

CMU wall (away from the soil pressure, within 2" of the exterior side of the wall). If the wall is over 8' high, add Durowall ladder reinforcement at 16"OC vertically or a horizontal bond beam with 1#5 continuous at mid height. For higher parts of the wall 12" CMU may be used with reinforcement as shown in the table below.

STEMWALL HEIGHT (FEET)	UNBALANCED BACKFILL HEIGHT	FOR 8	VERTICAL REINFORCEMENT FOR 8" CMU STEMWALL (INCHES O.C.)		VERTICAL REINFORCEMENT FOR 12" CMU STEMWALL (INCHES O.C.)		
		#5	#7	#8	#5	#7	#8
3.3	3.0	96	96	96	96	96	96
4.0	3.7	96	96	96	96	96	96
4.7	4.3	88	96	96	96	96	96
5.3	5.0	56	96	96	96	96	96
6.0	5.7	40	80	96	80	96	96
6.7	6.3	32	56	80	56	96	96
7.3	7.0	24	40	56	40	80	96
8.0	7.7	16	32	48	32	64	80
8.7	8.3	8	24	32	24	48	64
9.3	9.0	8	16	24	16	40	48

STRUCTURAL PLAN NOTES

SN-1 ALL LOAD BEARING FRAME WALL & PORCH HEADERS SHALL BE A MINIMUM OF (2) 2X12 SYP #2 (U.N.O.)

ALL LOAD BEARING FRAME WALL HEADERS SN-2 SHALL HAVE (1) JACK STUD & (1) KING STUD EACH SIDE (U.N.O.)

DIMENSIONS ON STRUCTURAL SHEETS SN-3 ARE NOT EXACT. REFER TO ARCHITECTURAL FLOOR PLAN FOR ACTUAL DIMENSIONS

PERMANENT TRUSS BRACING IS TO BE INSTALLED AT LOCATIONS AS SHOWN ON THE SEALED TRUSS DRAWINGS. LATERAL BRACING IS TO BE RESTRAINED PER BCS11-03. BCSI-B1, BCSI-B2, & BCSI-B3. BCSI-B1, BCSI-B2, & BCSI-B3 ARE FURNISHED BY THE TRUSS SUPPLIER, WITH THE SEALED TRUSS PACKAGE

EXISTING HOUSE

EXTERIOR WALL
INTERIOR NON-LOAD BEARING WALL
INTERIOR LOAD BEARING WALL w/ NO UPLIFT
INTERIOR LOAD BEARING WALL w/ UPLIFT

HEADER LEGEND

(2) 2X12X0',1J 1K HEADER/BEAM CALL-OUT (U.N.O.) -NUMBER OF KING STUDS (FULL LENGTH) -NUMBER OF JACK STUDS (UNDER HEADER) —SPAN OF HEADER SIZE OF HEADER MATERIAL

-NUMBER OF PLIES IN HEADER

TOTAL SHEAR WALL SEGMENTS

INDICATES SHEAR WALL SEGMENTS

REQUIRED ACTUAL TRANSVERSE 7.5' LONGITUDINAL N/A

George Kerce

INDLOAD EIGINEER: Mark Disosway, PE No.53915, IOB 868, Lake City, FL

OPYRIGHTSAND PROPERTY RIGHTS: Mark Disosway P.E. hereby expressly reserved ts common lawcopyrights and property right in the second research to not to be reprouced, altered or copied in any

form or mannewithout first the express writte

permission and consent of Mark Disosway.

CERTIFICATION: I hereby certify that I have examined this fan, and that the applicable portions of the lan, relating to wind engineer

comply with setion R301.2.1, florida building code residentia 2004, to the best of my

LIMITATION: Tris design is valid for one building, at speified location.

P.E. 53915

fimensions. Réer all questions to Mark Disosway P.E. for resolution. not proceedwithout clarification.

32056, 386-75-5419 DIMENSIONS:

REVISIONS

15JuD9

11Aug09

SOFTPLAN

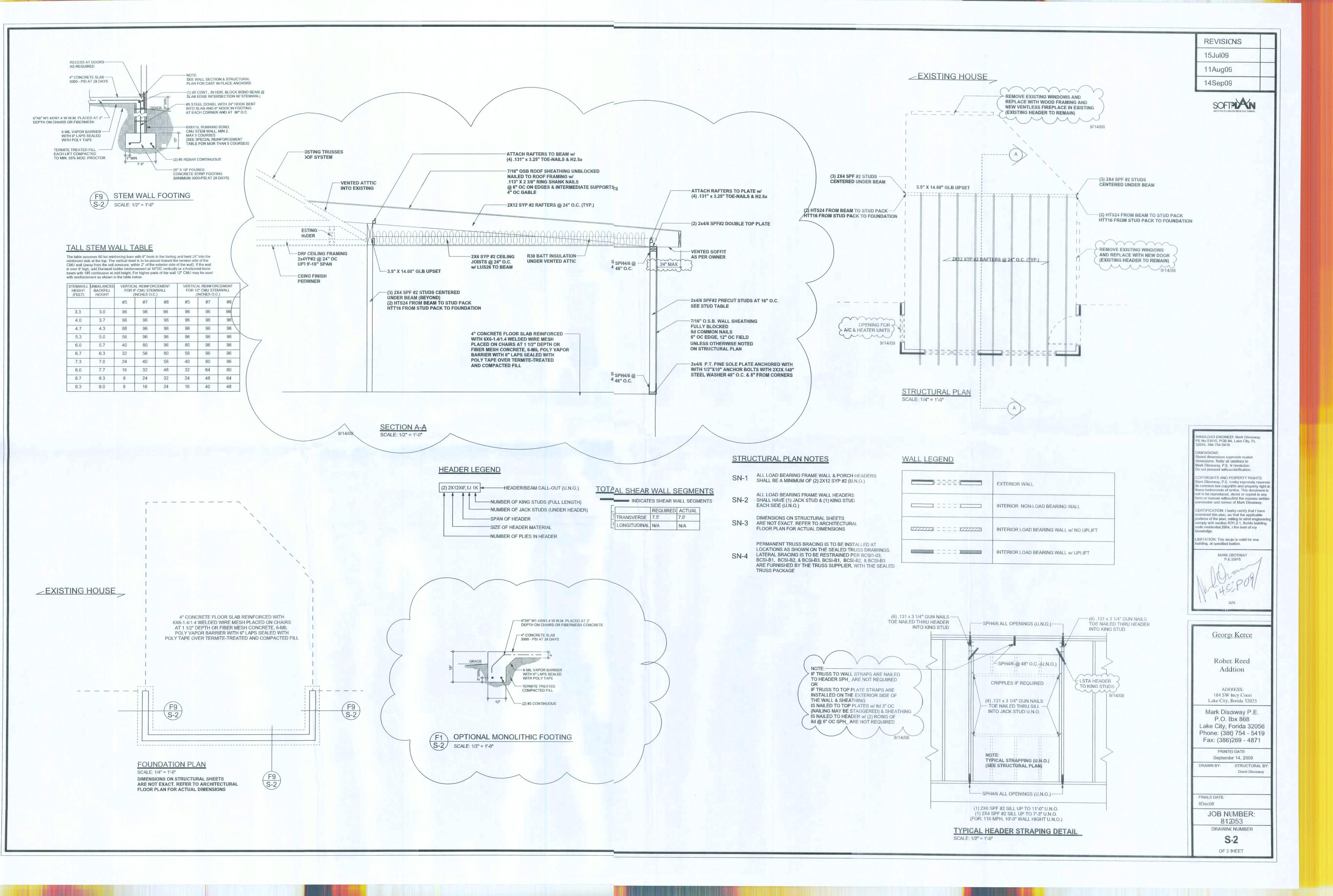
Addition ADDRESS:

