

MiTek, Inc.

16023 Swingley Ridge Rd.

RE: 24-0602-A1 - GAINEY HOME

Site Information:

City: FORT WHITE

Lot/Block: -

Chesterfield, MO 63017 Customer Info: ROBINSON RENOVATION& CUSTOM HOMES INC. Project Name: 364 AME - MOME Model: -Subdivision: -

Address: 3181 SW COUNTY RD 138, -

State: FL

Name Address and License # of Structural Engineer of Record, If there is one, for the building. Name: License #: Address:

City:

State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: FBC2023/TPI2014 Wind Code: ASCE 7-22 Roof Load: 37.0 psf

Design Program: MiTek 20/20 8.8 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 74 individual, Truss Design Drawings and 0 Additional Drawings. With my seal affixed to this sheet, I hereby certify that I am the Truss Design Engineer and this index sheet conforms to 61G15-31.003, section 5 of the Florida Board of Professional Engineers Rules.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date	
1	T37314091	AT-1	5/14/25	15	T37314105	FG-3	5/14/25	Asy Builds
2	T37314092	T-1	5/14/25	16	T37314106	FT-1	5/14/25	Suntia County Building Donor
3	T37314093	T-2	5/14/25	17	T37314107	FT-2	5/14/25	Allin Diono Sat
4	T37314094	PG-1	5/14/25	18	T37314108	FT-3	5/14/25	Plans The
5	<u>T</u> 37314095	PT-1	5/14/25	19	<u>T37314109</u>	<u>FT-4</u>	5/14/25	Reviewed *
6	T37314096	PT-2	5/14/25	20	T37314110	<u>FT-5</u>	5/14/25	
7	T37314097	F-1	5/14/25	21	T37314111	FT-6	5/14/25	for Code
8	<u>T37314098</u>	F-2	5/14/25	22	<u>T37314112</u>	FT-7	5/14/25	
9	T37314099	F-3	5/14/25	23	T37314113	FT-8	5/14/25	Compliance
10	T37314100	F-4	5/14/25	24	T37314114	FT-9	5/14/25	e compliance e
11	T37314101	F-5	5/14/25	25	T37314115	T-3	5/14/25	
12 13	T37314102	F-6 FG-1	5/14/25	26 27	T37314116	T-4	5/14/25	Stor
13	T37314103 T37314104	FG-2	5/14/25 5/14/25	27	T37314117 T37314118	T-5 T-6	5/14/25 5/14/25	State of Florida
14	13/314104	FG-2	J/14/20	20	13/314110	1-0	5/14/25	

This item has been digitally signed and sealed by Ebinger, Joseph, PE on the date adjacent to the seal. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Arnold Truss Mfg. LLC.

Truss Design Engineer's Name: Ebinger, Joseph

My license renewal date for the state of Florida is February 28, 2027.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

May 14,2025

RE: 24-0602-A1 - GAINEY HOME

MiTek, Inc. 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200

Site Information:

Customer Info: ROBINSON RENOVATION& CUSTOM HOMES INC. Project Name: GAINEY HOME Model: -Lot/Block: -Address: 3181 SW COUNTY RD 138, -Subdivision: -State: FL City: FORT WHITE

No. 29 30 31 32 33	Seal# T37314119 T37314120 T37314121 T37314122 T37314123	Truss Name T-7 T-8 T-9 T-10 T-11	Date 5/14/25 5/14/25 5/14/25 5/14/25 5/14/25
34 35 36 37 38 39 40 41 42 43 44	T37314124 T37314125 T37314126 T37314126 T37314127 T37314128 T37314129 T37314130 T37314130 T37314131 T37314132 T37314133 T37314134	T-12 T-14 T-15 T-16 T-17 T-18 T-19 T-20 T-21 T-22 T-23 T-24	5/14/25 5/14/25 5/14/25 5/14/25 5/14/25 5/14/25 5/14/25 5/14/25 5/14/25 5/14/25 5/14/25 5/14/25
45 46 47 49 51 53 55 55 55 57	T37314135 T37314136 T37314137 T37314138 T37314139 T37314140 T37314141 T37314142 T37314142 T37314143 T37314144 T37314145 T37314146 T37314147	T-24 T-25 T-26 T-27 T-28 T-29 T-30 T-31 T-32 T-33 T-33 T-33 UT-1 UT-2	5/14/25 5/14/25 5/14/25 5/14/25 5/14/25 5/14/25 5/14/25 5/14/25 5/14/25 5/14/25 5/14/25 5/14/25 5/14/25
58 59 60 61 62 63 64 65 66 67 68 67 68 70 71	T37314148 T37314149 T37314150 T37314151 T37314152 T37314153 T37314154 T37314155 T37314156 T37314156 T37314156 T37314158 T37314159 T37314160 T37314161	UT-3 MG-1 J8V J7-8 J7-8A J7-8S J7 J4-10 C-1 C-2 C-3 C-4 C-5	5/14/25 5/14/25 5/14/25 5/14/25 5/14/25 5/14/25 5/14/25 5/14/25 5/14/25 5/14/25 5/14/25 5/14/25 5/14/25 5/14/25
71 72 73 74	T37314161 T37314162 T37314163 T37314164	C-5 C-6 C-7 C-8	5/14/25 5/14/25 5/14/25 5/14/25

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	AT-1	Attic	5	1	Job Reference (optional)	T37314091

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:33:55 ID:bgnl?TEO6XpCq1wDOxaUSpyHfyF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

BCLL	0.0*	Rep Stress Incr	YES		WB	0.68	Horz(CT)	0.01	12	n/a	n/a		
BCDL	10.0	Code	FBC202	23/TPI2014	Matrix-AS		Wind(LL)	0.03	25-27	>999	240	Weight: 274 lb	FT = 20%
LUMBER TOP CHORD	2x6 SP No.1 *Excep	** 5 7:2x4 SP No 1		OTES	roof live loads ha	we been		or					
BOT CHORD	2x4 SP No.1	1 3-7.2X4 3F NU.1	1)	this design.	Tool live loads he	we been		51					
WEBS	2x4 SP No.2 *Excep	t* 4-8:2x4 SP No.1,	2)		7-22; Vult=130m	ph (3-sec	cond gust)						
	28-2,12-10:2x6 SP N	No.1			oh; TCDL=4.2psf			t;					
BRACING					ift; eave=4ft; Cat.			•					
TOP CHORD		athing directly applied			ectional) and C-C to 6-8-0, Zone2								
		, and 2-0-0 oc purlins			18-2-0, Zone2 18								
BOT CHORD	(4-6-10 max.): 5-7. Rigid ceiling directly	applied			6-4-0 zone; canti								
JOINTS	1 Brace at Jt(s): 24,				d vertical left and								
	22, 21, 17, 16, 29				d forces & MWFI			n;					
REACTIONS	(size) 12=0-7-0,	28=0-5-4	2)		.=1.60 plate grip igner / Project er								
	Max Horiz 28=-306 (· · ·	- 3)		lied roof live load								
	Max Grav 12=1807		C 18)		s specific to the u								
FORCES	(lb) - Maximum Com	pression/Maximum	4)		quate drainage to								
TOP CHORD	Tension 1-2=0/54, 2-3=-1255	0 2 4- 1066/42	5)		MT20 plates un			ed.					
TOP CHORD	4-5=-686/245, 5-6=-		6)		is been designed ad nonconcurrent			ada					
		-685/249, 8-9=-1075/	/42, 7)		as been designe								
		=0/54, 2-28=-2063/0,			n chord in all are			opo.					
	10-12=-2086/0			3-06-00 tall b	y 2-00-00 wide v	vill fit betw	veen the bott	tom					
BOT CHORD	27-28=-1359/95, 23-		105		ny other members							This item ha	
	13-14=-1271/0, 12-1	0=0/2443, 14-18=0/11 3=-1219/0	105, 8)		load (5.0 psf) on							digitally sign	
	24-26=-161/414, 22-		0)		ead load (5.0psf) d live load (40.0 p							sealed by El	binger, Joseph, PE
	21-22=-2016/0, 17-2		3)		oad (10.0 psf) ap							on the date	indicated here.
	16-17=-1522/0, 15-1				, 17-21, 16-17, 1			- /				Printed copi	es of this
WEBS		-253/440, 13-15=0/18			sign requires the							document a	re not considered
	,)=-914/0, 8-29=-918/0 5=0/1275, 25-26=0/22	,		od sheathing be							signed and s	sealed and the
		l=0/1502, 22-23=-488		the bottom c	2" gypsum sheet	rock be a	pplied directly	y to				0	ust be verified
		=-332/0, 17-20=0/590			rlin representatio	n does n	ot depict the	size				0	ronic copies.
		8=0/1508, 14-16=-904	/0,		ation of the purlin								
		=0/1626, 10-15=0/164	,	bottom chore	l	•	•					Joseph Ebinger PE No. 9 MiTek Inc. DBA MiTek U	98947
	6-29=-282/115, 5-29 7-29=-274/1237	J=-∠19/1∠35,		,	necked for L/360	deflectior	l.					16023 Swingley Ridge Ro	SA FL Cert 6634 ad, Chesterfield, MO 63017
	1 25- 214/1251		LO	DAD CASE(S)	Standard							Date:	
													44.0005

May 14,2025

PLATES

MT20

GRIP

244/190

Page: 1

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - verify design parameters and READ NOTES ON THIS AND INCLOSED INTERNETING TO THE REFERENCE FOR UNITY TO THE INSTANCE OF THE ADDRESS OF THE ADDRESS

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	T0704 4000
24-0602-A1	T-1	Attic Supported Gable	1	1	Job Reference (optional)	T37314092

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:34:06 ID:naDQ7ZbDYKxO5_L7k0wioJyHdQO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Plate Offsets (2	Plate Offsets (X, Y): [2:0-3-12,0-1-8], [3:0-0-9,0-1-0], [8:0-2-12,0-2-0], [10:0-2-12,0-2-0], [15:0-0-9,0-1-0], [16:0-3-12,0-1-8], [33:0-2-8,0-3-0]											
Loading TCLL (roof) TCDL BCLL	(psf) 20.0 7.0 0.0	Spacing Plate Grip DOL Lumber DOL * Rep Stress Incr	2-0-0 1.25 1.25 YES	CSI TC BC WB	0.25 0.07 0.28	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 18	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	Code	FBC2023/TPI2014	Matrix-AS							Weight: 295 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SP No.1 2x4 SP No.2 *Exc No.1, 7-11:2x4 SI 2x4 SP No.2 Structural wood s	ept* 38-2,18-16:2x6 SF P No.1 heathing directly applie als, and 2-0-0 oc purlin:	d, BOT CHORD	$\begin{array}{l} 2\text{-}38\text{=-}1065/307,1\\ 3\text{-}5\text{=-}526/146,5\text{-}6\\ 7\text{-}8\text{=-}903/189,8\text{-}9\\ 9\text{-}10\text{=-}1736/375,1\\ 11\text{-}12\text{=-}651/199,1\\ 13\text{-}15\text{=-}534/144,1\\ 16\text{-}17\text{=-}048,1618\\ 37\text{-}38\text{=-}278/277,3\\ 35\text{-}36\text{=-}278/277,3\\ \end{array}$	=-473/16 =-1736/3 0-11=-9 2-13=-4 5-16=-5 =-1065/2 6-37=-2	9, 6-7=-651/20 75, 03/194, 73/169, 52/151, 270 78/277,		Vasi B=4 MW Zoni 11-4 21-7 end	d=101m 5ft; L=2 FRS (di e1 1-5-4 1-8 to 17 7-0 to 26 vertical	nph; TC 5ft; ea rection t to 7-1 7-6-15, 3-3-4 z left an	ve=4ft; Cat. II; Ex ial) and C-C Zone I-9, Zone2 7-1-9 t Zone2 17-6-15 to one; cantilever le	L=6.0psf; h=25ft; p B; Enclosed; 33 -1-6-12 to 1-5-4, to 11-4-8, Zone1 o 21-7-0, Zone1 ft and right exposed ; C-C for members and
BOT CHORD JOINTS	(4-5-14 max.): 8- Rigid ceiling dired 1 Brace at Jt(s): 3 32, 30, 29, 25, 23 42, 43, 44, 45	0. tly applied. 9,		28-31=-94/280, 26 24-26=-101/297, 2 20-21=-94/107, 19 18-19=-94/107, 32 30-32=-54/173, 29 25-29=-30/106, 23	6-28=-96/ 21-24=-1- 2-20=-94/ 2-34=-45/ 2-30=-30/	'283, 45/442, '107, '164, '106,		B) Trus only see or contraction	ss desig v. For st Standa onsult q	ned fo uds ex rd Indu ualified	posed to wind (ne stry Gable End D	e plane of the truss ormal to the face), betails as applicable, er as per ANSI/TPI 1. r responsible for
	21=24 28=24 35=24 38=24 Max Horiz 38=-30 Max Uplift 18=-19 20=-68		8-8, WEBS 8-8, 8-8, 8-8, 18),	22-23=-47/156 2-42=-178/782, 42 35-43=-181/797, 3 6-34=-469/74, 21- 12-22=-469/56, 21 44-45=-155/808, 1 7-40=-36/361, 39- 39-41=-55/352, 11	4-35=-43 22=-437/ -45=-15/ 6-44=-14 40=-39/3 -41=-52/	32/22, 22, 0/781, 47/765, 52, 361,	(requ 5) Prov 6) All p indic 7) Gab 3) Trus	uirement vide ade plates ar cated. ple requi ss to be	ts spec equate e 1.5x res cor fully st	cific to the use of drainage to preve 4 () MT20 unles ntinuous bottom on heathed from one	
	37=-1 Max Grav 18=109 20=12 24=25 28=20 33=25 36=9 ((LC 9), 38=-222 (LC 8) 10 (LC 1), 19=131 (LC - (LC 9), 21=223 (LC 11) 2 (LC 3), 26=220 (LC 3) 3 (LC 3), 31=226 (LC 3) 5 (LC 3), 35=223 (LC 10 .C 8), 37=131 (LC 1), 10 (LC 1)	I), , ,	9-39=-268/110, 8- 10-39=-201/1022, 33-34=-168/48, 32 30-31=-111/0, 28- 25-28=-24/69, 25- 23-24=-119/0, 22- 37-42=-118/58, 5- 15-44=-82/46, 19- 20-45=-11/88	8-40=-8, 2-33=-11; 30=-27/7 26=-111, 24=-156, 43=-1/59	80, 10-41=-8/ 3/0, 31-32=-18 2, 28-29=-110 0, 23-26=-15/ 47, 3-42=-83/ 1, 36-43=-8/88	8/5, 0/0, 6, 46,				on the date i Printed copie document a	ed and binger, Joseph, PE indicated here. es of this re not considered
FORCES	(lb) - Maximum C Tension	ompression/Maximum	NOTES 1) Unbalance this design	d roof live loads hav	ve been o	considered for					signature m	sealed and the ust be verified ronic copies.

Joseph Ebinger PE No. 98947 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Road, Chesterfield, MO 63017

May 14,2025

Page: 1

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - verify design parameters and READ NOTES ON THIS AND INCLOSED INTERNETING TO THE REFERENCE FOR UNITY TO THE INSTANCE OF THE ADDRESS OF THE ADDRESS

	Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
	24-0602-A1	T-1	Attic Supported Gable	1	1	Job Reference (optional)	T37314092
Arnold Truss Mfg. LLC. Ocala, FL - 34475.			Run: 8.83 S Apr 24 2	025 Print: 8.	830 S Apr 24	2025 MiTek Industries, Inc. Tue May 13 10:34:06	Page: 2

- 9) Gable studs spaced at 1-4-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) Ceiling dead load (5.0 psf) on member(s). 6-7, 11-12, 7-40, 39-40, 39-41, 11-41; Wall dead load (5.0psf) on member(s).6-34, 12-22
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 222 lb uplift at joint 38, 196 lb uplift at joint 18, 301 lb uplift at joint 35, 289 lb uplift at joint 21, 1 lb uplift at joint 37, 67 lb uplift at joint 36, 1 lb uplift at joint 19 and 68 lb uplift at joint 20.
- 14) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 16) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:34:06 ID:naDQ7ZbDYKxO5_L7k0wioJyHdQO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

> 16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

May 14,2025

This item has been digitally signed and

sealed by Ebinger, Joseph, PE on the date indicated here. Printed copies of this

document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joseph Ebinger PE No. 98947 MiTek Inc. DBA MITek USA FL Cert 6634 16023 Swingley Ridge Road, Chesterfield, MO 63017

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - verify design parameters and READ NOTES ON THIS AND INCLOSED INTERNETING TO THE REFERENCE FOR UNITY TO THE INSTANCE OF THE ADDRESS OF THE ADDRESS

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	T-2	Attic Girder	1	1	Job Reference (optional)	T37314093

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:34:07 ID:naDQ7ZbDYKx05_L7k0wioJyHdQO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

NOTE: STRUCTURAL WOOD SHEATHING DIRECTLY ATTACHED TO BOTTOM CHORD IN ATTIC ROOM IN LIEU OF PURLINS SPECIFIED. FURNISHED BY OTHERS. 6-7-8 FURNISHED BY OTHERS. 6-7-8 FURNISHED BY OTHERS. 6-7-8 FURNISHED BY OTHERS. 6-7-8 6-7-8 1-12 0-1-12 0-1-12	$\begin{array}{c} 47 & 5x5 = \\ 47 & 103x4 & 6x6 \\ 11 & 3x6 \\ 12 & 3x6 \\ 12 & 3x6 \\ 13 & 3x6 \\ 13 & 3x6 \\ 14 & 3x6 \\ 14 & 3x6 \\ 18 & 2x6 \\ 18 & $
- 1:123.3 1:123.3 1:123.3 1:123.3	2-0-8 0-1-12
= 1:123.3 0-1-8	

	CTURAL WOOD SHEATI ISHED BY OTHERS.	HING TO BE DESIGNED	AND	4-3-8 ⁴⁻⁵ 4-3-8 0-1-	2-8-4 2-8-4 2	17-8 <u>5-0-8</u> 2-8-4 2-8	-12 20-5-0	-3-8 -3-8					
Scale = 1:123.	3				0-2-12 0-1-8		0-1-12						
Plate Offsets	(X, Y): [2:0-3-12,0-1-1	2], [3:0-0-9,0-1-0], [7:0)-1-9,0-1-	8], [8:0-2-8,	0-1-13], [10:0-2-8,0	-1-13], [1	1:0-1-9,0-1-8	8], [15:0-	0-9,0-1-(0], [16:0	-3-12,0)-1-12], [33:0-2-8,	0-3-0]
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 7.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.25 1.25 NO FBC2023	3/TPI2014	CSI TC BC WB Matrix-MS	0.31 0.44 0.40	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.06 0.01	29-30	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 295 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD JOINTS REACTIONS	2x4 SP No.1 2x4 SP No.2 *Excep 38-2,18-16:2x6 SP N 2x4 SP No.2 Structural wood she 4-5-5 oc purlins, ex Rigid ceiling directly bracing. 1 Brace at Jt(s): 32, 30, 29, 25, 23, 42, 43, 44, 45 (size) 18=6-9-4, 35=6-9-4, 35=6-9-4, 38=6-9-4 (Max Uplift 18=-200 (20=-59 (L	athing directly applied cept end verticals. applied or 5-9-11 oc , 19=6-9-4, 20=6-9-4, , 24=6-9-4, 33=6-9-4, , 36=6-9-4, 37=6-9-4, _C 7) (LC 25), 19=-1 (LC 24) (LC 25), 19=-1 (LC 14) (LC 15), 36=-58 (LC 21)	or WE ,),),	EBS	$\begin{array}{c} 37\text{-}38\text{=-}279/230\text{,}\\ 35\text{-}36\text{=-}279/230\text{,}\\ 28\text{-}31\text{=0}/901\text{,}26\text{-}\\ 21\text{-}24\text{=-}125/439\text{,}\\ 19\text{-}20\text{=-}726/7\text{,}18\text{,}\\ 30\text{-}32\text{=-}2593/0\text{,}29\text{,}\\ 25\text{-}29\text{=-}1097/0\text{,}29\text{,}\\ 25\text{-}29\text{=-}1097/0\text{,}29\text{,}\\ 25\text{-}29\text{=-}1097/0\text{,}29\text{,}\\ 25\text{-}29\text{=-}1097/0\text{,}29\text{,}\\ 25\text{-}29\text{=-}1097/0\text{,}29\text{,}\\ 25\text{-}29\text{=-}1097/0\text{,}28\text{,}\\ 12\text{-}42\text{=-}318/66\text{,}11\text{,}\\ 24\text{-}2\text{=-}318/66\text{,}13\text{,}\\ 39\text{-}41\text{=-}44/322\text{,}1\text{,}\\ 43\text{-}5\text{-}357815\text{,}10\text{-}39\text{=-}08\text{,}8\text{,}40\text{,}\\ 8\text{-}41\text{=-}212/1053\text{,}\\ 33\text{-}34\text{=-}896/0\text{,}32\text{,}\\ 30\text{-}31\text{=-}479/0\text{,}28\text{,}\\ 25\text{-}28\text{=}0/581\text{,}25\text{-}\\ 32\text{-}24\text{=-}932/0\text{,}22\text{,}\\ 37\text{-}42\text{=-}114/26\text{,}51\text{,}19\text{,}\\ 20\text{-}45\text{=-}12/91\text{,}\\ \end{array}$	31-35=-5: 28=0/668 20-21=-7: -19=-72/6 -30=-109 3-25=-55: -34=-470 2-22=-47! -41=-28/2 1-39=-40 2-43=-17' 21-45=-1: 16-44=-1: =0/84, 9 10-41=-2' -33=-928; -30=0.54' 26=-495/! -24=-839. -43=-2/62'	22/441, , 24-26=-588 2/67, 7, 32-34=0/6 7/0, 5/0, 22-23=0/ 43, 0/31, 22, 332, 7/830, 50/788, 47/772, 11=-283/113, 08/1053, 0, 31-32=0/1 , 28-29=-34: 0, 34-28=-68/ , 36-43=-8/9	, 799 , 1378, 3/0, 408, 15, 1,	 6) All ind 7) Tru bra 8) Ga 9) Thi chc 10) * Ti on 3-00 chc 11) Cei 7-4 me 12) Boto chc 30- chc 31) Prc bea 38, upl 	plates a icated. Iss to be icced aga ble stud s truss l ord live l his truss the bott 6-00 tal ord and illing dea 0, 40-4' mber(s) thom cho ord deac 32, 29-5' ovide me aring pla 554 lb i ift at join	re 1.5x a fully s ainst lat s space has be ood no s has be oom cho l by 2-C any oth ad load l, 39-4 .6-34, ord live l load (30, 25- cechanic tte capa uplift at 1 18, 5	4 () MT20 unless teral movement (i ed at 1-4-0 oc. en designed for a nconcurrent with een designed for a nconcurrent with een designed for rd in all areas wh 00-00 wide will fit her members. (5.0 psf) on mem 1, 11-39; Wall de 12-22 10ad (40.0 psf) ar 10.0 psf) applied 29, 23-25, 22-23 val connection (by able of withstandi t joint 35, 518 lb u	e face or securely .e. diagonal web). 10.0 psf bottom any other live loads. a live load of 20.0psf
FORCES TOP CHORD	20=25 (L0 24=1342 12), 35=1 37=134 (L (lb) - Maximum Com Tension 1-2=0/48, 2-3=-556/	151, 3-5=-530/145, 654/200, 7-8=-882/165	' 1) _{24),} 2)	Unbalance this design Wind: ASC Vasd=101 B=45ft; L= MWFRS (c end vertica plate grip I	CE 7-22; Vult=130m mph; TCDL=4.2psf; 25ft; eave=4ft; Cat. directional); cantilev al left and right expo	ph (3-seo BCDL=6 II; Exp B er left an osed; Lum	ond gust) .0psf; h=25ft Enclosed; d right expos ber DOL=1.6	;; ;ed ; 60				on the date Printed copi document a signed and	hed and binger, Joseph, PE indicated here.

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joseph Ebinger PE No. 98947 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Road, Chesterfield, MO 63017 Date:

May 14,2025

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property indance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

8-9=-1742/340, 9-10=-1742/340,

10-11=-882/168, 11-12=-654/200,

12-13=-476/172, 13-15=-538/146,

2-38=-1072/219, 16-18=-1072/194

15-16=-556/151, 16-17=0/48,

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	T-2	Attic Girder	1	1	Job Reference (optional)	T37314093

- 14) "NAILED" indicates Girder: 3-10d (0.148" x 3") toe-nails per NDS guidelines.
- 15) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s). The design/selection of such connection device(s) is the responsibility of others.
- 16) Attic room checked for L/360 deflection.
- 17) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25
 - Uniform Loads (lb/ft)
 - Vert: 1-2=-54, 2-6=-54, 6-7=-64, 7-8=-54, 8-10=-54,
 - 10-11=-54, 11-12=-64, 12-16=-54, 16-17=-54,
 - 18-38=-20, 22-34=-40, 7-40=-10, 40-41=-10,
 - 39-41=-10, 11-39=-10
 - Drag: 6-34=-10, 12-22=-10 Concentrated Loads (lb)
 - Vert: 29=-24 (B), 48=-24 (B), 49=-24 (B), 50=-24 (B), 51=-24 (B), 52=-24 (B), 53=-24 (B)

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:34:07 ID:naDQ7ZbDYKxO5_L7k0wioJyHdQO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

This item has been digitally signed and sealed by Ebinger, Joseph, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joseph Ebinger PE No. 98947 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Road, Chesterfield, MO 63017

May 14,2025

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	PG-1	Half Hip	2	2	Job Reference (optional)	T37314094

Scale = 1:83.6

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:34:05 ID:UFuJg3o4Jg4WHuLMaRTJsizHI4L-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

 $\begin{matrix} -\frac{4\cdot3\cdot8}{4\cdot3\cdot8} & -\frac{6\cdot11\cdot12}{2\cdot8\cdot4} & \frac{9\cdot8\cdot0}{2\cdot8\cdot4} & -\frac{12\cdot4\cdot4}{2\cdot8\cdot4} & \frac{15\cdot0\cdot8}{2\cdot8\cdot4} & \frac{17\cdot8\cdot12}{2\cdot8\cdot4} & \frac{20\cdot5\cdot0}{2\cdot8\cdot4} & \frac{23\cdot1\cdot4}{2\cdot8\cdot4} & \frac{24\cdot8\cdot8}{1\cdot7\cdot4} \\ -\frac{12\cdot4\cdot4}{2\cdot8\cdot4} & -\frac{22\cdot3\cdot4}{2\cdot8\cdot4} & \frac{22\cdot3\cdot4}{2\cdot8\cdot4} & \frac{22\cdot3\cdot4}{2\cdot4} & \frac{22\cdot3\cdot4}{2\cdot4} & \frac{22\cdot3\cdot4}{2\cdot8\cdot4} & \frac{22\cdot3\cdot4$

