Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others. RE: 2751738 - MIKE TODD CONST. - SELLERS ADDITION MiTek USA, Inc. 6904 Parke East Blvd. Site Information: Customer Info: Mike Todd Const. Project Name: Sellers Model: Addition and Carport Lot/Block: N/A Subdivision: N/A Address: 277 SW Belmont Ave., N/A City: Columbia Cty State: FL Name Address and License # of Structural Engineer of Record, If there is one, for the building. Name: License #: Address: City: State: General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions): Design Code: FBC2020/TPI2014 Design Program: MiTek 20/20 8.4 Wind Code: N/A Wind Speed: 130 mph Roof Load: 37.0 psf Floor Load: N/A psf This package includes 18 individual, Truss Design Drawings and 0 Additional Drawings. With my seal affixed to this sheet, I hereby certify that I am the Truss Design Engineer and this index sheet conforms to 61G15-31.003, section 5 of the Florida Board of Professional Engineers Rules. | No. 1234567891112345 | Seal# T23625261 T23625262 T23625263 T23625264 T23625266 T23625266 T23625266 T23625269 T23625271 T23625271 T23625273 T23625273 T23625277 | Truss Name CJ01 CJ01A CJ03 CJ03A CJ05A EJ01 EJ02 HJ10 HJ10A T01 T02 T03 T04 T05 | Date 4/20/21 4/20/21 4/20/21 4/20/21 4/20/21 4/20/21 4/20/21 4/20/21 4/20/21 4/20/21 4/20/21 4/20/21 4/20/21 4/20/21 4/20/21 4/20/21 | |----------------------|---|---|--| | 13 | | | | The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Builders FirstSource-Jacksonville. Truss Design Engineer's Name: Velez, Joaquin My license renewal date for the state of Florida is February 28, 2023. IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design co des), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2. MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date: April 20,2021 LUMBER- 2x4 SP No.2 TOP CHORD BOT CHORD 2x4 SP No.2 TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 1-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size) 3=Mechanical, 2=0-3-8, 4=Mechanical Max Horz 2=42(LC 8) Max Uplift 3=-23(LC 1), 2=-175(LC 8), 4=-50(LC 1) Max Grav 3=22(LC 8), 2=254(LC 1), 4=42(LC 8) FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. ### NOTES- - 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 - 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component. - 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. - * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. - Refer to girder(s) for truss to truss connections. - 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 23 lb uplift at joint 3, 175 lb uplift at joint 2 and 50 lb uplift at joint 4. MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date: April 20,2021 MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20801 MIKE TODD CONST. - SELLERS ADDITION Job Truss Truss Type Qty T23625262 2751738 CJ01A JACK-OPEN Job Reference (optional) Builders FirstSource (Jacksonville, FL), Jacksonville, FL - 32244, 8.430 s Mar 22 2021 MiTek Industries, Inc. Mon Apr 19 11:08:46 2021 Page 1 ID:OWzf73gcKvulnYt9A9z_tEzPBvd-3W7LZ9au9GzoDdvqrf4oLR2iM8qvmJnDrP_XfEzPANI 1-2-0 -2-0-0 2-0-0 Scale = 1:6.1 3 3.25 12 2 Plate Offsets (X,Y)-- [2:0-2-12,Edge] PLATES LOADING (psf) SPACING-2-0-0 CSI. DEFL I/defl L/d 244/190 TCLL 20.0 Plate Grip DOL 1.25 TC 0.23 Vert(LL) 0.00 >999 240 MT20 7.0 1.25 BC 0.02 Vert(CT) 0.00 >999 180 TCDL Lumber DOL 0.0 WB 0.00 Horz(CT) -0.00 n/a YES n/a BCLL Rep Stress Incr Code FBC2020/TPI2014 Matrix-MP Weight: 7 lb FT = 20% 10.0 BCDL LUMBER-**BRACING-** TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 1-2-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size) 2=0-3-8, 4=Mechanical Max Horz 2=35(LC 8) Max Uplift 2=-155(LC 8), 4=-56(LC 1) Max Grav 2=244(LC 1), 4=57(LC 8) FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. ### NOTES- - 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 - 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component, - 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. - 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. - 5) Refer to girder(s) for truss to truss connections. - 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 155 lb uplift at joint 2 and 56 lb uplift at joint 4. 6904 Parke East Blvd. Tampa FL 33610 Date: April 20,2021 MARNING - Verify dasign parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-39 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 Job Truss Qty Truss Type Ply MIKE TODD CONST. - SELLERS ADDITION T23625263 2751738 CJ03 8 Jack-Open Job Reference (optional) Builders FirstSource (Jacksonville, FL). Jacksonville FL - 32244 8.430 s Mar 22 2021 MiTek Industries, Inc. Mon Apr 19 11:08:47 2021 Page 1 ID:OWzf73gcKvulnYt9A9z_tEzPBvd-XjhkmVbWwa5frnU00Mc1ufbsKY9WVm1M43j4BhzPANk Scale = 1:10.2 4.00 12 2 0-4-4 LOADING (psf) SPACING-CSI DEFL 2-0-0 in (loc) I/defl L/d **PLATES** GRIP TCLL 20.0 Plate Grip DOL 1.25 0.21 TC Vert(LL) -0.00 >999 240 MT20 244/190 BC TCDL 7.0 1.25 Lumber DOL 0.06 -0.01 Vert(CT) >999 180 BCLL 0.0 Rep Stress Incr YES WB 0.00 Horz(CT) 0.00 2 n/a n/a Code FBC2020/TPI2014 BCDL 10.0 Matrix-MP Weight: 12 lb FT = 20% BRACING- TOP CHORD **BOT CHORD** LUMBER- REACTIONS. TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 (size) 3=Mechanical, 2=0-3-8, 4=Mechanical Max Horz 2=64(LC 8) Max Uplift 3=-25(LC 12), 2=-126(LC 8) Max Grav 3=51(LC 1), 2=253(LC 1), 4=46(LC 3) FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. ### NOTES- - Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS
(envelope) gable end zone and C-C Exterior(2E) -2-0-0 to 0-8-13, Interior(1) 0-8-13 to 2-11-4 zone; porch right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 - Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component. - 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. - 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. - 5) Refer to girder(s) for truss to truss connections. - 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 25 lb uplift at joint 3 and 126 lb uplift at joint 2. Structural wood sheathing directly applied or 3-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing. Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date: April 20,2021 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see ANSITPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 6904 Parke East Blvd. Tampa, FL 36610 MIKE TODD CONST - SELLERS ADDITION Job Truss Truss Type Qty Ply T23625264 2751738 CJ03A Jack-Open Job Reference (optional) 8.430 s Mar 22 2021 MiTek Industries, Inc. Mon Apr 19 11:08:48 2021 Page 1 ID:0Wzf73gcKvulnYt9A9z_tEzPBvd-?vF6_rb8htDWSw2Cy47GQs815yViEDHWJjTdk7zPANj Builders FirstSource (Jacksonville, FL), Jacksonville, FL - 32244, -2-0-0 2-0-0 Scale = 1:9.6 3.25 12 2 0-3-14 3x4 = Plate Offsets (X,Y)- [2:0-2-12,Edge] PLATES GRIP SPACING-CSI. DEFL. I/defl L/d LOADING (psf) 2-0-0 in (loc) Plate Grip DOL -0.00 240 MT20 244/190 TCLL 20.0 1.25 TC 0.21 Vert(LL) >999 BC 180 TCDL 7.0 Lumber DOL 1.25 0.06 Vert(CT) -0.01 >999 0.0 Rep Stress Incr YES WB 0.00 Horz(CT) 0.00 n/a n/a BCLL Matrix-MP Weight: 12 lb FT = 20%BCDL 10.0 Code FBC2020/TPI2014 BRACING- TOP CHORD **BOT CHORD** LUMBER- TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD REACTIONS. (size) 3=Mechanical, 2=0-3-8, 4=Mechanical Max Horz 2=52(LC 8) Max Uplift 3=-22(LC 12), 2=-128(LC 8) Max Grav 3=49(LC 1), 2=253(LC 1), 4=45(LC 3) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. ### NOTES- - 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -2-0-0 to 1-0-0, Interior(1) 1-0-0 to 2-11-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 - 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component. - 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. - * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. - 5) Refer to girder(s) for truss to truss connections. - 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 22 lb uplift at joint 3 and 128 lb uplift at joint 2. Structural wood sheathing directly applied or 3-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing. 6904 Parke East Blvd. Tampa FL 33610 Date: April 20,2021 MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for on individual building component, not a fruss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 Job Truss Truss Type Qty Ply MIKE TODD CONST. - SELLERS ADDITION T23625265 2751738 CJ05 Jack-Open 8 Job Reference (optional) Builders FirstSource (Jacksonville, FL), Jacksonville, FL - 32244. 8.430 s Mar 22 2021 MiTek Industries, Inc. Mon Apr 19 11:08:48 2021 Page 1 ID:OWzf73gcKvulnYt9A9z_tEzPBvd-?vF6_rb8htDWSw2Cy47GQs81WyTKEDHWJjTdk7zPANj Scale = 1:13.6 4.00 12 1-8-1 0-4-4 3x4 = LOADING (psf) SPACING-2-0-0 CSL DEFI in I/defl L/d **PLATES** GRIP TCLL 20.0 Plate Grip DOL 1.25 0.25 TC Vert(LL) 0.03 4-7 >999 240 MT20 244/190 TCDL BC 7.0 Lumber DOL 1.25 0.22 Vert(CT) -0.05 >999 180 BCLL 0.0 Rep Stress Inci YES WB 0.00 Horz(CT) 0.00 3 n/a n/a BCDL 10.0 Code FBC2020/TPI2014 Matrix-MP Weight: 19 lb FT = 20% LUMBER- TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BRACING- TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 5-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size) 3=Mechanical, 2=0-3-8, 4=Mechanical Max Horz 2=87(LC 8) Max Uplift 3=-53(LC 12), 2=-131(LC 8) Max Grav 3=107(LC 1), 2=313(LC 1), 4=85(LC 3) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. ### NOTES- - 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -2-0-0 to 0-8-13, Interior(1) 0-8-13 to 4-11-4 zone; porch right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 - 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component. - 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. - 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. - 5) Refer to girder(s) for truss to truss connections. - 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 53 lb uplift at joint 3 and 131 lb uplift at joint 2. 6904 Parke East Blvd. Tampa FL 33610 April 20,2021 MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MITE&® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 6904 Parke East Blvd. Tampa, FL 36610 MIKE TODD CONST. - SELLERS ADDITION Qty Ply Job Truss Truss Type T23625266 CJ05A Jack-Open 2751738 Job Reference (optional) 8.430 s Mar 22 2021 MiTek Industries, Inc. Mon Apr 19 11:08:49 2021 Page 1 Jacksonville, FL - 32244, Builders FirstSource (Jacksonville, FL), ID:OWzf73gcKvulnYt9A9z_tEzPBvd-U5oUBBcnSBLN44dPWneVz4gCRMojzgXfXNCBGZzPANi Scale = 1:13.2 3.25 12 0-3-14 Plate Offsets (X,Y)-- [2:0-2-12,Edge] **PLATES** GRIP DEFL L/d LOADING (psf) SPACING-2-0-0 CSI in (loc) 1/defl 244/190 MT20 0.03 >999 240 TCLL 20.0 Plate Grip DOL 1.25 TC BC 0.24 Vert(LL) 4-7 180 TCDL 7.0 Lumber DOL 1 25 0.21 Vert(CT) -0.05 4-7 >999 0.00 n/a BCLL 0.0 Rep Stress Incr YES WB 0.00 Horz(CT) n/a LUMBER- BCDL TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD 10.0 BRACING-TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 5-0-0 oc purlins. Weight: 18 lb Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size) 3=Mechanical, 2=0-3-8, 4=Mechanical Code FBC2020/TPI2014 Max Horz 2=71(LC 8) Max Uplift 3=-49(LC 12), 2=-134(LC 8) Max Grav 3=106(LC 1), 2=313(LC 1), 4=84(LC 3) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. ### NOTES- - 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS