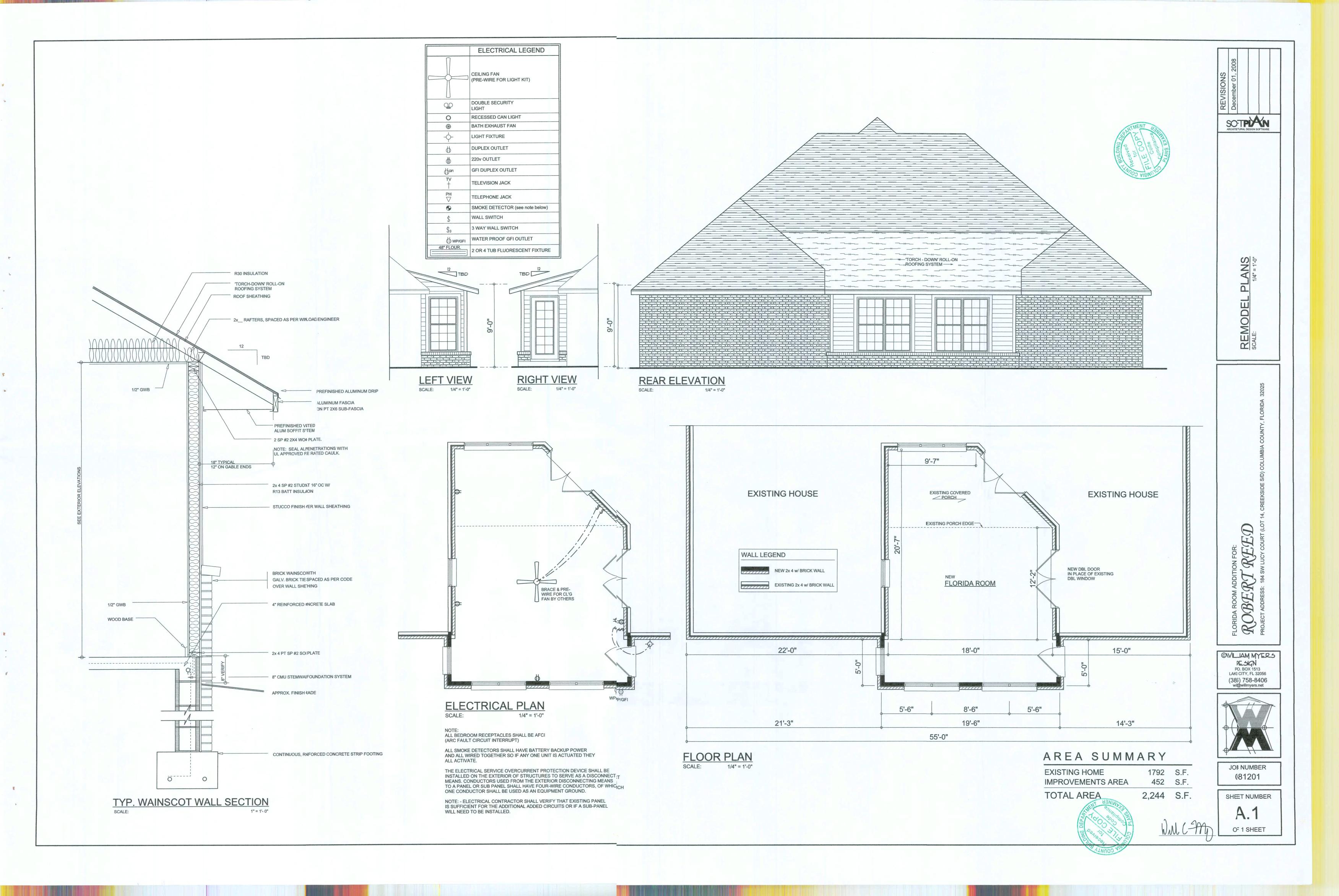
Robert Reed

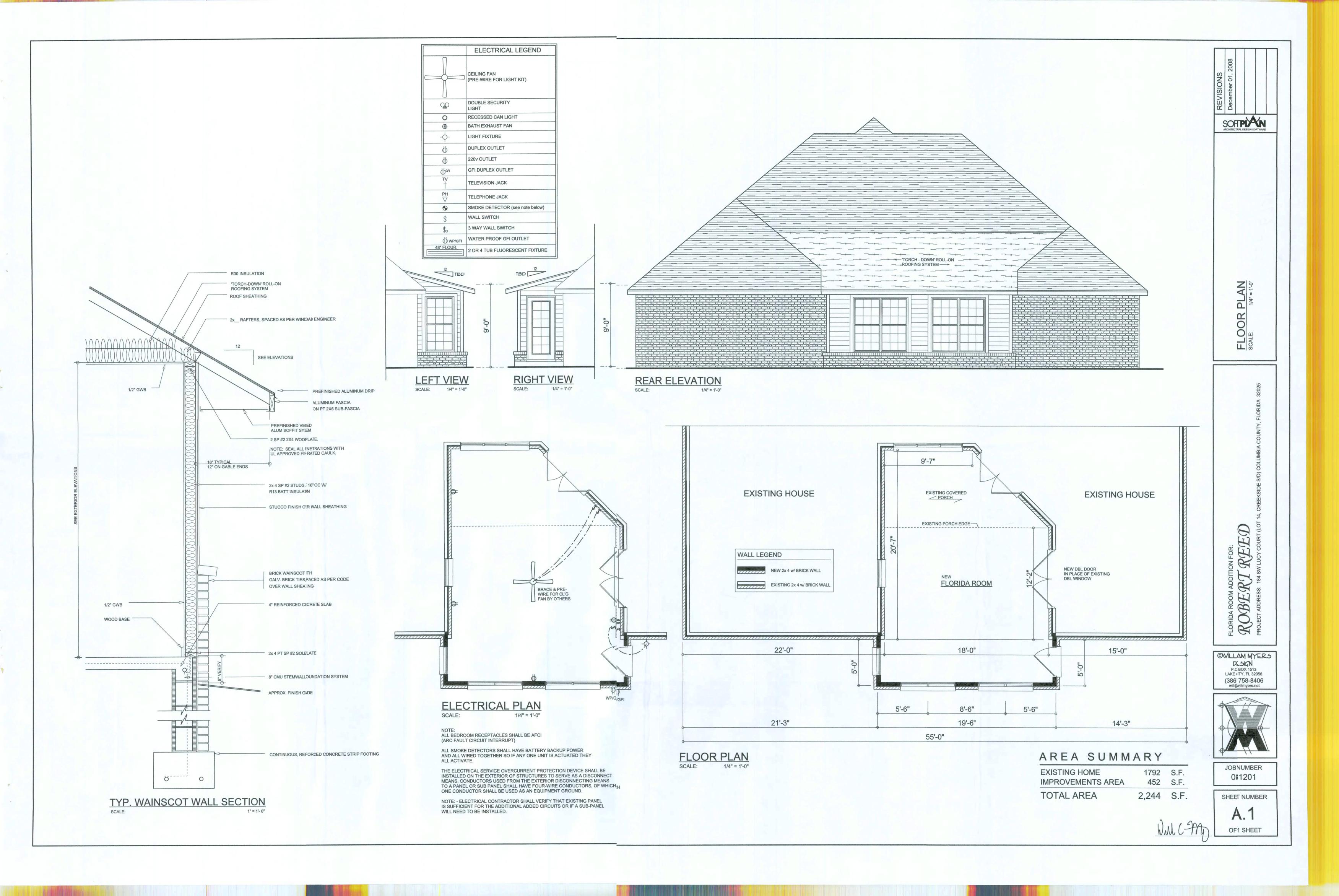
184 SW Lucy Court Lake City, Florida 32025 MarkDisosway P.E. PO. Box 868 Lake Cty, Florida 32056

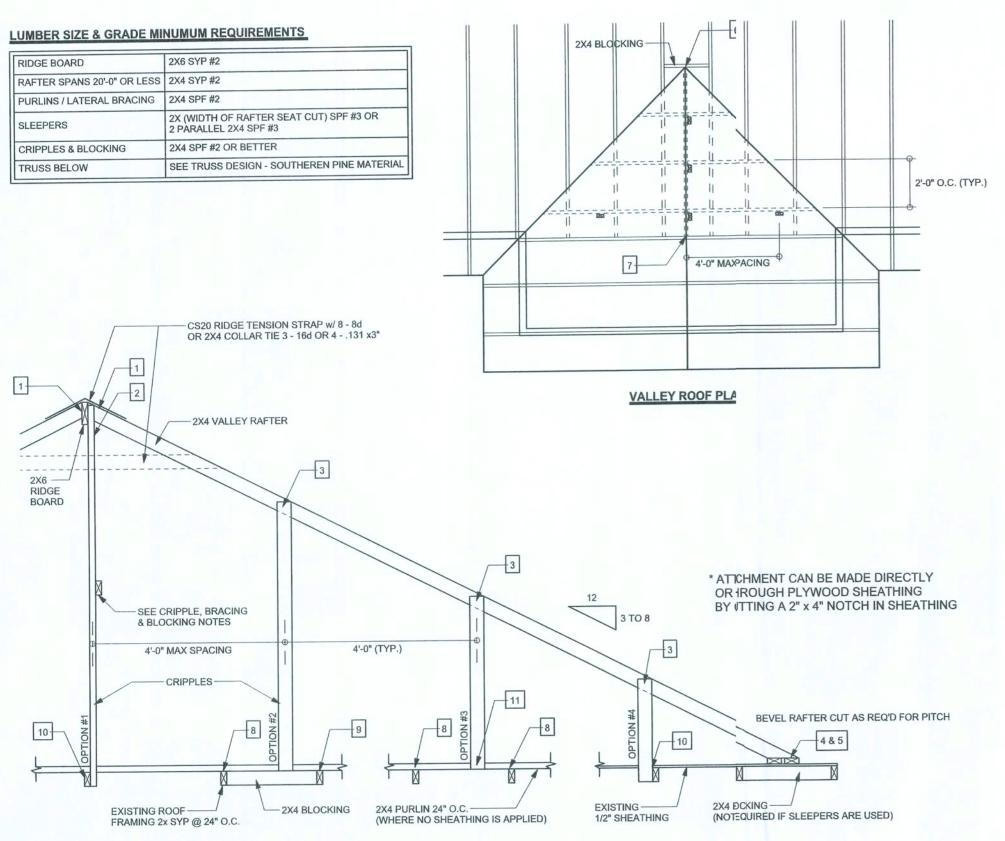
Phone:(386) 754 - 5419

Fax: (386) 269 - 4871

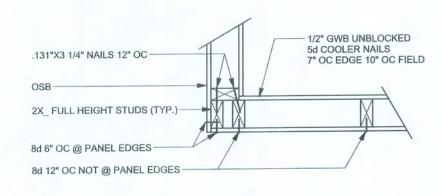

RINTED DATE: August 11, 2009 STRUCTURAL BY: DRAWN BY David Disosway


FINALS DATE:

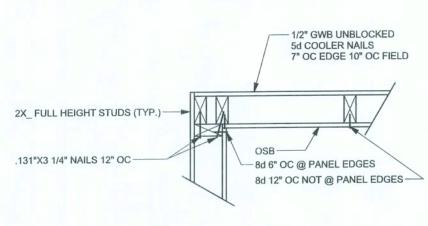

8Dec08


JOE NUMBER: 812053 DRAWING NUMBER

> **S-2 0F 2 SHEET**


RETROFIT ROOF OVER FRAMING, BRACING DETAIL

EXTERIOR WALL STUD TABLE FOR SPF #2 STUDS


SECTION CUT PARALLEL TO VALLEY RAFTER

(1) 2x4 @ 16" OC	TO 11'-9" STUD HEIGHT
(1) 2x4 @ 12" OC	TO 13'-0" STUD HEIGHT
(1) 2x6 @ 16" OC	TO 18'-10' STUD HEIGHT
(1) 2x6 @ 12" OC	TO 20.0' STUD HEIGHT

THIS STUD HEIGHT TABLE IS PER WFCM 2001, TABLE 3.20B, EXTERIOR LOAD BEARING & NON LOAD BEARING STUD LENGTHS RESISTING INTERIOR ZONE WINDLOADS 110 MPH EXPOSURE B. STUD SPACINGS SHALL BE MULTIPLIED BY 0.85 FOR FRAMING LOCATED WITHIN 4 FEET OF CORNERS FOR END ZONE LOADING. EXAMPLE 16" O.C. x 0.85 = 13.6" O.C.