)-2-0,0-2-()], [11:0-2-4,0-	1-12], [12:0-2-4,0-1	1-12], [1	4:0-1-12,0-1-	•8], [15:0)-2-4,0-1	-12], [17	:0-2-0,	0-2-0], [21:0-2-4,	0-2-0],
(psf) 40.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.00 1.00		CSI TC BC	0.83 0.90	DEFL Vert(LL) Vert(CT)		19-20 19-20	l/defl >402 >257	L/d 360 240	PLATES MT20 MT20HS	GRIP 244/190 187/143
0.0*	Rep Stress Incr Code		23/TPI2014	WB Matrix-MS	0.88	Horz(CT) Wind(LL)	0.09	13 19-20	n/a >999	n/a 240	Weight: 373 lb	FT = 20%
2x6 SP No.1 *Excep 2.0E 2x4 SP No.2 *Excep No.1 Structural wood she 2-9-3 oc purlins, ex Rigid ceiling directly bracing. (size) 13=0-7-0, Max Horiz 23=285 (I Max Uplift 13=-142 (Max Grav 13=1957	ot* 16-23:2x6 SP 240 ot* 12-13,1-23:2x6 SF eathing directly applie cept end verticals. r applied or 10-0-0 oc , 23=0-5-4 LC 12) (LC 9), 23=-5 (LC 8) (LC 17), 23=2694 (LC	0F d or 2) 3)	(0.131"x3") r Top chords c oc, 2x6 - 2 rc Bottom chord staggered at Web connec 0-9-0 oc, 2x4 All loads are except if note CASE(S) set provided to c unless othern Unbalanced this design.	hails as follows: connected as follow www.staggered at 0 ds connected as follow www.staggered at 0 ds connected as follows: 2x6 4 - 1 row at 0-9-0 o considered equally ed as front (F) or bi- ction. Ply to ply cor- listribute only loads wise indicated. roof live loads have 7-22; Vult=130mp	vs: 2x4 -9-0 oc. Ilows: 2 - 2 row c. y applie ack (B) nnection s noted e been h (3-sec	- 1 row at 0-9 x6 - 2 rows s staggered a d to all plies, face in the L0 s have been as (F) or (B), considered fo cond gust)	at DAD or	1-1 ma cor 13) Use 6-1 left chc 14) Fill 15) Haa pro lb c des res LOAD 1) D	/2 nails i x. startin nect tru e MiTek 6d nails end to cord, skev all nail f nger(s) c vided su down and sign/sele ponsibili CASE(S ead + Ro	into Trung at 7- ss(es) HUS26 into Tr connectived 0.0 noles w or other ufficient d 126 II ction o ty of ot y Stato of Live	uss) or equivalen 0-8 from the left to to back face of by 6 (With 14-16d na uss) or equivaler t truss(es) to back d deg.to the left, s where hanger is in r connection devit to support conce b up at 4-10-8 or f such connection hers. ndard e (balanced): Lun	t spaced at 1-4-0 oc end to 9-8-8 to ottom chord. ails into Girder & it at 11-0-8 from the k face of bottom loping 0.0 deg. down. contact with lumber. ce(s) shall be entrated load(s) 900 n top chord. The n device(s) is the
3-4=-15892/1007, 4 5-7=-16896/490, 7-8 8-9=-14614/610, 9-1 10-11=-7427/450, 1	-5=-17684/622, 3=-16896/490, 10=-11395/592,		B=45ft; L=25 MWFRS (dir Zone1 3-3-8 exposed ; en members an Lumber DOL	l; Exp B Zone3 0 ntilever right exp 6 for rea OL=1.60	; Enclosed; -3-8 to 3-3-8 left and right posed;C-C fo actions showr D	, r ı;	U	5=-900, 29=-29 (B),				
22-23=-1067/11110 20-21=-988/15896, 18-19=-622/14619,	19-20=-602/17689, 17-18=-605/11400,	(, 6) 7)	verifying app requirements Provide adeo All plates are	lied roof live load s s specific to the use quate drainage to p MT20 plates unle	shown c e of this prevent ss other	overs rain loa truss compo water pondin wise indicate	ading nent. g. ed.				digitally sign sealed by E on the date	hed and binger, Joseph, PE indicated here.
1-23=-263/106, 3-23 1-3=-147/259, 3-21= 4-20=0/2150, 5-20= 7-19=-197/68, 8-19= 9-18=-63/3385, 9-17 10-17=-150/4174, 10	=0/3866, 4-21=-742/1 -208/223, 5-19=-855/ =0/2399, 8-18=-1012/ 7=-1257/83, 0-15=-1414/118,	9) 8, (158, 10 (43,	This truss ha chord live loa) * This truss h on the bottor 3-06-00 tall b chord and ar) Provide mec bearing plate	as been designed for ad nonconcurrent v nas been designed n chord in all areas by 2-00-00 wide will by other members. hanical connection e capable of withsta	or a 10. vith any for a liv s where Il fit betv (by oth	D psf bottom other live loa re load of 20. a rectangle veen the bott ers) of truss	ads. Opsf om to				document a signed and s signature m on any elect	re not considered sealed and the ust be verified tronic copies.
	 X, Y): [23:0-4-0,0-3-C (psf) 40.0 10.0 0.0* 10.0 2x6 SP No.1 *Excep 2x6 SP No.1 *Excep 2x6 SP No.1 *Excep 2x4 SP No.2 *Excep No.1 Structural wood she 2-9-3 oc purlins, ex Rigid ceiling directly bracing. (size) 13=0-7-0 Max Horiz 23=285 (I Max Uplift 13=-142 / Max Grav 13=1957 (lb) - Maximum Con Tension 1-2=-158/137, 3-22: 3-4=-1589/21007, 4 5-7=-16896/490, 7-4 5-7=-16896/490, 7-4 8-9=-14614/610, 9- 10-11=-7427/450, 1 12-13=-1871/138 22-23=-1067/11110 20-21=-988/15896, 18-19=-622/14619, 15-17=-462/7431, 1 13-14=-38/441 1-23=-263/106, 3-22 1-3=-147/259, 3-21: 4-20=0/2150, 5-20= 7-19=-197/68, 8-19: 9-18=-63/3385, 9-17 10-17=-150/4174, 1 11-14=-1614/143, 1 	K, Y): [23:0-4-0,0-3-0] Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code 2x6 SP No.1 *Except* 1-2:2x4 SP No.1 2x6 SP No.1 *Except* 16-23:2x6 SP 240 2.0E 2x4 SP No.2 *Except* 12-13,1-23:2x6 SF No.1 Structural wood sheathing directly applie 2-9-3 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing. (size) 13=0-7-0, 23=0-5-4 Max Horiz 23=285 (LC 12) Max Uplift 13=142 (LC 9), 23=-5 (LC 8) Max Grav 13=1957 (LC 17), 23=2694 (L0 (lb) - Maximum Compression/Maximum Tension 1-2=-158/137, 3-22=-345/118, 2-3=-212/ 3-4=-15892/1007, 4-5=-17684/622, 5-7=-16896/490, 7-8=-16896/490, 8-9=-14614/610, 9-10=-11395/592, 10-11=-7427/450, 11-12=-3174/210, 12-13=-1871/138 22-23=.1067/11110, 21-22=-1251/12276 20-21=-988/15896, 19-20=-602/17689, 18-19=-622/14619, 17-18=-605/11400, 15-17=-462/7431, 14-15=-223/3179, 13-14=-38/441 1-23=-263/106, 3-23=-11157/807, 1-3=-147/259, 3-21=0/3866, 4-21=-742/1 4-20=0/2150, 5-20=-208/223, 5-19=-855, 7-19=-197/68, 8-19=-0/2399, 8-18=-1012, 9-18=-63/3385, 9-17=-1257/83, 10-17=-150/4174, 10-15=-1414/118, 11-14=-1614/143, 11-15=-252/4472,	$ \begin{array}{c c} (psf) \\ 40.0 \\ 10.0 $	$(x, Y):$ $[23:0-4-0,0-3-0]$ (psf) 40.0 10.0 Spacing Plate Grip DOL 1.00 10.0 Plate Grip DOL Plate Grip DOL 1.00 10.0 Rep Stress Incr PBC2023/TPI2014 $2x6$ SP No.1 *Except* 1-2:2x4 SP No.1 $2x6$ SP No.1 *Except* 16-23:2x6 SP 2400F $2.0E$ 1) $2x6$ SP No.1 *Except* 16-23:2x6 SP 2400F $2.0E$ Top chords C $2.0E$ $2x4$ SP No.2 *Except* 12-13,1-23:2x6 SP No.1Bottom chords C $2.9-3$ oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.1) $2.9 + 3 oc purlins, except end verticals.Rigid ceiling directly applied or 10-0-0 ocbracing.3-0-7-0, 23=0-5-43-9-3 oc purlins, except end verticals.(lb) - Maximum Compression/MaximumTension1)1-12=-158/137, 3-22=-345/118, 2-3=-212/119,3-4=-15892/1007, 4-5=-17684/622,5-7=-16896/490, 7-8=-16896/490,8-9=-14614/610, 9-10=-11395/592,10-11=-7427/450, 11-12=-3174/210,10-11=-7427/450, 11-12=-3174/210,10-11=-7427/450, 3-23=-11157/807,1-3=-147/259, 3-21=0/3866, 4-21=-742/18,4-20=0/2150, 5-20=-208/223, 5-19=-855/158,7-19=-197/68, 8-19=0/2399, 8-18=-1012/43,9-18=-63/3385, 9-17=-1257/83,10-17=-150/4174, 10-15=-141/118,11-14=-1614/143, 11-15=-252/4472,10^{+} This truss haschord inve loc3-06-00 tall bio chord and ar10-17=-150/4174, 10-15=-141/118,11-14=-1614/143, 11-15=-252/4472,10^{+} This truss haschord and ar10-17=-150/4174, 10-15=-141/118,11-14=-1614/143, 11-15=-252/4472,10^{+} This truss haschord and ar10^{+} This truss haschord and ar<$	(x, Y): [23:0-4-0,0-3-0] (psf) Spacing 2-0-0 CSI 10.0 Plate Grip DOL 1.00 BC 10.0 0.0* Rep Stress Incr NO BC 2x6 SP No.1 *Except* 1-2:2x4 SP No.1 2-ply truss to be connected tog (0.131*x3") nails as follows: 2x6 SP No.1 *Except* 12:2:2x4 SP No.1 2-ply truss to be connected tog (0.131*x3") nails as follows: 2x6 SP No.1 *Except* 12:2:3:2x6 SP 2400F Code Structural wood sheathing directly applied or 2-9-3 oc purins, except end verticals. Rigid celling directly applied or 10-0-0 oc bracing. Size 21:2:2:3:2:3:2:5:2:2:2:2:3:2:5:2:2:2:2:2:2	(x, Y): $[23:0-4-0,0-3-0]$ CSI(psf) 40.0 10.0Plate Grip DOL Lumber DOL 0.0*1.00TC TC0.83 BC 0.0^* 10.0CodeFBC2023/TPI2014Matrix-MS2x6 SP No.1 *Except* 1-2:2x4 SP No.1 2x6 SP No.1 *Except* 16-23:2x6 SP 2.0E1)2-ply truss to be connected together wi (0.131*x3") nails as follows: 2x4 $-2.0E$ 2x4 SP No.2 *Except* 12-13,1-23:2x6 SP No.11)2-ply truss to be connected as follows: 2x4 $-2.0E$ 2x4 SP No.2 *Except* 12-13,1-23:2x6 SP No.11)2-ply truss to be connected as follows: 2x4 $-2.0E$ Structural wood sheathing directly applied or 2-9-3 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.1)2-ply truss to be connected as follows: 2x4 $-2.2E$ Structural wood sheathing directly applied or 12-9-30 c purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.1)2-ply truss to be connected as follows: 2x6 - 2 rows $-2.2E$ (b) - Maximum Compression/Maximum Tension $1-2=-158/137, 3-22=-345/118, 2-3=-212/119, 3-4=-15892/1007, 4-5=-17684/622, 5-7=-16896/490, 7-8=-16896/490, 8-9=-14614/610, 9-10=-11395/522, 1067/11110, 21-22=-1251/12276, 20-219-988/15896, 19-20=-602/7689, 8-19=-622/14619, 17-18=-602/14619, 17-18=-6$	(x, Y): [23:0-4-0,0-3-0] (pst) Spacing 2-0-0 CSI DEFL (0.0) Plate Grip DOL 1.00 TC 0.83 Vert(L1) 0.0° Code FBC2023/TPI2014 TC 0.83 Vert(CT) 10.0 Code FBC2023/TPI2014 Matrix-MS Vert(CT) 2x6 SP No.1 *Except* 1-2:2x4 SP No.1 10 2.7 2.7 2.7 2.7 1.7 2.7 1	(x, Y): [23:0-4-0,0-3-0] (x, Y): [23:0-4-0,0-3-0] CSI DEFL in (0.0 Plate Grip DOL 1.00 TC 0.83 Vert(CL) -0.73 (1.0) Quert Stress Incr NO CSI DEFL in (1.0) Rep Stress Incr NO Code FBC2023/TPI2014 Matrix-MS Vert(CL) -0.73 (26 SP No.1 *Except* 14-232x6 SP No.1 Texcept* 16-23:2x6 SP 2400F 1 2-ply truss to be connected together with 10d (0.131*37) nails as follows: 2x6 - 2 rows staggered at 0-9-0 oc. 2x4 SP No.2 *Except* 12-13,1-23:2x6 SP No.1 1 2-ply truss to be connected together with 10d (0.131*37) nails as follows: 2x6 - 2 rows staggered at 0-9-0 oc. 2x4 SP No.2 *Except* 12-13,1-23:2x6 SP No.1 1 2-ply truss to be connected together with 10d (0.131*37) nails as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Kigid ceiling directly applied or 10-0-0 oc bracing. Towas together directly applied or 10-0-0 oc bracing. 2x6 1400, 910-10, 910-10, 910 (2000) 2x6 1400, 910-10, 910 (200	(x, Y):[23:0-4-0,0-3-0]CSIDEFLin(loc) $(4,0)$ Plate Grip DOL1.00TC0.33 $Vert(LL)$ -0.7319-20 0.0^{+} Rep Stress InorNOWB0.88 $Vert(LL)$ -0.7319-20 0.0^{+} CodeFBC2023/TPI2014Matrix-MS $Vert(LL)$ -0.7319-20 $2x6$ SP No.1 *Except* 1-2:2x4 SP No.12.2-ply truss to be connected together with 10d12) Usr $2x6$ SP No.1 *Except* 16-23:2x6 SP 2400F12.6-2CSE - 2 rows staggered at 0-9-0 oc.11 $2x4$ SP No.2 *Except* 12-13,1-23:2x6 SP1Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.13 $2y-3$ oc purlins, except end verticals.CSE(S) section. Ply to ply connections have been considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD brack (B) face in the LOAD brack (B) face in the LOAD sector source considered for this design.13(b) Aaximum Compression/Maximum Teension1-3-452(K2), 32-5-541-3-854(K1), 2-25-722; Vult=130mph (3-second gust)141-2a-158/137, 3:22=-345/118, 2:3=-212/119, 3:4=-1582/100, 3:23=-1157/807, 1:1=-722/142/120, 11:1=2-3174/210,	(x, y):[23:0-4-0.0-3-0]CSIDEFLin(loc)l/defl $(4, 0, 0)$ Plate Grip DOL1.00TC0.33DEFLin(loc)l/defl $(1, 0)$ Lumber DOL1.00BC0.33Vert(CT)-0.7319-20>402 $(1, 0)$ CodeFBC2023/TPI2014Matrix-MSWind(LL)0.2719-20>402 $(2, 0)$ CodeFBC2023/TPI2014Matrix-MSWind(LL)0.2719-20>999 $(2, 0)$ CodeFBC2023/TPI2014Matrix-MSWind(LL)0.2719-20>999 $(2, 0)$ CodeFBC2023/TPI2014Matrix-MSWind(LL)0.2719-20>999 $(2, 0)$ CodeFBC2023/TPI201410101212Use MTek $(2, 0)$ CodeFBC2023/TPI2014112-9119-20201212Use MTek $(2, 0)$ CodeFBC2023/TPI20141110101212Use MTek12Use MTek $(2, 0)$ CodeFBC2023/TPI2014111912Code1212Use MTek1212Use MTek1212Use MTek12131212121212131212121212121312121212	(x, Y): [23:0-4-0,0-3-0] CSI DEFL in (loc) l/deft L/d (psf) Plate Grip DOL 1.00 TC 0.83 Vert(CT) -0.73 19-20 >402 360 0.0 Lumber DOL 1.00 BC 0.83 Vert(CT) -1.14 19-20 >245 240 2x6 SP No.1 *Except* 16-23.2x6 SP Top cortes connected together with 10d (0.131*X3') nais as follows: 2x4 - 1 row at 0-9-0 oc. 2x4 - 1 row at 0-9-0 oc. 2x4 - 1 row at 0-9-0 oc. 2x6 - 2 rows staggred at 0-9 -0 oc. 2x6 - 2 rows staggred at 0-9 -0 oc. 2x6 - 2 rows staggred at 0-9 -0 oc. 2x6 - 2 rows staggred at 0-9 -0 oc. 2x8 - 2 rows staggred at 0-9 -0 oc. 2x8 - 2 rows staggred at 0-9 -0 oc. 2x8 - 2 rows staggred at 0-9 -0 oc. 2x8 - 2 rows 19 Use MTFek JL2d 14 Use Jameer Cortes Cort	(ps) Spacing 2-0-0 CSI DEFL in (lcc) //// 14 (1) 10.0 Lumber DOL 1.00 BC 0.30 Vert(L) -0.73 19-20 >402 360 10.0 Rep Stress hnc 7 0.0 Code FBC20237TPI2014 Marix-MS Wind(L) 0.27 19-20 >402 360 MT20 2x6 SP No.1 "Except" 12-2:X4 SP No.1 1.2-pit yruss to be connected together with 10d (0.131'x3') nails as follows: 2x4 - 1 row at 0-9-0 c. 1.2 constant of the connected as follows: 2x6 - 2 rows staggered at 0-9-0 c. 1.2 constant of the connected as follows: 2x6 - 2 rows staggered at 0-9-0 c. 1.2 constant of the connected as follows: 2x6 - 2 rows staggered at 0-9-0 c. 1.3 unast into Truss or equivalent max, starting at 7-0-8 from the left in connect truss(s) to back face of bords connected as follows: 2x6 - 2 rows staggered at 0-9-0 c. 1.3 Use MTEk HUS26 (With 14-10d nails into Truss) or equivalent truss(s) to back face of bords connected as follows: 2x6 - 2 rows staggered at 0-9-0 c. 1.3 Use MTEk HUS26 (With 4-10d nails into Truss) or equivalent truss(s) to back face of bords connected as follows: 2x6 - 2 rows staggered at 0-9-0 c. 1.3 Use MTEk HUS26 (With 4-10d nails into Truss) or equivalent truss(s) to back face of bords connected as follows: 2x6 - 2 rows staggered at 0-9-0 c. 1.3 Use MTEk HUS26 (With 4-10d nails into Truss) or equivalen

May 14,2025

Page: 1

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	PT-1	Half Hip	1	2	Job Reference (optional)	T37314095

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:34:05 ID:YJVdX2xWX8UVcAGq238QFdylylL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

 $\begin{matrix} 4 - 3 - 8 \\ 4 - 3 - 8 \end{matrix} + \begin{matrix} 6 - 11 - 12 \\ 2 - 8 - 4 \end{matrix} + \begin{matrix} 9 - 8 - 0 \\ 2 - 8 - 4 \end{matrix} + \begin{matrix} 12 - 4 - 4 \\ 2 - 8 - 4 \end{matrix} + \begin{matrix} 15 - 0 - 8 \\ 1 - 7 - 4 \end{matrix} + \begin{matrix} 17 - 8 - 12 \\ 2 - 8 - 4 \end{matrix} + \begin{matrix} 20 - 5 - 0 \\ 2 - 8 - 4 \end{matrix} + \begin{matrix} 23 - 1 - 4 \\ 2 - 8 - 4 \end{matrix} + \begin{matrix} 24 - 8 - 8 \\$

Scale = 1:83	.6
--------------	----

Plate Offsets (X, Y): [1:0-1-8,0-1-8], [3:0-2-12,Edge], [12:0-2-4,0-1-8]

		, [0.0 Z 1Z,Euge], [1Z.	- ,-	-1									
Loading TCLL (roof)	(psf) 40.0	Spacing Plate Grip DOL	1-4-0 1.00		CSI TC	0.62	DEFL Vert(LL)	in -0.50	(loc) 19-20	l/defl >587	L/d 480	PLATES MT20	GRIP 244/190
TCDL	10.0	Lumber DOL	1.00		BC	0.84	Vert(CT)	-0.75	19-20	>391	360	-	
BCLL	0.0*	Rep Stress Incr	NO		WB	0.53	Horz(CT)	0.06	13	n/a	n/a		
BCDL	10.0	Code	FBC202	3/TPI2014	Matrix-MS		Wind(LL)	0.24	19-20	>999	240	Weight: 345 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING	2x4 SP No.1 2x6 SP No.1 2x4 SP No.2 *Excep No.1	ot* 12-13,1-23:2x6 SP	1)	(0.131"x3") r Top chords c oc, 2x6 - 2 rc Bottom chord staggered at		ws: 2x4)-9-0 oc. bllows: 2	- 1 row at 0-9- x6 - 2 rows		pro lb c des res	vided su lown and sign/sele ponsibili CASE(S	Ifficient d 171 II ction o ty of ot) Sta	b up at 4-10-8 on f such connectior hers. ndard	entrated load(s) 900 top chord. The a device(s) is the
TOP CHORD		athing directly applied	lor		ted as follows: 2x6 I - 1 row at 0-9-0 c		s staggered a	it					ber Increase=1.00,
BOT CHORD	3-11-6 oc purlins, e Rigid ceiling directly bracing.	except end verticals. A applied or 10-0-0 oc	2)	All loads are except if note	considered equall ed as front (F) or b	ly applie back (B)	face in the LC	DAD	Ui		oads (I 2=-67,	b/ft) 3-12=-67, 13-23=	13
	Max Horiz 23=187 (I Max Uplift 13=-223	, 23=0-5-4 LC 12) (LC 9), 23=-215 (LC 8 (LC 1), 23=1685 (LC ⁻		provided to o unless other Unbalanced	ction. Ply to ply con listribute only load wise indicated. roof live loads hav	s noted	as (F) or (B),	r	C	oncentra Vert: 25		ads (lb)	
FORCES	(lb) - Maximum Con Tension		4)		7-22; Vult=130mp								
TOP CHORD		3=-7902/1532, 10=-5907/1139,	MWFRS (directional) and C-C Zone3 0-2-12 to 3-2-12, 1532, Zone1 3-2-12 to 24-5-12 zone; cantilever left and right r/1139, exposed ; end vertical left and right exposed;C-C for										
BOT CHORD	22-23=-1415/6023, 20-21=-1713/7946, 18-19=-1416/7275, 15-17=-771/3968, 1 13-14=-33/145	19-20=-1643/8262, 17-18=-1148/5907,	5) 6) 7)	Building Des verifying app requirements Provide adeo	igner / Project eng lied roof live load s specific to the us quate drainage to MT20 plates unle	gineer re shown c e of this prevent	sponsible for overs rain loa truss compor water ponding	nent. J.					ed and binger, Joseph, PE
WEBS NOTES	1-23=-165/72, 3-23=	.196/1481, 4-21=-472/ D=-44/181, D=-163/40, 3=-411/103, 17=-663/146, 0-15=-859/184,	(76, 9) 10	All plates are This truss ha chord live loa) * This truss f on the bottor 3-06-00 tall b chord and ar) Provide mec bearing plate	a 3x4 (=) MT20 un s been designed ad nonconcurrent has been designed n chord in all area by 2-00-00 wide wi yo other members. hanical connection e capable of withst b uplift at joint 23.	iless oth for a 10. with any I for a liv s where ill fit betw n (by oth	erwise indica 0 psf bottom other live loa re load of 20.0 a rectangle veen the botto ers) of truss t	ted. ds. Dpsf om o				Printed copie document and signed and s signature mu on any elect	re not considered sealed and the ust be verified ronic copies.

May 14,2025

Page: 1

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	PT-2	Half Hip	9	2	Job Reference (optional)	T37314096

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:34:05 ID:M7GJct0rL3gNpIEF_xqYmmyIyEy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

+6-11-12, 9-8-0 +12-4-4 +15-0-8 +17-8-12 +20-5-0 +23-1-4 +24-8-8 2-8-4 2-8-4 2-8-4 2-8-4 2-8-4 2-8-4 2-8-4 2-8-4 1-7-4 4-3-8 4-3-8

Scale = 1:83.6		-	-
Plate Offsets (X, Y):	[2:0-1-8.0-1-8], [4:0-2-12.Edge], [13:0-2-4.0-1-8], [2	24:0	-2-4

H

Plate Offsets (X	(, Y): [2:0-1-8,0-1-8],	[4:0-2-12,Edge], [13	:0-2-4,0-1	-8], [24:0-2-4,0)-2-8]								
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 40.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-4-0 1.00 1.00 NO FBC202	23/TPI2014	CSI TC BC WB Matrix-MS	0.59 0.82 0.50	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.47 -0.71 0.06 0.25	14	l/defl >616 >410 n/a >999	L/d 480 360 n/a 240	PLATES MT20 Weight: 350 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS (2x4 SP No.1 2x6 SP No.1 2x4 SP No.2 *Excep No.1 Structural wood shea 4-1-4 oc purlins, exc Rigid ceiling directly bracing.	t* 13-14,24-2:2x6 SF athing directly applie cept end verticals. applied or 10-0-0 oc 24=0-5-4 .C 12) LC 9), 24=-233 (LC 8 (LC 1), 24=1821 (LC pression/Maximum 68, 4-23=-153/78, 597/2015, 5=-7664/1662, 0=-7086/1497, 11-12=-3887/800, 3-14=-1091/226, 22-23=-1957/6335, 20-21=-1869/7966, 18-19=-1212/5773, 5-16=-341/1636, -4=-217/314, 22=-485/74, =-60/164,	1) d or 2) 3) 3) 1) 4) 5) 6) 7) 8) 9)	2-ply truss to (0.131"x3") 1 Top chords o oc, 2x6 - 2 m Bottom chorn staggered al Web connec All loads are except if not CASE(S) se provided to o unless other Unbalanced this design. Wind: ASCE Vasd=101m B=45ft; L=22 MWFRS (dir Zone1 1-6-0 exposed ; er members an Lumber DOI Building Des verifying app requirement Provide ade All plates are All plates are Chord live lo on the bottoi	b be connected tog nails as follows: connected as follo ows staggered at (ds connected as fo	ws: 2x4 - 0-9-0 oc. ollows: 2 4 - 1 row ly applie back (B) onnection is noted we been we been to (3-sec BCDL=3 II; Exp B BCDL=5 II; Exp B II; Exp B Cons - antilever right exp S for rea 0OL=1.60 gineer re shown c se of this prevent ess othed hor a 10.1 with any d for a liv is where	th 10d 1 row at 0-9- x6 - 2 rows at 0-9-0 oc. d to all plies, face in the LC s have been as (F) or (B), considered for cond gust) .0psf; h=25ft; .5 Enclosed; 1-6-0 to 1-6-0, left and right ocetors shown;) sponsible for overs rain loa truss compor water ponding wise indicater erwise indicater	0 PAD - - - - - - - - - - - - - - - - - - -	12) Hai pro lb c des res LOAD (1) De Pl Ui	nger(s) o vided su down and sign/sele ponsibili CASE(S ead + Ro ate Incre niform Lo	or othe ifficient d 171 II ction o ty of ot) Sta pof Live ease=1 pods (II 2=-67, ited Lo	This item hadigitally sign sealed by El on the date	ce(s) shall be entrated load(s) 900 top chord. The device(s) is the ober Increase=1.00, 7, 14-24=-13 s been ed and binger, Joseph, F indicated here.
NOTES	9-20=-237/675, 9-19 10-19=-347/1394, 10 11-18=-427/2002, 1 12-16=-498/2390, 12 13-15=-374/1820	0-18=-644/155, 1-16=-840/194,	11	 Provide med bearing plate 	ny other members chanical connection e capable of withs b uplift at joint 24.	n (by oth tanding 2						on any elect	ust be verified ronic copies. ²⁸⁹⁴⁷ ^{ISA} FL Cert 6634 ad, Chesterfield, MO 63017

May 14,2025

Page: 1

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	F-1	Floor	3	1	Job Reference (optional)	T37314097

Scale = 1:26.7 Plate Offsets (X, Y): [6:0-2-12,0-1-8], [9:0-2-0,0-1-8]

Loading	(psf)	Spacing	1-4-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	тс	0.15	Vert(LL)	-0.07	11-12	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.30	Vert(CT)	-0.10	11-12	>999	240		
BCLL	0.0	Rep Stress Incr	YES	WB	0.28	Horz(CT)	0.02	9	n/a	n/a		
BCDL	5.0	Code	FBC2023/TPI2014	Matrix-AS							Weight: 63 lb	FT = 0%

LUMBER

TOP CHORD	2x4 SP No	p.1
BOT CHORD	2x4 SP No	p.1
WEBS	2x4 SP No	o.2
BRACING		
TOP CHORD	Structural	wood sheathing directly applied,
	except en	d verticals.
BOT CHORD	Rigid ceili	ng directly applied.
REACTIONS	(size)	9= Mechanical, 14=0-7-0
	Max Grav	9=513 (LC 1), 14=478 (LC 2)
FORCES	(lb) - Maxi	mum Compression/Maximum
	Tension	
TOP CHORD	1-14=-449	0/0, 6-9=-475/0, 1-2=-996/0,
	2-3=-996/	0, 3-4=-1439/0, 4-5=-1021/0,
	5-6=-1021	/0, 6-7=0/0
BOT CHORD	13-14=0/7	4, 12-13=0/1439, 11-12=0/1439,
	10-11=0/1	439, 9-10=0/116, 8-9=0/0
WEBS	1-13=0/98	5, 2-13=-190/0, 6-10=0/960,
	5-10=-181	/4, 3-13=-552/0, 4-10=-531/0,
	3-12=-28/	67, 4-11=-32/62

NOTES

- Unbalanced floor live loads have been considered for 1) this design.
- All plates are MT20 plates unless otherwise indicated. 2) Plates checked for a plus or minus 0 degree rotation 3)
- about its center. 4)
- Refer to girder(s) for truss to truss connections.
- 5) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 6) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

This item has been digitally signed and sealed by Ebinger, Joseph, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joseph Ebinger PE No. 98947 MiTek Inc. DBA MITek USA FL Cert 6634 16023 Swingley Ridge Road, Chesterfield, MO 63017

May 14,2025

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only using the matter one to the other of the intervence of the

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	F-2	Floor Girder	1	1	Job Reference (optional)	T37314098

Vert: 4-6=-7, 1-3=-67 Concentrated Loads (lb) Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:33:59 ID:m7HjkKMwya2lKOqRZTI0YpzHuaL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

0-1-8], [3:0-2-4,0-1-8], [5:0 bsf) Spacing 0.0 Plate Grip DOL 0.0 Lumber DOL 0.0 Rep Stress Incr 5.0 Code	1-4-0 1.00 1.00 NO FBC2023/TPI2014	CSI TC BC WB Matrix-MP	0.12 0.26 0.31	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.02	(loc) 5 4-5	l/defl >999	L/d 360	PLATES MT20	GRIP 244/190
	Vert: 5=	-509 (E) 7509 (E			0.00	4	>999 n/a	240 n/a	Weight: 26 lb	FT = 0%
ns, except end verticals. irectly applied or 10-0-0 c Mechanical, 6= Mechanic 68 (LC 1), 6=960 (LC 1) n Compression/Maximum	ed or ic al	505 (i), i = 505 (i	F), 8=-50	9 (F)						
0/0 -5=-116/0, 3-5=0/1102 or minus 0 degree rotation to truss connections. cks, on edge, spaced at to each truss with 3-10d backs to be attached to w									This item ha	
Dd nails into Girder & 2-10 quivalent spaced at 1-4-0 the left end to 3-5-3 to ace of bottom chord. ager is in contact with lum tion, loads applied to the ont (F) or back (B).	oc ber. face								sealed by El on the date Printed copi document al signed and s signature m on any elect	binger, Joseph, Pl indicated here. es of this re not considered sealed and the ust be verified ronic copies.
li II	lins, except end verticals. lirectly applied or 10-0-0 of Mechanical, 6= Mechanic 368 (LC 1), 6=960 (LC 1) in Compression/Maximum -4=-545/0, 1-2=-999/0, 0/0 t-5=-116/0, 3-5=0/1102 or minus 0 degree rotation to truss connections. acks, on edge, spaced at to each truss with 3-10d gbacks to be attached to w ained by other means. 0d nails into Girder & 2-10 quivalent spaced at 1-4-0 in the left end to 3-5-3 to face of bottom chord. nger is in contact with lum tion, loads applied to the roont (F) or back (B).	n Compression/Maximum -4=-545/0, 1-2=-999/0, 0/0 -5=-116/0, 3-5=0/1102 or minus 0 degree rotation to truss connections. acks, on edge, spaced at to each truss with 3-10d bbacks to be attached to walls ained by other means. 0d nails into Girder & 2-10d x equivalent spaced at 1-4-0 oc the left end to 3-5-3 to face of bottom chord. nger is in contact with lumber.	lins, except end verticals. lirectly applied or 10-0-0 oc Mechanical, 6= Mechanical 368 (LC 1), 6=960 (LC 1) n Compression/Maximum -4=-545/0, 1-2=-999/0, 0/0 -5=-116/0, 3-5=0/1102 or minus 0 degree rotation to truss connections. acks, on edge, spaced at to each truss with 3-10d gbacks to be attached to walls ained by other means. 0d nails into Girder & 2-10d x riguivalent spaced at 1-4-0 oc n the left end to 3-5-3 to face of bottom chord. nger is in contact with lumber. tion, loads applied to the face root (F) or back (B).	lins, except end verticals. lirectly applied or 10-0-0 oc Mechanical, 6= Mechanical 368 (LC 1), 6=960 (LC 1) In Compression/Maximum -4=-545/0, 1-2=-999/0, 0/0 -5=-116/0, 3-5=0/1102 or minus 0 degree rotation to truss connections. acks, on edge, spaced at to each truss with 3-10d gbacks to be attached to walls ained by other means. 0d nails into Girder & 2-10d x quivalent spaced at 1-4-0 oc In the left end to 3-5-3 to face of bottom chord. nger is in contact with lumber. tion, loads applied to the face root (F) or back (B).	lins, except end verticals. lirectly applied or 10-0-0 oc Mechanical, 6= Mechanical 368 (LC 1), 6=960 (LC 1) n Compression/Maximum -4=-545/0, 1-2=-999/0, 0/0 -5=-116/0, 3-5=0/1102 or minus 0 degree rotation to truss connections. acks, on edge, spaced at to each truss with 3-10d gbacks to be attached to walls ained by other means. 0d nails into Girder & 2-10d x quivalent spaced at 1-4-0 oc n the left end to 3-5-3 to face of bottom chord. nger is in contact with lumber. tion, loads applied to the face root (F) or back (B).	lins, except end verticals. lirectly applied or 10-0-0 oc Mechanical, 6= Mechanical 368 (LC 1), 6=960 (LC 1) In Compression/Maximum -4=-545/0, 1-2=-999/0, 0/0 -5=-116/0, 3-5=0/1102 or minus 0 degree rotation to truss connections. acks, on edge, spaced at to each truss with 3-10d gbacks to be attached to walls ained by other means. 0d nails into Girder & 2-10d x iquivalent spaced at 1-4-0 oc In the left end to 3-5-3 to face of bottom chord. nger is in contact with lumber. tion, loads applied to the face root (F) or back (B).	lins, except end verticals. lirectly applied or 10-0-0 oc Mechanical, 6= Mechanical 368 (LC 1), 6=960 (LC 1) In Compression/Maximum -4=-545/0, 1-2=-999/0, 0/0 -5=-116/0, 3-5=0/1102 or minus 0 degree rotation to truss connections. acks, on edge, spaced at to each truss with 3-10d gbacks to be attached to walls ained by other means. 0d nails into Girder & 2-10d x iquivalent spaced at 1-4-0 oc In the left end to 3-5-3 to face of bottom chord. nger is in contact with lumber. tion, loads applied to the face root (F) or back (B).	lins, except end verticals. lirectly applied or 10-0-0 oc Mechanical, 6= Mechanical 368 (LC 1), 6=960 (LC 1) in Compression/Maximum -4=-545/0, 1-2=-999/0, 0/0 -5=-116/0, 3-5=0/1102 or minus 0 degree rotation to truss connections. acks, on edge, spaced at to each truss with 3-10d bjacks to be attached to walls ained by other means. Od nails into Girder & 2-10d x viguivalent spaced at 1-4-0 oc the left end to 3-5-3 to face of bottom chord. nger is in contact with lumber. tion, loads applied to the face ront (F) or back (B).	lins, except end verticals. lirectly applied or 10-0-0 oc Mechanical, 6= Mechanical 368 (LC 1), 6=960 (LC 1) n Compression/Maximum -4=-545/0, 1-2=-999/0, 0/0 -5=-116/0, 3-5=0/1102 or minus 0 degree rotation to truss connections. acks, on edge, spaced at to each truss with 3-10d bjacks to be attached to walls ained by other means. Od nails into Girder & 2-10d x iquivalent spaced at 1-4-0 oc the left end to 3-5-3 to face of bottom chord. nger is in contact with lumber. tion, loads applied to the face root (F) or back (B).	lins, except end verticals. lirectly applied or 10-0-0 oc Mechanical, 6= Mechanical 368 (LC 1), 6=960 (LC 1) in Compression/Maximum -4=-545/0, 1-2=-999/0, 0/0 -5=-116/0, 3-5=0/1102 or minus 0 degree rotation to truss connections. acks, on edge, spaced at to each truss with 3-10d pbacks to be attached to walls ained by other means. 0d nails into Girder & 2-10d x ined by other means. 0d nails into Girder & 2-

Joseph Ebinger PE No. 98947 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Road, Chesterfield, MO 63017 Date:

May 14,2025

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	F-3	Floor	2	1	Job Reference (optional)	T37314099

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:33:59 ID:bpir80r0Xs437Yu7vs0OAEzHuZj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

1.5x4 u	
---------	--

1.5x4 🛚

Scale =	1:21.4	

Loading	(psf)	Spacing	1-4-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.04	Vert(LL)	0.00	7	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.04	Vert(CT)	0.00	7	>999	240		
BCLL	0.0	Rep Stress Incr	YES	WB	0.04	Horz(CT)	0.00	5	n/a	n/a		
BCDL	5.0	Code	FBC2023/TPI2014	Matrix-AS							Weight: 23 lb	FT = 0%

3x4 =

3x4 =

BOT CHORD	2X4 SP NO.1
WEBS	2x4 SP No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied,
	except end verticals.
BOT CHORD	Rigid ceiling directly applied.
REACTIONS	(size) 5= Mechanical, 8= Mechanical

	Max Grav 5=157 (LC 1), 8=157 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-8=-142/0, 4-5=-142/0, 1-2=-158/0,
	2-3=-158/0, 3-4=-158/0
BOT CHORD	7-8=0/21, 6-7=0/158, 5-6=0/21
WEBS	1-7=0/157, 4-6=0/157, 2-7=-78/0, 3-6=-78/0
NOTES	

1) Unbalanced floor live loads have been considered for this design.

Plates checked for a plus or minus 0 degree rotation 2) about its center.

Refer to girder(s) for truss to truss connections. 3)

This truss design requires that a minimum of 7/16" 4) structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

This item has been digitally signed and sealed by Ebinger, Joseph, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joseph Ebinger PE No. 98947 MiTek Inc. DBA MITek USA FL Cert 6634 16023 Swingley Ridge Road, Chesterfield, MO 63017

May 14,2025

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - verify design parameters and READ NOTES ON THIS AND INCLOSED INTERNETING TO THE REFERENCE FOR UNITY TO THE INSTANCE OF THE ADDRESS OF THE ADDRESS

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	F-4	Floor Girder	1	1	Job Reference (optional)	T37314100

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:34:00 ID:bpir80r0Xs437Yu7vs0OAEzHuZj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:24.1

THDH26-2

1-4-0

Loading	(psf)	Spacing	1-4-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.06	Vert(LL)	0.00	7	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.08	Vert(CT)	0.00	7	>999	240		
BCLL	0.0	Rep Stress Incr	NO	WB	0.06	Horz(CT)	0.00	5	n/a	n/a		
BCDL	5.0	Code	FBC2023/TPI2014	Matrix-MS							Weight: 26 lb	FT = 0%

LUMBER

TOP CHORD	2x4 SP N	o.1
BOT CHORD	2x6 SP N	o.1
WEBS	2x4 SP N	0.2
BRACING		
TOP CHORD		wood sheathing directly applied purlins, except end verticals.
BOT CHORD	Rigid ceili bracing.	ng directly applied or 10-0-0 oc
REACTIONS	(size)	5= Mechanical, 8= Mechanical
	Max Grav	5=428 (LC 1), 8=369 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum

Tension TOP CHORD 1-8=-164/0, 4-5=-164/0, 1-2=-220/0,

- 2-3=-220/0, 3-4=-220/0
- BOT CHORD
 7-8=0/40, 6-7=0/220, 5-6=0/22

 WEBS
 1-7=0/203, 4-6=0/223, 2-7=-67/0, 3-6=-101/0

NOTES

- Unbalanced floor live loads have been considered for this design.
- Plates checked for a plus or minus 0 degree rotation about its center.

3) Refer to girder(s) for truss to truss connections.

- 4) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- Use MiTek THDH26-2 (With 22-16d nails into Girder & 8-16d nails into Truss) or equivalent at 0-7-15 from the left end to connect truss(es) to back face of bottom chord.
- 6) Fill all nail holes where hanger is in contact with lumber.
- Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 242 lb down at 4-5-1 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard 1) Dead + Floor Live (balanced): Lumber Increase=1.00,

or

Plate Increase=1.00 Uniform Loads (lb/ft) Vert: 5-8=-7, 1-4=-67 Concentrated Loads (lb)

Vert: 5=-242 (B), 9=-241 (B)

This item has been digitally signed and sealed by Ebinger, Joseph, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joseph Ebinger PE No. 98947 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Road, Chesterfield, MO 63017 Date:

May 14,2025

1-4-0

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:34:00 Page: 1 ID:BuzfCgjhzXCWxpJ?gTrg4EzHI4S-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1.5x4 🛚

3x4 =

Scale = 1:20.7

Loa	ding	(psf)	Spacing	1-4-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCL		40.0	Plate Grip DOL	1.00	TC	0.05	Vert(LL)	0.00	6-7	>999	360	MT20	244/190
TCE		10.0	Lumber DOL	1.00	BC	0.05	Vert(CT)	-0.01	6-7	>999	240		
BCL		0.0	Rep Stress Incr	YES	WB	0.05	Horz(CT)	0.00	5	n/a	n/a		
BCE	DL	5.0	Code	FBC2023/TPI2014	Matrix-AS							Weight: 66 lb	FT = 0%
TOF	IBER CHORD CHORD			10-00-00 (0.131" X	nd 2x6 strongbacks, oc and fastened to ea 3") nails. Strongback ter ends or restrained	ach truss ks to be	with 3-10d attached to v	valls					
		2X4 3F NU.2		LOAD CASE(a by our	or mound.						
	CHORD	Structural wood she	athing directly appli	,	of Otandard								
TOP	CHORD	except end verticals		eu,									
BOT	CHORD	Rigid ceiling directly											
	CTIONS	• • •	anical, 8=0-5-14										
/		Max Grav 5=245 (L0	,										
FOF	CES	(lb) - Maximum Com Tension	pression/Maximum										
TOF	CHORD	1-8=-225/0, 4-5=-22 2-3=-387/0, 3-4=-38											
BOT	CHORD	7-8=0/52, 6-7=0/387											
WE		1-7=0/360, 2-7=-124 3-6=-124/0											
NOT	FS	00 12 1/0											
		to be connected toge	ther with 10d										
		') nails as follows:											
	Top chord	s connected as follows	s: 2x4 - 1 row at 0-9	-0									
	oc.												
	Bottom ch 0-9-0 oc.	ords connected as foll	ows: 2x4 - 1 row at										
		ected as follows: 2x4 -	1 row at 0-9-0 oc.									This item ha	as been
2)	All loads a	re considered equally	applied to all plies,									digitally sign	
		oted as front (F) or ba		DAD								0 , 0	binger, Joseph, PE
	CASE(S) s	section. Ply to ply conr	nections have been									,	U / I /
		o distribute only loads	noted as (F) or (B),										indicated here.
		erwise indicated.										Printed copi	es of this
		ed floor live loads have	e been considered fo	or								document a	re not considered
	this desigr		uo O dogroo rotation									signed and	sealed and the
	Plates che	ecked for a plus or min	us o degree rotation	1								0	ust be verified

about its center. Refer to girder(s) for truss to truss connections. 5)

6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top

chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

signature must be verified on any electronic copies.