(envelope) gable end zone and C-C Exterior(2E) -2-0-0 to 1-0-0, Interior(1) 1-0-0 to 4-11-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 - 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component. Matrix-MP - 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. - 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. - 5) Refer to girder(s) for truss to truss connections. - 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 49 lb uplift at joint 3 and 134 lb uplift at FT = 20% 6904 Parke East Blvd. Tampa FL 33610 Date: April 20,2021 MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/P11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 REACTIONS. (size) 3=Mechanical, 2=0-3-8, 4=Mechanical Max Horz 2=110(LC 8) Max Uplift 3=-78(LC 8), 2=-142(LC 8) Max Grav 3=160(LC 1), 2=380(LC 1), 4=123(LC 3) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. ### NOTES. - 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -2-0-0 to 0-8-13, Interior(1) 0-8-13 to 6-11-4 zone; porch right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 - 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component. - 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. - 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. - Refer to girder(s) for truss to truss connections. - 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 78 lb uplift at joint 3 and 142 lb uplift at joint 2. 6904 Parke East Blvd. Tampa FL 33610 April 20,2021 MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MTEAS connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly anage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 Scale = 1:17.3 | | | | | | | 7-0-0 | | | | | | |----------------------|-----------------|--------|-------|------|----------|-------|-------|--------|-----|---|----------| | Platé Offsets (X,Y)- | 2:0-1-12,Edge] | | | | | | | | | | | | LOADING (psf) | SPACING- | 2-0-0 | CSI. | | DEFL. | in | (loc) | I/defl | L/d | PLATES | GRIP | | TCLL 20.0 | Plate Grip DOL | 1.25 | TC | 0.57 | Vert(LL) | 0.10 | 4-7 | >807 | 240 | MT20 | 244/190 | | TCDL 7.0 | Lumber DOL | 1.25 | BC | 0.47 | Vert(CT) | -0.20 | 4-7 | >420 | 180 | 0.0000000000000000000000000000000000000 | | | BCLL 0.0 * | Rep Stress Incr | YES | WB | 0.00 | Horz(CT) | 0.00 | 2 | n/a | n/a | | | | BCDL 10.0 | Code FBC2020/T | PI2014 | Matri | x-MS | | | | | | Weight: 24 lb | FT = 20% | LUMBER- TOP CHORD 2x4 SP No.2 BRACING- 7-0-0 TOP CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size) 3=Mechanical, 2=0-3-8, 4=Mechanical Max Horz 2=90(LC 8) Max Uplift 3=-72(LC 8), 2=-147(LC 8) Max Grav 3=158(LC 1), 2=380(LC 1), 4=121(LC 3) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. ### NOTES - Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -2-0-0 to 1-0-0, Interior(1) 1-0-0 to 6-11-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 - Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component. - This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. - 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. - 5) Refer to girder(s) for truss to truss connections. - 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 72 lb uplift at joint 3 and 147 lb uplift at joint 2. Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date: April 20,2021 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see __ANSITPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 | Job | Truss | Truss Type | | Qty | Ply | MIKE TODD CONST SELLERS ADDITION | |--------------------|------------------------|--|--------------|-----------|-------------
--| | 00000000 | | 220,000,000 | SS-2201-2000 | | 50 | T23625269 | | 2751738 | HJ10 | Diagonal Hi | p Girder | 4 | 1 | Manager Anthonory Control of the t | | | | | | | | Job Reference (optional) | | Builders FirstSour | ce (Jacksonville, FL), | Jacksonville, FL - 32244, | | - 1 | 3.430 s Mar | 22 2021 MiTek Industries, Inc. Mon Apr 19 11:08:52 2021 Page 1 | | | | | | ID:OWzf7: | gcKvulnYt9 | 9A9z tEzPBvd-ugUdpDffl6jyxYM BvBCbildEZjHAvV5DLR:tuzPANf | | t- | -2-9-15 | The state of s | 4-6-0 | | • | 9-10-1 | | | 2-9-15 | | 4-6-0 | | | 5-4-1 | Scale = 1:23.1 | | | | | | 4-6-0
4-6-0 | | + | | | 9-9-5
5-3-5 | | 9-10-1
0-0-12 | |-------------|------------|-----------------|---------|--------|----------------|----------|-------|-------|--------|----------------|---------------|------------------| | Plate Offse | ets (X,Y)- | [2:0-0-13,Edge] | | | 400 | | | | | 555 | | 0-0-12 | | LOADING | (psf) | SPACING- | 2-0-0 | CSI. | | DEFL. | in | (loc) | I/defl | L/d | PLATES | GRIP | | TCLL | 20.0 | Plate Grip DOL | 1.25 | TC | 0.59 | Vert(LL) | 0.07 | 6-7 | >999 | 240 | MT20 | 244/190 | | TCDL | 7.0 | Lumber DOL | 1.25 | BC | 0.67 | Vert(CT) | -0.14 | 6-7 | >867 | 180 | | | | BCLL | 0.0 * | Rep Stress Incr | NO | WB | 0.50 | Horz(CT) | 0.01 | 5 | n/a | n/a | | | | BCDL | 10.0 | Code FBC2020/TI | PI2014 | Matrix | k-MS | | | | | 140,400 | Weight: 43 lb | FT = 20% | **BRACING-** TOP CHORD **BOT CHORD** LUMBER- TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No 2 2x4 SP No.3 WEBS REACTIONS. (size) 4=Mechanical, 2=0-4-9, 5=Mechanical Max Horz 2=107(LC 4) Max Uplift 4=-67(LC 4), 2=-268(LC 4), 5=-103(LC 4) Max Grav 4=151(LC 1), 2=512(LC 1), 5=273(LC 3) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 2-3=-930/336 TOP CHORD **BOT CHORD** 2-7=-378/886, 6-7=-378/886 WEBS 3-6=-907/387 ### NOTES- - 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone; porch left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 - 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component. - 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads, - 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. - 5) Refer to girder(s) for truss to truss connections. - 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 67 lb uplift at joint 4, 268 lb uplift at joint 2 and 103 lb uplift at joint 5. - 7) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 19 lb down and 26 lb up at 4-4-0, 19 lb down and 26 lb up at 4-4-0, and 40 lb down and 64 lb up at 7-1-15, and 40 lb down and 64 lb up at 7-1-15 on top chord and 40 lb down and 52 lb up at 1-6-1, 40 lb down and 52 lb up at 1-6-1, 46 lb down and 1 lb up at 4-4-0, 46 lb down and 1 lb up at 4-4-0, and 38 lb down at 7-1-15, and 38 lb down at 7-1-15 on bottom chord. The design/selection of such connection device(s) is the responsibility of others. - 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard 1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf) Vert: 1-4=-54, 5-8=-20 Concentrated Loads (lb) Vert: 7=2(F=1, B=1) 11=-61(F=-31, B=-31) 13=63(F=31, B=31) 14=-51(F=-25, B=-25) Structural wood sheathing directly applied or 5-10-4 oc purlins. Rigid ceiling directly applied or 9-4-10 oc bracing. MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 April 20,2021 👠 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ucallapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of frusses and truss systems, see ANSI/TH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 6904 Parke East Blvd. Tampa, FL 36610 | Job | Truss | Truss | з Туре | Qty | Ply | MIKE TODD CONST SELLERS ADDITION T236252 | |----------------------|--|----------------------|-----------------|-------------|------------|--| | 2751738 | HJ10A | Diago | onal Hip Girder | 2 | 1 | ASSISTED | | | 100 TO 10 | | | | | Job Reference (optional) | | Builders FirstSource | ce (Jacksonville, FL), | Jacksonville, FL - 3 | 2244, | | | r 22 2021 MiTek Industries, Inc. Mon Apr 19 11:08:53 2021 Page 1 | | | | | | ID:OWzf73gc | KvulnYt9A9 | Pz_tEzPBvd-Mt2?1ZfHWQspZixAldiR7wrotz2qvK4FS?AOPKzPANe | | 3 | -2-9-15 | 1 | 4-6-0 | | | 9-10-1 | | _ | 2-9-15 | | 4-6-0 | | | 5-4-1 | Scale = 1:23.1 | | | | ! | | 4-6-0 | | 1 | | | 9-9-5
5-3-5 | | 9-10-1
0-0-12 | |--------------|-----------|-----------------------------------|--------------
-------------|--------------|----------|-------|-------|--------|----------------|---------------|------------------| | Plate Offse | ets (X,Y) | [2:0-4-5,Edge], [6:0-0-8,0 | -1-10] | | 4-6-0 | | | | | 5-3-5 | | 0-0-12 | | LOADING | (psf) | SPACING- | 2-0-0 | CSI. | | DEFL. | in | (loc) | l/defl | L/d | PLATES | GRIP | | TCLL | 20.0 | Plate Grip DOL | 1.25 | TC | 0.59 | Vert(LL) | -0.07 | 6-7 | >999 | 240 | MT20 | 244/190 | | TCDL | 7.0 | Lumber DOL | 1.25 | BC | 0.71 | Vert(CT) | -0.15 | 6-7 | >783 | 180 | | | | BCLL
BCDL | 0.0 * | Rep Stress Incr
Code FBC2020/T | NO
PI2014 | WB
Matri | 0.60
x-MS | Horz(CT) | 0.01 | 5 | n/a | n/a | Weight: 42 lb | FT = 20% | BRACING- TOP CHORD BOT CHORD LUMBER- REACTIONS. 2x4 SP No.2 TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3 WEBS (size) 4=Mechanical, 2=0-4-9, 5=Mechanical Max Horz 2=87(LC 22) Max Uplift 4=-60(LC 4), 2=-223(LC 4), 5=-34(LC 8) Max Grav 4=152(LC 1), 2=511(LC 1), 5=272(LC 3) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 2-3=-1134/249 TOP CHORD **BOT CHORD** 2-7=-288/1101, 6-7=-288/1101 3-6=-1118/293 WEBS ### NOTES- - 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone; Lumber DOL=1.60 plate grip DOL=1.60 - 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component. - 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. - 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. - Refer to girder(s) for truss to truss connections. - 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 60 lb uplift at joint 4, 223 lb uplift at joint 2 and 34 lb uplift at joint 5. - 7) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 19 lb down and 23 lb up at 4-4-0, 19 lb down and 23 lb up at 4-4-0, and 40 lb down and 60 lb up at 7-1-15, and 40 lb down and 60 lb up at 7-1-15 on top chord and 55 lb down and 85 lb up at 1-6-1, 55 lb down and 85 lb up at 1-6-1, 22 lb down at 4-4-0, 22 lb down at 4-4-0, and 36 lb down at 7-1-15, and 36 lb down at 7-1-15 on bottom chord. The design/selection of such connection device(s) is the responsibility of others. - 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). ### LOAD CASE(S) Standard 1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf) Vert: 1-4=-54, 5-8=-20 Concentrated Loads (lb) Vert: 7=-1(F=-0, B=-0) 10=65(F=33, B=33) 11=-58(F=-29, B=-29) 13=-54(F=-27, B=-27) Structural wood sheathing directly applied or 5-4-1 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing. Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date: April 20,2021 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. \$/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters and properly incorporate this design into the overall a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design, Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 | Job | Truss | T | russ Type | | Qty | Ply | MIKE TODD CONST | SELLERS ADDITION | | |------------------------|--------------------|------------------|------------|--------|-----------|-----------|---------------------------|-------------------|------------------| | 2751738 | T01 | н | Hip Girder | | 2 | 1 | | | T23625271 | | | | | | | | | Job Reference (optional | 1) | | | Builders FirstSource (| Jacksonville, FL), | Jacksonville, FL | 32244, | | | | r 22 2021 MiTek Industrie | | | | | | | | ID: | :OWzf73gc | KvulnYt9A | 9z_tEzPBvd-mSk7faiApL | ENQ9glQlG8lYTKBA? | 66k_h8zP20fzPANb | | 2-0-0 | 4-2-4 | 7-0-0 | 10-4-0 | 13-8-0 | 4 | 17-0-0 | 19-9-12 | 24-0-0 | 26-0-0 | | 2-0-0 | 4-2-4 | 2-9-12 | 3-4-0 | 3-4-0 | 2 | 3-4-0 | 2-9-12 | 4-2-4 | 2-0-0 | Scale = 1:45.6 | | 1 | 7-0-0 | i | 1 | 2-0-0 | | 17-0-0 | | 1 | | 24-0-0 | Ē | |-------------|------------|----------------------------|--------|--------|-------|----------|--------|-------|--------|-----|----------------|----------| | | | 7-0-0 | | | 5-0-0 | | 5-0-0 | | | | 7-0-0 | | | Plate Offse | ets (X,Y)- | [2:0-4-0,0-2-10], [9:0-4-0 | | | | | | | | | | | | LOADING | (psf) | SPACING- | 2-0-0 | CSI. | | DEFL. | in | (loc) | l/defl | L/d | PLATES | GRIP | | TCLL | 20.0 | Plate Grip DOL | 1.25 | TC | 0.52 | Vert(LL) | 0.31 | 12 | >932 | 240 | MT20 | 244/190 | | TCDL | 7.0 | Lumber DOL | 1.25 | BC | 0.99 | Vert(CT) | -0.54 | 12 | >530 | 180 | 150074301 | | | BCLL | 0.0 * | Rep Stress Incr | NO | WB | 0.40 | Horz(CT) | 0.12 | 9 | n/a | n/a | | | | BCDL | 10.0 | Code FBC2020/T | PI2014 | Matrix | k-MS | | | | | | Weight: 133 lb | FT = 20% | BRACING- TOP CHORD **BOT CHORD** LUMBER- REACTIONS. WEBS TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x6 SP No.2 2x4 SP No.3 (size) 2=0-3-8, 9=0-3-8 Max Horz 2=45(LC 27) Max Uplift 2=-728(LC 4), 9=-738(LC 5) Max Grav 2=1751(LC 1), 9=1782(LC 1) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown 2-3=-4551/1732, 3-4=-4376/1659, 4-5=-4204/1612, 5-6=-5024/1872, 6-7=-4293/1640, TOP CHORD 7-8=-4473/1690, 8-9=-4647/1763 BOT CHORD 2-13=-1622/4294, 12-13=-1801/4915, 11-12=-1806/4946, 9-11=-1608/4384 WEBS 4-13=-369/1057, 5-13=-937/342, 5-12=-23/255, 6-11=-852/309, 7-11=-349/1014 - 1) Unbalanced roof live loads have been considered for this design. - 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone; porch left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 - 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component. - Provide adequate drainage to prevent water ponding. - 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. - * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. - 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 728 lb uplift at joint 2 and 738 lb uplift at ioint 9. - 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 124 lb down and 84 lb up at 7-0-0, 106 lb down and 84 lb up at 9-0-12, 106 lb down and 84 lb up at 11-0-12, 106 lb down and 84 lb up at 12-11-4, and 106 lb down and 84 lb up at 14-11-4, and 227 lb down and 157 lb up at 17-0-0 on top chord, and 300 lb down and 138 lb up at 7-0-0, 83 lb down at 9-0-12, 83 lb down at 11-0-12, 83 lb down at 12-11-4, and 83 lb down at 14-11-4, and 300 lb down and 138 lb up at 16-11-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others. - 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). ### LOAD CASE(S) Standard 1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf) Vert: 1-4=-54, 4-7=-54, 7-10=-54, 2-9=-20 No 6818 Structural wood sheathing directly applied or 2-4-6 oc purlins. Rigid ceiling directly applied or 5-6-5 oc bracing. 6904 Parke East Blvd. Tampa FL 33610 April 20,2021 ### Continued on page 2 MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITEMS connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20801 6904 Parke East Blvd. Tampa, FL 36610 | Job | Truss | Truss Type | Qty | Ply | MIKE TODD CONST SELLERS ADDITION T2362527 | 71 | |---------|-------
--|-------|-----|---|----| | 2751738 | T01 | Hip Girder | 2 | 1 | 120222 | _ | | | 33.55 | A STATE OF THE STA | · · · | | Job Reference (optional) | | Builders FirstSource (Jacksonville, FL), Jacksonville, FL - 32244, 8.430 s Mar 22 2021 MiTek Industries, Inc. Mon Apr 19 11:08:56 2021 Page 2 ID:OWzf73gcKvulnYt9A9z_tEzPBvd-mSk7faiApLENQ9glQlG8lYTKBA?66k_h8zP20fzPANb LOAD CASE(S) Standard Concentrated Loads (lb) Vert: 4=-106(B) 7=-180(B) 13=-294(B) 11=-294(B) 18=-106(B) 19=-106(B) 21=-106(B) 22=-106(B) 23=-61(B) 24=-61(B) 25=-61(B) 26=-61(B) | Job | | | Truss | | Truss Type | | Qty | Ply | MIKE TODD COM | NST SELLERS ADDITION | 0.0000 | | |---------|-------------|-----------|---------------------------------------|-------------|----------------|--------|-----------|-------------|-------------------|------------------------------|-----------------|--------| | 2751738 | В | | T02 | | Hip | | 2 | 1 | | | T23 | 625272 | | | | | I I I I I I I I I I I I I I I I I I I | | | | | | Job Reference (or | otional) | | | | Builder | rs FirstSou | urce (Jac | ksonville, FL), | Jacksonvill | e, FL - 32244, | | 8 | 3.430 s Mar | 22 2021 MiTek Ind | lustries, Inc. Mon Apr 19 11 | :08:58 2021 Pag | ge 1 | | | | | | | | | D:OWzf73g | cKvulnYt9/ | 49z_tEzPBvd-jqru4 | GjQLyU5fTp7YAlcqzYgN_k | qaiJ_cHu94YzP/ | ANZ | | L- | -2-0-0 | 1 | 4-11-2 | 10.0 | 9-0-0 | 15-0-0 | | 1 | 19-0-14 | 24-0-0 | 26-0-0 | 1 | | | 2-0-0 | | 4-11-2 | | 4-0-14 | 6-0-0 | | 1 | 4-0-14 | 4-11-2 | 2-0-0 | 1 | Scale = 1:45.6 | | 9-0-0 | | | | | 15-0-0
6-0-0 | -+ | | |) | | | |------------|-------------|-----------------|--------|----------|------|-----------------|-------|-------|--------|-------|----------------|----------| | Plate Offs | sets (X,Y)- | | | 4,0-1-8] | | 6-0-0 | | | | 9-0-0 | | | | OADING | G (psf) | SPACING- | 2-0-0 | CSI. | | DEFL. | in | (loc) | I/defl | L/d | PLATES | GRIP | | CLL | 20.0 | Plate Grip DOL | 1.25 | TC | 0.54 | Vert(LL) | -0.16 | 9-17 | >999 | 240 | MT20 | 244/190 | | CDL | 7.0 | Lumber DOL | 1.25 | BC | 0.78 | Vert(CT) | -0.35 | 9-17 | >812 | 180 | | | | CLL | 0.0 | Rep Stress Incr | YES | WB | 0.16 | Horz(CT) | 0.07 | 7 | n/a | n/a | | | | BCDL | 10.0 | Code FBC2020/T | PI2014 | Matri | x-MS | | | | | | Weight: 110 lb | FT = 20% | TOP CHORD BOT CHORD LUMBER- TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 WEBS 2x4 SP No.3 REACTIONS. (size) 2=0-3-8, 7=0-3-8 Max Horz 2=55(LC 16) Max Uplift 2=-297(LC 8), 7=-297(LC 9) Max Grav 2=996(LC 1), 7=996(LC 1) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-2109/671, 3-4=-1765/541, 4-5=-1652/540, 5-6=-1764/542, 6-7=-2109/671 **BOT CHORD** 2-11=-572/1980, 9-11=-412/1652, 7-9=-580/1980 WEBS 3-11=-368/181, 4-11=-15/351, 5-9=-20/351, 6-9=-368/180 ### NOTES- 1) Unbalanced roof live loads have been considered for this design. - 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -2-0-0 to 0-8-13, Interior(1) 0-8-13 to 9-0-0, Exterior(2R) 9-0-0 to 13-2-15, Interior(1) 13-2-15 to 15-0-0, Exterior(2R) 15-0-0 to 19-3-10, Interior(1) 19-3-10 to 26-0-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 - 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component. - 4) Provide adequate drainage to prevent water ponding. - 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. - * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. - 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 297 lb uplift at joint 2 and 297 lb uplift at joint 7. Structural wood sheathing directly applied or 3-8-0 oc purlins. Rigid ceiling directly applied or 7-8-13 oc bracing. Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date: April 20,2021 MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 6904 Parke East Blvd Tampa, FL 36610 | Job | Truss | Truss Type | | Qty | Ply | MIKE TODD CONST SELLERS ADDITIO | N T23625273 | |----------------------|-----------------------------|---------------------|--------|----------|-------------|---|--------------------| | 2754720 | тоз | Hip | | 2 | 1 | | 123023213 | | 2751738 | 103 | I HIP | | - | | Job Reference (optional) | | | Builders FirstSource | (Jacksonville, FL), Jackson | nville, FL - 32244, | | | | r 22 2021 MiTek Industries, Inc. Mon Apr 19 1 | | | | | | ID:C | Wzf73gcł | (vulnYt9A9z | z_tEzPBvd-B1PGHck25GcyHdOK5tprNA5v50 | 08fJ6U/qxdjc_zPANY | | -2-0-0 | 6-1-1 | 11-0-0 | 13-0-0 | | 17-10-15 | 24-0-0 | 26-0-0 | | 2-0-0 | 6-1-1 | 4-10-15 | 2-0-0 | | 4-10-15 | 6-1-1 | 2-0-0 | Scale = 1:45.6 | | 1 | 6-1-1
6-1-1 | | 11-0-0
4-10-15 | | 13-0-0 | | -10-15
10-15 | | + | 24-0-0
6-1-1 | -1 | |--------------|-------------|-----------------------------------|---------------|-------------------|--------------|----------|-------|-----------------|--------|-----|-----------------|----------| | Plate Offs | sets (X,Y)- | [4:0-5-4,0-2-0] | | 7.70 | | | | | | | | | | LOADING | G (psf) | SPACING- | 2-0-0 | CSI. | | DEFL. | in | (loc) | l/defl | L/d | PLATES | GRIP | | TCLL | 20.0 | Plate Grip DOL | 1.25 | TC | 0.29 | Vert(LL) | -0.11 | 12 | >999 | 240 | MT20 | 244/190 | | TCDL | 7.0 | Lumber DOL | 1.25 | BC | 0.55 | Vert(CT) | -0.22 | 12-13 | >999 | 180 | | | | BCLL
BCDL | 10.0 | Rep Stress Incr
Code FBC2020/T | YES
PI2014 | WB
Matri | 0.35
x-MS | Horz(CT) | 0.07 | , | n/a | n/a | Weight: 116 lb | FT = 20% | BRACING- TOP CHORD BOT CHORD LUMBER- REACTIONS. TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 WEBS (size) 2=0-3-8, 7=0-3-8 Max Horz 2=65(LC 12) Max Uplift 2=-287(LC 8), 7=-287(LC 9) Max Grav 2=996(LC 1), 7=996(LC 1) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 2-3=-2106/600, 3-4=-1520/469, 4-5=-1410/462, 5-6=-1522/465, 6-7=-2105/583 TOP CHORD 2-13=-500/1957, 12-13=-500/1957, 10-12=-313/1408, 9-10=-492/1957, 7-9=-492/1957 **BOT CHORD** 3-12=-616/205, 4-12=-58/299, 5-10=-64/301, 6-10=-614/205 WEBS ### NOTES- 1) Unbalanced roof live loads have been considered for this design. - 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18: MWFRS (envelope) gable end zone and C-C Exterior(2E) -2-0-0 to 0-8-13, Interior(1) 0-8-13 to 11-0-0, Exterior(2E) 11-0-0 to 13-0-0, Exterior(2R) 13-0-0 to 17-2-15, Interior(1) 17-2-15 to 26-0-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 - 3) Building
Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component. - 4) Provide adequate drainage to prevent water ponding. - 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. - 6) *This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. - 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 287 lb uplift at joint 2 and 287 lb uplift at joint 7. Structural wood sheathing directly applied or 3-9-2 oc purlins. Rigid ceiling directly applied or 8-4-7 oc bracing. MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date: April 20,2021 MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 | Job | | Truss | Truss Type | Qty | Ply | MIKE TODD CONST SELLERS ADDITION | 27/30/20/20/20 | |------|---------------------|----------------------------|--------------------|------------|-----------|--|----------------| | 2751 | 738 | T04 | Common | 1 | 1 | | T23625274 | | | | | | | | Job Reference (optional) | = 1 | | Bui | Iders FirstSource (| Jacksonville, FL), Jackson | ville, FL - 32244, | | | 22 2021 MiTek Industries, Inc. Mon Apr 19 11:0 | | | | | | | ID:OWzf73g | cKvulnYt9 | A9z_tEzPBvd-7PX0illldtsgWwYiDIsJSbAEsBqTn | 2vQIF6phtzPANW | | | -2-0-0 | 6-7-6 | 12-0-0 | 1 17 | -4-9 | 24-0-0 | 26-0-0 | | | 2-0-0 | 6-7-6 | 5-4-9 | 5- | 4-10 | 6-7-7 | 2-0-0 | Scale = 1:44.9 | | - | 8-4-15 | | | | 15-7-1 | | | | | 24-0-0 | | | |-------------|------------|-----------------------------|--------|-------|------|----------|-------|-------|--------|-----|----------------|----------|--| | | | 8-4-15 | | | | 7-2-2 | | | | 8 | 3-4-15 | | | | Plate Offse | ets (X,Y)- | [2:0-3-9,0-1-8], [6:0-3-9,0 | -1-8] | | | | | | | | | | | | LOADING | (psf) | SPACING- | 2-0-0 | CSI. | | DEFL. | in | (loc) | l/defl | L/d | PLATES | GRIP | | | TCLL | 20.0 | Plate Grip DOL | 1.25 | TC | 0.34 | Vert(LL) | -0.11 | 8-10 | >999 | 240 | MT20 | 244/190 | | | TCDL | 7.0 | Lumber DOL | 1.25 | BC | 0.53 | Vert(CT) | -0.21 | 8-14 | >999 | 180 | 111/202 | | | | BCLL | 0.0 * | Rep Stress Incr | YES | WB | 0.23 | Horz(CT) | 0.05 | 6 | n/a | n/a | | | | | BCDL | 10.0 | Code FBC2020/T | PI2014 | Matri | x-MS | | | | | | Weight: 123 lb | FT = 20% | | BRACING- TOP CHORD **BOT CHORD** LUMBER- REACTIONS. TOP CHORD 2x4 SP No.2 2x6 SP No.2 **BOT CHORD** WEBS 2x4 SP No.3 (size) 2=0-3-8, 6=0-3-8 Max Horz 2=69(LC 16) Max Uplift 2=-281(LC 8), 6=-281(LC 9) Max Grav 2=996(LC 1), 6=996(LC 1) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-2082/566, 3-4=-1866/510, 4-5=-1866/510, 5-6=-2082/566 **BOT CHORD** 2-10=-460/1949, 8-10=-266/1324, 6-8=-473/1949 WEBS 4-8=-138/605, 5-8=-352/186, 4-10=-139/605, 3-10=-352/186 NOTES- 1) Unbalanced roof live loads have been considered for this design. - 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -2-0-0 to 1-2-13, Interior(1) 1-2-13 to 12-0-0, Exterior(2R) 12-0-0 to 15-0-0, Interior(1) 15-0-0 to 26-0-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 - 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component. - 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. - 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. - 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 281 lb uplift at joint 2 and 281 lb uplift at joint 6. Structural wood sheathing directly applied or 3-9-5 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing. Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 April 20,2021 MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MIL-7473 ray, 5/19/2020 REFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 | Job | Truss | Truss Type | Qty | Ply | MIKE TODD CONST SELLERS ADDITIO | DN T23625275 | |----------------------|--------------------------------|--------------------|------|-----|--|--------------| | 2751738 | T05 | HIP GIRDER | 1 | 2 | Job Reference (optional) | | | Builders FirstSource | ce (Jacksonville, FL), Jackson | ville, FL - 32244, | | | 22 2021 MiTek Industries, Inc. Mon Apr 19