OUTSIDE CORNER

(TYP.) CORNER FRAMING WOOD FRAME

INSIDE CORNER

VALLEY ROOF PLAN MEMBER LEGEND

TRUSS

= = = TRUSS UNDER VALLEY FRAMING = = = = = VALLEY RAFTER OR RIDGE

CRIPPLE

ON	INECTION REQUIREMENT NOT	<u>ES</u>
1	2X4 RAFTERS TO RIDGE	3 -16d OR 6131 x 3" TOE NAILS
2	CRIPPLE TO RIDGE	3 - 16d OR 6131 x 3" FACE NAILS
3	CRIPPLE TO RAFTERS	3 - 16d OR 6131 x 3" FACE NAILS
4	RAFTER TO SLEEPER OR BLOCKING	6 -16d OR 12131 x 3" TOE NAILS
5	SLEEPER TO TRUSS	4 - 16d OR 8131 x 3" FACE NAILS EACH TRUSS
6	RIDGE BOARD TO ROOF BLOCK	3 -16d OR 6131 x 3" TOE NAILS
7	RIDGE BOARD TO TRUSS	3 -16d OR 6131 x 3" TOE NAILS
8	PURLIN TO TRUSS (TYP.)	3 -16d OR 6131 x 3" NAILS
8	PURLIN TO TRUSS (IF CRIPPLE IS ATTACHED TO PURLIN)	4 -16d OR 8131 x 3" NAILS
9	TRUSS TO BLOCKING	3 -16d OR 6131 x 3" END NAILS
10	CRIPPLE TO TRUSS	3 -16d OR 6131 x 3" FACE NAILS
11	CRIPPLE TO PURLIN	3 -16d OR 6131 x 3" FACE NAILS

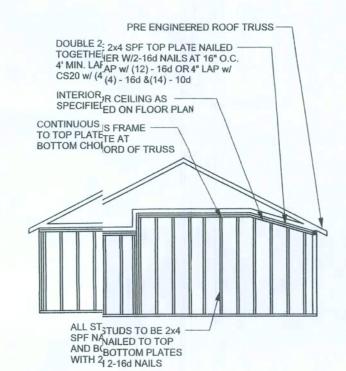
CRIPPLES 4'-0" O.C. FOR 20 psf (TL) AND 10 psf (TD) (TYP. SHINGLE ROOF) MAX

GENERAL NOTES

ENCLOSED BUILDING

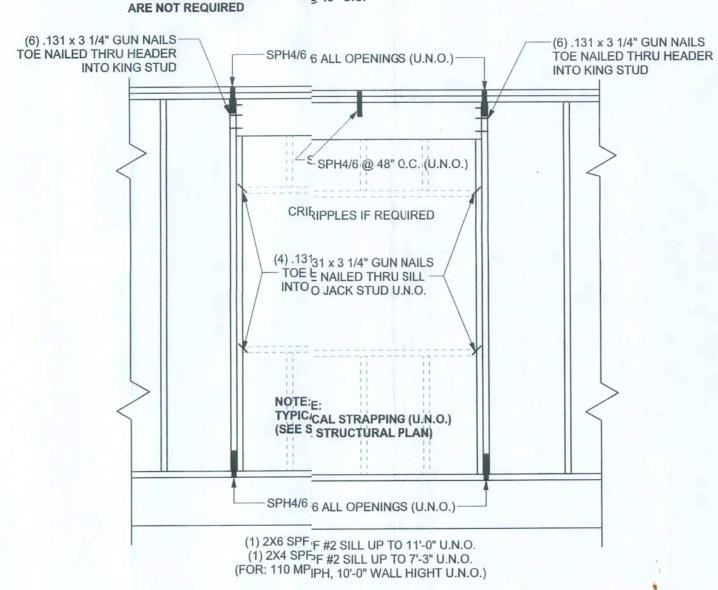
MAXIMUM RAFTER SPANS 6'-0" FOR 2X4, 9'-0" FOR 2X6 SPF #2 OR SYP #2. MAXIMUM ROOF AREA PER SUPPOR 16ft2 IN ZONES 2 & 3, 24ft2 IN ZONE 1. (EXAMPLE: 4'-0" O.C. X 4'-0" SPAN = 16ft2 OR 2'-0" X 8'-0" SPAN = 16ft2)
PURLINS REQUIRED 2'-0" O.C. IF EXISTING SHEATHING IS REMOVED. PURLINS SHOULD OVERLAP SHEATHING ONE TRUSS SPACING MINIMUM. IN CASES THAT THIS IS IMPRACTICAL, OVERLAP SHEATHING A MINIMUM OF 6", AND NAIL UPWARDS THROUGH SHEATHING INTO PURLIN WITH A MINIMUM OF 8 - 8d COMMON WIRE NAILS. THIS DRAWING APPLIES TO VALLEYS WITH THE FOLLOWING CONDITIONS: SPANS (DISTANCS BETWEEN HEELS) 40'-0" OR LESS - MAXIMUM VALLEY HEIGHT: 14'-0" OR LESS -MAXIMUM WIND SPEED: 120 MPH MAXIMUM MEAN ROOF HEIGHT: 30 FEET MAXIMUM TOTAL LOADING: 40 psf

CRIPPLE, BRACING, & BLOCKING NOTES


- EXPOSURE CATEGORY "B", I = 1.0, Kzt = 1.0

- MEETS FBC 2001/ASCE 7-98 WIND REQUIREMENTS

-2X4 CONTINUOUS LATERAL BRACE (CLB) MIN. IS REQUIRED FOR CRIPPLES 5'-0" TO 10'-0" LONG NAILED W/ 2 - 10d NAILS OR 2X4 "T" OR SCAB BRACE NAILD TO FLAT EDGE OF CRIPPLE WITH 8d NAILS @ 8" O.C. "T" OR SCAB MUST BE 90% OF CRIPPLE LENGTH. CRIPPLES OVER 10'-0" LONG REQURE TWO CLB'S OR BOTH FACES W/ "T" OR SCAB. USE STRESS GRADED LUMBER & BOX OR COMMON NAILS. NARROW EDGE OF CRIPPLE CAN FACE RIDGE OR RAFTER, AS LONG AS THE PROPER NUMBER OF NAILS ARE NSTALLED INTO RIDGE BOARD INSTALL BLOCKING UNDER RAFTER IF SLEEPERS ARE NOT USED. INSTALL BLOCKING UNDER CRIPPLES IF CRIPPLES FALL BETWEEN OWER TRUSS TOP CHORDS AND LATERAL BRACING IS NOT USED, APPLY ALL NAILING IN ACCORDANCE TO NDS-1997 SECTION 12. NAILS ARE COMMON WIRE


GFRADE & SPECIES TABLE

		Fb (psi)	E (10 ⁶ .psi)
2x _{2x8}	SYP#2	1200	1.6
2x:x10	SYP#2	1050	1.6
2x:x12	SYP#2	975	1.6
GL _{3LB}	24F-V3 SP	2400	1.8
LS_SL	TIMBERSTRAND	1700	1.7
LV_VL	MICROLAM	1600	1.9
PSSL	PARALAM	2900	2.0

CON ITINUOUS FRAME TO **CEILI ING DIAPHRAGM DETAIL**

IF TRUSS TO WALL STRAPS ARE NAILED TO THE HEADER THE SPH4/6 @ 9 48" O.C.

TYPICAL HEAADER STRAPING DETAIL
SCALE: 1/2" = 1'-0"

GENERAL NOTES:

TRUSSES: TRUSSES SHALL BE DESIGNED BY A FLORIDA LICENSED ENGINEER IN ACCORDANCE WITH THE FBCR 2004, TRUSS ENGINEERING SHALL INCLUDE TRUSS DESIGN, PLACEMENT PLANS, TEMPORARY AND PERMANENT BRACING DETAILS, TRUSS-TO-TRUSS CONNECTIONS, AND UPLIFT AND REACTION LOADS FOR ALL BEARING LOCATIONS. TRUSS ENGINEERING IS THE RESPONSIBILITY OF THE TRUSS MANUFACTURER AND SHALL BE SIGNED & SEALED BY THE MANUFACTURER'S DESIGN ENGINEER. IT IS THE BUILDER'S RESPONSIBILITY VERIFY THE TRUSS DESIGNER FULLY SATISFIED ALL THE ABOVE REQUIREMENTS AND TO SELECT UPLIFT CONNECTIONS BASED ON TRUSS ENGINEERING UPLIFT AND PROVIDE FOOTINGS FOR INTERIOR BEARING WALLS, BUILDER IS TO FURNISH TRUSS ENGINEERING TO WIND LOAD ENGINEER FOR REVIEW OF TRUSS REACTIONS ON THE BUILDING STRUCTURE. STRAP 2X6 RAFTERS WITH MIN UPLIFT CONNECTION 415LB EACH END; 2X8 RAFTERS 700 LB EACH END.

SITE PREPARATION: SITE ANALYSIS AND PREPARATION IS NOT PART OF THIS PLAN

FOUNDATION: CONFIRM THAT THE FOUNDATION DESIGN & SITE CONDITIONS MEET GRAVITY LOAD REQUIREMENTS (ASSUME 1000 PSF BEARING CAPACITY UNLESS VISUAL OBSERVATION OR SOILS TEST PROVES OTHERWISE

CONCRETE: MINIMUM COMPRESSIVE STRENGTH OF CONCRETE AT 28 DAYS, F'c = 3000 PSI.

MATERIALS OR SUPPORTS AT SPACINGS NOT TO EXCEED 3'. FIBER CONCRETE SLAB: CONCRETE SLABS ON GROUND CONTAINING SYNTHETIC FIBER REINFORCEMENT. FIBER LENGTH 1/2 INCH TO 2 INCHES. DOSAGE AMOUNTS FROM 0.75 TO 1.5 POUNDS PER CUBIC YARD PER THE MANUFACTURER'S RECOMMENDATIONS. FIBERS TO COMPLY WITH ASTM C 1116. SUPPLIER

TO PROVIDE ASTM C 1116 CERTIFICATION OF COMPLIANCE WHEN REQUESTED BY BUILDING OFFICIAL

WELDED WIRE REINFORCED SLAB: 6" × 6" × 4" W1.4 × W1.4, FB = 85KSI, WELDED WIRE REINFORCEMENT FABRIC (W.W.M.) CONFORMING TO ASTM A185; LOCATED IN MIDDLE OF THE SLAB; SUPPORTED WITH APPROVED

CONTROL JOINTS: WHERE SPECIFIED, SAWN CONTROL JOINTS IN SLAB-ON-GRADE SHALL BE CUT IN ACCORDANCE WITH ACI 302. JOINTS SHALL BE CUT WITHIN 12 HOURS OF SLAB PLACEMENT. THE LENGTH / WIDTH RATIOS OF SLAB AREAS SHALL NOT EXCEED 1.5 AND TYPICAL SPACING OF CUTS TO BE 12FT. DO NOT CUT WWM OR REINFORCING STEEL. (RECOMMENDED LOCATION OF CONTROL JOINTS IS SUBJECT TO OWNER AND CONTRACTOR'S APPROVAL. THE CONTROL JOINTS ARE NOT INTENDED TO PREVENT CRACKS BUT RATHER TO ENCOURAGE THE SLAB TO CRACK ON A GIVEN LINE.)

REBAR: ASTM A 615, GRADE 60, DEFORMED BARS, FY = 60 KSI. ALL LAP SPLICES 40 * DB (25" FOR #5 BARS); UNO. ALL REINFORCEMENT SHALL BE DETAILED AND PLACED IN ACCORDANCE WITH ACI 315-96, U.N.O.