Joseph Ebinger PE No. 98947 MiTek Inc. DBA MITek USA FL Cert 6634 16023 Swingley Ridge Road, Chesterfield, MO 63017 Date

May 14,2025

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	F-6	Floor	1	1	Job Reference (optional)	T37314102

1.5x4 u

3x4 =

Scale = 1:20.7												
Loading	(psf)	Spacing	1-4-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	тс	0.09	Vert(LL)	-0.01	6-7	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.09	Vert(CT)	-0.01	6-7	>999	240		
BCLL	0.0	Rep Stress Incr	YES	WB	0.10	Horz(CT)	0.00	5	n/a	n/a		
BCDL	5.0	Code	FBC2023/TPI2014	Matrix-AS							Weight: 33 lb	FT = 0%

LUMBER

TOP CHORD	2x4 SP No.1
BOT CHORD	2x4 SP No.1
WEBS	2x4 SP No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied, except end verticals.
BOT CHORD	Rigid ceiling directly applied.
REACTIONS	(size) 5= Mechanical, 8=0-6-0
	Max Grav 5=245 (LC 1), 8=245 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum Tension
TOP CHORD	1-8=-225/0, 4-5=-225/0, 1-2=-387/0,
	2-3=-387/0, 3-4=-387/0
BOT CHORD	7-8=0/52, 6-7=0/387, 5-6=0/52
	4 7 0/200 2 7 424/0 4 0 0/200

1-4-0

WEBS 1-7=0/360, 2-7=-124/0, 4-6=0/360, 3-6=-124/0

NOTES

- 1) Unbalanced floor live loads have been considered for this design.
- Plates checked for a plus or minus 0 degree rotation about its center.
- 3) Refer to girder(s) for truss to truss connections.
- 4) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 5) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

This item has been digitally signed and sealed by Ebinger, Joseph, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Page: 1

Joseph Ebinger PE No. 98947 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Road, Chesterfield, MO 63017 Date:

May 14,2025

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	FG-1	Flat	1	2	Job Reference (optional)	T37314103

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:34:00 ID:RNpAE6_?oZ?oYse?oV9HiwzHB5O-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1-4-0

Scale = 1:22.4

		r			i								
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25		TC	0.27	Vert(LL)	-0.01	5	>999	360	MT20	244/190
TCDL	7.0	Lumber DOL	1.25		BC	0.06	Vert(CT)	-0.01	5	>999	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.18	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	FBC202	3/TPI2014	Matrix-MP		Wind(LL)	0.00	5	>999	240	Weight: 41 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	3-11-15 oc purlins, Rigid ceiling directly bracing.	athing directly applie except end verticals. applied or 10-0-0 oc		Vasd=101mj B=45ft; L=24 MWFRS (dir left and right exposed;C-C reactions sho DOL=1.60 Building Des	7-22; Vult=130 oh; TCDL=4.2p; Ift; eave=4ft; Ca ectional) and C exposed ; end c for members a own; Lumber D igner / Project e lied roof live loa	sf; BCDL=6 at. II; Exp B; -C Zone3 zo vertical left and forces & OL=1.60 pla engineer res	.0psf; h=25ft Enclosed; one; cantilev and right MWFRS fo ate grip sponsible for	er r					
	(size) 4=0-3-8, 6 Max Horiz 6=33 (LC Max Uplift 4=-165 (L Max Grav 4=1751 (I	11) .C 9), 6=-112 (LC 8)	5) 6)	requirements Provide adeo This truss ha	s specific to the quate drainage as been designe	use of this to prevent v ed for a 10.0	truss compo vater pondin) psf bottom	nent. g.					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	7)	* This truss h	nas been desigr n chord in all ar	ned for a liv	e load of 20.						
TOP CHORD	1-6=-1116/159, 1-2= 2-3=-1398/150, 3-4=	,		3-06-00 tall b	by 2-00-00 wide	e will fit betw		om					
BOT CHORD WEBS	5-6=-45/46, 4-5=-16 3-5=-185/1604, 2-5= 1-5=-185/1604		8)	Provide mec bearing plate	hanical connec capable of with uplift at joint 4.	tion (by oth hstanding 1							

NOTES

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc

Bottom chords connected as follows: 2x4 - 1 row at 0-9-0 oc.

Web connected as follows: 2x4 - 1 row at 0-9-0 oc. All loads are considered equally applied to all plies, 2) except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B),

unless otherwise indicated.

- 6 and 165 lb uplift at joint 4.
- 9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 877 Ib down and 83 lb up at 1-3-11, and 877 lb down and 83 Ib up at 1-8-12, and 901 Ib down and 88 Ib up at 3-10-3 on top chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

- Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (lb/ft) Vert: 1-3=-54, 4-6=-20
 - Concentrated Loads (lb)
 - Vert: 3=-901, 2=-877, 7=-877

This item has been digitally signed and sealed by Ebinger, Joseph, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joseph Ebinger PE No. 98947 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Road, Chesterfield, MO 63017

May 14,2025

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only using the matter one to the other of the intervence of the

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	FG-2	Roof Special Girder	1	1	Job Reference (optional)	T37314104

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:34:00 ID:bH4CbEDnOEyn9b_t3xESCMzXTht-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:78.8

Plate Offsets (X, Y): [1:0-2-4,0-1-8], [5:0-3-4,0-3-0]

chord and any other members.

6) Refer to girder(s) for truss to truss connections.

	7, 1). [1.0 2 4,0 1 0],	[0.0 0 4,0 0 0]										
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 NO FBC2023/TPI2	CSI TC BC WB 014 Matrix-MS	0.38 0.74 0.02	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.08 -0.14 0.13 0.08	(loc) 6-8 6-8 3 6-8	l/defl >720 >409 n/a >692	L/d 360 240 n/a 240	PLATES MT20 Weight: 68 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES		athing directly applie cept end verticals. applied or 10-0-0 or 2-3 nical, 8= Mechanica C 4), 8=-218 (LC 4) C 1), 8=535 (LC 1) pression/Maximum 2/23, 3-5=-416/139, /38, 4-7=0/0, 3-4=0/	beari 8 and 8.) Use end or skew c 9) Fill a 10) "NAI 11) In the c 10 per N 11) In the c 10 Dea Plai Uni Vin Cor	de mechanical connection ng plate capable of withs 1 179 lb uplift at joint 3. MiTek JL24 (With 4-10d nails into Truss) or equi to connect truss(es) to be red 0.0 deg.to the left, slo ll nail holes where hange LED" indicates Girder: 3- IDS guidelines. a LOAD CASE(S) section truss are noted as front ASE(S) Standard d + Roof Live (balanced te Increase=1.25 form Loads (Ib/ft) fert: 1-2=-54, 6-8=-20, 3- incentrated Loads (Ib) /ert: 9=-247 (B), 10=-493	standing 2 nails into ivalent at 3 ack face c oping 0.0 or is in cor 10d (0.14 n, loads a t (F) or ba 1): Lumber -7=-20	218 lb uplift a Girder & 2-10 3-3-4 from thi- f bottom cho deg. down. ttact with lum 8" x 3") toe- pplied to the ck (B).	t joint Od x e left rd, nber. nails face					
Vasd=101 B=45ft; L= MWFRS ((DOL=1.60 2) Building D verifying a requireme 3) Provide ac 4) This truss chord live 5) * This trus on the bot	CE 7-22; Vult=130mph mph; TCDL=4.2psf; Bu :24ft; eave=4ft; Cat. II; directional); Lumber Du esigner / Project engin pplied roof live load sh nts specific to the use dequate drainage to pr has been designed fo load nonconcurrent wi s has been designed fo tom chord in all areas II by 2-00-00 wide will	CDL=6.0psf; h=25ft; Exp B; Enclosed; OL=1.60 plate grip eer responsible for iown covers rain loa of this truss compor event water ponding r a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle	ding nent. J. ds. Ipsf								on the date Printed cop document a signed and signature m	ned and binger, Joseph, F indicated here.

Joseph Ebinger PE No. 98947 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Road, Chesterfield, MO 63017 Date:

May 14,2025

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	FG-3	Roof Special Girder	1	1	Job Reference (optional)	T37314105

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:34:01 ID:7v655Lq9dbFh9GpU_R7BDuzXTh5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:61.3

Plate Offsets (X_Y): [1:0-2-4 0-1-8] [5:0-4-8 0-1-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	тс	0.24	Vert(LL)	-0.03	6-8	>999	360	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.34	Vert(CT)	-0.07	6-8	>846	240		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.02	Horz(CT)	0.04	3	n/a	n/a		
BCDL	10.0	Code	FBC2023/TPI2014	Matrix-MS		Wind(LL)	0.03	6-8	>999	240	Weight: 46 lb	FT = 20%

TOP CHORD 2x4 SP No.1

2x4 SP N	o.1
2x6 SP N	o.1 *Except* 6-4,5-1:2x4 SP No.2
Structural	wood sheathing directly applied or
5-2-8 oc p	ourlins, except end verticals.
Rigid ceili	ng directly applied or 10-0-0 oc
bracing.	
(size)	3= Mechanical, 8= Mechanical
Max Horiz	8=155 (LC 7)
Max Uplift	3=-112 (LC 5), 8=-124 (LC 4)
Max Grav	3=383 (LC 13), 8=410 (LC 14)
(lb) - Max	imum Compression/Maximum
Tension	
1-8=-189/	121, 1-2=-119/30, 3-5=-294/121,
	Structural 5-2-8 oc p Rigid ceili bracing. (size) Max Horiz Max Uplift Max Grav (lb) - Max Tension

2-5=-160/97BOT CHORD 6-8=-124/151, 5-6=-124/151, 4-7=0/0, 3-4=0/0

WEBS 4-6=-82/29, 1-5=-34/69 NOTES

- 1) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for 2) verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom 4)
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 5)
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.

- bearing plate capable of withstanding 124 lb uplift at joint
- 8 and 112 lb uplift at joint 3. "NAILED" indicates Girder: 3-10d (0.148" x 3") toe-nails
- 8) per NDS guidelines
- In the LOAD CASE(S) section, loads applied to the face 9) of the truss are noted as front (F) or back (B).
- LOAD CASE(S) Standard
- Dead + Roof Live (balanced): Lumber Increase=1.25, 1) Plate Increase=1.25

Uniform Loads (lb/ft)

Vert: 1-2=-54, 6-8=-20, 3-7=-20

- Concentrated Loads (lb)
 - Vert: 9=-35 (F), 10=-35 (F), 11=-177 (F), 12=-177 (F)

This item has been digitally signed and sealed by Ebinger, Joseph, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joseph Ebinger PE No. 98947 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Road, Chesterfield, MO 63017

May 14,2025

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only using the matter one to the other of the intervence of the

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	FT-1	Attic	1	1	Job Reference (optional)	T37314106

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:34:01 ID:GsLqBh4onuTWhk_5d5vHTozHGz_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:76.4

Plate Offsets (X, Y); [2:0-4-0.0-1-8], [3:0-4-0.0-1-8], [6:0-3-0.0-4-8], [7:0-3-0.0-4-8]

		,	0 0,0 4 0], [7.0 0 0,0 4	3]								
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	тс	0.25	Vert(LL)	-0.08	6-7	>999	360	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.41	Vert(CT)	-0.15	6-7	>760	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.47	Horz(CT)	0.00	5	n/a	n/a		
BCDL	10.0	Code	FBC2023/TPI2014	Matrix-AS		Wind(LL)	0.03	6-7	>999	240	Weight: 125 lb	FT = 20%

BOT CHORD	2x6 SP No.1
WEBS	2x4 SP No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied,
	except end verticals.
BOT CHORD	Rigid ceiling directly applied.
WEBS	1 Row at midpt 1-8, 4-5, 2-7, 3-6
REACTIONS	(size) 5= Mechanical, 8= Mechanical
	Max Uplift 5=-57 (LC 8), 8=-57 (LC 8)
	Max Grav 5=488 (LC 18), 8=488 (LC 18)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-8=-726/7, 1-2=-62/26, 2-3=-67/37,
	3-4=-62/26, 4-5=-726/7
BOT CHORD	7-8=-5/11, 6-7=-37/67, 5-6=-5/11
WEBS	1-7=-327/795, 2-7=-433/677, 3-6=-433/677,
	4-6=-327/795

NOTES

- Wind: ASCE 7-22; Vult=130mph (3-second gust) 1) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Zone3 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for 2) verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component. 3)
- Provide adequate drainage to prevent water ponding. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 5) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 57 lb uplift at joint

- 8 and 57 lb uplift at joint 5. This truss design requires that a minimum of 7/16" 9)
- structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 10) ATTIC SPACE SHOWN IS DESIGNED AS UNINHABITABLE.

LOAD CASE(S) Standard

9-7-10

This item has been digitally signed and sealed by Ebinger, Joseph, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Page: 1

Joseph Ebinger PE No. 98947 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Road, Chesterfield, MO 63017

May 14,2025

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	FT-2	Attic	1	1	Job Reference (optional)	T37314107

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:34:01 ID:tAMgXLTZTX53bZrOQS_U9FzHGxA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:80.9

Plate Offsets (X, Y): [2:0-4-0,0-1-8], [3:0-4-0,0-4-0], [5:0-3-0,0-4-8], [7:0-3-0,0-1-7]

	(X, 1): [2:0 + 0;0 1 0];	[0.0 + 0,0 + 0], [0.0		j, [7.0 0 0,0 1 7]								
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES FBC20	23/TPI2014	CSI TC BC WB Matrix-AS	0.29 0.43 0.52	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.09 -0.16 -0.01 0.02	(loc) 4-5 4-5 8 4-5	l/defl >999 >706 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 138 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORE BOT CHORE WEBS OTHERS BRACING TOP CHORE BOT CHORE WEBS REACTIONS	 2x6 SP No.1 2x4 SP No.2 *Excep 2x6 SP No.1 Structural wood shear except end verticals. Rigid ceiling directly 1 Row at midpt 	athing directly applie applied. 1-6, 3-7, 2-5, 3-8 nical, 6= Mechanica al 3), 6=-56 (LC 8), 8=- 2 18), 6=469 (LC 18)	8 II, 8= 9 -44	on the bottor 3-06-00 tall b chord and ar Bottom chord chord dead l Refer to gird Provide mec bearing plate 6, 3 lb uplift a This truss de structural wo chord and 1/ the bottom c	E SHOWN IS DE	as where vill fit betw s. (sf) and a lied only f russ conr on (by oth tanding 5 o uplift at t a minim applied d rock be a	a rectangle veen the bott dditional bott to room. 4-5 nections. ers) of truss 6 lb uplift at joint 8. um of 7/16" irrectly to the pplied directl	to to to joint					
FORCES	(lb) - Maximum Com	,	L	OAD CASE(S)	Standard								
	4-7=-97/166, 3-7=-9	7/166											
BOT CHORD WEBS	5-6=-11/12, 4-5=-37/ 1-5=-274/682, 2-5=-4		37										
Vasd=10 B=45ft; L MWFRS left and ri MWFRS grip DOL 2) Building l verifying requirem 3) Provide a 4) This truss	SCE 7-22; Vult=130mph 11mph; TCDL=4.2psf; B(=24ft; eave=4ft; Cat. II; (directional) and C-C Zc ight exposed ;C-C for m for reactions shown; Lu =1.60 Designer / Project engin applied roof live load sh ents specific to the use adequate drainage to pro- s has been designed for e load nonconcurrent wi	CDL=6.0psf; h=25ft; Exp B; Enclosed; one3 zone; cantileve embers and forces 8 mber DOL=1.60 plat eer responsible for own covers rain loar of this truss compon event water ponding a 10.0 psf bottom	& te ding ient. i.									on the date Printed copid document and signed and s signature m	ed and binger, Joseph, PE indicated here. es of this re not considered sealed and the ust be verified ronic copies.

Joseph Ebinger PE No. 98947 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Road, Chesterfield, MO 63017 Date:

May 14,2025

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	FT-3	Attic	1	1	Job Reference (optional)	T37314108

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Wed May 14 11:18:56 ID:tSu659hETIEe8BffvWoTMrzHGwv-PNhes1w_wUsjJnfJiLhaglJTvLKTWFNXBcXjbozGcgT

Scale = 1:87.7

Plate Offsets (X, Y): [2:0-4-4,0-1-8], [3:0-4-0,0-4-0], [5:0-3-0,0-4-8]

Plate Offsets	(X, Y): [2:0-4-4,0-1-8],	[3:0-4-0,0-4-0], [5:0-	3-0,0-4-8]		-							-	
Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.25		CSI TC	0.42	DEFL Vert(LL)	in -0.10	(loc) 4-5	l/defl >999	L/d 360	PLATES MT20	GRIP 244/190
TCDL	7.0	Lumber DOL	1.25		BC	0.46	Vert(CT)	-0.18	4-5	>670	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.76	Horz(CT)	-0.03	8	n/a	n/a		
BCDL	10.0	Code	FBC2023	3/TPI2014	Matrix-MS		Wind(LL)	0.03	4-5	>999	240	Weight: 148 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x6 SP No.1 2x4 SP No.2 *Excep 2x6 SP No.1 Structural wood shea 6-0-0 oc purlins, exc Rigid ceiling directly bracing. 1 Row at midpt	athing directly applied	7) d or 8) 9) 10)	on the bottor 3-06-00 tall b chord and an Bottom chord chord dead li Refer to girdd Provide mec bearing plate 6 and 47 lb u ATTIC SPAC UNINHABIT/		s where Il fit betw f) and a ed only uss conr (by oth anding 5	a rectangle veen the bott dditional bott to room. 4-5 nections. ers) of truss t 57 lb uplift at j	om om to					
REACTIONS	Max Uplift 6=-57 (LC Max Grav 6=490 (LC	al 8), 8=-47 (LC 8)	LO	AD CASE(S)	Standard								
FORCES TOP CHORD WEBS	(lb) - Max. Comp./Ma (lb) or less except wl 1-6=-738/0, 4-8=0/29 1-5=-313/790, 2-5=-4	nen shown. 94, 3-8=0/294											
NOTES 1) Unbalanc this desig	ed roof live loads have n.	been considered for											
Vasd=10 B=45ft; L MWFRS left and ri	CE 7-22; Vult=130mph 1mph; TCDL=4.2psf; B0 =24ft; eave=4ft; Cat. II; (directional) and C-C Zc ght exposed ;C-C for m for reactions shown; Lu =1.60	CDL=6.0psf; h=25ft; Exp B; Enclosed; one3 zone; cantilever embers and forces 8	ι									on the date Printed copi	hed and binger, Joseph, PE indicated here. es of this
 3) Building E verifying a requireme 4) Provide a 5) This truss 	Designer / Project engin applied roof live load sh ents specific to the use idequate drainage to pro has been designed for load nonconcurrent wi	own covers rain load of this truss compone event water ponding. a 10.0 psf bottom	ent.									signed and signature m	re not considered sealed and the ust be verified tronic copies.
		an any other live load	э.									Josenh Ebinger PE No.	98947

Joseph Ebinger PE No. 98947 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Road, Chesterfield, MO 63017 Date:

May 14,2025

Page: 1

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME		
24-0602-A1	FT-4	Attic	1	1	Job Reference (optional)	T37314109	

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:34:02 ID:eoyPUKOEZtfGjFf?sQLJFHzHGw_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

10-0-14 0-10-11 9-2-3 +---0-10-11 8-3-8 0-10-11 10-0-14 3x6 II 4x5= 4x5= 3x6 II 1 2 34 Ŧ 10-11-10 Bracing 8 5 6 7 2x4 II 6x6= 6x6= 2x4 II 10-0-14 0-10-11 9-2-3 +---8-3-8 0-10-11 0-10-11

Scale = 1:83.1

Plate Offsets (X, Y): [2:0-4-0,0-1-8], [3:0-4-0,0-1-8], [6:0-3-0,0-4-4], [7:0-3-0,0-4-4]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25		тс	0.30	Vert(LL)	-0.09	6-7	>999	360	MT20	244/190
TCDL	7.0	Lumber DOL	1.25		BC	0.42	Vert(CT)	-0.16	6-7	>716	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.59	Horz(CT)	0.00	5	n/a	n/a		
BCDL	10.0	Code	FBC202	3/TPI2014	Matrix-AS		Wind(LL)	0.04	6-7	>999	240	Weight: 137 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	except end verticals. Rigid ceiling directly 1 Row at midpt (size) 5= Mecha Max Uplift 5=-57 (LC Max Grav 5=488 (LC (lb) - Maximum Com Tension	applied. 1-8, 4-5, 2-7, 3-6 inical, 8= Mechanical 8), 8=-57 (LC 8) C 18), 8=488 (LC 18) pression/Maximum	9)	chord dead l Refer to gird Provide mec bearing plate 8 and 57 lb u This truss de structural wo chord and 1/ the bottom c	E SHOWN IS I ABLE.	plied only t truss conr ion (by oth hstanding 5 lat a minim e applied di strock be ap	o room. 6-7 nections. ers) of truss 7 lb uplift at um of 7/16" rectly to the oplied directl	to joint top					

TOP CHORD 1-8=-703/4, 1-2=-52/22, 2-3=-56/31, 3-4=-52/22, 4-5=-703/4 BOT CHORD 7-8=-4/9, 6-7=-31/56, 5-6=-4/9 WEBS 1-7=-309/758, 2-7=-420/663, 3-6=-420/663, 4-6=-309/758

NOTES

- Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Zone3 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding.
 This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

This item has been digitally signed and sealed by Ebinger, Joseph, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Page: 1

Joseph Ebinger PE No. 98947 MITek Inc. DBA MITek USA FL Cert 6634 16023 Swingley Ridge Road, Chesterfield, MO 63017 Date:

May 14,2025

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME		
24-0602-A1	FT-5	Attic	1	1	Job Reference (optional)	T37314110	

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:34:02 ID:?lo9ggsiOsakuE8Uf6YSKVzHGvN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:76.4

Plate Offsets (X, Y): [2:0-4-8,0-1-8], [3:0-4-8,0-1-8], [6:0-3-8,0-4-12], [7:0-3-8,0-4-12]

					-								
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	3-0-0 1.25 1.25 NO FBC2023/T	PI2014	CSI TC BC WB Matrix-MS	0.46 0.68 0.78	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.13 -0.24 0.00 0.06	(loc) 6-7 6-7 5 6-7	l/defl >925 >496 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 125 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x6 SP No.1 2x4 SP No.2 2-0-0 oc purlins (6-0 verticals (Switched from shee Rigid ceiling directly bracing. 1 Row at midpt	etted: Spacing > 2-8-0 applied or 10-0-0 oc 1-8, 4-5, 2-7, 3-6 nical, 8= Mechanical : 8), 8=-85 (LC 8)	or 3- 6) Bi ct 7) R 7) R 8) Pi be 8 9) G or bt 10) A	n the bottom -06-00 tall by hord and any ottom chord hord dead lo efer to girde rovide mech earing plate and 85 lb up rraphical purl r the orientat ottom chord.	E SHOWN IS DI	as where will fit betw s. osf) and a plied only t truss conr on (by oth standing 8 on does no along the	a rectangle veen the bott dditional bott o room. 6-7 nections. ers) of truss 5 lb uplift at bt depict the top and/or	tom tom to joint					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	0	D CASE(S)									
BOT CHORD WEBS	3-4=-94/41, 4-5=-11	10/16 02, 5-6=-5/11 703/1064,											
Vasd=101 B=45ft; L= MWFRS (left and rig MWFRS fr grip DOL= 2) Building D verifying a	CE 7-22; Vult=130mph Imph; TCDL=4.2psf; Bi -24ft; eave=4ft; Cat. II; directional) and C-C Zi pht exposed ;C-C for m or reactions shown; Lu	(3-second gust) CDL=6.0psf; h=25ft; Exp B; Enclosed; one3 zone; cantileve embers and forces 8 mber DOL=1.60 plat ueer responsible for own covers rain load	e ling									on the date Printed copi document a	binger, Joseph, indicated here.

requirements specific to the use of this truss component. Provide adequate drainage to prevent water ponding. 3)

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. signature must be verified on any electronic copies.

Page: 1

Joseph Ebinger PE No. 98947 MiTek Inc. DBA MITek USA FL Cert 6634 16023 Swingley Ridge Road, Chesterfield, MO 63017 Date

May 14,2025

႔ WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - verify design parameters and READ NOTES ON THIS AND INCLOSED INTERNETING TO THE REFERENCE FOR UNITY TO THE INSTANCE OF THE ADDRESS OF THE ADDRESS

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME		
24-0602-A1	FT-6	Attic	1	1	Job Reference (optional)	T37314111	

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:34:02 ID:yVVBooWyv8FDIOhgFk?uzhzHGuY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:66.3

Plate Offsets (X, Y): [2:0-4-8,0-1-8], [3:0-4-8,0-1-8], [6:0-3-8,0-4-12], [7:0-3-8,0-4-12]

chord live load nonconcurrent with any other live loads.

		1			· · · · · · · · · · · · · · · · · · ·								
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	3-0-0 1.25 1.25 NO FBC202	23/TPI2014	CSI TC BC WB Matrix-MS	0.36 0.64 0.63	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.11 -0.21 0.00 0.05	(loc) 6-7 6-7 5 6-7	l/defl >999 >552 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 107 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD WEBS	2x6 SP No.1 2x4 SP No.2 2-0-0 oc purlins (6-0 verticals (Switched from shee Rigid ceiling directly bracing. 1 Row at midpt	eted: Spacing > 2-8-0 applied or 10-0-0 oc 1-8, 4-5 nical, 8= Mechanical 8), 8=-85 (LC 8) 2 18), 8=731 (LC 18) pression/Maximum 129/56, 2-3=-140/78, 171/27 40, 5-6=-7/15 -733/1097,	7)). 8) 9) 10 L 0	on the bottor 3-06-00 tall b chord and ar Bottom chord chord dead l Refer to gird Provide mec bearing plate 8 and 85 lb u Graphical pu or the orienta bottom chord	CE SHOWN IS DE ABLE.	s where ill fit betv sf) and a ed only t uss conr n (by oth anding 8 n does no along the	a rectangle veen the bott dditional bott to room. 6-7 nections. ers) of truss 55 lb uplift at bt depict the e top and/or	tom tom to joint					
Vasd=101 B=45ft; L= MWFRS (i left and rig MWFRS fi grip DOL= 2) Building D verifying a requireme 3) Provide ad	CE 7-22; Vult=130mph mph; TCDL=4.2psf; Bi =24ft; eave=4ft; Cat. II; directional) and C-C Zo pht exposed ;C-C for m or reactions shown; Lu =1.60 Designer / Project engin upplied roof live load sh ints specific to the use dequate drainage to pr has been designed for	CDL=6.0psf; h=25ft; Exp B; Enclosed; one3 zone; cantilevel embers and forces 8 mber DOL=1.60 plat heer responsible for yown covers rain load of this truss compon- event water ponding.	e ling ent.									on the date Printed copie document and signed and s signature m	ed and binger, Joseph, PE indicated here.

Joseph Ebinger PE No. 98947 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Road, Chesterfield, MO 63017

May 14,2025

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME		
24-0602-A1	FT-7	Attic	1	1	Job Reference (optional)	T37314112	

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:34:02 ID:yJ5TVE7xupg_ND5UlyQrYRzHGtl-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:59.6

Plate Offsets (X, Y): [2:0-4-0,0-1-8], [3:0-4-0,0-1-8], [6:0-3-0,0-4-8], [7:0-3-0,0-4-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.39	Vert(LL)	-0.07	6-7	>999	360	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.37	Vert(CT)	-0.13	6-7	>920	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.27	Horz(CT)	0.00	5	n/a	n/a		
BCDL	10.0	Code	FBC2023/TPI2014	Matrix-AS		Wind(LL)	0.03	6-7	>999	240	Weight: 95 lb	FT = 20%
LUMBER 7) Refer to girder(s) for truss to truss connections.												

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 2x4 SP No.2 WEBS BRACING TOP CHORD Structural wood sheathing directly applied, except end verticals. BOT CHORD Rigid ceiling directly applied. REACTIONS 5= Mechanical, 8= Mechanical (size) Max Uplift 5=-57 (LC 8), 8=-57 (LC 8) Max Grav 5=488 (LC 18), 8=488 (LC 18) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-8=-792/17, 1-2=-110/47, 2-3=-119/65, 3-4=-110/47, 4-5=-792/17

WEBS NOTES

BOT CHORD

Wind: ASCE 7-22: Vult=130mph (3-second aust) 1) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Zone3 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

4-6=-379/903

7-8=-9/18, 6-7=-65/119, 5-6=-9/18

1-7=-379/903, 2-7=-471/718, 3-6=-471/718,

- Building Designer / Project engineer responsible for 2) verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 6) Bottom chord live load (20.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 6-7

- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 57 lb uplift at joint 8 and 57 lb uplift at joint 5.
- This truss design requires that a minimum of 7/16" 9) structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 10) ATTIC SPACE SHOWN IS DESIGNED AS UNINHABITABLE.
- LOAD CASE(S) Standard

This item has been digitally signed and sealed by Ebinger, Joseph, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joseph Ebinger PE No. 98947 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Road, Chesterfield, MC rfield, MO 63017

May 14,2025

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	FT-8	Attic	1	1	Job Reference (optional)	T37314113

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:34:03 ID:aJKjWgVBsjOpyG_A1heHw3zHGUk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:53.2

Plate Offsets (X, Y): [2:0-4-4,0-1-8], [3:0-3-0,0-4-8], [6:0-4-8,0-1-8], [7:0-3-0,0-4-8]

			-	-									
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES FBC202	23/TPI2014	CSI TC BC WB Matrix-AS	0.25 0.33 0.37	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.06 -0.10 0.00 0.02	(loc) 6-7 6-7 5 6-7	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 83 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD WEBS	2x6 SP No.1 2x4 SP No.2 Structural wood she except end verticals Rigid ceiling directly (size) 5= Mecha Max Horiz 8=-145 (L Max Uplift 5=-91 (LC Max Grav 5=507 (LC (Ib) - Maximum Com Tension 1-8=-866/169, 1-2=- 3-4=-73/81, 4-5=-72	applied. anical, 8= Mechanica C 10) C 9), 8=-90 (LC 8) C 18), 8=512 (LC 19 apression/Maximum 170/84, 2-3=-179/10 1/336 195/203, 5-6=-199/1	9) al 10) LC)2, 90	chord dead l Refer to gird Provide mec bearing plate 8 and 91 lb u This truss de structural wo chord and 1/ the bottom c	necked for L/360	blied only t truss conr on (by oth standing 9 at a minim applied d rock be a	to room. 6-7 nections. ers) of truss 00 lb uplift at um of 7/16" irectly to the pplied direct	to joint top					
Vasd=101 B=45ft; L= MWFRS (left and rig exposed;0 reactions DOL=1.60	CE 7-22; Vult=130mph Imph; TCDL=4.2psf; B =24ft; eave=4ft; Cat. II; (directional) and C-C Z ght exposed ; end verti C-C for members and f shown; Lumber DOL= 0 Designer / Project engin	CDL=6.0psf; h=25ft; Exp B; Enclosed; one3 zone; cantileve cal left and right orces & MWFRS for 1.60 plate grip	er										hed and binger, Joseph, indicated here.

- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding. 3) 4) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 5) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

document are not considered signed and sealed and the signature must be verified on any electronic copies.

Page: 1

Joseph Ebinger PE No. 98947 MiTek Inc. DBA MITek USA FL Cert 6634 16023 Swingley Ridge Road, Chesterfield, MO 63017

May 14,2025

🛕 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - verify design parameters and READ NOTES ON THIS AND INCLOSED INTERNETING TO THE REFERENCE FOR UNITY TO THE INSTANCE OF THE ADDRESS OF THE ADDRESS

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	FT-9	Flat Girder	1	1	Job Reference (optional)	T37314114

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:34:03 ID:8zJUxdg9IeLbH817tujOswzHGt2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-0-7	10-0-14
5-0-7	5-0-7

Scale =	1:42.7
---------	--------

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25		тс	0.35	Vert(LL)	-0.02	5-6	>999	360	MT20	244/190
TCDL	7.0	Lumber DOL	1.25		BC	0.26	Vert(CT)	-0.04	5-6	>999	240		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.14	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	FBC2023	/TPI2014	Matrix-MS		Wind(LL)	0.01	5	>999	240	Weight: 60 lb	FT = 20%
	2x4 SP No.1 2x4 SP No.1 2x4 SP No.2 Structural wood she 6-0-0 oc purlins, exi Rigid ceiling directly bracing. (size) 4= Mecha Max Uplift 4=-132 (L Max Grav 4=670 (LC	cept end verticals. applied or 10-0-0 oc anical, 6= Mechanica .C 4), 6=-118 (LC 4)	9) LOA d or 1)	per NDS guid In the LOAD of the truss a AD CASE(S) Dead + Roo Plate Increa Uniform Loa Vert: 1-3: Concentrativ Vert: 4=- 9=-58 (F)	CASE(S) section renoted as fro Standard of Live (balance ase=1.25 ads (lb/ft) =-54, 4-6=-20 ed Loads (lb) 43 (F), 3=-81 (F) 0, 10=-58 (F), 1	on, loads ag nt (F) or ba d): Lumber F), 7=-64 (F	pplied to the ck (B). Increase=1.), 8=-64 (F),	face .25,					
FORCES	(lb) - Maximum Com		(F), 14=-	35 (F)									
TOP CHORD BOT CHORD WEBS	Tension 1-6=-499/151, 1-2=- 3-4=-565/181 5-6=-6/26, 4-5=-5/23 1-5=-121/605, 2-5=-	3	,										

NOTES

- Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 118 lb uplift at joint 6 and 132 lb uplift at joint 4.

