

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

RE: Sapp - Sapp

MiTek USA, Inc.

6904 Parke East Blvd. Tampa, FL 33610-4115

Site Information:

Customer Info: Lee Holloway Project Name: .

Lot/Block: .

Subdivision: .

Address: .,

City: High Springs

State: FL

Name Address and License # of Structural Engineer of Record, If there is one, for the building.

Name:

License #:

Address:

City:

State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: FBC2020/TPI2014

Design Program: MiTek 20/20 8.4

Wind Code: ASCE 7-16

Wind Speed: 130 mph

Roof Load: 40.0 psf

Floor Load: N/A psf

This package includes 4 individual, Truss Design Drawings and 0 Additional Drawings. With my seal affixed to this sheet, I hereby certify that I am the Truss Design Engineer and this index sheet conforms to 61G15-31.003, section 5 of the Florida Board of Professional Engineers Rules.

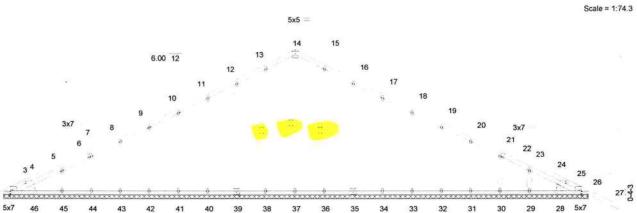
No.	Seal#	Truss Name	Date
1	T23714102	A1GE	4/28/21
2	T23714103	A2	4/28/21
3	T23714104	A3	4/28/21
4	T23714105	A4	4/28/21

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Mayo Truss Company, Inc..

Truss Design Engineer's Name: Lee, Julius

My license renewal date for the state of Florida is February 28, 2023.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.


Julius Lee PE No.34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd, Tampa FL 33610

April 28,2021

Lee, Julius

1 of 1

Job Truss Truss Type Qty Ply Sapp T23714102 SAPP A1GE Common Supported Gable 2 Job Reference (optional) 8.430 s Apr 20 2021 MiTek Industries, Inc. Mon Apr 26 11:58:46 2021 Page 1 Mayo Truss Company, Inc. Mayo, FL - 32066. ID:G6KJ33kEYBBBCnCxTraFqdzRVb0-uGmqS4AVPrM3bSt7VWQ94AINO049KBx3E5DdNEzMs 42-0-0 20-0-0 40-0-0 2-0-0 20-0-0 20-0-0 2-0-0

5x5

40-0-0 40-0-0 [2:0-1-8,Edge], [2:0-3-8,Edge], [6:0-1-14,Edge], [22:0-1-14,Edge], [26:0-1-8,Edge], [26:0-3-8,Edge], [28:0-1-8,1-1-2], [35:0-2-8,0-3-0], [39:0-2-8,0-3-0], Plate Offsets (X,Y)-[46:0-1-8,1-1-2] GRIP LOADING (psf) SPACING-2-0-0 CSI DEFL I/defl L/d **PLATES** 244/190 Plate Grip DOL TCLL 20.0 1.25 TC BC 0.31 Vert(LL) -0.02 27 n/r 120 MT20 27 TCDL 10.0 Lumber DOL 1.25 0.06 Vert(CT) -0.03 n/r 120 BCLL 0.0 Rep Stress Incr YES WB 0.13 Horz(CT) 0.01 26 n/a n/a Code FBC2020/TPI2014 BCDL 10.0 Matrix-S Weight: 273 lb FT = 20% LUMBER-BRACING-

38

5x5

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 **OTHERS** 2x4 SP No.2

10-0-4

143

TOP CHORD **BOT CHORD** WEBS

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing. 14-37, 13-38, 15-36 1 Row at midpt

REACTIONS. All bearings 40-0-0. (lb) - Max Horz 2=-289(LC 10)

3x5 = 5x12

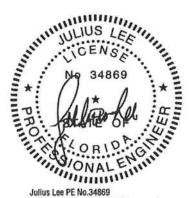
Max Uplift All uplift 100 lb or less at joint(s) 38, 39, 40, 41, 42, 43, 44, 45, 36, 35, 34, 33, 32, 31, 30, 29

except 2=-121(LC 12), 26=-121(LC 12)