GLULAM BEAMS: GLULAM BEAM, GLB, 24F-V3SP, Fb = 2.4ksi, E = 1800ksi; UNO. SUPPLIER MAY SUPPLY AN ALTERNATE BEAM WITH EQUAL PROPERTIES OR MAY SUBMIT THEIR OWN SIZING CALCS. ROOF SHEATHING: ALL ROOFS ARE HORIZONTAL DIAPHRAGMS; 7/16" OSB SHEATHING, UNBLOCKED, APPLIED PERPENDICULAR TO FRAMING OVER A MINIMUM OF 3 FRAMING MEMBERS, WITH PANEL EDGES STAGGERED, FASTENED WITH 8d COMMON NAILS (.131), 6"OC PANEL EDGES, 12"OC INTERMEDIATE MEMBERS, GABLE ENDS AND DIAPHRAGM BOUNDARY; 4"OC, UNO.

STRUCTURAL CONNECTORS: MANUFACTURERS AND PRODUCT NUMBER FOR CONNECTORS, ANCHORS, AND REINFORCEMENT ARE LISTED FOR EXAMPLE NOT ENDORSEMENT. AN EQUIVALENT DEVICE OF THE SAME OR OTHER MANUFACTURER CAN BE SUBSTITUTED FOR ANY DEVICES LISTED IN THE EXAMPLE TABLES AS LONG AS IT MEETS THE REQUIRED LOAD CAPACITIES. MANUFACTURER'S INSTALLATION INSTRUCTIONS MUST BE FOLLOWED TO ACHIEVE RATED LOADS.

ANCHOR BOLTS: A-307 ANCHOR BOLTS WITH MINIMUM EMBEDMENT AS SPECIFIED IN DRAWINGS BUT NO LESS THAN 7" IN CONCRETE OR REINFORCED BOND BEAM OR 15" IN GROUTED CMU

WASHERS: WASHERS USED WITH 1/2" BOLTS TO BE 2" x 2" x 9/64"; WITH 5/8" BOLTS TO BE 3" x 3" x 9/64"; WITH 3/4" BOLTS TO BE 3" x 3" x 9/64"; WITH 7/8" BOLTS TO BE 3" x 3" x 5/16"; UNO.

NAILS: ALL NAILS ARE COMMON NAILS UNLESS OTHERWISE SPECIFIED OR ACCEPTED BY FBC TEST REPORTS AS HAVING EQUAL STRUCTURAL VALUES.

BIJII DED'S RESPONSIBILITY

	JILDER AND OWNER ARE RESPONSIBLE FOR THE FOLLOWING, WHICH ARI FICALLY NOT PART OF THE WIND LOAD ENGINEER'S SCOPE OF WORK.
	I SITE CONDITIONS, FOUNDATION BEARING CAPACITY, GRADE AND L HEIGHT, WIND SPEED AND DEBRIS ZONE, AND FLOOD ZONE.
	MATERIALS AND CONSTRUCTION TECHNIQUES, WHICH COMPLY WITH FBCR 2004 EMENTS FOR THE STATED WIND VELOCITY AND DESIGN PRESSURES.
BELIEVE	E A CONTINUOUS LOAD PATH FROM TRUSSES TO FOUNDATION. IF YOU THE PLAN OMITS A CONTINUOUS LOAD PATH CONNECTION, CALL D LOAD ENGINEER IMMEDIATELY.
DESIGN, TRUSS-1	THE TRUSS MANUFACTURER'S SEALED ENGINEERING INCLUDES TRUSS PLACEMENT PLANS, TEMPORARY AND PERMANENT BRACING DETAILS, TO-TRUSS CONNECTIONS, AND UPLIFT AND REACTION LOADS FOR ALL G LOCATIONS.

ROOF SYSTEM DESIGN

THE SEAL ON THESE PLANS FOR COMPLIANCE WITH FBCR 2004, SECTION R301.2.1 IS BASED ON REACTIONS, UPLIFTS, AND BEARING LOCATIONS IN TRUSS ENGINEERING SUBMITTED TO THE WIND LOAD ENGINEER. IT IS THE RESPONSIBILITY OF THE BUILDER TO CHECK ALL DETAILS OF THE COMPLETE ROOF SYSTEM DESIGN SUBMITTED BY THE TRUSS MANUFACTURER AND HAVE IT SIGNED, AND SEALED BY A DESIGN PROFESSIONAL FOR CORRECT APPLICATION OF FBCR 2004 REQUIRED LOADS AND ANY SPECIAL LOADS. THE BUILDER IS RESPONSIBLE TO REVIEW EACH INDIVIDUAL TRUSS MEMBER AND THE TRUSS ROOF SYSTEM AS A WHOLE AND TO PROVIDE RESTRAINT FOR ANY LATERAL BRACING. THE BUILDER SHOULD USE CARE CHECKING THE ROOF DESIGN BECAUSE THE WIND LOAD ENGINEER IS SPECIFICALLY NOT RESPONSIBLE FOR THE TRUSS LAYOUT WHICH WAS CREATED BY THE TRUSS MANUFACTURER AND THE TRUSS DESIGNER ALSO DENIES RESPONSIBILITY FOR THE LAYOUT PER NOTES ON THEIR SEALED TRUSS SHEETS.

MASONRY NOTES:

ACI530.1-02 Section

Reinforcing bars, #3 - #11

Movement joints

1.4A Compressive strength2.1 Mortar

2.2 Grout 2.3 CMU standard

2.3 Clay brick standard

IN WRITING.

3.3.E.7

MASONRY CONSTRUCTION AND MATERIALS FOR THIS PROJECT SHALL CONFORM TO ALL REQUIREMENTS OF "SPECIFICATION FOR MASONRY

MUST IMMEDIATELY, BEFORE PROCEDING, NOTIFY THE ENGINEER OF ANY CONFLICTS BETWEEN ACI 530.1-02 AND THESE DESIGN DRAWINGS. ANY EXCEPTIONS TO ACI 530.1-02 MUST BE APPROVED BY THE ENGINEER

STRUCTURES" (ACI 530.1/ASCE 6/TMS 602). THE CONTRACTOR AND MASON

2.4F Coating for corrosion protection Anchors, sheet metal ties completely

2.4F Coating for corrosion protection | Joint reinforcement in walls exposed to

3.3.E.2 Pipes, conduits, and accessories Any not shown on the project drawings

Specific Requirements

5.5"x2.75"x11.5"

ASTM C 270, Type N, UNO

8" block bearing walls F'm = 1500 psi

ASTM C 90-02, Normal weight, Hollow,

bond and 12"x12" or 16"x16" column

ASTM C 476, admixtures require approval

medium surface finish, 8"x8"x16" running

ASTM C 216-02, Grade SW, Type FBS,

ASTM 615, Grade 60, Fy = 60 ksi, Lap

splices min 48 bar dia. (30" for #5)

embedded in mortar or grout, ASTM

A525, Class G60, 0.60 oz/ft2 or 304SS

moisture or wire ties, anchors, sheet metal ties not completely embedded in mortar or

grout, ASTM A153, Class B2, 1.50 oz/ft2

Contractor assumes responsibility for type

and location of movement joints if not

require engineering approval.

detailed on project drawings.

DESIGN DATA

ANCHOR TABLE

MANUFACTURER'S ENGINEERING

< 420

< 455

< 360

< 455

< 415

< 600

< 950

< 745

< 1465

< 1465

< 990

< 760

< 1470

< 1470

< 1000

< 1450

< 2900

< 2050

< 3965

< 10980

< 10530

< 9250

< 435

< 455

< 825

< 825

< 885

< 1240

< 885

< 1240

< 1235

< 1235

< 1030

< 1705

< 1350

< 2310

< 2775

< 4175

< 1400

< 3335

< 2200

< 2300

< 2320

UPLIFT LBS. SYP UPLIFT LBS. SPF

OBTAIN UPLIFT REQUIREMENTS FROM TRUSS

< 265

< 235

< 365

< 535

< 820

< 565

< 1050

< 1050

< 850

< 655

< 1265

< 1265

< 1245

< 2490

< 1785

< 3330

< 6485

< 9035

< 9250

< 435

< 420

< 825

< 600

< 1065

< 760

< 1065

< 1165

< 1235

< 1030

< 1705

< 1305

< 2310

< 2570

< 3695

< 1400

< 3335

< 2200

< 2300

< 2320

TRUSS CONNECTOR*

H4

H2.5

H2.5A

H14-1

H14-2

H10-1

H10-2

H16-1

H16-2

MTS24C

HTS24

2 - HTS24

LGT2

HEAVY GIRDER TIEDOWNS*

MGT

HGT-2

HGT-3

HGT-4

STUD STRAP CONNECTOR*

SSP DOUBLE TOP PLATE

SSP SINGLE SILL PLATE

DSP DOUBLE TOP PLATE

DSP SINGLE SILL PLATE

SP4

SP6

SPH6

LSTA18

CS20

CS16

STUD ANCHORS

LTT19

LTTI31

HD2A

HTT16

PAHD42

HPAHD22

ABU66

ABU88

TO PLATES TO RAFTER/TRUSS

4-8d

4-8d

4-8d

5-8d

5-8d

8-8d

5-10d, 1 1/2°

12-8d, 1 1/2"

12-8d, 1 1/2"

8-8d, 1 1/2"

6-10d

7-10d 1 1/2"

12-10d 1 1/2"

14 -16d

22 -10d

16 -10d

16 -10d

4-8d

4-8d

4-8d

5-8d

5-8d

8-8d

5-10d, 1 1/2"

13-8d

15-8d

8-8d, 1 1/2"

6-10d

7-10d 1 1/2"

12-10d 1 1/2"

14 -16d

3 -10d

1-10d

6-10d

2-10d

14-10d

16-10d

18-8d

28-8d

TO STUDS

8-16d

18-10d, 1 1/2

2-5/8" BOLTS

18 - 16d

16-16d

16-16d

12-16d

12-16d

18 - 16d

10-10d, 1 1/2" 2-10d, 1 1/2"

10-10d, 1 1/2" 2-10d, 1 1/2"

TO STUDS

TO FOUNDATION

-5/8" THREADED ROD

-5/8" THREADED ROD

2-5/8" THREADED ROD

12" EMBEDMENT

2-5/8" THREADED ROL

TO STUDS

4 -10d

4-10d

8 -10d

8-10d

6-10d, 1 1/2"

10-10d, 1 1/2"

6-10d, 1 1/2"

10-10d, 1 1/2'

TO FOUNDATION

1/2" AB

1/2" AB

5/8" AB

5/8" AB

1/2" AB

1/2" AB

2-5/8" AB

12" EMBEDMENT

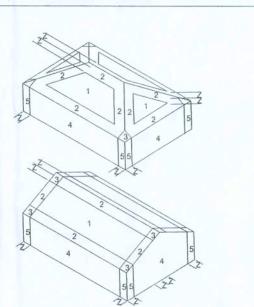
12" EMBEDMENT

12" EMBEDMENT

WIND LOADS PER FL	ORIDA BUILDING CODE 2004 RESIDENTIAL, SECTION R30°	1.2.1
MEAN ROOF HEIGHT ON UPPER HALF OF	DIAPHRAGM BUILDINGS WITH FLAT, HIPPED, OR GABLE FOR TOOK OR GABLE FOR THE PROPERTY OF THE PROP	FT; NOT D >10%