This item has been digitally signed and sealed by Ebinger, Joseph, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Page: 1

Joseph Ebinger PE No. 98947 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Road, Chesterfield, MO 63017

May 14,2025

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	Т-3	Scissor	1	1	Job Reference (optional)	T37314115

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Wed May 14 11:32:34 ID:wNmBJ_thAqs7iJtnfePbQgyHxcQ-Sl6tXkq4HpwfSUBXd8MPqFBlp5ZVAL5xHth?INzGcTh

	0-6-0			17-4-0	
	11	8-8-0	16-10-0	1.1	
		8-2-0	8-2-0		
0 1 1 70 0	0-6-0			0-6-0	
Scale = 1:70.3					
Plate Offsets (X, Y): [2:0-0-6.0-2-0]. [5:0-1-1.0-2-4].	[11:0-2-8.0-2-4], [14:0-0-6.0-2-0]				

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	тс	0.21	Vert(LL)	-0.07	17-18	>999	360	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.29	Vert(CT)	-0.14	17-18	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.24	Horz(CT)	0.12	14	n/a	n/a		
BCDL	10.0	Code	FBC2023/TPI2014	Matrix-AS		Wind(LL)	0.04	17-18	>999	240	Weight: 98 lb	FT = 20%
LUMBER	4 SP No.1	Code	2) Wind: ASCI	E 7-22; Vult=130		cond gust)		17-10	2000	240	Weight. 30 ib	

LUMBER	
TOP CHORD	2x4 SP No.1
BOT CHORD	2x4 SP No.1
WEBS	2x4 SP No.2
OTHERS	2x4 SP No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied.
BOT CHORD	Rigid ceiling directly applied.
REACTIONS	(lb/size) 2=726/0-8-0, 14=714/0-6-0
	Max Horiz 2=-127 (LC 10)
	Max Uplift 2=-122 (LC 12), 14=-128 (LC 12)
FORCES	(lb) - Max. Comp./Max. Ten All forces 250
	(lb) or less except when shown.
TOP CHORD	2-3=-1604/167, 3-4=-1663/185,
	4-5=-1642/185, 5-6=-1187/78, 6-7=-1152/106,
	7-8=-1119/112, 8-9=-1119/102,
	9-10=-1151/85, 10-11=-1189/58,
	11-12=-1672/210, 12-13=-1684/207,
	13-14=-1630/190
BOT CHORD	2-20=-82/1457, 19-20=-72/1475,
	18-19=-86/1477, 17-18=-127/1505,
	16-17=-114/1508, 14-16=-123/1482
WEBS	8-18=-15/1043, 18-24=-488/203,
	24-25=-487/202, 25-26=-489/205,
	11-26=-496/201, 5-23=-465/198,
	22-23=-459/203, 21-22=-457/199,
	18-21=-458/200
NOTES	

 Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-22; Vult=130mph (3-second gust)
 Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft;
 B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed;
 MWFRS (directional) and C-C Zone3 -1-6-0 to 1-4-15,
 Zone1 1-4-15 to 8-8-0, Zone2 8-8-0 to 13-1-6, Zone1 13-1-6 to 18-10-0 zone; cantilever left and right
 exposed ; end vertical left and right exposed; C-C for
 members and forces & MWFRS for reactions shown;
 Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) All plates are MT20 plates unless otherwise indicated.
- 6) All plates are 1.5x4 (||) MT20 unless otherwise
- indicated.
- 7) Gable studs spaced at 1-4-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearing at joint(s) 2, 14 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 122 lb uplift at joint 2 and 128 lb uplift at joint 14.
- 12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- LOAD CASE(S) Standard

This item has been digitally signed and sealed by Ebinger, Joseph, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Page: 1

Joseph Ebinger PE No. 98947 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Road, Chesterfield, MO 63017 Data:

May 14,2025

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	T-4	Scissor	1	1	Job Reference (optional)	T37314116

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:34:07 ID:Mcizj6M7InxKqTp9eDvSa4yHz42-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	0-6-0	17-4-0
	8-8-0	16-10-0
	8-2-0	8-2-0
Scale = 1.72 7	0-6-0	0-6-0

Plate Offsets (X, Y): [2:0-1-9,0-0-9], [6:0-1-9,0-0-9], [8:0-4-0,0-2-12]

	(X, Y): [2:0-1-9,0-0-9],	[0.0 1 0,0 0 0], [0.0	+ 0,0 2 1	<u>-</u>]									-	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.25		тс	0.14	Vert(LL)	-0.11	8-11	>999	360	MT20	244/190	
TCDL	7.0	Lumber DOL	1.25		BC	0.44	Vert(CT)	-0.22	8-14	>935	240			
BCLL	0.0*	Rep Stress Incr	YES		WB	0.22	Horz(CT)	0.11	6	n/a	n/a			
BCDL	10.0	Code	FBC202	23/TPI2014	Matrix-AS		Wind(LL)	0.04	8	>999	240	Weight: 81 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	Max Horiz 2=133 (LC Max Uplift 2=-122 (L Max Grav 2=723 (LC (Ib) - Maximum Com	applied. 5=0-6-0 C 11) C 12), 6=-115 (LC 1 C 1), 6=713 (LC 1)	8)	using ANSI/ designer sho Provide mec bearing plate 2 and 115 lb This truss de structural wo		in formula y of beari n (by oth tanding 1 a minim applied d	a. Building ng surface. ers) of truss i 22 lb uplift a um of 7/16" rectly to the	to t joint top						
TOP CHORD	Tension 1-2=0/45, 2-3=-1520		3,											
BOT CHORD	4-5=-1173/95, 5-6=- 2-8=-126/1305, 6-8=													
WEBS	4-8=0/977, 5-8=-323													
NOTES														
 Unbalance this design 	ed roof live loads have	been considered for												
 Wind: AŠ(Vasd=101 B=45ft; L= MWFRS (Zone1 1-6 13-0-15 to exposed ; members Lumber D Building D 	CE 7-22; Vult=130mph mph; TCDL=4.2psf; Bu =24ft; eave=4ft; Cat. II; directional) and C-C Zu =0 to 8-8-0, Zone2 8-8 b 18-8-0 zone; cantileve end vertical left and rig and forces & MWFRS OL=1.60 plate grip DO Designer / Project engin pplied roof live load sh	CDL=6.0psf; h=25ft; Exp B; Enclosed; one3 -1-6-0 to 1-6-0, or la-0-15, Zone1 er left and right ght exposed;C-C for for reactions shown; L=1.60 weer responsible for										on the date Printed copi document a	hed and binger, Joseph indicated here	red

requirements specific to the use of this truss component. 4) This truss has been designed for a 10.0 psf bottom

chord live load nonconcurrent with any other live loads.
* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

Joseph Ebinger PE No. 98947 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Road, Chesterfield, MO 63017

signature must be verified

on any electronic copies.

May 14,2025

Page: 1

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	Т-5	Scissor	4	1	Job Reference (optional)	T37314117

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:34:08 ID:jaVsmqQF6JZcxEh7RmVdH7yHz3z-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	0-6-0			17-4-0
	1.1	8-8-0	16-10-0	1.1
		8-2-0	8-2-0	
	0-6-0			0-6-0
cale = 1:56.4				

Plate Offsets (X, Y): [2:0-1-9,0-0-9], [6:0-1-9,0-0-9], [7:0-4-0,0-2-12]

	, , , , , , ,	[6.0-1-9,0-0-9], [7.0	,,	1		-						
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.15	Vert(LL)	-0.11	7-10	>999	360	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.44	Vert(CT)	-0.22	7-10	>925	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.22	Horz(CT)	0.11	6	n/a	n/a		
BCDL	10.0	Code	FBC2023/TPI2014	Matrix-AS		Wind(LL)	0.04	7	>999	240	Weight: 78 lb	FT = 20%
BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS (s M M M	2x4 SP No.1 2x4 SP No.1 2x4 SP No.2 Structural wood shee Rigid ceiling directly size) 2=0-6-0, 6 lax Horiz 2=129 (LC lax Uplift 2=-125 (L) lax Grav 2=726 (LC (lb) - Maximum Com	applied. 5=0-6-0 \$ 11) C 12), 6=-67 (LC 12 \$ 1), 6=638 (LC 1)	using ANS designer s 7) Provide m bearing pl 6 and 125 8) This truss structural chord and the botton		ain formul ty of bear on (by oth standing 6 tt a minim applied d	a. Building ng surface. ers) of truss 7 lb uplift at um of 7/16" irectly to the	to joint top					
	Tension 1-2=0/45, 2-3=-1529		3.									
	4-5=-1184/170, 5-6=	,	- ,									
	2-7=-228/1306, 6-7=											
	4-7=-43/991, 5-7=-3	39/231, 3-7=-318/22	:1									
 this design. Wind: ASCE Vasd=101m B=45ft; L=24 MWFRS (dir Zone1 1-6-0 13-0-15 to 1 exposed ; er 	roof live loads have 7-22; Vult=130mph ph; TCDL=4.2psf; B(4ft; eave=4ft; Cat. II; ectional) and C-C Z(to 8-8-0, Zone2 8-8; 7-4-0 zone; cantileve d vertical left and rig d forces & MWFRS	(3-second gust) CDL=6.0psf; h=25ft; Exp B; Enclosed; one3 -1-6-0 to 1-6-0. 0 to 13-0-15, Zone1 r left and right ght exposed;C-C for	i									ned and binger, Joseph, P indicated here.

Lumber DOL=1.60 plate grip DOL=1.60 Building Designer / Project engineer responsible for 3) verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

- This truss has been designed for a 10.0 psf bottom 4) chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf
- 5) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joseph Ebinger PE No. 98947 MiTek Inc. DBA MITek USA FL Cert 6634 16023 Swingley Ridge Road, Chesterfield, MO 63017

May 14,2025

🛕 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - verify design parameters and READ NOTES ON THIS AND INCLOSED INTERNETING TO THE REFERENCE FOR UNITY TO THE INSTANCE OF THE ADDRESS OF THE ADDRESS

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	T-6	Half Hip	1	1	Job Reference (optional)	T37314118

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:34:08 ID:3Kz2bTdwOxHN3ZjpG8D?rIyHz_Y-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:61.7

Plate Offsets (X, Y): [2:0-1-1,0-0-9], [3:0-5-8,0-1-12], [6:0-2-5,0-2-0], [8:0-3-0,0-1-8], [9:0-2-8,0-3-0]

end vertical left exposed;C-C for members and forces &

MWFRS for reactions shown; Lumber DOL=1.60 plate

grip DOL=1.60

	(∧, 1). [2.0-1-1,0-0-9],	[3:0-5-8,0-1-12], [6:	.0-2-5,0-2-	0], [8.0-3-0,0-1	-0], [9.0-2-0,0-3-0	<u></u>							
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES FBC20	23/TPI2014 Building Des	CSI TC BC WB Matrix-MS	0.35 0.54 0.52	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.19 -0.39 0.08 0.05	(loc) 8-9 8-9 8 10-13	l/defl >999 >535 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 105 lb	GRIP 244/190 FT = 20%
TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.1 2x4 SP No.2	cept end verticals.	4	verifying app requirement Provide ade This truss ha chord live lo * This truss on the botto 3-06-00 tall	blied roof live load s specific to the u quate drainage to as been designed ad nonconcurrent has been designe m chord in all aree by 2-00-00 wide w	I shown c use of this prevent for a 10.0 t with any ed for a liv as where vill fit betv	overs rain loa truss compo water pondin) psf bottom other live loa e load of 20. a rectangle	ading onent. Ig. ads. Opsf					
BOT CHORD WEBS REACTIONS FORCES TOP CHORD	Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-6-0, 8 Max Horiz 2=226 (LC Max Uplift 2=-124 (LI Max Grav 2=735 (LC (lb) - Maximum Com Tension	applied or 8-9-6 oc 6-8 =-0-6-0 C 12), 8=-158 (LC 9 C 12), 8=641 (LC 1) pression/Maximum //506, 3-10=0/131, /0, 5-6=-61/19,	7 8 9) 9	 Bearing at journament Bearing ANSI/ designer show Provide media 		ers parall ain formula ty of bear on (by oth standing 1 on does no	a. Building ng surface. ers) of truss 24 lb uplift a ot depict the	to t joint					
BOT CHORD	8-9=-172/522		140									This item ha	is heen
this desig 2) Wind: AS Vasd=101 B=45ft; L= MWFRS (Zone1 1-6	3-6=-1153/436, 3-9= 6-8=-751/251 ed roof live loads have n. CE 7-22; Vult=130mph Imph; TCDL=4.2psf; BC =24ft; eave=4ft; Cat. II; (directional) and C-C Zc 6-0 to 7-1-12, Zone3 5-6 17-2-4 zone; cantilever	been considered fo (3-second gust) CDL=6.0psf; h=25ft; Exp B; Enclosed; one3 -1-6-0 to 1-6-0 6-0 to 9-8-15, Zone:	r ; , 1									digitally sign sealed by E on the date Printed copi document a signed and signature m	hed and binger, Joseph, PE indicated here.

Joseph Ebinger PE. No. 98947 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Road, Chesterfield, MO 63017 Date:

May 14,2025

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSi/TPi1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org)
and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	T-7	Half Hip	1	1	Job Reference (optional)	T37314119

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:34:08 ID:bPx5yxpydrl6_0xuCVWIUgyHz_I-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:71.3

Plate Offsets (X, Y): [2:0-1-5,0-0-9], [3:0-5-8,0-1-0], [8:0-2-12,0-1-8], [9:0-2-8,0-3-0]

and forces & MWFRS for reactions shown; Lumber

DOL=1.60 plate grip DOL=1.60

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES FBC2023	/TPI2014	CSI TC BC WB Matrix-MS	0.36 0.53 0.63	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.19 -0.39 0.08 0.05	(loc) 8-9 8-9 8 10-13	l/defl >999 >524 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 112 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORE BOT CHORE BOT CHORE BOT CHORE WEBS REACTIONS FORCES TOP CHORE BOT CHORE	 2x4 SP No.1 2x4 SP No.1 2x4 SP No.1 2x4 SP No.2 Structural wood sheat 4-8-11 oc purlins, eie Except: 6-0-0 oc bracing: 3-5 Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-6-0, 8 Max Horiz 2=264 (LC Max Uplift 2=-96 (LC Max Grav 2=730 (LC (lb) - Maximum Com Tension 1-2=0/45, 2-3=-1514 3-5=-182/166, 4-5=0 6-7=-14/0, 7-8=-1150 	athing directly applie xcept end verticals. 5 applied or 9-5-7 oc 7-8, 6-8 3=0-6-0 C 12) 12), 8=-166 (LC 9) C 1), 8=639 (LC 1) pression/Maximum //413, 3-10=0/128, //0, 5-6=-43/37, /59	3) 4) 5) ed or 6) 7) 8) 9)	Building Des verifying app requirements Provide adec This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and ar Bearing at jo using ANSI/1 designer sho Provide mect bearing plate 2 and 166 lb Graphical pu	gner / Project eng lied roof live load is specific to the us uate drainage to s been designed d nonconcurrent as been designed n chord in all area y 2-00-00 wide w y other members nt(s) 2, 8 conside PI 1 angle to grai uld verify capacity nanical connection capable of withst uplift at joint 8. rlin representation tion of the purlin a	shown c se of this prevent 1 for a 10.0 with any d for a liv is where ill fit betv rs parall in formuli y of bear n (by oth tanding §	sponsible for overs rain loa truss compo water pondin 0 psf bottom other live loa e load of 20.1 a rectangle ween the bott el to grain va a. Building ng surface. ers) of truss i 6 lb uplift at j ot depict the s	ading nent. g. ads. Opsf om lue to joint					
WEBS NOTES 1) Unbaland this desig 2) Wind: AS Vasd=10 B=45ft; L MWFRS Zone1 1- 10-2-15 t	8-9=-145/419 3-6=-1109/326, 3-9= 6-9=-294/1031, 6-8= ced roof live loads have	293/189, 670/232 been considered fo (3-second gust) CDL=6.0psf; h=25ft; Exp B; Enclosed; one3 -1-6-0 to 10-2-15, Zone er left and right	, 21									on the date Printed copi document a signed and signature m	ed and binger, Joseph, PE indicated here.

Joseph Ebinger PE No. 98947 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Road, Chesterfield, MO 63017 Date:

May 14,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MI	TEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon paramet	
a truss system. Before use, the building designer must verify the applicability of design para	ameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or cho	d members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and pro	
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS	/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org)
and BCSI Building Component Safety Information available from the Structural Building	ng Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	T-8	Half Hip Girder	1	2	Job Reference (optional)	T37314120

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:34:09 ID:9k52hoq?AJrgg?aIgOXVw7yHxqh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:71.1

Plate Offsets (X, Y): [3:0-5-8,0-2-8]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 NO FBC202	3/TPI2014	CSI TC BC WB Matrix-MS	0.70 0.43 0.81	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.08 -0.14 0.03 0.06	(loc) 10-12 10-12 8 10-12	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES M18AHS MT20 Weight: 284 lb	GRIP 186/179 244/190 FT = 20%
(0.131"x3' Top chord staggered Bottom ch staggered Web conn 2) All loads a except if n	2x6 SP No.1 2x4 SP No.2 Structural wood she 4-11-7 oc purlins, e Except: 6-0-0 oc bracing: 3-5 Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-6-0, 8 Max Horiz 2=360 (LC Max Uplift 2=-614 (L Max Grav 2=3678 (L (Ib) - Maximum Com Tension 1-2=0/45, 2-3=-6361 3-5=-176/121, 4-5=0 6-7=-108/96, 7-8=-1 2-10=-1028/5382, 9- 8-9=-380/1609 3-6=-2087/380, 3-9= 6-9=-620/3764, 6-8= s to be connected toget ') nails as follows: at 0-9-0 oc. wetced as follows: 2x4 - are considered equally toted as front (F) or ba	5 applied or 10-0-0 oc 7-8, 6-8 3=0-4-0 2 25) C 8), 8=-580 (LC 5) C 13), 8=2902 (LC 1 pression/Maximum /1011, 3-10=-788/52: /0, 5-6=-77/76, 16/60 10=-1028/5349, -3133/622 ther with 10d s: 2x4 - 2 rows ows: 2x6 - 2 rows 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LOA	4) d or 5) 6) 7) 8) 3) 9) 57, 10 11 12 LC 1)	this design. Wind: ASCE Vasd=101mp B=45ft; L=24 MWFRS (dirr end vertical le plate grip DC Building Desi verifying app requirements Provide adeo All plates are This truss ha chord live loa * This truss ha on the bottom 3-06-00 tall bb chord and an 0) Provide mecl bearing plate 2 and 580 lb 1) Use MiTek T 8-16d nails ir end to conne CAL CASE(S) Dead + Roo Plate Increa Uniform Loa Vert: 1-13	igner / Project engi lied roof live load s specific to the use juate drainage to p MT20 plates unlee s been designed for d nonconcurrent v as been designed n chord in all areas y 2-00-00 wide wil y other members, nanical connection capable of withsta uplift at joint 8. HDH26-2 (With 22 to Truss) or equiva ct truss(es) to fron les where hanger i Standard of Live (balanced): ise=1.25 ads (lb/ft) 3=-54, 3-13=-14, 4 ed Loads (lb)	h (3-sec 3CDL=6 ; Exp B r left an ed; Lun ineer re shown c e of this prevent v ss other or a 10.0 vith any for a liv s where l fit betw with BC (by oth anding 6 -16d na alent at t face o is in cor	cond gust) 0.0psf; h=25ft; ; Enclosed; d right exposed; ber DOL=1.6 sponsible for overs rain load truss compor water ponding wise indicate 0 psf bottom other live load e load of 20.0 a rectangle veen the botto DL = 10.0psf bottom the botto crts) of truss t crt lib uplift at ils into Girden 7-1-9 from th f bottom chor hact with lum	ed; 50 ading nent. g. d. ds. Dpsf o s. joint r & e left d. ber. 25,				on the date i Printed copie document and signed and s signature mu on any elect	ed and binger, Joseph, PE indicated here. es of this re not considered sealed and the ust be verified ronic copies.
provided t	section. Ply to ply conr o distribute only loads nerwise indicated.											Date:	78947 SA FL Cert 6634 ad, Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com) May 14,2025

Page: 1

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	Т-9	Roof Special	2	1	Job Reference (optional)	T37314121

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:34:09 ID:siqSqHCitH3?4GG1fTRjxJyHyoA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:76.7

Plate Offsets (X, Y): [2:0-5-8,0-0-10], [4:0-1-12,0-1-8], [8:0-2-0,0-1-8], [12:0-2-4,0-2-0]

		i			-							i	
Loading TCLL (roof) TCDL	(psf) 20.0 7.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.25 1.25		CSI TC BC	0.27 0.33	DEFL Vert(LL) Vert(CT)	in -0.07 -0.15	(loc) 16-19 16-19	l/defl >999 >582	L/d 360 240	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0* 10.0	Rep Stress Incr Code	YES FBC202	23/TPI2014	WB Matrix-AS	0.08	Horz(CT) Wind(LL)	0.01 -0.01	10 16-19	n/a >999	n/a 240	Weight: 93 lb	FT = 20%
LUMBER TOP CHORE BOT CHORE WEBS BRACING TOP CHORE BOT CHORE REACTIONS	 2x4 SP No.1 2x4 SP No.2 Structural wood she Rigid ceiling directly (size) 2=0-6-0, 1 16=0-3-8 Max Horiz 2=-136 (L Max Uplift 2=-135 (L 10=-3 (LC Max Grav 2=352 (LC 	8=0-6-0, 10=0-3-8, C 10) C 12), 8=-145 (LC 1: C 12) C 23), 8=326 (LC 1), _C 1), 16=466 (LC 1);	6) 2), 7)	verifying app requirement This truss hic chord live lo * This truss on the botto 3-06-00 tall chord and a Provide mee bearing plat 2, 3 lb uplift This truss di structural we	signer / Project er oblied roof live load s specific to the u as been designed ad nonconcurrent has been designed m chord in all are by 2-00-00 wide v ny other members shanical connectic e capable of withs at joint 10 and 14 ssign requires tha bod sheathing be (2" gypsum sheet thord	d shown c use of this I for a 10.0 t with any ed for a liv as where will fit betv s. on (by oth standing 1 5 lb uplift at a minim applied d	overs rain loa truss compo) ps bottom other live loa e load of 20. a rectangle veen the bott ers) of truss 59 lb uplift a at joint 8. um of 7/16" irectly to the	ading onent. ads. Opsf com to t joint top					
Tension TOP CHORD 1-2=0/45, 2-3=-251/208, 3-4=-141/198, 4-5=-130/95, 5-6=-124/83, 6-7=-123/193, 7-8=-209/196, 8-9=0/45				DAD CASE(S)									
BOT CHORD 2-16=-78/179, 15-16=0/0, 13-14=-6/3, 12-13=-37/160, 10-11=0/0, 8-10=-50/153													
 WEBS 14-16=-271/4, 4-14=-256/5, 10-12=-214/51, 6-12=-164/102, 5-13=-62/67, 4-13=-37/180, 7-10=-184/72, 3-16=-221/97 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; 		4/51, 80,									on the date Printed copi	hed and binger, Joseph, PE indicated here.	

B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Zone3 -1-6-0 to 1-6-0, Zone1 1-6-0 to 8-10-0, Zone2 8-10-0 to 13-0-15, Zone1 13-0-15 to 19-2-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

႔ WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - verify design parameters and READ NOTES ON THIS AND INCLOSED INTERNETING TO THE REFERENCE FOR UNITY TO THE INSTANCE OF THE ADDRESS OF THE ADDRESS

document are not considered signed and sealed and the signature must be verified on any electronic copies.

Page: 1

Joseph Ebinger PE No. 98947 MiTek Inc. DBA MITek USA FL Cert 6634 16023 Swingley Ridge Road, Chesterfield, MO 63017

May 14,2025

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	T-10	Roof Special	2	1	Job Reference (optional)	T37314122

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:34:09 ID:IsqOBHViUI3CvU0GNHyVgHyHyuF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:57.8

Plate Offsets (X, Y): [4:0-2-4,0-1-4], [8:0-4-2,0-6-0]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES FBC202	23/TPI2014	CSI TC BC WB Matrix-AS	0.16 0.29 0.43	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.08 -0.16 0.13 0.05	(loc) 9 7-8 6 9	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 101 lb	GRIP 244/190 FT = 20%
	2x4 SP No.1 2x4 SP No.1 2x4 SP No.2 Structural wood she Rigid ceiling directly (size) 1= Mecha Max Horiz 1=-70 (LC Max Grav 1=656 (LC	applied. nical, 6= Mechanica C 10) 12), 6=-70 (LC 12)		on the botto 3-06-00 tall chord and a Refer to girc Provide mec bearing plat 1 and 70 lb This truss di structural we	has been designi m chord in all are oy 2-00-00 wide ny other member ler(s) for truss to chanical connecti e capable of with uplift at joint 6. ssign requires that bod sheathing be 2" gypsum sheet	eas where will fit betw s. truss conr on (by oth standing 7 at a minim applied d	a rectangle veen the bott nections. ers) of truss '0 lb uplift at um of 7/16" irectly to the	tom to joint top					
FORCES	(Ib) - Maximum Compression/Maximum Tension			DAD CASE(S)									
TOP CHORD	1-2=-984/198, 2-3=- 3-4=-2138/315, 4-5=		189										
BOT CHORD													
WEBS													
NOTES	, .												
this design 2) Wind: ASC Vasd=101 B=45ft; L= MWFRS (Zone1 3-0	ed roof live loads have n. CE 7-22; Vult=130mph mph; TCDL=4.2psf; Br e24ft; eave=4ft; Cat. II; directional) and C-C Zr lot 0 to 8-10-0, Zone2 8- 17-8-0 zone; cantileve	(3-second gust) CDL=6.0psf; h=25ft; Exp B; Enclosed; one3 0-0-0 to 3-0-0, 10-0 to 12-11-4, Zor											ed and pinger, Joseph, indicated here.

exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Building Designer / Project engineer responsible for 3)

- verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component. This truss has been designed for a 10.0 psf bottom 4)
- chord live load nonconcurrent with any other live loads.

document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joseph Ebinger PE No. 98947 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Road, Chesterfield, MO 63017

May 14,2025

🛕 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - verify design parameters and READ NOTES ON THIS AND INCLOSED INTERNETING TO THE REFERENCE FOR UNITY TO THE INSTANCE OF THE ADDRESS OF THE ADDRESS
Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	T-11	Common	1	1	Job Reference (optional)	T37314123

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:34:09 ID:lsqOBHViUI3CvU0GNHyVgHyHyuF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f ____

Page: 1

	8-10-0	17-8-0	1
Scale = 1:51	8-10-0	8-10-0	
Scale = 1.51			

	λ, Τ). [1.0-5-0,0-0-0],	[5.0-5-0,0-0-0]										
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES FBC2023/TPI20	CSI TC BC WB 4 Matrix-AS	0.25 0.49 0.13	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.09 -0.18 0.02 0.03	(loc) 6-9 6-9 5 6-12	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 82 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=1011. B=45ft; L=: MWFRS (c Zone1 3-0 13-2-2 to 1 end verticz forces & M DOL=1.60 3) Building D verifying al requiremet 4) This truss i chord live I	2x4 SP No.1 2x4 SP No.1 2x4 SP No.2 Structural wood she Rigid ceiling directly (size) 1= Mecha Max Horiz 1=-116 (L Max Uplift 1=-71 (LC Max Grav 1=654 (LC (lb) - Maximum Com Tension 1-2=-902/214, 2-3=- 4-5=-902/214 1-6=-118/730, 5-6=- 3-6=-70/509, 4-6=-2 d roof live loads have	athing directly applie applied. anical, 5= Mechanica C 10) C 12), 5=-71 (LC 12) C 1), 5=654 (LC 1) apression/Maximum 699/183, 3-4=-699/1 113/730 65/160, 2-6=-265/16 been considered for (3-second gust) CDL=6.0psf; h=25ft; Exp B; Enclosed; one3 0-0-0 to 3-0-0, 10-0 to 13-2-2, Zone r left and right expos d;C-C for members hown; Lumber neer responsible for nown covers rain loar of this truss compon r a 10.0 psf bottom th any other live load	6) Refer t 7) Provid bearing 1 and 8) This tr ed. structu chord the bold al LOAD CAS 183, 30 r e1 ed ; and ding hent. ds.	14 Matrix-AS o girder(s) for truss to a mechanical connection of the capable of withs of the capable of withs iss design requires that at joint 5. 11 buplift at joint 5. 12 buplift at joint 5. 13 buplift at joint 5. 14 buplift at joint 5. 15 buplift at joint 5. 16 buplift at joint 5. 17 buplift at joint 5. 18 buplift at joint 5. 19 buplift at joint 5. 10 buplift at joint 5. 10 buplift at joint 5. 11 buplift at joint 5. 12 gypsum sheet 10 chord. 25 Standard	on (by oth standing 7 at a minim applied d	nections. Iers) of truss 71 lb uplift at ium of 7/16" irectly to the	to joint top	6-12	>333	240	This item ha digitally sigr sealed by E on the date Printed copi document a signed and signature m	as been hed and binger, Joseph, PE indicated here.
3-06-00 tal	on the bottom chord in all areas where a rectangle Joseph Eliney FE No. 98947 3-06-00 tall by 2-00-00 wide will fit between the bottom Joseph Eliney FE No. 98947 chord and any other members. 16023 Swingley Ridge Road, Chesterfield, MO 63017											

May 14,2025

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	T-12	Common Supported Gable	1	1	Job Reference (optional)	T37314124

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:34:10 ID:2_LvmPbbPpaRMVjTnnC3uNyHz?t-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

12-4-0

Page: 1

Scale = 1:44.8

Plate Offsets (X, Y): [2:0-1-12,0-1-15], [12:0-1-12,0-1-15]

		5], [12.0-1-12,0-1-15	1										
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES FBC202	23/TPI2014	CSI TC BC WB Matrix-AS	0.13 0.04 0.02	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 24	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 72 lb	GRIP 244/190 FT = 20%
BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS (: M	15=12-4-(18=12-4-(18=12-4-(Max Uplift 2=-94 (LC 15=-45 (LC 18=-17 (L Max Grav 2=189 (LC 14=109 (L 14=109 (L 16=102 (L 18=104 (L 20=106 (L	applied. 12=12-4-0, 14=12-4 0, 16=12-4-0, 17=12- 1, 19=12-4-0, 20=12- 10) 12), 12=-84 (LC 12) C 12), 12=-84 (LC 12) C 12), 12=-84 (LC 12) C 12), 19=-45 (LC 12) C 12), 19=-45 (LC 12) C 12), 17=87 (LC 17) C 24), 17=87 (LC 17) C 17), 19=100 (LC 2) LC 17)	-0, 3) 4-0, 3) 4-0 1, 4) 2), 4) 2) (8), 5) 7), 6)	Vasd=101mp B=45ft; L=24 MWFRS (dirr left and right exposed;C-C reactions sho DOL=1.60 Truss design only. For stu see Standard or consult qu Building Des verifying app requirements All plates are indicated. Gable requirt Gable studs	7-22; Vult=130m; bh; TCDL=4.2psf; ift; eave=2ft; Cat. ectional) and C-C exposed ; end ve c for members and own; Lumber DOL ed for wind loads uds exposed to wind d Industry Gable E lailfied building de igner / Project eng lied roof live load s specific to the us e 1.5x4 () MT20 es continuous bot spaced at 1-4-0 o is been designed	BCDL=6 II; Exp B Zone3 z rtical left d forces d =1.60 pl in the pl nd (norm End Deta signer a gineer re shown c se of this unless o tom choir c.	.0psf; h=25ft; ; Enclosed; one; cantilevœ and right & MWFRS for ate grip ane of the tru; al to the face; ils as applicat s per ANSI/TF sponsible for overs rain loa truss compor therwise d bearing.	er ss ble, PI 1. ding					
TOP CHORD	(lb) - Maximum Com Tension 1-2=0/45, 2-4=-75/6/ 5-6=-50/95, 6-7=-70, 8-9=-46/96, 9-10=-3 12, 12=0/45	0, 4-5=-58/48, /146, 7-8=-70/146,	9)	* This truss h on the bottor 3-06-00 tall b chord and ar	ad nonconcurrent has been designed in chord in all area by 2-00-00 wide w hy other members	d for a liv is where ill fit betv	e load of 20.0 a rectangle veen the botto	ipsf om				This item ha	
12-13=0/4510) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 84 lb uplift at joint 18-19=-47/131, 15-16=-47/131, 16-17=-47/131, 12-14=-47/131, 14-15=-47/131, 12-14=-47/131, 14-15=-47/131, 12-14=-47/131, 14-15=-47/131, 12-14=-47/131, 14-15=-47/131, 12-14=-47/131, 14-15=-47/131, 12-14=-47/131, 14-15=-47/131, 12-14=-47/131, 14-15=-47/131, 12-14=-47/131, 14-15=-47/131, 12-14=-47/131, 14-15=-47/131, 12-14=-47/131, 13-14=-47/131, 13-14=-47/131, 14-15=-47/131, 14-15=-47/131, 15-14=-47/131, 15-14=-47/131, 11) This truss design requires that a minimum of 7/16"digitally signed and sealed by Ebinger, Joseph, on the date indicated here. Printed copies of this document are not considered and to printed copies of this 14-15=-47/16"										binger, Joseph, PE indicated here. es of this			
4-20=-84/79, 8-16=-75/80, 9-15=-75/108, 10-14=-83/78 structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. signed and sealed and the signature must be verified On any electronic copies. NOTES LOAD CASE(S) Standard Standard									sealed and the ust be verified tronic copies.				

