

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

RE: 2720721 - KEVIN HOLDER ADDITION

MiTek USA, Inc.

6904 Parke East Blvd. Tampa, FL 33610-4115

Site Information:

Customer Info: Kevin Holder Project Name: Addition Model: Custom

Lot/Block: N/A Subdivision: N/A

Address: 130 SW Joshua Court, N/A

City: Columbia Cty

State: FL

Name Address and License # of Structural Engineer of Record, If there is one, for the building.

Name: License #:

Address:

City:

State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: FBC2020/TPI2014

Wind Code: N/A Roof Load: 37.0 psf Design Program: MiTek 20/20 8.4

Wind Speed: 130 mph Floor Load: N/A psf

This package includes 13 individual, Truss Design Drawings and 0 Additional Drawings. With my seal affixed to this sheet, I hereby certify that I am the Truss Design Engineer and this index sheet conforms to 61G15-31.003, section 5 of the Florida Board of Professional Engineers Rules.

No.	Seal#	Truss Name	Date
1 2 3 4 5 6 7 8 9 10 11 12 13	T23318277 T23318278 T23318279 T23318280 T23318281 T23318282 T23318283 T23318285 T23318286 T23318286 T23318288 T23318288	CJ01 CJ03 CJ05 EJ01 HJ10 T01 T02 T03 T04 T05 T06 T06G T07	3/24/21 3/24/21 3/24/21 3/24/21 3/24/21 3/24/21 3/24/21 3/24/21 3/24/21 3/24/21 3/24/21

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Builders FirstSource-Jacksonville.

Truss Design Engineer's Name: Lee, Julius

My license renewal date for the state of Florida is February 28, 2023.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design co des), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Julius Lee PE No.34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

March 24,2021

	s es

Job	Truss	Truss Type		Qty	Ply		KEVIN HOLDER ADDI	TION	1200000000
2720721	CJ01	JACK-OPE	N .	2	0	1			T2331827
							Job Reference (optional)	
Builders FirstSource (.	Jacksonville, FL), Jacks	sonville, FL - 32244,			8.430	s Mar	4 2021 MiTek Industries	, Inc. Wed Mar 24 0	07:46:50 2021 Page 1
	20		-2-0-0	ID:9B5QRtZPhUL0	yMYqz	Vn3hh	zz6?b-wVcdWeY4sVNU	7oJ2AQmZn39NsdZ	NfDgQuugngFzXnn3
			2-0-0		-		1-0-0 1-0-0		
	0-8-15		5.00	12 2			3 4 3x6	0.7.8	Scale = 1:8
					3x4 =				
							1-0-0		
Plate Offsets (X,Y)-	[2:0-0-10,0-1-8], [2:0-1-1	0.0-4-151					1-0-0		
	[2.0-0-10,0-1-0], [2.0-1-1	0,0 + 10]		T					
LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	I/defl L/d	PLATES	GRIP
TCLL 20.0 TCDL 7.0	Plate Grip DOL Lumber DOL	1.25	TC 0.24		.00	5	>999 240	MT20	244/190
TCDL 7.0 BCLL 0.0 *	Rep Stress Incr	1.25 YES	BC 0.02 WB 0.00		.00	5	>999 180 n/a n/a		
BCDL 10.0	Code FBC2020/T		Matrix-MP	11012(01) -0	.00	2	iva iva	Weight: 8 lb	FT = 20%
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S		2 2	I ₂	BRACING- TOP CHORD BOT CHORD	Str Rig	ructura gid cei	al wood sheathing directling directly applied or	tly applied or 1-0-0	

Left: 2x4 SP No.3

REACTIONS. (size) 3=Mechanical, 2=0-3-8, 4=Mechanical

Max Horz 2=40(LC 8)

Max Uplift 3=-29(LC 1), 2=-116(LC 8), 4=-44(LC 1) Max Grav 3=21(LC 8), 2=254(LC 1), 4=29(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4 except (jt=lb) 2=116.

Julius Lee PE No.34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

March 24,2021

Qty Ply KEVIN HOLDER ADDITION Job Truss Truss Type T23318278 2720721 **CJ03** JACK-OPEN 2 Job Reference (optional) 8.430 s Mar 4 2021 MiTek Industries, Inc. Wed Mar 24 07:46:51 2021 Page 1 Builders FirstSource (Jacksonville, FL), Jacksonville, FL - 32244. ID:9B5QRtZPhUL0yMYqzVn3hhzz6?b-PhA?k_YidpVLlyuFj7HoKHiYc1tuOgwZ7YPKChzXnn2 Scale = 1:12.4 0-4-7 5.00 12 2 0-6-15 3x6 || 3-0-0 [2:0-0-10,0-1-8], [2:0-1-10,0-4-15] Plate Offsets (X,Y)-GRIP SPACING-CSI. DEFL. l/defl L/d PLATES LOADING (psf) 244/190 20.0 Plate Grip DOL 1.25 TC 0.24 Vert(LL) -0.00 >999 240 MT20 TCLL TCDL 7.0 Lumber DOL 1.25 BC 0.07 Vert(CT) -0.01 >999 180 BCLL 0.0 Rep Stress Inci YES WB 0.00 Horz(CT) 0.00 3 n/a n/a BCDL 10.0 Code FBC2020/TPI2014 Matrix-MP Weight: 14 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP No.2

WEDGE

Left: 2x4 SP No.3

REACTIONS.

(size) 3=Mechanical, 2=0-3-8, 4=Mechanical

Max Horz 2=67(LC 12)

Max Uplift 3=-29(LC 12), 2=-82(LC 8)

Max Grav 3=50(LC 1), 2=253(LC 1), 4=46(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -2-0-0 to 0-9-4, Interior(1) 0-9-4 to 2-11-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.

No 34869

No 34869

No 34869

No OR 10 ON AL ENGLISH ON AL

Structural wood sheathing directly applied or 3-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Julius Lee PE No.34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

March 24,2021

Job Truss Truss Type Qty Plv KEVIN HOLDER ADDITION T23318279 2720721 **CJ05** JACK-OPEN 2 Job Reference (optional) 8.430 s Mar 4 2021 MiTek Industries, Inc. Wed Mar 24 07:46:51 2021 Page 1 Builders FirstSource (Jacksonville, FL). Jacksonville, FL - 32244. ID:9B5QRtZPhUL0yMYqzVn3hhzz6?b-PhA?k_YidpVLlyuFj7HoKHiYR1rYOgwZ7YPKChzXnn2 Scale = 1:16.4 5.00 12 2-3-8 5-0-0 Plate Offsets (X,Y)-[2:Edge,0-1-9], [2:0-1-10,0-4-15] LOADING (psf) SPACING-2-0-0 CSI. DEFL. in l/defl PLATES GRIP (loc) L/d Plate Grip DOL TCLL 20.0 1.25 TC 0.25 Vert(LL) 0.03 244/190 4-7 >999 240 MT20 TCDL 7.0 Lumber DOL 1.25 BC 0.22 Vert(CT) -0.05 4-7 >999 180 BCLL 0.0 Rep Stress Incr YES WB 0.00 0.01 3 Horz(CT) n/a n/a BCDL 10.0 Code FBC2020/TPI2014 Matrix-MP FT = 20% Weight: 20 lb LUMBER-**BRACING-**TOP CHORD Structural wood sheathing directly applied or 5-0-0 oc purlins.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

WEDGE Left: 2x4 SP No.3

REACTIONS.

(size) 3=Mechanical, 2=0-3-8, 4=Mechanical

Max Horz 2=95(LC 12)

Max Uplift 3=-59(LC 12), 2=-82(LC 12)

Max Grav 3=107(LC 1), 2=313(LC 1), 4=85(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -2-0-0 to 0-9-4, Interior(1) 0-9-4 to 4-11-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.

ONAL Minni

Julius Lee PE No.34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

March 24,2021

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MIT eMS connectors. This design is based only upon parameters and nor nindividual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TH Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

KEVIN HOLDER ADDITION Job Truss Truss Type Qty Ply T23318280 10 2720721 EJ01 JACK-PARTIAL Job Reference (optional) 8.430 s Mar 4 2021 MiTek Industries, Inc. Wed Mar 24 07:46:52 2021 Page 1 Builders FirstSource (Jacksonville, FL), Jacksonville, FL - 32244, ID:9B5QRtZPhUL0yMYqzVn3hhzz6?b-ttkNxKZKO7dCM6TRHro1sUEduR7a77AjLC9tk8zXnn1 7-0-0 Scale = 1:20.5 5.00 12 0-6-15 [2:0-0-0,0-1-5], [2:0-1-10,0-4-15] Plate Offsets (X,Y)-SPACING-DEFL 1/d PLATES GRIP LOADING (psf) 2-0-0 CSI. (loc) I/defl 244/190 Plate Grip DOL 0.59 0.10 MT20 TCLL 20.0 1.25 TC Vert(LL) 4-7 >800 240 TCDL 7.0 Lumber DOL 1.25 BC 0.49 Vert(CT) -0.204-7 >406 180 WB 0.00 BCLL 0.0 Rep Stress Incr YES Horz(CT) 0.03 n/a n/a Code FBC2020/TPI2014 FT = 20% Weight: 26 lb BCDL 10.0 Matrix-MS BRACING-LUMBER-TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP No.2

WEDGE

Left: 2x4 SP No.3

REACTIONS. (size) 3=Mechanical, 2=0-3-8, 4=Mechanical

Max Horz 2=120(LC 12)

Max Uplift 3=-77(LC 12), 2=-95(LC 12)

Max Grav 3=159(LC 1), 2=380(LC 1), 4=123(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -2-0-0 to 0-9-4, Interior(1) 0-9-4 to 6-11-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.

Julius Lee PE No.34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

March 24,2021

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
**ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Composite the property of the property damage. For general guidance and property damage. For general guidance and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
**ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Composite the property damage. For general guidance and BCSI Building Composite the fabrication available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

6904 Parke East Blvd. Tampa, FL 36610

Qty KEVIN HOLDER ADDITION Job Truss Truss Type Ply T23318281 2720721 HJ10 DIAGONAL HIP GIRDER Job Reference (optional) Builders FirstSource (Jacksonville, FL), Jacksonville, FL - 32244 8.430 s Mar 4 2021 MiTek Industries, Inc. Wed Mar 24 07:46:53 2021 Page 1 ID:9B5QRtZPhUL0yMYqzVn3hhzz6?b-L4lm8gay9Ql3_F2drYJGPinoRqResV0sasuRGazXnn0 9-10-1 2-9-15 4-6-0 Scale = 1:23.1 12 3.54 12 3x4 = 3 15 6 7 3x6 || 2x4 || 5 9-10-1 4-6-0 Plate Offsets (X,Y)-[2:0-0-0,0-1-14], [2:0-1-13,0-7-2] LOADING (psf) SPACING-DEFL 2-0-0 CSI. in (loc) **Vdefi** 1 /d PLATES GRIP 20.0 Plate Grip DOL TCLL 1.25 TC 0.60 Vert(LL) -0.06 >999 6-7 240 MT20 244/190 TCDL 7.0 Lumber DOL 1.25 BC 0.63 Vert(CT) -0.13>915 180 6-7 BCLL 0.0 Rep Stress Incr WB 0.35 NO -0.01Horz(CT) n/a n/a Code FBC2020/TPI2014 BCDL 10.0 Matrix-MS Weight: 45 lb FT = 20%LUMBER-BRACING-TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. **BOT CHORD** 2x4 SP No.2 **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing. 2x4 SP No.3 WEBS WEDGE

Left: 2x4 SP No.3

REACTIONS.