9z tEzPBvd-3ofn7znZ9U6OIEi5KjunX0FXa? | | | -2-0-0 | 7-0-0 | 12-0-0 | 17-0 | -0 | 24-0-0 | 26-0-0 | | 2-0-0 | 7-0-0 | 5-0-0 | 5-0- | 0 | 7-0-0 | 2-0-0 | Scale = 1:45.6 | | 1 | 7-0-0 | | 1 | 2-0-0 | | 17-0-0 | | | | 24-0-0 | _ | |--------------|------------|-----------------------------------|-----------------|-------------|--------------|----------|--------|-------|--------|-----|----------------|----------| | | | 7-0-0 | | i i | 5-0-0 | | 5-0-0 | | | | 7-0-0 | | | Plate Offs | ets (X,Y)- | [2:0-3-7,0-0-11], [6:0-3-7 | 0-0-11], [9:0-4 | -0,0-4-8] | | 4 | | | | | | | | LOADING | (psf) | SPACING- | 2-0-0 | CSI. | | DEFL. | in | (loc) | l/defl | L/d | PLATES | GRIP | | TCLL | 20.0 | Plate Grip DOL | 1.25 | TC | 0.45 | Vert(LL) | -0.20 | 9 | >999 | 240 | MT20 | 244/190 | | TCDL | 7.0 | Lumber DOL | 1.25 | BC | 0.63 | Vert(CT) | -0.37 | 9 | >759 | 180 | | | | BCLL
BCDL | 0.0 * | Rep Stress Incr
Code FBC2020/T | NO
PI2014 | WB
Matri | 0.18
x-MS | Horz(CT) | 0.07 | 6 | n/a | n/a | Weight: 239 lb | FT = 20% | BRACING-TOP CHORD **BOT CHORD** LUMBER- TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.3 REACTIONS. (size) 2=0-3-8, 6=0-3-8 Max Horz 2=-39(LC 5) Max Uplift 2=-462(LC 4), 6=-469(LC 5) Max Grav 2=1749(LC 1), 6=1781(LC 1) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-5291/1163, 3-4=-5144/1148, 4-5=-5254/1173, 5-6=-5409/1189 BOT CHORD 2-10=-1088/5070, 9-10=-1372/6288, 8-9=-1372/6288, 6-8=-1084/5183 WEBS 3-10=-113/951, 4-10=-1362/342, 4-9=0/389, 4-8=-1224/299, 5-8=-97/905 ### NOTES- - 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: - Top chords connected as follows: 2x4 1 row at 0-9-0 oc. - Bottom chords connected as follows: 2x6 2 rows staggered at 0-9-0 oc. - Webs connected as follows: 2x4 1 row at 0-9-0 oc. - All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. - 3) Unbalanced roof live loads have been considered for this design. - Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone; Lumber DOL=1.60 plate grip DOL=1.60 - 5) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component. - 6) Provide adequate drainage to prevent water ponding. - 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. - 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. - Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 462 lb uplift at joint 2 and 469 lb uplift at joint 6. - 10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 123 lb down and 79 lb up at 7-0-0, 104 lb down and 79 lb up at 9-0-12,
104 lb down and 79 lb up at 11-0-12, 104 lb down and 79 lb up at 12-11-4, and 104 lb down and 79 lb up at 14-11-4, and 227 lb down and 145 lb up at 17-0-0 on top chord, and 296 lb down and 61 lb up at 7-0-0, 81 lb down at 9-0-12, 81 lb down at 11-0-12, 81 lb down at 12-11-4, and 81 lb down at 14-11-4, and 296 lb down and 61 lb up at 16-11-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others. ### LOAD CASE(S) Standard Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITEK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITE!* Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 Structural wood sheathing directly applied or 5-0-7 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing. Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date: April 20,2021 | Job | Truss | Truss Type | Qty | Ply | MIKE TODD CONST SELLERS ADDITION | 100000000000000000000000000000000000000 | |---------|-------|------------|-----|-----|----------------------------------|---| | 2751738 | T05 | HIP GIRDER | 1 | _ | | T23625275 | | | | | | 2 | Job Reference (optional) | | Builders FirstSource (Jacksonville, FL), Jacksonville, FL - 32244, 8.430 s Mar 22 2021 MiTek Industries, Inc. Mon Apr 19 11:09:03 2021 Page 2 ID:OWzf73gcKvulnYt9A9z_tEzPBvd-3ofn7znZ9U6OlEi5KjunX0FXa?UQFz8jlYbwmlzPANU LOAD CASE(S) Standard 1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf) Vert: 1-3=-54, 3-5=-54, 5-7=-54, 2-6=-20 Concentrated Loads (lb) Vert: 3=-104(F) 5=-180(F) 10=-296(F) 8=-296(F) 15=-104(F) 16=-104(F) 17=-104(F) 18=-104(F) 19=-63(F) 20=-63(F) 21=-63(F) 22=-63(F) | Job | Truss | | Truss Type | Qty | Ply | MIKE TODD CO | NST SELLERS ADDITION | T23625276 | |--|--------------------|--------------|---------------|--------|----------------|------------------|------------------------------|-------------------| | 2751738 | T06 | | Hip | 1 | 1 | | | 120020270 | | | | | | | | Job Reference (c | | | | Builders FirstSource (J | Jacksonville, FL), | Jacksonville | , FL - 32244, | | | | dustries, Inc. Mon Apr 19 11 | | | Home again and the control of co | | | | ID:OW | zf73gcKvulnYt9 | A9z_tEzPBvd-3ofr | 7znZ9U6OIEi5KjunX0FV3? | QzFzljlYbwmlzPANU | | -2-0-0 | 5-0-13 | | 9-0-0 | 15-0-0 | 1 | 18-11-3 | 24-0-0 | 26-0-0 | | 2-0-0 | 5-0-13 | | 3-11-4 | 6-0-0 | | 3-11-4 | 5-0-13 | 2-0-0 | Scale = 1:45.6 | | F | 9-0-0 | | | | 15-0-0 | | | | 24-0-0 |) | | |--------------|-------------|-----------------------------------|------------------|--------------|--------------|----------|-------|-------|--------|--------|----------------|----------| | | | 9-0-0 | E | | | 6-0-0 | | | | 9-0-0 | (| - 3 | | Plate Off: | sets (X,Y)- | [2:0-2-0,0-0-0], [4:0-6-0,0 | -1-14], [7:0-2-0 | 0,0-0-0] | | | | | | | | | | LOADING | G (psf) | SPACING- | 2-0-0 | CSI. | | DEFL. | in | (loc) | l/defl | L/d | PLATES | GRIP | | TCLL | 20.0 | Plate Grip DOL | 1.25 | TC | 0.61 | Vert(LL) | -0.18 | 11-14 | >999 | 240 | MT20 | 244/190 | | TCDL | 7.0 | Lumber DOL | 1.25 | BC | 0.85 | Vert(CT) | -0.40 | 11-14 | >714 | 180 | 72.000 | | | BCLL
BCDL | 0.0 * | Rep Stress Incr
Code FBC2020/T | YES
PI2014 | WB
Matrix | 0.17
x-MS | Horz(CT) | 0.08 | 7 | n/a | n/a | Weight: 107 lb | FT = 20% | **BRACING-** TOP CHORD **BOT CHORD** LUMBER- TOP CHORD 2x4 SP No.2 2x4 SP No.2 **BOT CHORD** WEBS 2x4 SP No.3 REACTIONS. (size) 2=0-3-8, 7=0-3-8 Max Horz 2=-44(LC 13) Max Uplift 2=-296(LC 8), 7=-296(LC 9) Max Grav 2=996(LC 1), 7=996(LC 1) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 2-3=-2549/804, 3-4=-2133/647, 4-5=-2048/646, 5-6=-2133/647, 6-7=-2549/804 2-11=-722/2447, 9-11=-535/2047, 7-9=-729/2447 TOP CHORD **BOT CHORD** WEBS 3-11=-441/197, 4-11=-17/353, 5-9=-12/353, 6-9=-441/197 1) Unbalanced roof live loads have been considered for this design. - 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -2-0-0 to 1-0-0, Interior(1) 1-0-0 to 9-0-0, Exterior(2R) 9-0-0 to 13-2-15, Interior(1) 13-2-15 to 15-0-0, Exterior(2R) 15-0-0 to 19-2-8, Interior(1) 19-2-8 to 26-0-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 - 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component. - 4) Provide adequate drainage to prevent water ponding. - 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. - * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. - 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 296 lb uplift at joint 2 and 296 lb uplift at joint 7. Structural wood sheathing directly applied or 3-1-11 oc purlins. Rigid ceiling directly applied or 6-11-2 oc bracing. Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date: April 20,2021 MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. | Job | | Truss | | Truss Type | | | Qty | Ply | MIKE TODD CONST S | ELLERS ADDITION | 57555 | | |---------|-------------|-----------------------|---------------|-----------------|-------|---------|-----------|-----------
---|-----------------------|----------------|--------| | 2751738 | R | то7 | | Hip | | | 1 | 1 | The Colonia and motions as a "The Colonia and a colonia as a "Colonia" of the Colonia and a | | T236 | 325277 | | 2/5//00 | | 1.01 | | | | | | | Job Reference (optional) | | | | | Builder | rs FirstSou | rce (Jacksonville, FL | , Jacksonvill | le, FL - 32244, | | | 8 | 430 s Mar | 22 2021 MiTek Industries, | Inc. Mon Apr 19 11:09 | 9:04 2021 Page | e 1 | | | | | | | | ID:OWzf | 73gcKvuln | Yt9A9z_tE | zPBvd-Y_C9LJoBwoEFNO | HHuRP04Eoj6PpX_M | 3s_CLUIBzPAN | NT | | 1 | -2-0-0 | 6- | 1-13 | 1 | 1-0-0 | 13-0-0 | | 17-10-3 | 1 | 24-0-0 | 26-0-0 | 3 | | | 2-0-0 | 6- | 1-13 | 4 | -10-3 | 2-0-0 | | 4-10-3 | | 6-1-13 | 2-0-0 | | Scale = 1:45.6 | | 1 | 6-1-13 | | 11-0-0 | | 13-0-0 | 17-1 | 10-3 | | | 24-0-0 | | |-----------|---------------|-----------------|--------|--------|------|--|---------|-------|--------|-----|--|----------| | | \ I | 6-1-13 | | 4-10-3 | | 2-0-0 | 4-1 | 0-3 | | | 6-1-13 | 1 | | Plate Off | sets (X,Y)- [| 4:0-6-0,0-1-14] | | | | | | | | | | | | LOADIN | G (psf) | SPACING- | 2-0-0 | CSI. | | DEFL. | in | (loc) | I/defl | L/d | PLATES | GRIP | | TCLL | 20.0 | Plate Grip DOL | 1.25 | TC | 0.40 | Vert(LL) | -0.17 | 11 | >999 | 240 | MT20 | 244/190 | | TCDL | 7.0 | Lumber DOL | 1.25 | BC | 0.70 | Vert(CT) | -0.32 1 | 1-13 | >902 | 180 | TOTAL STATE OF THE | | | BCLL | 0.0 * | Rep Stress Incr | YES | WB | 0.40 | Horz(CT) | 0.08 | 7 | n/a | n/a | | | | BCDL | 10.0 | Code FBC2020/T | PI2014 | Matri | x-MS | CONTRACTOR AND | | | | | Weight: 110 lb | FT = 20% | BRACING- TOP CHORD BOT CHORD LUMBER- TOP CHORD 2x4 SP No.2 2x4 SP No.2 **BOT CHORD** 2x4 SP No.3 WEBS (size) 2=0-3-8, 7=0-3-8 REACTIONS. Max Horz 2=52(LC 12) Max Uplift 2=-285(LC 8), 7=-285(LC 9) Max Grav 2=996(LC 1), 7=996(LC 1) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-2530/725, 3-4=-1830/553, 4-5=-1746/544, 5-6=-1832/546, 6-7=-2529/704 **BOT CHORD** 2-13=-642/2418, 11-13=-642/2418, 10-11=-427/1743, 9-10=-629/2417, 7-9=-629/2417 **WEBS** 3-11=-738/230, 4-11=-55/301, 5-10=-60/303, 6-10=-736/230 ### NOTES- - 1) Unbalanced roof live loads have been considered for this design. - 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl. GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -2-0-0 to 1-0-0, Interior(1) 1-0-0 to 11-0-0, Exterior(2E) 11-0-0 to 13-0-0, Exterior(2R) 13-0-0 to 17-2-15, Interior(1) 17-2-15 to 26-0-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 - 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component. - Provide adequate drainage to prevent water ponding. - 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. - * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. - 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 285 lb uplift at joint 2 and 285 lb uplift at joint 7. Structural wood sheathing directly applied or 3-3-5 oc purlins. Rigid ceiling directly applied or 7-4-9 oc bracing. 6904 Parke East Blvd. Tampa FL 33610 Date: April 20,2021 MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev, 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 | Job | Truss | Truss Type | Qty | Ply | MIKE TODD CONST SELLERS ADDITION | T23625278 | |----------------------|---------------------------------------|----------------------|----------------|------|--|-----------| | 2751738 | Т08 | Common | 2 | 1 | Job Reference (optional) | | | Builders FirstSource | (Jacksonville, FL), Jacksonville, FL) | onville, FL - 32244, | ID:OWzf73gcKvi | | r 22 2021 MiTek Industries, Inc. Mon Apr 19 11
tEzPBvd-UNKvl?pRSPUzciRg0rRU9ft3ZCTnS.