16023 Swingley Ridge Road, Chesterfield, MO 63017 Date:

May 14,2025

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	T-14	Common	3	1	Job Reference (optional)	T37314125

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:34:10 ID:2_LvmPbbPpaRMVjTnnC3uNyHz?t-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:47.5					6-2-0 6-2-0			12-4-0 6-2-0	1				
	(psf)	Spacing	2-0-0		CSI	0.00	DEFL	in	(loc)	l/defl		PLATES	

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES FBC2023/TPI2014	CSI TC BC WB Matrix-AS	0.23 0.26 0.06	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.03 -0.06 0.00 0.03	(loc) 6-12 6-12 4 6-12	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 52 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.1 2x4 SP No.2 Structural wood she Rigid ceiling directly	4=0-6-0 .C 10) .C 12), 4=-102 (LC 1)	bearing pla 2 and 102 7) This truss of structural w chord and the bottom LOAD CASE(S		standing 1 at a minim applied d	02 Ib uplift a um of 7/16" irectly to the	t joint top					
FORCES	(lb) - Maximum Com Tension	,, ()										
TOP CHORD		163, 3-4=-540/163,										
BOT CHORD WEBS		34										
,	ed roof live loads have	been considered for										
Vasd=101 B=45ft; L= MWFRS (Zone1 1-6 10-4-15 to exposed ;	n. CE 7-22; Vult=130mph mph; TCDL=4.2psf; B =24ft; eave=4ft; Cat. II; directional) and C-C Z 5-0 to 6-2-0, Zone2 6-2 0 13-10-0 zone; cantile end vertical left and ri and forces & MWFRS	CDL=6.0psf; h=25ft; Exp B; Enclosed; one3 -1-6-0 to 1-6-0, -0 to 10-4-15, Zone1 ver left and right ght exposed;C-C for										

 Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
 This truss has been designed for a 10.0 psf bottom

Lumber DOL=1.60 plate grip DOL=1.60

chord and any other members.

chord live load nonconcurrent with any other live loads.
* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

sealed by Ebinger, Joseph, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Page: 1

Joseph Ebinger PE No. 98947 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Road, Chesterfield, MO 63017 Date:

May 14,2025

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	T-15	Common Girder	1	2	Job Reference (optional)	T37314126

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:34:10 ID:10C_tYWSQ6wYDuuodN4yoeyHvZC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-3-15

Page: 1

3-8-1

4-3-15

Scale = 1:43.5

Plate Offsets (X, Y): [2:0-2-8,0-1-4], [4:0-4-10,0-0-12], [5:0-2-14,0-1-4]

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.25		CSI TC	0.33	DEFL Vert(LL)	in -0.06	(loc) 4-5	l/defl >999	L/d 360	PLATES MT20	GRIP 244/190		
TCDL	7.0	Lumber DOL	1.25		BC	0.78	Vert(CT)	-0.11	4-5	>999	240				
BCLL	0.0*	Rep Stress Incr	NO		WB	0.35	Horz(CT)	0.02	3	n/a	n/a				
BCDL	10.0	Code	FBC20	23/TPI2014	Matrix-MS		Wind(LL)	0.04	4-5	>999	240	Weight: 128 lb	FT = 20%		
LUMBER			4)		7-22; Vult=130m										
TOP CHORD					ph; TCDL=4.2psf			t;							
BOT CHORD					4ft; eave=4ft; Cat. rectional); cantilev			od ·							
WEBS	2x4 SP No.2				left and right expo										
BRACING	Otwork web weeks a disk a	- the second		plate grip D		Seu, Lun	IDEI DOL-I.	00							
TOP CHORD	 Structural wood she 5-10-2 oc purlins. 	athing directly applie	a or 5)		signer / Project en	aineer re	sponsible for								
BOT CHORD		applied or 10-0-0 oc	,	verifying app	olied roof live load	shown c	overs rain loa	ading							
Der enerte	bracing.				s specific to the u			nent.							
REACTIONS		3=0-6-0	6)		as been designed										
	Max Horiz 1=81 (LC	7)	7)		ad nonconcurrent has been designe										
	Max Uplift 1=-414 (L	C 8), 3=-313 (LC 8)	7)		m chord in all area			оры							
	Max Grav 1=3111 (L	C 1), 3=2881 (LC 14	l)		by 2-00-00 wide v			tom							
FORCES	(lb) - Maximum Com	pression/Maximum			ny other members										
	Tension		8)	8) Provide mechanical connection (by others) of truss to											
TOP CHORD	,				e capable of withs	tanding 4	14 lb uplift a	t joint							
BOT CHORD	,	-322/2827,	0		uplift at joint 3.			0-1							
WEBS	3-4=-473/4223 2-5=-327/2483, 2-4=	-340/3202	9)		IL24 (With 4-16d notes that the second se										
NOTES	2-3=-321/2+03, 2-4=	-349/3292			g at 1-0-12 from th										
	s to be connected toget	thor with 10d			s(es) to back face										
	3") nails as follows:		10) Use MiTek 1	FHDH26-2 (With 2	2-16d na	ils into Girde	er &							
	ds connected as follows	: 2x4 - 1 row at 0-9-0)		nto Truss) or equ							This item he			
oc.				end to conne	ect truss(es) to ba	ck face o	f bottom cho	rd.				This item ha			
	hords connected as follo	ows: 2x6 - 3 rows	4									digitally sign			
	d at 0-5-0 oc.				oles where hange dicates Girder: 3-								binger, Joseph, Pl		
	nected as follows: 2x4 -		14	per NDS gui		100 (0.14	0 x 3) 100-	Tialis				on the date	indicated here.		
	are considered equally noted as front (F) or back			LOAD CASE(S) Standard								Printed copi	es of this		
	section. Ply to ply conr		1)		of Live (balanced	: Lumber	Increase=1.	.25.				document a	re not considered		
	to distribute only loads		,	Plate Incre				- /				signed and	sealed and the		
unless ot	herwise indicated.			Uniform Loads (lb/ft)							signature must be verified				
,	ced roof live loads have	been considered for		Vert: 1-2=-54, 2-3=-54, 1-3=-20							on any electronic copies.				
this desig	gn.				ed Loads (lb)							on any elect	tome copies.		
					=-635 (B), 11=-63							Joseph Ebinger PE No.	08047		

13=-2761 (B), 14=-159 (B), 15=-159 (B)

N

- 2 2

Joseph Ebinger PE No. 98947 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Road, Chesterfield, MO 63017

May 14,2025

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	T-16	Piggyback Base Girder	1	2	Job Reference (optional)	T37314127

Scale = 1:89.4		4-7-0	2-11-7	5-0-7	4-7-14	5-5-12
-	[2:0-2-8,0-1-13], [8:0-2-8,0-1-13], [12:	0-1-12,0-1-8], [14:0-0	6-4,0-0-12],	[15:0-6-7,0-1-7]	, [17:0-2-8,0-3-8], [19:0-1-8,0-1-8], [20:0-5-4,0-4-4], [21:0-2-0,0-2-0],
Plate Offsets (X, Y):	[24:0-2-8,0-1-8], [27:0-3-9,0-2-0]					

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25		тс	0.28	Vert(LL)	-0.09	17-19	>999	360	MT20	244/190
TCDL	7.0	Lumber DOL	1.25		BC	0.47	Vert(CT)	-0.16	17-19	>999	240		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.75	- (-)	0.03	15	n/a	n/a		
BCDL	10.0	Code	FBC202	3/TPI2014	Matrix-MS	-	Wind(LL)	0.07	17-19	>999	240	Weight: 560 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS JOINTS	2x4 SP No.1 2x6 SP No.1 2x4 SP No.2 2x4 SP No.2 Structural wood she 5-8-6 oc purlins, ex 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. 1 Row at midpt 1 Brace at Jt(s): 22, 23, 24, 25, 26, 27	cept end verticals, an -0 max.): 2-8.	ed or nd	EBS	14-16=-155/1067, 17-28=-323/2294, 19-27=-2109/410, 12-39=-2032/361, 5-24=-20/132, 21, 22-30=-4180/701, 19-26=-403/2730, 2-31=-681/4136, 2, 20-23=-686/4268, 25-34=-1479/241, 22-29=-97/16, 23, 24-32=-248/32, 2 25-33=-266/34, 22, 26-35=-370/49, 21,	, 12-28=- , 27-39=- , 20-24=- -22=-417 , 2-30=-4 , 8-26=-3 23-31=-6 , 20-25=- , 8-34=-1 -29=-97/ ² 4-33=-26 5-35=-37	299/2089, 2197/381, 37/81, 2/701, 051/681, 70/2458, 85/4234, 1599/259, 354/233, 16, 23-32=-248/ 6/34, 0/49,	32,	Vas B=-/ MV Lur 5) Tru onl see or (6) Bui ver req 7) Prc	sd=101n 45ft; L=2 /FRS (d nber DC ss desig y. For s e Standa consult c lding De ifying ap uiremen vide ade	hph; TC 24ft; ea irection 0L=1.60 ned for tuds ex rd Indu yualified signer plied ro ts spece equate	ve=4ft; Cat. II; Ex al); cantilever lef 0 plate grip DOL= 1 wind loads in th xposed to wind (n ustry Gable End E d building designn / Project enginee oof live load show cific to the use of	DL=6.0psf; h=25ft; cp B; Enclosed; t and right exposed; t.1.60 e plane of the truss ormal to the face), Details as applicable, er as per ANSI/TPI 1. er responsible for vn covers rain loading this truss component. ent water ponding.
REACTIONS		anical, 21= Mechan	cal		36-37=-317/40, 2		,	,		cated.			
	Max Horiz 21=-246 (Max Uplift 15=-441 (Max Grav 15=3151	LC 8) LC 8), <mark>21=-843 (</mark> LC	8)	28-38=-6/65, 29-30=-5/35, 3-31=-15/114, 4-32=-85/30, 6-33=-319/62, 7-34=-49/211, 34-35=-58/341, 9-36=-13/123, 10-37=-45/26, 11-27=-268/72, 38-39=-29/246				, 26,	 9) Gable studs spaced at 1-4-0 oc. 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 11) * This truss has been designed for a live load of 20.0psf 				any other live loads.
FORCES	(lb) - Maximum Com	pression/Maximum	NC	DTES					on	the botto	om cho	rd in all areas wh	ere a rectangle
TOP CHORD	Tension 8-9=-2566/446, 9-10		1)	2-ply truss t	to be connected to nails as follows:	gether w	ith 10d						between the bottom n BCDL = 10.0psf.
BOT CHORD	$\begin{array}{c} 10\text{-}11\text{=-}2677/430, 1\\ 12\text{-}14\text{=-}4436/647, 1\\ 2\text{-}3\text{=-}1758/328, 3\text{-}4\\ 4\text{-}5\text{=-}1758/328, 5\text{-}6\\ 6\text{-}7\text{=-}1749/327, 7\text{-}8\text{=}\\ 1\text{-}21\text{=-}101/37, 1\text{-}2\text{=-}\\ 20\text{-}21\text{=-}68/829, 19\text{-}2\\ 17\text{-}19\text{=-}397/3649, 11\\ 15\text{-}16\text{=-}629/4661 \end{array}$	4-15=-5577/816, 1758/328, 1749/327, 1749/327, 72/30 20=-214/2488,	2) 3)	oc. Bottom cho staggered a Web conne All loads an except if no CASE(S) se provided to unless othe	connected as follo rds connected as f at 0-9-0 oc. cted as follows: 2x e considered equa ted as front (F) or ection. Ply to ply oc distribute only loar rwise indicated. d roof live loads ha	follows: 2 4 - 1 row Ily applie back (B) onnection ds noted	x6 - 2 rows at 0-9-0 oc. d to all plies, face in the LOA s have been as (F) or (B),					on the date Printed copi document a signed and s	hed and binger, Joseph, PE indicated here.

3) ed roof live loads have been considered fo this design.

on any electronic copies.

Joseph Ebinger PE No. 98947 MiTek Inc. DBA MITek USA FL Cert 6634 16023 Swingley Ridge Road, Chesterfield, MO 63017 Date

May 14,2025

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	T-16	Piggyback Base Girder	1	2	Job Reference (optional)	T37314127

12) Refer to girder(s) for truss to truss connections.

- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 441 lb uplift at joint 15 and 843 lb uplift at joint 21.
- 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 15) Use MiTek HUS26 (With 14-16d nails into Girder & 6-16d nails into Truss) or equivalent at 4-10-2 from the left end to connect truss(es) to front face of bottom chord.
- 16) Use MiTek JL24 (With 4-10d nails into Girder & 2-10d x 1-1/2 nails into Truss) or equivalent spaced at 6-11-15 oc max. starting at 0-7-6 from the left end to 17-7-5 to connect truss(es) to back face of bottom chord.
- 17) Use MiTek HUS26 (With 14-16d nails into Girder & 6-16d nails into Truss) or equivalent spaced at 2-11-15 oc max. starting at 8-7-6 from the left end to 11-7-5 to connect truss(es) to back face of bottom chord.
- 18) Fill all nail holes where hanger is in contact with lumber. 19) "NAILED" indicates Girder: 3-10d (0.148" x 3") toe-nails per NDS guidelines.

LOAD CASE(S) Standard

- Dead + Roof Live (balanced): Lumber Increase=1.25, 1) Plate Increase=1.25
 - Uniform Loads (lb/ft) Vert: 8-15=-54, 2-8=-54, 15-21=-20, 1-2=-54 Concentrated Loads (lb)
 - Vert: 18=-577 (B), 20=-1509 (F=-1123, B=-386), 42=-390 (B), 44=-242 (F), 45=-371 (B), 46=-242 (F), 47=-385 (B), 48=-577 (B), 49=-385 (B), 50=-385 (B), 51=-554 (B)

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:34:10 ID:dOeRntWRe7?xxrXEiILNIsyHy9I-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

This item has been digitally signed and sealed by Ebinger, Joseph, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joseph Ebinger PE No. 98947 MiTek Inc. DBA MITek USA FL Cert 6634 16023 Swingley Ridge Road, Chesterfield, MO 63017

May 14,2025

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - verify design parameters and READ NOTES ON THIS AND INCLOSED INTERNETING TO THE REFERENCE FOR UNITY TO THE INSTANCE OF THE ADDRESS OF THE ADDRESS

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	T-17	Piggyback Base Girder	1	2	Job Reference (optional)	T37314128

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:34:11 ID:OMOriEzwfotuVoeS7fOIITzHEEp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:96.5

Plate Offsets ((X, Y): [1:0-5-0,0-0-2]	, [1:0-0-4,Edge], [2:0-1	-12,0-1-8	8], [3:0-1-12,0-	1-8], [4:0-2-0,0-2-	4], [6:0-2	-8,0-1-13], [7	' :0-2-4,0	-3-0], [8:	0-1-12,0)-1-8],	[16:0-5-8,0-2-12]	, [17:0-3-0,0-1-12]
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	· · ·	l/defl	L/d	PLATES	GRIP
CLL (roof)	20.0 7.0	Plate Grip DOL Lumber DOL	1.25 1.25		TC BC	0.16 0.39	Vert(LL) Vert(CT)		11-12 11-12	>999 >999	360 240	MT20	244/190
	0.0*		NO		WB	0.63	Horz(CT)	0.13	9	>999 n/a	240 n/a		
BCDL	10.0	Code		23/TPI2014	Matrix-MS	0.00	Wind(LL)	0.06		>999	240	Weight: 565 lb	FT = 20%
UMBER OP CHORD OT CHORD VEDS VEDGE SRACING OP CHORD OT CHORD	2x4 SP No.1 2x6 SP No.1 *Excep 2x4 SP No.2 Left: 2x4 SP No.2 Structural wood she 6-0-0 oc purlins, exc 2-0-0 oc purlins (6-C Rigid ceiling directly bracing. (size) 1=0-3-8, Max Horiz 1=-218 (L Max Uplift 1=-102 (L 18=-451	bt* 1-17:2x4 SP No.1 eathing directly applied cept -0 max.): 4-6. r applied or 6-0-0 oc 9=0-6-0, 18=0-6-0 .C 6) .C 26), 9=-510 (LC 8), (LC 8) C 20), 9=2921 (LC 14)	1) or 2) 3) 4)	2-ply truss to (0.131"x3") i Top chords o oc. Bottom chor 0-8-0 oc, 2xi Web connec All loads are except if not CASE(S) se provided to o unless other Unbalanced this design. Wind: ASCE Vasd=101m B=45ft; L=36	b be connected to hails as follows: connected as follo ds connected as follo ds connected as follows: 2x considered equa ed as front (F) or ction. Ply to ply co distribute only load wise indicated. roof live loads ha ; 7-22; Vult=130m ph; TCDL=4.2psf; oft; eave=5ft; Cat.	ws: 2x4 follows: 2 red at 0-9 4 - 1 row Ily applie back (B) ponnection ds noted ve been we been ph (3-sec BCDL=€ II; Exp B	th 10d - 1 row at 0-9 x4 - 1 row at -0 oc. at 0-90 oc. d to all plies, face in the L0 is have been as (F) or (B), considered for cond gust) 5.0psf; h=25ft ; Enclosed;	DAD or	11) Us 1-1 oc to c 12) Us 6-1 oc to c 13) Us 1-1 left chc 14) Fill LOAD 1) Do Pl	e MiTek /2 nails max. sta connect : e MiTek 6d nails max. sta connect : e MiTek /2 nails end to c ord. all nail h CASE(S	JL24 (' into Tru arting a truss(e HUS26 into Tr arting a truss(e JL24 (' into Tru connec noles w c) Sta oof Live ease=1	With 4-10d nails uss) or equivalent (13-11-8 from th s) to front face of 6 (With 14-16d nails uss) or equivalent t 21-11-8 from th s) to front face of With 4-16d nails uss) or equivalent t truss(es) to fror there hanger is in ndard e (balanced): Lur .25	into Girder & 2-10d x t spaced at 6-11-15 e left end to 28-11-7 f bottom chord. ails into Girder & nt spaced at 2-11-15 e left end to 24-11-7 f bottom chord. into Girder & 2-10d x t at 30-11-7 from the
ORCES	(lb) - Maximum Con Tension			MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60					Vert: 1-4=-54, 4-6=-54, 6-10=-54, 17-22=-20, 16-17=-20, 9-15=-20 Concentrated Loads (lb)				
TOP CHORD	4-5=-1683/362, 5-6= 6-8=-3741/637, 8-9=	-4898/798, 9-10=0/45	••••	 5) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component. 				Vert: 27=-385 (F), 28=-385 (F), 29=-577 (F), 30=-5 (F), 31=-385 (F), 32=-383 (F), 33=-650 (F)					
BOT CHORD	1-19=-135/263, 18- 17-18=-228/162, 16 13-14=0/15, 12-13= 11-12=-556/4010, 9	-17=-30/798, 14-15=0/ -328/2988,	(0, 6) (0, 7) 8)	Provide ade This truss ha chord live lo	quate drainage to as been designed ad nonconcurrent has been designe	prevent for a 10. with any	water ponding 0 psf bottom other live loa	g. ads.				This item hadigitally sign	ned and
WEBS NOTES		=-202/73, 2-19=0/232, 3=-2834/425, -16=-154/2113, 3=-383/1960, 12=-310/2096, 11=-166/1140,	9)	on the botton 3-06-00 tall I chord and an Provide med bearing plate 9, 451 lb upl) Graphical pu	m chord in all area by 2-00-00 wide w my other members shanical connection e capable of withs if at joint 18 and urlin representatio ation of the purlin	as where vill fit betw s. in (by oth tanding 5 102 lb up n does no	a rectangle veen the both ers) of truss t 510 lb uplift at lift at joint 1. ot depict the s	to t joint				on the date Printed copi document a signed and signature m	binger, Joseph, F indicated here. ies of this re not considered sealed and the ust be verified tronic copies.
				201001101010									

Joseph Ebinger PE No. 98947 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Road, Chesterfield, MO 63017 Date:

May 14,2025

Page: 1

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	T-18	Piggyback Base	1	1	Job Reference (optional)	T37314129

Arnold Truss Mfg, LLC, Ocala, FL - 34475, Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:34:11 Page: 1 ID:s0NVI71T?ixskJs9ooLQV_yHxHa-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 44-2-12 24-1-5 21-8-12 42-8-12 5-11-15 <u>11-6-0</u> 14-7-8 19-7-9 30-3-5 35-9-7 40-6-5 3-1-8 5-0-1 2-1-3 2-4-9 6-2-0 4-8-14 2-2-7 5-11-15 5-6-1 5-6-2 1-6-0 1-6-0 42-8-12 Braci^{2x2} LATERALLY BRACE TOP CHORD WITH PURLINS AT 2-0-0 o/c IF STRUCTURAL SHEATHING IS NOT DIRECTLY APPLIED. 5x5= 5x5= 43 44 45 8 469 6 3x4 💋 3x6 🛷 8¹² 5 26 3x4; 1<u>2</u> 14 42 10 3x4 3 1.5k 1.5x4 u 3x4 28 5x8 🕿 3x6💊 1.5x4 **I** 21 11 21 _ 5x6= ල් ෆ් 12 47 13 3x8 ı . 14 3x5= -30 22 15 20 15 1.5x4 16 3x8 = т 3x4= 25 23 24 __4 12 19 18 17 3x5= 5x5= 1.5x4 II 5x6 =1.5x4 🛚 3x4= 5x6= 1.5x4 🛚 0-4-0 5-11-15 11-6-0 14-5-0 19-7-9 24-11-0 30-3-5 35-5-0 42-8-12 H 5-7-15 5-6-1 2-11-0 5 - 2 - 95-3-7 5 - 4 - 55-1-11 7-3-12 0-4-0 Scale = 1:105.1 [2:0-5-0,0-0-2], [2:0-0-4,Edge], [3:0-1-12,0-1-8], [5:0-1-12,0-1-8], [6:0-2-8,0-1-13], [8:0-2-8,0-0-4], [9:0-2-8,0-1-13], [10:0-1-12,0-1-8], [11:0-5-12,0-2-8], Plate Offsets (X, Y): [15:0-0-12,0-2-2], [15:0-0-12,0-1-12] Loading DEFL 2-0-0 CSI PLATES GRIP (psf) Spacing in (loc) l/defl I/d TCLL (roof) 20.0 Plate Grip DOL 1.25 тс Vert(LL) -0.04 21 >999 360 MT20 244/190 0.22 TCDL 1.25 BC 0.22 Vert(CT) -0.09 20-21 >999 240 7.0 Lumber DOL Rep Stress Incr BCLL YES WB Horz(CT) 0.05 0.0 0.36 19 n/a n/a BCDL 10.0 Code FBC2023/TPI2014 Matrix-AS Wind(LL) 0.02 20-21 >999 240 Weight: 293 lb FT = 20% WEBS Provide mechanical connection (by others) of truss to LUMBER 5-24=-1085/252, 5-23=-74/720 9) TOP CHORD 2x4 SP No.1 6-23=-659/65 6-22=-85/649 7-22=-289/147 bearing plate capable of withstanding 99 lb uplift at joint 20-29=-375/138. 10-29=-357/136. 2, 120 lb uplift at joint 19, 88 lb uplift at joint 15, 145 lb BOT CHORD 2x4 SP No.1 WEBS 2x4 SP No.2 *Except* 11-19:2x6 SP No.1 9-27=0/571, 21-27=0/554, 22-26=-383/27, uplift at joint 24, 13 lb uplift at joint 17, 112 lb uplift at joint 18 and 88 lb uplift at joint 15. 9-26=-386/28. 3-24=-407/124. 3-25=0/236. 2x4 SP No.2 OTHERS WEDGE Left: 2x4 SP No.2 11-19=-919/209. 20-30=-163/1168 10) This truss design requires that a minimum of 7/16" 11-30=-171/1231, 21-28=-64/153 structural wood sheathing be applied directly to the top BRACING 10-28=-71/157, 8-26=-6/16, 27-28=0/26 chord and 1/2" gypsum sheetrock be applied directly to TOP CHORD Structural wood sheathing directly applied, 28-29=-6/43, 29-30=-10/78, 13-17=-170/80, the bottom chord. except 12-18=-36/73 11) Graphical purlin representation does not depict the size 2-0-0 oc purlins (6-0-0 max.): 6-9. or the orientation of the purlin along the top and/or NOTES BOT CHORD Rigid ceiling directly applied. bottom chord. WEBS 1) Unbalanced roof live loads have been considered for 1 Row at midpt 5-24. 6-23. 9-22 LOAD CASE(S) Standard JOINTS this design. 1 Brace at Jt(s): 27, Wind: ASCE 7-22; Vult=130mph (3-second gust) 2) 30 Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; **REACTIONS** (size) 2=0-3-8, 15=6-11-12, 17=6-11-12, B=45ft; L=43ft; eave=5ft; Cat. II; Exp B; Enclosed; 18=6-11-12, 19=6-11-12, 24=0-6-0 MWFRS (directional) and C-C Zone3 -1-6-0 to 2-9-4, Max Horiz 2=-220 (LC 10) Zone1 2-9-4 to 14-7-8, Zone2 14-7-8 to 20-8-0, Zone1 Max Uplift 2=-99 (LC 12), 15=-88 (LC 12), 20-8-0 to 24-1-5, Zone2 24-1-5 to 30-3-5, Zone1 30-3-5 17=-13 (LC 12), 18=-112 (LC 18), to 44-2-12 zone; cantilever left and right exposed ; end 19=-120 (LC 12), 24=-145 (LC 12) vertical left and right exposed;C-C for members and Max Grav 2=461 (LC 23), 15=172 (LC 24), forces & MWFRS for reactions shown; Lumber 17=260 (LC 24), 18=16 (LC 12), DOL=1.60 plate grip DOL=1.60 19=1170 (LC 1), 24=1411 (LC 1) This item has been Truss designed for wind loads in the plane of the truss 3) FORCES (lb) - Maximum Compression/Maximum digitally signed and only. For studs exposed to wind (normal to the face). Tension see Standard Industry Gable End Details as applicable sealed by Ebinger, Joseph, PE TOP CHORD 1-2=0/45, 2-3=-348/180, 3-5=0/246, or consult qualified building designer as per ANSI/TPI 1. on the date indicated here. 5-6=-218/223, 6-7=-475/253, 7-8=-475/253, 4) Building Designer / Project engineer responsible for 8-9=-486/258, 11-12=-18/367, Printed copies of this verifying applied roof live load shown covers rain loading 12-13=-16/326, 13-15=-127/357, 15-16=0/26, document are not considered requirements specific to the use of this truss component. 9-10=-998/233, 10-11=-979/222 5) Provide adequate drainage to prevent water ponding. signed and sealed and the BOT CHORD 2-25=-213/426, 24-25=-69/284, 6) Gable studs spaced at 1-4-0 oc. 23-24=-185/170 22-23=-36/212 signature must be verified 7) This truss has been designed for a 10.0 psf bottom 21-22=0/712. 20-21=-72/757. on any electronic copies. chord live load nonconcurrent with any other live loads. 19-20=-519/124 18-19=-312/71 8) * This truss has been designed for a live load of 20.0psf 17-18=-312/71, 15-17=-312/141 on the bottom chord in all areas where a rectangle Joseph Ebinger PE No. 98947 MiTek Inc. DBA MITek USA FL Cert 6634 16023 Swingley Ridge Road, Chesterfield, MC 3-06-00 tall by 2-00-00 wide will fit between the bottom field, MO 63017 chord and any other members. May 14,2025

16023 Swinaley Ridae Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	T-19	Piggyback Base	6	1	Job Reference (optional)	T37314130

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:34:12 ID:uMtl2KR5qRfVHk8IGDkUxryHx0F-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

		24-7-10										
-1-6-0	5-11-15	11-6-0	14-7-8	19-7-9	24-6-7	30-3-5	35-11-0	42-8-12	44-2-12			
1-6-0	5-11-15	5-6-1	3-1-8	5-0-1	4-10-15 ₀₋	5-7-11	5-7-11	6-9-12	1-6-0			
L					42-8-12							

	0-4-0 5-11-15	11-6-0	14-5-0	19-7-9	24-11-0	30-3-5	35-5-0	42-4-12 42-8-12
Scale = 1:103.1	0-4-0 5-7-15	5-6-1	2-11-0	5-2-9	5-3-7	5-4-5	5-1-11	6-11-12 0-4-0

Plate Offsets (X, Y):	Plate Offsets (X, Y): [2:0-5-0,0-0-2], [2:0-0-4,Edge], [3:0-1-12,0-1-8], [5:0-1-12,0-1-8], [6:0-2-8,0-1-13], [9:0-5-12,0-2-0], [10:0-1-12,0-1-8], [11:0-8-12,0-2-0]											
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	тс	0.27	Vert(LL)	-0.05	14-30	>999	360	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.25	Vert(CT)	-0.11	14-30	>782	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.35	Horz(CT)	0.05	14	n/a	n/a		
BCDL	10.0	Code	FBC2023/TPI2014	Matrix-AS		Wind(LL)	0.02	15-16	>999	240	Weight: 272 lb	FT = 20%

LUMBER TOP CHORD BOT CHORD WEBS WEDGE	2x4 SP N 2x4 SP N 2x4 SP N Left: 2x4 \$	o.1 o.2 *Except* 11-14:2x6 SP No.1	2)	Wind: Vasd= B=45 MWF Zone
BRACING				20-8-
TOP CHORD	Structural	wood sheathing directly applied,		30-8-2
	except			expos
	2-0-0 oc p	ourlins (6-0-0 max.): 6-9.		memb
BOT CHORD		ng directly applied.	3)	Lumb Buildi
WEBS	1 Row at	midpt 5-19, 6-18, 8-17	3)	verify
REACTIONS	(size)	2=0-3-8, 12=0-3-8, 14=0-6-0,		requir
		19=0-6-0	4)	Provid
		2=-220 (LC 10)	5)	This t
	Max Uplift	2=-99 (LC 12), 12=-90 (LC 12),	,	chord
	May Cray	14=-115 (LC 12), 19=-146 (LC 12)	6)	* This
	Max Grav	2=475 (LC 23), 12=279 (LC 24), 14=1224 (LC 1), 19=1389 (LC 1)		on the
FORCES	(lb) Mov	imum Compression/Maximum		3-06-
FURGES	(ID) - Max Tension	imum Compression/waximum	-	chord
TOP CHORD		2-3=-371/178, 3-5=-22/215,	7)	Provid
		226, 6-7=-504/253, 7-8=-504/253,		bearir 2, 115
		736, 9-10=-976/232,		lb upl
	10-11=-92	20/207, 11-12=-212/220, 12-13=0/26	8)	This t
BOT CHORD	2-20=-212	2/426, 19-20=-53/308,	•,	struct
		57/167, 17-18=-22/234,		chord
		769, 15-16=-52/750,		the bo
		01/121, 12-14=-198/283	9)	Graph
WEBS		64/248, 5-18=-71/701,		or the
		9/62, 6-17=-84/660, 7-17=-303/158, 6/143, 10-15=-365/131,		bottor
		5/123, 3-20=0/235, 11-14=-979/233,	LO	AD CA
		45/1062, 8-16=0/553, 8-17=-403/12		
NOTES		. ,		

1) Unbalanced roof live loads have been considered for

this design.

 Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=43ft; eave=5ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Zone3 -1-6-0 to 2-9-4, Zone1 2-9-4 to 14-7-8, Zone2 14-7-8 to 20-8-0, Zone1 20-8-0 to 24-7-10, Zone2 24-7-10 to 30-8-2, Zone1 30-8-2 to 44-2-12 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
 Provide adequate drainage to prevent water ponding.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf

on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 99 lb uplift at joint 2, 115 lb uplift at joint 14, 146 lb uplift at joint 19 and 90 lb uplift at joint 12.

) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

 Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

OAD CASE(S) Standard

This item has been digitally signed and sealed by Ebinger, Joseph, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Page: 1

Joseph Ebinger PE No. 98947 MITek Inc. DBA MITek USA FL Cert 6634 16023 Swingley Ridge Road, Chesterfield, MO 63017 Date:

May 14,2025

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	T-20	Piggyback Base	11	1	Job Reference (optional)	T37314131

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:34:12 ID:vodb9el3oSxo8FLikr_Me6yHwzs-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-1-6-0	7-6-3	14-7-8	19-7-9	24-6-7	30-3-5	35-11-0	42-8-12	44-2-12
1-6-0	7-6-3	7-1-5	5-0-1	4-10-15 ₀₋₁	5-7-11	5-7-11	6-9-12	1-6-0
				42-8-12				

	0-4-0	7 0 0	4450	19-7-9	25-	42-8-12				
	Ц	7-6-3	14-5-0	19-7-9	24-11-0	~ <u>30-3-5</u>	35-5-0	42-4-12		
	0-4-0	7-2-3	6-10-13	5-2-9	5-3-7 0-3	5-1-5	5-1-11	6-11-12 0-4-0		
Scale = 1:103.1	010				0.0			010		

		-	-										-
Loading TCLL (roof)	(psf) 20.0		2-0-0 1.25		CSI TC	0.34	DEFL Vert(LL)	in -0.05	(loc) 13-29	l/defl >999	L/d 360	PLATES MT20	GRIP 244/190
TCDL	7.0	1 '	1.25		BC	0.31	Vert(CT)	-0.11	13-29	>790	240	101120	244/100
BCLL	0.0*		YES		WB	0.45	Horz(CT)	0.04	13	n/a	n/a		
BCDL	10.0	1 '		23/TPI2014	Matrix-AS	0.10	Wind(LL)		19-24	>999	240	Weight: 253 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.1 2x4 SP No.1 2x4 SP No.2 *Excep Left: 2x4 SP No.2 Structural wood she except 2-0-0 oc purlins (6-0 Rigid ceiling directly 1 Row at midpt (size) 2=0-3-8, 7 18=0-11-5 Max Horiz 2=-220 (L Max Uplift 2=-114 (L 13=-103 (Max Grav 2=521 (LC	t* 10-13:2x6 SP No.1 athing directly applied, -0 max.): 5-8. applied. 3-18, 5-18, 7-17 I1=0-3-8, 13=0-6-0, 3 C 10) C 12), 11=-91 (LC 12), LC 12), 11=-91 (LC 12), LC 12), 11=-309 (LC 24),	2) 3) 4) 5) 2) 6)	Wind: ASCE Vasd=101m B=45ft; L=43 MWFRS (dir Zone1 2-9-4 20-8-0 to 24 30-8-2 to 44 exposed ; er members an Lumber DOL Building Des verifying app requirements Provide ade This truss ha chord live loa * This truss h	7-22; Vult=130m ph; TCDL=4.2psf; 3ft; eave=5ft; Cat. ectional) and C-C to 14-7-8, Zone2 -7-10, Zone2 24-7 -2-12 zone; cantile d vertical left and d forces & MWFR =1.60 plate grip L igner / Project en- olied roof live load s specific to the us quate drainage to as been designed an onconcurrent has been designed m chord in all area	BCDL=6 II; Exp B Zone3 - 14-7-8 tt -10 to 30 ever left a right exp S for rea DOL=1.6 gineer re shown c se of this prevent for a 10. with any d for a liv	cond gust) cond gust) const, h=25ft ; Enclosed; 1-6-0 to 2-9-4 2 0-8-0, Zon 0-8-2, Zone1 and right bosed;C-C for ctions showr 0 sponsible for overs rain loa truss compore water ponding, 0 psf bottom other live loa re load of 20.1	; l, e1 r; ading nent. g. ids.					
FORCES	(lb) - Maximum Com Tension	(LC 24), 18=1540 (LC pression/Maximum	7)	chord and a	by 2-00-00 wide w ny other members chanical connectio								
TOP CHORD	1-2=0/45, 2-3=-408/ 5-6=-207/204, 6-7=- 8-9=-682/184, 9-10=	207/204, 7-8=-219/492 -747/179,	<u>,</u>	bearing plate 2, 103 lb upl lb uplift at joi	e capable of withs ift at joint 13, 141 int 11.	tanding 1 Ib uplift a	14 Ib uplift at at joint 18 and	t joint				This itom ha	a baan
BOT CHORD	10-11=-212/177, 11- 2-19=-210/425, 18-1 17-18=-263/212, 16- 14-15=-28/598, 13-1 11-13=-197/282	9=-68/320, -17=0/517, 15-16=0/55		structural wo chord and 1/ the bottom c		applied d ock be a	irectly to the pplied directly	y to					
WEBS NOTES		l=-247/109, ∙14=-102/792,	,					size				Printed copie document and signed and s signature me	

1) Unbalanced roof live loads have been considered for this design.

Page: 1

Joseph Ebinger PE No. 98947 MiTek Inc. DBA MITek USA FL Cert 6634 16023 Swingley Ridge Road, Chesterfield, MO 63017

May 14,2025

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	T-21	Piggyback Base Girder	1	1	Job Reference (optional)	T37314132

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:34:13 ID:uAYNAndunHxvtVliiPAfnryHxn4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale =	1:120.2

[2:0-5-0,0-0-2], [2:0-0-4,Edge], [3:0-1-12,0-1-8], [5:0-2-12,0-2-0], [7:0-2-8,0-1-13], [8:0-1-8,0-2-0], [9:0-1-12,0-1-8], [10:0-6-0,0-2-8], [12:0-1-6,0-2-0], [12:0-1-6,0-1-8], Plate Offsets (X, Y): [19:0-2-6,0-2-0]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 7.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.25 1.25 NO FBC202	23/TPI2014	CSI TC BC WB Matrix-MS	0.51 0.40 0.69	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.17 0.06	(loc) 19-20 19-20 14 17-18	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 271 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD WEBS REACTIONS	SP No.1 Left: 2x4 SP No.2 Structural wood she 5-5-8 oc purlins, exo 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-3-8, 1 20=0-11-5 Max Horiz 2=-220 (L	⊢0 max.): 5-7. applied or 6-0-0 oc 3-20, 5-20 12=6-11-12, 14=6-11-1 3	1) ; 2) or 3) 2, 5) 6)	 NOTES Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=43ft; eave=5ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component. Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom 									
FORCES TOP CHORD BOT CHORD WEBS	14=-293 (Max Grav 2=403 (LC 14=1559) (lb) - Maximum Com Tension 1-2=0/45, 2-3=-209/ 5-6=-658/277, 6-7=- 10-12=-146/642, 12- 8-9=-1264/364, 9-10 2-21=-215/240, 20-2 19-20=-433/244, 18- 17-18=-105/1074, 14- 15-16=-91/907, 14-1 12-14=-558/148 3-21=0/314, 3-20=-5 5-19=-273/1393, 9-1 10-14=-1180/295, 11 6-19=-390/129, 8-17 8-18=-318/155, 9-16 7-18=-131/832	1) 7) 8) 16, 9) 10 17, 11	chord and ar Provide mec bearing plate 2, 293 lb upli uplift at joint Graphical pu or the orienta bottom chorc "NAILED" ind nails per ND)) Hanger(s) or provided suff lb down and The design/s responsibility)) In the LOAD of the truss a	y other members. hanical connection e capable of withste fit at joint 14, 397 I 12 and 105 lb upli rlin representation ation of the purlin a d. dicates Girder: 3-1 S guidelines. other connection ificient to support c 230 lb up at 21-1 election of such ca v of others. CASE(S) section, are noted as front (Standard of Live (balanced):	h (by oth anding 1 b uplift a ft at join o does n along the 6d (0.16 device(s oncentra 1-12 on onnectic loads a (F) or ba	ers) of truss t 81 lb uplift at t joint 20, 109 1 (2. of depict the s top and/or (2" x 3.5") toe (3) shall be ated load(s) 5 bottom chord n device(s) is pplied to the f ck (B).	to i joint 5 lb size e- 15 s the face				on the date Printed copi document al signed and s signature m on any elect	ed and binger, Joseph, PE indicated here. es of this re not considered sealed and the ust be verified ronic copies.	

