IF TRUSS TO WALL STRAPS ARE NAI TO THE HEADER THE SPH4/6 @ 48" CNAILED ARE NOT REQUIRED # SEE STRUCTUR TURAL PLAN (2) 2X_ SPF#2 T(SEE STUD TABLETUDS #2 PLATE ____2X_ PT SYP#2 PI #### **GENERAL NOTES:** TRUSSES: TRUSSES SHALL BE DESIGNED BY A FLORIDA LICENSED ENGINEER IN ACCORDANCE WITH THE FBCR 2007. TRUSS ENGINEERING SHALL INCLUDE TRUSS DESIGN, PLACEMENT PLANS, TEMPORARY AND PERMANENT BRACING DETAILS, TRUSS-TO-TRUSS CONNECTIONS, AND UPLIFT AND REACTION LOADS FOR ALL BEARING LOCATIONS. TRUSS ENGINEERING IS THE RESPONSIBILITY OF THE TRUSS MANUFACTURER AND SHALL BE SIGNED & SEALED BY THE MANUFACTURER'S DESIGN ENGINEER. IT IS THE BUILDER'S RESPONSIBILITY VERIFY THE TRUSS DESIGNER FULLY SATISFIED ALL THE ABOVE REQUIREMENTS AND TO SELECT UPLIFT CONNECTIONS BASED ON TRUSS ENGINEERING UPLIFT AND PROVIDE FOOTINGS FOR INTERIOR BEARING WALLS. BUILDER IS TO FURNISH TRUSS ENGINEERING TO WIND LOAD ENGINEER FOR REVIEW OF TRUSS REACTIONS ON THE BUILDING STRUCTURE. STRAP 2X6 RAFTERS WITH MIN UPLIFT CONNECTION 415LB EACH END; 2X8 RAFTERS 700 LB EACH END. SITE PREPARATION: SITE ANALYSIS AND PREPARATION IS NOT PART OF THIS PLAN FOUNDATION: CONFIRM THAT THE FOUNDATION DESIGN & SITE CONDITIONS MEET GRAVITY LOAD REQUIREMENTS (ASSUME 1000 PSF BEARING CAPACITY UNLESS VISUAL OBSERVATION OR SOILS TEST PROVES OTHERWISE CONCRETE: MINIMUM COMPRESSIVE STRENGTH OF CONCRETE AT 28 DAYS, F'c = 3000 PSI. WELDED WIRE REINFORCED SLAB: 6" x 6" W1.4 x W1.4, FB = 85KSI, WELDED WIRE REINFORCEMENT FABRIC (W.W.M.) CONFORMING TO ASTM A185; LOCATED IN MIDDLE OF THE SLAB; SUPPORTED WITH APPROVED MATERIALS OR SUPPORTS AT SPACINGS NOT TO EXCEED 3'. FIBER CONCRETE SLAB: CONCRETE SLABS ON GROUND CONTAINING SYNTHETIC FIBER REINFORCEMENT. FIBER LENGTH 1/2 INCH TO 2 INCHES. DOSAGE AMOUNTS FROM 0.75 TO 1.5 POUNDS PER CUBIC YARD PER THE MANUFACTURER'S RECOMMENDATIONS. FIBERS TO COMPLY WITH ASTM C 1116. SUPPLIER TO PROVIDE ASTM C 1116 CERTIFICATION OF COMPLIANCE WHEN REQUESTED BY BUILDING OFFICIAL CONTROL JOINTS: WHERE SPECIFIED, SAWN CONTROL JOINTS IN SLAB-ON-GRADE SHALL BE CUT IN ACCORDANCE WITH ACI 302. JOINTS SHALL BE CUT WITHIN 12 HOURS OF SLAB PLACEMENT. THE LENGTH / WIDTH RATIOS OF SLAB AREAS SHALL NOT EXCEED 1.5 AND TYPICAL SPACING OF CUTS TO BE 12FT. DO NOT CUT WWM OR REINFORCING STEEL. (RECOMMENDED LOCATION OF CONTROL JOINTS IS SUBJECT TO OWNER AND CONTRACTOR'S APPROVAL. THE CONTROL JOINTS ARE NOT INTENDED TO PREVENT CRACKS BUT RATHER TO ENCOURAGE THE SLAB TO CRACK ON A GIVEN LINE.) REBAR: ASTM A 615, GRADE 60, DEFORMED BARS, FY = 60 KSI. ALL LAP SPLICES 40 * DB (25" FOR #5 BARS); UNO. ALL REINFORCEMENT SHALL BE DETAILED AND PLACED IN ACCORDANCE WITH ACI 315-96, U.N.O. GLULAM