(size) 4=Mechanical, 2=0-4-9, 5=Mechanical Max Horz 2=134(LC 22)

Max Uplift 4=-72(LC 4), 2=-174(LC 4), 5=-40(LC 8) Max Grav 4=152(LC 1), 2=465(LC 1), 5=263(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-626/136

BOT CHORD 2-7=-176/578, 6-7=-176/578

WEBS 3-6=-606/185

NOTES-

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5 except (jt=lb) 2=174
- 7) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 62 lb down and 106 lb up at 1-6-1, 62 lb down and 106 lb up at 1-6-1, 20 lb down and 30 lb up at 4-4-0, 20 lb down and 30 lb up at 4-4-0, and 41 lb down and 70 lb up at 7-1-15, and 41 lb down and 70 lb up at 7-1-15 on top chord, and 24 lb down and 72 lb up at 1-6-1, 24 lb down and 72 lb up at 1-6-1, 22 lb down and 1 lb up at 4-4-0, 22 lb down and 1 lb up at 4-4-0, and 36 lb down at 7-1-15, and 36 lb down at 7-1-15 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf) Vert: 1-4=-54, 5-8=-20

No 34P SIONAL thinnen!

Julius Lee PE No.34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd, Tampa FL 33610

March 24,2021

Continued on page 2

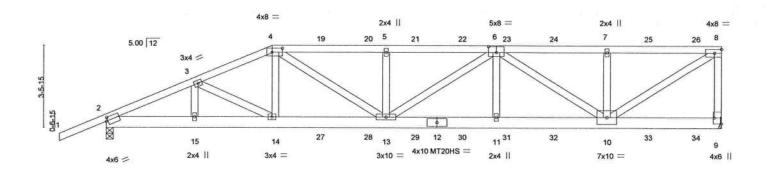
MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property amage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Ansi/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20801

Job	Truss	Truss Type	Qty	Ply	KEVIN HOLDER ADDITION	T23318281
2720721	ну10	DIAGONAL HIP GIRDER	1	1	Job Reference (optional)	120010201

Builders FirstSource (Jacksonville, FL),

Jacksonville, FL - 32244,

8.430 s Mar 4 2021 MiTek Industries, Inc. Wed Mar 24 07:46:53 2021 Page 2 ID:9B5QRtZPhUL0yMYqzVn3hhzz6?b-L4Im8gay9Ql3_F2drYJGPinoRqResV0sasuRGazXnn0


LOAD CASE(S) Standard Concentrated Loads (lb)

Vert: 7=2(F=1, B=1) 11=49(F=25, B=25) 12=-61(F=-30, B=-30) 14=70(F=35, B=35) 15=-52(F=-26, B=-26)

Job	Truss	Trus	ss Type	Qty	Ply	KEVIN HOLDER ADDITION	1	W-10 (100) W-10 (100)
2720721	T01	Half	f Hip Girder	1	1	11		T23318282
						Job Reference (optional)		
Builders FirstSource	(Jacksonville, FL),	Jacksonville, FL - 3	32244,		8.430 s Mar	4 2021 MiTek Industries, Inc	. Wed Mar 24 07:46:55	2021 Page 1
				ID:9B5QRtZPhUL0yf	MYqzVn3hh;	zz6?b-HSPWZMcCh20nDZC0	DyzMkU7s2_e2UKHA92A	ANYLTZXnn
-2-0-0	3-8-13	7-0-0	11-9-14	16-6-0	- 1	21-2-2	26-0-0	-1
2-0-0	3-8-13	3-3-3	4-9-14	4-8-2		4-8-2	4-9-14	

Scale = 1:47.0

	1	3-8-13	7-0-0	11-9-14	16-6-	0 ,		21-2-2	26-0-0	
		3-8-13	3-3-3	4-9-14	4-8-2			4-8-2	4-9-14	
Plate Offse	ets (X,Y)-	[2:0-0-13,0-1-12], [4:0-5-	4,0-2-0], [6:0-4	-0,0-3-0], [9:Edge,0	3-8]					
LOADING	(psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC 0.98	Vert(LL)	-0.20 11-13	>999	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC 0.92	Vert(CT)	-0.38 11-13	>825	180	MT20HS	187/143
BCLL	0.0	Rep Stress Incr	NO	WB 0.88	Horz(CT)	0.08 9	n/a	n/a		
BCDL	10.0	Code FBC2020/7	PI2014	Matrix-MS	50.05				Weight: 162 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

WEBS

TOP CHORD 2x4 SP No.2 2x6 SP No.2 **BOT CHORD**

2x4 SP No.3 *Except*

4-13,6-13,6-10,8-10: 2x4 SP No.2

REACTIONS.

(size) 9=Mechanical, 2=0-3-8

Max Horz 2=125(LC 27)

Max Uplift 9=-490(LC 4), 2=-456(LC 8) Max Grav 9=2053(LC 1), 2=1865(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-3526/814, 3-4=-3680/865, 4-5=-4246/1003, 5-6=-4246/1003, 6-7=-2578/613,

7-8=-2578/613, 8-9=-1919/508

BOT CHORD 2-15=-813/3204, 14-15=-813/3204, 13-14=-820/3402, 11-13=-945/3976, 10-11=-945/3976 WEBS

3-15=-262/109, 3-14=-142/320, 4-14=-29/553, 4-13=-261/1067, 5-13=-537/264,

6-13=-114/325, 6-11=0/391, 6-10=-1681/413, 7-10=-535/265, 8-10=-718/3042

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding.
- 5) All plates are MT20 plates unless otherwise indicated.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 9=490, 2=456.
- 10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 124 lb down and 82 lb up at 7-0-0, 105 lb down and 82 lb up at 9-0-12, 105 lb down and 82 lb up at 13-0-12, 105 lb down and 82 lb up at 15-0-12, 105 lb down and 78 lb up at 16-11-4, 105 lb down and 82 lb up at 18-11-4, 105 lb down and 82 lb up at 20-11-4, and 105 lb down and 82 lb up at 22-11-4, and 107 lb down and 81 lb up at 24-11-4 on top chord, and 290 lb down and 67 lb up at 7-0-0, 83 lb down at 9-0-12, 83 lb down at 11-0-12, 83 lb down at 13-0-12, 83 lb down at 15-0-12, 83 lb down at 16-11-4, 83 lb down at 18-11-4, 83 lb down at 20-11-4, and 83 lb down at 22-11-4, and 85 lb down at 24-11-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

COARDIGA SE (SheStandard

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITEMS connectors. This design is based only upon parameters and properly damped a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied or 7-7-5 oc bracing.

6904 Parke East Blvd. Tampa FL 33610

March 24,2021

	Job	Truss	Truss Type	Qty	Ply	KEVIN HOLDER ADDITION T23318282
	2720721	T01	Half Hip Girder	1	1	1000
Н						Job Reference (optional)

Builders FirstSource (Jacksonville, FL),

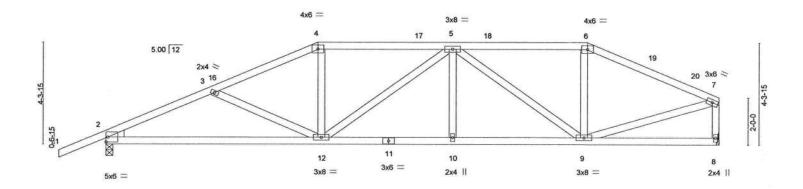
Jacksonville, FL - 32244,

8.430 s Mar 4 2021 MiTek Industries, Inc. Wed Mar 24 07:46:55 2021 Page 2 ID:9B5QRtZPhUL0yMYqzVn3hhzz6?b-HSPWZMcCh20nDZC0yzMkU7s2_e2UKHA92ANYLTzXnn_

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)


Vert: 1-4=-54, 4-8=-54, 9-16=-20

Concentrated Loads (lb)

Vert: 4=-105(B) 14=-284(B) 7=-105(B) 10=-62(B) 19=-105(B) 20=-105(B) 21=-105(B) 22=-105(B) 23=-105(B) 24=-105(B) 25=-105(B) 26=-107(B) 27=-62(B) 28=-62(B) 29=-62(B) 30=-62(B) 31=-62(B) 32=-62(B) 33=-62(B) 33=-62(B) 34=-63(B)

Job	Truss	Truss Type		Qty	Ply	KEVIN HOLDER ADDITIO	N	
2720721	T02	Hip		1	1			T23318283
	1,000					Job Reference (optional)		
Builders FirstSource	ce (Jacksonville, FL),	Jacksonville, FL - 32244,		8	430 s Mar	4 2021 MiTek Industries, In	c. Wed Mar 24 07:46:56 20	021 Page 1
			ID:9B5	5QRtZPh	ULOyMYqz	Vn3hhzz6?b-lfzunicrRL8erji	CWhtz1KPML2SB3pClGq	75svzXnmz
-2-0-0	4-7-6	9-0-0	14-8-8	1		20-5-0	26-0-0	- A
2-0-0	4-7-6	4-4-10	5-8-8			5-8-8	5-7-0	

Scale = 1:47.1

	-	9-0-0 9-0-0				14-8-8 5-8-8	1		20-5-0 5-8-8		26-0-0 5-7-0	
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defi	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.36	Vert(LL)	-0.12		>999	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.70	Vert(CT)	-0.24	12-15	>999	180		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.57	Horz(CT)	0.05	8	n/a	n/a		
BCDL	10.0	Code FBC2020/T	PI2014	Matri	x-MS	8 8					Weight: 137 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP No.2

WEBS 2x4 SP No.3 WEDGE

Left: 2x4 SP No.3

REACTIONS.

(size) 2=0-3-8, 8=Mechanical

Max Horz 2=110(LC 12)

Max Uplift 2=-261(LC 12), 8=-194(LC 9) Max Grav 2=1069(LC 1), 8=952(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1787/422, 3-4=-1562/344, 4-5=-1412/344, 5-6=-1060/269, 6-7=-1200/270,

7-8=-900/215

BOT CHORD 2-12=-424/1600, 10-12=-344/1542, 9-10=-344/1542 WEBS

4-12=-30/375, 5-12=-266/98, 5-9=-647/170, 6-9=-17/253, 7-9=-210/1040

NOTES-

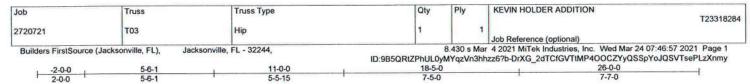
- NOTES1) Unbalanced roof live loads have been considered for this design.
 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -2-0-0 to 0-9-4, Interior(1) 0-9-4 to 9-0-0, Exterior(2R) 9-0-0 to 13-2-15, Interior(1) 13-2-15 to 20-5-0, Exterior(2R) 20-5-0 to 24-7-15, Interior(1) 24-7-15 to 25-10-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

- 4) Provide adequate drainage to prevent water ponding.
 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 6) *This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=261, 8=194.