May 14,2025

Page: 1

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	T-22	Piggyback Base	1	1	Job Reference (optional)	T37314133

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:34:13 ID:5Q4yPYw2pZWgQx_Y2u1OJeyHe8S-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

0-4-0	7-6-3	14-5-0	21-2-10	21-5-8
0-4-0	7-2-3	6-10-13	6-9-10	0-2-14 0-5-8

Scale = 1:91.3

Plate Offsets (2	X, Y): [2:0-0-7,0-0-2],	[2:0-0-4,Edge], [3:0	-1-12,0-1-8	3], [4:0-2-4,0-1	-12], [5:0-2-4,0-2-	5], [8:0-2	-4,0-2-8]					-	
Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.25		CSI TC	0.30	DEFL Vert(LL)	in -0.05	(loc) 7-8	l/defl >999	L/d 360	PLATES MT20	GRIP 244/190
CDL	7.0	Lumber DOL	1.25		BC	0.30	Vert(CT)	-0.10	7-8	>849	240	MT20HS	187/143
BCLL	0.0*	Rep Stress Incr	YES		WB	0.18	Horz(CT)	0.01	6	n/a	n/a		
BCDL	10.0	Code	FBC202	3/TPI2014	Matrix-AS		Wind(LL)	0.04	9-14	>999	240	Weight: 143 lb	FT = 20%
	(size) 2=0-3-8, 6 Max Horiz 2=309 (LC Max Uplift 2=-56 (LC 8=-36 (LC Max Grav 2=603 (LC 8=814 (LC	t* 6-5:2x6 SP No.1 athing directly applie , and 2-0-0 oc purlin applied. 3-8, 4-8 5= Mechanical, 8=0- C 12) (12), 6=-161 (LC 9), (12), 6=-267 (LC 24), C 1), 6=267 (LC 24), C 1)	s 7) 11-8 8) 9) 10	verifying app requirements Provide adec All plates are This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Refer to gird Provide mec bearing plate 2, 36 lb uplift) This truss de structural wo	igner / Project eng lied roof live load a specific to the us quate drainage to MT20 plates unlik s been designed ad nonconcurrent has been designed n chord in all area y 2-00-00 wide w ny other members er(s) for truss to tr hanical connection capable of withst at joint 8 and 161 sign requires that od sheathing be az " gypsum sheetr	shown c se of this prevent v ses other for a 10. with any d for a liv s where uss conr n (by oth sanding 5 b uplift a minim applied d	overs rain loa truss compo- water pondin wise indicate 0 psf bottom other live loa e load of 20. a rectangle ween the bott nections. ers) of truss 6 lb uplift at at joint 6. um of 7/16" irectly to the	ading nent. g. ads. Opsf com to joint top					
ORCES	(lb) - Maximum Com Tension	pression/Maximum	11	the bottom cl	hord. rlin representatior	n does no	ot depict the	size					
TOP CHORD	1-2=0/35, 2-3=-583/ 4-5=-30/6, 5-6=-199	, ,			ation of the purlin								
BOT CHORD	2-9=-203/428, 8-9=- 6-7=-26/49	203/428, 7-8=-108/4	^{5,} LC	DAD CASE(S)									
WEBS	3-9=0/300, 3-8=-521 4-7=-23/127	/151, 4-8=-387/59,										This item ha digitally sign	
this design 2) Wind: ASC Vasd=101	ed roof live loads have E 7-22; Vult=130mph mph; TCDL=4.2psf; Bi 24ft: cave=4ft: Cat. II:	(3-second gust) CDL=6.0psf; h=25ft;										on the date Printed copie document a	binger, Joseph indicated here es of this re not conside

B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Zone3 -1-2-0 to 1-10-0, Zone1 1-10-0 to 14-7-8, Zone2 14-7-8 to 18-10-6, Zone1 18-10-6 to 21-8-4 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

႔ WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - verify design parameters and READ NOTES ON THIS AND INCLOSED INTERNETING TO THE REFERENCE FOR UNITY TO THE INSTANCE OF THE ADDRESS signed and sealed and the signature must be verified on any electronic copies.

Page: 1

Joseph Ebinger PE No. 98947 MiTek Inc. DBA MITek USA FL Cert 6634 16023 Swingley Ridge Road, Chesterfield, MO 63017

May 14,2025

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	T-23	Piggyback Base	1	1	Job Reference (optional)	T37314134

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:34:14 ID:Y4VxWQU3CWrno0hxs?K_URyHyCN-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:73.4

DOL=1.60

3)

4)

5)

Building Designer / Project engineer responsible for

Provide adequate drainage to prevent water ponding.

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

Plate Offsets (X, Y): [1:0-1-8,0-1-8], [2:0-2-8,0-1-12], [3:0-2-4,0-2-5], [5:0-1-12,0-2-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.24	Vert(LL)	-0.06	4-5	>999	360	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.27	Vert(CT)	-0.13	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.12	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	FBC2023/TPI20	14 Matrix-AS		Wind(LL)	0.00	4-5	>999	240	Weight: 120 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.1 2x4 SP No.2 *Except Structural wood she except end verticals (6-0-0 max.): 2-3. Rigid ceiling directly 1 Row at midpt	ot* 4-3,6-1:2x6 SP No athing directly applie , and 2-0-0 oc purlin applied. 2-5, 2-4 anical, 6= Mechanica C 12)	on the 3-06-0 chord 7) Refer ed, 8) Provie bearin 4. 9) This t struct chord the bo chord 10) Graph	truss has been desig bottom chord in all a 10 tall by 2-00-00 widd and any other memb to girder(s) for truss t le mechanical connec g plate capable of wi uss design requires t tral wood sheathing b and 1/2" gypsum she ttom chord. ical purlin representa orientation of the pur	reas where e will fit betw ers. o truss conr stion (by oth thstanding 1 hat a minim be applied di eetrock be ap tion does no	a rectangle veen the both nections. ers) of truss 36 lb uplift a um of 7/16" irectly to the opplied directl ot depict the	tom to it joint top ly to					
FORCES	Max Grav 4=513 (L0 (lb) - Maximum Com Tension		bottor	n chord. SE(S) Standard	0	·						
TOP CHORD		8/3, 3-4=-197/97,										
BOT CHORD	5-6=-171/99, 4-5=-1	25/241										
WEBS	2-5=-64/136, 2-4=-2	66/151, 1-5=0/216										
NOTES												
this desig 2) Wind: ASI Vasd=101 B=45ft; L= MWFRS (Zone1 10- 18-6-6 to	ed roof live loads have n. CE 7-22; Vult=130mph Imph; TCDL=4.2psf; B =24ft; eave=4ft; Cat. II; (directional) and C-C Z -5-12 to 14-3-8, Zone2 21-4-4 zone; cantileve C-C for members and	(3-second gust) CDL=6.0psf; h=25ft; Exp B; Enclosed; one3 7-5-12 to 10-5- 14-3-8 to 18-6-6, Zo r left and right	12, me1								on the date Printed copi	ed and binger, Joseph, PE indicated here.
reactions	shown; Lumber DOL=	1.60 plate grip									signed and	sealed and the

Joseph Ebinger PE No. 98947 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Road, Chesterfield, MO 63017 Date:

signature must be verified

on any electronic copies.

May 14,2025

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	T-24	Piggyback Base Girder	1	1	Job Reference (optional)	T37314135

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:34:14 ID:N8b3mX4dRuvd18jE94_wFUyHyUz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

FUyHyUz-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:87.6

Plate Offsets (X, Y): [1:0-2-4,0-1-8], [2:0-2-12,0-2-0], [3:0-3-12,0-2-0], [5:0-1-8,0-1-8], [11:0-2-8,0-1-8], [12:0-2-0,0-1-4]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25		TC	0.70	Vert(LL)	-0.16	8-15	>999	360	MT20	244/190
TCDL	7.0	Lumber DOL	1.25		BC	0.72	Vert(CT)	-0.30	8-15	>999	240		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.62	Horz(CT)	0.05	6	n/a	n/a		
BCDL	10.0	Code	FBC2023	3/TPI2014	Matrix-MS		Wind(LL)	0.09	8-15	>999	240	Weight: 208 lb	FT = 20%
FORCES	No.1 Structural wood she 3-1-11 oc purlins, e 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. 1 Row at midpt	applied or 10-0-0 oc 3-11, 4-9, 5-9 I2= Mechanical LC 6) C 8), 12=-245 (LC 8) .C 14), 12=1516 (LC	5) P 6) d or nd 7) 8) 9) 10) 14)	This truss ha chord live loa * This truss H on the bottor 3-06-00 tall b chord and ar Refer to gird Provide mect bearing plate 12 and 349 II Graphical pu or the orienta bottom chorc Use MiTek J 1-1/2 nails in left end to co chord.	quate drainage to p s been designed for ad nonconcurrent w has been designed in chord in all areas by 2-00-00 wide will by other members, er(s) for truss to tru- hanical connection capable of withsta- b uplift at joint 6. rlin representation ation of the purlin at L24 (With 4-10d na to Truss) or equiva- innect truss(es) to obles where hanger	or a 10.0 with any for a liv s where II fit betw with BC uss conr (by oth anding 2 does no long the ails into alent at 2 front fac	a) psf bottom other live loa e load of 20.0 a rectangle veen the bott DL = 10.0psi rections. ers) of truss i 45 lb uplift al bt depict the s top and/or Girder & 2-10 21-7-12 from e of bottom	nds. Opsf om f. t joint size Od x the					
TOP CHORD BOT CHORD WEBS	11-12=-165/242, 9-1 8-9=-284/2095, 6-8= 1-11=-169/1138, 2-1	1840/446, +0/45, 1-12=-1422/27 1=-84/1400, +-284/2095 1=-16/347, +-35/162, 5-8=-52/671	⁹ 13) LO 1)	per NDS guid In the LOAD of the truss a AD CASE(S) Dead + Roo Plate Increa	CASE(S) section, ire noted as front (Standard of Live (balanced): ase=1.25	loads a F) or ba	oplied to the t ck (B).	face				This item ha	ed and
NOTES	0.012/1107,0.05	000,201		Uniform Loa	ads (lb/ft) =-54, 2-3=-54, 3-7:	54 10	-1320						binger, Joseph, PE
 Unbalance this design Wind: ASC Vasd=1011 B=45ft; L= MWFRS (c end vertica: plate grip I Building D verifying a 	CE 7-22; Vult=130mph mph; TCDL=4.2psf; B(28ft; eave=4ft; Cat. II; directional); cantilever al left and right expose	(3-second gust) CDL=6.0psf; h=25ft; Exp B; Enclosed; left and right exposed d; Lumber DOL=1.60 weer responsible for wown covers rain load	ing	Concentrate	-04, 2-3-34, 97 ed Loads (lb) 544 (F), 8=-354 (F		1020					Printed copie document and signed and s signature mu on any elect	re not considered sealed and the ust be verified ronic copies.

May 14,2025

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	T-25	Piggyback Base	1	1	Job Reference (optional)	T37314136

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:34:14 ID:N8b3mX4dRuvd18jE94_wFUyHyUz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	6-10-12	13-10-4	20-9-13	28-4-0	1
Scale = 1:85.1	6-10-12	6-11-8	6-11-9	7-6-3	

Plate Offsets (X, Y): [1:0-1-0,0-1-8], [2:0-3-12,0-2-0], [3:0-3-0,0-2-0], [5:0-1-12,0-1-8]

Loading TCLL (roof) TCDL BCLL BCDL LUMBER	(psf) 20.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES FBC2023		CSI TC BC WB Matrix-AS			in -0.09 -0.18 0.03 0.05 g.	(loc) 8-15 8-15 6 8-15	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 178 lb	GRIP 244/190 FT = 20%
TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.1 2x4 SP No.2 Structural wood shee except end verticals, (6-0-0 max.): 2-3. Rigid ceiling directly 1 Row at midpt (size) 6=0-6-0, 1 Max Horiz 12=-190 (Max Uplift 6=-154 (Li	, and 2-0-0 oc purlin: applied. 2-11, 5-9 12= Mechanical LC 12) C 12), 12=-125 (LC	s 7) 8) 9) 12)	chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Refer to gird Provide mec bearing plate 12 and 154 I This truss de structural wo	as been designed f ad nonconcurrent i has been designed in chord in all area by 2-00-00 wide wi hy other members, er(s) for truss to tr hanical connection e capable of withst b uplift at joint 6. esign requires that hord sheathing be a 2" gypsum sheetre hord	with any d for a liv s where ill fit betw , with BC uss coni n (by oth anding 2 a minim upplied d	other live load of 20.0 a rectangle veen the bott CDL = 10.0ps1 nections. ers) of truss t :25 lb uplift at um of 7/16"	Opsf om f. to t joint top					
FORCES	Tension				 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 								
BOT CHORD WEBS		1=0/744, 8-9=-44/13	348, LO	AD CASE(S)	Standard								
WEBS	5-9=-653/156, 5-8=0												
NOTES												This is a literated	
1) Unbalance this design	ed roof live loads have n.	been considered for										This item ha digitally sign	
Vasd=101 B=45ft; L= MWFRS (Zone1 10- 18-6-6 to 25-2-7 to	CE 7-22; Vult=130mph Imph; TCDL=4.2psf; BG =28ft; eave=4ft; Cat. II; (directional) and C-C Zc -4-12 to 14-3-8, Zone2 20-11-8, Zone2 20-11-1 37-1-0 zone; cantilever C-C for members and f	CDL=6.0psf; h=25ft; Exp B; Enclosed; one3 7-4-12 to 10-4- 14-3-8 to 18-6-6, Zo 8 to 25-2-7, Zone1 • left and right	one1									on the date Printed copid document and signed and signature more	binger, Joseph, PE indicated here. es of this re not considered sealed and the ust be verified

exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Building Designer / Project engineer responsible for 3)

verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component. Joseph Ebinger PE No. 98947 MiTek Inc. DBA MITek USA FL Cert 6634 16023 Swingley Ridge Road, Chesterfield, MO 63017 Date

on any electronic copies.

May 14,2025

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	T-26	Piggyback Base	2	1	Job Reference (ontional)	T37314137

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:34:14 ID:7UwTgw2GLXWmTgcdXE5T7xyHzqD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	6-10-12	13-10-4	20-9-13	28-4-0
0 1 1 70 0	6-10-12	6-11-8	6-11-9	7-6-3
Scale = 1:79.8				

Plate Offsets (X, Y): [1:0-1-0,0-1-8], [2:0-3-12,0-2-0], [3:0-3-0,0-2-0], [4:0-1-12,0-1-8]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code		3/TPI2014	CSI TC BC WB Matrix-AS	0.47 0.46 0.22	Horz(CT) Wind(LL)	in -0.10 -0.19 0.03 0.06	(loc) 6-13 6-13 5 6-13	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 176 lb	GRIP 244/190 FT = 20%
TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.1 2x4 SP No.2 Structural wood she except end verticals (6-0-0 max.): 2-3.	, and 2-0-0 oc purlin	5) 6) ed,	This truss ha chord live loa * This truss h on the bottor 3-06-00 tall h chord and ar Refer to gird Provide mec	as been designed if ad nonconcurrent has been designed m chord in all area by 2-00-00 wide win hy other members, er(s) for truss to tr hanical connection	for a 10. with any d for a liv s where ill fit betv , with BC russ coni n (by oth	0 psf bottom other live loa re load of 20.0 a rectangle ween the botto CDL = 10.0psi nections. wers) of truss to	nds. Opsf om f. to					
WEBS REACTIONS		.C 12), 10=-127 (LC	9) 12)	5 and 127 lb This truss de structural wo	e capable of withst uplift at joint 10. esign requires that ood sheathing be a /2" gypsum sheetro hord.	a minim	ium of 7/16" lirectly to the	top					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	10		Irlin representation ation of the purlin a			size					
TOP CHORD	1-2=-878/160, 2-3=- 4-5=-1708/183, 1-10		,	bottom chord	d.	J. J. J.							
BOT CHORD WEBS	9-10=-141/161, 7-9= 5-6=-71/1362 2-9=-276/119, 2-7=-		2,	//D 0//02(0)	olandara								
	4-7=-663/166, 4-6=0	, , ,											
this desig 2) Wind: AS Vasd=10 ⁻ B=45ft; L= MWFRS Zone1 10 18-6-6 to	ed roof live loads have n. CE 7-22; Vult=130mph 1mph; TCDL=4.2psf; Br =28ft; eave=4ft; Cat. II; (directional) and C-C Zr -4-12 to 14-3-8, Zone2 20-11-8, Zone2 20-11- 35-7-0 zone: cantilevel	(3-second gust) CDL=6.0psf; h=25ft; Exp B; Enclosed; one3 7-4-12 to 10-4 14-3-8 to 18-66, Zu 8 to 25-2-7, Zone1	; -12,									on the date Printed copie document a	ed and binger, Joseph, P indicated here.

18-6-6 to 20-11-8, Zone2 20-11-8 to 25-2-7, Zone1 25-2-7 to 35-7-0 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Building Designer / Project engineer responsible for 3) verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component. on any electronic copies. Joseph Ebinger PE No. 98947 MiTek Inc. DBA MITek USA FL Cert 6634 16023 Swingley Ridge Road, Chesterfield, MO 63017

signature must be verified

Page: 1

May 14,2025

🛕 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - verify design parameters and READ NOTES ON THIS AND INCLOSED INTERNETING TO THE REFERENCE FOR UNITY TO THE INSTANCE OF THE ADDRESS OF THE ADDRESS

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	T-27	Piggyback Base Girder	1	1	Job Reference (optional)	T37314138

Scale = 1:79.8

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:34:15 ID:VLG7Fyv5VUyydvwbOyOig8yHyi6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

[1:0-4-0,0-0-4], [3:0-2-4,0-1-8], [7:0-2-8,0-1-13], [12:0-4-4,0-2-4], [17:0-1-4,0-1-8], [20:0-2-8,0-2-4], [21:0-3-8,0-1-8], [22:Edge,0-2-12], [23:0-3-8,0-2-4], [23:0-3-8,0-1-8], [23:0-3-8,0-1-8], [23:0-3-8,0-1-8], [23:0-3-8,0-2-4], [23:0-3-8,0-2-4], [23:0-3-8,0-1-8], [23:0-3-8,0-2-4], [23:0-3-2,0-2-	-8],
Plate Offsets (X, Y): [24:0-2-8,0-2-12], [25:0-3-0,0-3-12], [27:0-4-0,0-3-12], [28:0-3-8,0-4-0], [29:0-4-0,0-0-4]	

Loading TCLL (roof) TCDL	(psf) 20.0 7.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.25 1.25	CSI TC BC	0.62 0.61			(loc) 24-25 24-25	l/defl >999 >999	L/d 360 240	PLATES MT20	GRIP 244/190
BCLL	0.0*	Rep Stress Incr	NO	WB	0.93	· · ·	.05	22	n/a	n/a		
BCDL	10.0	Code	FBC2023/TPI2014	Matrix-MS	_	Wind(LL) 0	.12	24-25	>999	240	Weight: 332 lb	FT = 20%
	1 Brace at Jt(s): 30, 31, 33, 34, 35 (size) 22= Mech Max Horiz 29=-257 (I Max Uplift 22=-599 (I Max Grav 22=3036 ((Ib) - Maximum Com Tension 1-29=-2929/619, 7-8	athing directly applie xcept end verticals. applied or 9-3-6 oc 3-28 anical, 29= Mechani LC 6) LC 8), 29=-612 (LC 8 (LC 14), 29=3001 (LC pression/Maximum =-1616/442,	d or cal	$\begin{array}{c} 25\cdot35=\cdot1285/320\\ 17\cdot49=\cdot1074/212\\ 17\cdot36=\cdot228/1311\\ 1\cdot28=\cdot541/2633,\\ 3\cdot32=\cdot1777/389,\\ 30\cdot38=\cdot273/1464\\ 20\cdot23=\cdot1644/393\\ 12\cdot34=\cdot356/1787\\ 7\cdot31=\cdot193/881,2\\ 33\cdot43=\cdot989/180,\\ 12\cdot45=\cdot1049/191\\ 30\cdot32=\cdot390/146,\\ 39\cdot40=\cdot322/88,3\\ 1\cdot37=\cdot357/139,3\\ 31\cdot41=\cdot352/94,4\\ 33\cdot42=\cdot352/94,4\\ 33\cdot42=\cdot352/94,3\\ 34\cdot46=\cdot405/113,\\ 34\cdot47=\cdot359/104,\\ 50\cdot51=\cdot359/104,\\ 55\cdot36=\cdot429/153,\\ 19\cdot48=\cdot430/152,\\ 5\cdot39=-101/48,6\cdot429/153,\\ 19\cdot48=\cdot430/152,\\ 5\cdot48=\cdot430/152,\\ 5\cdot48=\cdot400,\\ 5\cdot48=\cdot400,\\ 5\cdot48=\cdot400,\\ 5\cdot48=\cdot400,\\ 5\cdot48=\cdot400,\\ 5\cdot48=\cdot400,\\ 5\cdot48=\cdot400,\\ 5\cdot48=\cdot400,\\ 5\cdot48=\cdot400,\\ 5\cdot48=\cdot4$, 24-36=-, , 21-23=-, 28-32=-11 3-38=-28, , 27-30=-, , 25-34=-, , 27-31=- 7-33=-10 43-45=-9, , 20-24=-, 30-39=-3, 1-40=-32; 2-37=-35, 3-44=-40 34-46=-41 47-51=-3; 35-50=-3; 36-48=-4; 40=-11/16	226/1320, 862/4385, 810/398, 2/1411, 2257/1383, 396/2036, 186/894, 71/242, 82/174, 852/173, 22/88, 2/88, 6/138, 2/94, 5/113, 55/104, 30/152, 1/2, 4-38=-33/10: 5, 8-41=-21/73,	5,	 only see or c d) Buil veri requistread 5) Pro 6) All pindi for an or c 7) Trustration 8) Gat 9) This cho 10) * Th on t 3-00 cho 	v. For st Standa onsult q ding De fying ap uiremen vide ade blates ar cated. ss to be ced agai ble studs s truss h rd live lc his truss he botto 5-00 tall rd and a	uds ex rd Indu ualified signer plied rd ts spece equate re 1.5x fully sl inst late s space as bee bad nor has be om cho by 2-0 uny oth	sposed to wind (n istry Gable End E d building designm / Project enginee oof live load show cific to the use of drainage to preve 4 () MT20 unless neathed from one eral movement (i, ed at 1-4-0 oc. en designed for a nconcurrent with even designed for a for a line areas wh 0-00 wide will fit l	e face or securely .e. diagonal web). 10.0 psf bottom any other live loads. a live load of 20.0psf iere a rectangle between the bottom o BCDL = 10.0psf.
BOT CHORD	$\begin{array}{l} 8 - 9 = -1616/442, 9 - 10\\ 10 - 11 = -1616/442, 11\\ 20 - 21 = -3816/784, 21\\ 1 - 2 = -950/196, 2 - 3 = -6\\ 4 - 5 = -1961/459, 5 - 6 =\\ 6 - 7 = -1961/507, 12 - 1\\ 13 - 14 = -2577/624, 14\\ 15 - 16 = -2558/575, 16\\ 17 - 18 = -3394/700, 16\\ 17 - 18 = -3394/700, 16\\ 19 - 20 = -3845/815\\ 28 - 29 = -198/212, 27 - 25 - 27 = -429/2480, 24\\ 23 - 24 = -722/3857, 22\\ \end{array}$	I-12=-1616/442, I-22=-2530/529, 914/197, 3-4=-2002/- -1985/492, 3=-2390/598, I-15=-2542/603, 5-17=-2510/534, 3-19=-3449/696, 28=-285/1221, I-25=-590/3224,	NOTES 1) Unbalance this design 2) Wind: ASC Vasd=101 B=45ft; L= MWFRS (i	E 7-22; Vult=130m mph; TCDL=4.2psf 28ft; eave=4ft; Cat. directional); cantilev al left and right expo	5-46=-39, 8-48=-7/2 -51=-121, we been of ph (3-sec ; BCDL=6 II; Exp B ver left an	(158, 17, 16-49=-160/6) 28 considered for cond gust) 0.0psf; h=25ft; ; Enclosed; d right exposed;					on the date Printed copi document a signed and s signature m	hed and binger, Joseph, P indicated here.

Joseph Ebinger PE No. 98947 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Road, Chesterfield, MC rfield, MO 63017

May 14,2025

Page: 1

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - verify design parameters and READ NOTES ON THIS AND INCLOSED INTERNETING TO THE REFERENCE FOR UNITY TO THE INSTANCE OF THE ADDRESS OF THE ADDRESS

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	T-27	Piggyback Base Girder	1	1	Job Reference (optional)	T37314138

- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 612 lb uplift at joint 29 and 599 lb uplift at joint 22.
- 13) "NAILED" indicates Girder: 3-10d (0.148" x 3") toe-nails per NDS guidelines.
- 14) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- Dead + Roof Live (balanced): Lumber Increase=1.25, 1) Plate Increase=1.25
 - Uniform Loads (lb/ft)
 - Vert: 7-12=-54, 20-21=-54, 22-29=-20, 1-7=-54, 12-20=-54
 - Concentrated Loads (lb)
 - Vert: 53=-267 (B), 54=-267 (B), 55=-267 (B),
 - 56=-267 (B), 57=-267 (B), 58=-267 (B), 59=-267 (B), 60=-267 (B), 61=-267 (B), 62=-267 (B), 63=-228 (B), 64=-250 (B), 65=-250 (B), 66=-256 (B)

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:34:15 ID:VLG7Fyv5VUyydvwbOyOig8yHyi6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

This item has been digitally signed and sealed by Ebinger, Joseph, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joseph Ebinger PE No. 98947 MiTek Inc. DBA MITek USA FL Cert 6634 16023 Swingley Ridge Road, Chesterfield, MO 63017

May 14,2025

👠 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - verify design parameters and READ NOTES ON THIS AND INCLOSED INTERNETING TO THE REFERENCE FOR UNITY TO THE INSTANCE OF THE ADDRESS OF THE ADDRESS

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	T-28	Common Supported Gable	1	1	Job Reference (optional)	T37314139

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:34:15 ID:_nOB8RbRpopjP9TSFpWrEZyI_Wi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

13-0-0

Page: 1

Scale = 1:45.7		
Plate Offsets (X, Y):	[2:0-1-12,0-1-15], [12:0-1-12,0-1-15]	

Plate Offsets (X, Y): [2:0-1-12,0-1-1	5], [12:0-1-12,0-1-15]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 7.0 0.0* 10.0	Plate Grip DOL 1 Lumber DOL 1 Rep Stress Incr Y	2-0-0 .25 .25 YES BC202	3/TPI2014	CSI TC BC WB Matrix-AS	0.12 0.03 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 24	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 77 lb	GRIP 244/190 FT = 20%
	Rigid ceiling directly (size) 2=13-0-0, 15=13-0-0 Max Horiz 2=98 (LC Max Uplift 2=-81 (LC 14=-3 (LC 16=-17 (L 19=-44 (L Max Grav 2=195 (LC 14=135 (L 14=135 (L 16=104 (L	12=13-0-0, 14=13-0-0, 0, 16=13-0-0, 17=13-0-0, 0, 19=13-0-0, 20=13-0-0 11) 12), 12=-81 (LC 12), 12), 12=-81 (LC 12), C 12), 18=-17 (LC 12), C 12), 18=-17 (LC 12), C 12), 20=-1 (LC 9) C 1), 12=195 (LC 1), C 18), 15=92 (LC 18), C 24), 17=89 (LC 17), C 17), 19=91 (LC 17),	4)	Vasd=101m B=45ft; L=24 MWFRS (dii left and right exposed;C-C reactions sh DOL=1.60 Truss desigr only. For sti see Standar or consult qu Building Des verifying app requirement All plates ard indicated. Gable requii Gable studs This truss ha	7-22; Vult=130mph ph; TCDL=4.2psf; B lift; eave=2ft; Cat. II; ectional) and C-C Z exposed ; end verti C for members and fo own; Lumber DOL= ned for wind loads ir uds exposed to wind d Industry Gable En ualified building desi igner / Project engin lifed roof live load sl s specific to the use e 1.5x4 () MT20 ur es continuous botto spaced at 1-4-0 oc. as been designed fo ad nonconcurrent w	CDL=6 ; Exp B cone3 z ical left forces a 1.60 pl d (norm d Deta igner a neer re hown c e of this nless o om chor	i.Opsf; h=25ft; ; Enclosed; one; cantilevæ and right & MWFRS for ate grip ane of the tru: al to the face, ils as applicat s per ANSI/TF sponsible for overs rain loa truss compor therwise d bearing. D psf bottom	er SS), ole, PI 1. ding nent.					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	9)	* This truss I	nas been designed t m chord in all areas	for a liv	e load of 20.0						
TOP CHORD	1-2=0/45, 2-4=-78/66 5-6=-48/101, 6-7=-70 8-9=-47/101, 9-10=-3 12-13=0/45	0/149, 7-8=-70/149,	10	3-06-00 tall l chord and a) Provide med	by 2-00-00 wide will by other members. chanical connection	fit betv (by oth	veen the botto ers) of truss to	0				This item hadigitally sign	ned and
BOT CHORD	2-20=-51/133, 19-20 18-19=-51/133, 17-1 16-17=-51/133, 15-1 14-15=-51/133, 12-1	8=-51/133, 6=-51/133,		2, 81 lb uplif at joint 19, 1 lb uplift at jo	e capable of withsta t at joint 12, 17 lb up lb uplift at joint 20, int 15, 3 lb uplift at jo 1 lb uplift at joint 20	olift at j 17 lb u oint 14,	pint 18, 44 lb plift at joint 16	uplift 5, 44				on the date Printed cop	
WEBS	7-17=-91/17, 6-18=- 4-20=-96/93, 8-16=- 10-14=-95/92	78/76, 5-19=-69/101,	11) This truss de structural wo	1 lb uplift at joint 12 esign requires that a ood sheathing be ap (2" gypsum sheetroo hord	a minim oplied d	irectly to the t					signed and signature m	re not considered sealed and the nust be verified tronic copies.
	ed roof live loads have	been considered for	LC	DAD CASE(S)								Joseph Ebinger PE No.	•
	••											MiTek Inc. DBA MiTek	USA FL Cert 6634

Joseph Ebinger PE No. 98947 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Road, Chesterfield, MO 63017 Date:

May 14,2025

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	T07044440
24-0602-A1	T-29	Common Structural Gable	1	1	Job Reference (optional)	T37314140

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:34:16 ID:7hLHS7s40GUI65uI6iHgXEyHco0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

		13-1-8	
1	9-8-0	12-7-12	19-4-0
	9-8-0	2-11-12	6-2-8
		0-5-12	

Scale = 1:76.5 Plate Offsets (X, Y): [2:0-2-0.

	X, Y): [2:0-2-0,0-1-8]	, [13.0-1-12,0-1-15] T	-										
Loading TCLL (roof)	(psf) 20.0		2-0-0 1.25		CSI TC	0.35	DEFL Vert(LL)	in -0 14	(loc) 22-31	l/defl >999	L/d 360	PLATES MT20	GRIP 244/190
TCDL	7.0		1.25		BC	0.48	Vert(CT)	-0.29		>531	240		,
BCLL	0.0*	Rep Stress Incr	YES		WB	0.14	Horz(CT)	0.01	20	n/a	n/a		
BCDL	10.0	Code	FBC202	23/TPI2014	Matrix-AS		Wind(LL)	-0.02	22-31	>999	240	Weight: 132 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD JOINTS	2x4 SP No.1 2x4 SP No.1 2x4 SP No.2 2x4 SP No.2 Structural wood she Rigid ceiling directly 1 Brace at Jt(s): 24,		1) 2)	this design. Wind: ASCE Vasd=101mj B=45ft; L=24 MWFRS (dir Zone1 1-6-0 13-8-0 to 20-	roof live loads ha 7-22; Vult=130n oh; TCDL=4.2psi lft; eave=4ft; Cat ectional) and C-(to 9-8-0, Zone2 10-0 zone; canti	nph (3-seo ; BCDL=6 . II; Exp B C Zone3 - 9-8-0 to 1 lever left a	cond gust) .0psf; h=25f ; Enclosed; 1-6-0 to 1-6- 3-8-0, Zone ² and right	t; O, I					
REACTIONS	25, 27 (size) 2=0-6-0, 18=6-10-1 21=0-3-8 Max Horiz 2=140 (LC Max Uplift 2=-98 (LC 17=-15 (L 21=-149 (Max Grav 2=589 (LC 17=154 (I 19=308 (I	15=6-10-0, 17=6-10-0, 0, 19=6-10-0, 20=6-10- C 11) C 12), 15=-58 (LC 12), .C 8), 19=-52 (LC 12), (LC 3) C 1), 15=189 (LC 24), LC 24), 18=266 (LC 1), LC 21), 20=211 (LC 3),	4)	members an Lumber DOL Truss design only. For stu see Standarr or consult qu Building Des verifying app requirements	d vertical left and d forces & MWF =1.60 plate grip hed for wind load das exposed to w d Industry Gable halified building d igner / Project er lied roof live load s specific to the u e 1.5x4 () MT20	RS for rea DOL=1.60 s in the pl vind (norm End Deta esigner a ngineer re d shown c use of this	ctions show ane of the tru al to the face ils as applica s per ANSI/T sponsible for overs rain lo truss compo	n; e), able, PI 1. r ading					
FORCES	21=-46 (L (Ib) - Maximum Com	,	6) 7)	This truss ha	spaced at 1-4-0 as been designed	for a 10.							
TOP CHORD		, ,		* This truss h on the bottor 3-06-00 tall h chord and ar	ad nonconcurren has been designe m chord in all are by 2-00-00 wide hy other member	ed for a liv as where will fit betw s.	e load of 20 a rectangle veen the bot	.0psf tom					
BOT CHORD	2-22=0/526, 21-22= 19-20=-96/132, 18-1 17-18=-96/132, 15-1		9)	bearing plate 2, 58 lb uplifi at joint 17, 1	hanical connection capable of with t at joint 15, 52 lb 49 lb uplift at join	standing 9 uplift at j	18 lb uplift at pint 19, 15 lb	joint uplift				Printed copi document a	
	25-28=0/309, 25-26 3-22=-212/78, 6-23= 9-25=-58/58, 10-26=	=0/327, 11-26=0/296, =-18/18, 8-24=-56/47, =-236/41, 19-26=-304/7 7=-99/55, 5-23=-129/10 -27=-133/103,	75,)4,	structural wo		applied d	irectly to the	•				Joseph Ebinger PE No. MITek Inc. DBA MITek U 16023 Swingley Ridge Ro Date:	ust be verified ronic copies. ²⁸⁹⁴⁷ ²⁸⁴ FL Cert 6634 ²⁸⁴ (Accesterfield, MO 63017

May 14,2025

Page: 1

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org)
and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	T-30	Common	4	1	Job Reference (optional)	T37314141

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:34:16 ID:HOrFBeuV99rJHrl4fryTCcyI_WK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	1	9-8-0	1 1	9-4-0	1
	r	9-8-0	۱ <u>و</u>	9-8-0	1
Scale = 1:70.7					
Plate Offsets (X, Y): [2:0-6-0,0-0-6], [6:0-6-0,0-0-6]					

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25		TC	0.30	Vert(LL)	-0.12	(IOC) 7-10	>999	360	MT20	244/190
TCDL	7.0	Lumber DOL	1.25		BC	0.50	Vert(CT)	-0.12	7-10	>910	240	101120	244/130
BCLL	0.0*	Rep Stress Incr	YES		WB	0.33	Horz(CT)	0.02	6	_310 n/a	0 n/a		
BCDL	10.0	Code	FBC2023/	TPI2014	Matrix-AS	0.17	Wind(LL)	0.02	7-10	>999	240	Weight: 92 lb	FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design	2x4 SP No.1 2x4 SP No.1 2x4 SP No.2 Structural wood she: Rigid ceiling directly (size) 2=0-6-0, 6 Max Horiz 2=142 (LC Max Uplift 2=-133 (L Max Grav 2=799 (LC (lb) - Maximum Com Tension 1-2=0/45, 2-3=-978/ 4-5=-760/181, 5-6=-1 2-7=-108/787, 6-7=-2 4-7=-61/556, 5-7=-2 d roof live loads have L E 7-22; Vult=130mph	applied. 5=0-6-0 C 11) C 12), 6=-75 (LC 12) C 1), 6=712 (LC 1) ipression/Maximum 198, 3-4=-759/166, 984/213 99/796 92/164, 3-7=-281/15 been considered for	7) d. LOA	bearing plate 6 and 133 lb This truss de structural wo		tanding 7 t a minim applied di	5 lb uplift at j um of 7/16" rectly to the	joint top					

2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Zone3 -1-6-0 to 1-6-0, Zone1 1-6-0 to 9-8-0, Zone2 9-8-0 to 13-10-15, Zone1 13-10-15 to 19-4-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 5) * This truss has been designed for a live load of 20.0psf
- 5) * This truss has been designed for a live load of 20.0ps on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

This item has been digitally signed and sealed by Ebinger, Joseph, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Page: 1

Joseph Ebinger PE No. 98947 MITek Inc. DBA MITek USA FL Cert 6634 16023 Swingley Ridge Road, Chesterfield, MO 63017 Date:

May 14,2025

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	T-31	Common Girder	1	2	Job Reference (optional)	T37314142

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:34:16 ID:q9wh4rPgleismCRcLsmII8yHxgv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff

	7-8-12	11-7-4	19-4-0	
Scale = 1:70.7	7-8-12	3-10-8	7-8-12	

Plate Offsets (X, Y): [5:0-2-8,0-2-0], [9:0-6-0,0-4-12], [10:0-6-0,0-4-12]

unless otherwise indicated.

