DATE <u>01/30</u>	0/2008			Building Permined on Premises During O		PERMIT 000026689
APPLICANT	CHARESE		ie i rommently i oste	PHONE		000020039
ADDRESS	3367	S US HIGHWAY 4	41	LAKE CITY	752-5551	FL 32025
OWNER		CHARNA RAINES		PHONE	752-7069	
ADDRESS	272	SE MYRTIS DOTC	H TERR	LAKE CITY	2 November 10 (March 10)	FL 32025
CONTRACTO		ES NORTON		PHONE	752-3331	-
LOCATION O	F PROPERT	Y 90E, TR C	ON 100, TR ON PRIC	E CREEK RD, TL ON V	VEEKS,	_
		TR ON M	YRTIS DORTCH TE	RR,2ND ON RIGHT		
TYPE DEVEL	OPMENT	SFD,UTILITY	E	ESTIMATED COST OF	CONSTRUCTION	N 151300.00
HEATED FLO	OR AREA	1969.00	TOTAL A	REA 3026.00	HEIGHT	STORIES 1
FOUNDATION	CONC	WAL	LS FRAMED	ROOF PITCH 10/	12	FLOOR SLAB
LAND USE &	ZONING	A-3		M.	AX. HEIGHT	25
Minimum Set I	Back Requirn	nents: STREET-	FRONT 30.0	00 REAR	25.00	SIDE 25.00
NO. EX.D.U.	0	FLOOD ZONE	<u>x</u>	DEVELOPMENT PI	ERMIT NO.	
PARCEL ID	24-4S-17-0	8720-101	SUBDIVIS	ION DEER HAMMO	OCK UNREC	
LOT A	BLOCK	PHASE	UNIT		TAL ACRES _	10.00
			RB0031780	- Chare	se 11	10tz_
Culvert Permit	No.	Culvert Waiver (Contractor's License N	umber	Applicant/Own	ner/Contractor
EXISTING		08-0062	BK		JH	Y
Driveway Conn	nection	Septic Tank Number	LU & Zo	ning checked by	Approved for Issua	nnce New Resident
COMMENTS:	FLOOR ON	NE FOOT ABOVE T	HE ROAD			
					Charle# an	Cash 24298
					Check # or	Casn 24270
		FOR BU	JILDING & ZON	ING DEPARTMEN	IT ONLY	(footer/Slab)
Temporary Pov	ver	vilages/secure inter	Foundation	date/app. by	Monolithic	-
Under slab roug	ah in nlumbir	date/app. by	Slab		Ch anth:	date/app. by
Officer state roug	gn-in piumon	date/ap	11/02/09/09/09	date/app. by	Sneathir	ng/Nailing date/app. by
Framing				above slab and below w	ood floor	
FI	date/app					date/app. by
Electrical roug		date/app. by	_ Heat & Air Duct		Peri. beam (Lin	ntel)
Permanent power		autorupp. oy	C.O. Final	date/app. by	Culvert	date/app. by
•		e/app. by		date/app. by		date/app. by
M/H tie downs,	blocking, ele	etricity and plumbing		ipp. by	Pool	
Reconnection			Pump pole	Utility	Pole	date/app. by
M/H Pole	da	nte/app. by	da vel Trailer	ite/app. by	date/app.	by
	te/app. by		ver franci	date/app. by	Re-roof _	date/app. by
BUILDING PEI	RMIT FEE \$	760.00	CERTIFICATION F	FEE \$ 15.13	SURCHAR	GE FEE \$ 15.13
MISC. FEES \$	0.00	ZONING	CERT. FEE \$ 50.0			
ELOOD DEVE			CLICI. I LL 9 30.	OU FIRE FEE 5 U.	WA:	SIE FEE 3
FLOOD DEVEL	LOPMENT F		A			-
INSPECTORS			OOD ZONE FEE \$ 25		\$ TO	OTAL FEE 865.26

PERMIT

£ 1000

NOTICE: IN ADDITION TO THE REQUIREMENTS OF THIS PERMIT, THERE MAY BE ADDITIONAL RESTRICTIONS APPLICABLE TO THIS PROPERTY THAT MAY BE FOUND IN THE PUBLIC RECORDS OF THIS COUNTY. AND THERE MAY BE ADDITIONAL PERMITS REQUIRED FROM OTHER GOVERNMENTAL ENTITIES SUCH AS WATER MANAGEMENT DISTRICTS, STATE AGENCIES, OR FEDERAL AGENCIES.

"WARNING TO OWNER: YOUR FAILURE TO RECORD A NOTICE OF COMMENCEMENT MAY RESULT IN YOUR PAYING TWICE FOR IMPROVEMENTS TO YOUR PROPERTY. IF YOU INTEND TO OBTAIN FINANCING, CONSULT WITH YOUR LENDER OR AN ATTORNEY BEFORE RECORDING YOUR NOTICE OF COMMENCEMENT.

EVERY PERMIT ISSUED SHALL BECOME INVALID UNLESS THE WORK AUTHORIZED BY SUCH PERMIT IS COMMENCED WITHIN 180 DAYS AFTER ITS ISSUANCE, OR IF THE WORK AUTHORIZED BY SUCH PERMIT IS SUSPENDED OR ABANDONED FOR A PERIOD OF 180 DAYS AFTER THE TIME THE WORK IS COMMENCED. A VALID PERMIT RECIEVES AN APPROVED INSPECTION EVERY 180 DAYS. WORK SHALL BE CONSIDERED TO BE IN ACTIVE PROGESS WHEN THE PERMIT HAS RECIEVED AN APPROVED INSPECTION WITHIN 180 DAYS.

Columbia County Building Permit Application

For Office Use Only Application # 0801-9 Date Received 17 By By Permit # 26689
Zoning Official BLK Date 29.01.08 Flood Zone FEMA Map # NA Zoning A-3
Land Use A-3 Elevation WA MFE WA River WA Plans Examiner DK 57H Date 1-24-08
Comments
○ NOC w EH
□ Dev Permit # □ In Floodway □ Letter of Authorization from Contractor
□ Unincorporated area □ Incorporated area □ Town of Fort White □ Town of Fort White Compliance letter
Septic Permit No. 08-0062
Name Authorized Person Signing Permit (Naves Novton) Phone 386-752-333)
Address 3367 S. US HWY 441, Stc 101, We City, 72 32025
Owners Name Chris 9 Charna Raines Phone 384752-7069
911 Address 272 SE Myrtis Dorton Terr, Lake City, 71 32025
Contractors Name Tames H. Morton Phone 386 52-3331
Address 3367 S US Hwy 441, Stc 101, lake City, 71 32025
Fee Simple Owner Name & Address
Bonding Co. Name & Address
Architect/Engineer Name & Address Mark Disaway, P.O. Boy 868, Lake City, 71 32056
Mortgage Lenders Name & Address 1st Fed Savinp, 2571 W. US HWY 90, lake City 2 U3205
Circle the correct power company – FL Power & Light – Clay Elec. – Suwannee Valley Elec. – Progress Energy
Property ID Number 24 -45-17-08720-101 Estimated Cost of Construction 200,000
Subdivision Name NA PARCEL A DEER HAMMACK WHEE Lot Block Unit Phase
Driving Directions SR 100 South, TR on Price Creek Rd (CR 245), TL
on Weeks lane TR on Myrtis Dorton Terrace; 200
On right Number of Existing Dwellings on Property O
Construction of SFD, New York COnst. Total Acreage 10 Lot Size
Do you need a - <u>Culvert Permit</u> or <u>Culvert Waiver</u> or <u>Have an Existing Drive</u> Total Building Height
Actual Distance of Structure from Property Lines - Front 390 Side 150 Side 149 Rear 563
Number of Stories 4 Heated Floor Area 1969 Total Floor Area 3026 Roof Pitch

Application is hereby made to obtain a permit to do work and installations as indicated. I certify that no work or installation has commenced prior to the issuance of a permit and that all work be performed to meet the standards of all laws regulating construction in this jurisdiction.

Page 1 of 2 (Both Pages must be submitted together.)

Revised 11-30-07

IN CAllED CHANESE 1.29.08

WARNING TO OWNER: YOUR FAILURE TO RECORD A NOTICE OF COMMENCMENT MAY RESULT IN YOU PAYING TWICE FOR IMPROVEMENTS TO YOUR PROPERTY. A NOTICE OF COMMENCEMENT MUST BE RECORDED AND POSTED ON THE JOB SITE BEFORE THE FIRST INSPECTION. IF YOU INTEND TO OBTAIN FINANCING, CONSULT WITH YOUR LENDER OR ATTORNEY BEFORE RECORDING YOUR NOTICE OF COMMENCEMENT.

FLORIDA'S CONSTRUCTION LIEN LAW: Protect Yourself and Your Investment

According to Florida Law, those who work on your property or provide materials, and are not paid-in-full, have a right to enforce their claim for payment against your property. This claim is known as a construction lien. If your contractor fails to pay subcontractors or material suppliers or neglects to make other legally required payments, the people who are owed money may look to your property for payment, even if you have paid your contractor in full. This means if a lien is filed against your property, it could be sold against your will to pay for labor, materials or other services which your contractor may have failed to pay.

NOTICE OF RESPONSIBILITY TO BUILDING PERMITEE:

YOU ARE HEREBY NOTIFIED as the recipient of a building permit from Columbia County, Florida, you will be held responsible to the County for any damage to sidewalks and/or road curbs and gutters, concrete features and structures, together with damage to drainage facilities, removal of sod, major changes to lot grades that result in ponding of water, or other damage to roadway and other public infrastructure facilities caused by you or your contractor, subcontractors, agents or representatives in the construction and/or improvement of the building and lot for which this permit is issued. No certificate of occupancy will be issued until all corrective work to these public infrastructures and facilities has been corrected.

OWNERS CERTIFICATION: I hereby certify that all the foregoing information is accurate and all work will be done in compliance with all applicable laws and regulating construction and zoning. I further understand the above written responsibilities in Columbia County for obtaining this Building Permit.

Owners Signature		
CONTRACTORS AFFIDAVIT: By my signature I unders written statement to the owner of all the above written this Building Permit.		
Contractor's Signature (Permitee)	Colu	tractor's License Number <u>RB0031780</u> umbia County npetency Card Number <u>182</u>
Affirmed under penalty of perjury to by the Contractor and Personally known or Produced Identification	d subscri	ibed before me this 16 day of Jan 2008
Patricia T Peelan State of Florida Notary Signature (For the Contractor)	SEAL:	PATRICIA T. PEELER Notary Public, State of Florida My comm. exp. Sep. 5, 2010 Comm. No. DD 579471

Columbia County Property

Appraiser
DB Last Updated: 1/15/2008

2008 Proposed Values

Tax Record

Property Card

Interactive GIS Map

Search Result: 1 of 1

GIS Aerial

Parcel: 24-4S-17-08720-101

Owner & Property Info

Owner's Name	RAINES CHRISTOPHER A & CHARNA						
Site Address							
Mailing Address	E 156 SE PEYTO APT 105 LAKE CITY, F						
Use Desc. (code)	NO AG ACRE	(009900)					
Neighborhood	24417.00						

Use Desc. (code)	NO AG ACRE (009900)					
Neighborhood	24417.00 Tax District 3					
UD Codes	MKTA04 Market Area 04					
Total Land Area	10.010 ACRES	S				

COMM AT NE COR OF SEC, RUN S 746.57 FT FOR POB, CONT SOUTH 347.88 FT, W 1253.98 FT,

NORTH 347.91 FT, E 1253.16 FT TO POB ORB

	1035-2121 AKA PARCE	L "A" DEER HAMMOCK UNR
Property & Asse	ssment Values	
Mkt Land Value	cnt: (1)	\$42,942.00
Ag Land Value	cnt: (0)	\$0.00
Building Value	cnt: (0)	\$0.00
XFOB Value	cnt: (0)	\$0.00
Total Appraised		\$42,942.00

	SE WEEK) UN	
學學學			SE
			S DOF
distant.			in the second
			ij,

Just Value	\$42,942.00
Class Value	\$0.00
Assessed Value	\$42,942.00
Exempt Value	\$0.00
Total Taxable Value	\$42,942.00

Sales History

Value

Description

Sale Date	Book/Page	Inst. Type	Sale VImp	Sale Qual	Sale RCode	Sale Price
1/17/2005	1035/2122	WD	V	Q		\$38,000.00

Building Characteristics

Bldg Item	Bldg Desc	Year Blt	Ext. Walls	Heated S.F.	Actual S.F.	Bldg Value
			NONE			

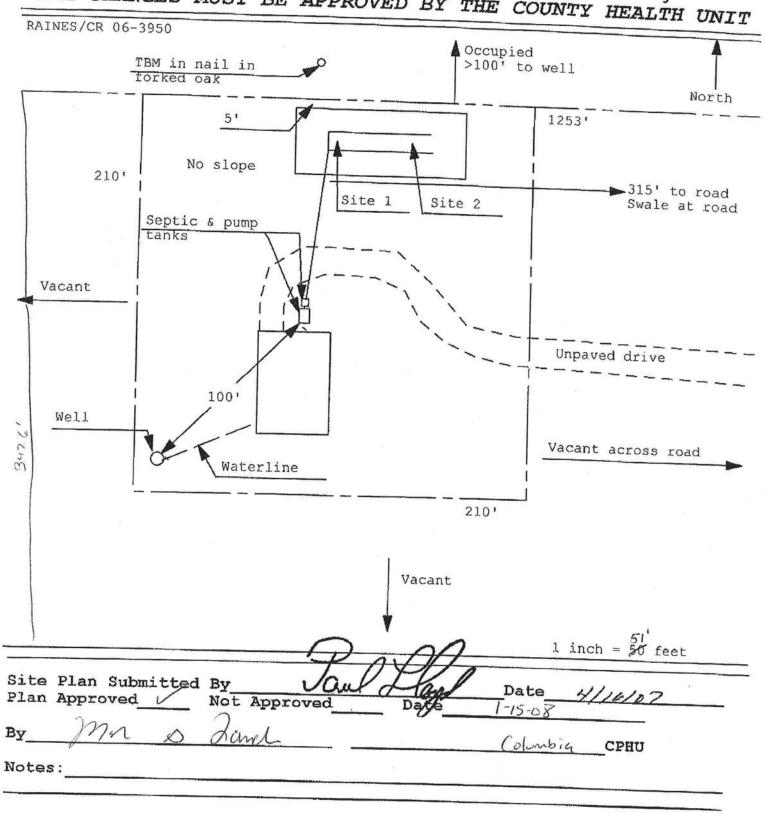
Extra Features & Out Buildings

Code	Desc	Year Blt	Value	Units	Dims	Condition (% Good)
				NONE		

Land Breakdown

Lnd Code	Desc	Units	Adjustments	Eff Rate	Lnd Value
009900	AC NON-AG (MKT)	10.010 AC	1.00/1.00/1.00/1.00	\$4,290.00	\$42,942.00

Columbia County Property Appraiser


DB Last Updated: 1/15/2008

0801-91

Application for Onsite Sewage Disposal System Construction Permit. Part II Site Plan Permit Application Number:

ALL CHANGES MUST BE APPROVED BY THE COUNTY HEALTH UNIT

LYNCH WELL DRILLING, INC.

173 SW Tustenuggee Ave Lake City, FL. 32025 Phone 386-752-6677 Fax 386-752-1477

Building Permit # Owner	's Name Raines
Well Depth Ft. Casing Depth	Ft. Water LevelFt.
Casing Size 4 inch Steel Pump Installat	
Pump Make Schaefer Pump	Model <u>T114 Y18 X10</u> HP 1
System Pressure (PSI)On _30	Off <u>SO</u> Average Pressure <u>50</u>
Pumping System GPM at average pressure a	nd pumping level/P(GPM)
Tank Installation: Bladder/Galvanized M Model PC144 Size 81	ake Challenger
Tank Draw-down per cycle at system pressur	re 25, 1 gallons
I HEREBY VERTIFY THAT THIS WAT INSTALLED AS PER THE ABOVE INFO	
Linda Newcomb	Linda Newcomb Print Name
2609	1/15/08
License Number	Date

FLORIDA ENERGY EFFICIENCY CODE FOR BUILDING CONSTRUCTION

Florida Department of Community Affairs
Residential Whole Building Performance Method A

Project Name:	Raines Residence		Builder:	Norton Home Imp.
Address:	Lot: A, Sub: Deer Hammoo	ck, Plat: (unrecorded)	Permitting Office:	Columbia Co.
City, State:	Lake City, FL 32055-		Permit Number:	26689
Owner:	C. Raines		Jurisdiction Number	: 121000
Climate Zone:	North			
New construction		New _	12. Cooling systems	
2. Single family or i		Single family	a. Central Unit	Cap: 35.0 kBtu/hr
3. Number of units,		1		SEER: 14.00
 Number of Bedro 		3 _	b. N/A	_
Is this a worst case		No		
Conditioned floor		1969 ft²	c. N/A	_
Glass area & type		Double Pane		
 a. Clear glass, defau 	(707)	131.0 ft ²	13. Heating systems	
b. Default tint	0.0 ft ²	0.0 ft ²	a. Electric Heat Pump	Cap: 35.0 kBtu/hr
c. Labeled U or SH	GC 0.0 ft ²	0.0 ft ²		HSPF: 7.90
Floor types			b. N/A	_
 a. Slab-On-Grade E 	dge Insulation R=	0.0, 168.0(p) ft		_
b. N/A			c. N/A	
c. N/A				
Wall types		_	14. Hot water systems	
a. Frame, Wood, Ex	terior R=	13.0, 1339.0 ft ²	a. Electric Resistance	Cap: 30.0 gallons
b. Frame, Wood, Ac	fjacent R	=13.0, 874.0 ft ²		EF: 0.90
c. N/A		· ·	b. N/A	_
d. N/A		_		_
e. N/A			c. Conservation credits	_
Ceiling types			(HR-Heat recovery, Solar	_
a. Under Attic	R=	30.0, 1416.0 ft ²	DHP-Dedicated heat pump)	
b. Under Attic		=30.0, 553.0 ft ²	15. HVAC credits	PT, CF,
c. N/A			(CF-Ceiling fan, CV-Cross ventila	
11. Ducts			HF-Whole house fan,	
a. Sup: Unc. Ret: U	nc. AH: Garage Sun	. R=6.0, 15.0 ft	PT-Programmable Thermostat,	
b. N/A			MZ-C-Multizone cooling,	
			MZ-H-Multizone heating)	
	/Flace Asset 2.27	Total as-built p	oints: 22786	20
Glas	ss/Floor Area: 0.07	Total base p		55

I hereby certify that the plans and specifications covered by this calculation are in compliance with the Florida Energy Code.

PREPARED BY:

I hereby certify that this building, as designed, is in compliance with the Florida Energy Code.

OWNER/AGENT: _____

Review of the plans and specifications covered by this calculation indicates compliance with the Florida Energy Code. Before construction is completed this building will be inspected for compliance with Section 553.908 Florida Statutes.

	THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NA
BUILDING OFFICIAL:	
DATE:	

SUMMER CALCULATIONS

Residential Whole Building Performance Method A - Details

	BASE					AS-E	BUII	LT				
GLASS TYPES .18 X Condition Floor Are		PM = F	oints	Type/SC	Ove Ornt	erhang Len H	Hgt	Area X	SPN	1 X S	SOF	= Points
.18 1969.0		20.04	7102.6	Double, Clear	N N S E W	2.0	5.0 5.0 7.0 5.0 7.0 5.0 9.0	6.0 9.0 15.0 12.0 60.0 9.0 20.0	19.2 19.2 19.2 35.8 42.0 38.5 38.5	0 0 7 6 2	0.87 0.87 0.92 0.72 0.44 0.80 0.50	100.3 150.5 265.6 311.4 1114.4 277.1 388.1
WALL TYPES	Area X	BSPM	= Points	Туре		R-V	′alue		Х	SPM	=	Points
Adjacent Exterior	874.0 1339.0	0.70 1.70	611.8 2276.3	Frame, Wood, Exterior Frame, Wood, Adjacent			3.0 3.0	1339.0 874.0		1.50 0.60		2008.5 524.4
Base Total:	2213.0		2888.1	As-Built Total:				2213.0				2532.9
DOOR TYPES	Area X	BSPM	= Points	Туре				Area	Х	SPM	=	Points
Adjacent Exterior	21.0 21.0	2.40 6.10	50.4 128.1	Exterior Insulated Adjacent Insulated				21.0 21.0		4.10 1.60		86.1 33.6
Base Total:	42.0		178.5	As-Built Total:				42.0				119.7
CEILING TYPES	Area X	BSPM	= Points	Туре		R-Value	, Α	rea X S	SPM	x sc	M =	Points
Under Attic Base Total:	1969.0 1969.0	1.73	3406.4 3406.4	Under Attic Under Attic As-Built Total:			0.0		.73 X .73 X			2449.7 956.7 3406.4
FLOOR TYPES	Area X	BSPM	= Points	Туре		R-V	'alue	Area	Х	SPM	=	Points
Slab 10 Raised	68.0(p) 0.0	-37.0 0.00	-6216.0 0.0	Slab-On-Grade Edge Insulation	on	(0.0	168.0(p		41.20		-6921.6
Base Total:			-6216.0	As-Built Total:				168.0				-6921.6
INFILTRATION	Area X	BSPM	= Points					Area	Х	SPM	=	Points
	1969.0	10.21	20103.5					1969.0)	10.21		20103.5

SUMMER CALCULATIONS

Residential Whole Building Performance Method A - Details

	BA	ASE			AS-BUILT										
Summer Bas	se P	oints:		27463.0	Summe	r A	s-Built	P	oints:						21848.4
Total Summer Points		System Multiplier	=	Cooling Points	Total Compone	nt	Cap Ratio	(D	Duct Multiplier M x DSM x A		Multiplier	X	Credit Multiplier	=	Cooling Points
27463.0	0	.4266		11715.7	21848.4 21848 .		1.000 1.00	(1.	090 x 1.147 1.250	x 1	.00) 0.244 0.244		0.902 0.902		6009.9 6009.9

WINTER CALCULATIONS

Residential Whole Building Performance Method A - Details

	BASE					AS-	BUI	LT				
GLASS TYPES .18 X Condition Floor Are		VPM =	Points	Type/SC	Ove Ornt	erhang Len	Hgt	Area X	WF	эм х	WOI	= Points
.18 1969.0	0	12.74	4515.3	Double, Clear	N N S E W	2.0 2.0 2.0 2.0 10.0 2.0 10.0	5.0 5.0 7.0 5.0 7.0 5.0 9.0	6.0 9.0 15.0 12.0 60.0 9.0 20.0	24. 24. 24. 13. 18. 20. 20.	58 58 30 79 73	1.01 1.01 1.00 1.40 1.38 1.06 1.18	148.4 222.7 369.9 223.4 1553.6 197.6 488.7
				As-Built Total:				131.0				3204.4
WALL TYPES	Area X	BWPM	= Points	Туре		R-	Value	Area	X	WPN	1 =	Points
Adjacent Exterior	874.0 1339.0	3.60 3.70	3146.4 4954.3	Frame, Wood, Exterior Frame, Wood, Adjacent			13.0 13.0	1339.0 874.0		3.40 3.30		4552.6 2884.2
Base Total:	2213.0		8100.7	As-Built Total:				2213.0				7436.8
DOOR TYPES	Area X	BWPM	= Points	Туре				Area	Х	WPN	1 =	Points
Adjacent Exterior	21.0 21.0	11.50 12.30	241.5 258.3	Exterior Insulated Adjacent Insulated				21.0 21.0		8.40 8.00		176.4 168.0
Base Total:	42.0		499.8	As-Built Total:				42.0				344.4
CEILING TYPES	Area X	BWPM	= Points	Туре	R	R-Value	Ar	ea X W	/PM	x wo	CM =	Points
Under Attic Base Total:	1969.0 1969.0	2.05	4036.5 4036.5	Under Attic Under Attic As-Built Total:			30.0 30.0			X 1.00 X 1.00		2902.8 1133.7 4036.5
FLOOR TYPES	Area X	BWPM	= Points	Туре		R-	Value	Area	Х	WPN	1 =	Points
Slab 1 Raised	68.0(p) 0.0	8.9 0.00	1495.2 0.0	Slab-On-Grade Edge Insulation	on		0.0	168.0(p		18.80		3158.4
Base Total:			1495.2	As-Built Total:				168.0				3158.4
INFILTRATION	Area X	BWPM	= Points					Area	Χ	WPM	1 =	Points
	1969.0	-0.59	-1161.7					1969.	0	-0.59		-1161.7

WINTER CALCULATIONS

Residential Whole Building Performance Method A - Details

	BASE								AS-E	3UIL	Γ						
Winter Base Points: 17485.8				17485.8	Winter As-Built Points:										17018.7		
Total Winter Points	X	System Multiplie	= er	Heating Points	Total Componer	X	Cap Ratio		Duct) Multiplier M x DSM x Al	Multi		X	Credit Multiplier	=	Heating Points		
17485.8		0.6274		10970.6	17018.7 17018. 7	,	1.000 1.00	(1.0	069 x 1.169 x 1.250		.432 432)	0.950 0.950	1	8721.1 8721.1		

WATER HEATING & CODE COMPLIANCE STATUS

Residential Whole Building Performance Method A - Details

ADDRESS: Lot: A, Sub: Deer Hammock, Plat: (unrecorded), Lake City, FL, 32055 RMIT #:

	E	BASE			AS-BUILT										
WATER HEA Number of Bedrooms	X	Multiplier	=	Total	Tank Volume	EF	Number of Bedrooms	X	Tank X Ratio	Multiplier	X Credit Multipli		Total		
3		2746.00		8238.0	30.0	0.90	3		1.00	2684.98	1.00		8054.9 8054.9		

	CODE COMPLIANCE STATUS												
		BAS	SE						34	AS	-BUILT		
Cooling Points	+	Heating Points	+	Hot Water Points	=	Total Points	Cooling Points	+	Heating Points	+	Hot Water Points	=	Total Points
11716		10971		8238		30924	6010		8721		8055		22786

PASS

Code Compliance Checklist

Residential Whole Building Performance Method A - Details

ADDRESS: Lot: A, Sub: Deer Hammock, Plat: (unrecorded), Lake City, FL, 32055 RMIT #:

6A-21 INFILTRATION REDUCTION COMPLIANCE CHECKLIST

COMPONENTS	SECTION	REQUIREMENTS FOR EACH PRACTICE	CHECK
Exterior Windows & Doors	606.1.ABC.1.1	Maximum:.3 cfm/sq.ft. window area; .5 cfm/sq.ft. door area.	V
Exterior & Adjacent Walls	606.1.ABC.1.2.1	Caulk, gasket, weatherstrip or seal between: windows/doors & frames, surrounding wall; foundation & wall sole or sill plate; joints between exterior wall panels at corners; utility penetrations; between wall panels & top/bottom plates; between walls and floor. EXCEPTION: Frame walls where a continuous infiltration barrier is installed that extends from, and is sealed to, the foundation to the top plate.	V
Floors	606.1.ABC.1.2.2	Penetrations/openings >1/8" sealed unless backed by truss or joint members. EXCEPTION: Frame floors where a continuous infiltration barrier is installed that is sealed to the perimeter, penetrations and seams.	V
Ceilings	606.1.ABC.1.2.3	Between walls & ceilings; penetrations of ceiling plane of top floor; around shafts, chases, soffits, chimneys, cabinets sealed to continuous air barrier; gaps in gyp board & top plate; attic access. EXCEPTION: Frame ceilings where a continuous infiltration barrier is installed that is sealed at the perimeter, at penetrations and seams.	/
Recessed Lighting Fixtures	606.1.ABC.1.2.4	Type IC rated with no penetrations, sealed; or Type IC or non-IC rated, installed inside a sealed box with 1/2" clearance & 3" from insulation; or Type IC rated with < 2.0 cfm from conditioned space, tested.	/
Multi-story Houses	606.1.ABC.1.2.5	Air barrier on perimeter of floor cavity between floors.	
Additional Infiltration reqts	606.1.ABC.1.3	Exhaust fans vented to outdoors, dampers; combustion space heaters comply with NFPA, have combustion air.	4

6A-22 OTHER PRESCRIPTIVE MEASURES (must be met or exceeded by all residences.)