All reactions 250 lb or less at joint(s) 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 36, 35, 34, 33, 32, 31, 30, 29, 28 except 2=254(LC 1), 26=254(LC 1) Max Grav

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown

11-12=-116/274, 12-13=-117/335, 13-14=-136/387, 14-15=-136/387, 15-16=-117/335, TOP CHORD


16-17=-96/274

WEBS 14-37=-250/38

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=40ft; eave=2ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (directional) and C-C Comer(3E) -2-0-0 to 2-0-0, Exterior(2N) 2-0-0 to 20-0-0, Corner(3R) 20-0-0 to 24-0-0, Exterior(2N) 24-0-0 to 42-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) All plates are 1.5x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 38, 39, 40, 41, 42, 43, 44, 45, 36, 35, 34, 33, 32, 31, 30, 29 except (jt=lb) 2=121, 26=121.

5x12

3x5 =

Julius Lee PE No.34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 28,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent localizes with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, cerection and bracing of trusses and truss systems, see

ANSI/TP1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply Sapp T23714103 SAPP Common 15 A2 Job Reference (optional) 8.430 s Apr 20 2021 MiTek Industries, Inc. Mon Apr 26 11:58:48 2021 Page 1 ID:G6KJ33kEYBBBCnCxTraFqdzRVb0-qeuatlClxScnqm1VdxSd9bNfBqdlo0HLiPikS6zMs_r Mayo Truss Company, Inc., Mayo, FL - 32066. 27-10-4 7-10-4 -2-0-0 2-0-0 33-7-14 40-0-0 42-0-0 6-4-2 6-4-2 20-0-0 5-9-10 2-0-0 5-9-10 7-10-4 Scale = 1:70.5 5x5 5 6.00 12 3x4 3x4 0-4-3 5x5 7 24 21 Ž1 26 27 11 10 14 13 12 3x5 5x5 1.5x4 5x5 = 4x8 = 1.5x4 3x5 = 12-1-12 5-9-10 20-0-0 7-10-4 27-10-4 33-7-14 40-0-0 7-10-4 [3:0-2-8,0-3-0], [7:0-2-8,0-3-0], [11:0-2-8,0-3-4], [13:0-2-8,0-3-4] Plate Offsets (X,Y)-DEFL. I/defl L/d PLATES GRIP LOADING (psf) SPACINGin (loc) 2-0-0 CSI. -0.13 12-13 >999 240 MT20 244/190 TCLL 20.0 Plate Grip DOL 1.25 TC Vert(LL) TCDL 10.0 Lumber DOL 1.25 BC 0.70 Vert(CT) -0.25 12-13 >999 180 Rep Stress Incr BCLL 00 YES WR 0.46 Horz(CT) 0.04 11 n/a n/a FT = 20% Weight: 221 lb Code FBC2020/TPI2014 BCDL Matrix-AS 10.0 LUMBER-BRACING-TOP CHORD Structural wood sheathing directly applied. TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 **BOT CHORD** Rigid ceiling directly applied. 2x4 SP No.2 1 Row at midpt 4-12, 5-12, 6-11 WEBS WEBS REACTIONS. (size) 2=0-3-8, 11=0-3-8, 8=0-3-8 Max Horz 2=-298(LC 10)

Max Uplift 2=-225(LC 12), 11=-442(LC 12), 8=-262(LC 12) Max Grav 2=1299(LC 17), 11=2191(LC 2), 8=425(LC 22)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2052/260, 3-4=-1487/248, 4-5=-669/202, 5-6=-674/211, 6-7=-174/695,

7-8=-222/381

2-14=-102/1982, 13-14=-103/1977, 12-13=0/1434, 11-12=-507/357 BOT CHORD

3-13=-613/128, 4-13=0/586, 4-12=-1037/253, 6-12=-191/1370, 6-11=-1662/440, WEBS

7-11=-555/644, 7-10=-393/240

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=40ft; eave=5ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) -2-0-0 to 2-0-0, Interior(1) 2-0-0 to 20-0-0, Exterior(2R) 20-0-0 to 24-0-0, Interior(1) 24-0-0 to 42-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; porch right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb)

2=225, 11=442, 8=262.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

No 34869 ALINA JONA -

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

April 28,2021

₩ WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MIN-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MTEk® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always regirized for stability and to prevent otlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANS/ITPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information

available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply Sapp T23714104 SAPP A3 5 Common Job Reference (optional)