		-											
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25		тс	0.91	Vert(LL)	-0.20	9-12	>999	360	MT20	244/190
TCDL	7.0	Lumber DOL	1.25		BC	0.88	Vert(CT)	-0.36	9-12	>637	240		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.53		0.05	8	n/a	n/a		
BCDL	10.0	Code	FBC202	3/TPI2014	Matrix-MS		Wind(LL)	0.14	9-12	>999	240	Weight: 257 lb	FT = 20%
		1										0	
LUMBER			3)	Unbalanced	roof live loads ha	ve been	considered for	or					
TOP CHORD	2x4 SP No.1			this design.									
BOT CHORD	2x6 SP 2400F 2.0E		4)		7-22; Vult=130m								
WEBS	2x4 SP No.2				oh; TCDL=4.2psf			;					
BRACING					lft; eave=4ft; Cat.								
TOP CHORD	Structural wood she	athing directly applie	ed or		ectional); cantilev								
	2-11-6 oc purlins.				eft and right expo	osed; Lun	nber DOL=1.	60					
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 or	с _– ,	plate grip DC									
	bracing.		5)		igner / Project en								
REACTIONS	(size) 2=0-6-0, 8	8=0-6-0			lied roof live load								
	Max Horiz 2=142 (LO	C 7)	6)		s specific to the u as been designed			nent.					
	Max Uplift 2=-709 (L	C 8), 8=-666 (LC 8)	0)					ode					
	Max Grav 2=4230 (LC 13), 8=5610 (LC 14)				chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf								
FORCES	(lb) - Maximum Com	pression/Maximum	,		n chord in all are			opsi					
	Tension				by 2-00-00 wide v			om					
TOP CHORD	1-2=0/45, 2-3=-7193	3/1177, 3-4=-7049/1 ⁻	157,		ny other members								
	4-5=-6957/1210, 5-6	6=-7477/1186,	8)		hanical connection		ers) of truss	to					
	6-7=-7656/1140, 7-8	3=-8884/1171	,	bearing plate	e capable of withs	standing 6	66 Ib uplift a	t joint					
BOT CHORD		10=-641/4924,		8 and 709 lb	uplift at joint 2.	-		-					
	8-9=-935/6718		9)	Use MiTek ⊦	US26 (With 14-1	6d nails i	nto Girder &						
WEBS	5-9=-631/4858, 5-10				nto Truss) or equ								
	4-10=-50/173, 6-9=-	50/258, 3-10=-225/1	05,	max. starting	at 7-8-12 from th	ne left en	d to 15-8-12	to					
	7-9=-584/138				s(es) to back face							This items has	
NOTES			10		L24 (With 4-10d)							This item ha	
 2-ply truss 	s to be connected toge	ther with 10d			to Truss) or equi			the				digitally sign	led and
(0.131"x3	") nails as follows:				onnect truss(es) to							sealed by El	binger, Joseph, Pl
Top chore	ds connected as follows	s: 2x4 - 1 row at 0-9-	0		ed 0.0 deg.to the	right, slo	bing 0.0 deg.					on the date	indicated here.
oc.				down.								Printed copi	
	hords connected as foll	ows: 2x6 - 2 rows		,	oles where hange	r is in coi	ntact with lum	iber.					
	d at 0-7-0 oc.			LOAD CASE(S) Standard									re not considered
	nected as follows: 2x4		1)		of Live (balanced): Lumbe	Increase=1.	25,				signed and	sealed and the
Except m	ember 4-10 2x4 - 2 rov	vs staggered at 0-9-0	000.	Plate Increa								signature m	ust be verified
	are considered equally	applied to all plice		Uniform Lo		0 00						0	tronic copies.
	noted as front (F) or ba				=-54, 5-8=-54, 2-	8=-20						5 any 51000	
	section. Ply to ply con		ND		ed Loads (lb)	00 (D) 1	- 4000 (5)					Joseph Fhinger DF No	08047
	to distribute only loads				=-2795 (B), 9=-10							Joseph Ebinger PE No. MiTek Inc. DBA MiTek U	
	herwise indicated	noted as (F) of (D),		16=-102	1 (B), 17=-1389 (в), 18=-4	93 (B)					16023 Swingley Ridge Ro Date:	oad, Chesterfield, MO 63017

May 14,2025

Page: 1

🗼 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org)
and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	T-32	Common Girder	1	2	Job Reference (optional)	T37314143

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:34:16 ID:P?Cd400FXHSVuoqE5I5Y94yHygB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1	3-7-7	6-6-0	9-4-9	13-0-0
	3-7-7	2-10-9	2-10-9	3-7-7

Scale = 1:48.4		2 .0 0	
Plate Offsets (X, Y):	[1:0-4-1,0-1-8], [3:0-4-1,0-1-8], [5:0-5-8,Edge], [6:0-4-4,0-1-8], [7:0-3-0),0-0-8]	

- 1000 0 110010 (, , ,). [j, [ele : i,e :	0]; [: :0 0 0;0 0 0]								
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 NO FBC20	23/TPI2014	CSI TC BC WB Matrix-MS	0.52 0.74 0.38	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.06 -0.10 0.02 0.04	(loc) 6-7 6-7 3 6-7	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 154 lb	GRIP 244/190 FT = 20%
 (0.131"x3" Top chord oc. Bottom ch staggered Web conn All loads a except if n CASE(S) s provided tr 	2x4 SP No.1 2x6 SP No.1 2x4 SP No.2 Structural wood shee 5-0-5 oc purlins. Rigid ceiling directly bracing. (size) 1=0-6-0, 3 Max Horiz 1=-100 (L Max Uplift 1=-594 (L Max Grav 1=-4171 (L (Ib) - Maximum Com Tension 1-2=-6241/999, 2-3= 1-7=-707/5208, 6-7= 5-6=-409/3097, 3-5= 2-6=-415/2399, 2-7= to be connected toged nails as follows: s connected as follows: s connected as follows: ords connected as follows: ords connected as follows: ected as follows: 2x4 - ire considered equally oted as front (F) or bas section. Ply to ply com o distribute only loads erwise indicated.	applied or 10-0-0 or 3=0-6-0 C 6) C 8), 3=-397 (LC 8) LC 13), 3=2177 (LC apression/Maximum -3477/575, 3-4=0/4 -409/3097, -354/2861 -516/3651, 2-5=-41 ther with 10d s: 2x4 - 1 row at 0-9- ows: 2x6 - 2 rows 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LC nections have been	ed or 5 c 6 14) 5 8 7/149 9 7/149 1 1 0 L 1	 Vasd=101m B=45ft; L=2 MWFRS (di end vertical plate grip D Building De verifying ap requiremen This truss h chord live lc * This truss on the botto 3-06-00 tall chord and a Provide me bearing plat 1 and 397 ll Use MiTek 6-16d nails max. startin connect trus Fill all nail h OAD CASE(S) Dead + Ro Plate Incre Uniform Lo Vert: 1-2 Concentra 	signer / Project er plied roof live load ts specific to the u as been designed has been designed m chord in all are by 2-00-00 wide v my other members chanical connection the capable of withs to uplift at joint 3. HUS26 (With 14-1 into Truss) or equil g at 1-3-4 from the ss(es) to back face oles where hange) Standard boof Live (balanced base=1.25	BCDL=6 II; Exp B ver left an ossed; Lum gineer re d shown c ise of this if or a 10.0 t with any d for a liv as where will fit betw s. on (by oth standing 5 l6d nails i ivalent sp e left end e of bottor r is in cor): Lumber 3=-20	.0psf; h=25ft ; Enclosed; d right exposs aber DOL=1. sponsible for overs rain loa other live loa e load of 20. a rectangle even the bott ers) of truss i94 lb uplift a nto Girder & aced at 2-0-(to 5-3-4 to n chord. tact with lurr	ed; 60 ading nent. ads. 0psf om to t joint 0 oc				on the date Printed copi document a signed and	ed and binger, Joseph, P indicated here.

3) Unbalanced roof live loads have been considered for this design.

signature must be verified on any electronic copies.

Page: 1

Joseph Ebinger PE No. 98947 MiTek Inc. DBA MITek USA FL Cert 6634 16023 Swingley Ridge Road, Chesterfield, MO 63017 Date

May 14,2025

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	T-33	Common	4	1	Job Reference (optional)	T37314144

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:34:17 ID:gARJmlQLBlo3HqkBVsz8OXzmFqa-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:48.4					<u>6-6-0</u> 6-6-0			<u>13-0-</u> 6-6-0	-		-1			
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.25		тс	0.26	Vert(LL)	-0.04	6-12	>999	360	MT20	244/190	
TCDL	7.0	Lumber DOL	1.25		BC	0.29	Vert(CT)	-0.07	6-12	>999	240			
BCLL	0.0*	Rep Stress Incr	YES		WB	0.07	Horz(CT)	0.01	4	n/a	n/a			

Wind(LL)

0.03

6-12

>999

240

Weight: 55 lb

FT = 20%

-		
LUMBER		
TOP CHORD	2x4 SP N	o.1
BOT CHORD	2x4 SP N	o.1
WEBS	2x4 SP N	0.2
BRACING		
TOP CHORD	Structura	I wood sheathing directly applied.
BOT CHORD	Rigid ceil	ing directly applied.
REACTIONS	(size)	2=0-6-0, 4=0-6-0
	Max Horiz	2=105 (LC 11)
	Max Uplift	2=-104 (LC 12), 4=-104 (LC 12)
	Max Grav	2=562 (LC 1), 4=562 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	·
TOP CHORD	1-2=0/45,	2-3=-572/165, 3-4=-572/165,
	4-5=0/45	
BOT CHORD	2-6=0/407	7, 4-6=0/407

10.0

Code

WEBS 3-6=0/293

NOTES

BCDL

 Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Zone3 -1-6-0 to 1-6-0, Zone1 1-6-0 to 6-6-0, Zone2 6-6-0 to 10-8-15, Zone1 10-8-15 to 14-6-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
 This truss has been designed for a 10.0 psf bottom
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 104 lb uplift at joint 2 and 104 lb uplift at joint 4.

Matrix-AS

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

FBC2023/TPI2014

This item has been digitally signed and sealed by Ebinger, Joseph, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joseph Ebinger PE No. 98947 MITek Inc. DBA MITek USA FL Cert 6634 16023 Swingley Ridge Road, Chesterfield, MO 63017 Date:

May 14,2025

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	T-34	Common Supported Gable	1	1	Job Reference (optional)	T37314145

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:34:17 ID:_nOB8RbRpopjP9TSFpWrEZyI_Wi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	13-0-0	
Scale = 1:45.7		1
Plate Offsets (X, Y): [2:0-1-12,0-1-15], [12:0-1-12,0-1-15]		

		I								-			
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES FBC202	3/TPI2014	CSI TC BC WB Matrix-AS	0.12 0.03 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 24	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 77 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD FORCES TOP CHORD BOT CHORD	 2x4 SP No.1 2x4 SP No.1 2x4 SP No.1 2x4 SP No.2 Structural wood she Rigid ceiling directly (size) 2=13-0-0. 18=13-0-0. 18=13-0-0. Max Horiz 2=98 (LC Max Uplift 2=-81 (LC 16=-17 (L 19=-44 (L Max Grav 2=195 (LC 14=135 (L 16=104 (L 18=106 (L 20=132 (I (lb) - Maximum Com Tension 1-2=0/45, 2-4=-78/6 5-6=-48/101, 6-7=-7 8-9=-47/101, 9-10=- 12-13=0/45 	athing directly applied applied. 12=13-0-0, 14=13-0 0, 16=13-0-0, 12=13-0 0, 19=13-0-0, 20=13- 11) 2 12), 12=-81 (LC 12), 3 8), 15=-44 (LC 12), C 12), 12=-17 (LC 12), C 12), 12=195 (LC 1), C 12), 12=195 (LC 1), C 13), 15=92 (LC 18 C 24), 17=89 (LC 17 C 17), 19=91 (LC 17), C 13), 10=12=73/40, 0)=51/133,	2) d. -0, 3) 0-0 , 4) 2), 5) 1), 6) 1), 7) 8) 9)	Wind: ASCE Vasd=101mj B=45ft; L=24 MWFRS (dir left and right exposed;C-C reactions shi DOL=1.60 Truss desigr only. For stu see Standarr or consult qu Building Des verifying app requirements All plates are indicated. Gable requir Gable studs This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar 0) Provide mec bearing plate 2, 81 lb uplift	7-22; Vult=130mp oh; TCDL=4.2psf; lft; eave=2ft; Cat. I ectional) and C-C exposed ; end vei C for members and own; Lumber DOL ed for wind loads uds exposed to wird d Industry Gable E ialified building de- igner / Project eng lied roof live load a s specific to the us e 1.5x4 () MT20 of es continuous bott spaced at 1-4-0 of tab been designed fad nonconcurrent has been designed n chord in all area by 2-00-00 wide wi y other members. hanical connectior e capable of withst t at joint 12, 17 lb of lb uplift at joint 20	BCDL=6 I; Exp B Zone3 z trical left I forces3 =1.60 pl in the pl dd (norm ind Deta signer a gineer re shown c e of this unless o om chor c for a 10. with any I for a liv s where I fit betw n (by oth anding 8	6.0psf; h=25ft; ; Enclosed; one; cantilevæ and right & MWFRS for ate grip ane of the trus all to the face; ils as applicat s per ANSI/TF sponsible for overs rain loa truss compor therwise d bearing. 0 psf bottom other live loar or a rectangle veen the bottoc ers) of truss to 31 bu uplift at jo bott 18, 44 lb	er , ss ble, PI 1. ding hent. ds. opsf om o oint uplift				This item ha digitally sigr sealed by E	as been
WEBS NOTES 1) Unbalanc this desig	4-20=-96/93, 8-16=- 10-14=-95/92	14=-51/133 78/76, 5-19=-69/101, 76/77, 9-15=-70/101,		joint 2 and 8) This truss de structural wo		2. a minim pplied d	um of 7/16" irectly to the t	ор				signed and signature m on any elec	re not considered sealed and the ust be verified tronic copies.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

May 14,2025

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Job		Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-	0602-A1	UT-1	Roof Special	2	1	Job Reference (optional)	T37314146

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:34:17 ID:2me49CxECZh7onk5RmvZQ1zHIMF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

					20-1-8
L	5-5-4	10-0-9	12-6-6	19-5-0	
Г	5-5-4	4-7-5	2-5-14	6-10-10	
					0-8-8

Scale = 1:72.2

Plate Offsets (X, Y): [2:0-6-5,0-3-4], [15:0-3-5,Edge]

		1					-					1	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25		тс	0.41	Vert(LL)	-0.09	18-19	>999	360	MT20	244/190
TCDL	7.0	Lumber DOL	1.25		BC	0.42	Vert(CT)	-0.16	18-19	>999	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.14	Horz(CT)	0.05	16	n/a	n/a		
BCDL	10.0	Code	FBC202	3/TPI2014	Matrix-AS		Wind(LL)	0.08	18-19	>999	240	Weight: 125 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD JOINTS REACTIONS	2x4 SP No.1 *Excep 2x4 SP No.1 2x4 SP No.2 2x4 SP No.2 Structural wood she Rigid ceiling directly 1 Brace at Jt(s): 29 (size) 2=0-6-0, Max Horiz 2=103 (L Max Uplift 2=-143 (L Max Grav 2=826 (LC (lb) - Maximum Com	t* 10-16:2x6 SP No.1 athing directly applied applied. 16=0-5-8 C 11) C 12), 16=-75 (LC 12 C 1), 16=725 (LC 1)	1) 2) 1. .) 3)	/TPI2014 Matrix-AS Wind(LL) 0.08 18-19 >999 240 Weight: 125 lb FT = 20% Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; NWFRS (directional) and C-C Zone3 -1-6-0 to 1-8-13, Zone1 1-8-13 to 12-8-2, Zone2 12-8-2 to 16-8-2, Zone1 16-8-2 to 19-10-12 zone; cantilever left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Building Designer / Project engineer responsible for							F1 = 20%		
TOP CHORD	Tension 1-2=0/30, 2-4=-1955 5-6=-1247/283, 6-7= 7-8=-1217/307, 10-1 11-12=-867/257, 12- 13-14=-938/212, 14- 15-16=-400/126, 8-5 9-10=-859/289 2-26=-322/1870, 25-	1=-822/283, 13=-898/235, 15=-973/233, 9=-953/299,	5) 6) 7)	verifying app requirements All plates are indicated. Gable studs This truss ha chord live loa	lied roof live load s specific to the use 1.5x4 () MT20 u spaced at 1-4-0 oc s been designed f ad nonconcurrent v	shown c e of this unless o c. for a 10. with any	overs rain loa truss compo therwise 0 psf bottom other live loa	ading ment. ads.					
WEBS	24-25=-322/1870, 2: 22-23=-166/1137, 2: 20-21=-79/757, 19-2 18-19=-79/757, 17-1 15-17=-135/757 5-25=-78/331, 5-30= 29-30=-745/154, 28 23-28=-773/169, 10	3-24=-322/1870, 1-22=-166/1137, 10=-79/757, 8=-79/757, -773/179, -29=-751/163, -21=-164/603,	9)	on the bottor 3-06-00 tall b chord and ar Bearing at jo using ANSI/T designer sho) Provide mec bearing plate	has been designed in chord in all areas by 2-00-00 wide wi by other members. int(s) 16 considers TPI 1 angle to grain uld verify capacity hanical connection e capable of withsta	s where ill fit betv s paralle n formul r of bear n (by oth	a rectangle veen the bott I to grain valu a. Building ing surface. ers) of truss	to				on the date i Printed copie document a	ed and binger, Joseph, PE ndicated here.
NOTES	,	27=-29/108, 67/19, 6-29=-25/32, 132/56, 11-20=-17/4	15,) This truss de structural wo		pplied d	irectly to the					signature mu on any elect	ust be verified ronic copies.

May 14,2025

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	UT-2	Roof Special	3	1	Job Reference (optional)	T37314147

-1-6-0

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:34:18 ID:yI5P7nEYfL7n5CAxdqDRDizHIBX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	5-5-4	9-11-0	12-3-4	19-5-0	24-10-0	
Scale = 1:72.7	5-5-4	4-5-12	2-4-4	7-1-12	5-5-0	1

Plate Offsets (X, Y): [5:0-2-8,0-2-4], [7:0-4-0,0-1-9]

		1	-		· · · ·		· · · · ·					1	-
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25		тс	0.80	Vert(LL)	-0.63	9-17	>472	360	MT20	244/190
TCDL	7.0	Lumber DOL	1.25		BC	0.57	Vert(CT)	-1.19	9-17	>248	240	M18AHS	186/179
BCLL	0.0*	Rep Stress Incr	YES		WB	0.43	Horz(CT)	0.82	8	n/a	n/a		
BCDL	10.0	Code	FBC202	3/TPI2014	Matrix-AS		Wind(LL)	0.41	9-17	>715	240	Weight: 154 lb	FT = 20%
LUMBER			3)	Wind [.] ASCF	7-22; Vult=130mpl) (3-sec	cond gust)					-	
TOP CHORD	2x4 SP No.1 *Excep	t* 5-8·2x6 SP 2400F	0)		ph; TCDL=4.2psf; B			:					
	2.0E				Ift; eave=4ft; Cat. II			,					
BOT CHORD	2x4 SP No.1			MWFRS (dir	ectional) and C-C Z	one3 -	1-6-0 to 1-6-0),					
WEBS	2x4 SP No.2			Zone1 1-6-0	to 12-5-0, Zone2 1	2-5-0 to	o 16-7-15, Zo	ne1					
_BR SCAB	5-8 SP 2400F 2.0E	one side			4-8-8 zone; cantilev								
BRACING					nd vertical left and ri								
OP CHORD	Structural wood she	athing directly applied			d forces & MWFRS			n;					
BOT CHORD	Rigid ceiling directly	applied.	Lumber DOL=1.60 plate grip DOL=1.60 4) Building Designer / Project engineer responsible for										
REACTIONS	(size) 2=0-6-0, 8	3=0-3-0	4)										
	Max Horiz 2=138 (LC	C 11)		2 0 11	lied roof live load s			0					
	Max Uplift 2=-145 (L	C 12), 8=-93 (LC 12)	5)		s specific to the use MT20 plates unles								
	Max Grav 2=1000 (L	_C 1), 8=931 (LC 1)	6)		as been designed for			u.					
FORCES	(lb) - Maximum Com	pression/Maximum	0)		ad nonconcurrent w			she					
	Tension		7)		has been designed								
OP CHORD	1-2=0/26, 2-3=-2292	2/447, 3-4=-1758/394,	.,		n chord in all areas			0001					
	4-5=-1471/373, 5-6=	-1559/351,			by 2-00-00 wide will			om					
	6-7=-3516/604, 7-8=	-493/202			y other members.								
BOT CHORD	2-11=-229/2149, 10-	11=-229/2149,	8)	Bearing at jo	int(s) 8 considers p	arallel	to grain value	9					
	9-10=-126/1617, 7-9			using ANSI/	FPI 1 angle to grain	formul	a. Building						
NEBS	,	72/123, 4-10=-12/233	,		ould verify capacity								
	5-9=-326/1623, 4-9=	354 9)	9) Provide mechanical connection (by others) of truss to										
NOTES	OTES				bearing plate capable of withstanding 93 lb uplift at joint								
1) Attached 15-1-10 scab 5 to 8, front face(s) 2x6 SP				8 and 145 lb uplift at joint 2. This item has been									
2400F 2.0	E with 2 row(s) of 10d	10) This truss de	esign requires that a	ı minim	um of 7/16"					digitally sign	ed and	

- 2.0E with 2 row(s) of 10d (0.131"x3") nails 2400F spaced 9" o.c.except : starting at 2-11-10 from end at joint 5, nail 2 row(s) at 7" o.c. for 2-11-14; starting at 6-9-10 from end at joint 5, nail 2 row(s) at 3" o.c. for 2-5-9.
- Unbalanced roof live loads have been considered for 2) this design.
- structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

digitally signed and sealed by Ebinger, Joseph, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joseph Ebinger PE No. 98947 MiTek Inc. DBA MITek USA FL Cert 6634 16023 Swingley Ridge Road, Chesterfield, MO 63017

May 14,2025

႔ WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - verify design parameters and READ NOTES ON THIS AND INCLOSED INTERNETING TO THE REFERENCE FOR UNITY TO THE INSTANCE OF THE ADDRESS OF THE ADDRESS

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	UT-3	Roof Special	6	1	Job Reference (optional)	T37314148

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:34:18 ID:_TPYpGNKIXsFDE8u3sAxJEzHITQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

					20-1-8
1	5-5-4	9-11-0	12-3-4	19-5-0	
1	5-5-4	4-5-12	2-4-4	7-1-12	
					0-8-8

Scale =	1:66.9
---------	--------

Plate Offsets (X, Y): [7:0-4-9,Edge]

chord live load nonconcurrent with any other live loads.

- 1010 0110010	(,,, ,), [,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES FBC2023/TP	CSI TC BC WB 2014 Matrix-AS	0.22 0.31 0.23	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.06 -0.12 0.04 0.04	(loc) 10-11 9-17 8 10-11	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 105 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.1 2x4 SP No.2 Structural wood she Rigid ceiling directly	athing directly applie applied. 3=0-5-8 C 11) C 12), 8=-77 (LC 12	on f 3-0 cho 6) Bee usir des 7) Pro bea 8 ar 8 ar 8 ar 7 his	tis truss has been designed he bottom chord in all a 5-00 tall by 2-00-00 wic rd and any other memb ring at joint(s) 8 consic g ANSI/TPI 1 angle to giner should verify cap vide mechanical conner ring plate capable of w ad 134 lb uplift at joint 2 is truss design requires ctural wood sheathing	areas where de will fit betw bers. ders parallel grain formul acity of bear action (by oth vithstanding 7 2. that a minim	a rectangle veen the bott to grain value a. Building ing surface. ers) of truss i 77 lb uplift at j um of 7/16"	om e to joint					
FORCES	(lb) - Maximum Corr		cho	rd and 1/2" gypsum sh								
TOP CHORD	Tension 1-2=0/26, 2-3=-1742 4-5=-911/285, 5-6=- 7-8=-406/126		7, LOAD	bottom chord. CASE(S) Standard								
BOT CHORD	2-11=-264/1629, 10											
WEBS	9-10=-151/1086, 7-9 3-11=0/211, 3-10=-5 5-9=-219/834, 4-9=-	578/122, 4-10=-16/2	,									
this desig 2) Wind: AS Vasd=10 ² B=45ft; L= MWFRS (Zone1 1-f 16-7-15 to exposed ; members Lumber Building E verifying a requirement	CE 7-22; Vult=130mph Imph; TCDL=4.2psf; B =24ft; eave=4ft; Cat. II; (directional) and C-C Z 6-0 to 12-5-0, Zone2 12 5-0 to 12-5-0, Zone2 (atil to 19-10-12 zone; cantil to end vertical left and ris and forces & MWFRS 0OL=1.60 plate grip DC Designer / Project engin applied roof live load sh ents specific to the use	(3-second gust) CDL=6.0psf; h=25ft; Exp B; Enclosed; one3 -1-6-0 to 1-6-0. 2-5-0 to 16-7-15, Zor ever left and right ght exposed;C-C for for reactions shown DL=1.60 neer responsible for nown covers rain loa of this truss compor	, ne1 ; ding								on the date Printed copi document a signed and signature m on any elect	ed and binger, Joseph, Pl indicated here. es of this re not considered sealed and the ust be verified ronic copies.
	has been designed fo		4								Joseph Ebinger PE No. MiTek Inc. DBA MiTek U	98947 JSA FL Cert 6634

Joseph Ebinger PE No. 98947 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Road, Chesterfield, MO 63017

May 14,2025

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	MG-1	Monopitch Girder	1	1	Job Reference (optional)	T37314149

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:34:04 ID:n56e_guWmTRgeweCsoiikcyHyWW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:43.6

Plate Offsets (X, Y): [2:0-1-0,0-1-8], [6:0-2-0,0-2-0], [7:0-4-8,0-1-8]

	(,,, ,): [2:0 + 0,0 + 0],	[0.0 2 0,0 2 0], [1.0	, 10,010]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 NO FBC2023	8/TPI2014	CSI TC BC WB Matrix-MP	0.21 0.50 0.35	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.02 -0.04 0.01 0.02	(loc) 7-9 7-9 6 7-9	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 44 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES	 2x6 SP No.1 2x4 SP No.2 Structural wood she 5-3-8 oc purlins, exx Rigid ceiling directly bracing. (size) 1=0-6-0, 6 Max Horiz 1=160 (LC Max Uplift 1=-146 (L Max Grav 1=1280 (L (Ib) - Maximum Com Tension 1-2=-1371/152, 2-3= 3-6=-81/61 	cept end verticals. applied or 10-0-0 o 5= Mechanical C 5) C 8), 6=-173 (LC 5) LC 1), 6=1143 (LC 1) pression/Maximum -107/42, 3-4=-9/0, -170/1072, 5-6=0/0	7) ed or c 8) 9) LO, 1)	bearing plate 1 and 173 lb Use MiTek J 1-1/2 nails in max. starting connect trus Fill all nail ho In the LOAD of the truss a AD CASE(S) Dead + Roo Plate Increa Uniform Lo Vert: 1-3 Concentrat	of Live (balanced) ase=1.25	tanding 1 nails into valent spine left end of bottor r is in corr n, loads a (F) or ba): Lumber 5=-20	46 lb uplift a Girder & 2-11 aced at 2-0-0 t to 5-0-12 to n chord. ttact with lurr oplied to the ck (B). Increase=1.	t joint 0d x 0 oc 0 nber. face						
Vasd=10 B=45ft; L: MWFRS end vertic plate grip 2) Building I verifying a requireme 3) This truss chord live 4) * This trus on the bo 3-06-00 t chord and	ICE 7-22; Vult=130mph 1mph; TCDL=4.2psf; Bf =24ft; eave=4ft; Cat. II; (directional); cantilever cal left and right expose DOL=1.60 Designer / Project engin applied roof live load sh ents specific to the use is has been designed for load nonconcurrent wi ss has been designed for load nonconcurrent wi shas been designed for load nonconcurrent wi as bas been designed for all by 2-00-00 wide will d any other members. girder(s) for truss to trus	CDL=6.0psf; h=25ft; Exp B; Enclosed; left and right exposed; left and right exposed; d; Lumber DOL=1.6 neer responsible for nown covers rain loa of this truss compor f this truss compor f a 10.0 psf bottom th any other live loa or a live load of 20.0 where a rectangle fit between the botto	ed ; 50 Iding nent. ds. Dpsf									on the date Printed copi document a signed and signature m	hed and binger, Jose indicated he ies of this tre not consid sealed and t ust be verifie tronic copies	dered he ed

Joseph Ebinger PE No. 98947 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Road, Chesterfield, MO 63017 Date:

May 14,2025

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	M-1	Jack-Closed	7	1	Job Reference (optional)	T37314150

-1-6-0

1-6-0

Arnold Truss Mfg. LLC, Ocala, FL - 34475,

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:34:04 ID:IXKFr_c9Sgq0b1TKT5RWJGyHgHi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-0-0

2-0-0

2-0-0

2-0-0

i ug

<u> </u>				
Scale	=	1:2	1.6	

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.19	Vert(LL)	0.00	4-7	>999	360	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.07	Vert(CT)	0.00	4-7	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	FBC2023/TPI2014	Matrix-MP		Wind(LL)	0.00	4-7	>999	240	Weight: 9 lb	FT = 20%

LU	M	в	Е	R
----	---	---	---	---

TOP CHORD	2x4 SP No	0.2
BOT CHORD	2x4 SP No	0.2
BRACING		
TOP CHORD		wood sheathing directly applied or
	2-0-0 oc p	ourlins.
BOT CHORD	Rigid ceili	ng directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	2=0-6-0, 4= Mechanical
	Max Horiz	2=46 (LC 12)
	Max Uplift	2=-82 (LC 12), 4=-11 (LC 9)
	Max Grav	2=185 (LC 1), 4=46 (LC 3)
FORCES	(lb) - Maxi	mum Compression/Maximum
	Tension	
TOP CHORD	1-2=0/26,	2-3=-102/35

BOT CHORD 2-4=-29/79

NOTES

- Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Zone3 -1-6-0 to 1-6-0, Zone1 1-6-0 to 2-0-0 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 82 lb uplift at joint 2 and 11 lb uplift at joint 4.

LOAD CASE(S) Standard

This item has been digitally signed and sealed by Ebinger, Joseph, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joseph Ebinger PE No. 98947 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Road, Chesterfield, MO 63017

May 14,2025

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	J8V	Jack-Partial	2	1	Job Reference (optional)	T37314151

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:34:04 ID:IXtFwvIQK4HIbo6PLPFw2nyHyDJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:41.9

Plate Offsets (X, Y): [2:0-2-0,0-1-8]

Loading TCLL (roof) TCDL BCLL BCDL LUMBER TOP CHORD 2x4	(psf) 20.0 7.0 0.0* 10.0 SP No.2	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES FBC2023	y/TPI2014	CSI TC BC WB	0.41 0.57 0.09	DEFL Vert(LL) Vert(CT)	in -0.13 -0.26	(loc) 6-9 6-9	l/defl >729	L/d 360	PLATES MT20	GRIP 244/190
					Matrix-AS	0.00	Horz(CT) Wind(LL)	0.01 -0.01	6-9 2 6-9	>363 n/a >999	240 n/a 240	Weight: 36 lb	FT = 20%
WEBS 2x4 BRACING TOP CHORD Stru BOT CHORD Rigi REACTIONS (size) Max H Max C	d ceiling directly 2=0-6-0, 4 Mechanic Horiz 2=194 (LC Jplift 2=-36 (LC 5=-19 (LC Grav 2=382 (LC	4= Mechanical, 5= al C 12) : 12), 4=-61 (LC 12),	7) d. 8) LO/	using ANSI/T designer sho Provide mech bearing plate 4, 36 lb uplift This truss de structural woo		in formula y of beari n (by oth tanding 6 lb uplift a a minim applied d	a. Building ng surface. ers) of truss t i1 lb uplift at j it joint 5. um of 7/16" irectly to the t	o oint op					
FORCES (lb)	(LC 17) Maximum Com	pression/Maximum											
Tens		pression/maximum											
BOT CHORD 2-6=	:0/45, 2-3=-474/ :-368/424, 5-6=-; :-391/334												
 B=45ft; L=24ft; e MWFRS (direction Zone1 1-6-0 to 7 exposed ; end variable with the exposed ; end variable and the exposed ; end variable and the exposed is the exposed in the exposed is th	TCDL=4.2psf; BG ave=4ft; Cat. II; onal) and C-CZ '-11-4 zone; can artical left and rig rces & MWFRS 60 plate grip DO er / Project engin roof live load sh ecific to the use een designed for onconcurrent wi been designed for onconcurrent with the members.	CDL=6.0psf; h=25ft; Exp B; Enclosed; one3 -1-6-0 to 1-6-0, tilever left and right ght exposed;C-C for for reactions shown; L=1.60 iver responsible for iver responsible for iver responsible for own covers rain load of this truss compon a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto	ding ent. ds. psf									on the date Printed copi document a signed and signature m on any elect	eed and binger, Joseph, PE indicated here. es of this re not considered sealed and the ust be verified tronic copies.