COMPONENTS	SECTION	REQUIREMENTS	CHECK
Water Heaters	612.1	Comply with efficiency requirements in Table 6-12. Switch or clearly marked circuit breaker (electric) or cutoff (gas) must be provided. External or built-in heat trap required.	1
Swimming Pools & Spas	612.1	Spas & heated pools must have covers (except solar heated). Non-commercial pools must have a pump timer. Gas spa & pool heaters must have a minimum thermal efficiency of 78%.	NA
Shower heads	612.1	Water flow must be restricted to no more than 2.5 gallons per minute at 80 PSIG.	/
Air Distribution Systems	610.1	All ducts, fittings, mechanical equipment and plenum chambers shall be mechanically attached, sealed, insulated, and installed in accordance with the criteria of Section 610. Ducts in unconditioned attics: R-6 min. insulation.	V
HVAC Controls	607.1	Separate readily accessible manual or automatic thermostat for each system.	1
Insulation	604.1, 602.1	Ceilings-Min. R-19. Common walls-Frame R-11 or CBS R-3 both sides. Common ceiling & floors R-11.	V

P.2/2

THIS INSTRUMENT WAS PREPARED BY: FIRST FEDERAL SAVINGS BANK OF FLORIDA 4705 WEST U.S. HIGHWAY 90 P.O. BOX 2029 LAKE CITY, FLORIDA 32056

USC. 16.00

PERMIT NO	

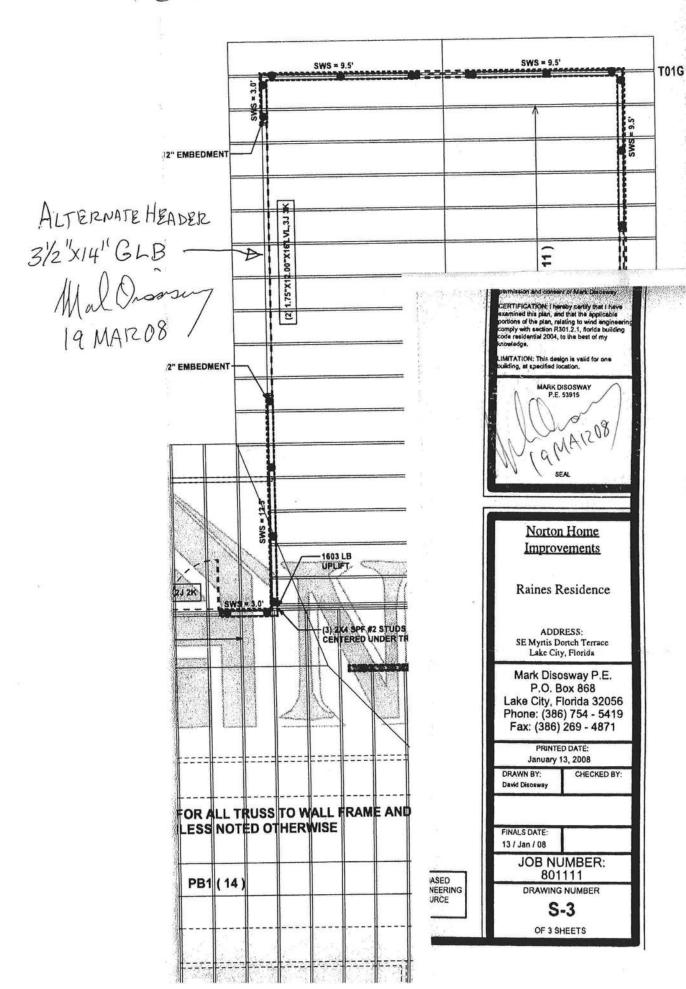
TAX FOLIO NO. 24-45-17-08720-101

NOTICE OF COMMENCEMENT

F	ordance with Chapter 713, Florida Statutes, the following information is provided in this Notice nmencement.
	Description of property: AS DESCRIBED ON EXHIBIT "A" ATTACHED HERETO
	General description of Improvement: Construction of Dwelling
	Owner information: a. Name and address: CHRISTIPHER A. RAINES and his wife, CHARNA E. RAINES, 156 SE Peyton Loop, Apt. 105, Lake City, FL 32025
	b. Interest in property: Fee Simple
	c. Name and address of fee simple title holder (if other than Owner): NONE
	Contractor (name and address): NORTON HOME IMPROVEMENT COMPANY, INC., 3367 South US Highway 441, Suite 101, Lake City, FL 32025
	Surety: a. Name and address:
	b. Amount of bond:
	Lender: FIRST FEDERAL SAVINGS BANK OF FLORIDA 4705 WEST U.S. HIGHWAY 90 P. O. BOX 2029
	LAKE CITY, FLORIDA 32056 Persons within the State of Florida designated by Owner upon whom notices or other document may be served as provided by Section 713.13 (1) (a) 7., Florida Statutes: NONE
	In addition to himself, Owner designates <u>PAULA HACKER of FIRST FEDERAL SAVINGS</u> <u>BANK OF FLORIDA, 4705 West U.S. Highway 90 / P. O. Box 2029, Lake City, Florida 32056</u> to receive a copy of the Lienor's Notice as provided in Section 713.13 (1) (b), Florida Statutes.
	Expiration date of notice of commencement (the expiration date is 1 year from the date of recording unless a different date is specified). Borrower Name Christopher A. Raines
	Charnal Raines

STATE OF FLORIDA, COUNTY OF COLUMBIA I HEREBY CERTIFY, that the above and foregoing is a Irine copy of the original filed in this office.

P. DEWITT CASON, CLERK OF COURTS


has produced driver's license for Identification.

TERRY MCDAVID
MY COMMISSION # DD 500788
EXPIRES: January 16, 2010
Gasked Thru Notary Public Underwiding

Notary Public My Commissiq

Permit \$ 26689

CAL-TECH TESTING, INC.

ENGINEERING & TESTING LABORATORY

P.O. Box 1625 • Lake City, FL 32056 • (386) 755-3633 • Fax (386) 752-5456

2230 Greensboro Hwy. Quincy, FL 32351 (850) 442-3495 • Fax (850) 442-4008 4784 Rosselle St. Jacksonville, FL 32254 (904) 381-8901 • Fax (904) 381-8902

REPORT OF DAILY CONSTRUCTION TESTING AND MONITORING

Client Norten Hore Improvem	ent	[Date 2 - 20	-08
Project Raises Ros.			Job. No 08 ~	125
Contractor 874			Technician $\mathcal{P}_{\mathcal{G}}$	17.
Spec's: 7578 Test No.: 1-4 Inches: 124	ONCRETE Set N Cylinders Beams Prisms Pick-Up Than ford Sult of de	o.	Pick-Up Proctor m/P Pick-Up LBR	10778
	нy			
				*
1 8				
Time Out: 10:15 Am		(8)		
Time In: 11:30 Am				
			88	
FDT's Performed	Weather:		Hours Travel:	.75
Cyls Cast/Cal-Tech	Weather: Hours Worked: _	.50	Miles Travel:	
Cyls Cast/Client	Other Tests:		Hours Standby:	
Beams Cast/Cal-Tech:			Hours O.T.:	
			£	
P		*1		

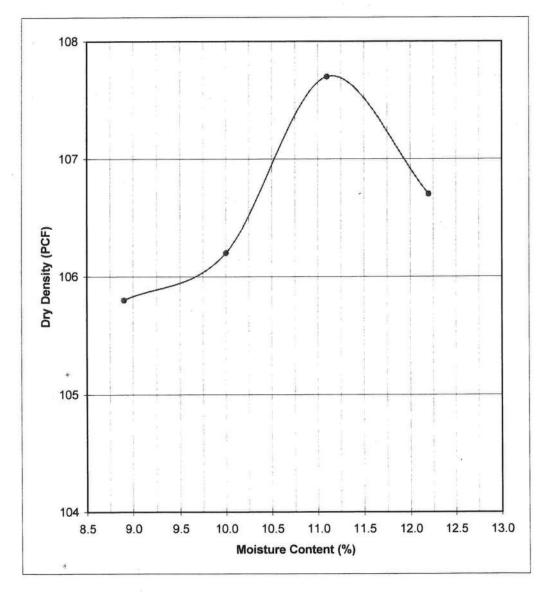
Cal-Tech Testing, Inc.

Engineering

P.O. Box 1625 • Lake City, FL 32056-1625 • Tel(386)755-3633 • Fax(386)752-5456

Geotechnical

4784 Rosselle St., Jacksonville, FL 32254 • Tel(904)381-8901 • Fax(904)381-8902


• Environmental 2230 Greensboro Hwy • Quincy, FL 32351 • Tel(850)442-3495 • Fax(850)442-4008

Laboratories

REPORT OF LABORATORY COMPACTION TEST

Client: **Project Name:** Project Location: Contractor:

Norton's Home Improvements, 3367 US Hwy 441, Suite 101, Lake City, FL 32025 File No: Date: 2/21/2008 Raines Residence Lab No: 10778 Lake City, FL Norton's Home Improvements

Proctor No.:	1 -
Modified Proctor	7
(ASTM D-1557)	
Standard Proctor	
(ASTM D-698)	
Maximum Dry	
Dens. Pcf:	107.7
Optimum Moisture	
Percent:	11.1

The test results presented in this report are specific only to the samples tested at the time of testing. The tests were performed in accordance with generally accepted methods and standards. Since material conditions can vary between test locations and change with time, sound judgement should be exercised with regard to the use and interpretation of the data.

Sample Description: Sample Location: Proposed Use: Sampled By: Tested By: Remarks:

Light Brown Sand **Existing Material** Footing Pam Geiger Date: 2/20/2008 Tim Cassidy Date: 2/21/2008 1cc: Client 1cc: File

inda Creamer, CEO, DBE

Linda M. Creamer

President - CEO

Reviewed By: Date:

Licensed, Florida No.: 57842

Cal-Tech Testing, Inc.

Engineering

P.O. Box 1625 • Lake City, FL 32056-1625 • Tel(386)755-3633 • Fax(386)752-5456

Geotechnical

4784 Rosselle St., Jacksonville, FL 32254 • Tel(904)381-8901 • Fax(904)381-8902

Environmental

2230 Greensboro Hwy • Quincy, FL 32351 • Tel(850)442-3495 • Fax(850)442-4008

Laboratories

JOB NO.: 08-00125-01

DATE TESTED:

2/20/08

DATE REPORTED:

2/21/08

REPORT OF IN-PLACE DENSITY TEST

Raines Residence, Lake City, FL

CLIENT:

Norton's Home Improvements, 3367 US Hwy 441, Suite 101, Lake City, FL 32025

95%

GENERAL CONTRACTOR:

Norton's Home Improvements

EARTHWORK CONTRACTOR:

Norton's Home Improvements

INSPECTOR:

PROJECT:

Pam Geiger

ASTM ME	THOD	SOIL USE		
(D-2922) Nuclear	▼	OTHER	-	

SPECIFICATION REQUIREMENTS:

Footing

TEST NO.	TEST LOCATION	TEST DEPTH	WET DENSITY (lb/ft ³)	MOISTURE PERCENT	DRY DENSITY (lb/ft ³)	PROCTOR TEST NO.	PROCTOR VALUE	% MAXIMUM DENSITY
Footing								
1	20' North of SE Corner	12"	116.4	11.0	104.9	1	107.7	97%
2.	25' West of NE Corner	12"	115.8	12.4	103.0	1	107.7	96%
3	15' South of NW Corner	12"	112.8	10.6	102.0	1	107.7	95%
4	25' East of SW Corner	12"	114.2	12.1	101.9	1	107.7	95%

	FI	M	A	-	•	0
ĸ	-	w	м	ĸ	n	-

The Above Tests Meet Specification Requirements.

inda Creamer, CEO, DBE

PROCTORS						
PROCTOR NO.	SOIL DESCRIPTION	MAXIMUM DRY UNIT WEIGHT (Ib/ft³)	OPT. MOIST.	TYPE		
1	Light Brown Sand	107.7	11.1	MODIFIED (ASTM D-1557) ▼		

Respectfully Submitted,

CAL-TECH TESTING, INC.

Reviewed By:

Linda M. Creamer President - CEO

Licensed, Florida No: 57842

ee

The test results presented in this report are specific only to the samples tested at the time of testing. The tests were performed in accordance with generally accepted methods and standards. Since material conditions can vary between test locations and change with time, sound judgement should be exercised with regard to the use and interpretation of the data.

OCCUPANCY

COLUMBIA COUNTY, FLORIDA

partment of Building and Zonin

and premises at the below named location, and certifies that the work has been completed in accordance with the Columbia County Building Code. This Certificate of Occupancy is issued to the below named permit holder for the building

Parcel Number 24-4S-17-08720-101

Fire: 24.42

Building permit No. 000026689

Permit Holder JAMES NORTON

Use Classification SFD, UTILITY

Waste: 33.50

Owner of Building CHRIS & CHARNA RAINES

272 SE MYRTIS DORTCH TERR., LAKE CITY, FL

Total: 57.92

Date: 08/01/2008

Location:

Building Inspector

POST IN A CONSPICUOUS PLACE (Business Places Only)

PERFORMANCE TESTING INC.

4076 - 148th Ave. N.E. • Redmond, Washington 98052-5165 • (425) 883-9788 (425) 869-5266

SPECIFICATION CONFORMANCE TEST REPORT

PERFORMANCE FILE: 00-426

DATE OF REPORT: 4/26/00

DATE TEST STARTED: 3/31/00

TEST COMPLETED: 4/26/00

CLIENT:

Jordan Company

4661 Burbank Rd. Memphis, TN 38118

SERIES:

88 Series Sliding Glass Door

TEST STANDARDS:

AAMA/NWWDA 101/I.S.2-97 Voluntary Specification for

Aluminum, Vinyl (PVC) and Wood Windows and Glass Doors.

CMBSO/CAWM 301-90, Forced Entry Resistance

Test for Windows

SPECIFICATION:

SGD-R40 71 1/2" wide by 79 1/2" high

Type I Door

DESCRIPTION OF SAMPLE TESTED

CONFIGURATION & SIZE: XO measuring 71 1/2" wide by 79 1/2" high.

PANEL/FIXED LITE: One interior sliding panel measuring 36 3/4" wide by 77 1/4" high. The fixed lite measured 33 1/4" wide by 73 13/16" high.

GLASS & GLAZING: All glazing measured 1" overall using two panes of double strength tempered glass. The glass was set on blocks, placed against double sided adhesive foam glazing tape and retained on the exterior with vinyl snap-in glazing beads.

WEATHER-STRIPPING: Wool pile with center fin measuring 0.230" was applied to the exterior perimeter of the sliding panel and to the interior face of the fixed interlock.

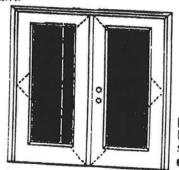
DESCRIPTION

Continued

HARDWARE: A handle assembly was double screw connected using #8 x 2 1/8" screws to the sliding panel lead stile. The handle engaged a cam lock double screw connected to the lead stile with #6 x 1/2" screws. The cam lock engaged a keeper screw connected to the frame jamb using two #10 x 1" screws and two #10 x 1/2" screws. The panel bottom rail contained tandem adjustable rollers fitted into milled slots and single screw connected using a #14 x 3/4" screw at each end. The rollers operated on a stainless steel insert located on the snap-in sill track.

WATER DRAINAGE: The snap-in sill track was cut short 1/4" at each end. The sliding panel sill pocket drained through a 1/2" x 3/16" slot approximately 2" from each corner. Water then drained to the exterior through a 1/8" x 3/16" slot approximately 1 1/2" from the exterior corners. The filler bar below the fixed lite allowed water to pass through a 3/16" x 1/8" slot at each end. The sliding panel bottom rail glazing pocket drained through a 3/8" x 1/8" slot approximately 3" from the interior corners, then through the tooling for the rollers.

FRAME/PANEL: Vinyl extrusions with welded corners. The fixed interlock was fitted and double screw connected with #8 x 2 1/2" screws to the head and sill. Vinyl snap-in filler bars were fitted in the head and sill, above and below the fixed lite, and sealed to the frame jamb and


REINFORCEMENT: Aluminum reinforcement was placed in the fixed and sliding interlocks. The aluminum reinforcement was held in the fixed interlock using two #6 x 5/8" screws and in the sliding interlock using three #6 x 5/8" screws. Steel reinforcement was used in the lead stile.

Detailed assembly drawings showing the wall thickness of all members, corner construction, and hardware have been compared to the test sample and are attached to this report. Cross sections of the sample will be retained by Performance Testing for a period of 4 years.

AAMA TEST RESULTS

Paragraph	EXAMPLE LEGI RES	SULTS	
Number	Title of Test	Measured	
2.1.2	Air Infiltration per ASTM E283-91 CFM per square foot of door area @ 1.57 PSF Reported to the second decimal Total CFM	0.1 0.10 3.8	Allowed
2.1.3	Water Resistance per ASTM E547-96 @ 2.86 PSF Leakage after 4 Cycles of 5 minutes With and without screens	None	None
		Pol. 1	

APPROVED ARRANGEMENT:

Note:

Units of other sizes are covered by this eport as long as the panels used do not exceed 3'0" x 6'8".

Mustralia prof. 250 - 25. 2 25.

Design Pressure +40.5/-40.5

Large Missile Impact Resistance

Hurricane protective system (shutters) is REQUIRED. Actual design pressure and impact resistant requirements for a specific building design and geographic lectation is determined by ASCE 7 national, state or focal building codes apacity the adition required.

MINIMUM ASSEMBLY DETAIL:

Compliance requires that minimum assembly details have been followed – see MAD-WL-MA0002-02 and MAD-WL-MA0041-02.

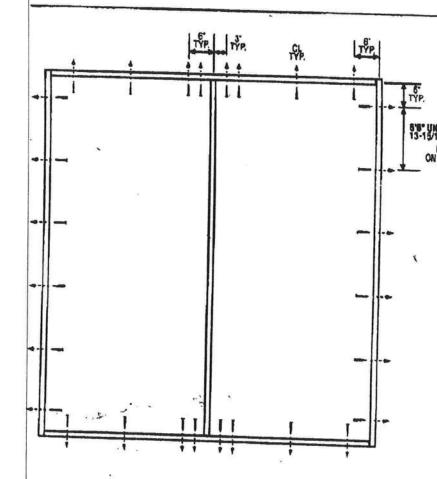
MINIMUM INSTALLATION DETAIL:

Compliance requires that minimum installation details have been followed - see MID-WL-MA0002-02.

APPROVED DOOR STYLES:

1/4 GLASS:

1/2 GLASS:



or ablas: 5-paral; 5-paral with acrol; Eyahraw 5-panel; Eyabrow 5-panel with acrol.

29, 2002

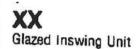
DOUBLE DOOR

Minimum Fastener Count

- 6 per vertical framing member
- 8 per norizontal framing member

Hinge and sirite piales require two 2-1/2" long screws per localion.

Latching Hardware:


Compliance requires that GRADE 2 or better (ANSI/BHMA A156.2) cylinderical and deadlock hardware be installed.

Notes:

- Anchor calculations have been carried out with the lowest (least) fastener rating from the different fasteners being considered for use. Fasteners analyzed for this unit include #8 and #10 wood screws or 3/16" Tapcons.
- The wood screw single shear design values come from Table 11.3A of ANSVAF & PA NDS for southern pine lumber with a side member thickness of 1-1/4" and achievement of minimum embedment. The 3/16" Tapcon single shear design values come from the ITW and ELCO Dada Country approvals respectively, each with minimum 1-1/4" embedment.
- Wood bucks by others, must be anchored properly to transfer loads to the structure.

March 29, 2002

APPROVED DOOR STYLES: 3/4 GLASS:

CERTIFIED TEST REPORTS:

NCTL 210-1897-7, 8, 9, 10, 11, 12; NCTL 210-1861-4, 5, 6, 10, 11, 12; NCTL 210-2185-1, 2, 3

Certifying Engineer and License Number: Barry D. Portney, P.E. / 16258.

Unit Tested in Accordance with Miami-Dade BCCO PA202.

Evaluation report NCTL-210-2794-1

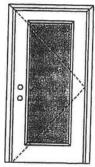
Door panels constructed from 26-gauge 0.017" thick steel skins. Both stiles constructed from wood. Top end rails constructed of 0.041" steel. Bottom end rails constructed of 0.021" steel. Interior cavity of slab filled with rigid polyurethane foam core. Slab glazed with insulated glass mounted in a rigid plastic lip lite surround.

Frame constructed of wood with an extruded aluminum threshold.

PRODUCT COMPLIANCE LABELING:

TESTED IN ACCORDANCE WITH MIAMI-DADE BCCO PA202

COMPANY NAME CITY, STATE


To the best of my knowledge and ability the above side-hinged exterior door unit conforms to the requirements of the 2001 Florids Building Code, Chapter 17 (Structural Tests and Inspections).

State of Florida, Professional Engineer Kurt Batthazor, P.E. - License Number 56533

1

APPROVED ARRANGEMENT:

Test Data Review Certificate #3026447A and COP/Test Report Validation Matrix #3026447A-001 provides additional information - available from the ITS/WH website (www.etisemko.com), the Masonite website (www.masonite.com) or the Masonite technical center.

Note:

Units of other sizes are covered by this report as long as the panel used does not exceed 3'0" x 6'8".

Single Door Maximum unit size = 3'0" x 6'8"

Design Pressure

+40.5/-40.5

Limited water unless special threshold design is used.

Large Missile Impact Resistance

Hurricane protective system (shutters) is REQUIRED.

Actual design pressure and impact resistant requirements for a specific building design and geographic location is determined by ASCE 7-national, state or local building codes specify the edition required.

MINIMUM ASSEMBLY DETAIL:

Compliance requires that minimum assembly details have been followed – see MAD-WL-MA0001-02 and MAD-WL-MA0041-02.

MINIMUM INSTALLATION DETAIL:

Compliance requires that minimum installation details have been followed - see MID-WL-MA0001-02.

APPROVED DOOR STYLES:

1/4 GLASS:

1/2 GLASS:

*This plass kit may also be used in the following door styles: 5-panel; 5-panel with scroll; Eyebrow 5-panel; Eyebrow 5-panel with scroll.

Johnson EntrySystems

June 17, 2002 Our continuing engram of product improvement makes specifications, design and product detail subject to change without notice.

APPROVED DOOR STYLES:

450 Series

FULL GLASS:

CERTIFIED TEST REPORTS:

NCTL 210-1897-7, 8, 9, 10, 11, 12; NCTL 210-1861-4, 5, 6, 10, 11, 12; NCTL 210-2185-1, 2, 3

Certifying Engineer and License Number: Barry D. Portney, P.E. / 16258.

Unit Tested in Accordance with Miami-Dade BCCO PA202.

Evaluation report NCTL-210-2794-1

Door panels constructed from 26-gauge 0.017" thick steel skins. Both stiles constructed from wood. Top end rails constructed of 0.041" steel. Bottom end rails constructed of 0.021" steel. Interior cavity of slab filled with rigid polyurethane foam core. Slab glazed with insulated glass mounted in a rigid

Frame constructed of wood with an extruded aluminum threshold.

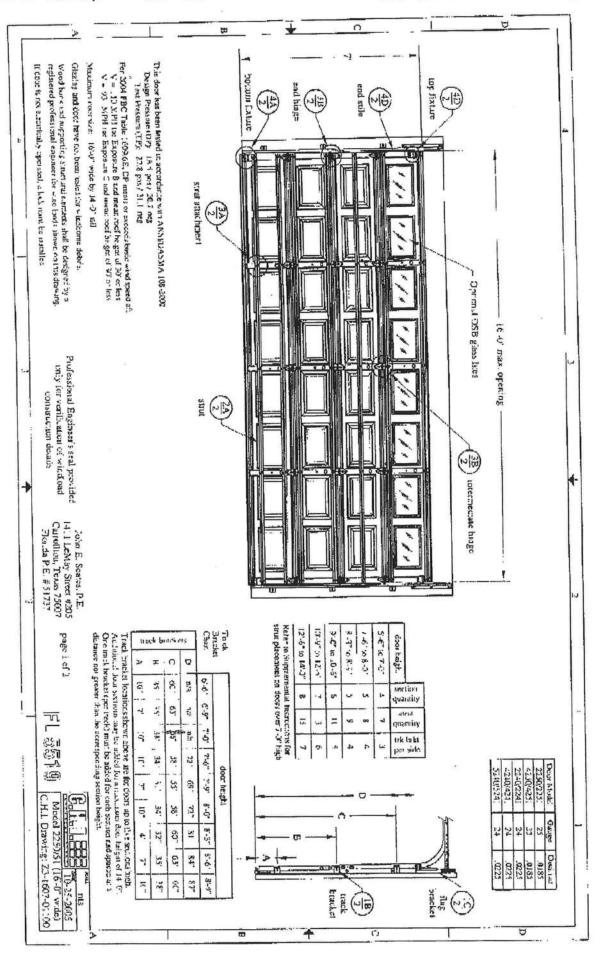
PRODUCT COMPLIANCE LABELING:

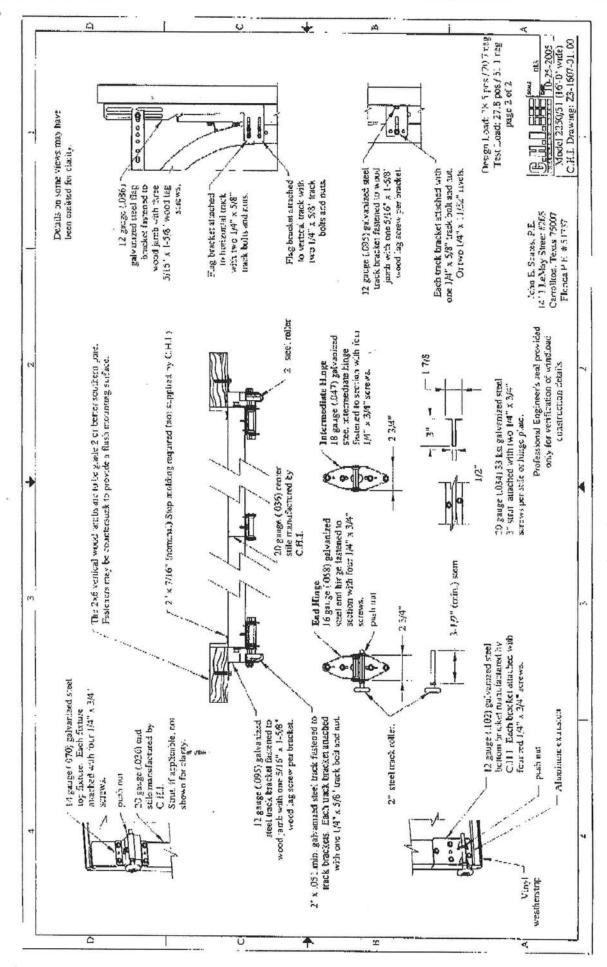
TESTED IN ACCORDANCE WITH MIAMI-DADE BCCO PA202

COMPANY NAME CITY, STATE

To the best of my knowledge and ability the above side-hinged exterior door unit conforms to the requirements of the 2001 Florida Building Code, Chapter 17 (Structural Tests and Inspections).

State of Florida, Professional Engineer Kurt Balthazor, P.E. - License Number 56533




Test Data Review Cartificate #3028447A and COP/Test Report Validation Matrix #3026447A-001 provides additional information - available from the ITS/WH website (www.estsemto.com), the Masonite website (www.masonite.com) or the Masonite technical center.

Our continuing program at arcitical improvement makes specifications, design and product detail subject to change without notice.

AAMA/WDMA 101/I.S. 2-97 TEST REPORT

Rendered to:

JORDAN COMPANIES

SERIES/MODEL: Series 8900 TYPE: PVC Fixed Window

Results
F-C50 60 x 78
±50.0 psf
<0.01 cfm/ft ²
7.5 psf
±75.0 psf
Pass
Grade 40

Reference should be made to full report for test specimen description and data.

Report No:

02-46046.01 .

Report Date:

07/23/03

Expiration Date:

07/17/07

AAMA/WDMA 101/I.S. 2-97 TEST REPORT

Rendered to:

JORDAN COMPANIES 4661 Burbank Road, P.O. Box 18377 Memphis, Tennessee 38118

Report No:

02-46046.01

Test Date:

07/17/03

Report Date:

07/23/03 07/17/07

Expiration Date:

Project Summary: Architectural Testing, Inc. (ATI) was contracted by Jordan Companies, to perform testing on Series 8900 PVC Fixed window. The sample tested successfully met the performance requirements for a F-C50 60 x 78 rating. Test specimen description and results are

Test Procedure: The test specimens were evaluated in accordance with AAMA/WDMA 101/I.S. 2-97, "Voluntary Specifications for Aluminum, Vinyl (PVC) and Wood Windows and

Test Specimen Description:

Series/Model: Series 8900

Type: PVC Fixed Window

Overall Size: 4' 11-3/4" wide by 6' 5-3/4" high

Area: 32.3 ft²

Finish: All vinyl was white.

Glazing Details: The window utilized a nominal 3/4" thick insulating glass unit fabricated from two nominal double strength sheets of annealed glass separated by a desiccant filled metal spacer system. The glass was set from the interior against a silicone sealant backbedding. PVC glazing stops were utilized on the interior.

Frame Construction: The frame corners were miter cut and welded.

Installation: The window was installed within a nominal 2" by 8" SPF wood test buck. The window was anchored to the buck with #8 by 1-5/8" wood screws spaced 6" from each corner and 8" to 10" on center. Silicone sealant was used to seal the window to the test

849 Western Avenue North Saint Paul, MN 55117-5245 phone: 651,636,3835 fax: 651.636.3843 www.archtest.com

Test Results: The results are tabulated as follows:

Paragraph	Title of Test - Test Method	Results	Allowed
2.1.2	Air Infiltration per ASTM I @ 1.57 psf (25 mph) @ 6.24 psf (50 mph)	<0.01 cfm/ft ²	0.30 cfm/ft ² max.
		<0.01 cfm/ft ²	
Note #1: 1 AAMA/WD	The tested specimen meets (or e MA 101/I.S. 2-97 for air infiltrati	exceeds) the performan	nce levels specified in
2.1.3	Water Resistance per ASTM	I E 547-00 (See Note #	2)
2.1.4.1	Uniform Load Deflection pe		
2.1.4.2	Uniform Load Structural per	ASTM E 330-97 (See	Note #2)
Note #2: Th results are l	e client opted to start at a pressu isted under "Optional Performan	200 N.20	imum required. Those
2.1.7	Welded Corner Test	Pass	<100% break on weld
2.1.8	Forced Entry Resistance per A Type D Grade 40	ASTM F 588-97	on word
	Lock Manipulation Test	No entry	No entry
Optional Perf	formance:		
4.3	Water Resistance per ASTM I WTP = 7.5 psf	E 547-00 and 331-00 No leakage	No lest
4.4.1	TT-:C- Y	0.000.	No leakage
The contractives ()	Uniform Load Deflection per A	ASTM E 330-97 (See)	Vote #2\
	(Measurements reported were (Loads were held for 60 second	taken in between the ar	ichor points)
)±	(Loads were held for 60 second	ds)	who pottics)
2	@ 50.0 psf (positive)	0.04"	No Damage
	@ 50.0 psf (negative)	0.03"	No Damage
4.4.2	Uniform Land Stand	2001000 H to 170° 0	110 Daniage
Se Section (S)	Uniform Load Structural per A	STM E 330-97	
	William I COULD IN THE COURSE	nl ' t	chor pointel
24	(Loads were held for 10 second @ 75.0 psf (positive)	-,	Powies)
	@ 75.0 psf (negative)	<0.01"	0.16" max.
		<0.01"	0.16"
Note #3: The	Uniform Load Deg		VIIO MAX,
requirement for	Uniform Load Deflection test	is not an AAMA/WD	MA 101/15 207

Note #3: The Uniform Load Deflection test is not an AAMA/WDMA 101/I.S. 2-97 requirement for this product designation. The data is recorded in this report for information only.