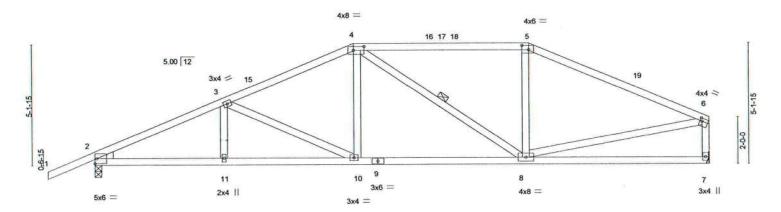
Structural wood sheathing directly applied or 4-0-13 oc purlins,

Rigid ceiling directly applied or 9-0-0 oc bracing.

except end verticals


Julius Lee PE No.34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

March 24,2021


🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTeW connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly anage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Scale = 1:47.1

	1	5-6-1		11-0-0			3-5-0				26-0-0 7-7-0	
Marie Today		5-6-1		5-5-15	· ·		-5-0				7-7-0	
Plate Offse	ets (X,Y)-	[4:0-5-4,0-2-0], [5:0-3-8,0	-2-4], [6:0-1-0,	0-1-8]								
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	I/defl	L∕d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.79	Vert(LL)	-0.10	7-8	>999	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.63	Vert(CT)	-0.20	7-8	>999	180		
BCLL	0.0 *	Rep Stress Incr Code FBC2020/T	YES PI2014	WB Matri:	0.38 x-MS	Horz(CT)	0.04	7	n/a	n/a	Weight: 136 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP No.2

WEBS 2x4 SP No.3

WEDGE

Left: 2x4 SP No.3

BRACING-

TOP CHORD

Structural wood sheathing directly applied or 2-2-0 oc purlins,

except end verticals.

BOT CHORD Rigid ceiling directly applied or 9-2-14 oc bracing.

WEBS

1 Row at midpt 4-8

REACTIONS.

(size) 2=0-3-8, 7=Mechanical

Max Horz 2=122(LC 12)

Max Uplift 2=-259(LC 12), 7=-191(LC 13)

Max Grav 2=1069(LC 1), 7=952(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1793/393, 3-4=-1424/326, 4-5=-1100/287, 5-6=-1265/279, 6-7=-880/223

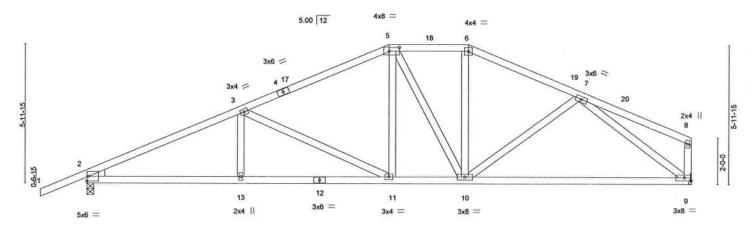
BOT CHORD 2-11=-409/1600, 10-11=-409/1600, 8-10=-262/1273

WEBS 3-10=-376/162, 4-10=-33/373, 4-8=-302/120, 6-8=-173/1007

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -2-0-0 to 0-9-4, Interior(1) 0-9-4 to 11-0-0, Exterior(2R) 11-0-0 to 15-2-15, Interior(1) 15-2-15 to 18-5-0, Exterior(2R) 18-5-0 to 22-7-15, Interior(1) 22-7-15 to 25-10-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific
 to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=259, 7=191.


Julius Lee PE No.34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

March 24,2021

Job Truss Truss Type Qty KEVIN HOLDER ADDITION Ply T23318285 2720721 T04 Hip | Job Reference (optional) 8.430 s Mar 4 2021 MiTek Industries, Inc. Wed Mar 24 07:46:59 2021 Page 1 Builders FirstSource (Jacksonville, FL), Jacksonville, FL - 32244, ID:9B5QRtZPhUL0yMYqzVn3hhzz6?b-ADf1PjfjkGWCiAVnBpQgez1qmFRvG6slynLITEzXnmw 13-0-0 16-5-0 21-1-10 26-0-0 4-8-10 4-10-6

Scale: 1/4"=1"

	1	6-7-6			13-0-0		16-5-0				26-0-0	
		6-7-6			6-4-10		3-5-0				9-7-0	
Plate Offse	ets (X,Y)-	[5:0-5-4,0-2-0]										
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L∕d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.54	Vert(LL)	-0.23	9-10	>999	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.83	Vert(CT)	-0.47	9-10	>665	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.77	Horz(CT)	0.05	9	n/a	n/a		
BCDL	10.0	Code FBC2020/T	PI2014	Matrix	x-MS						Weight: 144 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No 2

2x4 SP No.3 WEBS WEDGE

Left: 2x4 SP No.3

REACTIONS.

(size) 2=0-3-8, 9=Mechanical

Max Horz 2=134(LC 12)

Max Uplift 2=-256(LC 12), 9=-189(LC 13) Max Grav 2=1069(LC 1), 9=952(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1785/382, 3-5=-1252/301, 5-6=-1034/278, 6-7=-1171/282

BOT CHORD

2-13=-404/1589, 11-13=-404/1589, 10-11=-211/1097, 9-10=-210/977

WEBS

3-13=0/255, 3-11=-563/214, 5-11=-76/303, 6-10=-51/276, 7-9=-1155/274

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -2-0-0 to 0-9-4, Interior(1) 0-9-4 to 13-0-0, Exterior(2E) 13-0-0 to 16-5-0, Exterior(2R) 16-5-0 to 20-7-15, Interior(1) 20-7-15 to 25-10-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

4) Provide adequate drainage to prevent water ponding.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

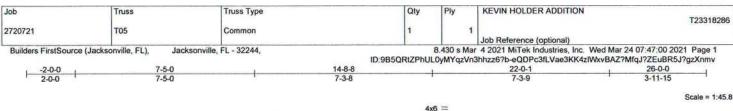
* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

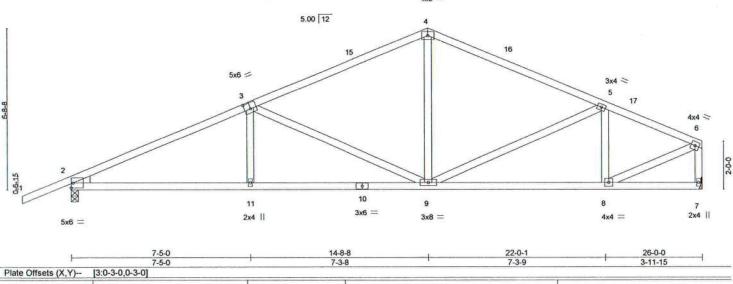
7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=256, 9=189.

Structural wood sheathing directly applied or 4-0-12 oc purlins,

Rigid ceiling directly applied or 9-3-6 oc bracing.


except end verticals.


Julius Lee PE No.34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd, Tampa FL 33610 Date:

March 24,2021

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.55	Vert(LL)	-0.08	9-11	>999	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.63	Vert(CT)	-0.18	9-11	>999	180	10000 901990	
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.83	Horz(CT)	0.05	7	n/a	n/a		
BCDL	10.0	Code FBC2020/T	PI2014	Matri	x-MS	Deliter - D. Daller - Mr.					Weight: 134 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3

WEDGE

Left: 2x4 SP No.3

BRACING-

TOP CHORD

Structural wood sheathing directly applied or 4-0-12 oc purlins,

except end verticals **BOT CHORD**

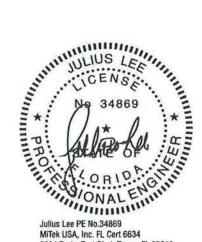
Rigid ceiling directly applied or 9-3-15 oc bracing.

REACTIONS.

(size) 2=0-3-8, 7=Mechanical

Max Horz 2=145(LC 12) Max Uplift 2=-254(LC 12), 7=-186(LC 13) Max Grav 2=1069(LC 1), 7=952(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


TOP CHORD **BOT CHORD** 2-3=-1761/386, 3-4=-1141/297, 4-5=-1140/303, 5-6=-1101/260, 6-7=-925/220 2-11=-401/1563, 9-11=-400/1564, 8-9=-218/1006

3-11=0/272, 3-9=-674/258, 4-9=-58/506, 5-8=-340/138, 6-8=-236/1095 WEBS

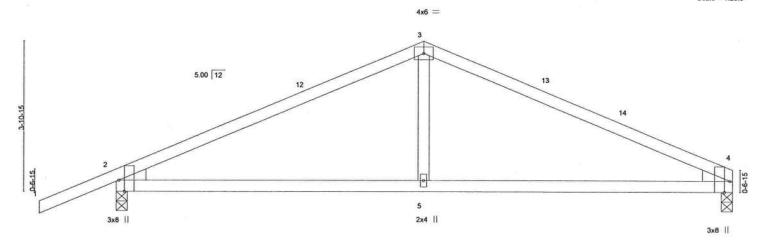
NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18: MWFRS (envelope) gable end zone and C-C Exterior(2E) -2-0-0 to 0-9-4, Interior(1) 0-9-4 to 14-8-8, Exterior(2R) 14-8-8 to 17-8-8, Interior(1) 17-8-8 to 25-10-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=254, 7=186.