May 14,2025

Page: 1

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	J7-8	Jack-Closed	10	1	Job Reference (optional)	T37314152

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:34:04 ID:EN1q_V_RIBIOH?JXp1?c09yHzrc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:44.2

	, , , , , [2.0-2-0,0-1-0],			1								-
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.61	Vert(LL)	-0.11	6-9	>792	360	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.56	Vert(CT)	-0.25	6-9	>346	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.01	2	n/a	n/a		
BCDL	10.0	Code	FBC2023/TPI2014	Matrix-AS		Wind(LL)	0.12	6-9	>722	240	Weight: 35 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she except end verticals Rigid ceiling directly (size) 2=0-6-0, (Max Horiz 2=192 (LC	applied. 6= Mechanical	bearing pla 6 and 73 lb 7) This truss of structural w		istanding 6 at a minim e applied d	4 lb uplift at um of 7/16" irectly to the	joint top					
	Max Uplift 2=-73 (LC Max Grav 2=361 (LC	(LC 9), 6=-64 (LC 9)										
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD	1-2=0/45, 2-3=-252/ 3-6=-208/256	159, 3-4=-9/0,										
BOT CHORD	2-6=-97/132, 5-6=0/	0										
NOTES												
Vasd=101 B=45ft; L= MWFRS (d Zone1 1-6	CE 7-22; Vult=130mph mph; TCDL=4.2psf; B :24ft; eave=4ft; Cat. II; directional) and C-C Z i-0 to 7-8-0 zone; canti	CDL=6.0psf; h=25ft Exp B; Enclosed; one3 -1-6-0 to 1-6-0 lever left and right	, ,								This item ha	as been
	end vertical left and rig and forces & MWFRS										digitally sign	

Lumber DOL=1.60 plate grip DOL=1.60 Building Designer / Project engineer responsible for 2) verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

5) Refer to girder(s) for truss to truss connections. sealed by Ebinger, Joseph, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joseph Ebinger PE No. 98947 MiTek Inc. DBA MITek USA FL Cert 6634 16023 Swingley Ridge Road, Chesterfield, MO 63017

May 14,2025

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - verify design parameters and READ NOTES ON THIS AND INCLOSED INTERNETING TO THE REFERENCE FOR UNITY TO THE INSTANCE OF THE ADDRESS OF THE ADDRESS

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	J7-8A	Half Hip	1	1	Job Reference (optional)	T37314153

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:34:04 ID:E8dh5E_xt5xdPwzOKadXSnyHzzL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:54.4

Plate Offsets (X, Y): [3:0-2-8,0-1-13], [4:0-2-12,0-0-8], [6:0-2-0,0-1-8]

], [= .=,], [.		-1									
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES FBC202	23/TPI2014	CSI TC BC WB Matrix-AS	0.33 0.28 0.13	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.04 -0.08 0.00 0.05	(loc) 7-10 7-10 4 7-10	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 46 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORE BOT CHORE WEBS BRACING TOP CHORE BOT CHORE REACTIONS	 2x4 SP No.1 2x4 SP No.2 Structural wood she except end verticals Rigid ceiling directly 	applied. 4= Mechanical, 6= al C 11) C 12), 4=-12 (LC 9), (8) 6=-41 9) -256	on the bottor 3-06-00 tall b chord and ar Refer to gird Provide mec bearing plate 4, 41 lb uplift This truss de structural wo chord and 1/ the bottom c Gap between	n inside of top cho vertical web shall i	as where vill fit betw russ conn n (by oth tanding 1 lb uplift a t a minim applied d rock be a ord bearin	a rectangle ween the bott nections. ers) of truss 12 lb uplift at at joint 2. um of 7/16" irectly to the pplied directl ng and first	tom to joint top					
Vasd=10 B=45ft; L MWFRS Zone1 1- cantileve right exp for reacti DOL=1.6 2) Building verifying requirem 3) Provide a	 2-7=-100/152, 6-7=- 3-7=-36/316, 3-6=-3 SCE 7-22; Vult=130mph Imph; TCDL=4.2psf; B =24ft; eave=4ft; Cat. II; (directional) and C-C Z 6-0 to 6-6-8, Zone3 6-6 or left and right exposed or for members ons shown; Lumber DC 	46, 3-4=-76/82, 4-6= 96/129, 5-6=0/0 90/241 (3-second gust) CDL=6.0psf; h=25ft; Exp B; Enclosed; one3 -1-6-0 to 1-6-0 -8 to 7-4-4 zone; ; end vertical left an and forces & MWFR pL=1.60 plate grip neer responsible for nown covers rain loa of this truss compor event water ponding	d S ding nent.									on the date Printed copi document a signed and signature m	hed and binger, Joseph, P indicated here.
	e load nonconcurrent wi		ds.									Joseph Ebinger PE No. MiTek Inc. DBA MiTek	98947 USA FL Cert 6634

Joseph Ebinger PE No. 98947 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Road, Chesterfield, MO 63017 Date:

May 14,2025

Job	Truss	Truss Type		Ply	GAINEY HOME				
24-0602-A1	J7-8S	Common	3	1	Job Reference (optional)	T37314154			

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:34:04 ID:bcN8c0FE7x3HwN?l6fOmvoyHzrG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:46.1

Plate Offsets (X, Y): [2:0-4-3,0-0-4]

		-												
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.25		TC	0.40	Vert(LL)	-0.14	6-9	>659	360	MT20	244/190	
TCDL	7.0	Lumber DOL	1.25		BC	0.49	Vert(CT)	-0.30	6-9	>297	240			
BCLL	0.0*	Rep Stress Incr	YES		WB	0.07	Horz(CT)	0.01	2	n/a	n/a			
BCDL	10.0	Code	FBC202	23/TPI2014	Matrix-AS		Wind(LL)	0.18	6-9	>509	240	Weight: 38 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.1 2x4 SPF No.2 *Exce Structural wood she except end verticals Rigid ceiling directly	athing directly applie	8) ed,	Provide me bearing plat 2 and 49 lb This truss d structural w		on (by oth standing 6 at a minim applied d	ers) of truss 4 lb uplift at um of 7/16" rectly to the	joint top						
	Max Horiz 2=147 (LC Max Uplift 2=-64 (LC Max Grav 2=367 (LC	C 12) 5 12), 5=-49 (LC 12)												
FORCES	(lb) - Maximum Com Tension	pression/Maximum												
TOP CHORD		85, 3-4=-15/30,												
BOT CHORD														
WEBS	3-6=-194/184													
NOTES														
1) Unbalance this design			r											
Vasd=101 B=45ft; L= MWFRS (Zone1 1-6 cantilever forces & N	CE 7-22; Vult=130mph Imph; TCDL=4.2psf; Bi =24ft; eave=4ft; Cat. II; (directional) and C-C Zi 5-0 to 6-6-0, Zone3 6-6 Ieft and right exposed WWFRS for reactions s 0 plate grip DOL=1.60	CDL=6.0psf; h=25ft; Exp B; Enclosed; one3 -1-6-0 to 1-6-0 -0 to 7-6-4 zone; ;C-C for members a	Ι,									on the date Printed cop	ned and binger, Joseph indicated here).

- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 5) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joseph Ebinger PE No. 98947 MiTek Inc. DBA MITek USA FL Cert 6634 16023 Swingley Ridge Road, Chesterfield, MO 63017

May 14,2025

Job	Truss	Truss Type		Ply	GAINEY HOME				
24-0602-A1	J7	Jack-Closed	2	1	Job Reference (optional)	T37314155			

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:34:03 ID:EN1q_V_RIBIOH?JXp1?c09yHzrc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:42.1

Plate Offsets (X, Y): [6:0-2-0,0-1-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.50	Vert(LL)	-0.08	6-9	>999	360	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.45	Vert(CT)	-0.17	6-9	>459	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCDL	10.0	Code	FBC2023/TPI20	014 Matrix-AS		Wind(LL)	0.09	6-9	>892	240	Weight: 32 lb	FT = 20%
	Max Horiz 2=176 (LC	applied. = Mechanical \$ 9)	bearir 6 and 7) This tr structu ed, chord the bo	le mechanical connect Ig plate capable of with 72 lb uplift at joint 2. russ design requires th ural wood sheathing be and 1/2" gypsum sheed witom chord. SE(S) Standard	nstanding 5 at a minim e applied di	8 lb uplift at um of 7/16" irectly to the	joint top					
	Max Uplift 2=-72 (LC Max Grav 2=337 (LC											
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD	1-2=0/45, 2-3=-234/ 3-6=-189/245	146, 3-4=-9/0,										
BOT CHORD	2-6=-84/121, 5-6=0/)										
NOTES 1) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C zone3 -1-6-0 to 1-6-0, Zone1 1-6-0 to 7-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 This item has been digitally signed and sealed by Ebinger, Joseph, PE 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component. On the date indicated here. Printed copies of this												

- This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.

document are not considered signed and sealed and the signature must be verified on any electronic copies.

Page: 1

Joseph Ebinger PE No. 98947 MiTek Inc. DBA MITek USA FL Cert 6634 16023 Swingley Ridge Road, Chesterfield, MO 63017

May 14,2025

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - verify design parameters and READ NOTES ON THIS AND INCLOSED INTERNETING TO THE REFERENCE FOR UNITY TO THE INSTANCE OF THE ADDRESS OF THE ADDRESS

Job	Truss	Truss Type		Ply	GAINEY HOME				
24-0602-A1	J4-10	Jack-Open	3	1	Job Reference (optional)	T37314156			

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:34:03 ID:RmAGGOLEfLyQX_Txokk3GEzHGtT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scal	le –	1.30	6

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP		
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.26	Vert(LL)	-0.02	4-7	>999	360	MT20	244/190		
TCDL	7.0	Lumber DOL	1.25	BC	0.22	Vert(CT)	-0.05	4-7	>999	240				
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a				
BCDL	10.0	Code	FBC2023/TPI2014	Matrix-AS		Wind(LL)	0.03	4-7	>999	240	Weight: 19 lb	FT = 20%		
		•	7) This (must al		-4									
	MBER 7) This truss design requires that a minimum of 7/16" IP CHOPD 2x4 SP No 2													
	P CHORD 2x4 SP No.2 structural wood sheathing be applied directly to the top													
	DT CHORD 2x4 SP No.2 chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.													
BRACING														
TOP CHORD Structural wood sheathing directly applied. LOAD CASE(S) Standard														
BOT CHORD Rigid ceiling directly applied.														
REACTIONS	REACTIONS (size) 2=0-6-0, 3= Mechanical, 4=													
	Mechanical													
	Max Horiz 2=135 (LC	C 12)												
	Max Uplift 2=-52 (LC	C 12), 3=-57 (LC 12)												
	Max Grav 2=273 (LC	C 1), 3=115 (LC 17),	4=86											
	(LC 3)													
FORCES	(lb) - Maximum Com	pression/Maximum												
	Tension													
TOP CHORD	1-2=0/45, 2-3=-226/	59												
BOT CHORD	,													
NOTES														
	CE 7-22; Vult=130mph	(3-second qust)												
	mph; TCDL=4.2psf; B													

4-10-13

- Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Zone3 -1-6-0 to 1-6-0, Zone1 1-6-0 to 4-10-1 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
 This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 57 lb uplift at joint 3 and 52 lb uplift at joint 2. This item has been digitally signed and sealed by Ebinger, Joseph, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joseph Ebinger PE No. 98947 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Road, Chesterfield, MO 63017 Date:

May 14,2025

Job		Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-	0602-A1	C-1	Piggyback	2	1	Job Reference (optional)	T37314157

1-7-4

1-7-4

5-8-4

4-1-0

Arnold Truss Mfg. LLC, Ocala, FL - 34475,

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:33:57 ID:VEf_Q7RKj5X00NJwtIrbNxzIYoo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

9-9-4

4-1-0

11-4-8

1-7-4

Page: 1

11-4-8

Plate Offsets (X, Y):	[2:0-2-4,0-1-11], [10:0-2-4,0-1-11]	Í.

Scale = 1:41.2

Loading	(nof)	Spacing	2-0-0		CSI	-	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	(psf) 20.0	Plate Grip DOL	1.25		TC	0.04	Vert(LL)	n/a	(100)	n/a	999	MT20	244/190
TCDL	7.0	Lumber DOL	1.25		BC	0.04	Vert(CT)	n/a		n/a	999	101120	244/130
BCLL	0.0*	Rep Stress Incr	YES		WB	0.04	Horz(CT)	0.00	10	n/a	n/a		
BCDL	10.0	Code		23/TPI2014	Matrix-AS	0.02	11012(01)	0.00	10	n/a	n/a	Weight: 50 lb	FT = 20%
DODL	10.0	Code	1 0020	20/11/2014	Matrix AO	-						Weight. 50 lb	11 = 2070
	13=9-11-6 16=9-11-6 Max Horiz 2=-65 (LC Max Uplift 2=-18 (LC 12=-37 (L 15=-21 (L Max Grav 2=99 (LC (LC 1), 13	applied. 10=9-11-6, 12=9-11 6, 14=9-11-6, 15=9-1 6 10) 12), 10=-16 (LC 12 C 12), 13=-22 (LC 1 C 12), 16=-37 (LC 1	-6, 5) 1-6, 6) 7) (), 8) 2), 9) 2=163 6 (LC 2)	only. For st see Standar or consult q Building Des verifying app requirement All plates ar indicated. Gable requii Gable studs This truss ha chord live lo * This truss on the botto 3-06-00 tall chord and a	hed for wind load uds exposed to w d Industry Gable Jalified building d signer / Project er blied roof live load s specific to the u e 1.5x4 () MT20 res continuous bo spaced at 1-4-0 as been designed at nonconcurren m chord in all are by 2-00-00 wide v ny other member	rind (norm End Deta esigner a ngineer re d shown c. use of this unless o wittom choi oc. I for a 10. t with any ed for a liv as where will fit betw s.	al to the face ils as applica is per ANSI/T sysonsible for overs rain loc truss compo therwise d bearing. D psf bottom other live loc e load of 20. a rectangle veen the bott	e), hble, PI 1. ading nent. ads. Opsf					
FORCES	(lb) - Maximum Com Tension	(), (· / 10	bearing plat	chanical connections capable of with t at joint 10, 21 lb	standing 1	8 lb uplift at j	joint					
TOP CHORD	1-2=0/14, 2-4=-40/5 5-6=-44/80, 6-7=-44 8-10=-40/40, 10-11=	/80, 7-8=-23/45,	4	at joint 16, 2 18 lb uplift a	2 lb uplift at joint t joint 2 and 16 lb	13, 37 lb uplift at j	uplift at joint pint 10.						
BOT CHORD	2-16=-37/67, 15-16= 13-14=-37/67, 12-13	-37/67, 14-15=-37/6 =-37/67, 10-12=-37/	7, 67	structural we	esign requires that bod sheathing be /2" gypsum sheet	applied d	irectly to the					This item ha	as been
WEBS	6-14=-72/0, 5-15=-6		,	the bottom of								digitally sign	ned and
	7-13=-67/76, 8-12=-	101/98	12	2) See Standa	rd Industry Piggy	back Trus	s Connection	า				0 , 0	binger, Joseph, I
NOTES				Detail for Co	nnection to base	truss as	applicable, or	r				,	indicated here.
1) Unbalance	ed roof live loads have	been considered for		consult qual	ified building des	igner.							
this design			L	OAD CASE(S)	Standard							Printed cop	
x) xx/:x 0.000		(O											To mot completers

- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Zone3 0-3-11 to 3-1-0, Zone1 3-1-0 to 5-9-0, Zone2 5-9-0 to 9-9-8, Zone1 9-9-8 to 11-2-5 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 - WARNING verify design parameters and READ NOTES ON THIS AND INCLOSED INTERNETING TO THE REFERENCE FOR UNITY TO THE INSTANCE OF THE ADDRESS OF THE ADDRESS

႔ WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joseph Ebinger PE No. 98947 MiTek Inc. DBA MITek USA FL Cert 6634 16023 Swingley Ridge Road, Chesterfield, MO 63017

May 14,2025

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	C-2	Piggyback	5	1	Job Reference (optional)	T37314158

5-8-4

Arnold Truss Mfg. LLC, Ocala, FL - 34475,

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:33:57 ID:nsExYCL3DrYv1iskHHv4s2zIZ2Q-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

11-4-8

Page: 1

Scale = 1:42.6

Plate Offsets (X, Y): [2:0-0-8,Edge], [4:0-0-8,Edge]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES FBC20	23/TPI2014	CSI TC BC WB Matrix-AS	0.21 0.23 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 40 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she Rigid ceiling directly (size) 2=9-11-6, Max Horiz 2=-71 (LC Max Uplift 2=-57 (LC Max Grav 2=231 (LC (LC 1) (lb) - Maximum Com	applied. 4=9-11-6, 6=9-11-6 2 10) 2 12), 4=-57 (LC 12) 2 1), 4=231 (LC 1), 6	9	 This truss has chord live load This truss has not true to the true of true o	spaced at 4-0-0 is been designed ad nonconcurrent has been designed n chord in all are by 2-00-00 wide w hanical connection e capable of withs t at joint 4, 57 lb of 4. esign requires that ood sheathing be 2" gypsum sheet	I for a 10.0 t with any ed for a liv as where will fit betv s. on (by oth standing 5 uplift at joi at a minim applied d	other live loa e load of 20.0 a rectangle veen the botto rs) of truss t 7 lb uplift at j nt 2 and 57 ll um of 7/16" rectly to the f	Opsf om to oint o top					
TOP CHORD	Tension 1-2=0/14, 2-3=-163/ 4-5=0/14	120, 3-4=-163/125,	1	the bottom c 1) See Standar		back Trus	s Connection						
BOT CHORD WEBS	2-6=-29/94, 4-6=-31, 3-6=-166/67	/94			fied building desi	igner.							
NOTES	0 0- 100/01		L	OAD CASE(S)	Stanuard								
this design 2) Wind: ASC Vasd=101	ed roof live loads have CE 7-22; Vult=130mph mph; TCDL=4.2psf; B6 :24ft; eave=4ft; Cat. II;	(3-second gust) CDL=6.0psf; h=25ft;										This item ha	

MWFRS (directional) and C-C Zone3 0-3-11 to 3-3-11, Zone1 3-3-11 to 5-9-0, Zone2 5-9-0 to 9-11-15, Zone1 9-11-15 to 11-2-5 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Building Designer / Project engineer responsible for 4) verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

5) Gable requires continuous bottom chord bearing. digitally signed and sealed by Ebinger, Joseph, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joseph Ebinger PE No. 98947 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Road, Chesterfield, MO 63017

May 14,2025

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only using the matter one to the other of the intervence of the

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	C-3	Piggyback	1	1	Job Reference (optional)	T37314159

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:33:58 ID:IXXSz?uX0GQia?OhtOrGaPzHEK4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

1-10-8

Scale = 1:38.4

L oading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.25		CSI TC	0.05	DEFL Vert(LL)	in n/a	(loc)	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
TCDL	7.0	Lumber DOL	1.25		BC	0.04	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.01	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	FBC202	23/TPI2014	Matrix-AS							Weight: 18 lb	FT = 20%
UMBER			5)	Gable requir	es continuous botte	om chor	d bearing.						
OP CHORD	2x4 SP No.2		6)		spaced at 4-0-0 oc								
BOT CHORD	2x4 SP No.2		7)		is been designed f								
OTHERS	2x4 SP No.2				ad nonconcurrent v								
RACING			8)		has been designed			Upst					
OP CHORD	Structural wood she		ed.		m chord in all areas by 2-00-00 wide wi			~ m					
OT CHORD	Rigid ceiling directly	applied.			by 2-00-00 wide will any other members.	i ili belv	veen the bott	om					
EACTIONS	()	2=5-1-7, 4=5-1-7, 5=	5-1-7, 9		hanical connection	(by oth	ers) of truss t	io.					
	6=5-1-7		0,		e capable of withsta								
	Max Horiz 1=-33 (LC	,			t at joint 4, 43 lb up								
	Max Uplift 1=-43 (LC	5 17), 2=-25 (LC 12), 5 12), 5=-26 (LC 24)			5 lb uplift at joint 2.								
	4=-32 (LC Max Grav 1=17 (LC				sign requires that								
		C 24), 5=11 (LC 12),			od sheathing be a								
	6=121 (L0				2" gypsum sheetro	ck be a	oplied directly	y to					
ORCES	(lb) - Maximum Corr	,		the bottom c									
ONOLO	Tension	procoroni, maximum	1		d Industry Piggyba nnection to base tr								
OP CHORD	1-2=-36/63, 2-3=-47	/66, 3-4=-47/65,			fied building design		applicable, of						
	4-5=-20/36	,,			0 0	161.							
OT CHORD	2-6=-12/42, 4-6=-12	/42	Ľ	DAD CASE(S)	Sidilualu								
VEBS	3-6=-57/28												
OTES													
) Unbalance	ed roof live loads have	been considered for	r										

 Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Zone3 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

This item has been digitally signed and sealed by Ebinger, Joseph, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joseph Ebinger PE No. 98947 MiTek Inc. DBA MiTek USA FL. Cert 6634 16023 Swingley Ridge Road, Chesterfield, MO 63017

May 14,2025

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	C-4	Piggyback	1	1	Job Reference (optional)	T37314160

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:33:58 ID:wAqTUuyluVI1te3GZyt3CGzHEEq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale =	: 1:33.9
---------	----------

Plate Offsets (X, Y): [2:0-3-3,Edge], [4:0-3-3,Edge]

	X, 1): [2:0 0 0,E	.go],	[1.0 0 0,Edg0]	-										
Loading	(ps		Spacing	2-0-0		CSI	0.07	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) TCDL	20	.0 .0	Plate Grip DOL Lumber DOL	1.25 1.25		TC BC	0.27 0.12	Vert(LL) Vert(TL)	n/a	-	n/a	999 999	MT20	244/190
BCLL		.0 .0*	Rep Stress Incr	YES		WB	0.12	Horiz(TL)	n/a 0.00	- 4	n/a n/a	999 n/a		
BCDL	10		Code		3/TPI2014	Matrix-AS	0.05		0.00	4	n/a	n/a	Weight: 21 lb	FT = 20%
BCDL	10	.0	Code	FBC202	3/1912014	Watrix-AS							weight. 21 lb	FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this desigr 2) Wind: ASC Vasd=101 B=45ft; L= MWFRS ((left and rig exposed;C reactions s DOL=1.60 3) Truss desis only. For see Stand	2x4 SP No.2 2x4 SP No.2 Structural wood Rigid ceiling dir (size) 1=6- 6=6- Max Horiz 1=-4 Max Uplift 1=-2 4=-5 6=-11 Max Grav 1=44 (LC - 17) (lb) - Maximum Tension 1-2=-45/194, 2- 4-5=-52/52 2-6=-20/97, 4-6 3-6=-392/35 ed roof live loads h. 2E 7-22; Vult=130 mph; TCDL=4.2p -24ft; eave=4ft; C. directional) and C-f for members a shown; Lumber D igned for wind loa studs exposed to ard Industry Gabl	ectly 3-0, 2 3-0 0 (LC 74 (LC 4 (LC 6 (LC 8), 5 6 (LC 8), 5 6 (LC 8), 5 7 4 (LC 8), 5 7 7 4 (LC 8), 5 7 7 8 (LC 7 8), 5 7 7 7 8 (LC 8), 5 7 8 (LC 8), 5 7 8 (LC 8), 5 7 7 7 8 (LC 8), 5 7 8 (LC 8), 5 8	2=6-8-0, 4=6-8-0, 5=6 (10) C 17), 2=-98 (LC 12), (12), 5=-57 (LC 25), (12) 9), 2=851 (LC 17), 4= (10) 9), 4= (10)	5) 67 67 5-8-0, 8) 5-8-0, 8) 9) =242 (LC 1(12 12 12 12 12 12 12 12 12 12 12 12 12	verifying app requirement: Gable requir Gable studs This truss ha chord live lot * This truss ha chord live lot * This truss ha chord and an Provide men bearing platt 2, 54 lb upliff at joint 5, 16 54 lb upliff at joint 5, 16 56 57 57 57 57 57 57 57 57 57 57 57 57 57	sign requires that ood sheathing be a /2" gypsum sheetr hord. (I Industry Piggyb onnection to base to fied building design of the connection ficient to support of 56 lb up at 1-4-0 -0 on top chord. T stion device(s) is the CASE(S) section are noted as front Standard of Live (balanced) ase=1.25	shown c se of this torn choic c. for a 10. with any d for a living swhere ill fit betw. - n (by oth tanding § uplift at j 98 lb up 98 lb up 98 lb up ack Truss russ as : ner. device(s oncentri, and 42' he designe respo , loads a (F) or ba	overs rain loa truss compored bearing. 0 psf bottom other live loa e load of 20.0 a rectangle ween the bott eres) of truss i 28 lb uplift at joint 2 a um of 7/16" irrectly to the pplied directly s Connection applicable, or s) shall be ated load(s) 4 1 lb down and pr/selection o sisbility of oth pplied to the lck (B).	ading nent. dds. Dpsf om to joint uplift ind top y to 153 f f erss. face 25,				on the date Printed cop document a signed and signature m on any elec	ned and binger, Joseph, PE indicated here. ies of this are not considered sealed and the bust be verified thronic copies.
													Ma	y 14,2025

rg) Mittek-US.com

Job	Truss Type Qty Ply GAINEY HOME					
24-0602-A1	C-5	Piggyback	2	1	Job Reference (optional)	T37314161

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:33:58

ID:fIM5Sb2eaDOvrW2RzWaEajyHzqE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Arnold Truss Mfg. LLC, Ocala, FL - 34475,

2-11-13

cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS

for reactions shown; Lumber DOL=1.60 plate grip

DOL=1.60

-0-8-15 8-1-13 3-8-7 7-4-14 3-8-7 3-8-7 0-8-15 0-8-15 8-5-8 4x5 = 12 8 Г 4 1.5x4 u 1.5x4 u 3 5 2-10-1 Ø 6 6 0-4-7 0 0 þ 7 10 9 8 2x4 = 2x4 = 1.5x4 u 1.5x4 u 1.5x4 u 7-4-14

Scale = 1:32.4

Ocale = 1.52.4													
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES FBC20	23/TPI2014	CSI TC BC WB Matrix-AS	0.06 0.05 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 34 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 Structural wood she Rigid ceiling directly (size) 1=8-5-8, 2 8=8-5-8, 5 Max Horiz 1=-55 (LC Max Uplift 1=-64 (LC 6=-23 (LC Max Grav 1=23 (LC 6=168 (LC	applied. 2=8-5-8, 6=8-5-8, 7=4 3=8-5-8, 10=8-5-8 10) 17), 2=-16 (LC 12), 12), 7=-37 (LC 18), 12), 10=-46 (LC 12)	8-5-8, 5 6 7 8 9 =163	 only. For str see Standar or consult qu Building Desverifying app requirement: Gable requir Gable studs This truss lochord live lochord * This truss loon the bottoor 3-06-00 tall lochord and and Provide mee bearing plate 2, 23 lb uplif 	hed for wind loads uds exposed to wind d Industry Gable E Jalified building des signer / Project eng olied roof live load s is specific to the us es continuous bott spaced at 1-4-0 or as been designed fad nonconcurrent has been designed m chord in all areas by 2-00-00 wide win hy other members. hanical connectior e capable of withst t at joint 6, 64 lb up	nd (norm nd Deta signer a signer re shown c e of this om chor c. or a 10. with any I for a liv s where II fit betw n (by oth anding 1 blift at joi	al to the face ils as applica s per ANSI/TI sponsible for overs rain loa truss compoi d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t 6 lb uplift at j nt 1, 37 lb up), ble, Pl 1. ading nent. dds. Dpsf om to oint lift at					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	1	lb uplift at jo	uplift at joint 10, 4 int 2. esign requires that			u 16					
TOP CHORD		, , ,	I	structural wo	bod sheathing be a	pplied d	irectly to the t						
BOT CHORD	2-10=-30/86, 9-10=- 6-8=-30/86	30/86, 8-9=-30/86,	1	the bottom of									
this design 2) Wind: AS	4-9=-78/22, 3-10=-1 ed roof live loads have n. CE 7-22; Vult=130mph Imph; TCDL=4.2psf; B(been considered for (3-second gust)	6	Detail for Co	nnection to base to ified building desig	russ as a							ned and binger, Joseph, PB indicated here.
B=45ft; L= MWFRS (Zone1 3-8	=24ft; eave=4ft; Cat. II; (directional) and C-C Zo 3-1 to 5-0-1, Zone3 5-0	Exp B; Enclosed; one3 0-9-10 to 3-8-1, -1 to 9-2-8 zone;	,									document a signed and	sealed and the

Joseph Ebinger PE No. 98947 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Road, Chesterfield, MO 63017 Date:

signature must be verified

on any electronic copies.

May 14,2025

Page: 1

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	C-6	Piggyback	17	1	Job Reference (optional)	T37314162

3-3-13

2=8-5-8, 4=8-5-8, 6=8-5-8

2=197 (LC 1), 4=197 (LC 1), 6=282

Max Uplift 2=-50 (LC 12), 4=-50 (LC 12)

(lb) - Maximum Compression/Maximum

1-2=0/14, 2-3=-119/106, 3-4=-119/112,

Max Horiz 2=-62 (LC 10)

2-6=-23/75, 4-6=-25/75

Unbalanced roof live loads have been considered for

MWFRS (directional) and C-C Zone3 0-3-11 to 3-3-11, Zone1 3-3-11 to 5-0-1, Zone2 5-0-1 to 9-2-13, Zone1

9-2-13 to 9-8-7 zone; cantilever left and right exposed ;

Truss designed for wind loads in the plane of the truss

only. For studs exposed to wind (normal to the face),

Building Designer / Project engineer responsible for

Gable requires continuous bottom chord bearing.

see Standard Industry Gable End Details as applicable,

or consult qualified building designer as per ANSI/TPI 1.

verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

end vertical left and right exposed;C-C for members and

Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed;

forces & MWFRS for reactions shown; Lumber

DOL=1.60 plate grip DOL=1.60

Gable studs spaced at 4-0-0 oc.

(LC 1)

Max Grav

Tension

4-5=0/14

3-6=-147/68

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:33:58 ID:TQKilHf9sXt1_I7FkfOBq7zIxCm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:34.2

REACTIONS (size)

FORCES

WEBS

2)

3)

4)

5)

6)

NOTES 1)

TOP CHORD

BOT CHORD

this design.

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.15	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.16	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.02	Horz(CT)	0.00	10	n/a	n/a		
BCDL	10.0	Code	FBC2023/TPI20	14 Matrix-AS							Weight: 34 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she Rigid ceiling directly		d chord 8) * This on the 3-06-0 chord	uss has been designe ive load nonconcurrer truss has been design bottom chord in all ar 0 tall by 2-00-00 wide and any other membe e mechanical connect	nt with any ed for a liv eas where will fit betw rs.	other live loa e load of 20. a rectangle veen the bott	ads. Opsf tom					

- bearing plate capable of withstanding 50 lb uplift at joint 2, 50 lb uplift at joint 4, 50 lb uplift at joint 2 and 50 lb uplift at joint 4.
- 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

This item has been digitally signed and sealed by Ebinger, Joseph, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joseph Ebinger PE No. 98947 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Road, Chesterfield, MC rfield, MO 63017

May 14,2025

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	C-7	Piggyback	6	1	Job Reference (optional)	T37314163

2-2-7

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:33:59 ID:fIM5Sb2eaDOvrW2RzWaEajyHzqE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:29.5

Scale = 1:29.5													
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES FBC2023/	TPI2014	CSI TC BC WB Matrix-AS	0.08 0.09 0.01	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=1011 B=45ft; L=: MWFRS (c left and rig exposed;C reactions s DOL=1.60 3) Truss desis only. For s see Standa or consult	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she Rigid ceiling directly (size) 2=5-1-7, 4 Max Uplift 2=-39 (LC Max Uplift 2=-39 (LC (LC 1) (lb) - Maximum Corr Tension 1-2=0/14, 2-3=-68/8 2-6=-4/45, 4-6=-9/4 3-6=-72/36 ad roof live loads have b E 7-22; Vult=130mph mph; TCDL=4.2psf; B 24ft; eave=4ft; Cat. II; directional) and C-C Z ht exposed ; end verti Shown; Lumber DOL=	eathing directly applied. 4=5-1-7, 6=5-1-7 C 10) C 12), 4=-39 (LC 12) C 1), 4=130 (LC 1), 6 apression/Maximum 17, 3-4=-68/82, 4-5=(been considered for n (3-second gust) CDL=6.0psf; h=25ft; ical eft and right forces & MWFRS for 1.60 plate grip the plane of the true d (normal to the face) d Details as applical gner as per ANSI/TF	8) 9) 10) 5=169 11) 5 5=169 11) 11) 11) 2 5 10 11) 11) 11) 11) 11) 11) 11)	* This truss h on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate 2, 39 lb uplift uplift at joint This truss de structural wo chord and 1/ the bottom cl See Standar Detail for Co	as been designed n chord in all area yy 2-00-00 wide wi yy other members. hanical connectior capable of withst at joint 4, 39 lb up 4. sign requires that od sheathing be a 2" gypsum sheetro hord. d Industry Piggyba nnection to base t fied building desig	s where ill fit betv n (by oth anding 3 blift at joi a minim applied d bock be a ack Trus russ as a	a rectangle veen the botto ers) of truss t 19 lb uplift at j nt 2 and 39 lt um of 7/16" irectly to the t pplied directly s Connection	to oint o top y to				This item ha digitally sigr sealed by E on the date Printed copi document a	as been hed and binger, Joseph, PE indicated here.
requirement 5) Gable requirement 6) Gable stud 7) This truss	pplied roof live load sh nts specific to the use uires continuous botto ds spaced at 4-0-0 oc. has been designed fo load nonconcurrent w	of this truss compor m chord bearing. r a 10.0 psf bottom	nent.									On any elect	UST be verified tronic copies. ⁹⁸⁹⁴⁷ USA FL Cert 6634 ord, Chesterfield, MO 63017

6) Gable studs spaced at 4-0-0 oc.

- This truss has been designed for a 10.0 psf bottom 7)
- chord live load nonconcurrent with any other live loads.

May 14,2025

Job	Truss	Truss Type	Qty	Ply	GAINEY HOME	
24-0602-A1	C-8	Piggyback	1	1	Job Reference (optional)	T37314164

Run: 8.83 S Apr 24 2025 Print: 8.830 S Apr 24 2025 MiTek Industries, Inc. Tue May 13 10:33:59 ID:fIM5Sb2eaDOvrW2RzWaEajyHzqE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:29.5

Scale = 1.29.5													
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 7.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES FBC202	23/TPI2014	CSI TC BC WB Matrix-AS	0.08 0.09 0.01	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she Rigid ceiling directly (size) 2=5-1-7, 4 Max Horiz 2=-40 (LC Max Grav 2=130 (LC Max Grav 2=130 (LC (LC 1)	applied. 4=5-1-7, 6=5-1-7 : 10) : 12), 4=-39 (LC 12)	10 6=169	on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate 2, 39 lb uplifi uplift at joint 0) This truss de structural wo chord and 1/ the bottom c	esign requires that ood sheathing be a 2" gypsum sheetro	s where Il fit betw anding 3 olift at joi a minim pplied d ock be a	a rectangle veen the bott ers) of truss i 99 lb uplift at j nt 2 and 39 ll um of 7/16" irectly to the pplied directly	to ioint o top y to					
FORCES TOP CHORD BOT CHORD WEBS	Tension CHORD 1-2=0/14, 2-3=-68/87, 3-4=-68/82, 4-5=0/14 CHORD 2-6=-4/45, 4-6=-9/45				Detail for Connection to base truss as applicable, or consult qualified building designer. LOAD CASE(S) Standard								
this design 2) Wind: ASC Vasd=1011 B=45ft; L=: MWFRS (c left and rig exposed;C reactions s DOL=1.60 3) Truss desi	CE 7-22; Vult=130mph mph; TCDL=4.2psf; Bu 24ft; eave=4ft; Cat. II; directional) and C-C Zu ht exposed ; end vertii -C for members and fu shown; Lumber DOL= ²	(3-second gust) CDL=6.0psf; h=25ft; Exp B; Enclosed; one3 zone; cantileve cal left and right orces & MWFRS for I.60 plate grip the plane of the trus	er										ned and binger, Joseph, PE indicated here.
see Standa or consult 4) Building Do verifying a requirement	ard Industry Gable En qualified building desig esigner / Project engin pplied roof live load sh nts specific to the use uires continuous bottor	d Details as applicating gner as per ANSI/TF leer responsible for lown covers rain loat of this truss comport	ole, PI 1. ding									document a signed and signature m	re not considered sealed and the ust be verified tronic copies.

6) Gable studs spaced at 4-0-0 oc.

- This truss has been designed for a 10.0 psf bottom 7) chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

May 14,2025

Joseph Ebinger PE No. 98947 MiTek Inc. DBA MITek USA FL Cert 6634 16023 Swingley Ridge Road, Chesterfield, MO 63017

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- 1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor1 bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- 5. Cut members to bear tightly against each other
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- 12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- 13. Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.