BUILDING IS NOT IN THE HIGH VELOCITY HURRICANE ZONE BUILDING IS NOT IN THE WIND-BORNE DEBRIS REGION

1.) BASIC WIND SPEED = 110 MPH


2.) WIND EXPOSURE = B 3.) WIND IMPORTANCE FACTOR = 1.0

4.) BUILDING CATEGORY = II

5.) ROOF ANGLE = 10-45 DEGREES

6.) MEAN ROOF HEIGHT = <30 FT</p>

7.) INTERNAL PRESSURE COEFFICIENT = N/A (ENCLOSED BUILDING) COMPONENTS AND CLADDING DESIGN WIND PRESSURES (TABLE R301.2(2))

5.5 0.6 5.5 8.3 3.6 9.1	18.1 18.1 18.1 18.5 18.5	-18.1 -21.8 -40.6 -21.8 -42.4 -20.4 -22.6
5.5 0.6 5.5 8.3 3.6 9.1	18.1 18.1 18.5	-21.8 -40.6 -21.8 -42.4 -20.4
0.6 5.5 8.3 3.6 9.1	18.1	-40.6 -21.8 -42.4 -20.4
5.5 8.3 3.6 9.1	18.5	-21.8 -42.4 -20.4
8.3 3.6 9.1	18.5	-42.4
3.6		-20.4
9.1		
	18.5	-22.6
vs 2	21.8	-29.1
	19.5	-22.9
or	18.5	-21.0
(or	or 18.5

DESIGN LOADS		
40 PSF (ALL OTHER DWELLING ROOMS)		
30 PSF (SLEEPING ROOMS)		
30 PSF (ATTICS WITH STORAGE)		
10 PSF (ATTICS WITHOUT STORAGE, <3:12)		
20 PSF (FLAT OR <4:12)		
300	40 PSF (ALL OTHER DWELLING ROOMS) 30 PSF (SLEEPING ROOMS) 30 PSF (ATTICS WITH STORAGE) 10 PSF (ATTICS WITHOUT STORAGE, <3:12)	

16 PSF (4:12 TO <12:12) 12 PSF (12:12 AND GREATER)

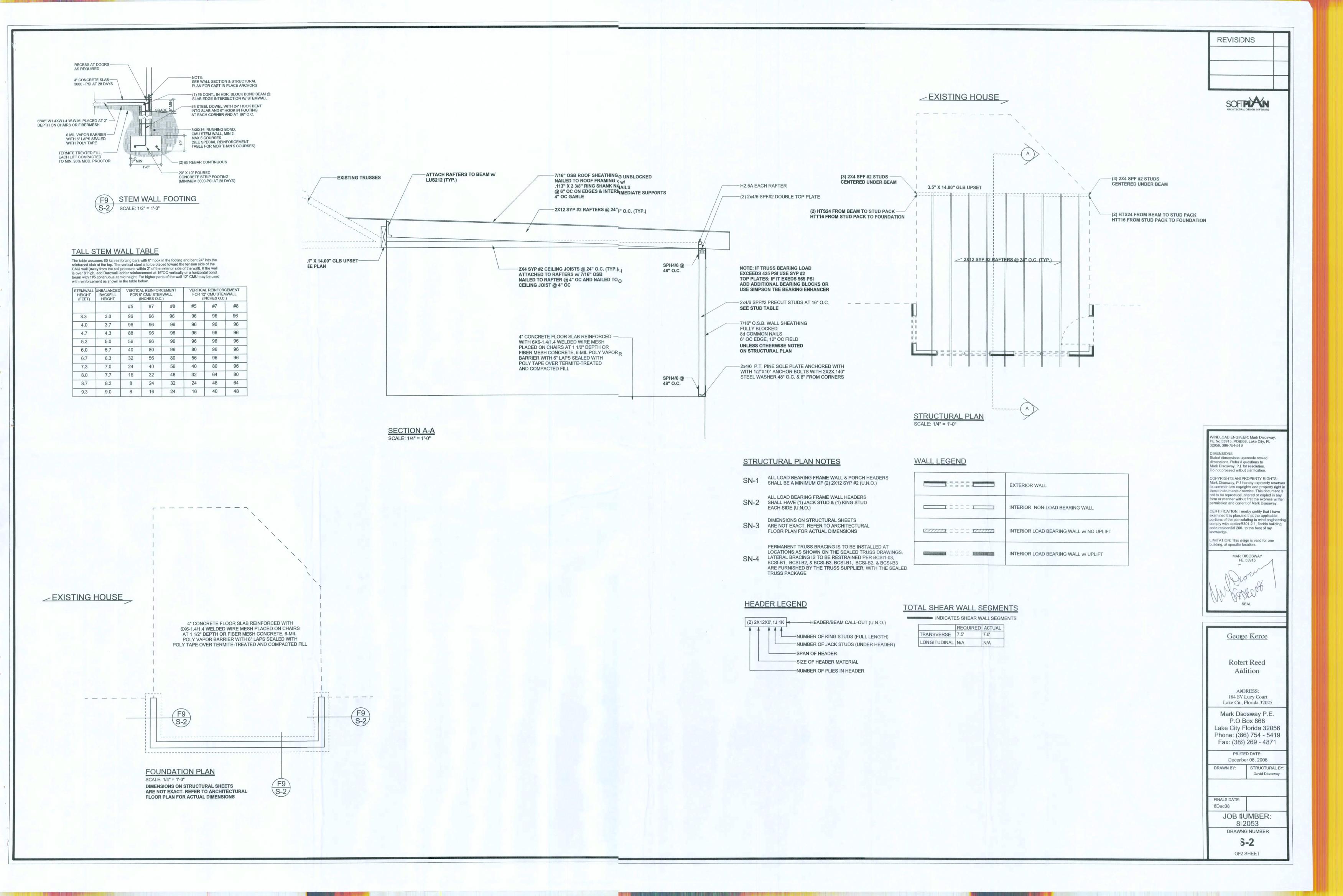
STAIRS 40 PSF (ONE & TWO FAMILY DWELLINGS) SOIL BEARING CAPACITY 1000PSF NOT IN FLOOD ZONE (BUILDER TO VERIFY)

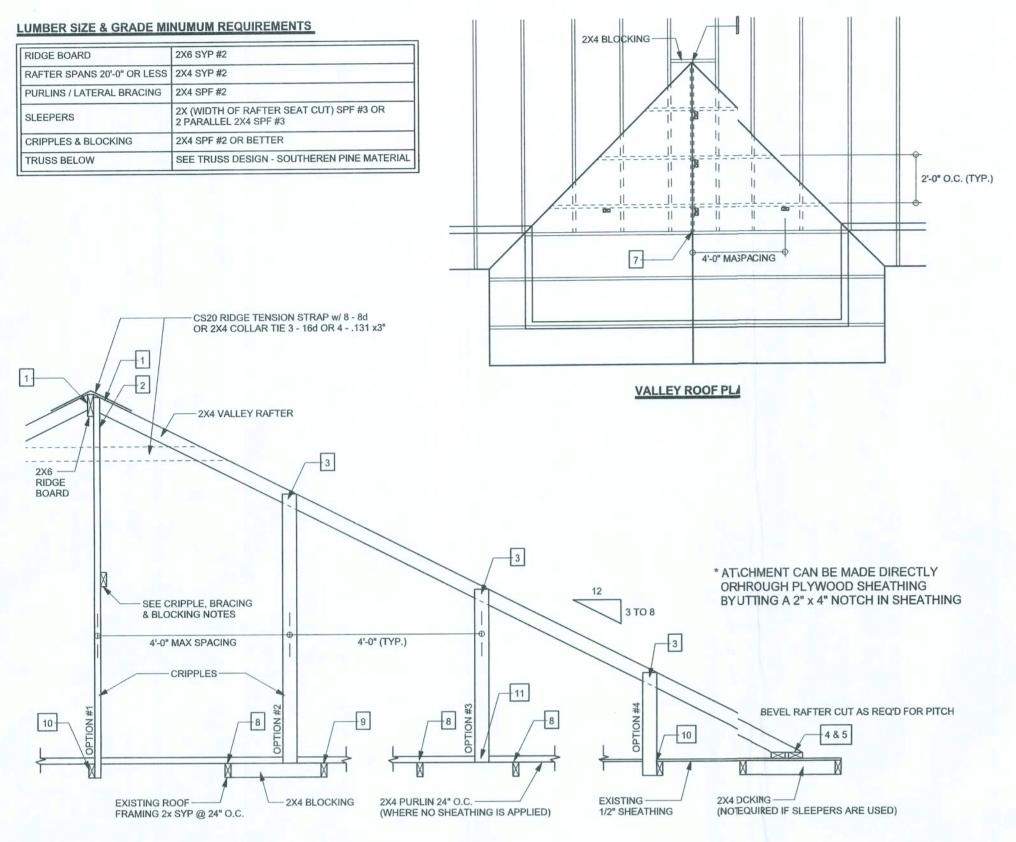
REVISIONS

SOFTPLAN

PE No.53915, POB 88, Lake City, FL 32056, 386-754-5419 DIMENSIONS: Stated dimensions spercede scaled Mark Disosway, P.E. or resolution. Do not proceed withat clarification COPYRIGHTS AND 'ROPERTY RIGHTS: Mark Disosway, P.E. rereby expressly reserved common law copyights and property right not to be reproduced altered or copied in any form or manner without first the express writte mission and conset of Mark Disosway. CERTIFICATION: I breby certify that I have amined this plan, ad that the applicable portions of the plan, elating to wind engineering comply with section (301.2.1, florida building code residential 2004 to the best of my LIMITATION: This deign is valid for one building, at specified ocation. MARKDISOSWAY P.I. 53915

3EAL

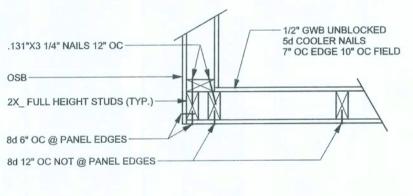

George Kerce


INDLOAD ENGINER: Mark Disosway.