BEAM, GLB, 24F-V3SP, Fb = 2.4ksi, E = 1800ksi; UNO. SUPPLIER MAY SUPPLY AN ALTERNATE BEAM WITH EQUAL PROPERTIES OR MAY SUBMIT THEIR OWN SIZING CALCS. ROOF SHEATHING: ALL ROOFS ARE HORIZONTAL DIAPHRAGMS; 7/16" OSB SHEATHING, UNBLOCKED, APPLIED PERPENDICULAR TO FRAMING, OVER A MINIMUM OF 3 FRAMING MEMBERS, WITH PANEL EDGES STAGGERED, FASTENED WITH 8d COMMON NAILS (.131), 6"OC PANEL EDGES, 12"OC INTERMEDIATE MEMBERS, GABLE ENDS AND DIAPHRAGM BOUNDARY; 4"OC, UNO. STRUCTURAL CONNECTORS: MANUFACTURERS AND PRODUCT NUMBER FOR CONNECTORS, ANCHORS, AND REINFORCEMENT ARE LISTED FOR EXAMPLE NOT ENDORSEMENT. AN EQUIVALENT DEVICE OF THE SAME OR OTHER MANUFACTURER CAN BE SUBSTITUTED FOR ANY DEVICES LISTED IN THE EXAMPLE TABLES AS LONG AS IT MEETS THE REQUIRED LOAD CAPACITIES. MANUFACTURER'S INSTALLATION INSTRUCTIONS MUST BE FOLLOWED TO ACHIEVE RATED LOADS. ANCHOR BOLTS: A-307 ANCHOR BOLTS WITH MINIMUM EMBEDMENT AS SPECIFIED IN DRAWINGS BUT NO LESS THAN 7" IN CONCRETE OR REINFORCED BOND BEAM OR 15" IN GROUTED CM WASHERS: WASHERS USED WITH 1/2" BOLTS TO BE 2" x 2" x 9/64"; WITH 5/8" BOLTS TO BE 3" x 3" x 9/64"; WITH 3/4" BOLTS TO BE 3" x 3" x 9/64"; WITH 7/8" BOLTS TO BE 3" x 3" x 9/64"; WITH 7/8" BOLTS TO BE 3" x 3" x 5/16"; UNO. NAILS: ALL NAILS ARE COMMON NAILS UNLESS OTHERWISE SPECIFIED OR ACCEPTED BY FBC TEST REPORTS AS HAVING EQUAL STRUCTURAL VALUES. #### **BUILDER'S RESPONSIBILITY** THE BUILDER AND OWNER ARE RESPONSIBLE FOR THE FOLLOWING, WHICH ARE SPECIFICALLY NOT PART OF THE WIND LOAD ENGINEER'S SCOPE OF WORK. CONFIRM SITE CONDITIONS, FOUNDATION BEARING CAPACITY, GRADE AND BACKFILL HEIGHT, WIND SPEED AND DEBRIS ZONE, AND FLOOD ZONE. PROVIDE MATERIALS AND CONSTRUCTION TECHNIQUES, WHICH COMPLY WITH FBCR 2007 REQUIREMENTS FOR THE STATED WIND VELOCITY AND DESIGN PRESSURES PROVIDE A CONTINUOUS LOAD PATH FROM TRUSSES TO FOUNDATION. IF YOU BELIEVE THE PLAN OMITS A CONTINUOUS LOAD PATH CONNECTION, CALL THE WIND LOAD ENGINEER IMMEDIATELY. VERIFY THE TRUSS MANUFACTURER'S SEALED ENGINEERING INCLUDES TRUSS DESIGN, PLACEMENT PLANS, TEMPORARY AND PERMANENT BRACING DETAILS, TRUSS-TO-TRUSS CONNECTIONS, AND UPLIFT AND REACTION LOADS FOR ALL BEARING LOCATIONS. ### **ROOF SYSTEM DESIGN** THE SEAL ON THESE PLANS FOR COMPLIANCE WITH FBCR 2007, SECTION R301.2.1 IS BASED ON REACTIONS, UPLIFTS, AND BEARING LOCATIONS IN TRUSS ENGINEERING SUBMITTED TO THE WIND LOAD ENGINEER. IT IS THE RESPONSIBILITY OF THE BUILDER TO CHECK ALL DETAILS OF THE COMPLETE ROOF SYSTEM DESIGN SUBMITTED BY THE TRUSS MANUFACTURER AND HAVE IT SIGNED, AND SEALED BY A DESIGN PROFESSIONAL FOR CORRECT APPLICATION OF FBCR 2007 REQUIRED LOADS AND ANY SPECIAL LOADS. THE BUILDER IS RESPONSIBLE TO REVIEW