP CHORD Structural wood sheathing directly applied or

4-8-0 oc purlins, except end verticals Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size)

5= Mechanical, 8= Mechanical

Max Grav 5=250 (LC 1), 8=250 (LC 1)

FORCES TOP CHORD

(lb) - Maximum Compression/Maximum Tension

1-8=-57/5, 4-5=-57/5, 1-2=0/0, 2-3=-254/0,

3-4=0/0 BOT CHORD 7-8=0/254, 6-7=0/254, 5-6=0/254

3-5=-319/0, 2-8=-319/0, 2-7=-2/36, 3-6=-2/36

WEBS NOTES

- Unbalanced floor live loads have been considered for 1) this design.
- Refer to girder(s) for truss to truss connections.
- Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

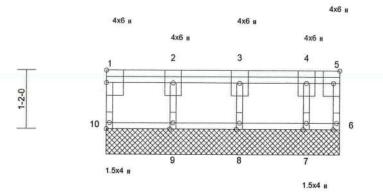
LOAD CASE(S) Standard

Date:

January 4,2024

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



Job Truss Truss Type Qty Ply T32516132 1223-007 F03 Floor Supported Gable 2 1 Job Reference (optional)

Mayo Truss Company, Inc., Mayo, FL - 32066,

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Wed Jan 03 11:10:19 ID:DtB1aFApLuYRo70kPgeQixyB2XR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

1.5x4 II

1.5x4 n

0.00

n/a n/a

Weight: 27 lb

FT = 20%F, 11%E

1-2-0

1.5x4 II

0.02 Horiz(TL)

4-8-0 4-8-0

Scale = 1:22.1

Plate Offsets (X, Y): [5:0-3-0,Edge]	, [10:Edge,0-0-12]										
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl	1/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.03	Vert(LL)	n/a	(100)	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.01	Vert(TL)	n/a	-	n/a	999	mizo	244/100
BCLL	0.0	Rep Stress Incr	YES	WB	0.02	Horiz(TL)	0.00	6	n/a	n/a		

Matrix-R

BCDL LUMBER

TOP CHORD 2x4 SP No.2(flat) 2x4 SP No.2(flat) **BOT CHORD** WEBS 2x4 SP No.2(flat) **OTHERS** 2x4 SP No.2(flat)

BRACING

TOP CHORD Structural wood sheathing directly applied or 4-8-0 oc purlins, except end verticals BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

5.0

bracing.

REACTIONS (size) 6=4-8-0, 7=4-8-0, 8=4-8-0, 9=4-8-0,

10=4-8-0

Max Grav 6=20 (LC 1), 7=115 (LC 1), 8=151

(LC 1), 9=155 (LC 1), 10=58 (LC 1)

Code

FBC2020/TPI2014

FORCES

(lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-10=-53/0, 5-6=-17/0, 1-2=-3/0, 2-3=-3/0,

3-4=-3/0, 4-5=-3/0

BOT CHORD 9-10=0/3, 8-9=0/3, 7-8=0/3, 6-7=0/3 WEBS 2-9=-142/0, 3-8=-137/0, 4-7=-106/0

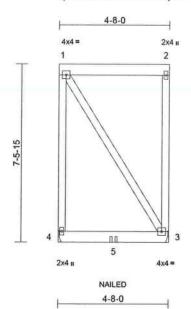
NOTES

- Gable requires continuous bottom chord bearing.
- 2) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- Gable studs spaced at 1-4-0 oc.
- All bearings are assumed to be SP No.2.
- 5) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

January 4,2024


🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply		
1223-007	GO1	Flat Girder	3	2	Job Reference (optional)	13

Run: 8.73 S Dec 14 2023 Print: 8.730 S Dec 14 2023 MiTek Industries, Inc. Wed Jan 03 11:10:20 ID:ydH5lcOXVDZ4CnRXxNWURQyB2b1-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:46.7

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.16	Vert(LL)	-0.01	3-4	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.25	BC	0.18	Vert(CT)	-0.02	3-4	>999	180		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.05	The state of the state of	0.00	3	n/a	n/a		
BCDL	10.0	Code	FBC2020/TPI2014	Matrix-MP	3.00	(5.1)	2.00				Weight: 106 lb	FT = 20%

LUMBER

TOP CHORD 2x6 SP No.2 **BOT CHORD** 2x6 SP No.2 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 4-8-0 oc purlins, except end verticals

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 3= Mechanical, 4= Mechanical

Max Horiz 4=-197 (LC 4)