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

March 24,2021


MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSITPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	KEVIN HOLDER ADDITION	4777A-A-MACCONNY
	~~~		2			T23318287
2720721	T06	Common	2	1		
		United the second secon			Job Reference (optional)	
Builders FirstSource (	Jacksonville, FL),	Jacksonville, FL - 32244,	8	430 s Mar	4 2021 MiTek Industries, Inc. Wed Mar 24 07:47:01 2021	Page 1
			ID:9B5QRtZPhUL0y	MYqzVn3h	nhzz6?b-6cnnqPgzGumwxUfAJET8kO67h3A?k9M2Q5qsY6	SzXnmu
-2-0-0		8-0-0			16-0-0	
2-0-0		8-0-0			8-0-0	10.0

Scale = 1:28.9



	8-0-0						16-0-0						
				8-0-0							8-0-0		
Plate Offse	ets (X,Y)	[2:0-3-8,Edge], [4:0-3-8,E	dge]										
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP	
CLL	20.0	Plate Grip DOL	1.25	TC	0.71	Vert(LL)	-0.13	5-11	>999	240	MT20	244/190	
CDL	7.0	Lumber DOL	1.25	BC	0.60	Vert(CT)	-0.21	5-11	>908	180			
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.13	Horz(CT)	0.02	2	n/a	n/a			
BCDL	10.0	Code FBC2020/Ti	PI2014	Matri	k-MS	B 850					Weight: 60 lb	FT = 20%	

BRACING-

TOP CHORD

**BOT CHORD** 

LUMBER-

TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3

WEDGE

Left: 2x4 SP No.3 , Right: 2x4 SP No.3

REACTIONS.

(size) 2=0-3-8, 4=0-3-8 Max Horz 2=74(LC 16)

Max Uplift 2=-169(LC 12), 4=-124(LC 13) Max Grav 2=707(LC 1), 4=585(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD

2-3=-875/291, 3-4=-873/299

BOT CHORD 2-5=-195/739, 4-5=-195/739

WEBS

3-5=0/342

### NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -2-0-0 to 0-9-4, Interior(1) 0-9-4 to 8-0-0, Exterior(2R) 8-0-0 to 11-0-0, Interior(1) 11-0-0 to 16-0-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific
  to the use of this truss component.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=169, 4=124.



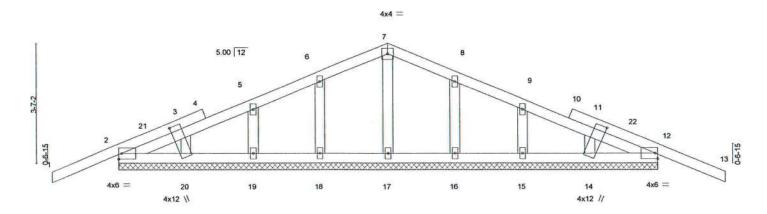
Structural wood sheathing directly applied or 4-7-14 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Julius Lee PE No.34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

March 24,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see 

**NSITPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Job	Truss	Truss Type	Qty	Ply	KEVIN HOLDER ADDITION	T23318288
2720721	T06G	Common Supported Gable	1	1	Machine Color to Month 56	1200 10200
	71.000			200	Job Reference (optional)	
Builders FirstSou	rce (Jacksonville, FL),	Jacksonville, FL - 32244,			r 4 2021 MiTek Industries, Inc. Wed Mar 24 vN3hhzz6?b-aoK91lhb1BunZeEMtx_NGbf0	
Y	-2-0-0	8-0-0	1		16-0-0	18-0-0
	2-0-0	8-0-0			8-0-0	2-0-0

Scale = 1:33.1



						16-0-0						-1
		J				16-0-0						
Plate Offse	ts (X,Y)-	[14:0-1-14,1-7-5], [20:0-1-1	4,1-7-5]									
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.23	Vert(LL)	-0.02	13	n/r	120	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.03	Vert(CT)	-0.03	13	n/r	120		
BCLL	0.0	Rep Stress Incr	YES	WB	0.03	Horz(CT)	0.00	12	n/a	n/a		
BCDL	10.0	Code FBC2020/TPI	2014	Matri	x-S	A CONTRACTOR OF THE PARTY OF TH					Weight: 81 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP No.2

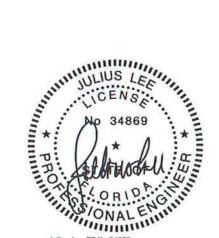
OTHERS 2x4 SP No.3

BRACING-

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 16-0-0.


(lb) - Max Horz 2=57(LC 16)

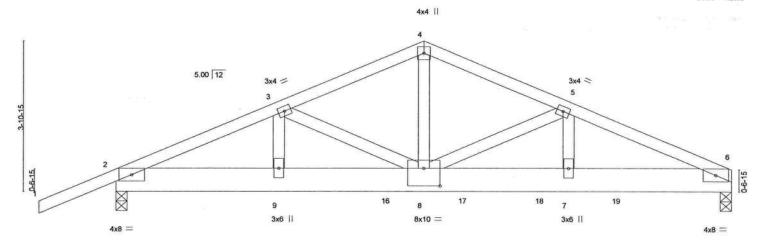
Max Uplift All uplift 100 lb or less at joint(s) 2, 12, 18, 19, 20, 16, 15, 14
Max Grav All reactions 250 lb or less at joint(s) 2, 12, 17, 18, 19, 20, 16, 15, 14

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

### NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Corner(3E) -2-0-0 to 1-0-0, Exterior(2N) 1-0-0 to 8-0-0, Corner(3R) 8-0-0 to 11-0-0, Exterior(2N) 11-0-0 to 18-0-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For stude exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 12, 18, 19, 20, 16, 15, 14.




Julius Lee PE No.34869 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

March 24,2021



Job	Truss		Truss Type		Qty	Ply	KEVIN HOLDER ADDITION	
2720721	T07		Common Girder		1	2		T23318289
							Job Reference (optional)	
Builders FirstSource (Jack	sonville, FL),	Jacksonville,	FL - 32244,	TOTAL PROPERTY.				Wed Mar 24 07:47:03 2021 Page 1
					QRtZPhUI	_0yMYqzVr	n3hhzz6?b-2?uYF5iEoV0eBop	YQfVcppBapsxUCwvKtPJzc?zXnms
-2-0-0	i	4-2-13		8-0-0	1	1	1-9-3	16-0-0
2-0-0		4-2-13		3-9-3			3-9-3	4-2-13

Scale = 1:28.9



		4-2-13			8-0-0 3-9-3				11-9-3 3-9-3		16-0-4 4-2-1	
Plate Offse	ets (X,Y)-	A STATE OF THE PARTY OF THE PAR									42-1	
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.28	Vert(LL)	-0.08	7-8	>999	240	MT20	244/190
CDL	7.0	Lumber DOL	1.25	BC	0.28	Vert(CT)	-0.14	7-8	>999	180	23333333	
BCLL	0.0 *	Rep Stress Incr	NO	WB	0.77	Horz(CT)	0.02	6	n/a	n/a		
BCDL	10.0	Code FBC2020/TI	PI2014	Matri	x-MS						Weight: 197 lb	FT = 20%

BRACING-

TOP CHORD

**BOT CHORD** 

LUMBER-

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x8 SP 2400F 2.0E

2x4 SP No.3 WEBS REACTIONS.

(size) 6=0-3-8, 2=0-3-8

Max Horz 2=74(LC 27) Max Uplift 6=-934(LC 9), 2=-641(LC 8) Max Grav 6=4302(LC 1), 2=2753(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-5703/1275, 3-4=-5579/1261, 4-5=-5580/1257, 5-6=-7357/1614

BOT CHORD

2-9=-1184/5220, 8-9=-1184/5220, 7-8=-1450/6755, 6-7=-1450/6755

4-8=-888/4031, 5-8=-1848/434, 5-7=-242/1342 WEBS

### NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc.

Bottom chords connected as follows: 2x8 - 2 rows staggered at 0-5-0 oc.

- Webs connected as follows: 2x4 1 row at 0-9-0 oc.
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone; Lumber DOL=1.60 plate grip DOL=1.60
- 5) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=934, 2=641.
- 9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 2033 lb down and 511 lb up at 7-0-12, 932 lb down and 214 lb up at 9-0-12, 932 lb down and 211 lb up at 11-0-12, and 932 lb down and 209 lb up at 13-0-12, and 933 lb down and 206 lb up at 15-0-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

### LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25

WE PE NO. 34869

'ee PE No. 34869

'ee PE No. 34869

'no. FL Cert & "bud. Tr

Structural wood sheathing directly applied or 4-5-11 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

6904 Parke East Blvd. Tampa FL 33610

March 24,2021

Continued on page 2

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