24-0-0 | | | 2-0-0 | 6-5-1 | 5-6-15 | | 6-15 | 6-5-1 | 2-0-0 | Scale = 1:44.9 | | 8-4-14
8-4-14 | | | | 15-7-2
7-2-4 | | | | | 1 24-0-0
8-4-14 | | | | | |---------|------------------|-----------------|--------|-------|-----------------|---------------|-------|-------|--------|--------------------|----------------|----------|--|--| | LOADING | (psf) | SPACING- | 2-0-0 | CSI. | | DEFL. | in | (loc) | l/defl | L/d | PLATES | GRIP | | | | TCLL | 20.0 | Plate Grip DOL | 1.25 | TC | 0.40 | Vert(LL) | -0.17 | 8-10 | >999 | 240 | MT20 | 244/190 | | | | TCDL | 7.0 | Lumber DOL | 1.25 | BC | 0.78 | Vert(CT) | -0.33 | 8-10 | >877 | 180 | | | | | | BCLL | 0.0 * | Rep Stress Incr | YES | WB | 0.24 | Horz(CT) | 0.08 | 6 | n/a | n/a | | | | | | BCDL | 10.0 | Code FBC2020/T | PI2014
 Matri | x-MS | MeMemoral Man | | | | | Weight: 101 lb | FT = 20% | | | BRACING- TOP CHORD **BOT CHORD** LUMBER- WEBS REACTIONS. TOP CHORD 2x4 SP No.2 2x4 SP No.2 **BOT CHORD** 2x4 SP No.3 (size) 2=0-3-8, 6=0-3-8 Max Horz 2=56(LC 12) Max Uplift 2=-279(LC 8), 6=-279(LC 9) Max Grav 2=996(LC 1), 6=996(LC 1) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-2490/677, 3-4=-2182/575, 4-5=-2182/575, 5-6=-2490/677 **BOT CHORD** 2-10=-593/2383, 8-10=-362/1605, 6-8=-603/2383 WEBS 4-8=-131/637, 5-8=-426/206, 4-10=-130/637, 3-10=-426/206 ### NOTES- - 1) Unbalanced roof live loads have been considered for this design. - 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -2-0-0 to 1-0-0, Interior(1) 1-0-0 to 12-0-0, Exterior(2R) 12-0-0 to 15-0-0, Interior(1) 15-0-0 to 26-0-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 - 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component. - 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. - 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. - 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 279 lb uplift at joint 2 and 279 lb uplift at joint 6. Structural wood sheathing directly applied or 3-3-13 oc purlins. Rigid ceiling directly applied or 7-7-5 oc bracing. 6904 Parke East Blvd. Tampa FL 33610 Date: April 20,2021 MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 ### Symbols ## PLATE LOCATION AND ORIENTATION Center plate on joint unless x, y offsets are indicated. Dimensions are in ft-in-sixteenths. Apply plates to both sides of truss and fully embed teeth. For 4 x 2 orientation, locate plates 0- 1/16" from outside edge of truss. This symbol indicates the required direction of slots in connector plates. * Plate location details available in MiTek 20/20 ### PLATE SIZE software or upon request. The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots. ## LATERAL BRACING LOCATION Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated. ### BEARING Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number where bearings occur. Min size shown is for crushing only ### Industry Standards: ANSI/TPI1: National I National Design Specification for Metal Plate Connected Wood Truss Construction. Design Standard for Bracing. DSB-89: Design Standard for Bracing. Building Component Safety Information. Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses. ## **Numbering System** JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT. CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS. ## PRODUCT CODE APPROVALS ICC-ES Reports: ESR-1311, ESR-1352, ESR1988 ER-3907, ESR-2362, ESR-1397, ESR-3282 Trusses are designed for wind loads in the plane of the truss unless otherwise shown. Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others. © 2012 MiTek® All Rights Reserved MiTek Engineering Reference Sheet: MII-7473 rev. 5/19/2020 # **General Safety Notes** ### Failure to Follow Could Cause Property Damage or Personal Injury - . Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI - Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered. - Never exceed the design loading shown and never stack materials on inadequately braced trusses. - Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties. - Cut members to bear tightly against each other. - Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1. - Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1. - Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication. - Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber. - Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection. - Plate type, size, orientation and location dimensions indicated are minimum plating requirements. - Lumber used shall be of the species and size, and in all respects, equal to or better than that specified. - Top chords must be sheathed or purlins provided at spacing indicated on design. - Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted. - Connections not shown are the responsibility of others - Do not cut or alter truss member or plate without prior approval of an engineer. - Install and load vertically unless indicated otherwise. - Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use. - Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient. - Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria. - 21. The design does not take into account any dynamic or other loads other than those expressly stated. ### T-BRACE / I-BRACE DETAIL WITH 2X BRACE ONLY MII-T-BRACE 2 MiTek USA, Inc. Page 1 of 1 Note: T-Bracing / I-Bracing to be used when continuous lateral bracing is impractical. T-Brace / I-Brace must cover 90% of web length. Note: This detail NOT to be used to convert T-Brace / I-Brace webs to continuous lateral braced webs. | Name Amilia | Nailing Pattern | | |-------------------|-------------------|--------------| | T-Brace size | Nail Size | Nail Spacing | | 2x4 or 2x6 or 2x8 | 10d (0.131" X 3") | 6" o.c. | Note: Nail along entire length of T-Brace / I-Brace (On Two-Ply's Nail to Both Plies) | | | e Size
-Ply Truss | |------------|-------------------------|------------------------------| | | Specified
Rows of La | Continuous
iteral Bracing | | Web Size | 1 | 2 | | 2x3 or 2x4 | 2x4 T-Brace | 2x4 I-Brace | | 2x6 | 2x6 T-Brace | 2x6 I-Brace | | 2x8 | 2x8 T-Brace | 2x8 I-Brace | | 11 11+ | | | e Size
-Ply Truss | |-------------|------------|-------------------------|-----------------------------| | | | Specified
Rows of La | Continuous
teral Bracing | | SPACING | Web Size | 1 | 2 | | | 2x3 or 2x4 | 2x4 T-Brace | 2x4 I-Brace | | \ \\ \\+\^\ | 2x6 | 2x6 T-Brace | 2x6 I-Brace | | 111 11 11 | 2x8 | 2x8 T-Brace | 2x8 I-Brace | Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 ### SCAB-BRACE DETAIL ### MII-SCAB-BRACE MiTek USA, Inc. Page 1 of 1 Note: Scab-Bracing to be used when continuous lateral bracing at midpoint (or T-Brace) is impractical. Scab must cover full length of web +/- 6". *** THIS DETAIL IS NOT APLICABLE WHEN BRACING IS *** REQUIRED AT 1/3 POINTS OR I-BRACE IS SPECIFIED. APPLY 2x SCAB TO ONE FACE OF WEB WITH 2 ROWS OF 10d (0.131" X 3") NAILS SPACED 6" O.C. SCAB MUST BE THE SAME GRADE, SIZE AND SPECIES (OR BETTER) AS THE WEB. Scab-Brace must be same species grade (or better) as web member. Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date: ### STANDARD REPAIR TO REMOVE END VERTICAL (RIBBON NOTCH VERTICAL) MII-REP05 MiTek USA, Inc. Page 1 of 1 MiTek USA, Inc. ENGINEERED BY - 1. THIS IS A SPECIFIC REPAIR DETAIL TO BE USED ONLY FOR ITS ORIGINAL INTENTION. THIS REPAIR DOES NOT IMPLY THAT THE REMAINING PORTION OF THE TRUSS IS UNDAMAGED. THE ENTIRE TRUSS SHALL BE INSPECTED TO VERIFY THAT NO FURTHER REPAIRS ARE REQUIRED. WHEN THE REQUIRED REPAIRS ARE PROPERLY APPLIED, THE TRUSS WILL BE CAPABLE OF SUPPORTING THE LOADS INDICATED. THE LOADS INDICATED. - THE LOADS INDICATED. 2. ALL MEMBERS MUST BE RETURNED TO THEIR ORIGINAL POSITIONS BEFORE APPLYING REPAIR AND HELD IN PLACE DURING APPLICATION OF REPAIR. 3. THE END DISTANCE, EDGE DISTANCE, AND SPACING OF NAILS SHALL BE SUCH AS TO AVOID SPLITTING OF THE WOOD. 4. LUMBER MUST BE CUT CLEANLY AND ACCURATELY AND THE REMAINING WOOD MUST BE UNDAMAGED. 5. THIS REPAIR IS TO BE USED FOR SINGLE PLY TRUSSES IN THE 4X_ORIENTATION ONLY. 6. CONNECTOR PLATES MUST BE FULLY IMBEDDED AND UNDISTURBED. ### Standard Gable
End Detail ### MII-GE130-D-SP | Minimum
Stud Size
Species | Stud
Spacing | Without
Brace | 1x4
L-Brace | 2x4
L-Brace | DIAGONAL
BRACE | 2 DIAGONAL
BRACES AT
1/3 POINTS | |---------------------------------|-----------------|------------------|----------------|----------------|-------------------|---------------------------------------| | and Grade | | | Maximu | m Stud Le | ngth | | | 2x4 SP No. 3 / Stud | 12" O.C. | 3-9-13 | 4-1-1 | 5-9-6 | 7-1-3 | 11-5-7 | | 2x4 SP No. 3 / Stud | 16" O.C. | 3-5-4 | 3-6-8 | 5-0-2 | 6-10-8 | 10-3-13 | | 2x4 SP No. 3 / Stud | 24" O.C. | 2-9-11 | 2-10-11 | 4-1-1 | 5-7-6 | 8-5-1 | Diagonal braces over 6'-3" require a 2x4 T-Brace attached to one edge. Diagonal braces over 12'-6" require 2x4 I-braces attached to both edges. Fasten T and I braces to narrow edge of diagonal brace with 10d nails 8" o.c., with 3" minimum end distance. Brace must cover 90% of diagonal length. NAILS DESIGNATED 16d ARE (0.131" X 3.5") MAX MEAN ROOF HEIGHT = 30 FEET CATEGORY II BUILDING EXPOSURE D ASCE 7-98, ASCE 7-02, ASCE 7-05 130 MPH ASCE 7-10 160 MPH DURATION OF LOAD INCREASE : 1.60 STUD DESIGN IS BASED ON COMPONENTS AND CLADDING. CONNECTION OF BRACING IS BASED ON MWFRS. Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date: ### Standard Gable End Detail ### MII-GE130-SP Page 1 of 2 (2) - 10d NAILS Trusses @ 24" o.c. 2x6 DIAGONAL BRACE SPACED 48" O.C. ATTACHED TO VERTICAL WITH (4) -16d NAILS AND ATTACHED HORIZONTAL BRACE (SEE SECTION A-A) TO BLOCKING WITH (5) - 10d NAILS. MiTek USA, Inc. MiTek USA, Inc. 月別是 GO Typical _x4 L-Brace Nailed To Verticals W/10d Nails spaced 6" o.c. Vertical Stud SECTION B-B > SEE INDIVIDUAL MITEK ENGINEERING DRAWINGS FOR DESIGN CRITERIA > > 24" Max Diag. Brace at 1/3 points End Wall if needed 3x4 = TRUSS GEOMETRY AND CONDITIONS SHOWN ARE FOR ILLUSTRATION ONLY. Vertical Stud DIAGONAL (4) - 16d Nails 16d Nails Spaced 6" o.c. (2) - 10d Nails into 2x6 2x6 Stud or 2x4 No.2 of better Typical Horizontal Brace Nailed To 2x_ Verticals w/(4)-10d Nails SECTION A-A > PROVIDE 2x4 BLOCKING BETWEEN THE FIRST TWO TRUSSES AS NOTED. TOENAIL BLOCKING TO TRUSSES WITH (2) - 10d NAILS AT EACH END. ATTACH DIAGONAL BRACE TO BLOCKING WITH (5) - 10d NAILS. (4) - 8d (0.131" X2.5") NAILS MINIMUM, PLYWOOD (2) - 10d NAILS SHEATHING TO 2x4 STD SPF BLOCK Roof Sheathing 1'-3" Max. Varies to Common Truss Diagonal Bracing - L-Bracing Refer DIAGONAL BRACE 4'-0" O.C. MAX Refer to Section A-A to Section B-B ### NOTE: - MINIMUM GRADE OF #2 MATERIAL IN THE TOP AND BOTTOM CHORDS. CONNECTION BETWEEN BOTTOM CHORD OF GABLE END TRUSS AND WALL TO BE PROVIDED BY PROJECT ENGINEER OR ARCHITECT. - 3. BRACING SHOWN IS FOR INDIVIDUAL TRUSS ONLY. CONSULT BLDG. ARCHITECT OR ENGINEER FOR TEMPORARY AND PERMANENT - BRACING OF ROOF SYSTEM. 4. "L" BRACES SPECIFIED ARE TO BE FULL LENGTH. GRADES: 1x4 SRB OR 2x4 STUD OR BETTER WITH ONE ROW OF 10d NAILS SPACED 6" O.C. - 5. DIAGONAL BRACE TO BE APPROXIMATELY 45 DEGREES TO ROOF DIAPHRAM AT 4'-0" O.C. - 6. CONSTRUCT HORIZONTAL BRACE CONNECTING A 2x6 STUD AND A 2x4 STUD AS SHOWN WITH 16d NAILS SPACED 6" O.C. HORIZONTAL BRACE TO BE LOCATED AT THE MIDSPAN OF THE LONGEST STUD. ATTACH TO VERTICAL STUDS WITH (4) 10d NAILS THROUGH 2x4. (REFER TO SECTION A-A) - GABLE STUD DEFLECTION MEETS OR EXCEEDS L/240. THIS DETAIL DOES NOT APPLY TO STRUCTURAL GABLES - DO NOT USE FLAT BOTTOM CHORD GABLES NEXT TO SCISSOR TYPE TRUSSES. - 10. SOUTHERN PINE LUMBER DESIGN VALUES ARE THOSE EFFECTIVE 06-01-13 BY SPIB/ALSC. - 11, NAILS DESIGNATED 10d ARE (0.131" X 3") AND NAILS DESIGNATED 16d ARE (0.131" X 3.5") | Minimum