Detailed drawings, representative samples of the test specimen, and a copy of this report will be retained by ATI for a period of four years. The above results were secured by using the designated test methods and they indicate compliance with the performance requirements of the above referenced specification. This report does not constitute certification of this product which may only be granted by the certification program administrator. This report may not be reproduced, except in full, without the approval of Architectural Testing, Inc.

For ARCHITECTURAL TESTING, INC.

Eric J. Schoenthaler

Technician

Daniel A. Johnson

Regional Manager

EJS/mb

02-46046.01

AAMA/WDMA 101/I.S. 2-97 TEST REPORT

Rendered to:

JORDAN COMPANIES

SERIES/MODEL: 8540 TYPE: PVC Casement Window

Title of Test	Results
AAMA/WDMA Rating	The state of the s
Jniform Load Deflection Test Pressure	C-R40 (36 x 72)
Air Infiltration	$\pm 40.0 \text{ psf}$ 0.08 cfm/ft^2 7.5 psf $\pm 60.0 \text{ psf}$
Water Resistance Test Pressure	
Iniform I and St	
Uniform Load Structural Test Pressure	
Forced Entry Resistance	Pass Grade 10

Reference should be made to full report for test specimen description and data.

Report No: 02-48974.01

Report Date: 02/06/04 02/06/08

Expiration Date:

AAMA/WDMA 101/I.S.2-97 TEST REPORT

Rendered to:

JORDAN COMPANIES P.O. Box 18377 Memphis, Tennessee 38118

Report No: 02-48974.01

Test Dates: 01/13/04

Thru: 02/06/04

Report Date: 02/12/04

Expiration Date: 02/06/08

Project Summary: Architectural Testing, Inc. (ATI) was contracted by Jordan Companies to perform tests on a Jordan Companies Series 8540 Casement Window. The sample tested successfully met the performance requirements for a C-R40 36 x 72 rating. Test specimen description and results are reported herein.

Test Procedure: The test specimen was evaluated in accordance with AAMA/NWDMA 101/I.S. 2-97, "Voluntary Specifications for Aluminum, Vinyl (PVC) and Wood Windows and Glass

Test Specimen Description:

Series/Model: 8540

Type: PVC Casement Window

Overall Size: 3' 0" wide by 6' 0" high

Sash Size: 2' 10-1/4" wide by 5' 10-1/4" high

Finish: All PVC was white.

Glazing Type: The window utilized nominal 3/4" insulating glass comprised of two doublestrength annealed sheets and a desiccant-filled metal spacer system. The glass was set from the exterior against a bed of silicone with PVC stops used on the exterior.

> 849 Western Avenue North Saint Paul, Minnesota 55117 phone: 651.636,3835 fax: 651.636.3843 www,archtest.com

Test Specimen Description: (Continued)

Weatherstripping:

Description	Quantity	Looption
0.460" high pile with center fin	1 Row	Location Perimeter of sash exterior
Foam-filled vinyl bulb gasket	1 Row	Perimeter of sash interior
1/4" EPDM rubber bulb	1 Row	Perimeter of frame
·		

Frame Construction: Frame corners were miter-cut and welded.

Sash Construction: Sash corners were miter-cut and welded.

Hardware:

Dual arm roto-operator	1	Sill	
4-point lock with keepers on the sash	1	Locking jamb	
Casement hinges	2	Top and bottom corner of sash on hinge side	
Metal snubbers	2	24" from top and bottom on hinge side	

Installation: The unit was installed into a grade 2 SPF 2" by 8" wood test buck and secured with 1-5/8" screws through the nail fin spaced 4" from corners and 8" on center. The nail fin was sealed to the buck with silicone.

Test Results:

The results are tabulated as follows.

Paragraph	Title of Test	Results	A11 .
2.1.2	Air Infiltration per ASTM		Allowed
C - 10 , Por (23 Hill)	@ 1.57 psf (25 mph) @ 6.24 psf (50 mph)	0.08 cfm/ft ² 0.13 cfm/ft ²	0.3 cfm/ft² max.

Note #1: The tested specimen meets the performance levels specified in AAMA/NWWDA101/I.S.2-97 for air infiltration.

Test Results: (Continued)

Paragraph	Title of Test	Results	Allowed
2.1,3	Water Resistance per AST	M 547-97 (See Note #2	
2.1.4.1	Uniform Load Deflection p		
2.1.4.2	Uniform Load Structural po	er ASTM E 330-97 (See	Note #2)
Note #2: Those result	he client opted to start at a j s are listed under "Optional Pe		ne minimum required.
2.2.5.6.1	Vertical Deflection Test @ 45lbs	0.09"	0.71"
2.2.5.6.2	Hardware Load Test @ 5lbs/ft ²	No damage	No damage
2.1.7	Corner Weld Test	Meets as stated	Meets as stated
2.1.8	Forced Entry Resistance per Type B	ASTM F 588-97	
	Grade 10 Lock Manipulation Test Tests B1 through B3 Lock Manipulation Test	No entry No entry No entry	No entry No entry
Optional Perfe	ormance:		No entry
4.3	Water Resistance per ASTM WTP = 7.5 psf	E 547-00 No leakage	N
4.4.1	Uniform Load Deflection per (Measurements reported were (Loads were held for 60 second 40.0 psf (positive)	ASTM E 330-97 (See It taken on the top rail)	No leakage Note #3)
4.4.2	@ 40.0 psf (negative)	0.10" 0.30"	(See Note #3) (See Note #3)
1	Uniform Load Structural per A (Measurements reported were (Loads were held for 10 secon	falron 17	
	@ 60.0 psf (negative)	0.01" 0.01"	0.136" max. 0.136" max.
Note #3: The	Uniform I		

Note #3: The Uniform Load Deflection test is not a AAMA/NWWDA 101/I.S. 2-97 requirement for this product designation. The data is recorded in this report for information only.

Detailed drawings, representative samples of the test specimen, and a copy of this report will be retained by ATI for a period of four years. The above results were secured by using the designated test methods and they indicate compliance with the performance requirements of the above referenced specification. This report does not constitute certification of this product, which may only be granted by the certification program administrator. This report may not be reproduced except in full without the approval of Architectural Testing, Inc.

For ARCHITECTURAL TESTING, INC.

Digitally Signed by: Paul L. Spiess

Paul L. Spiess Project Manager Digitally Signed by: Daniel A. Johnson

Daniel A. Johnson Regional Manager

PLS/jb 02-48974.01

DOCUMENT CONTROL ADDENDUM 02-48974,00

Current Issue Date: 02/12/04

Report No. 02-48974.01

Requested by: Darrel Booth, Jordan Companies

Purpose: AAMA/WDMA 101/I.S. 2-97 testing on a Jordan 8540 Casement

Comments: Reports and drawings forwarded to ALI for AAMA certification.

January 31, 2002

TO: OUR FLORIDA CUSTOMERS:

Effective February 1, 2002, the following TAMKO shingles, as manufactured at TAMKO's Tuscaloosa, Alabama, facility, comply with ASTM D-3161, Type I modified to 110 mph. Testing was conducted using four nails per shingle. These shingles also comply with Florida Building Code TAS 100 for wind driven rain.

- Glass-Scal AR
- Elite Glass-Scal AR
- ASTM Heritage 30 AR (formerly ASTM Heritage 25 AR)
- Heritage 40 AR (formerly Heritage 30 AR)
- Heritage 50 AR (formerly Heritage 40 AR)

All testing was performed by Florida State certified independent labs.

Please direct all questions to TAMKO's Technical Services Department at 1-800-641-4691.

TAMKO Roofing Products, Inc.

** LAMAR BOOZER ** 900 EAST PUTNAM STREET LAKE CITY, FL 32055

PROJECT: CLIENT: DATE:

CUSTOM NORTON 1 12 08

RESIDENTIAL/LIGHT COMMERCIAL HVAC LOADS

DESIGNER:

LAMAR BOOZER

CLIENT INFORMATION:

NAME:

NORTON

ADDRESS:

CITY, STATE: LAKE CITY, FLORIDA

TOTAL BUILDING LOADS:

BUILDING LOAD TOTALS	t hint their best lives were Note best step beer with best			20,518	1,800	29,203	31,003
SENSIBLE GAIN TOTAL TEMP. SWING MULTIPLIER						29,203 X 1.00	The total area from some orea
***************************************	0.0 S.CFM:	0.0	O 	O	0	0	0
· · · · · · · · · · · · · · · · · · ·	[0.0	0	0	0	0	O
Thirtime or and the second	.0 S.CFM:	0.0	0	977	0	2,655	2,655
DUCTWORK			0	0	1,800	1,500	3,300
PEOPLE APPLIANCES			19	0	0	5,700	5,700
SUBTOTALS FOR S	STRUCTURE:	2,	844	19,541	O	19,348	19,348
22-A SLAB ON GRADE NO EI	DGE INSUL		159 	5,796	0	0	0
16-G CEILING R-30 INSULA			325	1,967	0	1,967	1,967
11-C DOOR METAL POLYSTY	RENE CORE		20	423	O	231	231
12-D WALL R-11 +1/2"ASPI	HLT BRD(R-1.	3) 1,	117	4,023	0		2,197
9-I FRENCH DOOR DBL CLF	R GLS METL F	R	40	1,357	ō	2,896	2,896
3-C WINDOW DBL PANE CL	R GLS METL F	R	183	5,975		12,057	12,057
DESCRIPTIONS		Q	UAN	LOSS	GAIN	GAIN	GAIN
BLDG. LOAD DESCRIPTIONS			REA	SEN.	LAT.	+ SEN.	= TOTAL

SUPPLY CFM AT 20 DEG DT: SQUARE FT. OF ROOM AREA:

1,327 1969

CFM PER SQUARE FOOT: SQUARE FOOT PER TON: 512.854

1.002

TOTAL HEATING REQUIRED WITH OUTSIDE AIR:

20.518 MBH_

TOTAL COOLING REQUIRED WITH OUTSIDE AIR:

CALCULATIONS ARE BASED ON 7TH EDITION OF ACCA MANUAL J. ALL COMPUTED RESULTS ARE ESTIMATES AS BUILDING USE AND WEATHER MAY VARY. BE SURE TO SELECT A UNIT THAT MEETS BOTH SENSIBLE AND LATENT LOADS.

COLUMBIA COUNTY BUILDING DEPARTMENT RESIDENTIAL MINIMUM PLAN REQUIREMENTS AND CHECKLIST FOR THE FLORIDA RESIDENTIAL BUILDING CODE 2004 with 2005 & 2006 Supplements and One (1) and Two (2) Family Dwellings

ALL REQUIREMENTS ARE SUBJECT TO CHANGE

ALL BUILDING PLANS MUST INDICATE COMPLIANCE with the Current FLORIDA BUILDING CODES and the Current FLORIDA RESIDENTIAL CODE. ALL PLANS OR DRAWING SHALL PROVIDED CALCULATIONS AND DETAILS THAT HAVE THE SEAL AND SIGNATURE OF A CERTIFIED ARCHITECT OR ENGINEER REGISTERED IN THE STATE OF FLORIDA, OR ALTERNATE METHODOLOGIES, APPROVED BY THE STATE OF FLORIDA BUILDING COMMISSION FOR ONE-AND-TWO FAMILY DWELLINGS.

FOR DESIGN PURPOSES THE FOLLOWING BASIC WIND SPEEDS ARE PER FIGURE R301.2(4) of the Residential Code (Florida Wind speed map) SHALL BE USED.

WIND SPEED LINE SHALL BE DEFINED AS FOLLOWS: THE CENTERLINE OF INTERSTATE 75.

- 1. ALL BUILDINGS CONSTRUCTED EAST OF SAID LINE SHALL BE ----- 100 MPH
- 2. ALL BUILDINGS CONSTRUCTED WEST OF SAID LINE SHALL BE ------110 MPH
- 3. NO AREA IN COLUMBIA COUNTY IS IN A WIND BORNE DEBRIS REGION

GENERAL REQUIREMENTS;

- Two (2) complete sets of plans containing the following:
- All drawings must be clear, concise and drawn to scale, details that are not used shall be marked void
- Condition space (Sq. Ft.) and total (Sq. Ft.) under roof shall be shown on the plans.
- Designers name and signature shall be on all documents and a licensed architect or engineer, signature and official embossed seal shall be affixed to the plans and documents per FBC 106.1.

Site Plan information including:

- Dimensions of lot or parcel of land
- Dimensions of all building set backs
- Location of all other structures (include square footage of structures) on parcel, existing or proposed well and septic tank and all utility easements.
- Provide a full legal description of property.

Wind-load Engineering Summary, calculations and any details required:

- Plans or specifications must meet state compliance with FRC Chapter 3
- The following information must be shown as per section FRC
- Basic wind speed (3-second gust), miles per hour
- Wind importance factor and nature of occupancy
- Wind exposure if more than one wind exposure is used, the wind exposure and applicable wind direction shall be indicated
- The applicable internal pressure coefficient, Components and Cladding The design wind pressure in terms of psf (kN/m²), to be used for the design of exterior component and cladding materials not specifally designed by the registered design professional.

Elevations Drawing including:

- All side views of the structure
- Roof pitch
- Overhang dimensions and detail with attic ventilation
- Location, size and height above roof of chimneys
- Location and size of skylights with Florida Product Approval
- Number of stories
 - e) Building height from the established grade to the roofs highest peak

Floor	Plan	incl	ud	ing:

- Dimensioned area plan showing rooms, attached garage, breeze ways, covered porches, deck, balconies and raised floor surfaces located more than 30 inches above the floor or grade
- All exterior and interior shear walls indicated
- Shear wall opening shown (Windows, Doors and Garage doors
- Emergency escape and rescue opening in each bedroom (net clear opening shown)
- Safety glazing of glass where needed
- Fireplaces types (gas appliance) (vented or non-vented) or wood burning with Hearth (see chapter 10 of FRC)
- Stairs with dimensions (width, tread and riser and total run) details of guardrails, Handrails (see FRC 311)
 - Plans must show and identify accessibility of bathroom (see FRC 322)

All materials placed within opening or onto/into exterior shear walls, soffits or roofs shall have Florida product approval number and mfg. installation information submitted with the plans (see Florida product approval form)

Foundation Plans Per FRC 403:

- a) Location of all load-bearing walls footings indicated as standard, monolithic, dimensions, size and type of reinforcing.
- b) All posts and/or column footing including size and reinforcing
- c) Any special support required by soil analysis such as piling.
- d) Assumed load-bearing valve of soil (psf)
- e) Location of horizontal and vertical steel, for foundation or walls (include # size and type)

CONCRETE SLAB ON GRADE Per FRC R506

Show Vapor retarder (6mil. Polyethylene with joints lapped 6 inches and sealed)

Show control joints, synthetic fiber reinforcement or welded fire fabric reinforcement and Supports

PROTECTION AGAINST TERMITES Per FRC 320: Subterrayers

Indicate on the foundation plan if soil treatment is used for subterranean termite prevention or submit other approved termite protection methods. Protection shall be provided by registered termiticides

Masonry Walls and Stem walls (load bearing & shear Walls) FRC Section R606

Show all materials making up walls, wall height, and Block size, mortar type

Show all Lintel sizes, type, spans and tie-beam sizes and spacing of reinforcement

Metal frame shear wall and roof systems shall be designed, signed and sealed by Florida Prof. Engineer or Architect

Eloor Framing System: First and/or second story

- Floor truss package shall including layout and details, signed and sealed by Florida Registered Professional Engineer
- Show conventional floor joist type, size, span, spacing and attachment to load bearing walls, stem walls and/or priers
- Girder type, size and spacing to load bearing walls, stem wall and/or priers
- Attachment of joist to girder
- Wind load requirements where applicable
- Show required under-floor crawl space
- Show required amount of ventilation opening for under-floor spaces
- Show required covering of ventilation opening.
- Show the required access opening to access to under-floor spaces
- Show the sub-floor structural panel sheathing type, thickness and fastener schedule on the edges & intermediate of the areas structural panel sheathing
- Show Draft stopping, Fire caulking and Fire blocking
- Show fireproofing requirements for garages attached to living spaces, per FRC section R309
- Provide live and dead load rating of floor framing systems (psf).

WOOD WALL FRAMING CONSTRUCTION FRC CHAPTER 6

- Stud type, grade, size, wall height and oc spacing for all load bearing or shear walls.
- Fastener schedule for structural members per table R602.3 (1) are to be shown.
- Show wood structural panel's sheathing attachment to studs, joist, trusses, rafters and structural members, showing fastener schedule attachment on the edges & intermediate of the areas structural panel sheathing
- Show all required connectors with a max uplift rating and required number of connectors and oc spacing for continuous connection of structural walls to foundation and roof trusses or rafter systems.
- Show sizes, type, span lengths and required number of support jack studs, king studs for shear wall opening and girder or header per FRC Table R502.5 (1)
- Indicate where pressure treated wood will be placed.
- Show all wall structural panel sheathing, grade, thickness and show fastener schedule for structural panel sheathing edges & intermediate areas
- A detail showing gable truss bracing, wall balloon framing details or/ and wall hinge bracing detail

ROOF SYSTEMS:

- Truss design drawing shall meet section FRC R802.10 Wood trusses. Include a layout and truss details and be signed and sealed by Fl. Pro. Eng.
- Show types of connector's assemblies' and resistance uplift rating for all trusses and rafters
- Show gable ends with rake beams showing reinforcement or gable truss and wall bracing details
- Provide dead load rating of trusses

Conventional Roof Framing Layout Per FRC 802:

- Rafter and ridge beams sizes, span, species and spacing
- Connectors to wall assemblies' include assemblies' resistance to uplift rating.
- Valley framing and support details
- Provide dead load rating of rafter system.

ROOF SHEATHING FRC Table R602,3(2) FRC 803

Include all materials which will make up the roof decking, identification of structural panel sheathing, grade, thickness and show fastener schedule for structural panel sheathing on the edges & intermediate areas

ROOF ASSEMBLIES FRC Chapter 9

Include all materials which will make up the roof assembles covering; with Florida Product Approval numbers for each component of the roof assembles covering.

FCB Chapter 13 Florida Energy Efficiency Code for Building Construction

- Residential construction shall comply with this code by using the following compliance methods in the FBC Subchapter 13-6, Residential buildings compliance methods. Two of the required forms are to be submitted, showing dimensions condition area equal to the total condition living space area
- Show the insulation R value for the following areas of the structure: Attic space, Exterior wall cavity and Crawl space (if applicable)

HYAC information shown

- Manual J sizing equipment or equivalent computation
- Exhaust fans locations in bathrooms

Plumbing Fixture layout shown

All fixtures waste water lines shall be shown on the foundation plan

Electrical layout shown including:

- Switches, outlets/receptacles, lighting and all required GFCI outlets identified
- Ceiling fans
 - Smoke detectors
- Service panel, sub-panel, location(s) and total ampere ratings

On the electrical plans identify the electrical service overcurrent protection device for the main electrical service. This device shall be installed on the exterior of structures to serve as a disconnecting means for the utility company electrical service. Conductors used from the exterior disconnecting means to a panel or sub panel shall have four-wire conductors, of which one conductor shall be used as an equipment ground. Indicate if the utility company service entrance cable will be of the overhead or underground type.

Appliances and HVAC equipment and disconnects

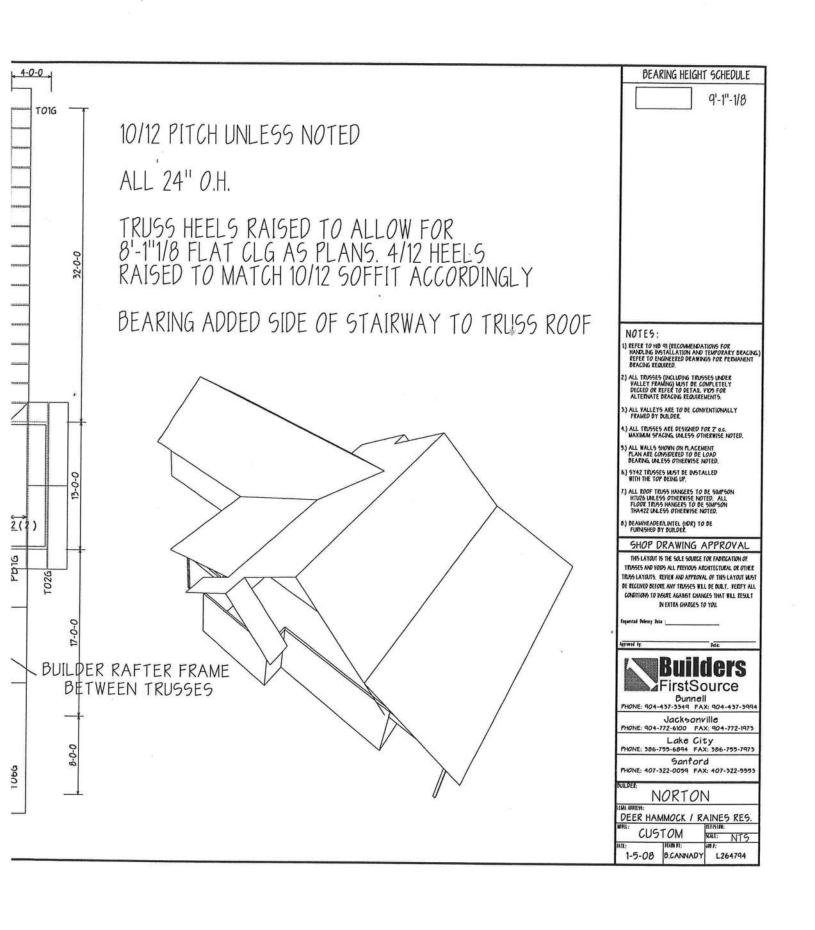
Arc Fault Circuits (AFCI) in bedrooms

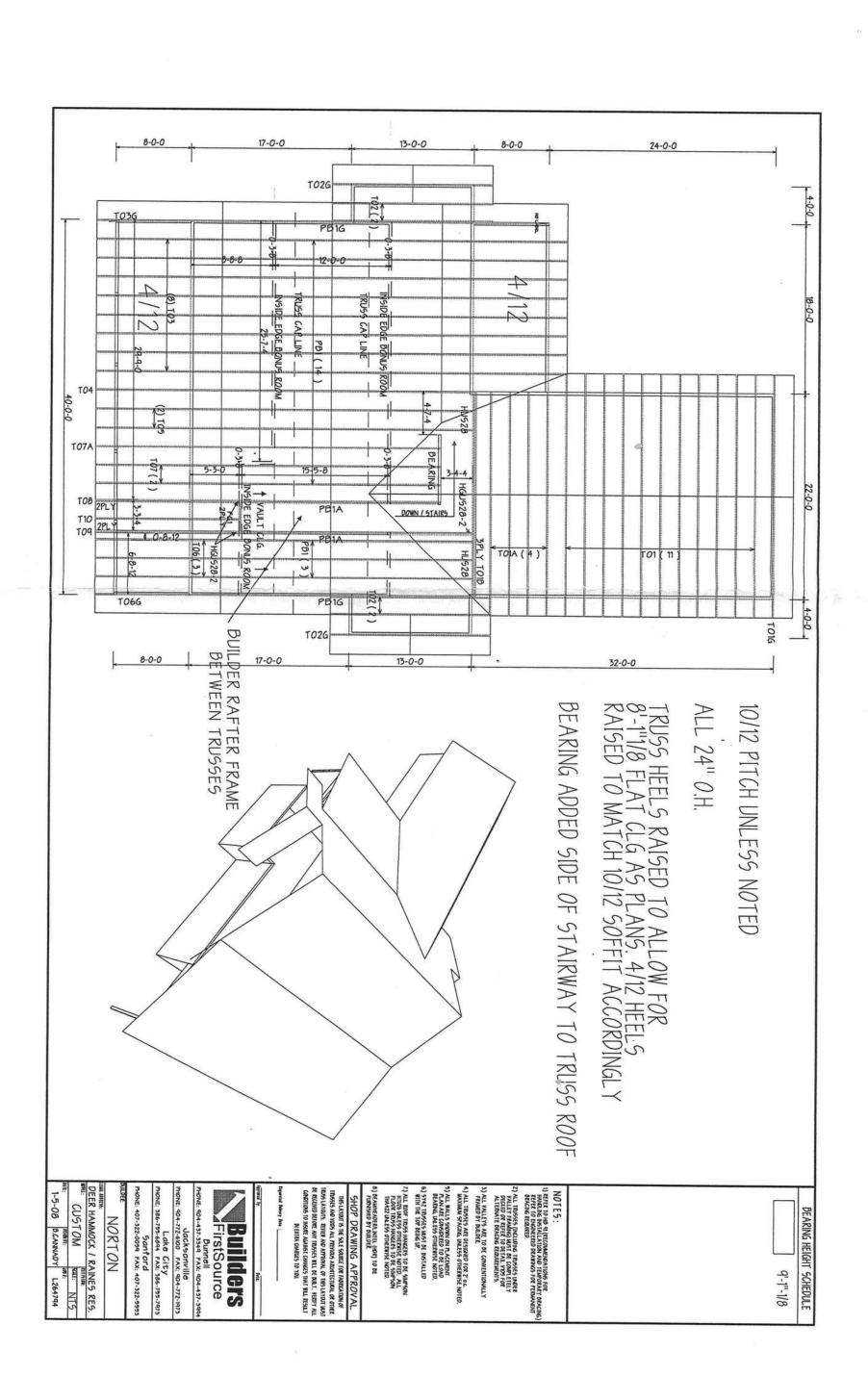
Notarized Disclosure Statement for Owner Builders

Notice of Commencement Recorded (in the Columbia County Clerk Office) Notice Of Commencement is required to be filed with the building department Before Any Inspections Will Be Done.

Private Potable Water

Size of pump motor


Size of pressure tank


Cycle stop valve if used

THE FOLLOWING ITEMS MUST BE SUBMITTED WITH BUILDING PLANS

- Building Permit Application: A current Building Permit Application form is to be completed and submitted for all residential projects.
- Parcel Number: The parcel number (Tax ID number) from the Property Appraiser (386) 758-1084 is required. A copy of property deed is also requested.
- Environmental Health Permit or Sewer Tap Approval: A copy of the Environmental Health permit,
 existing septic approval or sewer tap approval is required before a building permit can be issued. (386)
 758-1058 (Toilet facilities shall be provided for construction workers)
- <u>City Approval:</u> If the project is to be located within the city limits of the Town of Fort White, prior approval is required. The Town of Fort White approval letter is required to be submitted by the owner or contractor to this office when applying for a Building Permit. (386) 497-2321
- Flood Information: All projects within the Floodway of the Suwannee or Santa Fe Rivers shall require permitting through the Suwannee River Water Management District, before submitting application to this office. Any project located within a flood zone where the base flood elevation (100 year flood) has been established shall meet the requirements of Section 8.8 of the Columbia County Land Development Regulations. Any project located within a flood zone where the base flood elevation has not been established (Zone A) shall meet the requirements of Section 8.7 of the Columbia County Land Development Regulations. CERTIFIED FINISHED FLOOR ELEVATIONS WILL BE REQUIRED ON ANY PROJECT WHERE THE BASE FLOOD ELEVATION (100 YEAR FLOOD) HAS BEEN ESTABLISHED. A development permit will also be required. The permit cost is \$50.00.
- Oriveway Connection: If the property does not have an existing access to a public road, then an application for a culvert permit (\$25.00) must be made. If the applicant feels that a culvert is not needed, they may apply for a culvert waiver (\$50.00). All culvert waivers are sent to the Columbia County Public Works Department for approval or denial.
- 911 Address: If the project is located in an area where the 911 address has been issued, then the proper Paper work from the 911 Addressing Departments must be submitted. (386) 758-1125

ALL REQUIRED INFORMATION IS TO BE SUBMITTED FOR REVIEW, NOTIFICATION WILL BE GIVEN WHEN THE APPLICATION AND PLANS ARE APPROVED AND READY TO PERMIT.

Project Information for:

L264794

Builder:

Norton Home Improvement Company, Inc. 272 Southeast Myrtise Dortch Terrace

Address:

Lake City, Florida

County:

Columbia

Truss Count:

21

Design Program: MiTek 20/20 6.3
Building Code: FBC2004/TPI2002
Truss Design Load Information:
Gravity: Wind:

Roof (psf): 42.0

Wind Standard: ASCE 7-02

Wind Exposure: B

Floor (psf): 55.0

Wind Speed (mph): 110

Note: See the individual truss drawings for special loading conditions.