Max Uplift 3=-189 (LC 5), 4=-189 (LC 4) Max Grav 3=403 (LC 13), 4=403 (LC 14)

FORCES

(lb) - Maximum Compression/Maximum Tension

TOP CHORD

1-4=-229/189, 1-2=-77/69, 2-3=-131/31 **BOT CHORD** 3-4=-175/153

WEBS 1-3=-187/187

NOTES

- 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc, 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.
- Web connected as follows: 2x4 1 row at 0-9-0 oc. All loads are considered equally applied to all plies. except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 189 lb uplift at joint 4 and 189 lb uplift at joint 3
- 10) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

LOAD CASE(S) Standard

Vert: 5=-254 (B)

Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (lb/ft) Vert: 1-2=-60, 3-4=-20 Concentrated Loads (lb)

Julius Lee PE No. 34869 MITek Inc. DBA MITek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

January 4,2024

🗥 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

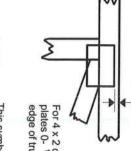

Symbols

PLATE LOCATION AND ORIENTATION

Center plate on joint unless x, y offsets are indicated.

Dimensions are in ft-in-sixteenths. Apply plates to both sides of truss and fully embed teeth.

For 4 x 2 orientation, locate plates 0- $\frac{1}{16}$ " from outside edge of truss.

This symbol indicates the required direction of slots in connector plates.

* Plate location details available in MiTek software or upon request.

PLATE SIZE

4 × 4

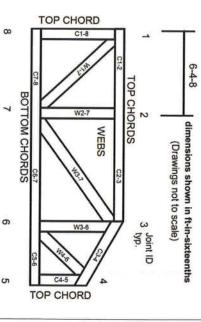
The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated.

BEARING

Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number/letter where bearings occur Min size shown is for crushing only.


Industry Standards:

ANSI/TPI1: National D

DSB-22:

National Design Specification for Metal Plate Connected Wood Truss Construction. Design Standard for Bracing.
Building Component Safety Information, Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses.

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282 ESR-4722, ESL-1388

Design General Notes

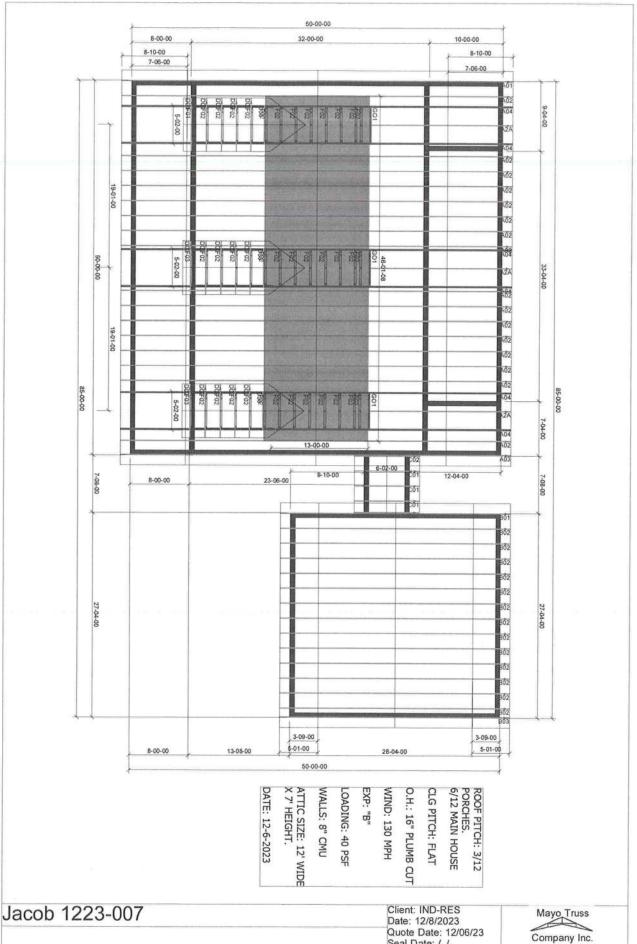
Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2023 MiTek® All Rights Reserved

MITOR

MiTek Engineering Reference Sheet: MII-7473 rev. 1/2/2023


General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.

ω

- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- Connections not shown are the responsibility of others
 Do not cut or alter truss member or plate without prior
- approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- The design does not take into account any dynamic or other loads other than those expressly stated.

FT White

Seal Date: / / Designer: Lynn Bell Job Number: 1223-007

Ph. (386) 294-3988 Fax (386) 294-3981 mayotruss@windstream.net