**ANSITP1 Quality Criteria, DSB-89 and BCSI Building Composite personal information**

**ANSITP1 Quality Criteria, DSB-89 and BCSI Building Composite personal information**

**ANSITP1 Quality Criteria, DSB-89 and BCSI Building Composite personal information**

**ANSITP1 Quality Criteria, DSB-89 and BCSI Building Composite personal information**

**ANSITP1 Quality Criteria, DSB-89 and BCSI Building Composite personal information**

**ANSITP1 Quality Criteria, DSB-89 and BCSI Building Composite personal information**

**ANSITP1 Quality Criteria, DSB-89 and BCSI Building Composite personal information**

**ANSITP1 Quality Criteria, DSB-89 and BCSI Building Composite personal information**

**ANSITP1 Quality Criteria, DSB-89 and BCSI Building Composite personal information**

**ANSITP1 Quality Criteria, DSB-89 and BCSI Building Composite personal information**



Job	Truss	Truss Type	Qty	Ply	KEVIN HOLDER ADDITION
2720721	Т07	Common Girder	1	2	Job Reference (optional)

Builders FirstSource (Jacksonville, FL),

Jacksonville, FL - 32244,

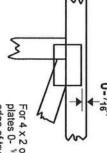
8.430 s Mar 4 2021 MiTek Industries, Inc. Wed Mar 24 07:47:03 2021 Page 2 ID:9B5QRtZPhUL0yMYqzVn3hhzz6?b-2?uYF5iEoV0eBopYQfVcppBapsxUCwvKtPJzc?zXnms

LOAD CASE(S) Standard Uniform Loads (plf)

Vert: 1-4=-54, 4-6=-54, 10-13=-20

Concentrated Loads (lb)

Vert: 12=-933(F) 16=-2033(F) 17=-932(F) 18=-932(F) 19=-932(F)




### Symbols

# PLATE LOCATION AND ORIENTATION



offsets are indicated. and fully embed teeth. Apply plates to both sides of truss Dimensions are in ft-in-sixteenths Center plate on joint unless x, y



plates 0- 1/16" from outside edge of truss For 4 x 2 orientation, locate

œ

0

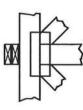
Ġ

ch

required direction of slots in connector plates. This symbol indicates the

* Plate location details available in MiTek 20/20 software or upon request.

### PLATE SIZE


width measured perpendicular to slots. Second dimension is the length parallel to slots. The first dimension is the plate

## LATERAL BRACING LOCATION



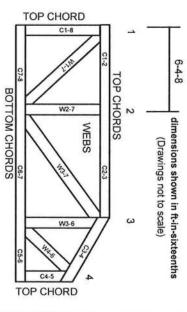
Indicated by symbol shown and/or by text in the bracing section of the if indicated output. Use T or I bracing

### BEARING



number where bearings occur.

Min size shown is for crushing only. reaction section indicates joint (supports) occur. Icons vary but Indicates location where bearings


### Industry Standards:

ANSI/TPI1: National Design Specification for Metal Plate Connected Wood Truss Construction. Design Standard for Bracing.

DSB-89

Installing & Bracing of Metal Plate Connected Wood Trusses. Guide to Good Practice for Handling, **Building Component Safety Information** 

## Numbering System



JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

## PRODUCT CODE APPROVALS

ICC-ES Reports:

ESR-1311, ESR-1352, ESR1988 ER-3907, ESR-2362, ESR-1397, ESR-3282

truss unless otherwise shown. Trusses are designed for wind loads in the plane of the

section 6.3 These truss designs rely on lumber values Lumber design values are in accordance with ANSI/TPI 1 established by others.

© 2012 MiTek® All Rights Reserved



MiTek Engineering Reference Sheet: MII-7473 rev. 5/19/2020

# General Safety Notes

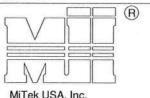
### Damage or Personal Injury Failure to Follow Could Cause Property

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves bracing should be considered may require bracing, or alternative Tor I
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.

ω

Provide copies of this truss design to the building all other interested parties. designer, erection supervisor, property owner and

4


- Cut members to bear tightly against each other
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the camber for dead load deflection responsibility of truss fabricator. General practice is to
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements
- Lumber used shall be of the species and size, and in all respects, equal to or better than that
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing. or less, if no ceiling is installed, unless otherwise noted
- Connections not shown are the responsibility of others
- Do not cut or alter truss member or plate without prior approval of an engineer.
- Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.

	•			

### T-BRACE / I-BRACE DETAIL WITH 2X BRACE ONLY

MII-T-BRACE 2

MiTek USA, Inc. Page 1 of 1



MiTek USA, Inc.

Note: T-Bracing / I-Bracing to be used when continuous lateral bracing is impractical. T-Brace / I-Brace must cover 90% of web length.

Note: This detail NOT to be used to convert T-Brace / I-Brace webs to continuous lateral braced webs.

١	Nailing Pattern	
T-Brace size	Nail Size	Nail Spacing
2x4 or 2x6 or 2x8	10d (0.131" X 3")	6" o.c.

Note: Nail along entire length of T-Brace / I-Brace (On Two-Ply's Nail to Both Plies)

Nails	
SPACING	
WEB HE A THE STATE OF THE STATE	
T-BRACE	M
Nails Section Detail	
T-Brace Web	7

Nails	
Web	I-Brace
Nails	

	Brace Size for One-Ply Truss					
	Specified Rows of La	Continuous iteral Bracing				
Web Size	1	2				
2x3 or 2x4	2x4 T-Brace	2x4 I-Brace				
2x6	2x6 T-Brace	2x6 I-Brace				
2x8	2x8 T-Brace	2x8 I-Brace				

	100000000000000000000000000000000000000	e Size -Ply Truss
	Specified Rows of La	Continuous iteral Bracing
Web Size	1	2
2x3 or 2x4	2x4 T-Brace	2x4 I-Brace
2x6	2x6 T-Brace	2x6 I-Brace
2x8	2x8 T-Brace	2x8 I-Brace

T-Brace / I-Brace must be same species and grade (or better) as web member.



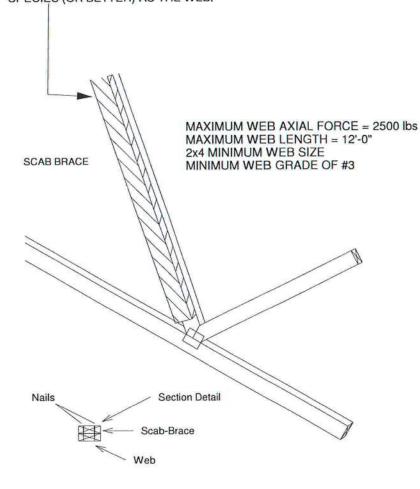
Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

### SCAB-BRACE DETAIL

### MII-SCAB-BRACE

MiTek USA, Inc.

Page 1 of 1




Note: Scab-Bracing to be used when continuous lateral bracing at midpoint (or T-Brace) is impractical.

Scab must cover full length of web +/- 6".

*** THIS DETAIL IS NOT APLICABLE WHEN BRACING IS *** REQUIRED AT 1/3 POINTS OR I-BRACE IS SPECIFIED.

APPLY 2x___ SCAB TO ONE FACE OF WEB WITH 2 ROWS OF 10d (0.131" X 3") NAILS SPACED 6" O.C. SCAB MUST BE THE SAME GRADE, SIZE AND SPECIES (OR BETTER) AS THE WEB.



Scab-Brace must be same species grade (or better) as web member.



Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

別別

### STANDARD REPAIR TO REMOVE END VERTICAL (RIBBON NOTCH VERTICAL)

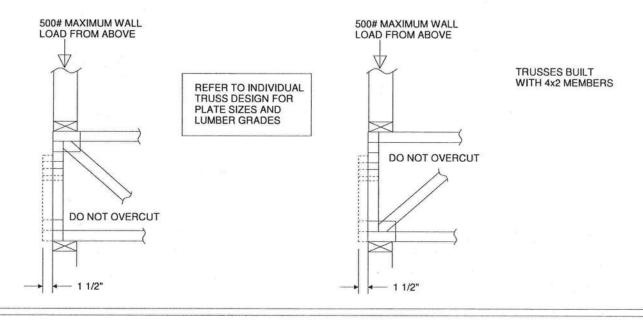
MII-REP05

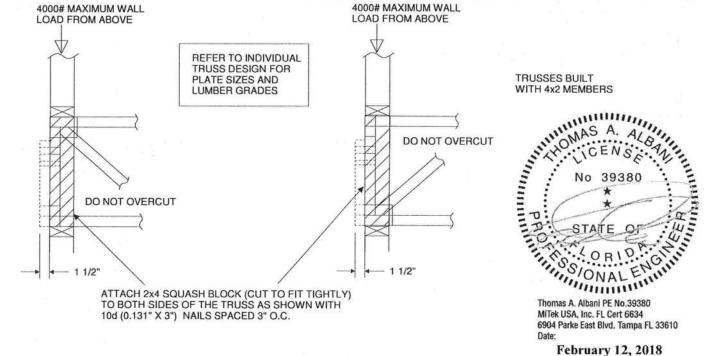
MiTek USA, Inc. Page 1 of 1