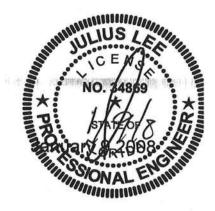
Contractor of Record, responsible for structural engineering:

James H. Norton Florida License No. RB0031780

Address: 3367 South US Highway 441 Suite 101 Lake City, Florida 32025

Truss Design Engineer: Julius Lee, PE Florida P.E. License No. 34869

Address: 1109 Coastal Bay Blvd. Boynton Beach, FL 33435

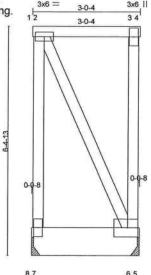

Notes:

 Determination as to the suitability of these truss components for the structure is the responsibility of the building designer/engineer of record, as defined in ANSI/TPI 1-2002 Section 2.2

2. The seal date shown on the individual truss component drawings must match the seal date on this index sheet.

3. The Truss Design Engineer's responsibility relative to this structure consists solely of the design of the individual truss components and does not include the design of any additional structural elements including but not limited to continuous lateral bracing elements in the web and chord planes. See Florida Administrative Code 61G15-31.003 sections 3 c) & 5 and Chapter 2 of the National Design Standard for Metal Plate Connected Wood Truss Construction ANSI/TPI 1-2002 for additional information on the responsibilities of the delegated "Truss Design Engineer". Builders FirstSource and Julius Lee, PE do not accept any additional delegations beyond the scope of work described in the referenced documents above.

No.	Drwg. #	Truss ID	Date
1	J1923045	FG1	1/9/08
2	J1923046	PB1	1/9/08
3	J1923047	PB1A	1/9/08
4	J1923048	PB1G	1/9/08
5	J1923049	T01	1/9/08
6	J1923050	T01A	1/9/08
7	J1923051	T01B	1/9/08
8	J1923052	T01G	1/9/08
9	J1923053	T02	1/9/08
10	J1923054	T02G	1/9/08
11	J1923055	T03	1/9/08
12	J1923056	T03G	1/9/08
13	J1923057	T04	1/9/08
14	J1923058	T05	1/9/08
15	J1923059	T06	1/9/08
16	J1923060	T06G	1/9/08
17	J1923061	T07	1/9/08
18	J1923062	T07A	1/9/08
19	J1923063	T08	1/9/08
20	J1923064	T09	1/9/08
21	J1923065	T10	1/9/08


Job Truss Truss Type Qty Ply NORTON - RAINES RES.

L264794 FG1 SPECIAL 1 2 Job Reference (optional)

Builders FirstSource, Lake City, FI 32055

6.300 s Feb 15 2006 MiTek Industries, Inc. Sat Jan 05 19:28:13 2008 Page 1

Warning: This truss has not been designed to support any additional load from conventional framing.

Simpson HGUS28-2

Simpson HGUS28-2

87		6.5
βx6-11	3-0-4	6x8 T
	3-0-4	

Plate Of	fsets (X, Y	(): [6:0-3-8,0-3-0]										
LOADIN	IG (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.00	TC	0.06	Vert(LL)	-0.00	` ź	>999	360	MT20	244/190
TCDL	7.0	Lumber Increase	1.00	BC	0.01	Vert(TL)	-0.00	7	>999	240	The first of the second of	
BCLL	10.0	* Rep Stress Incr	NO	WB	0.00	Horz(TL)	-0.00	6	n/a	n/a		
BCDL 5.0 Code FBC2004/TPI2002		(Mat	rix)						Weight: 82 lb			

LUMBER

TOP CHORD 2 X 4 SYP No.2 BOT CHORD 2 X 10 SYP No.2

WEBS

2 X 4 SYP No.3

BRACING

TOP CHORD BOT CHORD Structural wood sheathing directly applied or

3-0-4 oc purlins, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc

bracing

REACTIONS (lb/size) 7=161/Mechanical, 6=161/Mechanical

Max Uplift 7=-45(load case 3), 6=-45(load case 4)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 2-7=-74/35, 1-2=0/0, 2-3=0/0, 3-4=0/0, 3-6=-74/35

BOT CHORD 7-8=0/0, 6-7=-0/0, 5-6=0/0

WEBS 2-6=-0/0

JOINT STRESS INDEX

2 = 0.01, 3 = 0.01, 6 = 0.01 and 7 = 0.01

NOTES

- 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2 X 4 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2 X 10 - 2 rows at 0-9-0 oc. Webs connected as follows: 2 X 4 - 1 row at 0-9-0 oc.
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp Continue of the policy of the pol

Truss Design Engineer Florida FE No. 34869 1 100 Caastal Bay Blvd Boynton Beach, FL 33436

January 9,2008

Scale = 1:30.4

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	NORTON - RAINES RES.	Walk Soles Servers
L264794	FG1	SPECIAL	1			J1923045
	10000000			2	Job Reference (optional)	

6.300 s Feb 15 2006 MiTek Industries, Inc. Sat Jan 05 19:28:13 2008 Page 2

NOTES

4) Provide adequate drainage to prevent water ponding.

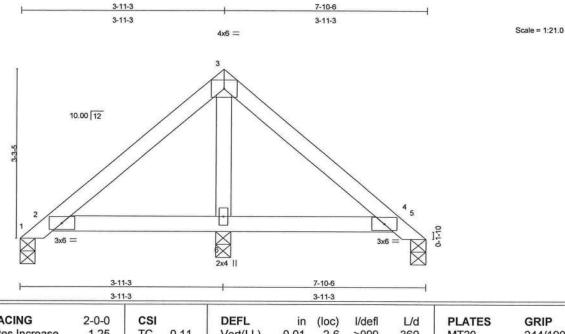
5) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi

- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 45 lb uplift at joint 7 and 45 lb uplift at joint 6.
- 8) Girder carries tie-in span(s): 5-3-0 from 0-0-0 to 3-0-4

LOAD CASE(S) Standard

 Regular: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)


Vert: 1-2=-14, 2-3=-54, 3-4=-14, 5-8=-57(F=-47)

Julius Lee Truse Design Engineer Flonda PE No. 24869 1100 Ceestal Bay Blvd

Job	Truss	Truss Type	Qty	Ply	NORTON - RAINES RES.	
L264794	PB1	PIGGYBACK	17	1		J1923046
/					Job Reference (optional)	

6.300 s Feb 15 2006 MiTek Industries, Inc. Sat Jan 05 19:28:14 2008 Page 1

LOADIN TCLL TCDL	IG (psf) 20.0 7.0	SPACING Plates Increase Lumber Increase	2-0-0 1.25 1.25	CSI TC BC	0.11 0.08	Vert(LL)	in -0.01 -0.01	(loc) 2-6 4-6	I/defl >999 >999	L/d 360 240	PLATES MT20	GRIP 244/190
BCLL	10.0	* Rep Stress Incr	YES	WB	0.07	Horz(TL)	0.00	5	n/a	n/a		
BCDL	BCDL 5.0 Code FBC2004/TPI200		PI2002	(Mat	rix)						Weight: 29 lb	

LUMBER

TOP CHORD 2 X 4 SYP No.2 BOT CHORD 2 X 4 SYP No.2

WEBS

2 X 4 SYP No.3

BRACING

TOP CHORD

Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD

Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (lb/size) 1=39/0-3-8, 5=39/0-3-8, 6=409/0-3-8

Max Horz 1=-88(load case 4)

Max Uplift 1=-11(load case 11), 5=-24(load case 4), 6=-104(load case 6) Max Grav 1=64(load case 10), 5=64(load case 11), 6=409(load case 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-80/81, 2-3=-75/168, 3-4=-75/168, 4-5=-35/18

BOT CHORD

2-6=-77/131, 4-6=-77/131

WEBS

3-6=-336/235

JOINT STRESS INDEX

2 = 0.29, 3 = 0.24, 4 = 0.29 and 6 = 0.13

NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS and C-C Exterior(2) zone; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.

 *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi

Julius Les Truss Design Engineer Florida PE No. 24869 1169 Gessial Bay Blvd Boynton Besch, FL 23435

Continued on page 2

January 9,2008

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE
This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation availed from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	NORTON - RAINES RES.	Web Miles to a vice
L264794	PB1	PIGGYBACK	17	1		J1923046
					Job Reference (optional)	

6.300 s Feb 15 2006 MiTek Industries, Inc. Sat Jan 05 19:28:14 2008 Page 2

NOTES

- Bearing at joint(s) 1, 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 11 lb uplift at joint 1, 24 lb uplift at joint 5 and 104 lb uplift at joint 6.
- 7) SEE MITEK STANDARD PIGGYBACK TRUSS CONNECTION DETAIL FOR CONNECTION TO BASE TRUSS

LOAD CASE(S) Standard

Julius Les Truss Design Engineer Florida FE. No. 34868 I 100 Cassial Bay Blvd Boynton Beach, FL 93436

Job Truss Truss Type Qty Ply NORTON - RAINES RES. J1923047 L264794 PB1A **PIGGYBACK** 2 1 Job Reference (optional) Builders FirstSource, Lake City, FI 32055 6.300 s Apr 19 2006 MiTek Industries, Inc. Wed Jan 09 11:58:08 2008 Page 1 3-11-3 7-10-6 3-11-3 3-11-3 Scale = 1:20.6 4x6 = Note: A single ply Piggyback must be attached to a single ply of a multi ply supporting truss. 10.00 12 3x6 = 3-11-3 7-10-6 3-11-3 3-11-3 LOADING (psf) SPACING 2-6-2 CSI DEFL **PLATES** GRIP in (loc) I/defI L/d TCLL 20.0 Plates Increase 1.25 TC 0.08 -0.00 >999 360 Vert(LL) 244/190 2-6 MT20 7.0 TCDL Lumber Increase 1.25 BC 0.06 Vert(TL) -0.012-6 >999 240 **BCLL** 10.0 NO Rep Stress Incr WB 0.07 0.00 Horz(TL) 5 n/a n/a BCDL 5.0 Code FBC2004/TPI2002 (Matrix) Weight: 36 lb LUMBER BRACING

TOP CHORD 2 X 6 SYP No.1D BOT CHORD 2 X 4 SYP No.2 WEBS 2 X 4 SYP No.3 TOP CHORD

2-0-0 oc purlins (6-0-0 max.)

(Switched from sheeted: Spacing > 2-0-0). Rigid ceiling directly applied or 6-0-0 oc bracing.

BOT CHORD Rigid ceiling direct JOINTS 1 Brace at Jt(s): 3

REACTIONS (lb/size) 1=76/0-3-8, 5=76/0-3-8, 6=460/0-3-8

Max Horz 1=-110(load case 4)

Max Uplift 1=-19(load case 7), 5=-32(load case 4), 6=-106(load case 6) Max Grav 1=99(load case 10), 5=99(load case 11), 6=460(load case 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-102/108, 2-3=-67/180, 3-4=-58/180, 4-5=-48/27

BOT CHORD 2-6=-66/132, 4-6=-66/132

WEBS 3-6=-392/254

JOINT STRESS INDEX

2 = 0.16, 3 = 0.36, 4 = 0.16 and 6 = 0.14

NOTES

Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS and C-C Exterior(2) zone; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi

5) Bearing at joint(s) 1, 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

January 9,2008

Continued on page 2

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	NORTON - RAINES RES.	1200121-00000000000000
L264794	PB1A	PIGGYBACK	2	1		J1923047
				185	Job Reference (optional)	

6.300 s Apr 19 2006 MiTek Industries, Inc. Wed Jan 09 11:58:08 2008 Page 2

- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 19 lb uplift at joint 1, 32 lb uplift at joint 5 and 106 lb uplift at joint 6.
- 7) SEE MITEK STANDARD PIGGYBACK TRUSS CONNECTION DETAIL FOR CONNECTION TO BASE TRUSS

Loading has been calculated by the truss manufacturer. It is the responsibility of the Architect/Engineer of Record to verify and approve the loading.

LOAD CASE(S) Standard

ian Engineer No. 34866 stal Bay Blvd seach, FL 33435

Job Truss Truss Type Qty Ply NORTON - RAINES RES. J1923048 L264794 PB1G **GABLE** 2 1 Job Reference (optional) Builders FirstSource, Lake City, FI 32055 6.300 s Apr 19 2006 MiTek Industries, Inc. Wed Jan 09 11:48:04 2008 Page 1 3-5-11 6-11-7 3-5-11 3-5-12 Scale = 1:18.6 4x6 = 10.00 12

> 2x4 II 3-5-11 6-11-7 3-5-12 3-5-11 0-0-1 3-5-11

LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.24	Vert(LL)	-0.01	2-6	>999	360	MT20	244/190
TCDL	7.0	Lumber Increase	1.25	BC	0.17	Vert(TL)	-0.01	2-6	>999	240		
BCLL	10.0	* Rep Stress Incr	NO	WB	0.13	Horz(TL)	0.01	5	n/a	n/a		
BCDL	5.0	Code FBC2004/TF	PI2002	(Matrix)							Weight: 25 lb	

LUMBER

TOP CHORD 2 X 4 SYP No.2 BOT CHORD 2 X 4 SYP No.2 2 X 4 SYP No.3 WEBS

BRACING

TOP CHORD **BOT CHORD**

Structural wood sheathing directly applied or 6-0-0

oc purlins.

Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS (lb/size) 1=98/0-3-8, 5=98/0-3-8, 6=813/0-3-8

Max Horz 1=-96(load case 4)

Max Uplift 1=-43(load case 7), 5=-50(load case 7), 6=-393(load case 6) Max Grav 1=118(load case 10), 5=118(load case 11), 6=813(load case 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD

1-2=-81/93, 2-3=-149/331, 3-4=-149/331, 4-5=-63/28

BOT CHORD

2-6=-139/154, 4-6=-139/154

WEBS

3-6=-693/427

JOINT STRESS INDEX

2 = 0.57, 3 = 0.47, 4 = 0.57 and 6 = 0.25

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS gable end zone and C-C Exterior(2) zone; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 3) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi

5) Bearing at joint(s) 1, 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

January 9,2008

Continued on page 2

🚵 Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connector Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	NORTON - RAINES RES.	
L264794	PB1G	GABLE	2	1		J1923048
					Job Reference (optional)	

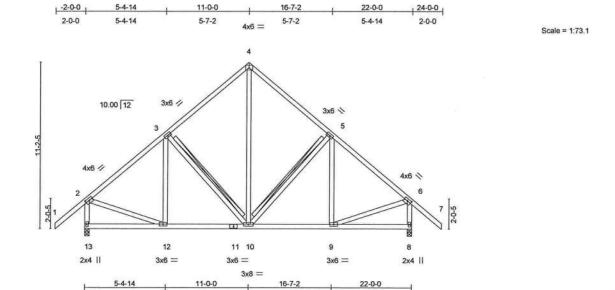
6.300 s Apr 19 2006 MiTek Industries, Inc. Wed Jan 09 11:48:04 2008 Page 2

NOTES

- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 43 lb uplift at joint 1, 50 lb uplift at joint 5 and 393 lb uplift at joint 6.
- 7) SEE MITEK STANDARD PIGGYBACK TRUSS CONNECTION DETAIL FOR CONNECTION TO BASE TRUSS
- 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).
- Truss designed for wind loads in plane of the truss only. For studs exposed to wind (normal to the face), see MiTek "Standard Gable End Detail".

LOAD CASE(S) Standard

 Regular: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)


Vert: 1-2=-153(F=-87), 2-3=-141(F=-87), 3-4=-141(F=-87), 4-5=-153(F=-87), 2-4=-10

Julius Les Truse Design Engineer Florida PE No. 24868 1490 Caestal Bay Blvd 1490 Alesan, FL 39435

Job	Truss	Truss Type	Qty	Ply	NORTON - RAINES RES.	
L264794	T01	COMMON	11	1		J1923049
					Job Reference (optional)	

6.300 s Feb 15 2006 MiTek Industries, Inc. Sat Jan 05 19:28:16 2008 Page 1

Plate Offsets	(X,Y):	[2:0-3-0,0-1-12],	[6:0-3-0,0-1-12]
---------------	--------	-------------------	------------------

LOADIN	IG (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.34	Vert(LL)	-0.02	10-12	>999	360	MT20	244/19
TCDL	7.0	Lumber Increase	1.25	BC	0.16	Vert(TL)	-0.04	9-10	>999	240	0.00000000	
BCLL	10.0	* Rep Stress Incr	YES	WB	0.63	Horz(TL)	0.01	8	n/a	n/a		
BCDL	5.0	Code FBC2004/TF	PI2002	(Mat	rix)	2000000000 X 00000 X					Weight: 161 lb	S E

5-7-2

LUMBER

TOP CHORD 2 X 4 SYP No.2 BOT CHORD 2 X 4 SYP No.2 **WEBS** 2 X 4 SYP No.3 BRACING

TOP CHORD

5-7-2

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

WEBS T-Brace:

2 X 4 SYP No.3 -3-10, 5-10

Fasten T and I braces to narrow edge of web

with 10d Common wire nails, 9in o.c., with 4in

5-4-14

minimum end distance. Brace must cover 90% of web length.

REACTIONS (lb/size) 13=811/0-3-8, 8=811/0-3-8

Max Horz 13=321(load case 5)

Max Uplift 13=-220(load case 6), 8=-220(load case 7)

5-4-14

TOP CHORD

FORCES (lb) - Maximum Compression/Maximum Tension

1-2=0/74, 2-3=-678/355, 3-4=-552/409, 4-5=-552/409, 5-6=-678/355, 6-7=0/74, 2-13=-783/458, 6-8=-783/458

BOT CHORD

12-13=-298/344, 11-12=-182/450, 10-11=-182/450, 9-10=-10/450, 8-9=0/84

WEBS

3-12=-97/68, 3-10=-182/226, 4-10=-300/328, 5-10=-182/226, 5-9=-97/68,

2-12=-61/459, 6-9=-61/459

JOINT STRESS INDEX

2 = 0.69, 3 = 0.43, 4 = 0.51, 5 = 0.43, 6 = 0.69, 8 = 0.54, 9 = 0.34, 10 = 0.56, 11 = 0.15, 12 = 0.34 and 13 = 0.54

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	NORTON - RAINES RES.	Hartonines and according
L264794	T01	COMMON	11	1		J1923049
			17.00		Job Reference (optional)	

6.300 s Feb 15 2006 MiTek Industries, Inc. Sat Jan 05 19:28:16 2008 Page 2

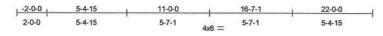
NOTES

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS and C-C Exterior(2) zone; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 3) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 220 lb uplift at joint 13 and 220 lb uplift at joint 8.


LOAD CASE(S) Standard

dulius Las Truse Design Engineer Planda PE No. 24869 1 106 Chastal Bay Blvd 3 Avviton Beach, FL 33435

Job	Truss	Truss Type	Qty	Ply	NORTON - RAINES RES.	
L264794	T01A	COMMON	4	1		J1923050
					Job Reference (optional)	

6.300 s Feb 15 2006 MiTek Industries, Inc. Sat Jan 05 19:28:17 2008 Page 1

Scale = 1:73.1

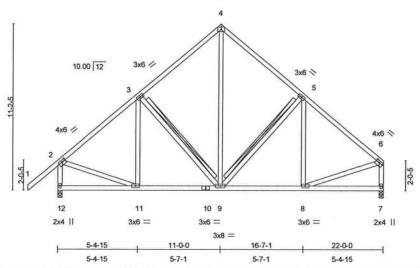


Plate Offsets (X,Y): [2:0-2-12.0-1-8], [6:0-2-12.0-1-8]

LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.37	Vert(LL)	-0.02	9-11	>999	360	MT20	244/190
TCDL	7.0	Lumber Increase	1.25	BC	0.16	Vert(TL)	-0.04	8-9	>999	240	11 - 445X-13725542	
BCLL	10.0	* Rep Stress Incr	YES	WB	0.63	Horz(TL)	0.01	7	n/a	n/a		
BCDL	5.0	Code FBC2004/TF	212002	(Mat	rix)	1010-10					Weight: 157 lb	

LUMBER

TOP CHORD 2 X 4 SYP No.2 BOT CHORD 2 X 4 SYP No.2 **WEBS** 2 X 4 SYP No.3 BRACING

TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

WEBS T-Brace:

2 X 4 SYP No.3 - 3-9,

Fasten T and I braces to narrow edge of web with 10d Common wire nails, 9in o.c., with 4in minimum end distance.

Brace must cover 90% of web length.

REACTIONS (lb/size) 12=816/0-3-8, 7=689/0-3-8

Max Horz 12=328(load case 5)

Max Uplift 12=-218(load case 6), 7=-131(load case 7)

FORCES (lb) - Maximum Compression/Maximum Tension

Maximum Compression/Maximum Tension
1-2=0/74, 2-3=-684/353, 3-4=-560/407, 4-5=-561/408, 5-6=-694/341, 2-12=-789/456 TOP CHORD

BOT CHORD 11-12=-305/269, 10-11=-189/455, 9-10=-189/455, 8-9=-160/466, 7-8=-67/75

3-11=-99/68, 3-9=-182/227, 4-9=-302/331, 5-9=-197/223, 5-8=-86/72, 2-11=-62/464, **WEBS**

6-8=-99/413

JOINT STRESS INDEX

2 = 0.80, 3 = 0.43, 4 = 0.50, 5 = 0.43, 6 = 0.80, 7 = 0.57, 8 = 0.34, 9 = 0.56, 10 = 0.15, 11 = 0.34 and 12 = 0.57

Continued on page 2

January 9,2008

Marning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MTek connector Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	NORTON - RAINES RES.	
L264794	T01A	COMMON	4	1		J1923050
ST 2 10 70	1.5-7.5				Job Reference (optional)	

6.300 s Feb 15 2006 MiTek Industries, Inc. Sat Jan 05 19:28:17 2008 Page 2

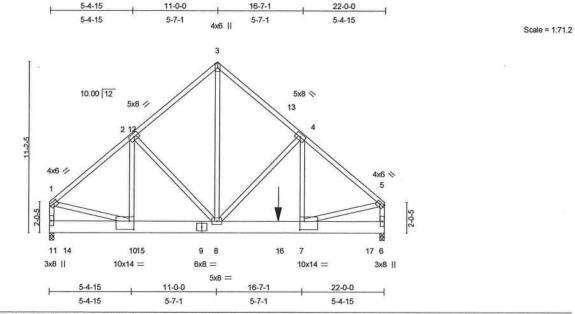
NOTES

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS and C-C Exterior(2) zone; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 3) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 218 lb uplift at joint 12 and 131 lb uplift at joint 7.


LOAD CASE(S) Standard

Julius Lee Truse Design Engineer Flonda PE No. 24866 1100 Coastal Bay Blvd Boynton Besch, Ft. 93435

Job	Truss	Truss Type	Qty	Ply	NORTON - RAINES RES.	
L264794	T01B	COMMON	1		1	J1923051
	1.0.0	00.1		3	Job Reference (optional)	

6.300 s Apr 19 2006 MiTek Industries, Inc. Wed Jan 09 12:01:29 2008 Page 1

Plate Offs	sets (X,Y):	[1:0-3-0,0-1-12], [5:	0-3-0,0-1-1	2], [7:0-3	3-8,0-6-12	2], [10:0-3-8,0-	6-12]					
LOADING	G (psf)		SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0		Plates Increase	1.00	TC	0.66	Vert(LL)	-0.06	7-8	>999	360	MT20	244/190
TCDL	7.0		Lumber Increase	1.00	BC	0.55	Vert(TL)	-0.12	7-8	>999	240		
BCLL	10.0	*	Rep Stress Incr	NO	WB	0.42	Horz(TL)	0.01	6	n/a	n/a		
BCDL	5.0		Code FBC2004/TF	PI2002	(Mat	rix)						Weight: 607 lb	

LUMBER

TOP CHORD 2 X 4 SYP No.2

BOT CHORD 2 X 10 SYP No.2

WEBS 2 X 4 SYP No.2

BRACING

TOP CHORD

Structural wood sheathing directly applied or 6-0-0

oc purlins, except end verticals.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS (lb/size) 11=6580/0-3-8, 6=8253/0-3-8

Max Horz 11=-315(load case 3)

Max Uplift 11=-1758(load case 5), 6=-2220(load case 6)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-12=-5558/1506, 2-12=-5365/1505, 2-3=-4418/1256, 3-13=-4085/1239, 4-13=-4370/1251,

4-5=-7720/2105, 1-11=-4737/1265, 5-6=-6617/1784

BOT CHORD 11-14=-457/549, 14-15=-457/549, 10-15=-457/549, 9-10=-1239/4195, 8-9=-1239/4195,

8-16=-1522/5850, 7-16=-1522/5850, 7-17=-175/562, 6-17=-175/562

WEBS 2-10=-397/1586, 2-8=-1548/504, 3-8=-1388/4792, 4-8=-3859/1174, 4-7=-1263/4697,

1-10=-958/3805, 5-7=-1452/5518

JOINT STRESS INDEX

1 = 0.79, 2 = 0.69, 3 = 0.51, 4 = 0.69, 5 = 0.79, 6 = 0.66, 7 = 0.59, 8 = 0.60, 9 = 0.34, 10 = 0.59 and 11 = 0.66

NOTES

1) 3-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2 X 4 - 1 row at 0-9-0 oc.

Bottom chords connected as follows: 2 X 10 - 4 rows at 0-4-0 oc.

Webs connected as follows: 2 X 4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or Communications page vise indicated.

Julius Leer Truse Design Engineer Flonda PE No. 24869 1100 Ceastal Bay Blvd Boynton Beach, Ft. 23435

January 9,2008

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE
This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors.
Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	NORTON - RAINES RES.	10101010101010101010
L264794	T01B	COMMON	1			J1923051
	100.000			3	Job Reference (optional)	

6.300 s Apr 19 2006 MiTek Industries, Inc. Wed Jan 09 12:01:29 2008 Page 2

3) Unbalanced roof live loads have been considered for this design.

- 4) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60.
- 5) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1758 lb uplift at joint 11 and 2220 lb uplift at joint 6.

Loading has been calculated by the truss manufacturer. It is the responsibility of the Architect/Engineer of Record to verify and approve the loading.

LOAD CASE(S) Standard

1) Regular: Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf)

Vert: 1-12=-54, 3-12=-104(F=-50), 3-13=-104(F=-50), 5-13=-54, 11-14=-10, 14-15=-1025(F=-1015), 15-16=-60(F=-50),

16-17=-1015(F=-1005), 6-17=-10

Concentrated Loads (lb)

Vert: 16=-2447(F)

iign Engineer I No. 34868 stel Bay Blvd San, FL 33436

Job -	Truss	Truss Type	Qty	Ply	NORTON - RAINES RES.	
L264794	T01G	GABLE	1	1		J1923052
		37.55.3882			Job Reference (optional)	

6.300 s Feb 15 2006 MiTek Industries, Inc. Sat Jan 05 19:28:20 2008 Page 1

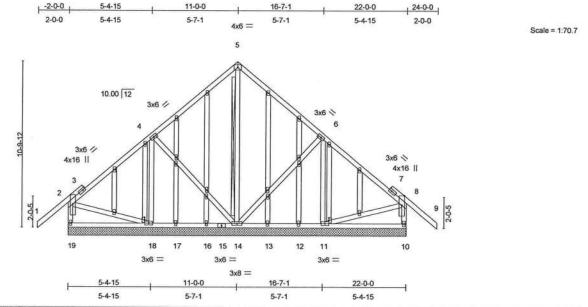


Plate Offsets (X,Y): [11:0-2-0,0-0-0], [18:0-2-0,0-0-0]

LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.30	Vert(LL)	-0.02	ý ý	n/r	120	MT20	244/19
TCDL	7.0	Lumber Increase	1.25	BC	0.12	Vert(TL)	-0.03	9	n/r	90		
BCLL	10.0	* Rep Stress Incr	YES	WB	0.17	Horz(TL)	0.01	10	n/a	n/a		
BCDL	5.0	Code FBC2004/TF	PI2002	(Mat	rix)	, , ,				1.11.341	Weight: 231 lb	

1	11	R/	10	E	R
ᆫ	u	IA		-	\mathbf{r}

TOP CHORD 2 X 4 SYP No.2 BOT CHORD 2 X 4 SYP No.2 WEBS 2 X 4 SYP No.3 OTHERS 2 X 4 SYP No.3

BRACING

TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

WEBS T-Brace:

2 X 4 SYP No.3 -

5-14

Fasten T and I braces to narrow edge of web with 10d Common wire nails, 9in o.c.,with 4in minimum end distance.

Brace must cover 90% of web length.