EACH INDIVIDUAL TRUSS MEMBER AND THE TRUSS ROOF SYSTEM AS A WHOLE AND TO PROVIDE RESTRAINT FOR ANY LATERAL BRACING. THE BUILDER SHOULD USE CARE CHECKING THE ROOF DESIGN BECAUSE THE WIND LOAD ENGINEER IS SPECIFICALLY NOT RESPONSIBLE FOR THE TRUSS LAYOUT WHICH WAS CREATED BY THE TRUSS MANUFACTURER AND THE TRUSS DESIGNER ALSO DENIES RESPONSIBILITY FOR THE LAYOUT PER NOTES ON THEIR SEALED TRUSS SHEETS. ## **GRADE & SPECIES TABLE** | | | Fb (psi) | E (10 ⁶ psi) | | |------|---------------|-------------|-------------------------|--| | 2x8 | SYP#2 | 1200 | 1.6 | | | 2x10 | SYP #2 | SYP #2 1050 | | | | 2x12 | SYP #2 | 975 | 1.6 | | | GLB | 24F-V3 SP | 2400 | 1.8 | | | LSL | TIMBERSTRAND | 1700 | 1.7 | | | LVL | MICROLAM 1600 | | 1.9 | | | PSL | PARALAM | RALAM 2900 | | | **DESIGN DATA** WIND LOADS PER FLORIDA BUILDING CODE 2007 RESIDENTIAL, SECTION R301.2.1 BUILDING IS NOT IN THE HIGH VELOCITY HURRICANE ZONE INTERNAL PRESSURE COEFFICIENT = N/A (ENCLOSED BUILDING)) COMPONENTS AND CLADDING DESIGN WIND PRESSURES (TABLE R301.2(2)) 27.8 -30.5 25.3 -25.3 2 27.8 -35.7 25.3 -30.5 2 O'hg -56.8 -56.8 3 27.8 -35.7 25.3 -30.5 3 O'hg -95.6 -59.3 4 30.5 -33.0 25.9 -28.5 5 30.5 -40.7 25.9 -31.6 Doors & Windows 30.5 -40.7 x7 Garage Door | 27.3 | -32.0 16x7 Garage Door | 25.9 | -29.4 Worst Case (Zone 5, 10 ft2) BUILDING IS NOT IN THE WIND-BORNE DEBRIS REGION .) BASIC WIND SPEED = 110 MPH) WIND IMPORTANCE FACTOR = 1. .) BUILDING CATEGORY = II) ROOF ANGLE = 10-45 DEGREES i.) MEAN ROOF HEIGHT = <30 FT) WIND EXPOSURE = C **DESIGN LOADS** FLOOR 40 PSF (ALL OTHER DWELLING ROOMS) 30 PSF (ATTICS WITH STORAGE) 10 PSF (ATTICS WITHOUT STORAGE, <3:12) 30 PSF (SLEEPING ROOMS 12 PSF (12:12 AND GREATER) NOT IN FLOOD ZONE (BUILDER TO VERIFY) STAIRS 40 PSF (ONE & TWO FAMILY DWELLINGS) ROOF 20 PSF (FLAT OR <4:12) 16 PSF (4:12 TO <12:12) SOIL BEARING CAPACITY 1000PSF (ENCLOSED SIMPLE DIAPHRAGM BUILDINGS WITH FLAT, HIPPED, OR GABLE ROOFS: MEAN ROOF HEIGHT NOT EXCEEDING LEAST HORIZONTAL DIMENSION OR 60 FT; NOT ON UPPER HALF OF HILL OR ESCARPMENT 60FT IN EXP. B, 30FT IN EXP. C AND >10% SLOPE AND UNOBSTRUCTED UPWIND FOR 50x HEIGHT OR 1 MILE WHICHEVER IS LESS ### ANCHOR TABLE **OBTAIN UPLIFT REQUIREMENTS FROM TRUSS** MANUFACTURER'S ENGINEERING | UPLIFT LBS. SYP | UPLIFT LBS. SPF | TRUSS CONNECTOR* | TO PLATES | TO RAFTER/TRUSS | TO STUDS | |-----------------|-----------------|------------------------|----------------|--|--| | < 420 | < 245 | H5A | 3-8d | 3-8d | The state of s | | < 455 | < 265 | H5 | 4-8d | 4-8d | V 1 10 3 P 10 - 27 | | < 360 | < 235 | H4 | 4-8d | 4-8d | | | < 455 | < 320 | НЗ | 4-8d | 4-8d | | | < 415 | < 365 | H2.5 | 5-8d | 5-8d | | | < 600 | < 535 | H2.5A | 5-8d | 