Stud Size
Species | Stud
Spacing | Without
Brace | 1x4
L-Brace | 2x4
L-Brace | DIAGONAL
BRACE | 2 DIAGONAL
BRACES AT
1/3 POINTS | |---------------------------------|-----------------|------------------|----------------|----------------|-------------------|---------------------------------------| | and Grade | | | Maximu | m Stud Lei | ngth | | | 2x4 SP No. 3 / Stud | 12" O.C. | 4-0-7 | 4-5-6 | 6-3-8 | 8-0-15 | 12-1-6 | | 2x4 SP No. 3 / Stud | 16" O.C. | 3-8-0 | 3-10-4 | 5-5-6 | 7-4-1 | 11-0-1 | | 2x4 SP No. 3 / Stud | 24" O.C. | 3-0-10 | 3-1-12 | 4-5-6 | 6-1-5 | 9-1-15 | Diagonal braces over 6'-3" require a 2x4 T-Brace attached to one edge. Diagonal braces over 12'-6" require 2x4 I-braces attached to both edges. Fasten T and I braces to narrow edge of diagonal brace with 10d nails 8" o.c., with 3" minimum end distance. Brace must cover 90% of diagonal length. MAX MEAN ROOF HEIGHT = 30 FEET CATEGORY II BUILDING EXPOSURE B or C ASCE 7-98, ASCE 7-02, ASCE 7-05 130 MPH ASCE 7-10 160 MPH DURATION OF LOAD INCREASE : 1.60 STUD DESIGN IS BASED ON COMPONENTS AND CLADDING. CONNECTION OF BRACING IS BASED ON MWFRS. Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 **JANUARY 6, 2017** ### Standard Gable End Detail ### MII-GE140-001 MiTek USA, Inc. Page 1 of 2 MiTek USA, Inc. ENGINEERED BY 以以到 DIAGONAL BRACE TRUSS GEOMETRY AND CONDITIONS SHOWN ARE FOR ILLUSTRATION ONLY. 4'-0" O.C. MAX Varies to Common Truss SEE INDIVIDUAL MITEK ENGINEERING DRAWINGS FOR DESIGN CRITERIA 3x4 =В - L-Bracing Refer to Section B-B Vertical Stud DIAGONAL (4) - 16d Nails 16d Nails Spaced 6" o.c. (2) - 10d Nails into 2x6 2x6 Stud or 2x4 No.2 of better Typical Horizontal Brace Nailed To 2x_ Verticals w/(4)-10d Nails SECTION A-A > PROVIDE 2x4 BLOCKING BETWEEN THE FIRST TWO TRUSSES AS NOTED. TOENAIL BLOCKING TO TRUSSES WITH (2) - 10d NAILS AT EACH END. ATTACH DIAGONAL BRACE TO BLOCKING WITH (5) - 10d NAILS. (4) - 8d (0.131" X 2.5") NAILS MINIMUM, PLYWOOD SHEATHING TO 2x4 STD DF/SPF BLOCK Diagonal Bracing Refer to Section A-A 1. MINIMUM GRADE OF #2 MATERIAL IN THE TOP AND BOTTOM CHORDS. 2. CONNECTION BETWEEN BOTTOM CHORD OF GABLE END TRUSS AND WALL TO BE PROVIDED BY PROJECT ENGINEER OR ARCHITECT. 3. BRACING SHOWN IS FOR INDIVIDUAL TRUSS ONLY. CONSULT BLDG. ARCHITECT OR ENGINEER FOR TEMPORARY AND PERMANENT BRACING OF ROOF SYSTEM. 4. "L" BRACES SPECIFIED ARE TO BE FULL LENGTH. GRADES: 1x4 SRB OR 2x4 STUD OR BETTER WITH ONE ROW OF 10d NAILS SPACED 6" O.C. 5. DIAGONAL BRACE TO BE APPROXIMATELY 45 DEGREES TO ROOF DIAPHRAM AT 4'-0" O.C. 6. CONSTRUCT HORIZONTAL BRACE CONNECTING A 2x6 STUD AND A 2x4 STUD AS SHOWN WITH 16d NAILS SPACED 6" O.C. HORIZONTAL BRACE TO BE LOCATED AT THE MIDSPAN OF THE LONGEST STUD. ATTACH TO VERTICAL STUDS WITH (4) 10d NAILS THROUGH 2x4. (REFER TO SECTION A-A) GABLE STUD DEFLECTION MEETS OR EXCEEDS L/240. THIS DETAIL DOES NOT APPLY TO STRUCTURAL GABLES DO NOT USE FLAT BOTTOM CHORD GABLES NEXT TO SCISSOR TYPE TRUSSES. 10. NAILS DESIGNATED 10d ARE (0.131" X 3") AND NAILS DESIGNATED 16d ARE (0.131" X 3.5") | 24" Max | M | M | |---------------------------------|---------------|----------------------| | 1 | 1'-3"
Max. | (2) - 10d
NAILS | | | * | *** | | | | 2x61 | | Diag. B
at 1/3 p
if needs | oints | ATT/
NAIL
TO E | | End | d Wall | | | | | 1 | Roof Sheathing 6 DIAGONAL BRACE SPACED 48" O.C. TTACHED TO VERTICAL WITH (4) -16d AILS AND ATTACHED O BLOCKING WITH (5) - 10d NAILS. (2) - 10d NAILS Trusses @ 24" o.c. HORIZONTAL BRACE (SEE SECTION A-A) | Minimum
Stud Size | Stud
Spacing | Without
Brace | 1x4
L-Brace | 2x4
L-Brace | DIAGONAL
BRACE | 2 DIAGONAL
BRACES AT
1/3 POINTS | |----------------------|-----------------|------------------|----------------|----------------|-------------------|---------------------------------------| | Species
and Grade | | | Maximu | n Stud Le | ngth | 111 | | 2x4 DF/SPF Std/Stud | 12" O.C. | 3-10-1 | 3-11-7 | 5-7-2 | 7-8-2 | 11-6-4 | | 2x4 DF/SPF Std/Stud | 16" O.C. | 3-3-14 | 3-5-1 | 4-10-2 | 6-7-13 | 9-11-11 | | 2x4 DF/SPF Std/Stud | 24" O.C. | 2-8-9 | 2-9-8 | 3-11-7 | 5-5-2 | 8-1-12 | Diagonal braces over 6'-3" require a 2x4 T-Brace attached to one edge. Diagonal braces over 12'-6" require 2x4 I-braces attached to both edges. Fasten T and I braces to narrow edge of web with 10d nails 8" o.c., with 3" minimum end distance. Brace must cover 90% of diagonal length. MAXIMUM WIND SPEED = 140 MPH MAX MEAN ROOF HEIGHT = 30 FEET CATEGORY II BUILDING EXPOSURE B or C ASCE 7-98, ASCE 7-02, ASCE 7-05 **DURATION OF LOAD INCREASE: 1.60** STUD DESIGN IS BASED ON COMPONENTS AND CLADDING. CONNECTION OF BRACING IS BASED ON MWFRS. MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 January 19, 2018 ### Standard Gable End Detail MII-GE170-D-SP 3x4 = End Wall **Diagonal Bracing** Refer to Section A-A - L-Bracing Refer to Section B-B NOTE 1. MINIMUM GRADE OF #2 MATERIAL IN THE TOP AND BOTTOM CHORDS. 2. CONNECTION BETWEEN BOTTOM CHORD OF GABLE END TRUSS AND WALL TO BE PROVIDED BY PROJECT ENGINEER OR ARCHITECT. 3. BRACING SHOWN IS FOR INDIVIDUAL TRUSS ONLY. CONSULT BLDG. ARCHITECT OR ENGINEER FOR TEMPORARY AND PERMANENT BRACING OF ROOF SYSTEM. 4. "L" BRACES SPECIFIED ARE TO BE FULL LENGTH, SPF or SP No.3 OR BETTER WITH ONE ROW OF 10d NAILS SPACED 6" O.C. 5. DIAGONAL BRACE TO BE APPROXIMATELY 45 DEGREES TO ROOF DIAPHRAM AT 4'-0" O.C. 6. CONSTRUCT HORIZONTAL BRACE CONNECTING A 2x6 AND A 2x4 AS SHOWN WITH 16d NAILS SPACED 6" O.C. HORIZONTAL BRACE TO BE LOCATED AT THE MIDSPAN OF THE LONGEST GABLE STUD. ATTACH TO VERTICAL GABLE STUDS WITH (4) 10d NAILS THROUGH 2x4. (REFER TO SECTION A-A) GABLE STUD DEFLECTION MEETS OR EXCEEDS L/240. THIS DETAIL DOES NOT APPLY TO STRUCTURAL GABLES. DO NOT USE FLAT BOTTOM CHORD GABLES NEXT TO SCISSOR TYPE TRUSSES. 10. SOUTHERN PINE LUMBER DESIGN VALUES ARE THOSE EFFECTIVE 06-01-13 BY SPIB/ALSC. NAILS DESIGNATED 10d ARE (0.131" X 3") AND NAILS DESIGNATED 16d ARE (0.131" X 3.5") | Minimum
Stud Size | Stud
Spacing | Without
Brace | 2x4
L-Brace | DIAGONAL
BRACE | 2 DIAGONAL
BRACES AT
1/3 POINTS | |----------------------|-----------------|------------------|----------------|-------------------|---------------------------------------| | Species
and Grade | | | Maximum St | ud
Length | | | 2x4 SP No. 3 / Stud | 12" O.C. | 3-9-7 | 5-8-8 | 6-11-1 | 11-4-4 | | 2x4 SP No. 3 / Stud | 16" O.C. | 3-4-12 | 4-11-15 | 6-9-8 | 10-2-3 | | 2x4 SP No. 3 / Stud | 24" O.C. | 2-9-4 | 4-0-7 | 5-6-8 | 8-3-13 | | 2x4 SP No. 2 | 12" O.C. | 3-11-13 | 5-8-8 | 6-11-1 | 11-11-7 | | 2x4 SP No. 2 | 16" O.C. | 3-7-7 | 4-11-5 | 6-11-1 | 10-10-5 | | 2x4 SP No. 2 | 24" O.C. | 3-1-15 | 4-0-7 | 6-3-14 | 9-5-14 | Diagonal braces over 6'-3" require a 2x4 T-Brace attached to one edge. Diagonal braces over 12'-6" require 2x4 I-braces attached to both edges. Fasten T and I braces to narrow edge of diagonal brace with 10d nails 6" o.c., with 3" minimum end distance. Brace must cover 90% of diagonal length. T or I braces must be 2x4 SPF No. 2 or SP No. 2. MAX MEAN ROOF HEIGHT = 30 FEET EXPOSURE D ASCE 7-10 170 MPH **DURATION OF LOAD INCREASE: 1.60** STUD DESIGN IS BASED ON COMPONENTS AND CLADDING. CONNECTION OF BRACING IS BASED ON MWFRS. Roof Sheathing 24" Max 1'-0" 10d Max. NAILS (2) - 10d NAILS Trusses @ 24" o.c. Diag. Brace at 1/3 points 2x6 DIAGONAL BRACE SPACED 48" O.C. ATTACHED TO VERTICAL WITH (4) -16d NAILS, AND ATTACHED TO if needed (5) - 10d NAILS. (4) - 8d (0.131" X 2.5") NAILS MINIMUM, PLYWOOD, SHEATHING TO 2x4 STD SPF BLOCK No 39380 STAITE OF OR 10.00 Was A. Albani PE No.7 USA, Inc. FL Cert The East Blvd. BLOCKING WITH (5) -10d NAILS. ### Standard Gable End Detail ### MII-GE180-D-SP Page 1 of 2 MiTek USA, Inc. Vertical Stud 2X6 SP OR SPF No. 2 DIAGONAL BRACE (4) - 16d Nails 16d Nails Spaced 6" o.c. (2) - 10d Nails into 2x6 2X6 SP OR SPF No. 2 Typical Horizontal Brace Nailed To 2x4 Verticals w/(4)-10d Nails SECTION A-A 2X4 SP OR SPF No. 2 > PROVIDE 2x4 BLOCKING BETWEEN THE FIRST TWO TRUSSES AS NOTED. TOENAIL BLOCKING TO TRUSSES WITH (2) - 10d NAILS AT EACH END. ATTACH DIAGONAL BRACE TO BLOCKING WITH (5) - 10d NAILS. (4) - 8d (0.131" X 2.5") NAILS MINIMUM, PLYWOOD SHEATHING TO 2x4 STD SPF BLOCK - 10d NAILS Roof Sheathing 1'-0" Max. Diag. Brace at 1/3 points End Wall if needed 3. BRACING SHOWN IS FOR INDIVIDUAL TRUSS ONLY. CONSULT BLDG. ARCHITECT OR ENGINEER FOR TEMPORARY AND PERMANENT BRACING OF ROOF SYSTEM. 4. "L" BRACES SPECIFIED ARE TO BE FULL LENGTH, SPF or SP No.3 OR BETTER WITH ONE ROW OF 10d NAILS SPACED 6" O.C. 5. DIAGONAL BRACE TO BE APPROXIMATELY 45 DEGREES TO ROOF DIAPHRAM AT 4'-0" O.C. 6. CONSTRUCT HORIZONTAL BRACE CONNECTING A 2x6 AND A 2x4 AS SHOWN WITH 16d NAILS SPACED 6" O.C. HORIZONTAL BRACE TO BE LOCATED AT THE MIDSPAN OF THE LONGEST GABLE STUD. ATTACH TO VERTICAL GABLE STUDS WITH (4) 10d NAILS THROUGH 2x4. (REFER TO SECTION A-A) GABLE STUD DEFLECTION MEETS OR EXCEEDS L/240. THIS DETAIL DOES NOT APPLY TO STRUCTURAL GABLES. DO NOT USE FLAT BOTTOM CHORD GABLES NEXT TO SCISSOR TYPE TRUSSES 10. SOUTHERN PINE LUMBER DESIGN VALUES ARE THOSE EFFECTIVE 06-01-13 BY SPIB/ALSC. 11. NAILS DESIGNATED 10d ARE (0.131" X 3") AND NAILS DESIGNATED 16d ARE (0.131" X 3.5") | Minimum