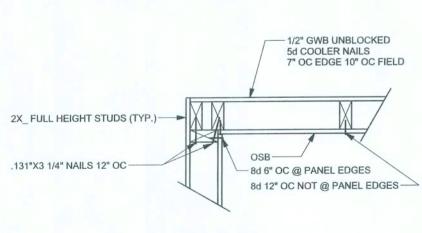
Robert Reed Addition ADDRESS: 184 SW Lucy Court Lake City Florida 32025 Mark Disosway P.E. P.O.Box 868 Lake City, Florida 32056 Phone: (386) 754 - 5419 Fax: (386) 269 - 4871 PRIN'ED DATE: December 08, 2008 STRUCTURAL BY David Disosway FINALS DATE: 8Dec08

JOB NUMBER: 8'2053 DRAWNG NUMBER

OF? SHEET


RETROFIT ROOF OVER FRAMING BRACING DETAIL

EXTERIOR WALL STUD TABLE FOR SPF #2 STUDS


SECTION CUT PARALLEL TO VALLEY RAFTER

(1) 2x4 @ 16" OC	TO 11'-9" STUD HEIGHT
(1) 2x4 @ 12" OC	TO 13'-0" STUD HEIGHT
(1) 2x6 @ 16" OC	TO 18'-10' STUD HEIGHT
(1) 2x6 @ 12" OC	TO 20.0' STUD HEIGHT

THIS STUD HEIGHT TABLE IS PER WFCM 2001, TABLE 3.20B. EXTERIOR LOAD BEARING & NON LOAD BEARING STUD LENGTHS ESISTING INTERIOR ZONE WINDLOADS 110 MPH EXPOSURE B. STUD SPACINGS SHALL BE MULTIPLIED BY 0.85 FOR FRAMING LOCATED WITHIN 4 FEET OF CORNERS FOR END ZONE LOADING. EXAMPLE 16" O.C. x 0.85 = 13.6" O.C.

OUTSIDE CORNER

(TYP.) CORNER FRAMING

INSIDE CORNER

WOOD FRAME

VALLEY ROOF PLAN MEMBER LEGEND

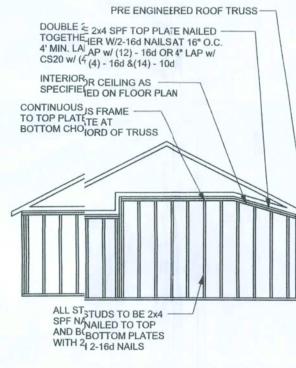
= = = TRUSS UNDER VALLEY FRAMING = = = = = VALLEY RAFTER OR RIDGE

CRIPPLES 4'-0" O.C. FOR 20 psf (TL) AND 10 psf (TD) (TYP. SHINGLE ROOF) MAX

CONNECTION REQUIREMENT NOTES

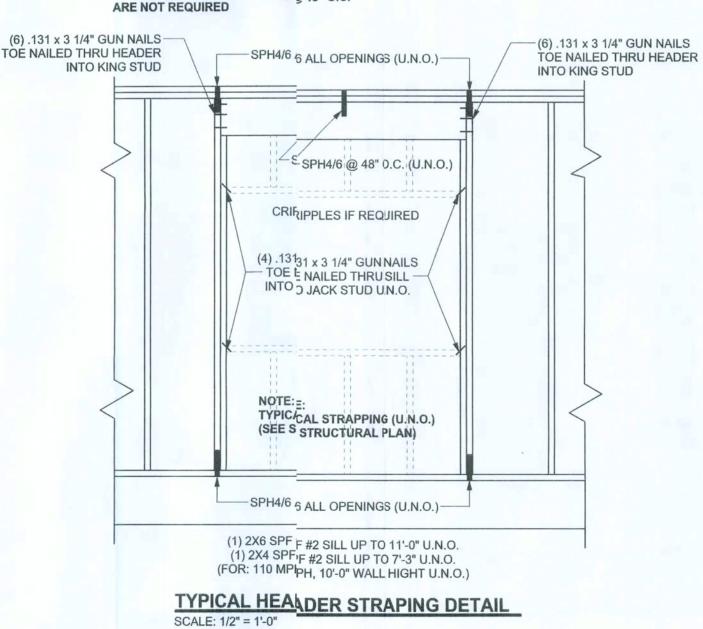
1	2X4 RAFTERS TO RIDGE	3 -16d OR 6131 x 3" TOE NAILS
2	CRIPPLE TO RIDGE	3 - 16d OR 6131 x 3" FACE NAILS
3	CRIPPLE TO RAFTERS	3 - 16d OR 6131 x 3" FACE NAILS
4	RAFTER TO SLEEPER OR BLOCKING	6 -16d OR 12131 x 3" TOE NAILS
5	SLEEPER TO TRUSS	4 - 16d OR 8131 x 3" FACE NAILS EACH TRUS
6	RIDGE BOARD TO ROOF BLOCK	3 -16d OR 6131 x 3" TOE NAILS
7	RIDGE BOARD TO TRUSS	3 -16d OR 6131 x 3" TOE NAILS
8	PURLIN TO TRUSS (TYP.)	3 -16d OR 6131 x 3" NAILS
8	PURLIN TO TRUSS (IF CRIPPLE IS ATTACHED TO PURLIN)	4 -16d OR 8131 x 3" NAILS
9	TRUSS TO BLOCKING	3 -16d OR 6131 x 3" END NAILS
10	CRIPPLE TO TRUSS	3 -16d OR 6131 x 3" FACE NAILS
11	CRIPPLE TO PURLIN	3 -16d OR 6131 x 3" FACE NAILS

MAXIMUM RAFTER SPANS 6'-0" FOR 2X4, 9'-0" FOR 2X6 SPF #2 OR SYP #2. MAXIMUM ROOF AREA PER SUPPORT 16ft2 IN ZONES 2 & 3 . 24ft2 IN ZONE 1. (EXAMPLE: 4'-0" O.C. X 4'-0" SPAN = 16ft2 OR 2'-0" X 8'-0" SPAN = 16ft2) PURLINS REQUIRED 2'-0" O.C. IF EXISTING SHEATHING IS REMOVED. PURLINS SHOULD OVERLAP SHEATHING ONE TRUSS SPACING MINIMUM. IN CASES THAT THIS IS IMPRACTICAL, OVERLAP SHEATHING A MINIMUM OF 6", AND NAIL UPWARDS THROUGH SHEATHING INTO PURLIN WITH A MINIMUM OF 8 - 8d COMMON WIRE NAILS.
THIS DRAWING APPLIES TO VALLEYS WITH THE FOLLOWING CONDITIONS: -SPANS (DISTANCS BETWEEN HEELS) 40'-0" OR LESS MAXIMUM VALLEY HEIGHT: 14'-0" OR LESS


-MAXIMUM WIND SPEED: 120 MPH - MAXIMUM MEAN ROOF HEIGHT: 30 FEET - MAXIMUM TOTAL LOADING: 40 psf - MEETS FBC 2001/ASCE 7-98 WIND REQUIREMENTS - EXPOSURE CATEGORY "B", I = 1.0, Kzt = 1.0

CRIPPLE, BRACING, & BLOCKING NOTES

-2X4 CONTINUOUS LATERAL BRACE (CLB) MIN. IS REQUIRED FOR CRIPPLES 5'-0" TO 10'-0" LONG NAILED W/ 2 - 10d NAILS OR 2X4 "T" OR SCAB BRACE NAILD TO FLAT EDGE OF CRIPPLE WITH 8d NAILS @ 8" O.C. "T" OR SCAB MUST BE 90% OF CRIPPLE LENGTH. CRIPPLES OVER 10'-0" LONG REQURE TWO CLB's OR BOTH FACES W/ "T" OR SCAB. USE STRESS GRADED LUMBER & BOX OR COMMON NAILS. NARROW EDGE OF CRIPPLE CAN FACE RIDGE OR RAFTER, AS LONG AS THE PROPER NUMBER OF NAILS ARE INSTALLED INTO RIDGE BOARD INSTALL BLOCKING UNDER RAFTER IF SLEEPERS ARE NOT USED. INSTALL BLOCKING UNDER CRIPPLES IF CRIPPLES FALL BETWEEN LOWER TRUSS TOP CHORDS AND LATERAL BRACING IS NOT USED, APPLY ALL NAILING IN ACCORDANCE TO NDS-1997 SECTION 12. NAILS ARE COMMON WIRE


GERADE & SPECIES TABLE

		Fb (psi)	E (10 ⁶ psi)
2) _{2x8}	SYP#2	1200	1.6
2x _{2x10}	SYP#2	1050	1.6
2x _{2x12}	SYP#2	975	1.6
GIGLB	24F-V3 SP	2400	1.8
LELSL	TIMBERSTRAND	1700	1.7
L\ _{LVL}	MICROLAM	1600	1.9
PSL	PARALAM	2900	2.0

CON TINUOUS FRAME TO **CEILI ING DIAPHRAGM DETAIL**

IF TRUSS TO WALL STRAPS ARE NAILED TO THE HEADER THE SPH4/6 @ 2 48" O.C.

GENERAL NOTES:

TRUSSES: TRUSSES SHALL BE DESIGNED BY A FLORIDA LICENSED ENGINEER IN ACCORDANCE WITH THE FBCR 2004. TRUSS ENGINEERING SHALL INCLUDE TRUSS DESIGN, PLACEMENT PLANS, TEMPORARY AND PERMANENT BRACING DETAILS, TRUSS-TO-TRUSS CONNECTIONS, AND UPLIFT AND REACTION LOADS FOR ALL BEARING LOCATIONS. TRUSS ENGINEERING IS THE RESPONSIBILITY OF THE TRUSS MANUFACTURER AND SHALL BE SIGNED & SEALED BY THE MANUFACTURER'S DESIGN ENGINEER. IT IS THE BUILDER'S RESPONSIBILITY VERIFY THE TRUSS DESIGNER FULLY SATISFIED ALL THE ABOVE REQUIREMENTS AND TO SELECT UPLIFT CONNECTIONS BASED ON TRUSS ENGINEERING UPLIFT AND PROVIDE FOOTINGS FOR INTERIOR BEARING WALLS. BUILDER IS TO FURNISH TRUSS ENGINEERING TO WIND LOAD ENGINEER FOR REVIEW OF TRUSS REACTIONS ON THE BUILDING STRUCTURE. STRAP 2X6 RAFTERS WITH MIN UPLIFT CONNECTION 415LB EACH END; 2X8 RAFTERS 700 LB EACH END.

SITE PREPARATION: SITE ANALYSIS AND PREPARATION IS NOT PART OF THIS PLAN FOUNDATION: CONFIRM THAT THE FOUNDATION DESIGN & SITE CONDITIONS MEET GRAVITY LOAD REQUIREMENTS (ASSUME 1000 PSF BEARING CAPACITY UNLESS VISUAL OBSERVATION OR SOILS TEST PROVES OTHERWISE

CONCRETE: MINIMUM COMPRESSIVE STRENGTH OF CONCRETE AT 28 DAYS, F'c = 3000 PSI.