1. THIS IS A SPECIFIC REPAIR DETAIL TO BE USED ONLY FOR ITS ORIGINAL INTENTION. THIS REPAIR DOES NOT IMPLY THAT THE REMAINING PORTION OF THE TRUSS IS UNDAMAGED. THE ENTIRE TRUSS SHALL BE INSPECTED TO VERIFY THAT NO FURTHER REPAIRS ARE REQUIRED. WHEN THE REQUIRED REPAIRS ARE PROPERLY APPLIED, THE TRUSS WILL BE CAPABLE OF SUPPORTING THE LOADS INDICATED. ek USA, MiTek USA, Inc.

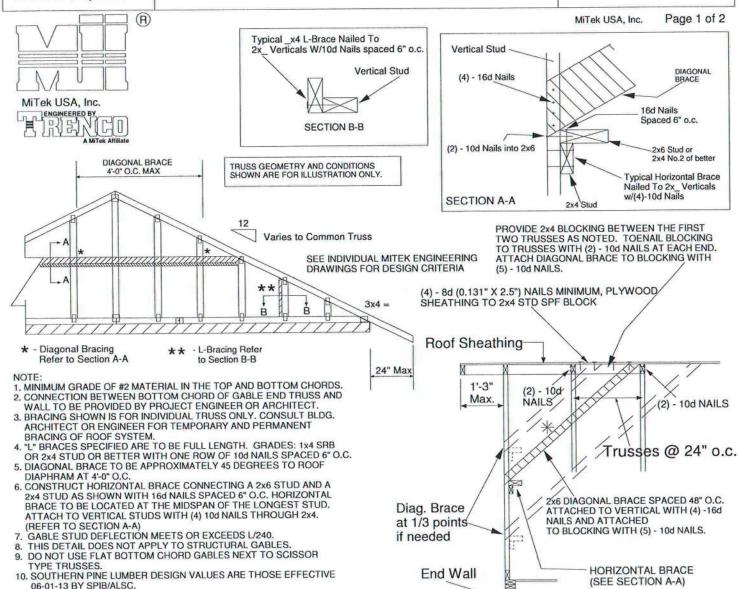
THE LOADS INDICATED.


2. ALL MEMBERS MUST BE RETURNED TO THEIR ORIGINAL POSITIONS BEFORE APPLYING REPAIR AND HELD IN PLACE DURING APPLICATION OF REPAIR.


3. THE END DISTANCE, EDGE DISTANCE, AND SPACING OF NAILS SHALL BE SUCH AS TO AVOID SPLITTING OF THE WOOD.

4. LUMBER MUST BE CUT CLEANLY AND ACCURATELY AND THE REMAINING WOOD MUST BE UNDAMAGED.

5. THIS REPAIR IS TO BE USED FOR SINGLE PLY TRUSSES IN THE 4X_ORIENTATION ONLY.


6. CONNECTOR PLATES MUST BE FULLY IMBEDDED AND UNDISTURBED.





### Standard Gable End Detail

MII-GE130-D-SP

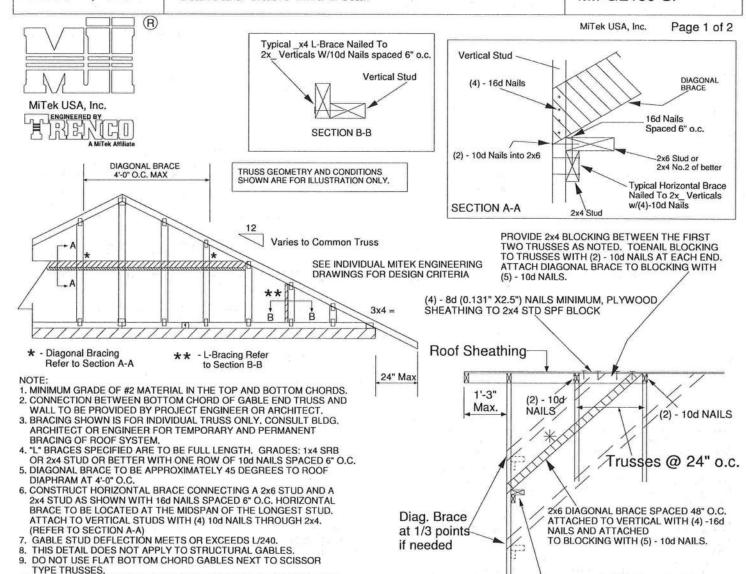



Minimum Stud Size	Stud Spacing	Without Brace	1x4 L-Brace	2x4 L-Brace	DIAGONAL BRACE	2 DIAGONAL BRACES AT 1/3 POINTS
Species and Grade			Maximu	m Stud Lei	ngth	
2x4 SP No. 3 / Stud	12" O.C.	3-9-13	4-1-1	5-9-6	7-1-3	11-5-7
2x4 SP No. 3 / Stud	16" O.C.	3-5-4	3-6-8	5-0-2	6-10-8	10-3-13
2x4 SP No. 3 / Stud	24" O.C.	2-9-11	2-10-11	4-1-1	5-7-6	8-5-1

Diagonal braces over 6'-3" require a 2x4 T-Brace attached to one edge. Diagonal braces over 12'-6" require 2x4 I-braces attached to both edges. Fasten T and I braces to narrow edge of diagonal brace with 10d nails 8" o.c., with 3" minimum end distance. Brace must cover 90% of diagonal length.

MAX MEAN ROOF HEIGHT = 30 FEET CATEGORY II BUILDING EXPOSURE D ASCE 7-98, ASCE 7-02, ASCE 7-05 130 MPH ASCE 7-10 160 MPH DURATION OF LOAD INCREASE: 1.60

11. NAILS DESIGNATED 10d ARE (0.131" X 3") AND NAILS DESIGNATED 16d ARE (0.131" X 3.5")


STUD DESIGN IS BASED ON COMPONENTS AND CLADDING. CONNECTION OF BRACING IS BASED ON MWFRS.



Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

### Standard Gable End Detail

### MII-GE130-SP



End Wall

Minimum Stud Size Species	Stud Spacing	Without Brace	1x4 L-Brace	2x4 L-Brace	DIAGONAL BRACE	2 DIAGONAL BRACES AT 1/3 POINTS
and Grade	400		Maximu	m Stud Lei	ngth	
2x4 SP No. 3 / Stud	12" O.C.	4-0-7	4-5-6	6-3-8	8-0-15	12-1-6
2x4 SP No. 3 / Stud	16" O.C.	3-8-0	3-10-4	5-5-6	7-4-1	11-0-1
2x4 SP No. 3 / Stud	24" O.C.	3-0-10	3-1-12	4-5-6	6-1-5	9-1-15

Diagonal braces over 6'-3" require a 2x4 T-Brace attached to one edge. Diagonal braces over 12'-6" require 2x4 I-braces attached to both edges. Fasten T and I braces to narrow edge of diagonal brace with 10d nails 8" o.c., with 3" minimum end distance. Brace must cover 90% of diagonal length.

10. SOUTHERN PINE LUMBER DESIGN VALUES ARE THOSE EFFECTIVE

MAX MEAN ROOF HEIGHT = 30 FEET CATEGORY II BUILDING EXPOSURE B or C ASCE 7-98, ASCE 7-02, ASCE 7-05 130 MPH ASCE 7-10 160 MPH **DURATION OF LOAD INCREASE: 1.60** 

06-01-13 BY SPIB/ALSC.

11. NAILS DESIGNATED 10d ARE (0.131" X 3") AND NAILS DESIGNATED 16d ARE (0.131" X 3.5")


STUD DESIGN IS BASED ON COMPONENTS AND CLADDING. CONNECTION OF BRACING IS BASED ON MWFRS.



HORIZONTAL BRACE

(SEE SECTION A-A)

Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date



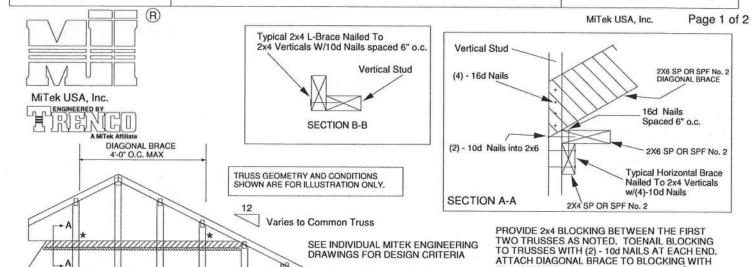
Minimum Stud Size	Stud Spacing	Without Brace	1x4 L-Brace	2x4 L-Brace	DIAGONAL BRACE	2 DIAGONAL BRACES AT 1/3 POINTS
Species and Grade			Maximu	n Stud Lei	ngth	
2x4 DF/SPF Std/Stud	12" O.C.	3-10-1	3-11-7	5-7-2	7-8-2	11-6-4
2x4 DF/SPF Std/Stud	16" O.C.	3-3-14	3-5-1	4-10-2	6-7-13	9-11-11
2x4 DF/SPF Std/Stud	24" O.C.	2-8-9	2-9-8	3-11-7	5-5-2	8-1-12

Diagonal braces over 6'-3" require a 2x4 T-Brace attached to one edge. Diagonal braces over 12'-6" require 2x4 I-braces attached to both edges. Fasten T and I braces to narrow edge of web with 10d nails 8" o.c., with 3" minimum end distance. Brace must cover 90% of diagonal length.

NAILS DESIGNATED 16d ARE (0.131" X 3.5")

MAXIMUM WIND SPEED = 140 MPH MAX MEAN ROOF HEIGHT = 30 FEET CATEGORY II BUILDING EXPOSURE B or C ASCE 7-98, ASCE 7-02, ASCE 7-05 DURATION OF LOAD INCREASE : 1.60

STUD DESIGN IS BASED ON COMPONENTS AND CLADDING. CONNECTION OF BRACING IS BASED ON MWFRS.




Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

January 19, 2018

### Standard Gable End Detail

MII-GE170-D-SP



3x4 =

24" Max

- Diagonal Bracing Refer to Section A-A

** - L-Bracing Refer to Section B-B

NOTE:

1. MINIMUM GRADE OF #2 MATERIAL IN THE TOP AND BOTTOM CHORDS. CONNECTION BETWEEN BOTTOM CHORD OF GABLE END TRUSS AND

WALL TO BE PROVIDED BY PROJECT ENGINEER OR ARCHITECT.

 BRACING SHOWN IS FOR INDIVIDUAL TRUSS ONLY. CONSULT BLDG. ARCHITECT OR ENGINEER FOR TEMPORARY AND PERMANENT BRACING OF ROOF SYSTEM.

"L" BRACES SPECIFIED ARE TO BE FULL LENGTH, SPF or SP No.3

OR BETTER WITH ONE ROW OF 10d NAILS SPACED 6" O.C.
5. DIAGONAL BRACE TO BE APPROXIMATELY 45 DEGREES TO ROOF

DIAPHRAM AT 4-0" O.C.
6. CONSTRUCT HORIZONTAL BRACE CONNECTING A 2x6 AND A 2x4 AS SHOWN WITH 16d NAILS SPACED 6" O.C. HORIZONTAL BRACE TO BE LOCATED AT THE MIDSPAN OF THE LONGEST GABLE STUD. ATTACH TO VERTICAL GABLE STUDS WITH (4) 10d NAILS THROUGH 2x4.

(REFER TO SECTION A-A)

GABLE STUD DEFLECTION MEETS OR EXCEEDS L/240.

THIS DETAIL DOES NOT APPLY TO STRUCTURAL GABLES.

DO NOT USE FLAT BOTTOM CHORD GABLES NEXT TO SCISSOR TYPE TRUSSES.

10. SOUTHERN PINE LUMBER DESIGN VALUES ARE THOSE EFFECTIVE 06-01-13 BY SPIB/ALSC.

11. NAILS DESIGNATED 10d ARE (0.131" X 3") AND NAILS DESIGNATED 16d ARE (0.131" X 3.5")

Minimum Stud Size	Stud Spacing	Without Brace	2x4 L-Brace	DIAGONAL BRACE	2 DIAGONAL BRACES AT 1/3 POINTS
Species and Grade	10.7		Maximum St	ud Length	
2x4 SP No. 3 / Stud	12" O.C.	3-9-7	5-8-8	6-11-1	11-4-4
2x4 SP No. 3 / Stud	16" O.C.	3-4-12	4-11-15	6-9-8	10-2-3
2x4 SP No. 3 / Stud	24" O.C.	2-9-4	4-0-7	5-6-8	8-3-13
2x4 SP No. 2	12" O.C.	3-11-13	5-8-8	6-11-1	11-11-7
2x4 SP No. 2	16" O.C.	3-7-7	4-11-5	6-11-1	10-10-5
2x4 SP No. 2	24" O.C.	3-1-15	4-0-7	6-3-14	9-5-14

Diagonal braces over 6'-3" require a 2x4 T-Brace attached to one edge. Diagonal braces over 12'-6" require 2x4 I-braces attached to both edges. Fasten T and I braces to narrow edge of diagonal brace with 10d nails 6" o.c., with 3" minimum end distance. Brace must cover 90% of diagonal length. T or I braces must be 2x4 SPF No. 2 or SP No. 2.

MAX MEAN ROOF HEIGHT = 30 FEET EXPOSURE D ASCE 7-10 170 MPH DURATION OF LOAD INCREASE : 1.60

STUD DESIGN IS BASED ON COMPONENTS AND CLADDING. CONNECTION OF BRACING IS BASED ON MWFRS.