5-8d | | | < 950 | < 820 | H6 | 8-8d | 8-8d | | | < 745 | < 565 | H8 | 5-10d, 1 1/2" | 5-10d, 1 1/2" | | | < 1465 | < 1050 | H14-1 | 13-8d | 12-8d, 1 1/2" | | | < 1465 | < 1050 | H14-2 | 15-8d | 12-8d, 1 1/2" | in note and | | < 990 | < 850 | H10-1 | 8-8d, 1 1/2" | 8-8d, 1 1/2" | the land | | < 760 | < 655 | H10-2 | 6-10d | 6-10d | | | < 1470 | < 1265 | H16-1 | 10-10d, 1 1/2" | 2-10d, 1 1/2" | RIVER SEED | | < 1470 | < 1265 | H16-2 | 10-10d, 1 1/2" | 2-10d, 1 1/2" | | | < 1000 | < 860 | MTS24C | 7-10d 1 1/2" | 7-10d 1 1/2" | | | < 1450 | < 1245 | HTS24 | 12-10d 1 1/2" | 12-10d 1 1/2" | | | < 2900 | < 2490 | 2 - HTS24 | | | | | < 2050 | < 1785 | LGT2 | 14 -16d | 14 -16d | | | | | HEAVY GIRDER TIEDOWNS* | - 4 - 1 1 1 1 | J-1998 F-1 | TO FOUNDATION | | < 3965 | < 3330 | MGT | | 22 -10d | 1-5/8" THREADED ROD
12" EMBEDMENT | | < 10980 | < 6485 | HGT-2 | | 16 -10d | 2-5/8" THREADED ROD
12" EMBEDMENT | | < 10530 | < 9035 | HGT-3 | | 16 -10d | 2-5/8" THREADED ROD
12" EMBEDMENT | | < 9250 | < 9250 | HGT-4 | 6 | 16 -10d | 2-5/8" THREADED ROD
12" EMBEDMENT | | | | STUD STRAP CONNECTOR* | | | TO STUDS | | < 435 | < 435 | SSP DOUBLE TOP PLATE | 3 -10d | | 4 -10d | | < 455 | < 420 | SSP SINGLE SILL PLATE | 1 -10d | | 4 -10d | | < 825 | < 825 | DSP DOUBLE TOP PLATE | 6 -10d | | 8 -10d | | < 825 | < 600 | DSP SINGLE SILL PLATE | 2 -10d | | 8 -10d | | < 885 | < 760 | SP4 | | THE STREET | 6-10d, 1 1/2" | | < 1240 | < 1065 | SPH4 | 1 30 M 1 1 30 | | 10-10d, 1 1/2" | | < 885 | < 760 | SP6 | | | 6-10d, 1 1/2" | | < 1240 | < 1065 | SPH6 | | DESTRUCTION OF THE PARTY | 10-10d, 1 1/2" | | < 1235 | < 1165 | LSTA18 | 14-10d | | | | < 1235 | < 1235 | LSTA21 | 16-10d | NEWELL STATE | -12 SEC. C | | < 1030 | < 1030 | CS20 | 18-8d | ALC: NO. | | | < 1705 | < 1705 | CS16 | 28-8d | | | | | | STUD ANCHORS* | TO STUDS | grant de la Meira | TO FOUNDATION | | < 1350 | < 1305 | LTT19 | 8-16d | | 1/2" AB | | < 2310 | < 2310 | LTTI31 | 18-10d, 1 1/2" | 多四名主义 原用 | 1/2" AB | | < 2775 | < 2570 | HD2A | 2-5/8" BOLTS | | 5/8" AB | | < 4175 | < 3695 | HTT16 | 18 - 16d | | 5/8" AB | | < 1400 | < 1400 | PAHD42 | 16-16d | | | | < 3335 | < 3335 | HPAHD22 | 16-16d | | | | < 2200 | < 2200 | ABU44 | 12-16d | | 1/2" AB | | < 2300 | < 2300 | ABU66 | 12-16d | | 1/2" AB | | < 2320 | < 2320 | ABU88 | 18 - 16d | | 2-5/8" AB | # dimensions. Refer all questions to Mark Disosway, P.E. for resolution o not proceed without clarification COPYRIGHTS AND PROPERTY RIGHTS: Mark Disosway, P.E. hereby expressly reserves its common law copyrights and property right in these instruments of service This document is not to be reproduced, alter or copied in any form or manner without first the express written