REACTIONS (lb/size) 19=336/22-0-0, 18=276/22-0-0, 14=343/22-0-0, 11=276/22-0-0,

10=336/22-0-0, 16=24/22-0-0, 17=3/22-0-0, 13=24/22-0-0, 12=3/22-0-0

Max Horz 19=397(load case 5)

Max Uplift 19=-135(load case 6), 18=-164(load case 6), 14=-245(load case 6),

11=-136(load case 7), 10=-164(load case 7), 17=-2(load case 7),

12=-1(load case 6)

Max Grav 19=336(load case 1), 18=277(load case 10), 14=343(load case 1),

11=277(load case 11), 10=336(load case 1), 16=73(load case 2), 17=3(load

case 6), 13=73(load case 2), 12=3(load case 1)

Julius Lee Truse Design Engineer Flonds PE No. 34868 1169 Coestel Bay Blvd Boynton Besch, FL 93435

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	NORTON - RAINES RES.	The second second second second
L264794	T01G	GABLE	1	1	=	J1923052
	III A PORTO				Job Reference (optional)	

6.300 s Feb 15 2006 MiTek Industries, Inc. Sat Jan 05 19:28:20 2008 Page 2

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/68, 2-3=-146/103, 3-4=-95/126, 4-5=-125/154, 5-6=-125/154, 6-7=-23/69, 7-8=-146/33, 8-9=0/68,

2-19=-307/207, 8-10=-307/207

18-19=-375/409, 17-18=-174/301, 16-17=-174/301, 15-16=-174/301, 14-15=-174/301, 13-14=-41/220, **BOT CHORD**

12-13=-41/220, 11-12=-41/220, 10-11=-8/50

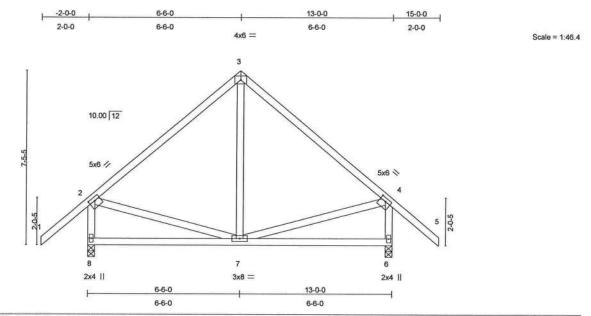
WEBS 4-18=-237/126, 4-14=-50/189, 5-14=-270/48, 6-14=-64/204, 6-11=-237/107, 2-18=-112/216, 8-11=-67/195

JOINT STRESS INDEX

2 = 0.61, 3 = 0.00, 3 = 0.22, 4 = 0.43, 5 = 0.54, 6 = 0.43, 7 = 0.00, 7 = 0.22, 8 = 0.61, 10 = 0.55, 11 = 0.34, 11 = 0.47, 12 = 0.0.33, 13 = 0.33, 14 = 0.56, 15 = 0.15, 16 = 0.33, 17 = 0.33, 18 = 0.34, 18 = 0.47, 19 = 0.55, 20 = 0.33, 20 = 0.33, 21 = 0.322 = 0.33, 22 = 0.33, 23 = 0.33, 24 = 0.33, 25 = 0.33, 26 = 0.33, 27 = 0.33, 28 = 0.33, 28 = 0.33, 29 = 0.33, 300.33, 31 = 0.33, 32 = 0.33 and 33 = 0.33

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see MiTek "Standard Gable End Detail"
- 4) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 135 lb uplift at joint 19, 164 lb uplift at joint 18, 245 lb uplift at joint 14, 136 lb uplift at joint 11, 164 lb uplift at joint 10, 2 lb uplift at joint 17 and 1 lb uplift at joint 12.


LOAD CASE(S) Standard

Engineer Ladeou Bay Blvd D. FL 99496

Job	Truss	Truss Type	Qty	Ply	NORTON - RAINES RES.	1294112020000000000000000000000000000000
L264794	T02	COMMON	4	1		J1923053
					Job Reference (optional)	

6.300 s Feb 15 2006 MiTek Industries, Inc. Sat Jan 05 19:28:21 2008 Page 1

Plate Of	fsets (X, Y	'): [2:0-3-0,0-1-12], [4	4:0-3-0,0-	1-12]								
LOADIN	IG (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.35	Vert(LL)	-0.02	6-7	>999	360	MT20	244/190
TCDL	7.0	Lumber Increase	1.25	BC	0.16	Vert(TL)	-0.04	6-7	>999	240	100000000000000000000000000000000000000	
BCLL	10.0	* Rep Stress Incr	YES	WB	0.08	Horz(TL)	0.00	6	n/a	n/a		
BCDL	5.0	Code FBC2004/TI	PI2002	(Mat	rix)						Weight: 86 lb	

LUMBER

TOP CHORD 2 X 4 SYP No.2 BOT CHORD 2 X 4 SYP No.2 **WEBS** 2 X 4 SYP No.3

BRACING

TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (lb/size) 8=523/0-3-8, 6=523/0-3-8

Max Horz 8=217(load case 5)

Max Uplift 8=-164(load case 6), 6=-164(load case 7)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD

1-2=0/74, 2-3=-362/218, 3-4=-362/218, 4-5=0/74, 2-8=-490/344, 4-6=-490/344

BOT CHORD

7-8=-236/275, 6-7=-21/61

WEBS

3-7=-24/151, 2-7=-103/202, 4-7=-106/205

JOINT STRESS INDEX

2 = 0.83, 3 = 0.65, 4 = 0.83, 6 = 0.74, 7 = 0.14 and 8 = 0.74

NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS and C-C Exterior(2) zone; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.

3) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

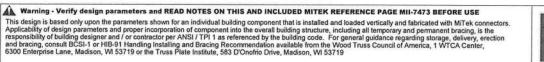
Chatthearing page assumed to be SYP No.2 crushing capacity of 565.00 psi

Engineer Saleer Bay Blvd Sh. FL 99495

January 9,2008

🛕 Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

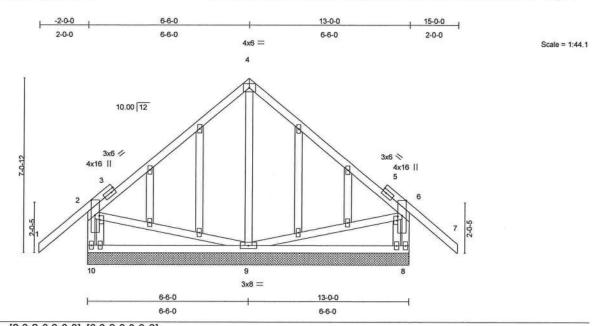
Job	Truss	Truss Type	Qty	Ply	NORTON - RAINES RES.	57 P. N. C. S.
L264794	T02	COMMON	4	1		J1923053
					Job Reference (optional)	


6.300 s Feb 15 2006 MiTek Industries, Inc. Sat Jan 05 19:28:21 2008 Page 2

NOTES

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 164 lb uplift at joint 8 and 164 lb uplift at joint 6.

LOAD CASE(S) Standard


Julius Lee Truss Design Engineer Florida PE No. 34869 1100 Crestal Bay Blvd 1000 Crestal Bay Blvd

Job	Truss	Truss Type	Qty	Ply	NORTON - RAINES RES.	
L264794	T02G	GABLE	2	1		J1923054
				1 22	Job Reference (optional)	

6.300 s Feb 15 2006 MiTek Industries, Inc. Sat Jan 05 19:28:22 2008 Page 1

Plate Of	tsets (X, Y	<u>(): [2:0-2-0,0-0-8], [6:</u>	0-2-0,0-0-	8]							1	
LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.47	Vert(LL)	0.01	6-7	n/r	120	MT20	244/190
TCDL	7.0	Lumber Increase	1.25	BC	0.17	Vert(TL)	0.01	6-7	n/r	90	210000000000000000000000000000000000000	
BCLL	10.0	* Rep Stress Incr	YES	WB	0.25	Horz(TL)	0.00	9	n/a	n/a		

LUMBER		BRACING	
TOP CHORD	2 X 4 SYP No.2	TOP CHORD	Structural wood sheathing directly applied or
BOT CHORD	2 X 4 SYP No.2		6-0-0 oc purlins, except end verticals.
WEBS	2 X 4 SYP No.3	BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
OTHERS	2 X 4 SYP No.3		bracing.

REACTIONS (lb/size) 10=313/13-0-0, 8=313/13-0-0, 9=420/13-0-0

Code FBC2004/TPI2002

Max Horz 10=-267(load case 4)

Max Uplift 10=-169(load case 6), 8=-171(load case 7), 9=-217(load case 6) Max Grav 10=323(load case 10), 8=323(load case 11), 9=420(load case 1)

(Matrix)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/68, 2-3=-115/46, 3-4=-49/98, 4-5=-49/70, 5-6=-115/41, 6-7=0/68,

2-10=-288/223, 6-8=-288/223

BOT CHORD 9-10=-324/341, 8-9=-63/105

WEBS 4-9=-319/153, 2-9=-148/293, 6-9=-150/295

JOINT STRESS INDEX

2 = 0.58, 2 = 0.00, 3 = 0.00, 3 = 0.28, 4 = 0.62, 5 = 0.00, 5 = 0.28, 6 = 0.58, 6 = 0.00, 8 = 0.74, 8 = 0.00, 9 = 0.20, 10 = 0.74, 10 = 0.00, 11 = 0.00, 12 = 0.00, 13 = 0.00, 14 = 0.00, 15 = 0.00, 16 = 0.00, 17 = 0.00 and 18 = 0.00

NOTES

BCDL

5.0

1) Unbalanced roof live loads have been considered for this design.

Julius Lee Truse Design Engineer Florida PE No. 34868 1180 Ceastel Bay Blvd Dovnton Besch, Ft. 33436

Weight: 112 lb

Continued on page 2

January 9,2008

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE
This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors.
Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building ode. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, Wi 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	NORTON - RAINES RES.	VA AMERICAN STATES
L264794	T02G	GABLE	2	1		J1923054
				1.5	Job Reference (optional)	

6.300 s Feb 15 2006 MiTek Industries, Inc. Sat Jan 05 19:28:22 2008 Page 2

NOTES

- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see MiTek "Standard Gable End Detail"
- 4) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 169 lb uplift at joint 10, 171 lb uplift at joint 8 and 217 lb uplift at joint 9.

LOAD CASE(S) Standard

Julius Lee Truse Design Engineer Flonda PE No. 34869 1100 Coestel Bay Blvd Bovoton Basen Et 12446

Job	Truss	Truss Ty	ре		Qty	Ply	NORTON -	RAINES	RES.	
L264794	T03	ROOF TI	RUSS		8	1				J1923055
						<u></u>	Job Referen			
Builders FirstSourc	e, Lake City, FI 320	55	6	.300 s Feb 15	2006	MiTek II	ndustries, Inc	Sat Jan	05 19:28:24 2	008 Page 1
2-0-0	8-1-12	11-4-0 , 14-1-2	16-10-0 ,19-0-13,	26-11-3	, 29	31-10, 2-2-0	-14, 34-8-0 , 37-	10-4	46-0-0	48-0-0
2-0-0	8-1-12	3-2-4 2-9-2	2-8-14 2-2-13	7-10-6	,	2-13 2-8-	1	2-4	8-1-12	2-0-0 Scale = 1:92.7
			5x6	=						Scale = 1.92.7
			4x6 = 8	5x8 =	5x6 -					
T		10.00 12	3x6	9	10	3x6				1
		4x	6 1 6 7 28				4x6 📏 12			
		6x8 / 5	4x6	27 2x4	4:	26 x6	13 6-0.			
9	4.00 12	18					13 6x8 =			P
eg Fli	5x6 3	= 4///		8-1-14		- ,		5x6 <		11-3-0
gg	THE STATE OF THE S			60			1 1	THE STATE OF THE S		
4-9-10 4-9-10				12-0-8		$-\parallel / \parallel$				16
1113		THE PERSON OF TH				[7]	1 A	#		16 17 19
6x8	1 = 25	5 24 2	3 22			21	20 19	18	6x	8 =
	3x6	8x10 = 8x1	0 =			10x14 =	8x10 =	3x6		
			10x14 =				8x10 =			
_	8-1-12	11-4-0 16-1	0-0	29-2-0			34-8-0 , 37-	10-4	46-0-0	_
	8-1-12	3-2-4 5-6		12-4-0		15		2-4	8-1-12	1
Plate Offsets (X,Y): [7:0-0-2,0-0-0],	[11:0-0-2,0-0	-0], [15:0-2-1	5,0-2-11], [21	:0-3-8	3,0-5-0],	[22:0-3-8,0-	5-0]		
LOADING (psf)	SPACING	2-0-0	CSI	DEFL		in (loc) I/defl	L/d	PLATES	GRIP
TCLL 20.0	Plates Increase		TC 0.20	Vert(LL		0.15 21	-22 >999	360	MT20	244/19
TCDL 7.0 BCLL 10.0	Lumber Increas * Rep Stress Incr		BC 0.70 WB 0.93	1,000,000,000,000,000,000	-	0.24 21 0.02	-22 >999 18 n/a	240 n/a		
3CDL 5.0	Code FBC2004		(Matrix)	11012(1	_/	0.02	10 11/4	IIIa	Weight: 4	42 lb
UMBER			146000000000000000000000000000000000000	BRACI	NC					
TOP CHORD 2 X	6 SYP No.1D			TOP C) St	ructural woo	d sheath	ing directly ap	plied or
BOT CHORD 2 X	10 SYP No.2	124				5-	8-1 oc purlin	s, except	t	
	4 SYP No.3 *Exce 1 2 X 4 SYP No.2	ept*		BOT C	HOBL		0-0 oc purlin		max.): 8-10. plied or 6-0-0	00
7.5.3	1274011 140.2			DOTO	IONE		acing.	rectly ap	piled of 6-0-0	OC
				WEBS			Row at midp	t	7-11	
	size) 2=206/0-3-		3-8, 18=2483	3/0-3-8, 16=2	06/0-3	3-8				
	. 11 0- 400/1	d 7\								
	x Horz 2=-136(load x Uplift 2=-391(load		610/1004	co 5) 10- 50)G/100	d 0000	41			

16=-376(load case 5)

Max Grav 2=206(load case 1), 25=2519(load case 11), 18=2519(load case 12), 16=206(load case 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/14, 2-3=-351/504, 3-4=-1108/340, 4-5=-1358/474, 5-6=-2164/563,

6-7=-1505/489, 7-8=-562/258, 8-9=-420/237, 9-10=-420/237, 10-11=-562/258,

11-12=-1505/489, 12-13=-2165/563, 13-14=-1358/474, 14-15=-1108/340,

15-16=-312/504, 16-17=0/14

BOT CHORD 2-25=-398/252, 24-25=-398/252, 23-24=-107/1483, 22-23=-107/1483,

21-22=-39/1624, 20-21=-107/1483, 19-20=-107/1483, 18-19=-398/328,

16-18=-398/328

WEBS 3-25=-2107/824, 3-24=-485/1801, 4-24=-581/211, 5-24=-1179/52, 5-22=0/381,

6-22=-196/905, 12-21=-196/905, 13-21=0/381, 13-19=-1179/31, 14-19=-581/211,

15-19=-485/1801, 15-18=-2107/824, 10-26=-50/203, 9-27=0/42, 9-26=-332/143,

Continued on page 28=-1230/325, 27-28=-953/195, 26-27=-953/195, 11-26=-1230/325, 8-28=-50/203

Julius Lee Truse Design Engineer Flonda PE No. 34569 1109 Gestel Bay Blvd Bovoton Bases E. 23448

January 9,2008

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	NORTON - RAINES RES.	
L264794	T03	ROOF TRUSS	8	1		J1923055
	170,707-8				Job Reference (optional)	

6.300 s Feb 15 2006 MiTek Industries, Inc. Sat Jan 05 19:28:24 2008 Page 2

JOINT STRESS INDEX

2 = 0.21, 3 = 0.62, 4 = 0.36, 5 = 0.33, 6 = 0.29, 7 = 0.28, 8 = 0.20, 9 = 0.27, 10 = 0.20, 11 = 0.28, 12 = 0.29, 13 = 0.33, 14 = 0.36, 15 = 0.68, 16 = 0.21, 18 = 0.33, 19 = 0.37, 20 = 0.21, 21 = 0.20, 22 = 0.20, 23 = 0.21, 24 = 0.37, 25 = 0.33, 26 = 0.32, 27 = 0.33 and 28 = 0.32

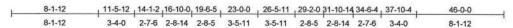
NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS and C-C Exterior(2) zone; porch left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 3) Provide adequate drainage to prevent water ponding.
- 4) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) Ceiling dead load (5.0 psf) on member(s). 6-7, 11-12, 7-28, 27-28, 26-27, 11-26; Wall dead load (5.0 psf) on member(s).6-22, 12-21
- 6) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 21-22
- 7) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 391 lb uplift at joint 2, 610 lb uplift at joint 25, 596 lb uplift at joint 18 and 376 lb uplift at joint 16.
- 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

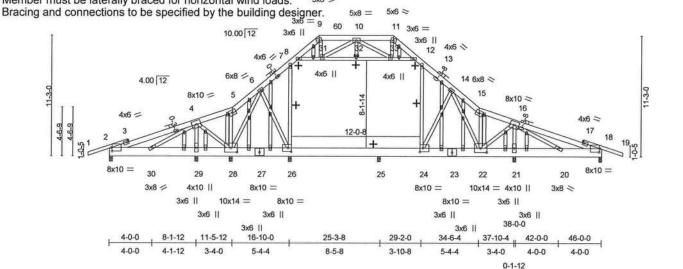
LOAD CASE(S) Standard

 Regular: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)

Vert: 1-4=-54, 4-6=-54, 6-7=-64, 7-8=-54, 8-10=-54, 10-11=-54, 11-12=-64, 12-14=-54, 14-17=-54, 2-24=-10, 22-24=-70(F=-60), 21-22=-110, 19-21=-70(F=-60), 16-19=-10, 7-11=-10


Drag: 6-22=-10, 12-21=-10

Julius Lar Truss Design Engineer Floida PE No. 24866 1100 Coesial Bay Blvd Boynton Beach, Ft. 90495


Job	Truss	Truss Type	Qty	Ply	NORTON - RAINES RES.	
L264794	T03G	GABLE	1	1		J1923056
	A. 100-200-200	Company Compan			Job Reference (optional)	

6.300 s Apr 19 2006 MiTek Industries, Inc. Wed Jan 09 11:49:23 2008 Page 1

5x6 = Member must be laterally braced for horizontal wind loads.

Scale = 1:101.3

LOADING	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.55	Vert(LL)	0.06	22-24	>999	360	MT20	244/190
TCDL	7.0	Lumber Increase	1.25	BC	0.85	Vert(TL)	-0.08	22-24	>999	240		
BCLL	10.0	* Rep Stress Incr	NO	WB	0.89	Horz(TL)	0.02	21	n/a	n/a		
BCDL	5.0	Code FBC2004/TPI2002		(Matrix)							Weight: 502 lb	

1-3 2 X 4 SYP No.2, 17-19 2 X 4 SYP No.2

BOT CHORD 2 X 10 SYP No.2

WEBS 2 X 4 SYP No.3

2 X 4 SYP No.3 **OTHERS**

WEBS

oc purlins, except

2-0-0 oc purlins (6-0-0 max.): 9-11.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing,

Except:

6-0-0 oc bracing: 21-22,20-21,18-20.

WEBS

1 Row at midpt

8-12

REACTIONS (lb/size) 2=891/0-3-8, 18=540/0-3-8, 29=1049/0-3-8, 28=1107/0-3-8, 26=821/0-3-8, 21=2431/0-3-8, 25=1189/0-3-8

Max Horz 2=158(load case 5)

Max Uplift 2=-936(load case 4), 18=-769(load case 5), 29=-914(load case 4), 28=-931(load case 4), 26=-380(load case 5), 21=-1674(load case 4), 25=-67(load case 4)

Max Grav 2=891(load case 1), 18=540(load case 1), 29=1049(load case 1), 28=1107(load case 1), 26=971(load case 11), 21=2431(load case 1), 25=1193(load case 12)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-11/20, 2-3=-889/793, 3-4=-699/688, 4-5=-749/573, 5-6=-924/722, 6-7=-1341/1050,

7-8=-1282/1097, 8-9=-1083/922, 9-60=-773/707, 10-60=-771/705, 10-11=-761/675,

11-12=-1006/837, 12-13=-1219/1026, 13-14=-1359/1051, 14-15=-1038/780,

15-16=-903/617, 16-17=-110/351, 17-18=0/356, 18-19=-11/20

BOT CHORD 2-30=-524/663, 29-30=-273/538, 28-29=-273/538, 27-28=-441/935, 26-27=-441/935,

25-26=-389/944, 24-25=-389/944, 23-24=-482/988, 22-23=-482/988, 21-22=-353/367,

20-21=-353/367, 18-20=-206/139

4-29=-881/820, 4-28=0/162, 5-28=-607/544, 6-28=-729/568, 6-26=-46/153, 7-26=-464/479

13-24=-174/163, 14-24=-109/226, 14-22=-513/341, 15-22=-506/440, 16-22=-921/1462,

16-21=-2140/1718, 8-31=-227/238, 31-32=-379/277, 32-33=-379/277, 12-33=-203/236,

Continued on page 21=-173/255, 10-32=0/33, 11-33=-188/258, 10-31=-430/369, 10-33=-437/402,

January 9,2008

🛕 Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek cor Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is responsibility of building designer and / or contractor per ANSI / TP1 1 as referenced by the building code. For general guidance regarding storage, delivery, e and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	NORTON - RAINES RES.	
L264794	T03G	GABLE	1	1		J1923056
					Job Reference (optional)	

6.300 s Apr 19 2006 MiTek Industries, Inc. Wed Jan 09 11:49:23 2008 Page 2

JOINT STRESS INDEX

 $2 = 0.61, \ 3 = 0.00, \ 3 = 0.64, \ 4 = 0.30, \ 5 = 0.30, \ 6 = 0.34, \ 7 = 0.16, \ 8 = 0.15, \ 9 = 0.43, \ 10 = 0.28, \ 11 = 0.43, \ 12 = 0.15, \ 13 = 0.16, \ 14 = 0.34, \ 15 = 0.30, \ 16 = 0.30, \ 17 = 0.00, \ 17 = 0.64, \ 17 = 0.00, \ 18 = 0.61, \ 20 = 0.12, \ 21 = 0.42, \ 22 = 0.47, \ 22 = 0.00, \ 23 = 0.24, \ 24 = 0.12, \ 26 = 0.12, \ 27 = 0.24, \ 28 = 0.47, \ 28 = 0.00, \ 29 = 0.42, \ 30 = 0.12, \ 31 = 0.32, \ 32 = 0.34, \ 33 = 0.32, \ 34 = 0.34, \ 35 = 0.34, \ 36 = 0.34, \ 36 = 0.34, \ 37 = 0.34, \ 38 = 0.16, \ 39 = 0.34, \ 39 = 0.34, \ 40 = 0.34, \ 41 = 0.16, \ 42 = 0.34, \ 43 = 0.16, \ 44 = 0.34, \ 45 = 0.16, \ 46 = 0.34, \ 47 = 0.34, \ 49 = 0.34, \ 50 = 0.16, \ 51 = 0.34, \ 51 = 0.34, \ 52 = 0.34, \ 53 = 0.16, \ 54 = 0.34, \ 54 = 0.34, \ 55 = 0.34, \ 56 = 0.16, \ 57 = 0.34, \ 58 = 0.16 \ \text{and} \ 59 = 0.34$

NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS gable end zone and C-C Exterior(2) zone; porch left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.

 Truss designed for wind loads in the plane of the truss only. For stude exposed to wind (normal to the face), see MiTek "Standard Gable End Detail"

Provide adequate drainage to prevent water ponding.

5) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) All plates are 2x4 MT20 unless otherwise indicated.

7) Gable studs spaced at 2-0-0 oc.

8) Ceiling dead load (5.0 psf) on member(s). 7-8, 12-13, 8-31, 31-32, 32-33, 12-33; Wall dead load (5.0 psf) on member(s). 7-26, 13-24

9) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 25-26, 24-25

10) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi

11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 936 lb uplift at joint 2, 769 lb uplift at joint 18, 914 lb uplift at joint 29, 931 lb uplift at joint 28, 380 lb uplift at joint 26, 1674 lb uplift at joint 21 and 67 lb uplift at joint 25.

12) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

 Regular: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)

Vert: 1-4=-114(F=-60), 4-5=-141(F=-87), 5-7=-141(F=-87), 7-8=-151(F=-87), 8-9=-141(F=-87), 9-60=-141(F=-87), 11-60=-114(F=-60), 11-12=-114(F=-60), 12-13=-124(F=-60), 13-15=-114(F=-60), 15-19=-114(F=-60), 2-26=-10, 24-26=-110, 18-24=-10, 8-12=-10

Drag: 7-26=-10, 13-24=-10

Julius Late Truse Design Engineer Florida PE No. 24668 1996 Castal Bay Blod Boynton Besch. Ft. 23435

Job	Truss	Truss Type	Qty	Ply	NORTON - RAINES RES.	
L264794	T04	ROOF TRUSS	1	1		J1923057
200 - 100 AV AV AV AV	2000		5.1	120	Job Reference (optional)	

6.300 s Feb 15 2006 MiTek Industries, Inc. Sat Jan 05 19:28:29 2008 Page 1

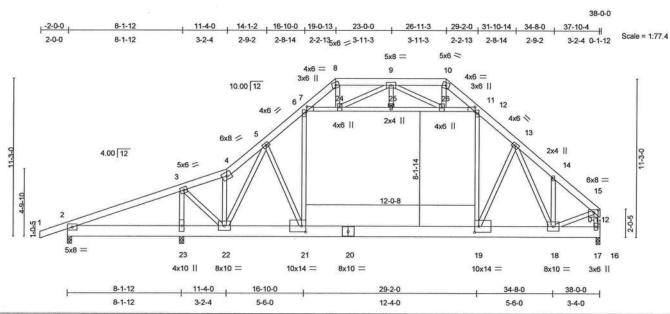


Plate Offsets (X,Y): [7:0-0-2,0-4-0], [11:0-0-2,0-4-0], [15:0-3-8,0-2-0], [19:0-3-8,0-5-0], [21:0-3-8,0-5-0]

LOADIN	IG (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.46	Vert(LL)	-0.14	19-21	>999	360	MT20	244/190
TCDL	7.0	Lumber Increase	1.25	BC	0.73	Vert(TL)	-0.24	19-21	>999	240	Anthesa crocks	
BCLL	10.0	* Rep Stress Incr	NO	WB	0.91	Horz(TL)	0.03	17	n/a	n/a		
BCDL	5.0	Code FBC2004/TPI2002		(Mat	rix)						Weight: 384 lb	

LUMBER

WEBS

TOP CHORD 2 X 6 SYP No.1D BOT CHORD 2 X 10 SYP No.2

WEBS 2 X 4 SYP No.3 *Except*

7-11 2 X 4 SYP No.2

BRACING

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or

5-5-12 oc purlins, except end verticals, and

2-0-0 oc purlins (6-0-0 max.): 8-10. Rigid ceiling directly applied or 10-0-0 oc

bracing, Except:

6-0-0 oc bracing: 2-23,22-23.

WEBS

1 Row at midpt

7-11

REACTIONS (lb/size) 2=278/0-3-8, 23=2430/0-3-8, 17=2025/0-3-8

Max Horz 2=307(load case 5)

Max Uplift 2=-451(load case 4), 23=-660(load case 5), 17=-240(load case 4)

Max Grav 2=278(load case 1), 23=2502(load case 11), 17=2025(load case 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/14, 2-3=-519/450, 3-4=-1257/422, 4-5=-1566/577, 5-6=-2284/638,

6-7=-1583/539, 7-8=-558/252, 8-9=-417/225, 9-10=-435/244, 10-11=-566/262,

11-12=-1577/534, 12-13=-2297/648, 13-14=-1826/755, 14-15=-1833/635,

15-17=-1882/657

BOT CHORD 2-23=-348/221, 22-23=-348/221, 21-22=-293/1593, 20-21=-222/1722,

19-20=-222/1722, 18-19=-332/1641, 17-18=-47/110, 16-17=0/0

3-23=-2090/801, 3-22=-466/1785, 4-22=-649/251, 5-22=-1153/127, 5-21=0/364,

6-21=-234/1000, 12-19=-260/984, 13-19=-17/339, 13-18=-728/0, 14-18=-153/162, 15-18=-422/1409, 7-24=-1342/399, 24-25=-1050/256, 25-26=-1050/256,

11-26=-1318/379, 8-24=-57/217, 9-25=0/43, 10-26=-50/203, 9-24=-358/161,

9-26=-331/150

Continued on page 2

January 9,2008

Marning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building ode. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	NORTON - RAINES RES.	1000 20 200 4000
L264794	T04	ROOF TRUSS	1	1		J1923057
		Conversion Service Control Conversion		1	Job Reference (optional)	

6.300 s Feb 15 2006 MiTek Industries, Inc. Sat Jan 05 19:28:29 2008 Page 2

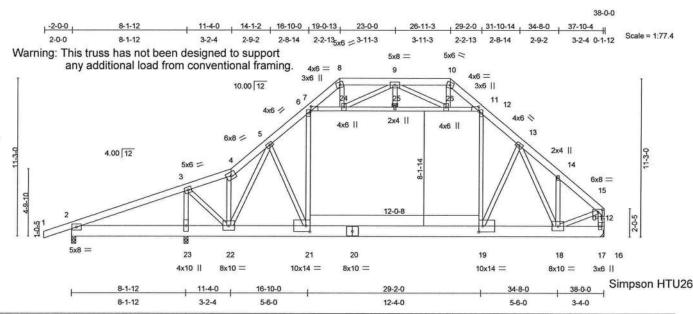
JOINT STRESS INDEX

2 = 0.28, 3 = 0.62, 4 = 0.41, 5 = 0.33, 6 = 0.32, 7 = 0.31, 8 = 0.20, 9 = 0.27, 10 = 0.20, 11 = 0.31, 12 = 0.31, 13 = 0.33, 14 = 0.310.33, 15 = 0.34, 17 = 0.39, 18 = 0.38, 19 = 0.20, 20 = 0.36, 21 = 0.21, 22 = 0.37, 23 = 0.25, 24 = 0.32, 25 = 0.33 and 26 = 0.35

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS and C-C Exterior(2) zone; porch left exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 3) Provide adequate drainage to prevent water ponding.
- 4) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) Ceiling dead load (5.0 psf) on member(s). 6-7, 11-12, 7-24, 24-25, 25-26, 11-26; Wall dead load (5.0 psf) on member(s).6-21,
- 6) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 19-21
- 7) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 451 lb uplift at joint 2, 660 lb uplift at joint 23 and 240 lb uplift at joint 17.
- 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard


1) Regular: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)

Vert: 1-4=-54, 4-6=-54, 6-7=-64, 7-8=-54, 8-10=-54, 10-11=-54, 11-12=-64, 12-15=-54, 2-22=-10, 21-22=-70(F=-60), 19-21=-110, 18-19=-70(F=-60), 17-18=-10, 7-11=-10 Drag: 6-21=-10, 12-19=-10

Job	Truss	Truss Type	Qty	Ply	NORTON - RAINES RES.	11000050
L264794	T05	ROOF TRUSS	2	1		J1923058
	10000				Job Reference (optional)	

6.300 s Feb 15 2006 MiTek Industries, Inc. Sat Jan 05 19:28:30 2008 Page 1

[7:0-0-2,0-4-0], [11:0-0-6,0-4-0], [15:0-3-8,0-2-0], [19:0-3-8,0-5-0], [21:0-3-8,0-5-0] Plate Offsets (X,Y):

LOADIN	IG (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.46	Vert(LL)	-0.14	19-21	>999	360	MT20	244/190
TCDL	7.0	Lumber Increase	1.25	BC	0.73	Vert(TL)	-0.24	19-21	>999	240	Children Company	
BCLL	10.0	* Rep Stress Incr	NO	WB	0.91	Horz(TL)	0.03	17	n/a	n/a		
BCDL	5.0	Code FBC2004/TI	PI2002 (Matrix)							Weight: 384 lb		

LUMBER

TOP CHORD 2 X 6 SYP No.1D BOT CHORD 2 X 10 SYP No.2

WEBS

7-11 2 X 4 SYP No.2

2 X 4 SYP No.3 *Except*

BRACING

TOP CHORD

Structural wood sheathing directly applied or 5-5-12 oc purlins, except end verticals, and

2-0-0 oc purlins (6-0-0 max.): 8-10.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc

bracing, Except: 6-0-0 oc bracing: 2-23,22-23.