Diag. Brace at 1/3 points 2x6 DIAGONAL BRACE SPACED 48" O.C. ATTACHED TO VERTICAL WITH (4) -16d NAILS, AND ATTACHED TO BLOCKING WITH (5) -10d NAILS. if needed No 39380

STAITE OF SOLUTION ALA

OR 10 March 19 End Wall

(4) - 8d (0.131" X 2.5") NAILS MINIMUM, PLYWOOD, SHEATHING TO 2x4 STD SPF BLOCK

- 10d

NAILS

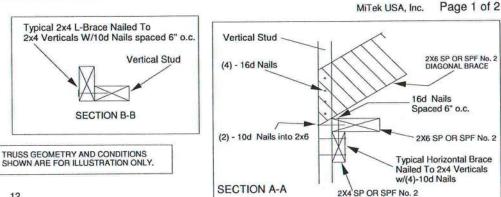
Roof Sheathing

1'-0"

Max.

(2) - 10d NAILS

Trusses @ 24" o.c.


MiTek USA, Inc. IITEK UOA, ... R

A MITEK Affiliate DIAGONAL BRACE

4'-0" O.C. MAX

### Standard Gable End Detail

### MII-GE180-D-SP



Roof Sheathing

1'-0"

Max.

Varies to Common Truss SEE INDIVIDUAL MITEK ENGINEERING DRAWINGS FOR DESIGN CRITERIA

3x4 =

24" Max

PROVIDE 2x4 BLOCKING BETWEEN THE FIRST TWO TRUSSES AS NOTED. TOENAIL BLOCKING TO TRUSSES WITH (2) - 10d NAILS AT EACH END. ATTACH DIAGONAL BRACE TO BLOCKING WITH

(2) - 10d NAILS

Trusses @ 24" o.c.

(4) - 8d (0.131" X 2.5") NAILS MINIMUM, PLYWOOD, SHEATHING TO 2x4 STD SPF BLOCK

- 10d

NAILS

- Diagonal Bracing Refer to Section A-A ** - L-Bracing Refer to Section B-B

NOTE:

1. MINIMUM GRADE OF #2 MATERIAL IN THE TOP AND BOTTOM CHORDS. 2. CONNECTION BETWEEN BOTTOM CHORD OF GABLE END TRUSS AND

WALL TO BE PROVIDED BY PROJECT ENGINEER OR ARCHITECT.

3. BRACING SHOWN IS FOR INDIVIDUAL TRUSS ONLY. CONSULT BLDG. ARCHITECT OR ENGINEER FOR TEMPORARY AND PERMANENT

BRACING OF ROOF SYSTEM.

4. "L" BRACES SPECIFIED ARE TO BE FULL LENGTH, SPF or SP No.3
OR BETTER WITH ONE ROW OF 10d NAILS SPACED 6" O.C.

5. DIAGONAL BRACE TO BE APPROXIMATELY 45 DEGREES TO ROOF

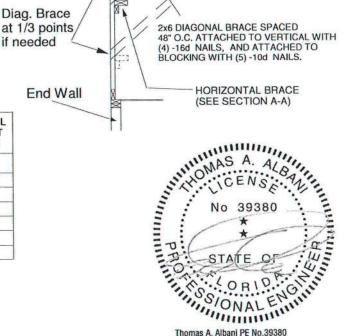
DIAPHRAM AT 4'-0" O.C.

6. CONSTRUCT HORIZONTAL BRACE CONNECTING A 2x6 AND A 2x4 AS SHOWN WITH 16d NAILS SPACED 6" O.C. HORIZONTAL BRACE TO BE LOCATED AT THE MIDSPAN OF THE LONGEST GABLE STUD. ATTACH TO VERTICAL GABLE STUDS WITH (4) 10d NAILS THROUGH 2x4. (REFER TO SECTION A-A)

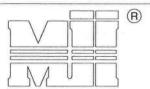
GABLE STUD DEFLECTION MEETS OR EXCEEDS L/240.

THIS DETAIL DOES NOT APPLY TO STRUCTURAL GABLES.
DO NOT USE FLAT BOTTOM CHORD GABLES NEXT TO SCISSOR TYPE TRUSSES.

10. SOUTHERN PINE LUMBER DESIGN VALUES ARE THOSE EFFECTIVE 06-01-13 BY SPIB/ALSC.


11. NAILS DESIGNATED 10d ARE (0.131" X 3") AND NAILS DESIGNATED 16d ARE (0.131" X 3.5")

Minimum Stud Size	Stud Spacing	Without Brace	2x4 L-Brace	DIAGONAL BRACE	2 DIAGONAL BRACES AT 1/3 POINTS
Species and Grade			Maximum St	ud Length	
2x4 SP No. 3 / Stud	12" O.C.	3-7-12	5-4-11	6-2-1	10-11-3
2x4 SP No. 3 / Stud	16" O.C.	3-2-8	4-8-1	6-2-1	9-7-7
2x4 SP No. 3 / Stud	24" O.C.	2-7-7	3-9-12	5-2-13	7-10-4
2x4 SP No. 2	12" O.C.	3-10-0	5-4-11	6-2-1	11-6-1
2x4 SP No. 2	16" O.C.	3-5-13	4-8-1	6-2-1	10-5-7
2x4 SP No. 2	24" O.C.	3-0-8	3-9-12	6-1-1	9-1-9


Diagonal braces over 6'-3" require a 2x4 T-Brace attached to one edge. Diagonal braces over 12'-6" require 2x4 I-braces attached to both edges. Fasten T and I braces to narrow edge of diagonal brace with 10d nails 6in o.c., with 3in minimum end distance. Brace must cover 90% of diagonal length. T or I braces must be 2x4 SPF No. 2 or SP No. 2.

MAX MEAN ROOF HEIGHT = 30 FEET EXPOSURE D ASCE 7-10 180 MPH DURATION OF LOAD INCREASE: 1.60

STUD DESIGN IS BASED ON COMPONENTS AND CLADDING. CONNECTION OF BRACING IS BASED ON MWFRS.



Thomas A. Albani PE No.39380 MITek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610



MiTek USA, Inc.

ENGINEERED BY

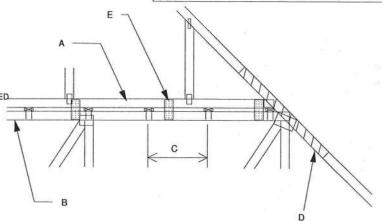
MiTek USA, Inc. Page 1 of 1

MAXIMUM WIND SPEED = REFER TO NOTES D AND OR E MAX MEAN ROOF HEIGHT = 30 FEET MAX TRUSS SPACING = 24 " O.C. CATEGORY II BUILDING **EXPOSURE B or C ASCE 7-10** 

**DURATION OF LOAD INCREASE: 1.60** DETAIL IS NOT APPLICABLE FOR TRUSSES

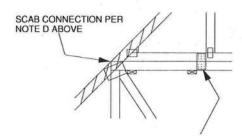
TRANSFERING DRAG LOADS (SHEAR TRUSSES). ADDITIONAL CONSIDERATIONS BY BUILDING ENGINEER/DESIGNER ARE REQUIRED.



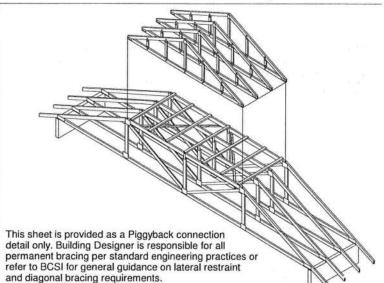

C - PURLINS AT EACH BASE TRUSS JOINT AND A MAXIMUM 24" O.C. UNLESS SPECIFIED CLOSER ON MITEK TRUSS DESIGN DRAWING.

ONLESS SPECIFIED LOSSEN ON MITER THOUSS DESIGN DHAWING.
CONNECT TO BASE TRUSS WITH (2) (0.131" X 3.5") NAILS EACH.
D - 2 X __ X 4"-0" SCAB, SIZE TO MATCH TOP CHORD OF
PIGGYBACK TRUSS, MIN GRADE #2, ATTACHED TO ONE FACE, CENTERED.
ON INTERSECTION, WITH (2) ROWS OF (0.131" X 3") NAILS @ 4" O.C.
SCAB MAY BE OMITTED PROVIDED THE TOP CHORD SHEATHING
IS CONTINUOUS OVER INTERSECTION AT LEAST 1 FT. IN BOTH DIRECTIONS AND:

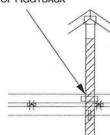
1. WIND SPEED OF 115 MPH OR LESS FOR ANY PIGGYBACK SPAN, OR


WIND SPEED OF 116 MPH TO 160 MPH WITH A MAXIMUM PIGGYBACK SPAN OF 12 ft.

E - FOR WIND SPEEDS BETWEEN 126 AND 160 MPH, ATTACH MITEK 3X8 20 GA Nai-Don PLATES TO EACH FACE OF TRUSSES AT 72" O.C. W/ (4) (0.131" X 1.5") NAILS PER MEMBER. STAGGER NAILS FROM OPPOSING FACES. ENSURE 0.5" EDGE DISTANCE. (MIN. 2 PAIRS OF PLATES REQ. REGARDLESS OF SPAN)




### WHEN NO GAP BETWEEN PIGGYBACK AND BASE TRUSS EXISTS:


REPLACE TOE NAILING OF PIGGYBACK TRUSS TO PURLINS WITH Nail-On PLATES AS SHOWN, AND INSTALL PURLINS TO BOTTOM EDGE OF BASE TRUSS TOP CHORD AT SPECIFIED SPACING SHOWN ON BASE TRUSS MITEK DESIGN DRAWING.



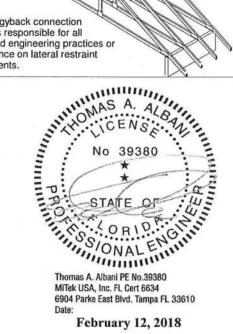
FOR ALL WIND SPEEDS, ATTACH MITEK 3X6 20 GA Nail-On PLATES TO EACH FACE OF TRUSSES AT 48" O.C. W/ (4) (0.131" X 1.5") PER MEMBER. STAGGER NAILS FROM OPPOSING FACES ENSURE 0.5" EDGE DISTANCE.



VERTICAL WEB TO EXTEND THROUGH BOTTOM CHORD OF PIGGYBACK



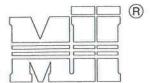
FOR LARGE CONCENTRATED LOADS APPLIED TO CAP TRUSS REQUIRING A VERTICAL WEB:


1) VERTICAL WEBS OF PIGGYBACK AND BASE TRUSS MUST MATCH IN SIZE, GRADE, AND MUST LINE UP AS SHOWN IN DETAIL.

ATTACH 2 x ___ x 4'-0" SCAB TO EACH FACE OF TRUSS ASSEMBLY WITH 2 ROWS OF 10d (0.131" X 3") NAILS SPACED 4" O.C. FROM EACH FACE. (SIZE AND GRADE TO MATCH VERTICAL WEBS OF PIGGYBACK AND BASE TRUSS.) (MINIMUM 2X4)
THIS CONNECTION IS ONLY VALID FOR A MAXIMUM

CONCENTRATED LOAD OF 4000 LBS (@1.15). REVIEW BY A QUALIFIED ENGINEER IS REQUIRED FOR LOADS GREATER THAN 4000 LBS.

FOR PIGGYBACK TRUSSES CARRYING GIRDER LOADS, NUMBER OF PLYS OF PIGGYBACK TRUSS TO MATCH BASE TRUSS. CONCENTRATED LOAD MUST BE APPLIED TO BOTH


THE PIGGYBACK AND THE BASE TRUSS DESIGN.



### STANDARD PIGGYBACK TRUSS CONNECTION DETAIL

### MII-PIGGY-ALT 7 - 10

MiTek USA, Inc. Page 1 of 1

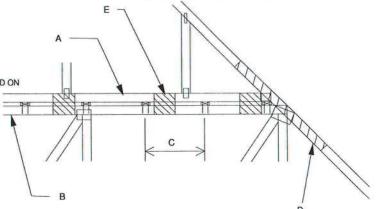


MiTek USA, Inc. ENGINEERED BY