permission and consent of Mark Disosway. Mark Disosway, PE No.53915, POB 868, Lake City, FL 32056, 86-754-5419 IMENSIONS: **REVISIONS** SOFTPLAN CERTIFICATION: I hereby certify that I have examined this plan, and that the applicable portions of the plan, relating to wind engineering comply with section R301.2.1, florida building code esidential 2007. to the best of my knowledge. # Edgley Construction John Barber Hangar ADDRESS: 115 SW Challenger Lane Lake City, Florida 32025 Mark Disosway P.E. P.O. Box 868 Lake City, Florida 32056 Phone: (386) 754 - 5419 Fax: (386) 269 - 4871 September 08, 2010 DRAWN BY: STRUCTURAL BY David Disosway David Disosway PRINTED DATE: FINALS DATE: 8Sep10 > JOB NUMBER: 1009003 > > **S-1** OF 4 SHEETS DRAWING NUMBER TYPICAL DESIGN WA NON - STRUCTURAL - **FEVISIONS** SOFTPIAN WIDLOAD ENGINEER: Mai Disosway, PE No.3915, POB 868, Lake City, FL 32056, dimisions. Refer all questions to Mai Disosway, P.E. for resolution. Do ot proceed without clarification. COYRIGHTS AND PROPERTY RIGHTS: Mar Disosway, P.E. hereby expressly resrves its common law copyrights and proprty right in these instruments of service. Thirdocument is not to be reproduced, altered or cpied in any form or manner without first the xpress written permission and consent of Nark Disosway. CEITIFICATION: I hereby certify that I have exalined this plan, and that the applicable porpns of the plan, relating to win.engineering comply with section R3(.2.1, florida building code resiential 2007, to the best of my knowledge. LIMFATION: This design is valid for one builing, at specified location. P.E. 53915 **Edgley Construction** John Barber Hangar ADDRESS: 115 SW Challenger Lane Lake City, Florida 32025 Mark Disosway P.E. P.O. Box 868 Lake City, Florida 32056 Phone: (386) 754 - 5419 Fax: (386) 269 - 4871 PRINTED DATE: September 08, 2010 RAWN BY: STRUCTURAL BY: Dvid Disosway David Disosway FVALS DATE: JOB NUMBER: 1009003 DRAWING NUMBER OF 4 SHEETS THE BRANCH CIRCUIT. PHONE JACK TELEVISION JACK ⊕ CM CARBON MONOXIDE ALARM GARAGE DOOR OPENER E -9 ALL OUTLETS TO BE LOCATED ABOVE BASE FLOOD ELEVATION A SERVICE DISCONNECT WITH OVER CURRENT PROTECTION SHALL BE INSTALLED OUTSIDE OF THE BUILDING, ON THE LOAD SIDE OF THE METER, AT THE PLACE ELECTRIC E -10 CONDUCTORS ENTER THE BUILDING. SERVICE ENTRANCE CONDUCTORS MAY NOT BE LOCATED INSIDE OF THE OF THE BUILDING WITHOUT SPECIAL APPROVAL OF THE BUILDING OFFICIAL CARBON MONOXIDE ALARMS SHALL BE REQUIRED WITHIN 10' E -11 OF ALL ROOMS FOR SLEEPING PURPOSES IN BUILDINGS HAVING A FOSSIL-FUEL-BURNING HEATER OR APPLIANCE, A FIREPLACE, OR ATTACHED GARAGE. E -12 ALL OUTLETS LOCATED IN RESIDENTIAL TO BE TAMPER-RESISTANT PER NEC.