WEBS

1 Row at midpt

7-11

REACTIONS (lb/size) 2=278/0-3-8, 23=2430/0-3-8, 17=2025/Mechanical

Max Horz 2=307(load case 5)

Max Uplift 2=-451(load case 4), 23=-660(load case 5), 17=-240(load case 4)

Max Grav 2=278(load case 1), 23=2502(load case 11), 17=2025(load case 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/14, 2-3=-519/450, 3-4=-1257/422, 4-5=-1566/577, 5-6=-2284/638,

6-7=-1583/539, 7-8=-558/252, 8-9=-417/225, 9-10=-435/244, 10-11=-566/262,

11-12=-1577/534, 12-13=-2297/648, 13-14=-1826/755, 14-15=-1833/635,

15-17=-1882/657

BOT CHORD 2-23=-348/221, 22-23=-348/221, 21-22=-293/1593, 20-21=-222/1722,

19-20=-222/1722, 18-19=-332/1641, 17-18=-47/110, 16-17=0/0

WEBS 3-23=-2090/801, 3-22=-466/1785, 4-22=-649/251, 5-22=-1153/127, 5-21=0/364,

6-21=-234/1000, 12-19=-260/984, 13-19=-17/339, 13-18=-728/0, 14-18=-153/162,

15-18=-422/1409, 7-24=-1342/399, 24-25=-1050/256, 25-26=-1050/256,

11-26=-1318/379, 8-24=-57/217, 9-25=0/43, 10-26=-50/203, 9-24=-358/161,

9-26=-331/150

January 9,2008

Engineer Saleet Bay Blvd Sh. FL 93495

Continued on page 2

▲ Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MTek connector Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI /TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	NORTON - RAINES RES.	COLUMN DE MICLOSIDE PAR LO
L264794	T05	ROOF TRUSS	2	1		J1923058
	1,000			4/2	Job Reference (optional)	

6.300 s Feb 15 2006 MiTek Industries, Inc. Sat Jan 05 19:28:30 2008 Page 2

JOINT STRESS INDEX

2 = 0.28, 3 = 0.62, 4 = 0.41, 5 = 0.33, 6 = 0.32, 7 = 0.31, 8 = 0.20, 9 = 0.27, 10 = 0.20, 11 = 0.32, 12 = 0.31, 13 = 0.33, 14 = 0.320.33, 15 = 0.34, 17 = 0.39, 18 = 0.38, 19 = 0.20, 20 = 0.36, 21 = 0.21, 22 = 0.37, 23 = 0.25, 24 = 0.32, 25 = 0.33 and 26 = 0.35

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS and C-C Exterior(2) zone; porch left exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 3) Provide adequate drainage to prevent water ponding.
- 4) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) Ceiling dead load (5.0 psf) on member(s). 6-7, 11-12, 7-24, 24-25, 25-26, 11-26; Wall dead load (5.0 psf) on member(s).6-21,
- 6) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 19-21
- 7) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 451 lb uplift at joint 2, 660 lb uplift at joint 23 and 240 lb uplift at joint 17.
- 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Regular: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)

Vert: 1-4=-54, 4-6=-54, 6-7=-64, 7-8=-54, 8-10=-54, 10-11=-54, 11-12=-64, 12-15=-54, 2-22=-10, 21-22=-70(F=-60), 19-21=-110, 18-19=-70(F=-60), 17-18=-10, 7-11=-10

Drag: 6-21=-10, 12-19=-10

Job	Truss	Truss Type	Qty	Ply	NORTON - RAINES RES.	
L264794	T06	ROOF TRUSS	3	1		J1923059
				15	Job Reference (optional)	

6.300 s Feb 15 2006 MiTek Industries, Inc. Sat Jan 05 19:28:32 2008 Page 1

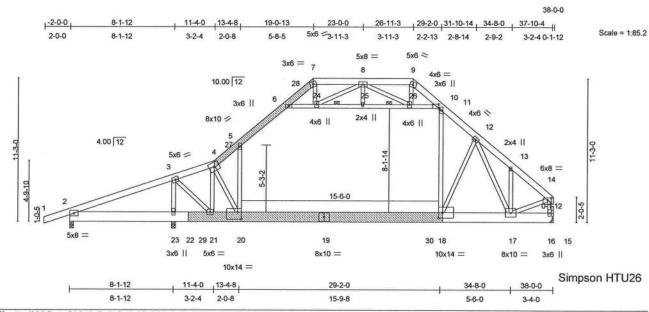


Plate Offsets (X,Y): [10:0-0-6,0-4-0], [14:0-3-8,0-2-0], [18:0-3-8,0-5-0], [20:0-3-8,0-6-12]

LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.51	Vert(LL)	-0.25	18-20	>999	360	MT20	244/190
TCDL	7.0	Lumber Increase	1.25	BC	0.63	Vert(TL)	-0.42	18-20	>853	240	441.84.04.004.000	
BCLL	10.0	* Rep Stress Incr	NO	WB	0.77	Horz(TL)	0.02	16	n/a	n/a		
BCDL	5.0	Code FBC2004/TI	PI2002	(Mat	rix)	CHIEF SASSIVE SASSIVE					Weight: 469 lb	

	u	N	A	B	E	R
-	•			_	-	

TOP CHORD 2 X 6 SYP No.1D BOT CHORD 2 X 10 SYP No.2

WEBS 2 X 4 SYP No.3 *Except*

6-10 2 X 4 SYP No.2

LBR SCAB 4-7 2 X 6 SYP No.1D one side

18-22 2 X 10 SYP No.2 one side

BRACING

TOP CHORD

BOT CHORD

WEBS

Structural wood sheathing directly applied or

4-9-0 oc purlins, except end verticals, and

2-0-0 oc purlins (6-0-0 max.): 7-9.

Rigid ceiling directly applied or 10-0-0 oc

bracing, Except:

6-0-0 oc bracing: 2-23,21-23.

2 Rows at 1/3 pts

6-10

REACTIONS (lb/size) 2=166/0-3-8, 23=2587/0-3-8, 16=2007/Mechanical

Max Horz 2=305(load case 5)

Max Uplift 2=-537(load case 4), 23=-175(load case 5), 16=-207(load case 4) Max Grav 2=166(load case 1), 23=2614(load case 11), 16=2007(load case 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/14, 2-3=-86/649, 3-4=-1139/363, 4-27=-2531/411, 5-27=-2465/420,

5-6=-1748/503, 6-28=-239/229, 7-28=-188/240, 7-8=0/363, 8-9=-447/256, 9-10=-503/259, 10-11=-1439/476, 11-12=-2302/584, 12-13=-1797/716,

13-14=-1826/601, 14-16=-1877/624

BOT CHORD 2-23=-531/0, 22-23=-531/0, 22-29=-531/0, 21-29=-531/0, 20-21=-232/1127,

19-20=-161/1650, 19-30=-161/1650, 18-30=-161/1650, 17-18=-289/1626,

16-17=-45/110, 15-16=0/0

WEBS 3-23=-2266/231, 3-21=0/1950, 4-21=-2719/46, 5-20=-209/1356, 11-18=-251/1192,

12-18=-34/326, 12-17=-710/0, 13-17=-118/154, 14-17=-394/1400, 6-24=-1902/409,

24-25=-1217/222, 25-26=-1217/222, 10-26=-1218/305, 7-24=-79/419, 8-25=0/41,

9-26=-66/81, 8-24=-768/203, 8-26=-73/187, 4-20=0/1250

Hillia Lee frues Design Engineer Tonds PE No. 34868 1 100 Cessell Bay Blyd 1 100 Cessell Bay Blyd 1 100 Cessell Bay Blyd 1 100 Cessell Bay Blyd

January 9,2008

Continued on page 2

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	NORTON - RAINES RES.	
L264794	T06	ROOF TRUSS	3	1		J1923059
					Job Reference (optional)	

6.300 s Feb 15 2006 MiTek Industries, Inc. Sat Jan 05 19:28:32 2008 Page 2

JOINT STRESS INDEX

2 = 0.26, 3 = 0.67, 4 = 0.66, 4 = 0.00, 5 = 0.42, 5 = 0.00, 6 = 0.65, 6 = 0.00, 7 = 0.63, 7 = 0.00, 8 = 0.27, 9 = 0.24, 10 = 0.30, 11 = 0.38, 12 = 0.33, 13 = 0.33, 14 = 0.34, 16 = 0.39, 17 = 0.38, 18 = 0.21, 18 = 0.00, 19 = 0.46, 19 = 0.00, 20 = 0.38, 20 = 0.00, 21 = 0.63, 21 = 0.00, 22 = 0.00, 22 = 0.00, 23 = 0.36, 24 = 0.32, 25 = 0.33 and 26 = 0.32

NOTES

- 1) Attached 10-5-7 scab 4 to 7, front face(s) 2 X 6 SYP No.1D with 2 row(s) of 10d (0.131"x3") nails spaced 9" o.c. except: starting at 0-0-3 from end at joint 4, nail 2 row(s) at 7 o.c. for 3-7-11; starting at 6-2-3 from end at joint 4, nail 2 row(s) at 7 o.c. for 3-10-15; starting at 4-2-8 from end at joint 4, nail 2 row(s) at 7 o.c. for 2-10-8; starting at 4-3-0 from end at joint 4, nail 2 row(s) at 4 o.c. for 2-0-0; starting at 16-4-5 from end at joint 4, nail 2 row(s) at 7 o.c. for 2-0-0.
- 2) Attached 20-0-0 scab 18 to 22, front face(s) 2 X 10 SYP No.2 with 2 row(s) of 10d (0.131"x3") nails spaced 9" o.c. except: starting at 4-7-4 from end at joint 22, nail 2 row(s) at 7 o.c. for 3-7-11; starting at 10-6-8 from end at joint 22, nail 2 row(s) at 7 o.c. for 3-10-15; starting at 0-0-0 from end at joint 22, nail 2 row(s) at 7 o.c. for 2-10-8; starting at 3-0-12 from end at joint 22, nail 2 row(s) at 4 o.c. for 2-0-0; starting at 17-10-4 from end at joint 22, nail 2 row(s) at 7 o.c. for 2-0-0.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS and C-C Exterior(2) zone; porch left exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 5) Provide adequate drainage to prevent water ponding.
- 6) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) Ceiling dead load (5.0 psf) on member(s). 4-5, 5-6, 10-11, 6-24, 24-25, 25-26, 10-26; Wall dead load (5.0 psf) on member(s).5-20, 11-18
- 8) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 18-20
- 9) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 537 lb uplift at joint 2, 175 lb uplift at joint 23 and 207 lb uplift at joint 16.
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

 Regular: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)

Vert: 1-4=-54, 4-6=-64, 6-7=-54, 7-9=-54, 9-10=-54, 10-11=-64, 11-14=-54, 2-20=-10, 18-20=-110, 17-18=-70(F=-60), 16-17=-10, 6-10=-10

Drag: 5-20=-10, 11-18=-10

Julius Les Truse Design Engineer Florida PE No. 34868 1199 Caestal Bay Blvd Avviton Besch, FL 33435

Job Truss Truss Type Qty Ply NORTON - RAINES RES. J1923060 L264794 T06G **GABLE** 1 1 Job Reference (optional) Builders FirstSource, Lake City, FI 32055 6.300 s Apr 19 2006 MiTek Industries, Inc. Wed Jan 09 12:04:48 2008 Page 1 8-1-12 11-5-12 ,13-4-8 19-6-5 23-0-0 26-5-11 29-2-0 31-10-14 34-8-0 38-0-0 2-9-2 3-4-0 1-10-12 3-5-11 3-5-11 2-8-5 2-8-14 6-1-13 Scale = 1:84.8 5x6 = + Member must be laterally braced for horizontal wind loads. 5x8 = 5x6 = Bracing and connections to be specified by the building designer. 9 54 10 12 64x6 N 4x6 || 4x6 || 6x8 / 1355 4.00 12 6 4x6 = 4x6 = 15 15-6-0 3 1-7-12 ····· 3x6 II 24 22^{3x6} || 3x6 || 8x10 = 3x6 || 5x12 MT20H II 21 20 18 56 4x6 \ 3x6 || 4x10 || 5x6 = 5x6 =6x8 = 5x6 = 5x6 = 3x6 || 3x6 II 3x6 II 3x6 II 3-11-2 8-1-12 11-5-12 13-4-8 18-8-4 25-3-8 34-8-0 29-2-0 38-0-0 3-4-0 1-10-12 3-11-2 4-2-10 5-3-12 6-7-4 3-10-8 5-6-0 3-4-0 Plate Offsets (X,Y): [2:0-1-0,0-4-0] LOADING (psf) SPACING 2-0-0 CSI DEFL **PLATES** GRIP in (loc) I/defl L/d TCLL 20.0 Plates Increase 1.25 TC 0.55 Vert(LL) 0.10 17-18 >999 360 244/190 MT20 TCDL 7.0 Lumber Increase 1.25 BC 0.86 Vert(TL) -0.13 17-18 >999 240 MT20H 187/143 **BCLL** 10.0 Rep Stress Incr NO WB 0.23 0.03 Horz(TL) 16 n/a n/a BCDL Code FBC2004/TPI2002 5.0 (Matrix) Weight: 417 lb LUMBER BRACING TOP CHORD 2 X 6 SYP No.1D *Except* TOP CHORD Structural wood sheathing directly applied or 5-10-0 1-3 2 X 4 SYP No.2 oc purlins, except BOT CHORD 2 X 10 SYP No.2 2-0-0 oc purlins (6-0-0 max.): 8-10. **WEBS** 2 X 4 SYP No.3 **BOT CHORD** Rigid ceiling directly applied or 9-9-7 oc bracing. 2 X 4 SYP No.3 **OTHERS** WEBS 1 Row at midpt 7-11 SLIDER Right 2 X 6 SYP No.1D 2-3-1 REACTIONS (lb/size) 2=910/0-3-8, 16=1592/0-3-8, 24=1061/0-3-8, 23=487/0-3-8, 22=835/0-3-8, 19=1393/0-3-8, 21=441/0-3-8, 25=227/0-3-8 Max Horz 2=398(load case 5) Max Uplift 2=-885(load case 4), 16=-781(load case 6), 24=-702(load case 4), 23=-490(load case 4), 22=-340(load case 6), 19=-531(load case 4), 25=-236(load case 4) Max Grav 2=910(load case 1), 16=1592(load case 1), 24=1061(load case 1), 23=487(load

Max Grav 2=910(load case 1), 16=1592(load case 1), 24=1061(load case 1), 23=487(load case 1), 22=878(load case 11), 19=1494(load case 12), 21=557(load case 10), 25=229(load case 11)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-12/20, 2-3=-1100/789, 3-4=-907/678, 4-5=-1297/923, 5-6=-1607/1154,

6-7=-1732/1382, 7-8=-976/797, 8-9=-692/650, 9-54=-808/719, 10-54=-811/721,

10-11=-1071/925, 11-12=-1483/1298, 12-55=-1601/1345, 13-55=-1757/1426,

13-14=-1673/1301, 14-15=-1890/1339, 15-16=-1945/1322

BOT CHORD 2-25=-729/860, 24-25=-729/860, 23-24=-729/860, 22-23=-840/1171, 21-22=-895/1230, 34-25=-729/860, 23-24=-729/860, 22-23=-840/1171, 21-22=-895/1230, 34-25=-729/860, 23-24=-729/860, 22-23=-840/1171, 21-22=-895/1230, 34-25=-729/860, 23-24=-729/860, 22-23=-840/1171, 21-22=-895/1230, 34-25=-729/860, 23-24=-729/860, 22-23=-840/1171, 21-22=-895/1230, 34-25=-729/860, 23-24=-729/860, 22-23=-840/1171, 21-22=-895/1230, 34-25=-729/860, 23-24=-729/860, 22-23=-840/1171, 21-22=-895/1230, 34-25=-729/860, 23-24=-729/860, 22-23=-840/1171, 21-22=-895/1230, 34-25=-729/860, 23-24=-729/860, 22-23=-840/1171, 21-22=-895/1230, 34-25=-729/860, 23-24=-729/860, 22-23=-840/1171, 21-22=-895/1230, 34-25=-729/860, 23-24=-729/860, 2

16-17=-819/1298

WEBS

4-24=-1053/861, 4-23=-126/402, 5-23=-866/597, 5-22=-126/143, 6-22=-545/538,

12-18=-89/156, 13-18=-333/352, 13-17=-238/398, 14-17=-211/276, 7-26=-598/584,

Continued on page6228=-134/201, 27-28=-134/201, 11-27=-449/461, 8-26=-237/326, 10-27=-185/240,

January 9,2008

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE
This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MTek connectors Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	NORTON - RAINES RES.	i i an amarakan amiku aktor o
L264794	T06G	GABLE	1	1		J1923060
				105	Job Reference (optional)	

6.300 s Apr 19 2006 MiTek Industries, Inc. Wed Jan 09 12:04:48 2008 Page 2

JOINT STRESS INDEX

2 = 0.60, 3 = 0.00, 3 = 0.00, 3 = 0.60, 4 = 0.35, 5 = 0.44, 6 = 0.34, 7 = 0.35, 8 = 0.42, 9 = 0.28, 10 = 0.47, 11 = 0.34, 12 = 0.34, 13 = 0.34, 13 = 0.42, 10 = 0.47, 11 = 0.47, 11 = 0.47, 12 = 0.47, 13 = 0.47, 13 = 0.47, 14 = 0.47, 15 = 0.40.34, 14 = 0.34, 15 = 0.00, 16 = 0.86, 16 = 0.71, 17 = 0.24, 18 = 0.24, 20 = 0.21, 22 = 0.23, 23 = 0.19, 24 = 0.21, 24 = 0.16, 26 = 0.32, 24 = 0.21, 24 = 0.227 = 0.32, 28 = 0.34, 29 = 0.34, 30 = 0.34, 31 = 0.34, 32 = 0.34, 33 = 0.16, 34 = 0.34, 35 = 0.16, 36 = 0.34, 37 = 0.34, 37 = 0.34, 38 = 0.34, 3 0.34, 39 = 0.16, 40 = 0.34, 41 = 0.34, 42 = 0.34, 43 = 0.16, 44 = 0.34, 45 = 0.16, 46 = 0.34, 47 = 0.34, 48 = 0.16, 49 = 0.34, 49 = 0.34, 49 = 0.34, 49 = 0.34, 40 = 0.350 = 0.16, 51 = 0.34, 52 = 0.16, 53 = 0.00 and 53 = 0.34

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS gable end zone and C-C Exterior(2) zone; porch left exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see MiTek "Standard Gable End Detail"
- 4) Provide adequate drainage to prevent water ponding.
- 5) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- All plates are MT20 plates unless otherwise indicated.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable studs spaced at 2-0-0 oc.
- 9) Ceiling dead load (5.0 psf) on member(s). 5-6, 6-7, 11-12, 7-26, 26-28, 27-28, 11-27; Wall dead load (5.0 psf) on member(s).6-22, 12-18
- 10) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 21-22, 19-21, 18-19
- 11) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 885 lb uplift at joint 2, 781 lb uplift at joint 16 702 lb uplift at joint 24, 490 lb uplift at joint 23, 340 lb uplift at joint 22, 531 lb uplift at joint 19 and 236 lb uplift at joint 25.
- 13) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Regular: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)

Vert: 1-5=-114(F=-60), 5-7=-124(F=-60), 7-8=-114(F=-60), 8-54=-114(F=-60), 10-54=-141(F=-87), 10-11=-141(F=-87), 11-12=-151(F=-87), 12-55=-141(F=-87), 16-55=-54, 2-22=-10, 19-22=-110, 18-19=-170(F=-60), 18-56=-70(F=-60), 16-56=-10,

Drag: 6-22=-10, 12-18=-10

ere Jesian Endineer PE No. 34869 Sestal Bay Blvd 5 Seson Ft. 93435

Ply Job Truss Qty NORTON - RAINES RES. Truss Type J1923061 L264794 T07 **ROOF TRUSS** 1 Job Reference (optional)

Builders FirstSource, Lake City, FI 32055

6.300 s Feb 15 2006 MiTek Industries, Inc. Sat Jan 05 19:28:35 2008 Page 1

Scale = 1:79.8

Warning: This truss has not been designed to support any additional load from conventional framing.

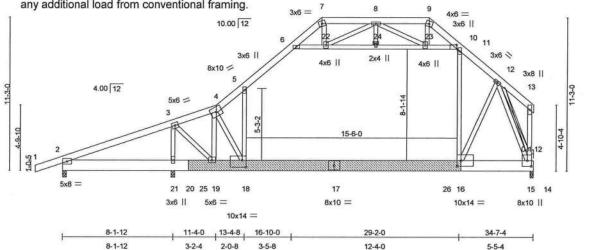


Plate Offsets (X,Y): [10:0-0-10,0-4-0], [15:0-5-0,0-3-8], [16:0-3-8,0-5-0], [18:0-3-8,0-6-4]

LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.60	Vert(LL)	-0.23	16-18	>999	360	MT20	244/190
TCDL	7.0	Lumber Increase	1.25	BC	0.67	Vert(TL)	-0.37	16-18	>851	240	THE COLUMN COLUMN	
BCLL	10.0	* Rep Stress Incr	NO	WB	0.70	Horz(TL)	0.01	15	n/a	n/a		
BCDL	5.0	Code FBC2004/TI	212002	(Mat	rix)						Weight: 416 lb	

LUMBER

TOP CHORD 2 X 6 SYP No.1D BOT CHORD 2 X 10 SYP No.2

WEBS

2 X 4 SYP No.3 *Except*

6-10 2 X 4 SYP No.2

LBR SCAB

WEBS

16-20 2 X 10 SYP No.2 one side

BRACING

TOP CHORD

BOT CHORD

WEBS

Structural wood sheathing directly applied or 5-8-5 oc purlins, except end verticals, and

2-0-0 oc purlins (6-0-0 max.): 7-9.

Rigid ceiling directly applied or 6-0-0 oc

bracing.

6-10

1 Row at midpt T-Brace:

2 X 4 SYP No.3 -

12-15

Fasten T and I braces to narrow edge of web with 10d Common wire nails, 9in o.c., with 4in minimum end distance.

Brace must cover 90% of web length.

REACTIONS (lb/size) 2=-164/0-3-8, 21=2774/0-3-8, 15=1929/0-3-0

Max Horz 2=301(load case 5)

Max Uplift 2=-503(load case 4), 21=-161(load case 5), 15=-185(load case 4)

Max Grav 2=20(load case 2), 21=2778(load case 11), 15=1929(load case 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/14, 2-3=-72/1392, 3-4=-381/267, 4-5=-1592/153, 5-6=-1250/340,

6-7=-404/277, 7-8=-179/281, 8-9=-451/231, 9-10=-539/257, 10-11=-1042/354,

11-12=-1463/309, 12-13=-88/76, 13-15=-112/86

BOT CHORD 2-21=-1223/0, 20-21=-1223/0, 20-25=-1223/0, 19-25=-1223/0, 18-19=-134/413,

17-18=-101/1068, 17-26=-101/1068, 16-26=-101/1068, 15-16=-99/717, 14-15=0/0 3-21=-2421/267, 3-19=0/2071, 4-19=-2480/0, 5-18=-143/689, 11-16=-21/607,

Continued on pagl2216=-70/893, 12-15=-1983/253, 6-22=-985/108, 22-24=-604/36, 23-24=-604/36,

Endineer 3. salees Bay Blyd cn. FL 33435

January 9,2008

▲ Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	NORTON - RAINES RES.	
L264794	T07	ROOF TRUSS	2	1		J1923061
2000	1.550				Job Reference (optional)	

6.300 s Feb 15 2006 MiTek Industries, Inc. Sat Jan 05 19:28:35 2008 Page 2

JOINT STRESS INDEX

2 = 0.27, 3 = 0.72, 4 = 0.57, 5 = 0.23, 6 = 0.34, 7 = 0.55, 8 = 0.56, 9 = 0.20, 10 = 0.18, 11 = 0.21, 12 = 0.71, 13 = 0.12, 15 = 0.120.28, 16 = 0.22, 16 = 0.00, 17 = 0.42, 17 = 0.00, 18 = 0.34, 18 = 0.00, 19 = 0.67, 19 = 0.00, 20 = 0.00, 20 = 0.00, 21 = 0.38, 10 = 0.00, 1022 = 0.32, 23 = 0.32 and 24 = 0.33

NOTES

- 1) Attached 20-0-0 scab 16 to 20, front face(s) 2 X 10 SYP No.2 with 2 row(s) of 10d (0.131"x3") nails spaced 9" o.c.except : starting at 0-0-0 from end at joint 20, nail 2 row(s) at 7 o.c. for 2-10-8; starting at 3-0-12 from end at joint 20, nail 2 row(s) at 4 o.c. for 2-0-0; starting at 17-10-4 from end at joint 20, nail 2 row(s) at 7 o.c. for 2-0-0.
- 2) Unbalanced roof live loads have been considered for this design.
- 3) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS and C-C Exterior(2) zone; porch left exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- Provide adequate drainage to prevent water ponding.
- 5) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Ceiling dead load (5.0 psf) on member(s). 4-5, 5-6, 10-11, 6-22, 22-24, 23-24, 10-23; Wall dead load (5.0 psf) on member(s).5-18, 11-16
- 7) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 16-18
- 8) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 503 lb uplift at joint 2, 161 lb uplift at joint 21 and 185 lb uplift at joint 15.
- 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Regular: Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

Vert: 1-4=-54, 4-6=-64, 6-7=-54, 7-9=-54, 9-10=-54, 10-11=-64, 11-13=-54, 2-18=-10, 16-18=-110, 15-16=-70(F=-60), 14-15=-60(F), 6-10=-10

Drag: 5-18=-10, 11-16=-10

Engineer Per Blyd P. FL 30436

Job Truss NORTON - RAINES RES. Truss Type Ply Qtv J1923062 L264794 T07A **ROOF TRUSS** 1 Job Reference (optional) Builders FirstSource, Lake City, FI 32055 6.300 s Feb 15 2006 MiTek Industries, Inc. Sat Jan 05 19:28:36 2008 Page 1 -2-0-0 8-1-12 11-4-0 14-1-2 | 16-10-0 | 19-0-13 | 23-0-0 26-11-3 29-2-0 31-10-14 34-7-4 2-0-0 2-2-13 2-8-14 3-11-3 3-11-3 2-2-13 2-8-14 5x6 = Scale = 1:79 8 Warning: This truss has not been designed to support 3x8 = 5x6 < any additional load from conventional framing. 4x6 = 8 9 10 4x6 = 3x6 || 3x6 || 11 12 6 3x6 // 3x6 📏 2x4 || 4x6 || 8x10 = 13 3x8 || 4.00 12 12-0-8 Ø 21 19 17 20 18 16 15 8x10 = 4x10 || 6x8 = 10x14 = 8x10 || 10x14 = 8-1-12 11-4-0 16-10-0 29-2-0 34-7-4 8-1-12 3-2-4 5-6-0 12-4-0 5-5-4 Plate Offsets (X,Y): [7:0-0-2,0-4-0], [11:0-0-6,0-4-0], [16:0-5-0,0-3-8], [17:0-3-8,0-5-0], [18:0-3-8,0-5-0] SPACING LOADING (psf) 2-0-0 CSI DEFL (loc) I/defl L/d **PLATES GRIP** TCLL 20.0 1.25 Plates Increase TC 0.29 Vert(LL) -0.16 17-18 >999 360 MT20 244/190 TCDL BC 7.0 Lumber Increase 1.25 0.77 Vert(TL) -0.26 17-18 >999 240 BCLL 10.0 Rep Stress Incr NO WB 0.65 Horz(TL) 0.01 16 n/a n/a Code FBC2004/TPI2002 BCDL 5.0 (Matrix) Weight: 354 lb LUMBER BRACING TOP CHORD 2 X 6 SYP No.1D TOP CHORD Structural wood sheathing directly applied or BOT CHORD 2 X 10 SYP No.2 6-0-0 oc purlins, except end verticals, and **WEBS** 2 X 4 SYP No.3 *Except* 2-0-0 oc purlins (6-0-0 max.): 8-10. 7-11 2 X 4 SYP No.2 **BOT CHORD** Rigid ceiling directly applied or 6-0-0 oc bracing. **WEBS** 1 Row at midpt T-Brace: 2 X 4 SYP No.3 -5-20, 13-16 Fasten T and I braces to narrow edge of web

with 10d Common wire nails, 9in o.c., with 4in minimum end distance.