Stud Size | Stud
Spacing | Without
Brace | 2x4
L-Brace | DIAGONAL
BRACE | 2 DIAGONAL
BRACES AT
1/3 POINTS | |----------------------|-----------------|------------------|----------------|-------------------|---------------------------------------| | Species
and Grade | | - | Maximum St | ud Length | | | 2x4 SP No. 3 / Stud | 12" O.C. | 3-7-12 | 5-4-11 | 6-2-1 | 10-11-3 | | 2x4 SP No. 3 / Stud | 16" O.C. | 3-2-8 | 4-8-1 | 6-2-1 | 9-7-7 | | 2x4 SP No. 3 / Stud | 24" O.C. | 2-7-7 | 3-9-12 | 5-2-13 | 7-10-4 | | 2x4 SP No. 2 | 12" O.C. | 3-10-0 | 5-4-11 | 6-2-1 | 11-6-1 | | 2x4 SP No. 2 | 16" O.C. | 3-5-13 | 4-8-1 | 6-2-1 | 10-5-7 | | 2x4 SP No. 2 | 24" O.C. | 3-0-8 | 3-9-12 | 6-1-1 | 9-1-9 | Diagonal braces over 6'-3" require a 2x4 T-Brace attached to one edge. Diagonal braces over 12'-6" require 2x4 I-braces attached to both edges. Fasten T and I braces to narrow edge of diagonal brace with 10d nails 6in o.c., with 3in minimum end distance. Brace must cover 90% of diagonal length. T or I braces must be 2x4 SPF No. 2 or SP No. 2. MAX MEAN ROOF HEIGHT = 30 FEET EXPOSURE D ASCE 7-10 180 MPH **DURATION OF LOAD INCREASE: 1.60** STUD DESIGN IS BASED ON COMPONENTS AND CLADDING. CONNECTION OF BRACING IS BASED ON MWFRS. 2x6 DIAGONAL BRACE SPACED 48" O.C. ATTACHED TO VERTICAL WITH (4) -16d NAILS, AND ATTACHED TO BLOCKING WITH (5) -10d NAILS. (2) - 10d NAILS Trusses @ 24" o.c. Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 MiTek USA, Inc. Page 1 of 1 (R) MiTek USA, Inc. ENGINEERED B MAXIMUM WIND SPEED = REFER TO NOTES D AND OR E MAX MEAN ROOF HEIGHT = 30 FEET MAX TRUSS SPACING = 24 " O.C. CATEGORY II BUILDING EXPOSURE B or C **ASCE 7-10** **DURATION OF LOAD INCREASE: 1.60** DETAIL IS NOT APPLICABLE FOR TRUSSES TRANSFERING DRAG LOADS (SHEAR TRUSSES). ADDITIONAL CONSIDERATIONS BY BUILDING ENGINEER/DESIGNER ARE REQUIRED. A - PIGGBACK TRUSS, REFER TO MITEK TRUSS DESIGN DRAWING. SHALL BE CONNECTED TO EACH PURLIN SHALL BE CONNECTED TO EACH PURLIN WITH (2) (0.131" X 3.5") TOE-NAILED. B - BASE TRUSS, REFER TO MITEK TRUSS DESIGN DRAWING. C - PURLINS AT EACH BASE TRUSS JOINT AND A MAXIMUM 24" O.C. UNLESS SPECIFIED CLOSER ON MITEK TRUSS DESIGN DRAWING. CONNECT TO BASE TRUSS WITH (2) (0.131" X 3.5") NAILS EACH. D - 2 X X 4"-0" SCAB, SIZE TO MATCH TOP CHORD OF PIGGYBACK TRUSS, MIN GRADE #2, ATTACHED TO ONE FACE, CENTERED. ON INTERSECTION, WITH (2) ROWS OF (0.131" X 3") NAILS @ 4" O.C. SCAB MAY BE OMITTED PROVIDED THE TOP CHORD SHEATHING IS CONTINUOUS OVER INTERSECTION AT LEAST 1 FT. IN BOTH DIRECTIONS AND: DIRECTIONS AND: 1. WIND SPEED OF 115 MPH OR LESS FOR ANY PIGGYBACK SPAN, OR 2. WIND SPEED OF 116 MPH TO 160 MPH WITH A MAXIMUM PIGGYBACK SPAN OF 12 ft. E - FOR WIND SPEEDS BETWEEN 126 AND 160 MPH, ATTACH MITEK 3X8 20 GA Nail-On PLATES TO EACH FACE OF TRUSSES AT 72" O.C. W/ (4) (0.131" X 1.5") NAILS PER MEMBER. STAGGER NAILS FROM OPPOSING FACES. ENSURE 0.5" EDGE DISTANCE. (MIN. 2 PAIRS OF PLATES REO. REGARDLESS OF SPAN) ### WHEN NO GAP BETWEEN PIGGYBACK AND BASE TRUSS EXISTS: REPLACE TOE NAILING OF PIGGYBACK TRUSS TO PURLINS WITH Nail-ON PLATES AS SHOWN, AND INSTALL PURLINS TO BOTTOM EDGE OF BASE TRUSS TOP CHORD AT SPECIFIED SPACING SHOWN ON BASE TRUSS MITEK DESIGN DRAWING. FOR ALL WIND SPEEDS, ATTACH MITEK 3X6 20 GA Nail-On PLATES TO EACH FACE OF TRUSSES AT 48" O.C. W/ (4) (0.131" X 1.5") PER MEMBER. STAGGER NAILS FROM OPPOSING FACES ENSURE 0.5" EDGE DISTANCE. VERTICAL WEB TO EXTEND THROUGH BOTTOM CHORD OF PIGGYBACK ### FOR LARGE CONCENTRATED LOADS APPLIED TO CAP TRUSS REQUIRING A VERTICAL WEB: 1) VERTICAL WEBS OF PIGGYBACK AND BASE TRUSS MUST MATCH IN SIZE, GRADE, AND MUST LINE UP MUST MATCH IN SIZE, GRADE, AND MOST LINE OF AS SHOWN IN DETAIL. ATTACH 2 × ___ × 4"-0" SCAB TO EACH FACE OF TRUSS ASSEMBLY WITH 2 ROWS OF 10d (0.131" X 3") NAILS SPACED 4" O.C. FROM EACH FACE. (SIZE AND GRADE TO MATCH VERTICAL WEBS OF PIGGYBACK AND BASE TRUSS.) (MINIMUM 2X4) THIS CONNECTION IS ONLY VALID FOR A MAXIMUM CONCENTRATED LOAD OF 4000 LBS (@1.15). REVIEW BY A QUALIFIED ENGINEER IS REQUIRED FOR LOADS GREATER THAN 4000 LBS. FOR PIGGYBACK TRUSSES CARRYING GIRDER LOADS, NUMBER OF PLYS OF PIGGYBACK TRUSS TO MATCH BASE TRUSS. CONCENTRATED LOAD MUST BE APPLIED TO BOTH THE PIGGYBACK AND THE BASE TRUSS DESIGN. Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date: ### STANDARD PIGGYBACK TRUSS CONNECTION DETAIL MII-PIGGY-ALT 7 - 10 MiTek USA, Inc. ENGINEERED B A - PIGGBACK TRUSS, REFER TO MITEK TRUSS DESIGN DRAWING. SHALL BE CONNECTED TO EACH PURLIN WITH (2) 0(0.131" X 3.5") TOE-NAILED. B - BASE TRUSS, REFER TO MITEK TRUSS DESIGN DRAWING. C - PURLINS AT EACH BASE TRUSS JOINT AND A MAXIMUM 24" O.C. UNLESS SPECIFIED CLOSER ON MITEK TRUSS DESIGN DRAWING. CONNECT TO BASE TRUSS WITH (2) (0.131" X 3.5") NAILS EACH. D - 2 X _ X 4"0" SCAB, SIZE TO MATCH TOP CHORD OF PIGGYBACK TRUSS, MIN GRADE #2, ATTACHED TO ONE FACE, CENTERED ON INTERSECTION, WITH (2) ROWS OF (0.131" X 3") NAILS @ 4" O.C. SCAB MAY BE OMITTED PROVIDED THE TOP CHORD SHEATHING IS CONTRIBIOUS OVER INTERSECTION AT LEAST 1 FT. IN BOTH IS CONTINUOUS OVER INTERSECTION AT LEAST 1 FT. IN BOTH DIRECTIONS AND: 1. WIND SPEED OF 115 MPH OR LESS FOR ANY PIGGYBACK SPAN, OR 2. WIND SPEED OF 116 MPH TO 160 MPH WITH A MAXIMUM 2. WIND SPEED OF 116 MPH 10160 MPH WITH A MAXI PIGGYBACK SPAN OF 12 ft. E - FOR WIND SPEED IN THE RANGE 126 MPH - 160 MPH ADD 9" x 9" x 1/2" PLYWOOD (or 7/16" OSB) GUSSET EACH SIDE AT 48" O.C. OR LESS. ATTACH WITH 3 - 6d (0.113" X 2") NAILS INTO EACH CHORD FROM EACH SIDE (TOTAL - 12 NAILS) MiTek USA, Inc. Page 1 of 1 MAXIMUM WIND SPEED = REFER TO NOTES D AND OR E MAX MEAN ROOF HEIGHT = 30 FEET MAX TRUSS SPACING = 24 " O.C. CATEGORY II BUILDING EXPOSURE B or C **ASCE 7-10 DURATION OF LOAD INCREASE: 1.60** DETAIL IS NOT APPLICABLE FOR TRUSSES TRANSFERING DRAG LOADS (SHEAR TRUSSES). ADDITIONAL CONSIDERATIONS BY BUILDING ENGINEER/DESIGNER ARE REQUIRED. ### WHEN NO GAP BETWEEN PIGGYBACK AND BASE TRUSS EXISTS: REPLACE TOE NAILING OF PIGGYBACK TRUSS TO PURLINS WITH PLYWOOD GUSSETS AS SHOWN, AND INSTALL PURLINS TO BOTTOM EDGE OF BASE TRUSS TOP CHORD AT SPECIFIED SPACING SHOWN ON BASE TRUSS MITEK DESIGN DRAWING. " x 7" x 1/2" PLYWOOD (or 7/16" OSB) GUSSET EACH SIDE AT 24" O.C. ATTACH WITH 3 - 6d (0.113" X 2") NAILS INTO EACH CHORD FROM EACH SIDE (TOTAL - 12 NAILS) VERTICAL WEB TO EXTEND THROUGH BOTTOM CHORD OF PIGGYBACK FOR LARGE CONCENTRATED LOADS APPLIED TO CAP TRUSS REQUIRING A VERTICAL WEB: 1) VERTICAL WEBS OF PIGGYBACK AND BASE TRUSS MUST MATCH IN SIZE, GRADE, AND MUST LINE UP AS SHOWN IN DETAIL. ATTACH 2 x x 4-0" SCAB TO EACH FACE OF TRUSS ASSEMBLY WITH 2 ROWS OF 10d (0.131" X 3") NAILS SPACED 4" O.C. FROM EACH FACE. (SIZE AND GRADE TO MATCH VERTICAL WEBS OF PIGGYBACK AND BASE TRUSS.) THIS CONNECTION IS ONLY VALID FOR A MAXIMUM CONCENTRATED LOAD OF 4000 LBS (@1.15). REVIEW BY A QUALIFIED ENGINEER IS REQUIRED FOR LOADS GREATER THAN 4000 LBS. FOR PIGGYBACK TRUSSES CARRYING GIRDER LOADS. NUMBER OF PLYS OF
PIGGYBACK TRUSS TO MATCH BASE TRUSS. CONCENTRATED LOAD MUST BE APPLIED TO BOTH THE PIGGYBACK AND THE BASE TRUSS DESIGN. 6904 Parke East Blvd. Tampa FL 33610 January 19, 2018 ### STANDARD REPAIR DETAIL FOR BROKEN CHORDS, WEBS AND DAMAGED OR MISSING CHORD SPLICE PLATES ### MII-REP01A1 MiTek USA, Inc. Page 1 of 1 | | JMBER OF | | | MAX | IMUM FO | RCE (lbs) | 15% LOA | D DURAT | ION | | |------------|----------|-----|------|------|---------|-----------|---------|---------|------|------| | OF BREAK * | | X | S | P | |)F | S | PF | н | IF | | 2x4 | 2x6 | | 2x4 | 2x6 | 2x4 | 2x6 | 2x4 | 2x6 | 2x4 | 2x6 | | 20 | 30 | 24" | 1706 | 2559 | 1561 | 2342 | 1320 | 1980 | 1352 | 2028 | | 26 | 39 | 30" | 2194 | 3291 | 2007 | 3011 | 1697 | 2546 | 1738 | 2608 | | 32 | 48 | 36" | 2681 | 4022 | 2454 | 3681 | 2074 | 3111 | 2125 | 3187 | | 38 | 57 | 42" | 3169 | 4754 | 2900 | 4350 | 2451 | 3677 | 2511 | 3767 | | 44 | 66 | 48" | 3657 | 5485 | 3346 | 5019 | 2829 | 4243 | 2898 | 4347 | ### * DIVIDE EQUALLY FRONT AND BACK ATTACH 2x_SCAB OF THE SAME SIZE AND GRADE AS THE BROKEN MEMBER TO EACH FACE OF THE TRUSS (CENTER ON BREAK OR SPLICE) WITH 10d (0.131" X 3") NAILS (TWO ROWS FOR 2x4, THREE ROWS FOR 2x6) SPACED 4" O.C. AS SHOWN. STAGGER NAIL SPACING FROM FRONT FACE AND BACK FACE FOR A NET 0-2-0 O.C. SPACING IN THE MAIN MEMBER. USE A MIN. 0-3-0 MEMBER END DISTANCE. THE LENGTH OF THE BREAK (C) SHALL NOT EXCEED 12". (C=PLATE LENGTH FOR SPLICE REPAIRS) THE MINIMUM OVERALL SCAB LENGTH REQUIRED (L) IS CALCULATED AS FOLLOWS: THE LOCATION OF THE BREAK MUST BE GREATER THAN OR EQUAL TO THE REQUIRED X DIMENSION FROM ANY PERIMETER BREAK OR HEEL JOINT AND A MINIMUM OF 6" FROM ANY INTERIOR JOINT (SEE SKETCH ABOVE) ### DO NOT USE REPAIR FOR JOINT SPLICES ### NOTES - 1. THIS REPAIR DETAIL IS TO BE USED ONLY FOR THE APPLICATION SHOWN, THIS REPAIR DOES 1. THIS REPAIR DETAIL IS TO BE USED ONLY FOR THE APPLICATION SHOWN. THIS REPAIR DOES NOT IMPLY THAT THE REMAINING PORTION OF THE TRUSS IS UNDAMAGED. THE ENTIRE TRUSS SHALL BE INSPECTED TO VERIFY THAT NO FURTHER REPAIRS ARE REQUIRED. WHEN THE REQUIRED REPAIRS ARE PROPERLY APPLIED, THE TRUSS WILL BE CAPABLE OF SUPPORTING THE LOADS INDICATED. 2. ALL MEMBERS MUST BE RETURNED TO THEIR ORIGINAL POSITIONS BEFORE APPLING REPAIR - AND HELD IN PLACE DURING APPLICATION OF REPAIR. THE END DISTANCE, EDGE DISTANCE AND SPACING OF NAILS SHALL BE SUCH AS TO AVOID - UNUSUAL SPLITTING OF THE WOOD. WHEN NAILING THE SCABS, THE USE OF A BACKUP WEIGHT IS RECOMMENDED TO AVOID LOOSENING OF THE CONNECTOR PLATES AT THE JOINTS OR SPLICES. THIS REPAIR IS TO BE USED FOR SINGLE PLY TRUSSES IN THE 2x_ ORIENTATION ONLY. THIS REPAIR IS LIMITED TO TRUSSES WITH NO MORE THAN THREE BROKEN MEMBERS. Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 January 19, 2018 ### LATERAL TOE-NAIL DETAIL MII-TOENAIL SP MiTek USA, Inc. Page 1 of 1 MiTek USA, Inc. ENGINEERED BY NOTES: 1. TOE-NAILS SHALL BE DRIVEN AT AN ANGLE OF 45 DEGREES WITH THE MEMBER AND MUST HAVE FULL WOOD SUPPORT. (NAIL MUST BE DRIVEN THROUGH AND EXIT AT THE BACK CORNER OF THE MEMBER END AS SHOWN. 