8.430 s Apr 20 2021 MiTek Industries, Inc. Mon Apr 26 11:58:50 2021 Page 1
ID:G6KJ33kEYBBBCnCxTraFqdzRVb0-n10LIRD?T3tV43BukLU5E0S_EdEaGwpe9jBqX?zMs_p Mayo Truss Company, Inc. Mayo, FL - 32066, 27-10-4 7-10-4 -2-0-0 2-0-0 33-7-14 40-0-0 42-0-0 20-0-0 5-9-10 2-0-0 5-9-10 7-10-4 Scale = 1:70.5 5x5 5 6.00 12 23 22 3x4 6 10-4-3 5x5 7 21 143 25 26 12 11 10 13 3x5 1.5x4 5x7 3x9 = 5x7 1.5x4 3x5 = 12-1-12 5-9-10 20-0-0 7-10-4 27-10-4 33-7-14 40-0-0 7-10-4 Plate Offsets (X,Y) [2:0-0-4,0-0-0], [3:0-2-8,0-3-0], [7:0-2-8,0-3-0], [8:0-0-4,0-0-0], [11:0-3-8,0-3-0], [13:0-3-8,0-3PLATES GRIP LOADING (psf) SPACING-DEFL I/defi L/d 2-0-0 CSI. in (loc) 20.0 Plate Grip DOL -0.28 11-12 240 244/190 TCLL 1.25 TC Vert(LL) >999 MT20 TCDL 10.0 Lumber DOL 1.25 BC 0.93 Vert(CT) -0.53 12-13 >907 180 WB 0.17 BCLL 0.0 Rep Stress Incr YES 0.46 Horz(CT) 8 n/a n/a Weight: 221 lb FT = 20% BCDL Code FBC2020/TPI2014 10.0 Matrix-AS LUMBER-BRACING-TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied. **BOT CHORD** 2x4 SP No.2 **BOT CHORD** Rigid ceiling directly applied. 1 Row at midpt WEBS 2x4 SP No.2 4-12, 6-12 WEBS REACTIONS. (size) 2=0-3-8, 8=0-3-8 Max Horz 2=298(LC 11) Max Uplift 2=-312(LC 12), 8=-312(LC 12)

Max Grav 2=1953(LC 17), 8=1953(LC 18)

TOP CHORD

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-3487/545, 3-4=-2939/542, 4-5=-2132/503, 5-6=-2132/503, 6-7=-2939/542, 7-8=-3488/545

BOT CHORD 2-14=-356/3263, 13-14=-358/3259, 12-13=-250/2733, 11-12=-273/2515, 10-11=-380/3036,

WEBS

3-13=-592/125, 5-12=-183/1414, 4-13=0/579, 4-12=-1030/248, 6-12=-1030/248, 6-11=0/579, 7-11=-593/125

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=40ft; eave=5ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) -2-0-0 to 2-0-0, Interior(1) 2-0-0 to 20-0-0, Exterior(2R) 20-0-0 to 24-0-0, Interior(1) 24-0-0 to 42-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads

- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=312, 8=312.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

ONAL "Himmun

Julius Lee PE No.34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

April 28,2021

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MTEk® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and futuse systems, see