Brace must cover 90% of web length.

REACTIONS (lb/size) 2=-143/0-3-8, 21=2732/0-3-8, 16=1924/0-3-0

Max Horz 2=304(load case 5)

Max Uplift 2=-396(load case 4), 21=-680(load case 5), 16=-216(load case 4)

Max Grav 2=49(load case 5), 21=2763(load case 11), 16=1924(load case 1)

Engineer Laakee Bay Blvd Sh. FL 88496

January 9,2008

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	NORTON - RAINES RES.	
L264794	T07A	ROOF TRUSS	1	1	6	J1923062
					Job Reference (optional)	

6.300 s Feb 15 2006 MiTek Industries, Inc. Sat Jan 05 19:28:36 2008 Page 2

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/14, 2-3=-578/1397, 3-4=-409/301, 4-5=-

1-2=0/14, 2-3=-578/1397, 3-4=-409/301, 4-5=-517/364, 5-6=-1574/379, 6-7=-1106/369, 7-8=-601/268, 8-9=-494/259, 9-10=-356/216, 10-11=-525/246, 11-12=-1144/380, 12-13=-1459/346, 13-14=-107/78,

14-16=-143/89

BOT CHORD 2-21=-1230/302, 20-21=-1230/302, 19-20=-180/937, 18-19=-180/937, 17-18=-135/1130, 16-17=-118/721,

15-16=0/0

WEBS 3-21=-2374/935, 3-20=-586/2038, 4-20=-245/105, 5-20=-1553/169, 5-18=0/509, 6-18=-114/633, 12-17=-34/423,

13-17=-51/1041, 13-16=-1996/305, 7-22=-666/153, 22-24=-551/60, 23-24=-551/60, 11-23=-808/197,

8-22=-47/154, 10-23=-58/228, 9-24=0/41, 9-22=-241/142, 9-23=-395/162

JOINT STRESS INDEX

2 = 0.29, 3 = 0.70, 4 = 0.11, 5 = 0.55, 6 = 0.20, 7 = 0.16, 8 = 0.21, 9 = 0.56, 10 = 0.20, 11 = 0.20, 12 = 0.15, 13 = 0.76, 14 = 0.12, 16 = 0.29, 17 = 0.22, 18 = 0.17, 19 = 0.17, 20 = 0.74, 21 = 0.28, 22 = 0.32, 23 = 0.32 and 24 = 0.33

NOTES

Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS and C-C Exterior(2) zone; porch left exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.

3) Provide adequate drainage to prevent water ponding.

4) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- Ceiling dead load (5.0 psf) on member(s). 6-7, 11-12, 7-22, 22-24, 23-24, 11-23; Wall dead load (5.0 psf) on member(s).6-18, 12-17
- 6) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 17-18

7) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi

- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 396 lb uplift at joint 2, 680 lb uplift at joint 21 and 216 lb uplift at joint 16.
- 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Regular: Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

Vert: 1-4=-54, 4-6=-54, 6-7=-64, 7-8=-54, 8-10=-54, 10-11=-54, 11-12=-64, 12-14=-54, 2-20=-10, 18-20=-70(F=-60), 17-18=-110, 16-17=-70(F=-60), 15-16=-60(F), 7-11=-10 Drag: 6-18=-10, 12-17=-10

Julius Las Truse Cesion Endineer Florida PE No. 24869 1 100 Coastal Bay Blvd Boynton Beson, FL 33435

Job Truss Truss Type Qty Ply NORTON - RAINES RES. J1923063 L264794 T08 **ROOF TRUSS** Job Reference (optional)

Builders FirstSource, Lake City, FI 32055

6.300 s Apr 19 2006 MiTek Industries, Inc. Wed Jan 09 11:54:31 2008 Page 1

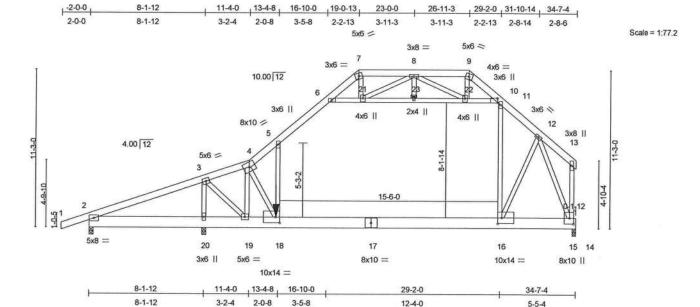


Plate Offsets (X,Y): [10:0-0-10,0-4-0], [15:0-5-0,0-3-8], [16:0-3-8,0-5-0], [18:0-3-8,0-5-0]

LOADIN	G (psf)	SPACING	2-6-2	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.42	Vert(LL)	-0.21	16-18	>999	360	MT20	244/190
TCDL	7.0	Lumber Increase	1.25	BC	0.68	Vert(TL)	-0.33	16-18	>953	240		
BCLL	10.0	* Rep Stress Incr	NO	WB	0.45	Horz(TL)	-0.00		n/a	n/a		
BCDL	5.0	Code FBC2004/TF	212002	(Mat	rix)		17(1)(E)(7)	22000	0.000	10.00	Weight: 674 lb	

LUMBER

TOP CHORD 2 X 6 SYP No.1D BOT CHORD 2 X 10 SYP No.2

WEBS

2 X 4 SYP No.3 *Except*

13-15 2 X 4 SYP No.2, 6-10 2 X 4 SYP No.2

BRACING

TOP CHORD

2-0-0 oc purlins (6-0-0 max.), except end verticals (Switched from sheeted: Spacing > 2-0-0).

BOT CHORD WEBS

JOINTS

1 Row at midpt

Rigid ceiling directly applied or 6-0-0 oc bracing. 6-10

1 Brace at Jt(s): 4, 7, 9, 13

REACTIONS

(lb/size) 2=-268/0-3-8, 20=3684/0-3-8, 15=2362/0-3-0

Max Horz 2=378(load case 4)

Max Uplift 2=-566(load case 3), 20=-440(load case 4), 15=-175(load case 3)

Max Grav 20=3701(load case 10), 15=2362(load case 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD

1-2=0/18, 2-3=-361/1921, 3-4=-426/309, 4-5=-2099/176, 5-6=-1617/149, 6-7=-489/308,

7-8=-196/369, 8-9=-572/214, 9-10=-676/214, 10-11=-1347/118, 11-12=-1914/41,

12-13=-107/59, 13-15=-140/60

BOT CHORD

2-20=-1698/5, 19-20=-1698/5, 18-19=-65/502, 17-18=0/1397, 16-17=0/1397, 15-16=0/936.

14-15=0/0

WEBS

3-20=-3170/226, 3-19=0/2721, 4-19=-3431/0, 5-18=-170/955, 11-16=-1/845,

12-16=-74/1174, 12-15=-2601/0, 6-21=-1338/65, 21-23=-832/32, 22-23=-832/32,

10-22=-874/59, 7-21=-62/399, 9-22=-100/170, 8-23=0/50, 8-21=-722/186, 8-22=-249/268

4-18=-61/2193

JOINT STRESS INDEX

2 = 0.19, 3 = 0.48, 4 = 0.40, 5 = 0.16, 6 = 0.24, 7 = 0.39, 8 = 0.57, 9 = 0.21, 10 = 0.19, 11 = 0.16, 12 = 0.48, 13 = 0.12, 15 = 0.19, 16 = 0.19, 16 = 0.19, 18 = 00.15, 17 = 0.45, 18 = 0.22, 19 = 0.45, 20 = 0.26, 21 = 0.33, 22 = 0.33 and 23 = 0.34

January 9,2008

Continued on page 2

🛕 Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TP1 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	NORTON - RAINES RES.	
L264794	Т08	ROOF TRUSS	1			J1923063
				2	Job Reference (optional)	

6.300 s Apr 19 2006 MiTek Industries, Inc. Wed Jan 09 11:54:32 2008 Page 2

NOTES

2-ply truss to be connected together with 10d (0.131"x3") nails as follows:
 Top chords connected as follows: 2 X 6 - 2 rows at 0-9-0 oc, 2 X 4 - 1 row at 0-9-0 oc.

 Bottom chords connected as follows: 2 X 10 - 2 rows at 0-9-0 oc.
 Webs connected as follows: 2 X 4 - 1 row at 0-9-0 oc.

All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply
connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Unbalanced roof live loads have been considered for this design.

4) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS; porch left exposed; Lumber DOL=1.60 plate grip DOL=1.60.

5) Provide adequate drainage to prevent water ponding.

6) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) Ceiling dead load (5.0 psf) on member(s). 4-5, 5-6, 10-11, 6-21, 21-23, 22-23, 10-22; Wall dead load (5.0 psf) on member(s). 5-18, 11-16

8) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 16-18

9) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 566 lb uplift at joint 2, 440 lb uplift at joint 20 and 175 lb uplift at joint 15.

Loading has been calculated by the truss manufacturer. It is the responsibility of the Architect/Engineer of Record to verify and approve the loading.

LOAD CASE(S) Standard

1) Regular: Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

Vert: 1-4=-68, 4-6=-80, 6-7=-68, 7-9=-68, 9-10=-68, 10-11=-80, 11-13=-68, 2-18=-13, 16-18=-138, 14-16=-73(F=-60), 6-10=-13

Drag: 5-18=-13, 11-16=-13

Concentrated Loads (lb) Vert: 18=-161(F)

> dullus Lee Truse Design Engineer Florida PE No. 34869 1109 Grastal Bay Blvd Boynton Beach, FL 33435

 Job
 Truss
 Truss Type
 Qty
 Ply
 NORTON - RAINES RES.

 L264794
 T09
 ROOF TRUSS
 1
 2
 Job Reference (optional)

 Builders FirstSource, Lake City, FI 32055
 6.300 s Apr 19 2006 MiTek Industries, Inc. Wed Jan 09 11:56:32 2008 Page 1

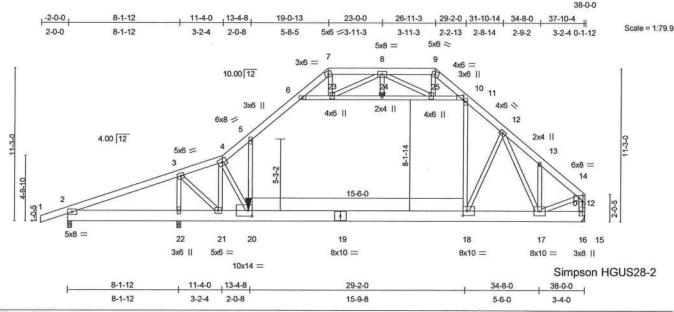


Plate Offsets (X,Y): [10:0-0-2,0-4-0], [14:0-3-8,0-2-0], [18:0-3-8,0-4-0], [20:0-3-8,0-5-0] **SPACING** LOADING (psf) 2-6-2 CSI DEFL L/d **PLATES GRIP** in (loc) TCLL 20.0 Plates Increase 1.25 TC 0.67 Vert(LL) -0.25 18-20 >999 360 244/190 MT20 TCDL 7.0 Lumber Increase 1.25 BC 0.83 Vert(TL) -0.41 18-20 >862 240 BCLL 10.0 Rep Stress Incr NO WB 0.43 Horz(TL) 0.01 16 n/a n/a BCDL Code FBC2004/TPI2002 50 (Matrix) Weight: 733 lb

LUMBER

TOP CHORD 2 X 6 SYP No.1D BOT CHORD 2 X 10 SYP No.2

WEBS 2 X 4 SYP No.3 *Except*

14-16 2 X 4 SYP No.2, 6-10 2 X 4 SYP No.2

BRACING

TOP CHORD

2-0-0 oc purlins (6-0-0 max.), except end verticals

(Switched from sheeted: Spacing > 2-0-0). Rigid ceiling directly applied or 10-0-0 oc bracing,

BOT CHORD Rigid ce Except:

6-0-0 oc bracing: 2-22,21-22.

WEBS JOINTS 1 Row at midpt

1 Brace at Jt(s): 4, 7, 9, 14

REACTIONS (lb/size) 2=74/0-3-8, 22=3533/0-3-8, 16=2447/Mechanical

Max Horz 2=383(load case 4)

Max Uplift 2=-603(load case 3), 22=-423(load case 4), 16=-206(load case 3) Max Grav 2=141(load case 2), 22=3572(load case 10), 16=2447(load case 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/18, 2-3=-324/1162, 3-4=-1243/400, 4-5=-3158/294, 5-6=-2184/213, 6-7=-304/304.

7-8=0/468, 8-9=-738/234, 9-10=-743/222, 10-11=-1773/166, 11-12=-2934/159,

12-13=-2127/344, 13-14=-2177/265, 14-16=-2231/271

BOT CHORD 2-22=-991/0, 21-22=-991/0, 20-21=-60/1273, 19-20=-10/2043, 18-19=-10/2043,

17-18=-16/2025, 16-17=-26/148, 15-16=0/0

WEBS 3-22=-3038/211, 3-21=0/2661, 4-21=-3748/0, 5-20=-255/1683, 11-18=-100/1629,

12-18=-64/340, 12-17=-1070/0, 13-17=-128/139, 14-17=-142/1646, 6-23=-2351/178, 23-24=-1405/109, 24-25=-1405/109, 10-25=-1344/100, 7-23=-83/578, 8-24=0/51,

9-25=-100/73, 8-23=-1075/228, 8-25=-34/269, 4-20=-26/1887

Julius Les Trues Cosian Engineer Florida PE No. 24889 Obs Cassal Bay Blvd. Boymon Beach, FL 33435

JOINT STRESS INDEX

2 = 0.17, 3 = 0.47, 4 = 0.60, 5 = 0.27, 6 = 0.41, 7 = 0.66, 8 = 0.28, 9 = 0.22, 10 = 0.16, 11 = 0.26, 12 = 0.34, 13 = 0.34, 14 = 0.22, 16 = 0.19, 17 = 0.23, 18 = 0.16, 19 = 0.44, 20 = 0.26, 21 = 0.44, 22 = 0.25, 23 = 0.33, 24 = 0.34 and 25 = 0.33January 9,2008

Continued on page 2

🛕 Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	NORTON - RAINES RES.	14000004
L264794	T09	ROOF TRUSS	1	1		J1923064
				2	Job Reference (optional)	

6.300 s Apr 19 2006 MiTek Industries, Inc. Wed Jan 09 11:56:32 2008 Page 2

- 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2 X 6 - 2 rows at 0-9-0 oc, 2 X 4 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2 X 10 - 2 rows at 0-9-0 oc. Webs connected as follows: 2 X 4 - 1 row at 0-9-0 oc.
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Unbalanced roof live loads have been considered for this design.

4) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS; porch left exposed; Lumber DOL=1.60 plate grip DOL=1.60.

5) Provide adequate drainage to prevent water ponding.

6) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) Ceiling dead load (5.0 psf) on member(s). 4-5, 5-6, 10-11, 6-23, 23-24, 24-25, 10-25; Wall dead load (5.0 psf) on member(s).5-20, 11-18

8) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 18-20

9) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 603 lb uplift at joint 2, 423 lb uplift at joint 22 and 206 lb uplift at joint 16.

Loading has been calculated by the truss manufacturer. It is the responsibility of the Architect/Engineer of Record to verify and approve the loading.

LOAD CASE(S) Standard

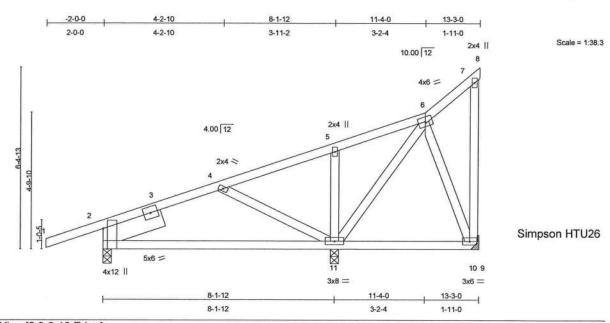
1) Regular: Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

Vert: 1-4=-68, 4-6=-80, 6-7=-68, 7-9=-68, 9-10=-68, 10-11=-80, 11-14=-68, 2-20=-13, 18-20=-138, 17-18=-73(F=-60), 15-17=-13,

6-10=-13

Drag: 5-20=-13, 11-18=-13


Concentrated Loads (lb)

Vert: 20=-161(F)

Job	Truss	Truss Type	Qty	Ply	NORTON - RAINES RES.	W001921200000
L264794	T10	PORCH TRUSS	1	1		J1923065
Machine Star Clarical	114 4540)				Job Reference (optional)	

6.300 s Feb 15 2006 MiTek Industries, Inc. Sat Jan 05 19:28:39 2008 Page 1

Plate Of	fsets (X,Y	'): [2:0-8-10,Edge]										
LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.21	Vert(LL)	0.21	2-11	>460	360	MT20	244/190
TCDL	7.0	Lumber Increase	1.25	BC	0.36	Vert(TL)	-0.11	2-11	>925	240		
BCLL	10.0	* Rep Stress Incr	YES	WB	0.09	Horz(TL)	-0.01	10	n/a	n/a		
BCDL	5.0	Code FBC2004/TI	PI2002	(Mat	rix)				7.77.27	50000	Weight: 86 lb	

1 1	u	M	D		D
_	ш	vı	О	_	~

TOP CHORD 2 X 4 SYP No.2

BOT CHORD 2 X 4 SYP No.2

WEBS

2 X 4 SYP No.3

SLIDER

Left 2 X 8 SYP No.1D 2-3-1

BRACING

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals.

Rigid ceiling directly applied or 9-1-14 oc

bracing.

REACTIONS (lb/size) 10=95/Mechanical, 2=342/0-3-8, 11=511/0-3-8

Max Horz 2=191(load case 6)

Max Uplift 10=-75(load case 6), 2=-280(load case 4), 11=-308(load case 4) Max Grav 10=99(load case 2), 2=342(load case 1), 11=511(load case 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-3/0, 2-3=-244/137, 3-4=-155/170, 4-5=-93/100, 5-6=-34/86, 6-7=-41/20,

7-8=-2/0, 7-10=-35/36

BOT CHORD 2-11=-407/164, 10-11=-44/17, 9-10=0/0

WEBS 4-11=-251/372, 5-11=-217/189, 6-10=-45/153, 6-11=-134/4

JOINT STRESS INDEX

2 = 0.78, 2 = 0.23, 3 = 0.00, 4 = 0.18, 5 = 0.10, 6 = 0.16, 7 = 0.18, 10 = 0.37 and 11 = 0.27

1) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS and C-C Exterior(2) zone; porch left exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.

Continued on page 2

January 9,2008

A Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

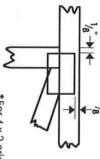
Job	Truss	Truss Type	Qty	Ply	NORTON - RAINES RES.	025-20-20-20-20-20-20-20-20-20-20-20-20-20-
L264794	T10	PORCH TRUSS	1	1		J1923065
		T GROTT TROOP			Job Reference (optional)	

6.300 s Feb 15 2006 MiTek Industries, Inc. Sat Jan 05 19:28:39 2008 Page 2

NOTES

- 2) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 75 lb uplift at joint 10, 280 lb uplift at joint 2 and 308 lb uplift at joint 11.

LOAD CASE(S) Standard



Symbols

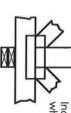
PLATE LOCATION AND ORIENTATION

*Center plate on joint unless securely seat. dimensions indicate otherwise plates to both sides of truss and Dimensions are in inches. Apply

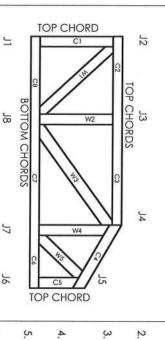
*For 4 x 2 orientation, locate plates 1/8" from outside edge of truss and vertical web.

*This symbol indicates the required direction of slots in connector plates.

PLATE SIZE


dimension is the length parallel perpendicular to slots. Second The first dimension is the width

LATERAL BRACING


continuous lateral bracing. Indicates location of required

BEARING

which bearings (supports) occur. Indicates location of joints at

Numbering System

JOINTS AND CHORDS ARE NUMBERED CLOCKWISE AROUND THE TRUSS STARTING AT THE LOWEST JOINT FARTHEST TO THE LEFT.

WEBS ARE NUMBERED FROM LEFT TO RIGHT

CONNECTOR PLATE CODE APPROVALS

ICBO

BOCA

96-31, 96-67

3907, 4922

SBCCI 9667, 94324

561

NER

WISC/DILHR

960022-W, 970036-N

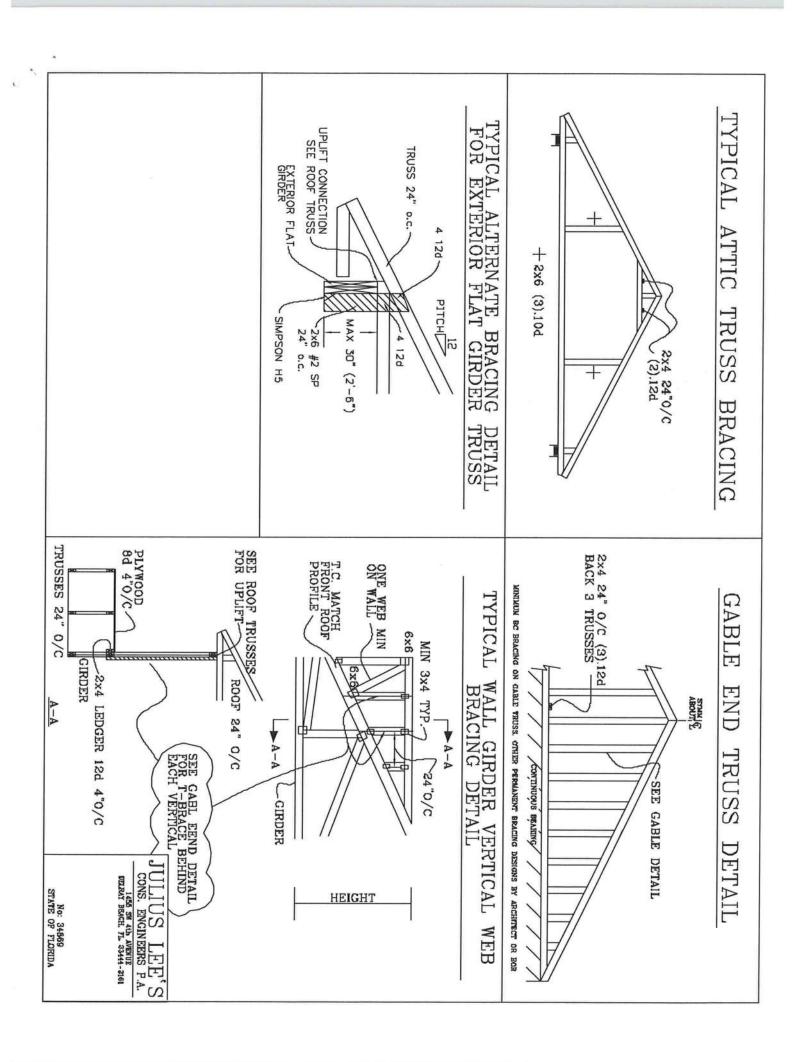
MiTek Engineering Reference Sheet: MII-7473

Failure to Follow Could Cause Property **General Safety Notes**

- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties. Damage or Personal Injury
- in Cut members to bear tightly against each
- Place plates on each face of truss at each joint and embed fully. Avoid knots and wane at joint locations.
- Unless otherwise noted, locate chord splices at $\frac{1}{4}$ panel length (\pm 6" from adjacent joint.)
- lumber shall not exceed 19% at time of fabrication. Unless otherwise noted, moisture content of

Ġ

4.


- 0 Unless expressly noted, this design is not applicable for use with fire retardant or preservative treated lumber.
- 7. Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- 00 Plate type, size and location dimensions shown indicate minimum plating requirements.
- Lumber shall be of the species and size, and grade specified. in all respects, equal to or better than the

.9

- Top chords must be sheathed or purlins provided at spacing shown on design.
- 11. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed unless otherwise noted.
- 12. Anchorage and / or load transferring connections to trusses are the responsibility of others unless shown.
- 13. Do not overload roof or floor trusses with stacks of construction materials.
- 14. Do not cut or alter truss member or plate engineer. without prior approval of a professional
- 15. Care should be exercised in handling erection and installation of trusses.
- © 1993 MiTek® Holdings, Inc.

	DIAGONAL BRACE OPTI VERTICAL LENGTH MAN DOUBLED WIEN DIAGO BRACE IS USED. COM DIAGONAL BRACE FOR AT EACH END. MAN TOTAL LENGTH IS 14.* TOTAL LENGTH IS 14.* VERTICAL LENGTH ABOV	100	BLE VERTI		
	DIAGONAL BRACE OPTHON: VENTICAL LENGTH MAY BE DOUBLED WHEN DIAGONAL BRACE IS USED. CONNECT DIAGONAL BRACE FOR BAG AT EACH END. MAX WEB TOTAL LENGTH IS 14.* VENTICAL LENGTH SHOWN IN TABLE ABOVE. CONNECT DIAGONAL AT ADDPDINT OF VERTICAL	12" O.C. SPF	16" O.C. SPF	24" O.C. SPF 24" SP DFL	ZX4 GABLE VERTICAL
BRCING. BRCING. PAFE (183) THISE FINA STRUCT LEGAL ST				ADE / #2 / #2 / #3 rUD NDARD // #2 // #2 // // // // // // // // // // // // //	BRACE
RITER ID BISS 1-40, RITER ID BISS 1-40, ITUTE, 883 DONOT 7, 6330 ENICOPSE CIDINS, UNICSS OF L PANELS AND BOTT	Auss Auss	4 4 2 6 11 1 4 4 4 2 6 11 1 4 4 4 4 7 7 1 7 4 4 4 4 7 7 1 7 1			NO (1) 1
***WARRUNG** TRUSSES REQUIRE EXTREME CARE IN FABRICATINE, HARCLING, SUPPING, INSTALLING AND BRACING, REFER TO BES! 1-02 (BUILDING COMPONENT SAFETY INFORMATION) PUBLISSED BY TO! (TRUSS PARE INSTITUTE, 383 D'AUTRAID ORS, SUITE 300, MOLISON, UZ. 537198 MID VITCA (VOID TRUSS COMETLED FARE LAN MARCHICAS PROBER TO PRESS COMETLE PROCEDED TRUSS COMETLE TO CHARLE TO MARCHICAS OF STREET HARCLED TRUSS COMETLE TO CHARLE AND EDITON CHORD SMALL HAVE A PROPERLY ATTACHED STREET LANCE PROPERLY ATTACHED STREET LANCE OF RIGHT CILLING.	ZX4 SP #ZN, DF-L #Z, SPF #1/#Z, DR SEITTER DIAGONAL BRACE; SINCLE OR DOUBLE CUT (AS SHOWN) AT UPPER END.	11 6 11 1 1 6 11 1 1 1 6 1 1 1 1 1 1 1	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	CRO	- 5
N FABRICATING, HAN NI SAFTY INFORMANISON, VI. 37719 1719) IOR SAFET IOP CHORE SHALL VE A PROPERT VAL	TT CACI	C 0 0 0 0 0 0 7 0 0 0 0		6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6	_
ALION, PUBLISEET I AND VICE (ADDI PALFIELT PER CHAPE HAVE PROPERLY AT TADED RIGID CELL	ABOUTE LIBE			2 8 8 8 8 7 8 8 8 0 0 0 0 0 0 0 0 0 0 0 0)RACE • (2) 2X4 "L"
NC ED LEGEL NE	AAOGE L.	5 10 5 10 5 10 10 11 2 10 11 2 10 11 2 10 11 11 2 10 11 11 11 11 11 11 11 11 11 11 11 11	8 8 9 10 9 9 9	7, 89, 69, 69, 69, 69, 69, 69, 69, 69, 69, 6	4 "L" BRACE **
ULIUS CONS. ENGI	· \\(\alpha\) \\(\alpha\) \\\(\begin{array}{c} \alpha\) \\\(\alpha\) \\\(\begin{array}{c} \alpha\) \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		12' 4" 1 1 12' 4" 1 1 12' 5" 1 1 12' 5" 1 1 12' 5" 1 1 12' 5" 1 1 12' 5" 1 1 12' 5" 1 1 12' 5" 1 1 12' 5" 1 1 12' 5" 1 1 12' 5" 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		(1) 2X6 'L' BI
US LFF, S ENGINEERS P.A. BEACH, PL 3344-2161 BEACH, PL 3344-2161	rica /		12' 9" 14' 0" 12' 4" 14' 0" 12' 4" 14' 0" 12' 5" 14' 0" 13' 5" 14' 0" 13' 5" 14' 0" 13' 5" 14' 0" 13' 5" 14' 0"	B GRO 12' 12' 12' 12' 12' 12' 12' 12' 12' 12'	"L" BRACE • (2) ZXB
MAX.	1 4⊕		14.4.4.4.4.	GROU GROU 13: 12: 12: 13: 13: 13: 13: 13: 13: 13: 13: 13: 13	"L" BRACE **
LD. 60 PSF	CABLE END SUPPORTS INAM FROM 4 0 "DUTLIDURERS WITH 2 0" DVERHANG, OR 12" PLYWOOD OVERHANG. ATTACH EACH "L" BRACE: STACE NAILS AT 2" O.C. N 18" END ZONES AND 4" O.C. BETWEEN ZONES. ** FOR (2) "L" BRACES: SFACE NAILS AT 3" O.C. IN 18" END ZONES AND 6" O.C. BETWEEN ZONES. "L" BRACING MUST BE A MINIMUM OF 80% OF WEB MEMBER LENGTH. GABLE VERTICAL LENGTH NO SPIJOS LESS THAN 4" O" BUT ZWA LESS THAN 4" O" BUT ZWA LESS THAN 4" O" BUT ZWA LESS THAN 11" 6" D. SUI ZWA PEAX, SPLICE, AND HEEL PLATES.	GABLE TRUSS DETAIL NOTES: LIVE LOAD DEPLECTION CHATERIA IS L/240. PROVIDE UPLIT CONNECTIONS FOR 136 PLF OVER CONTINUOUS BEARING (6 PSF YC DEAD LOAD).		BRACING GROUP SPECIES GROUP A: SPRUCE-PINE-PIN SPRUCE-PINE-PIN SPRUNDAD DOUGLAS FIR-LARCH STUD STANDARD STANDARD STANDARD	3:
REF ASCEY-02-GABI3015 DATE 11/26/03 DRWG MIEK STD CABLE 15 E HT -ENG	CABLE VERTICAL LENGTH CABLE CABLE CABLE VERTICAL LENGTH CABLE CABLE CA	DETAIL NOT WATERIA IS L/240 TIONS FOR 136 FI		PECIES AND GRADES: DUP A: HEM-PIR #2 STUD #3 STANDARD SOUTHERN PINE #3 STUD STANDARD STANDARD STANDARD	