2. THE END DISTANCE, EDGE DISTANCE, AND SPACING OF NAILS SHALL BE SUCH AS TO AVOID UNUSUAL SPLITTING OF THE WOOD. 3. ALLOWABLE VALUE SHALL BE THE LESSER VALUE OF THE TWO SPECIES FOR MEMBERS OF DIFFERENT SPECIES. ### THIS DETAIL APPLICABLE TO THE THREE END DETAILS SHOWN BELOW ILLUSTRATION PURPOSES ONLY NEAR SIDE NEAR SIDE VIEWS SHOWN ARE FOR SIDE VIEW (2x3) 2 NAILS OE-NAIL SINGLE SHEAR VALUES PER NDS 2001 (lb/nail) DIAM SP SPF-S .131 88.0 80.6 69.9 68.4 59.7 LONG .135 93.5 85.6 74.2 72.6 63.4 108.8 86.4 84.5 73.8 99.6 .162 3.5 LONG 50.3 74.2 57.6 .128 67.9 58.9 75.9 69.5 60.3 59.0 51.1 .131 3.25" .148 81.4 74.5 64.6 63.2 52.5 VALUES SHOWN ARE CAPACITY PER TOE-NAIL APPLICABLE DURATION OF LOAD INCREASES MAY BE APPLIED. (3) - 16d (0.162" X 3.5") NAILS WITH SPF SPECIES BOTTOM CHORD For load duration increase of 1.15: 3 (nails) X 84.5 (lb/nail) X 1.15 (DOL) = 291.5 lb Maximum Capacity Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 ### TRUSSED VALLEY SET DETAIL ### MII-VALLEY HIGH WIND1 MiTek USA, Inc. Page 1 of 1 MiTek USA, Inc. ENGINEERED BY GABLE END, COMMON TRUSS OR GIRDER TRUSS ### GENERAL SPECIFICATIONS - 1. NAIL SIZE 10d (0.131" X 3") 2. WOOD SCREW = 3" WS3 USP OR EQUIVALENT DO NOT USE DRYWALL OR DECKING TYPE SCREW - 3. INSTALL VALLEY TRUSSES (24" O.C. MAXIMUM) AND SECURE PER DETAIL A - 4. BRACE VALLEY WEBS IN ACCORDANCE WITH THE INDIVIDUAL DESIGN DRAWINGS. - 5. BASE TRUSS SHALL BE DESIGNED WITH A PURLIN SPACING EQUILIVANT TO THE RAKE DIMENSION OF THE VALLEY TRUSS SPACING. - 6. NAILING DONE PER NDS 01 - 7. VALLEY STUD SPACING NOT TO EXCEED 48" O.C. GABLE END, COMMON TRUSS OR GIRDER TRUSS 12 SEE DETAIL A BELOW (TYP.) SECURE VALLEY TRUSS W/ ONE ROW OF 10d NAILS 6" O.C. (NO SHEATHING) N.T.S. WIND DESIGN PER ASCE 7-98, ASCE 7-02, ASCE 7-05 146 MPH WIND DESIGN PER ASCE 7-10 160 MPH MAX MEAN ROOF HEIGHT = 30 FEET ROOF PITCH = MINIMUM 3/12 MAXIMUM 6/12 CATEGORY II BUILDING **EXPOSURE C** WIND DURATION OF LOAD INCREASE: 1.60 MAX TOP CHORD TOTAL LOAD = 50 PSF MAX SPACING = 24" O.C. (BASE AND VALLEY) MINIMUM REDUCED DEAD LOAD OF 6 PSF ON THE TRUSSES Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 January 19, 2018 ### TRUSSED VALLEY SET DETAIL ### MII-VALLEY HIGH WIND2 MiTek USA, Inc. Page 1 of 1 MiTek USA, Inc. ENGINEERED BY GABLE END, COMMON TRUSS OR GIRDER TRUSS GENERAL SPECIFICATIONS 1. NAIL SIZE 10d (0.131" X 3") 2. WOOD SCREW = 4.5" WS45 USP OR EQUILIVANT 3. INSTALL SHEATHING TO TOP CHORD OF BASE TRUSSES. 4. INSTALL VALLEY TRUSSES (24" O.C. MAXIMUM) AND SECURE TO BASE TRUSSES AS PER DETAIL A 5. BRACE VALLEY WEBS IN ACCORDANCE WITH THE INDIVIDUAL DESIGN DRAWINGS. 6. NAILING DONE PER NDS-01 7. VALLEY STUD SPACING NOT TO EXCEED 48" O.C. GABLE END, COMMON TRUSS OR GIRDER TRUSS VALLEY TRUSS TYPICAL 12 P SEE DETAIL A BELOW (TYP.) SECURE VALLEY TRUSS W/ ONE ROW OF 10d NAILS 6" O.C. WIND DESIGN PER ASCE 7-98, ASCE 7-02, ASCE 7-05 146 MPH WIND DESIGN PER ASCE 7-10 160 MPH MAX MEAN ROOF HEIGHT = 30 FEET ROOF PITCH = MINIMUM 3/12 MAXIMUM 6/12 CATEGORY II BUILDING **EXPOSURE C** WIND DURATION OF LOAD INCREASE: 1.60 MAX TOP CHORD TOTAL LOAD = 50 PSF MAX SPACING = 24" O.C. (BASE AND VALLEY) MINIMUM REDUCED DEAD LOAD OF 6 PSF ON THE TRUSSES NO 3938 NO 3938 NO 3938 NO 3938 Thomas A Albani PE No.393 MITER LISA Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 MiTek USA, Inc. Page 1 of 1 MiTek USA, Inc. ENGINEERED BY GABLE END, COMMON TRUSS OR GIRDER TRUSS ### **GENERAL SPECIFICATIONS** - NAIL SIZE 16d (0.131" X 3.5") INSTALL VALLEY TRUSSES (24" O.C. MAXIMUM) AND SECURE PER DETAIL A - 3. BRACE VALLEY WEBS IN ACCORDANCE WITH THE INDIVIDUAL DESIGN DRAWINGS. - 4. BASE TRUSS SHALL BE DESIGNED WITH A PURLIN SPACING EQUILIVANT TO THE RAKE DIMENSION OF THE VALLEY TRUSS SPACING. - 5. NAILING DONE PER NDS 01 - 6. VALLEY STUD SPACING NOT TO EXCEED 48" O.C. - 7. ALL LUMBER SPECIES TO BE SP. GABLE END, COMMON TRUSS 12 OR GIRDER TRUSS SEE DETAIL A BELOW (TYP.) SECURE VALLEY TRUSS W/ ONE ROW OF 16d NAILS 6" O.C. N.T.S. WIND DESIGN PER ASCE 7-98, ASCE 7-02, ASCE 7-05 120 MPH WIND DESIGN PER ASCE 7-10 150 MPH MAX MEAN ROOF HEIGHT = 30 FEET ROOF PITCH = MINIMUM 3/12 MAXIMUM 10/12 CATEGORY II BUILDING EXPOSURE C OR B WIND DURATION OF LOAD INCREASE: 1.60 MAX TOP CHORD TOTAL LOAD = 60 PSF MAX SPACING = 24" O.C. (BASE AND VALLEY) MINIMUM REDUCED DEAD LOAD OF 4.2 PSF ON THE TRUSSES Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 ### TRUSSED VALLEY SET DETAIL (HIGH WIND VELOCITY) **MII-VALLEY** ### Standard Gable End Detail ### MII-GE146-001 if needed End Wall (REFER TO SECTION A-A) 7. GABLE STUD DEFLECTION MEETS OR EXCEEDS L/240. THIS DETAIL DOES NOT APPLY TO STRUCTURAL GABLES. DO NOT USE FLAT BOTTOM CHORD GABLES NEXT TO SCISSOR TYPE TRUSSES. 10. NAILS DESIGNATED 10d ARE (0.131" X 3") AND NAILS DESIGNATED 16d ARE (0.131" X 3.5") | Minimum
Stud Size
Species | Stud
Spacing | Without
Brace | 2x4
L-Brace | DIAGONAL
BRACE | 2 DIAGONAL
BRACES AT
1/3 POINTS | |---------------------------------|-----------------|------------------|----------------|-------------------|---------------------------------------| | and Grade | | Maxim | num Stud L | .ength | | | 2x4 SP No 3/Stud | 12" O.C. | 3-11-3 | 6-8-0 | 7-2-14 | 11-9-10 | | 2x4 SP No 3/Stud | 16" O.C. | 3-6-14 | 5-9-5 | 7-1-13 | 10-8-11 | | 2x4 SP No 3/Stud | 24" O.C. | 3-1-8 | 4-8-9 | 6-2-15 | 9-4-7 | Diagonal braces over 6'-3" require a 2x4 T-Brace attached to one edge. Diagonal braces over 12-6" require 2x4 I-braces attached to both edges. Fasten T and I braces to narrow edge of web with 10d nails 8" o.c., with 3" minimum end distance. Brace must cover 90% of diagonal length. MAXIMUM WIND SPEED = 146 MPH MAX MEAN ROOF HEIGHT = 30 FEET CATEGORY II BUILDING EXPOSURE B or C ASCE 7-98, ASCE 7-02, ASCE 7-05 **DURATION OF LOAD INCREASE: 1.60** STUD DESIGN IS BASED ON COMPONENTS AND CLADDING. CONNECTION OF BRACING IS BASED ON MWFRS. TO BLOCKING WITH (5) - 10d NAILS. HORIZONTAL BRACE (SEE SECTION A-A) MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 January 19, 2018 **OCTOBER 5, 2016** ### REPLACE BROKEN OVERHANG MII-REP13B MiTek USA, Inc. Page 1 of 1 MiTek USA, Inc. ENGINEERIED BY TRUSS CRITERIA: LOADING: 40-10-0-10 **DURATION FACTOR: 1.15** SPACING: 24" O.C. TOP CHORD: 2x4 OR 2x6 PITCH: 4/12 - 12/12 HEEL HEIGHT: STANDARD HEEL UP TO 12" ENERGY HEEL **END BEARING CONDITION** NOTES: 1. ATTACH 2x_ SCAB (MINIMUM NO.2 GRADE SPF, HF, SP, DF) TO ONE FACE OF TRUSS WITH TWO ROWS OF 10d (0.131" X 3") SPACED 6" O.C. THE END DISTANCE, EDGE DISTANCE, AND SPACING OF NAILS SHALL BE SUCH AS TO AVOID UNUSUAL SPLITTING OF THE WOOD. WHEN NAILING THE SCABS, THE USE OF A BACKUP WEIGHT IS RECOMMENDED. TO AVOID LOOSENING OF THE CONNECTOR PLATES AT THE
JOINTS OR SPLICES. ### **IMPORTANT** This detail to be used only with trusses (spans less than 40') spaced 24" o.c. maximum and having pitches between 4/12 and 12/12 and total top chord loads not exceeding 50 psf. Trusses not fitting these criteria should be examined individually. REFER TO INDIVIDUAL TRUSS DESIGN FOR PLATE SIZES AND LUMBER GRADES Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date: ### LATERAL BRACING RECOMMENDATIONS MII-STRGBCK MiTek USA, Inc. Page 1 of 1 TO MINIMIZE VIBRATION COMMON TO ALL SHALLOW FRAMING SYSTEMS, 2x6 "STRONGBACK" IS RECOMMENDED, LOCATED EVERY 8 TO 10 FEET ALONG A FLOOR TRUSS. NOTE 1: 2X6 STRONGBACK ORIENTED VERTICALLY MAY BE POSITIONED DIRECTLY UNDER THE TOP CHORD OR DIRECTLY ABOVE THE BOTTOM CHORD. SECURELY FASTENED TO THE TRUSS USING ANY OF THE METHODS ILLUSTRATED BELOW. NOTE 2: STRONGBACK BRACING ALSO SATISFIES THE LATERAL BRACING REQUIREMENTS FOR THE BOTTOM CHORD OF THE TRUSS WHEN IT IS PLACED ON TOP OF THE BOTTOM CHORD, IS CONTINUOUS FROM END TO END, CONNECTED WITH A METHOD OTHER THAN METAL FRAMING ANCHOR, AND PROPERLY CONNECTED, BY OTHERS, AT THE ENDS. 6904 Parke East Blvd. Tampa FL 33610 February 12, 2018 MiTek USA, Inc. FL Cert 6634 Date: # 4/12 PITCH # 3.25/12 PITCH No back charges will be accepted by Builders FirstSource unless approved in writing first, 850-835-4541 Per ANSI/TP1 1-2002 all "Truss to Wall" connections are the responsibility of the Building Designer, not the Truss Manufacturer. Use Manufacturer's specifications for all hanger onnections unless noted otherwise. Trusses are to be 24° o.c. U.N.O. All hangers are to be Simpson or equivalent U.N.O. Use 10d x 1/2" Nails in hanger connections to single ply pirider trusses. der trusses. Trusses are not designed to support brick U.N.O. Dimensions are Feet Inches. Sixteenths THE ARROW HEAD AT THE END OF THE TRUSS ON THE TRUSS PLACEMENT PLAN (LAYOUT) CORRESPONDS WITH THE LEFT SIDE OF THE INDIVIDUAL TRUSS DRAWING. USE THIS AS AN DREWTATION GUIDE WHEN SETTING THE FRUSSES ON THE STRUCTURE. eral Notes ACQ lumber is corrisive to truss plates. Any ACQ lumber that comes in contact with truss plates (i.e. scabbed on tails) must have an approved barrier applied first. Refer to BCSI-B1 Summary Sheet-Guide for handling, Installing and Bracing of Metal Plate Connected Wood Truss prior to and during truss installation. It is the responsibility of the Contractor to ensure of the proper orientation of the trues placement plans as to the construction documents and field conditions of the structure orientation. If a reversed or flipped layout is required, it will be supplied at no extra cost by Builders It is the responsibility of the Contractor to make sure the placement of trusses are adjusted for plumbing drops, can lights, ect..., so the trusses do not interfere with these All common framed roof or floor systems must be designed as to AVT impose any loads on the floor trusses below. The floor trusses have not been designed to carry any additional loads from above. This truss placement plan was not created by an engineer, but rather by the bindiers FirstSource staff and is solely to be used as an installation guide and does not require a seal. Complete truss engineering and analysis can be found on the truss design drawings which may be sealed by the truss design argumeer. Gable end trusses require continuous bottom chord bearing. Refer to local codes for wall framing Although all attempts have been made to do so, trusses may not be designed symmetrically. Please refer to the individual truss drawings and truss placement plans for proper orientation and placement. ### FIRSTSOURCE Builders Lake City PHONE: 386-755-6894 PHONE: 904-772-6100 FAX: 904-772-1973 FAX: 386-755-7973 Jacksonville Tallahassee PHONE: 850-576-5177 ### MIKE TODD CONST. Sellers Addition - Carport | Custom | | | |--------------|---------------|-----------------| | Date: | Drawn By: | Original Ref #: | | 4-19-21 | KLH | 2751738 | | Floor 1 Job# | Floor 2 Job#: | Roof Job #: | | N/A | NA | 2751738 |