AMS/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Ply Qtv Job Truss Truss Type Sapp T23714105 SAPP A4 Common 4 Job Reference (optional) 8.430 s Apr 20 2021 MiTek Industries, Inc. Mon Apr 26 11:58:51 2021 Page 1 Mayo Truss Company, Inc. Mayo, FL - 32066 ID:G6KJ33kEYBBBCnCxTraFqdzRVb0-FDZjVnEdEN?LhDm4I30KnD?8Z1ap?JdoONxO3RzMs -2-0-0 20-0-0 27-10-4 33-7-14 40-0-0 42-0-0 2-0-0 7-10-4 5-9-10 2-0-0 Scale = 1:70.5 5x5 = 5 6.00 12 22 3x4 3x4 6 04-3 5x5 5×5 7 24 21 25 26 27 28 29 30 12 11 10 13 5x7 = 1.5x4 1.5x4 5x7 = 3x9 = 3x5 = 27-10-4 33-7-14 40-0-0 12-1-12 20-0-0 5-9-10 [2:0-0-4,0-0-0], [3:0-2-8,0-3-0], [7:0-2-8,0-3-0], [8:0-0-4,0-0-0], [11:0-3-8,0-3-0], [13:0-3-8,0-3-0] Plate Offsets (X,Y)-LOADING SPACING-2-0-0 DEFL (loc) I/defl L/d **PLATES** GRIP (psf) TCLL 20.0 Plate Grip DOL 1.25 TC BC 0.66 Vert(LL) 0.52 11-12 >916 240 MT20 244/190 TCDL -0.53 12-13 10.0 1.25 180 Lumber DOL 0.93 Vert(CT) >907 BCLL 0.0 Rep Stress Incr WB Horz(CT) 0.17 YES 0.74 n/a n/a BCDL 10.0 Code FBC2020/TPI2014 Weight: 221 lb FT = 20% Matrix-AS LUMBER-BRACING-TOP CHORD Structural wood sheathing directly applied. 2x4 SP No.2 TOP CHORD **BOT CHORD** 2x4 SP No.2 **BOT CHORD** Rigid ceiling directly applied. 5-12, 4-12, 6-12 2x4 SP No.2 WEBS WEBS 1 Row at midpt REACTIONS. (size) 2=0-3-8, 8=0-3-8 Max Horz 2=298(LC 11) Max Uplift 2=-822(LC 12), 8=-822(LC 12)

Max Grav 2=1847(LC 2), 8=1847(LC 2)

FORCES

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 2D 2-3=-3348/3172, 3-4=-2848/2759, 4-5=-2089/2114, 5-6=-2089/2114, 6-7=-2848/2759, TOP CHORD

7-8=-3348/3172 **BOT CHORD**

2-14=-2714/2940, 13-14=-2706/2935, 12-13=-2221/2484, 11-12=-2243/2484,

10-11=-2729/2935, 8-10=-2736/2940 3-14=-312/226, 3-13=-507/543, 5-12=-1619/1399, 4-13=-671/537, 4-12=-892/918, WEBS

6-12=-892/918, 6-11=-671/537, 7-11=-507/543, 7-10=-312/226

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=40ft; eave=5ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) -2-0-0 to 2-0-0, Interior(1) 2-0-0 to 20-0-0, Exterior(2R) 20-0-0 to 24-0-0, Interior(1) 24-0-0 to 42-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=822, 8=822.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

NO 34869

AO 34869

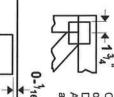
AO RIDA

Julius Lee PE No.34869

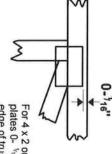
Julius Lee PE No.34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 28,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5:19/2020 BEFORE USE.


Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/THI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Symbols

PLATE LOCATION AND ORIENTATION

Center plate on joint unless x, y offsets are indicated.
Dimensions are in ft-in-sixteenths.
Apply plates to both sides of truss and fully embed teeth.

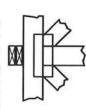
For 4 x 2 orientation, locate plates 0- ¹/16" from outside edge of truss.

This symbol indicates the required direction of slots in connector plates.

* Plate location details available in MiTek 20/20 software or upon request.

PLATE SIZE

4 × 4

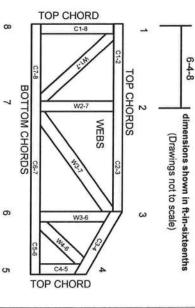

The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated.

BEARING

Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number where bearings occur. Min size shown is for crushing only.


Industry Standards: ANSI/TPI1: National [

National Design Specification for Metal Plate Connected Wood Truss Construction. Design Standard for Bracing.
Building Component Safety Information, Guide to Good Practice for Handling, Installing & Bracing of Metal Plate

Connected Wood Trusses.

DSB-89:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

PRODUCT CODE APPROVALS

ICC-ES Reports:

ESR-1311, ESR-1352, ESR1988 ER-3907, ESR-2362, ESR-1397, ESR-3282

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2012 MiTek® All Rights Reserved

MiTek Engineering Reference Sheet: MII-7473 rev. 5/19/2020

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- Truss bracing must be designed by an engineer, For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.

ω

Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.

4

- Cut members to bear tightly against each other
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.

<u>.</u> О

- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.

9

- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.