DIAGONAL BRACE OPTION: VERTICAL LENGTH MAY BE DOUBLED WIRN DIAGONAL BRACE IS USED. CONNECT BRACE IS USED. CONNECT BRACE IS USED. WAY BE AT EACH END. MAY WEB TOTAL LENGTH IS 14. **GABLE** MAX VERTICAL LENGTH VERTICAL LENGTH SHOWN IN TABLE ABOVE. SPACING SPECIES GRADE 12" 16 O.C. O.C. CONNECT DIAGONAL AT GABLE VERTICAL SPF SPF SPF DFL DFL DFL SP SP HF ASCE STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD #2 #3 STUD STUD E+3 STUD MEB 3 13 2 BRACE E 7-02: MANARONGIM TRUSSIS REDURE EXTREME CARE IN FARRICATING, HANDLING, SHIPPING, INSTALLING AND BRACING. RETER TO BEST 1-93 SENILING COMPOSET SAFETY HETDANTIDOS, PUBLISHED BY TPI CIRRUSS PLAIT INSTITUTE, 383 DYDENGED EX SULTE 200, MINISON, H. 1. 37199 AND LYCA KADDI TRUSS COLORLI OF ANERICA, 6300 ENTERPRISE LM, MINISON, H. 1. 37199 TOR SAFETY PARCITIES PRIBE TO PERFORMING THESE TUNCTIONS. UNICESS OFFERNICATION DICTORE OF CONTROLLING AND BUTTON GADED SHALL HAVE PROPERTY ATTACHED STRUCTURAL PARCELS AND BUTTON GADED SHALL HAVE A PROPERTY ATTACHED RIGID CELLING. GABLE TRUSS BRACES 3' 7" 3 3 3'0" 130 MPH WIND GROUP A 2X4 SP OR DIF-L #2 OR BETTER DIAGONAL BRACE, SINGLE OR DOUBLE (1) 1X4 "L" BRACE • (1) 2X4 "L" BRACE • (2) 2X4 "L" BRACE •• AT UPPER END 3' 10" GROUP B 3' 10" GROUP A GROUP B SPEED, REFER 30] 18" 18 To GROUP A GROUP B GROUP A GROUP B GROUP A GROUP B 8, 10, 8, 10, 8, 10, 7' 10" 8, 10, MEAN HEIGHT, ENCLOSED, CHART ABOVE FOR MAX GABLE VERTICAL LENGTH 7' 10" 7' 10" 5,5 CONTINUOUS BEARING EX4 MEN OR BETTER 9' 10" 8' 5" -0 CONS. (1) 2X6 "L" BRACE . (2) 2X8 "L" BRACE . DELRAY BEACH, PL 33444-2161 11' 4" 9' 9° 10, 10 No: 34869 STATE OF FLORIDA US LEE'S **(** 13' 4" 12' 10" 11' 1" 13' 11" 13' 11" 9' 9" 12 8 10' 7" 12 3 1 _ MAX. MAX. II 13' 2' 12' 6' 14' 0' 14' 0' 10 12 11 14' D' 14' D" 14' D" 12' 7' 4⊕ TOT. 1.00, SPACING Ē ATTACH EACH 'L' BRACE WITH 10d NAILS. * FOR (1) 'L' BRACE: SPACE NAILS AT 2° O.C. * FOR (2) 'L' BRACES: SPACE NAILS AT 3° O.C. * FOR (2) 'L' BRACES: SPACE NAILS AT 3° O.C. IN 18° END ZONES AND 6° O.C. BETWEEN ZONES. CABLE END SUPPORTS LOAD FROM 4' 0" PROVIDE UPLIFT CONNECTIONS FOR 180 PLF OVER CONTINUOUS BEARING (6 PSF TC DEAD LOAD). LIVE LOAD DEPLECTION CRITERIA IS L/240. "L" BRACING MUST BE A MINIMUM OF 80% OF WEB MEMBER LENGTH. SPRUCE-PINE-FIR #3 STUD PLYWOOD OVERHANG. DOUGLAS FIR-LARCH BRACING GROUP SPECIES AND DUTLODKERS WITH E' O' OVERHANG, OR 12" EXPOSURE VENTICAL LENGTH LESS THAN 4' 0" 1 GREATER THAN 1' 0', BUT LESS THAN 11' 5' CABLE TRUSS DETAIL NOTES: SOUTHERN 60 GREATER THAN 11' 6" 24.0" PEAK, SPLICE. AND HEEL PLATES. STANDARD GABLE VERTICAL PLATE SIZES PSF 12 DATE REF DWC MIREK SED CABLE SO, E HI ENG HEM-PIR GROUP B: GROUP 0 DOUGLAS FIR-LARCH 11/26/03 ASCE7-02-GAB13030 SOUTHERN PINE #3 STUD STANDARD A 42 STUD NO SPLICE 2.5X4 IX4 DR EX3 22 GRADES:

BOP CHORD CHORD WEBS 2X4 2X4 ಡೆದೆದ 经经保 R BETTER R BETTER R BETTER

PIGGYBACK

TYPE

SPANS

Į.

5

SPACE PIGGYBACK VERTICALS AT 4' OC MAX. REFER TO SEALED DESIGN FOR DASHED PLATES.

TOP AND BOTTOM CHORD SPLICES MUST BE STAGGERED SO THAT ONE SPLICE IS NOT DIRECTLY OVER ANOTHER. ATTACH VERTICAL WEBS TO

ATTACH PURLINS TO TOP OF FLAT TOP CHORD. IF PIGGYBACK IS SOLID LUMBER OR THE BOTTOM CHORD IS OMITTED, PURLINS MAY BE APPLIED BENEATH THE TOP CHORD OF SUPPORTING TRUSS. PIGGYBACK BOTTOM CHORD MAY BE OMITTED. TRUSS TOP CHORD WITH 1.5X3 PLATE.

REFER TO ENGINEER'S SEALED DESIGN FOR REQUIRED PURLIN SPACING.

THIS DETAIL IS APPLICABLE FOR THE POLLOWING WIND CONDITIONS: 110 MPH WIND, 30' MEAN HGT, ASCE 7-02, CLOSED BLDG, LOCATED ANYWHERE IN ROOF, 1 MI FROM COAST CAT I, EXP C, WIND TC DL=5 PSF, WIND BC DL=5 PSF

110 MPH WIND, 30' MBAN HGT, FBC ENCLOSED BLDG, LOCATED ANYWHERE IN ROOF WIND TC DL-5 PSF, WIND BC DL-5 PSF

130 MPH WIND, 30' MEAN HCT, ASCE 7-02, BLDG, LOCATED ANYWHERE IN ROOF, CAT II, WIND TC DL=6 PSF, WIND BC DL=6 PSF EXP. C. ATTACH TRULOX PLATES WITH (8) 0.120° X 1.375" NAILS, EQUAL PER FACE PER PLY. (4) NAILS IN EACH MEMBER BE CONNECTED. REFER TO DRAWING 160 TL FOR TRULOX H 4XB OR 3X6 TRULOX AT 4' OC.

D 0 Ħ >

5X6

5X5

9X6

30R

1.5X3 **5**X4

1.5X4

1.5X4

1.5X4

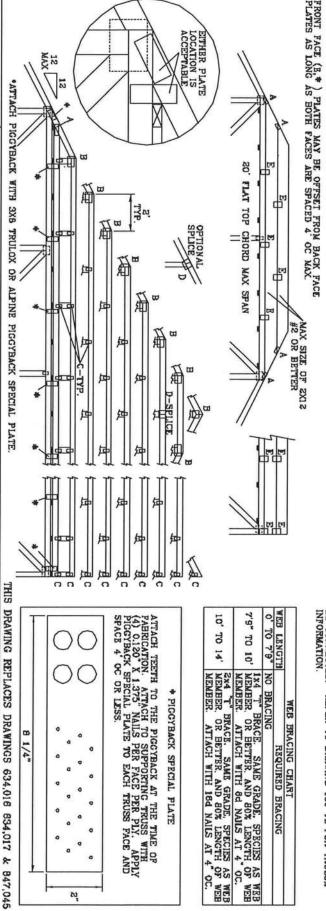
4XB 284 30

5X6

5X8

2.5X4

2.6X4


3X5 5X6

34

88

58

INFORMATION.

WEB LENGTH	REQUIRED BRACING
o' To 7'9"	NO BRACING
7'9" TO 10'	1x4 "T" BRACE. SAME GRADE, SPECIES MEMBER. OR BETTER, AND 80% LENGTH MEMBER. ATTACH WITH 8d NAILS AT 4
10' TO 14'	MEMBER. ATTACH WITH 18d NAILS AT 4" OC.

* PICCYBACK SPECIAL PLATE

, , , , , , , , , , , , , , , , , , ,	
)
0	
))
LESS.	4' OC OR LESS.

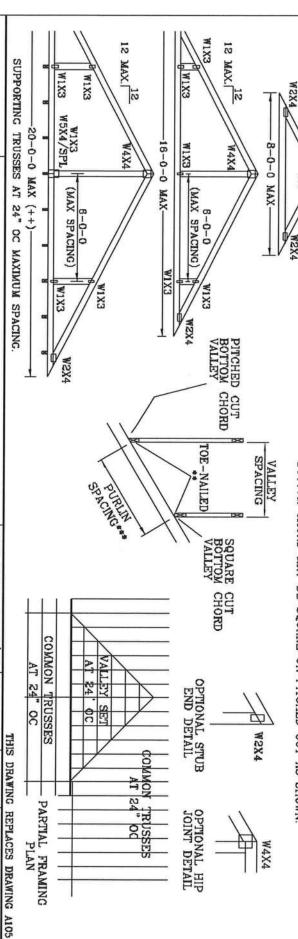
JULIUS LEE'S DELRAY BEACH, FL. 33444-2161 No: 34869 STATE OF FLORIDA S SPACING 1.15 55 PSF AT 1.33 DUR. FAC. .25 DUR. MAX LOADING 47 PSF 50 PSF AT 25 DUR. FAC DUR. FAC REF -ENG DRWC MITEK STD DATE 09/12/07 I PIGGYBACK PIGG)

MAYABHINGAN TRAISENS REQUIRE EXTREME FABRICATING, HANDLING, SHIPPING, INSTALLING AND BACING, BEFER TO DESI 1-03 GBUILING COMPORENT SAFETY INFORMATION, PUBLISHED BY TPI CREASS PLATE INSTITUTE, 383 GYOTHRO DS, SUITE 200, MAISSIN, V.J. 33759 AND AFIGA ACCORD TAXES COLUMBLY OF AMERICA, 6300 CHEERRISE LM, MAISSIN, V.J. 33759 FOR SAFETY PRACTICES PRIOR TO PERFORMING THE SEFETY OF THE SAFETY PROPERTY ATTACHED STRUCTURAL PANELS AND BOTTOM CHEN'S SMALL HAVE ARE PROPERLY ATTACHED STRUCTURAL PANELS AND BOTTOM CHEN'S SMALL HAVE A PROPERLY ATTACHED RIGHT CHEN'S

VALLEY TRUSS DETAIL

TOP CHORD BOT CHORD 2X4 SP #2 OR SPF #1/#2 OR BETTER.
2X3(*) OR 2X4 SP #2N OR SPF #1/#2 OR BETTER.
2X4 SP #3 OR BETTER.

- ZX3 MAY BE RIPPED FROM A ZX6 (PITCHED OR SQUARE).
- ATTACH EACH VALLEY TO EVERY SUPPORTING TRUSS WITH: FHC 2004 110 MPH, ASCE 7-02 110 MPH WIND OR (3) 16d FOR ASCE 7-02 130 MPH WIND. 15' MEAN HEICHT, ENCLOSED BUILDING, EXP. C. RESIDENTIAL, WIND TC DL=5 PSF. 18d BOX (0.135" X 3.5") NAILS TOE-NAILED FOR


UNLESS SPECIFIED ON ENGINEER'S SEALED DESIGN, APPLY 1X4 "T"-BRACE, 80% LENGTH OF WEB, VALLEY WEB, SAME SPECIES AND GRADE OR BETTER, ATTACHED WITH 8d BOX (0.113" X 2.5") NAILS AT 6" OC, OR CONTINUOUS LATERAL BRACING, EQUALLY SPACED, FOR VERTICAL VALLEY WEBS GREATER THAN 7'9".

MAXIMUM VALLEY VERTICAL HEIGHT MAY NOT EXCEED 12'0".

TOP CHORD OF TRUSS BENEATH VALLEY SET MUST BE BRACED WITH: PROPERLY ATTACHED, RATED SHEATHING APPLIED PRIOR TO VALLEY TRUSS INSTALLATION

ENGINEERS' SEALED DESIGN. PURLINS AT 24" OC OR AS OTHERWISE SPECIFIED ON ENGINEERS' SEALED DESIGN BY VALLEY TRUSSES USED IN LIEU OF PURLIN SPACING AS SPECIFIED ON

+ LARGER SPANS MAY BE BUILT AS LONG AS THE VERTICAL HEIGHT DOES NOT EXCEED 12'0".

MAYARHNGAM TRUSSES REQUIRE EXTREME EARE IN FABRITATING, HANDLING, SHIPPING, INSTALLING AND BACING REFER TO BEST 1-5D GBUILING EDPHANCH SAFETY INFORMATION, MAILISED BY TPE (TRISS PLATE INSTITUE, 500 CHOPTED DE, SUITE 200, MAISIN, V., 52799 AND ATEA AVOID TRUS COUNCIL OF AMERICA, GAID ENTERPRISE IN, MAISIN, VET 52799 FOR SAFETY PRACTICES PRIOR TO PERTONNING THESE PRICTICES, MAISING, VET 52799 FOR SAFETY PARCITEES PRIOR TO PERTONNING THESE PRICTICES ATTACHED STRUCTURAL PARELS AND BUTTOM CHOPD SHALL HAVE A PROPERLY ATTACHED STRUCTURAL PARELS AND BUTTOM CHOPD SHALL HAVE A PROPERLY ATTACHED STRUCTURAL PARELS AND BUTTOM CHOPD SHALL HAVE A PROPERLY ATTACHED STRUCTURAL PARELS AND BUTTOM CHOPD SHALL HAVE A PROPERLY ATTACHED STRUCTURAL PARELS AND BUTTOM CHOPD SHALL HAVE A PROPERLY ATTACHED STRUCTURAL PARELS AND BUTTOM CHOPD SHALL HAVE A PROPERLY ATTACHED STRUCTURAL PARELS AND BUTTOM CHOPD SHALL HAVE A PROPERLY ATTACHED STRUCTURAL PARELS AND BUTTOM CHOPD SHALL HAVE A PROPERLY ATTACHED STRUCTURAL PARELS AND BUTTOM CHOPD SHALL HAVE A PROPERLY ATTACHED STRUCTURAL PARELS AND BUTTOM CHOPD SHALL HAVE A PROPERLY ATTACHED STRUCTURAL PARELS AND BUTTOM CHOPD SHALL HAVE A PROPERLY ATTACHED STRUCTURAL PARELS AND BUTTOM CHOPD SHALL HAVE A PROPERLY ATTACHED STRUCTURAL PARELS AND BUTTOM CHOPD SHALL HAVE A PROPERLY ATTACHED STRUCTURAL PARELS AND BUTTOM CHOPD SHALL HAVE A PROPERLY ATTACHED STRUCTURAL PARELS AND BUTTOM CHOPD SHALL HAVE A PROPERLY ATTACHED STRUCTURAL PARELS AND BUTTOM CHOPD SHALL HAVE A PROPERLY ATTACHED STRUCTURAL PARELS AND BUTTOM CHOPD SHALL HAVE A PROPERLY ATTACHED STRUCTURAL PARELS AND BUTTOM CHOPD SHALL HAVE A PROPERLY ATTACHED STRUCTURAL PARELS AND BUTTOM CHOPS SHALL HAVE A PROPERLY ATTACHED STRUCTURAL PARELS AND BUTTOM CHOPS SHALL PARELS PARELS AND BUTTOM CHOPS SHALL PARELS PARELS PARELS PARELS PARELS PARELS PA

CONS. ENGINEERS P.A.

TC TC

SOI

TEE,

F

20

20

DELRAY BEACH, I'L 35444-2161

BC LL BC DL

0

PSF -ENG

PSF DRWG VALTRUSS1103

PSF DATE PSF REF

11/26/03 VALLEY DETAIL

TOT. LD.

32

PSF

No: 34869 STATE OF FLORIDA

SPACING DUR.FAC. 1.25

24

1.25 40 BENEATH THE PURLIN SPACING FOR BRACING THE TOP CHORD OF THE TRUSS

CUT FROM 2X6 OR LARGER AS REQ'D

4-0-0 MAX

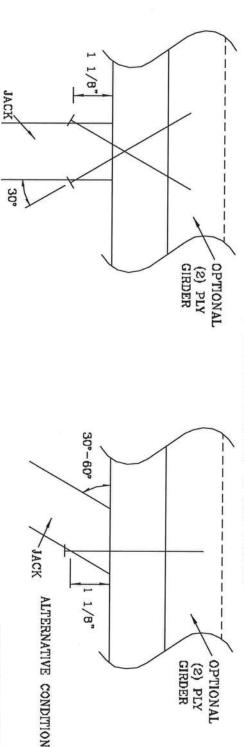
12 NAX.

W2X4

BOTTOM CHORD MAY BE SQUARE OR PITCHED CUT AS SHOWN

TOE-NAIL DETAIL

TOE-NAILS TO BE DRIVEN AT AN ANGLE OF APPROXIMATELY THIRTY DEGREES WITH THE PIECE AND STARTED APPROXIMATELY ONE-THIRD THE LENGTH OF THE NAIL FROM THE END OF THE MEMBER.


PER ANSI/AF&PA NDS-2001 SECTION 12.4.1 - EDGE DISTANCE. END DISTANCE, SPACING: "EDGE DISTANCES, END DISTANCES AND SPACINGS FOR NAILS AND SPIKES SHALL BE SUFFICIENT TO PREVENT SPLITTING OF THE WOOD."

THE NUMBER OF TOE-NAILS TO BE USED IN A SPECIFIC APPLICATION IS DEPENDENT UPON PROPERTIES FOR THE CHORD SIZE, LUMBER SPECIES, AND NAIL TYPE. PROPER CONSTRUCTION PRACTICES AS WELL AS GOOD JUDGEMENT SHOULD DETERMINE THE NUMBER OF NAILS TO BE USED.

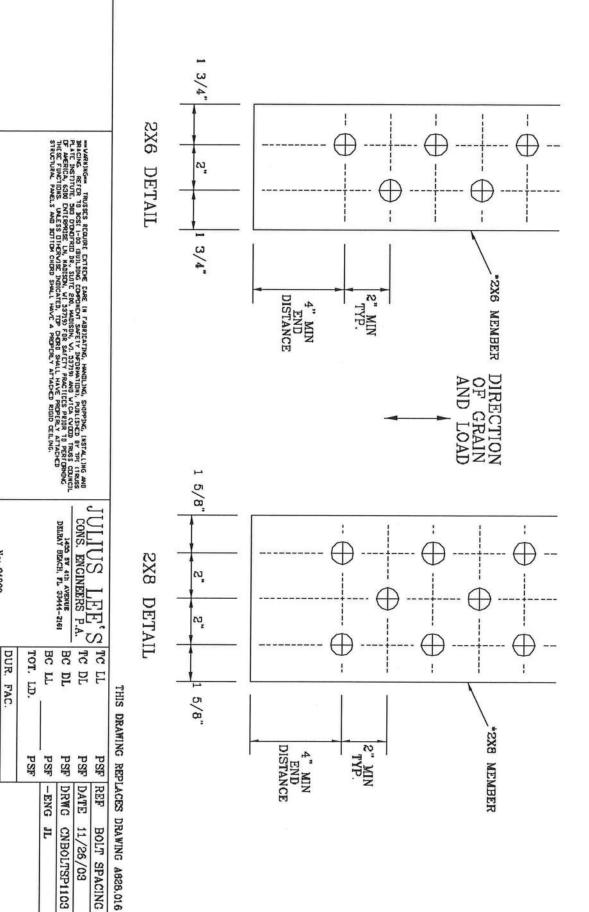
THIS DETAIL DISPLAYS A TOE-NAILED CONNECTION FOR JACK FRAMING INTO A SINGLE OR DOUBLE PLY SUPPORTING GIRDER.

MAXIMUM VERTICAL RESISTANCE OF 16d (0.162"X3.5") COMMON TOE-NAILS

ALL VALUE	5	4	အ	ผ	I OE-INAILS	NUMBER OF TOE-NAILS	
S MAY BE	493#	394#	#862	187#	1 PLY	SOUTHE	
ALL VALUES MAY BE MULTIPLIED BY APPROPRIATE DURATION OF LOAD FACTOR.	639#	511#	383#	256#	2 PLIES	SOUTHERN PINE	
ID BY APP	452#	361#	271#	181#	1 PLY	DOUGLAS	
ROPRIATE	585#	468#	351#	234#	2 PLIES	DOUGLAS FIR-LARCH	
DURATION	390#	312#	234#	156#	1 PLY		
OF LOAD F	507#	406#	304#	203#	2 PLIES	HEM-FIR	
ACTOR.	384#	307#	230#	154#	1 PLY	SPRUCE	
	496#	397#	298#	189#	2 PLIES	SPRUCE PINE FIR	

		THE
	THE WINE	
	77.7	DIT A DIT
2	TAN MAN	77

			STRUCTURAL PANELS AND BUTTON CHORD SHALL HAVE A PROPERLY ATTACHED RIGID CELLING.	T-ART INSTITUTE, 389 PONOPRIO DR. SUITE 20D, MADISON, VI. 307199 AND VICA (VIDDO TRUSS COLNCIL. Of AMERICA, 6300 ENTERPRISE LN. MADISON, VI. 30719) FOR SAFETY PRACTICES PRIDE TO PERFORMING THESE FUNCTIONS. UNLESS OTHERWISE INDICATED. THE CHERD SHALL HAVE PERFORD ATTACKED	**VARVING** TRUSSES REDURC EXTREME CARE IN FABRICATING, HANDLING, SHEPPING, INSTALLING AND BRACING. REFER TO BEST 1-03 COULDING COMPONENT SAFETY (MFDRWATIDG), PUBLISHED BY FPI CTRUSS	
STATE OF FLORIDA	No: 34889			DELRAY BEACH, FL 33444-2161	CONS. ENGINEERS P.A.	JULIUS LEE'S
SPACING	DUR. FAC.	TOT. LD.	BC LL	BC DL	TC DL	TC LL
	1.00	PSF	PSF	PSF	PSF	PSF REF
			-ENG JL	DRWG	DATE	
			JL	DRWG CNTONAIL1103	DATE 09/12/07	TOE-NAIL


1/2" DIAMETER BOLT SPACING FOR LOAD APPLIED PARALLEL TO GRAIN.

* GRADE AND SPECIES AS SPECIFIED ON THE ALPINE DESIGN.

BOLT HOLES SHALL BE A MINIMUM OF 1/32" TO A MAXIMUM OF 1/16" LARGER THAN BOLT DIAMETER.

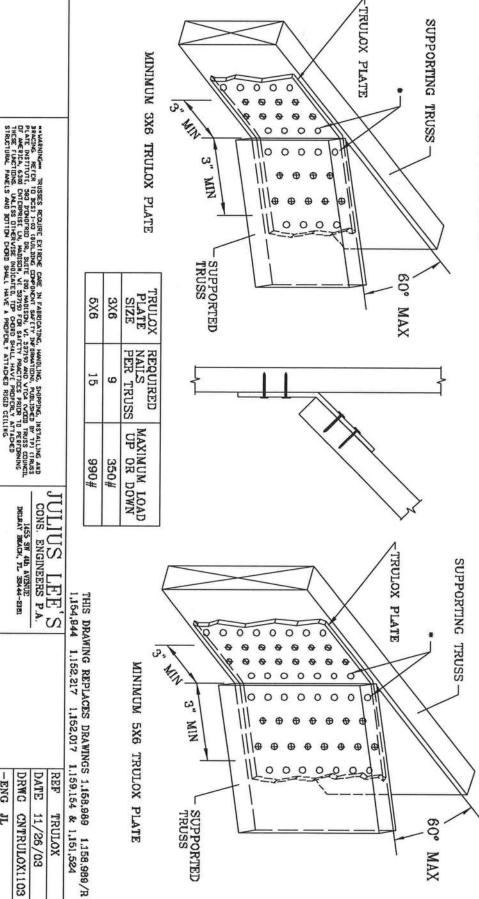
TYPICAL LOCATION OF 1/2" DIANETER THRU BOLTS. BOLT QUANTITIES AS NOTED ON SEALED DESIGN MUST BE APPLIED IN ONE OF THE PATTERNS SHOWN BELOW.

WASHERS REQUIRED UNDER BOLT HEAD AND NUT

No: 34869 STATE OF FLORIDA

SPACING

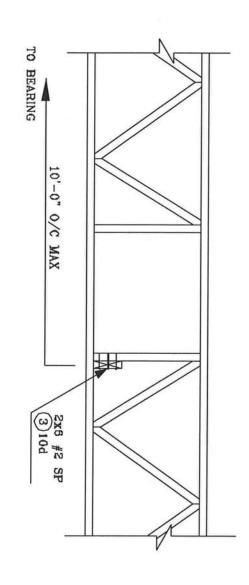
TRULOX CONNECTION DETAIL

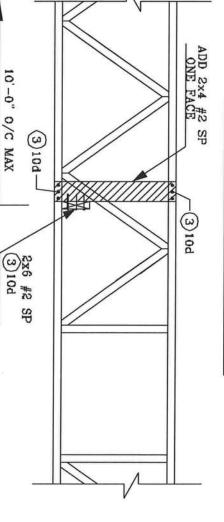

II GAUGE (0.120" X 1.375") NAILS REQUIRED FOR TRULOX PLATE ATTACHMENT. FILL ROWS COMPLETELY WHERE SHOWN (+).

NAILS MAY BE OMITTED FROM THESE ROWS

THIS DETAIL MAY BE USED WITH SO. PINE, DOUGLAS-FIR OR HEM-FIR CHORDS WITH A MINIMUM 1.00 DURATION OF LOAD OR SPRUCE-PINE-FIR CHORDS WITH A MINIMUM 1.15 DURATION OF LOAD. CHORD SIZE OF BOTH TRUSSES MUST EXCEED THE TRULOX PLATE WIDTH.

TRULOX PLATE IS CENTERED ON THE CHORDS AND BENT BETWEEN NAIL ROWS.


THIS DETAIL FOR LUMBER, PLATES, AND OTHER REFER TO ENGINEER'S SEALED DESIGN REFERENCING INFORMATION NOT SHOWN.


No: 34869 STATE OF FLORIDA

-ENG

STRONG BACK DETAIL SYSTEM-42 OR FLAT TRUSS

ALTERNATE DETAIL FOR STRONG BACK WITH VERTICAL NOT LINING UP

JULIUS LEE'S CONS. ENGINEERS P.A.

1455 SM 4th AVENUE
1555 SM 4th AVEN

TO BEARING

No: 34869 STATE OF FLORIDA

Notice of Prevention for Subterranean Termites (As required by Florida Building Code (FBC) 104.2.6)

17856 U.S. 129 • McALPIN, FLORIDA 32062 (386) 362-3887 • 1-800-771-3887 • Fax: (386) 364-3529

	# 00	0026699			
Paines /200	SE murtis Dotch Tor	r. L.E. FL.			
Address of Treatment or Lot/Block of Treatment					
3/10/08 Date	8:5/ AM Time	Applicator B.			
Product Used	Chemical used (active ingredient)	Number of gallons applied			
Percent Concentration	Area treated (square feet)	Zinear feet treated			
Stage of treatment (Horizon	hatal, Vertical, Adjoining Slab, retreat of disturb	ped area)			
As per 104.2.6 - If soil chen completed prior to final buildin	nical barrier method for Subterranean termite preven				