WELDED WIRE REINFORCED SLAB: 6" x 6" W1.4 x W1.4, FB = 85KSI, WELDED WIRE REINFORCEMENT FABRIC (W.W.M.) CONFORMING TO ASTM A185; LOCATED IN MIDDLE OF THE SLAB; SUPPORTED WITH APPROVED MATERIALS OR SUPPORTS AT SPACINGS NOT TO EXCEED 3'. FIBER CONCRETE SLAB: CONCRETE SLABS ON GROUND CONTAINING SYNTHETIC FIBER REINFORCEMENT. FIBER LENGTH 1/2 INCH TO 2 INCHES. DOSAGE AMOUNTS FROM 0.75 TO 1.5 POUNDS PER CUBIC YARD

PER THE MANUFACTURER'S RECOMMENDATIONS. FIBERS TO COMPLY WITH ASTM C 1116. SUPPLIER TO PROVIDE ASTM C 1116 CERTIFICATION OF COMPLIANCE WHEN REQUESTED BY BUILDING OFFICIAL CONTROL JOINTS: WHERE SPECIFIED, SAWN CONTROL JOINTS IN SLAB-ON-GRADE SHALL BE CUT IN ACCORDANCE WITH ACI 302. JOINTS SHALL BE CUT WITHIN 12 HOURS OF SLAB PLACEMENT. THE LENGTH /

WIDTH RATIOS OF SLAB AREAS SHALL NOT EXCEED 1.5 AND TYPICAL SPACING OF CUTS TO BE 12FT. DO NOT CUT WWM OR REINFORCING STEEL. (RECOMMENDED LOCATION OF CONTROL JOINTS IS SUBJECT TO OWNER AND CONTRACTOR'S APPROVAL. THE CONTROL JOINTS ARE NOT INTENDED TO PREVENT CRACKS BUT RATHER TO ENCOURAGE THE SLAB TO CRACK ON A GIVEN LINE.)

REBAR: ASTM A 615, GRADE 60, DEFORMED BARS, FY = 60 KSI. ALL LAP SPLICES 40 * DB (25" FOR #5 BARS); UNO. ALL REINFORCEMENT SHALL BE DETAILED AND PLACED IN ACCORDANCE WITH ACI 315-96, U.N.O.

GLULAM BEAMS: GLULAM BEAM, GLB, 24F-V3SP, Fb = 2.4ksi, E = 1800ksi; UNO. SUPPLIER MAY SUPPLY AN ALTERNATE BEAM WITH EQUAL PROPERTIES OR MAY SUBMIT THEIR OWN SIZING CALCS. ROOF SHEATHING: ALL ROOFS ARE HORIZONTAL DIAPHRAGMS; 7/16" OSB SHEATHING, UNBLOCKED, APPLIED PERPENDICULAR TO FRAMING, OVER A MINIMUM OF 3 FRAMING MEMBERS, WITH PANEL EDGES STAGGERED, FASTENED WITH 8d COMMON NAILS (.131), 6"OC PANEL EDGES, 12"OC INTERMEDIATE MEMBERS, GABLE ENDS AND DIAPHRAGM BOUNDARY; 4"OC, UNO.

STRUCTURAL CONNECTORS: MANUFACTURERS AND PRODUCT NUMBER FOR CONNECTORS, ANCHORS, AND REINFORCEMENT ARE LISTED FOR EXAMPLE NOT ENDORSEMENT. AN EQUIVALENT DEVICE OF THE SAME OR OTHER MANUFACTURER CAN BE SUBSTITUTED FOR ANY DEVICES LISTED IN THE EXAMPLE TABLES AS LONG AS IT MEETS THE REQUIRED LOAD CAPACITIES, MANUFACTURER'S INSTALLATION INSTRUCTIONS MUST BE FOLLOWED TO ACHIEVE RATED LOADS.

ANCHOR BOLTS: A-307 ANCHOR BOLTS WITH MINIMUM EMBEDMENT AS SPECIFIED IN DRAWINGS BUT NO LESS THAN 7" IN CONCRETE OR REINFORCED BOND BEAM OR 15" IN GROUTED CMU

WASHERS: WASHERS USED WITH 1/2" BOLTS TO BE 2" x 2" x 9/64"; WITH 5/8" BOLTS TO BE 3" x 3" x 9/64"; WITH 3/4" BOLTS TO BE 3" x 3" x 9/64"; WITH 7/8" BOLTS TO BE 3" x 3" x 5/16"; UNO. NAILS: ALL NAILS ARE COMMON NAILS UNLESS OTHERWISE SPECIFIED OR ACCEPTED BY FBC TEST REPORTS AS HAVING EQUAL STRUCTURAL VALUES.

BUILDER'S RESPONSIBILITY

	AND OWNER ARE RESPONSIBLE FOR THE FOLLOWING, WHICH ARE Y NOT PART OF THE WIND LOAD ENGINEER'S SCOPE OF WORK.
	ONDITIONS, FOUNDATION BEARING CAPACITY, GRADE AND T, WIND SPEED AND DEBRIS ZONE, AND FLOOD ZONE.
	RIALS AND CONSTRUCTION TECHNIQUES, WHICH COMPLY WITH FBCR 2004 FOR THE STATED WIND VELOCITY AND DESIGN PRESSURES.
BELIEVE THE PL	TINUOUS LOAD PATH FROM TRUSSES TO FOUNDATION. IF YOU AN OMITS A CONTINUOUS LOAD PATH CONNECTION, CALL ENGINEER IMMEDIATELY.
DESIGN, PLACE	SS MANUFACTURER'S SEALED ENGINEERING INCLUDES TRUSS MENT PLANS, TEMPORARY AND PERMANENT BRACING DETAILS, S CONNECTIONS, AND UPLIFT AND REACTION LOADS FOR ALL TIONS.

ROOF SYSTEM DESIGN

THE SEAL ON THESE PLANS FOR COMPLIANCE WITH FBCR 2004, SECTION R301.2.1 IS BASED ON REACTIONS, UPLIFTS, AND BEARING LOCATIONS IN TRUSS ENGINEERING SUBMITTED TO THE WIND LOAD ENGINEER. IT IS THE RESPONSIBILITY OF THE BUILDER TO CHECK ALL DETAILS OF THE COMPLETE ROOF SYSTEM DESIGN SUBMITTED BY THE TRUSS MANUFACTURER AND HAVE IT SIGNED, AND SEALED BY A DESIGN PROFESSIONAL FOR CORRECT APPLICATION OF FBCR 2004 REQUIRED LOADS AND ANY SPECIAL LOADS. THE BUILDER IS RESPONSIBLE TO REVIEW EACH INDIVIDUAL TRUSS MEMBER AND THE TRUSS ROOF SYSTEM AS A WHOLE AND TO PROVIDE RESTRAINT FOR ANY LATERAL BRACING. THE BUILDER SHOULD USE CARE CHECKING THE ROOF DESIGN BECAUSE THE WIND LOAD ENGINEER IS SPECIFICALLY NOT RESPONSIBLE FOR THE TRUSS LAYOUT WHICH WAS CREATED BY THE TRUSS MANUFACTURER AND THE TRUSS DESIGNER ALSO DENIES RESPONSIBILITY FOR THE LAYOUT PER NOTES ON THEIR SEALED TRUSS SHEETS.

MASONRY NOTES:

ACI530.1-02 Section

1.4A Compressive strength

CMU standard

Clay brick standard

Reinforcing bars, #3 - #11

Mortar

3.3.E.7 Movement joints

2.2 Grout 2.3 CMU st

IN WRITING.

MASONRY CONSTRUCTION AND MATERIALS FOR THIS PROJECT SHALL CONFORM TO ALL REQUIREMENTS OF "SPECIFICATION FOR MASONRY

MUST IMMEDIATELY, BEFORE PROCEDING, NOTIFY THE ENGINEER OF

ANY CONFLICTS BETWEEN ACI 530.1-02 AND THESE DESIGN DRAWINGS. ANY EXCEPTIONS TO ACI 530.1-02 MUST BE APPROVED BY THE ENGINEER

STRUCTURES" (ACI 530.1/ASCE 6/TMS 602). THE CONTRACTOR AND MASON

Specific Requirements

5.5"x2.75"x11.5"

Coating for corrosion protection Anchors, sheet metal ties completely

or 304SS

2.4F Coating for corrosion protection | Joint reinforcement in walls exposed to

3.3.E.2 Pipes, conduits, and accessories Any not shown on the project drawings

ASTM C 270, Type N, UNO

8" block bearing walls F'm = 1500 psi

ASTM C 90-02, Normal weight, Hollow,

bond and 12"x12" or 16"x16" column

ASTM C 476, admixtures require approval

medium surface finish, 8"x8"x16" running

ASTM C 216-02, Grade SW, Type FBS,

ASTM 615, Grade 60, Fy = 60 ksi, Lap

splices min 48 bar dia. (30" for #5)

embedded in mortar or grout, ASTM

A525, Class G60, 0.60 oz/ft2 or 304SS

moisture or wire ties, anchors, sheet metal

ties not completely embedded in mortar or

Contractor assumes responsibility for type

and location of movement joints if not

grout, ASTM A153, Class B2, 1.50 oz/ft2

require engineering approval.

detailed on project drawings.

UPLIFT LBS. SYP UPLIFT LBS. SPF TRUSS CONNECTOR* TO PLATES TO RAFTER/TRUSS

ANCHOR TABLE

OBTAIN UPLIFT REQUIREMENTS FROM TRUSS MANUFACTURER'S ENGINEERING

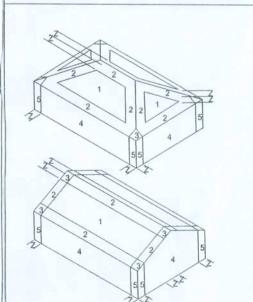
UPLIFT LBS. SYP	UPLIFT LBS. SPF	TRUSS CONNECTOR*	TO PLATES	TO RAFTER/TRUSS	TO STUDS
< 420	< 245	H5A	3-8d	3-8d	
< 455	< 265	H5	4-8d	4-8d	
< 360	< 235	H4	4-8d	4-8d	
< 455	< 320	H3	4-8d	4-8d	
< 415	< 365	H2.5	5-8d	5-8d	
< 600	< 535	H2.5A	5-8d	5-8d	
< 950	< 820	H6	8-8d	8-8d	
< 745	< 565	H8	5-10d, 1 1/2"	5-10d, 1 1/2"	
< 1465	< 1050	H14-1	13-8d	12-8d, 1 1/2"	
< 1465	< 1050	H14-2	15-8d	12-8d, 1 1/2"	
< 990	< 850	H10-1	8-8d, 1 1/2"	8-8d, 1 1/2"	
< 760	< 655	H10-2	6-10d	6-10d	
< 1470	< 1265	H16-1	10-10d, 1 1/2"	2-10d, 1 1/2"	
< 1470	< 1265	H16-2	10-10d, 1 1/2"	2-10d, 1 1/2"	
< 1000	< 860	MTS24C	7-10d 1 1/2"	7-10d 1 1/2"	
< 1450	< 1245	HTS24	12-10d 1 1/2"	12-10d 1 1/2"	
< 2900	< 2490	2 - HTS24			
< 2050	< 1785	LGT2	14 -16d	14 -16d	
		HEAVY GIRDER TIEDOWNS*			TO FOUNDATION
					TO FOUNDATION
< 3965	< 3330	MGT		22 -10d	1-5/8" THREADED ROD 12" EMBEDMENT
< 10980	< 6485	HGT-2		16 -10d	2-5/8" THREADED ROD 12" EMBEDMENT
< 10530	< 9035	HGT-3		16 -10d	2-5/8" THREADED ROD 12" EMBEDMENT
< 9250	< 9250	HGT-4		16 -10d	2-5/8" THREADED ROD 12" EMBEDMENT
		STUD STRAP CONNECTOR*			TO STUDS
< 435	< 435	SSP DOUBLE TOP PLATE	3 -10d		4 -10d
< 455	< 420	SSP SINGLE SILL PLATE	1 -10d		4 -10d
< 825	< 825	DSP DOUBLE TOP PLATE	6 -10d		8 -10d
< 825	< 600	DSP SINGLE SILL PLATE	2 -10d		8 -10d
< 885	< 760	SP4			6-10d, 1 1/2"
< 1240	< 1065	SPH4			10-10d, 1 1/2"
< 885	< 760	SP6			6-10d, 1 1/2"
< 1240	< 1065	SPH6			10-10d, 1 1/2"
< 1235	< 1165	LSTA18	14-10d		
< 1235	< 1235	LSTA21	16-10d		
< 1030	< 1030	CS20	18-8d		
< 1705	< 1705	CS16	28-8d		
		STUD ANCHORS*	TO STUDS		TO FOUNDATION
< 1350	< 1305	LTT19	8-16d		1/2" AB
< 2310	< 2310	LTTI31	18-10d, 1 1/2"		1/2" AB
< 2775	< 2570	HD2A	2-5/8" BOLTS		5/8" AB
< 4175	< 3695	HTT16	18 - 16d		5/8" AB
< 1400	< 1400	PAHD42	16-16d		
< 3335	< 3335	HPAHD22	16-16d		
< 2200	< 2200	ABU44	12-16d		1/2" AB
< 2100	< 2300	ABU66	12-16d		1/2" AB
< 2320	< 2320	ABU88	18 - 16d		2-5/8" AB

DESIGN DATA

WIND LOADS PER FLORIDA BUILDING CODE 2004 RESIDENTIAL, SECTION R301.2.1 (ENCLOSED SIMPLE DIAPHRAGM BUILDINGS WITH FLAT, HIPPED, OR GABLE ROOFS; MEAN ROOF HEIGHT NOT EXCEEDING LEAST HORIZONTAL DIMENSION OR 60 FT; NOT ON UPPER HALF OF HILL OR ESCARPMENT 60FT IN EXP. B, 30FT IN EXP. C AND >10% SLOPE AND UNOBSTRUCTED UPWIND FOR 50x HEIGHT OR 1 MILE WHICHEVER IS LESS.) BUILDING IS NOT IN THE HIGH VELOCITY HURRICANE ZONE

BUILDING IS NOT IN THE WIND-BORNE DEBRIS REGION

1.) BASIC WIND SPEED = 110 MPH


2.) WIND EXPOSURE = B

3.) WIND IMPORTANCE FACTOR = 1.0 4.) BUILDING CATEGORY = II

5.) ROOF ANGLE = 10-45 DEGREES 6.) MEAN ROOF HEIGHT = <30 FT

INTERNAL PRESSURE COEFFICIENT = N/A (ENCLOSED BUILDING)

8.) COMPONENTS AND CLADDING DESIGN WIND PRESSURES (TABLE R301.2(2))

Zone	Effective Wind Area (ft2)				
	10		100		
1	19.9	-21.8	18.1	-18.1	
2	19.9	-25.5	18.1	-21.8	
2 O'hg		-40.6		-40.6	
3	19.9	-25.5	18.1	-21.8	
3 O'hg		-68.3		-42.4	
4	21.8	-23.6	18.5	-20.4	
5	21.8	-29.1	18.5	-22.6	
Doors & Windows			21.8	-29.1	
0.0000000000000000000000000000000000000	st Cas				
(Zone	5, 10	ft2)			
8x7 Garage Door			19.5	-22.9	
16x7 Ga	arage l	18.5	-21.0		

DESIGN LOADS FLOOR 40 PSF (ALL OTHER DWELLING ROOMS) 30 PSF (SLEEPING ROOMS) 30 PSF (ATTICS WITH STORAGE) 10 PSF (ATTICS WITHOUT STORAGE, <3:12) ROOF 20 PSF (FLAT OR <4:12) 16 PSF (4:12 TO <12:12)

12 PSF (12:12 AND GREATER) STAIRS 40 PSF (ONE & TWO FAMILY DWELLINGS)

SOIL BEARING CAPACITY 1000PSF NOT IN FLOOD ZONE (BUILDER TO VERIFY) **REVISIONS**

ed dimens Mark Disosway, P.E. or resolution. to not proceed without clarification COPYRIGHTS AND ROPERTY RIGHTS: Mark Disosway, P.E. iereby expressly resi common law copyights and property right i ese instruments of ervice. This document is not to be reproduced altered or copied in any form or manner without first the express written rmission and conset of Mark Disosway. ERTIFICATION: I hereby certify that I have xamined this plan, ad that the applicable ortions of the plan, plating to wind engine comply with section f301.2.1, florida building code residential 2004 to the best of my LIMITATION: This deign is valid for one uilding, at specified scation. MARK) ISOSWAY P.L 53915

INDLOAD ENGINER: Mark Disosway,

PE No.53915, POB 88, Lake City, FL

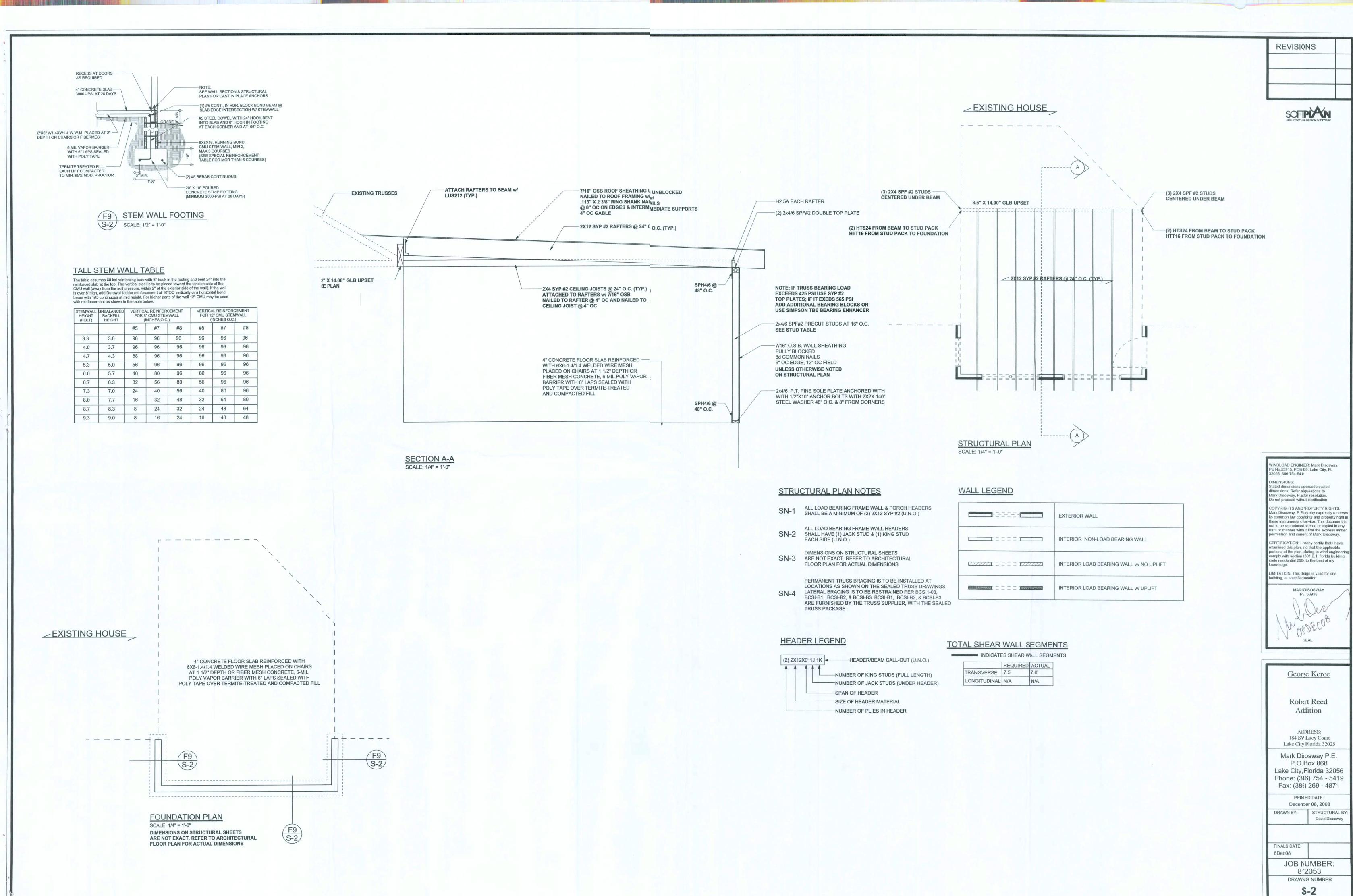
32056, 386-754-5419

DIMENSIONS:

George Kerce

Robert Reed Addition

ADDRESS: 184 SWLucy Court Lake City Florida 32025


Mark Disosway P.E. P.O. 3ox 868 Lake City, Florida 32056 Phone: (386) 754 - 5419 Fax: (386) 269 - 4871

PRINTED DATE: Decemler 08, 2008 DRAWN BY: STRUCTURAL BY David Disosway

FINALS DATE: 8Dec08

> JOB NUMBER: 812053 DRAWING NUMBER

> > 5-1 OF 2SHEET

OF! SHEET