A - PIGGBACK TRUSS, REFER TO MITEK TRUSS DESIGN DRAWING.
SHALL BE CONNECTED TO EACH PURLIN
WITH (2) 0(0.131" X 3.5") TOE-NAILED.
B - BASE TRUSS, REFER TO MITEK TRUSS DESIGN DRAWING.
C - PURLINS AT EACH BASE TRUSS JOINT AND A MAXIMUM 24" O.C.
UNLESS SPECIFIED CLOSER ON MITEK TRUSS DESIGN DRAWING.
CONNECT TO BASE TRUSS WITH (2) (0.131" X 3.5") NAILS EACH.
D - 2 X __X 4"-0" SCAB, SIZE TO MATCH TOP CHORD OF
PIGGYBACK TRUSS, MIN GRADE #2, ATTACHED TO ONE FACE, CENTERED ON
INTERSECTION, WITH (2) ROWS OF (0.131" X 3") NAILS @ 4" O.C.
SCAB MAY BE OMITTED PROVIDED THE TOP CHORD SHEATHING
IS CONTINUOUS OVER INTERSECTION AT LEAST 1 FT. IN BOTH
DIRECTIONS AND:

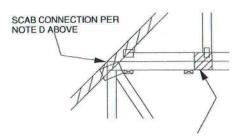
IS CONTINUOUS OVER INTERSECTION AT LEAST 1 FT. IN BOTH DIRECTIONS AND:

1. WIND SPEED OF 115 MPH OR LESS FOR ANY PIGGYBACK SPAN, OR

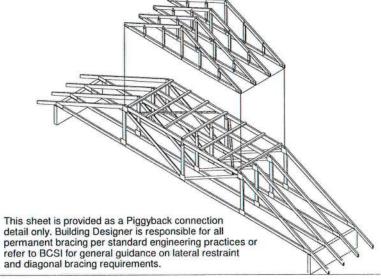

2. WIND SPEED OF 116 MPH TO 160 MPH WITH A MAXIMUM PIGGYBACK SPAN OF 12 ft.

E - FOR WIND SPEED IN THE RANGE 126 MPH - 160 MPH ADD 9" x 9" x 1/2" PLYWOOD (or 7/16" OSB) GUSSET EACH SIDE AT 48" O.C. OR LESS. ATTACH WITH

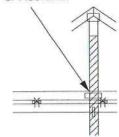
3 - 6d (0.113" X 2") NAILS INTO EACH CHORD FROM EACH SIDE (TOTAL - 12 NAILS)




TRANSFERING DRAG LOADS (SHEAR TRUSSES).
ADDITIONAL CONSIDERATIONS BY BUILDING ENGINEER/DESIGNER ARE REQUIRED.




### WHEN NO GAP BETWEEN PIGGYBACK AND BASE TRUSS EXISTS:


REPLACE TOE NAILING OF PIGGYBACK TRUSS TO PURLINS WITH PLYWOOD GUSSETS AS SHOWN, AND INSTALL PURLINS TO BOTTOM EDGE OF BASE TRUSS TOP CHORD AT SPECIFIED SPACING SHOWN ON BASE TRUSS MITEK DESIGN DRAWING.



7" x 7" x 1/2" PLYWOOD (or 7/16" OSB) GUSSET EACH SIDE AT 24" O.C. ATTACH WITH 3 - 6d (0.113" X 2") NAILS INTO EACH CHORD FROM EACH SIDE (TOTAL - 12 NAILS)



**VERTICAL WEB TO** EXTEND THROUGH **BOTTOM CHORD** OF PIGGYBACK



FOR LARGE CONCENTRATED LOADS APPLIED TO CAP TRUSS REQUIRING A VERTICAL WEB:

1) VERTICAL WEBS OF PIGGYBACK AND BASE TRUSS MUST MATCH IN SIZE, GRADE, AND MUST LINE UP

AS SHOWN IN DETAIL.

ATTACH 2 x x 4:0° SCAB TO EACH FACE OF
TRUSS ASSEMBLY WITH 2 ROWS OF 10d (0.131" X 3") NAILS
SPACED 4° O.C. FROM EACH FACE. (SIZE AND GRADE TO MATCH
VERTICAL WEBS OF PIGGYBACK AND BASE TRUSS.)

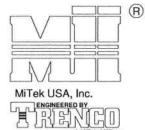
VEH ICAL WEBS OF PIGGYBACK AND BASE TRUSS.)
(MINIMUM 2X4)
THIS CONNECTION IS ONLY VALID FOR A MAXIMUM
CONCENTRATED LOAD OF 4000 LBS (@1.15). REVIEW
BY A QUALIFIED ENGINEER IS REQUIRED FOR LOADS GREATER THAN 4000 LBS. FOR PIGGYBACK TRUSSES CARRYING GIRDER LOADS,

NUMBER OF PLYS OF PIGGYBACK TRUSS TO MATCH BASE TRUSS.

CONCENTRATED LOAD MUST BE APPLIED TO BOTH THE PIGGYBACK AND THE BASE TRUSS DESIGN.



Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

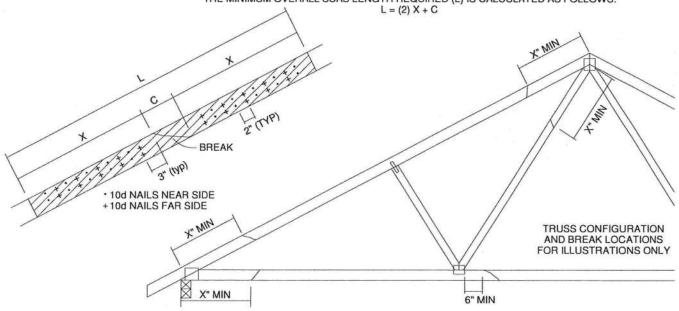

January 19, 2018

### STANDARD REPAIR DETAIL FOR BROKEN CHORDS, WEBS AND DAMAGED OR MISSING CHORD SPLICE PLATES

### MII-REP01A1

MiTek USA, Inc.

Page 1 of 1




	JMBER OF			MAX	IMUM FO	RCE (lbs)	15% LOA	D DURAT	ION	
	ACH SIDE REAK *	X INCHES	S	Р		)F	S	PF	н	IF
2x4	2x6		2x4	2x6	2x4	2x6	2x4	2x6	2x4	2x6
20	30	24"	1706	2559	1561	2342	1320	1980	1352	2028
26	39	30"	2194	3291	2007	3011	1697	2546	1738	2608
32	48	36"	2681	4022	2454	3681	2074	3111	2125	3187
38	57	42"	3169	4754	2900	4350	2451	3677	2511	3767
44	66	48"	3657	5485	3346	5019	2829	4243	2898	4347

### * DIVIDE EQUALLY FRONT AND BACK

ATTACH 2x_ SCAB OF THE SAME SIZE AND GRADE AS THE BROKEN MEMBER TO EACH FACE OF THE TRUSS (CENTER ON BREAK OR SPLICE) WITH 10d (0.131" X 3") NAILS (TWO ROWS FOR 2x4, THREE ROWS FOR 2x6) SPACED 4" O.C. AS SHOWN. STAGGER NAIL SPACING FROM FRONT FACE AND BACK FACE FOR A NET 0-2-0 O.C. SPACING IN THE MAIN MEMBER. USE A MIN. 0-3-0 MEMBER END DISTANCE.

THE LENGTH OF THE BREAK (C) SHALL NOT EXCEED 12". (C=PLATE LENGTH FOR SPLICE REPAIRS) THE MINIMUM OVERALL SCAB LENGTH REQUIRED (L) IS CALCULATED AS FOLLOWS:



THE LOCATION OF THE BREAK MUST BE GREATER THAN OR EQUAL TO THE REQUIRED X DIMENSION FROM ANY PERIMETER BREAK OR HEEL JOINT AND A MINIMUM OF 6" FROM ANY INTERIOR JOINT (SEE SKETCH ABOVE)

### DO NOT USE REPAIR FOR JOINT SPLICES

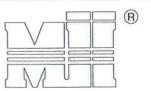
### NOTES

- THIS REPAIR DETAIL IS TO BE USED ONLY FOR THE APPLICATION SHOWN. THIS REPAIR DOES NOT IMPLY THAT THE REMAINING PORTION OF THE TRUSS IS UNDAMAGED. THE ENTIRE TRUSS SHALL BE INSPECTED TO VERIFY THAT NO FURTHER REPAIRS ARE REQUIRED. WHEN THE REQUIRED REPAIRS ARE PROPERLY APPLIED, THE TRUSS WILL BE CAPABLE OF SUPPORTING THE LOADS INDICATED.
- ALL MEMBERS MUST BE RETURNED TO THEIR ORIGINAL POSITIONS BEFORE APPLING REPAIR AND HELD IN PLACE DURING APPLICATION OF REPAIR.

  THE END DISTANCE, EDGE DISTANCE AND SPACING OF NAILS SHALL BE SUCH AS TO AVOID
- THE END DISTANCE, EDGE DISTANCE AND SPACING OF MAILS SHALL BE SUCH AS TO AVOID UNUSUAL SPLITTING OF THE WOOD.
   WHEN NAILING THE SCABS, THE USE OF A BACKUP WEIGHT IS RECOMMENDED TO AVOID LOOSENING OF THE CONNECTOR PLATES AT THE JOINTS OR SPLICES.
   THIS REPAIR IS TO BE USED FOR SINGLE PLY TRUSSES IN THE 2x_ ORIENTATION ONLY.
   THIS REPAIR IS LIMITED TO TRUSSES WITH NO MORE THAN THREE BROKEN MEMBERS.



MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610


January 19, 2018

### LATERAL TOE-NAIL DETAIL

MII-TOENAIL_SP

MiTek USA, Inc.

Page 1 of 1



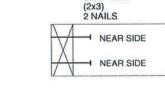
MiTek USA, Inc. A MITEK Affiliat NOTES:

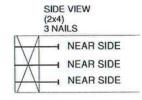
- 1. TOE-NAILS SHALL BE DRIVEN AT AN ANGLE OF 45 DEGREES WITH THE MEMBER TOE-NAILS SHALL BE DRIVEN AT AN ANGLE OF 45 DEGREES WITH THE MEMBER AND MUST HAVE FULL WOOD SUPPORT. (NAIL MUST BE DRIVEN THROUGH AND EXIT AT THE BACK CORNER OF THE MEMBER END AS SHOWN.
   THE END DISTANCE, EDGE DISTANCE, AND SPACING OF NAILS SHALL BE SUCH AS TO AVOID UNUSUAL SPLITTING OF THE WOOD.
   ALLOWABLE VALUE SHALL BE THE LESSER VALUE OF THE TWO SPECIES FOR MEMBERS OF DIFFERENT SPECIES.

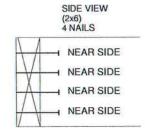
### THIS DETAIL APPLICABLE TO THE THREE END DETAILS SHOWN BELOW

VIEWS SHOWN ARE FOR ILLUSTRATION PURPOSES ONLY

SIDE VIEW

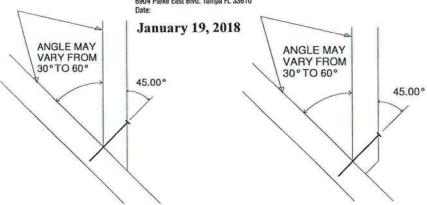

	DIAM.	SP	DF	HF	SPF	SPF-S
O	.131	88.0	80.6	69.9	68.4	59.7
LONG	.135	93.5	85.6	74.2	72.6	63.4
3.5" L	.162	108.8	99.6	86.4	84.5	73.8
9	.128	74.2	67.9	58.9	57.6	50.3
LONG	.131	75.9	69.5	60.3	59.0	51.1
3.25"	.148	81.4	74.5	64.6	63.2	52.5

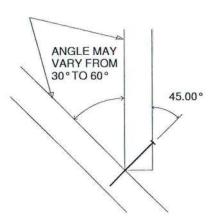

VALUES SHOWN ARE CAPACITY PER TOE-NAIL. APPLICABLE DURATION OF LOAD INCREASES MAY BE APPLIED.


### EXAMPLE:

(3) - 16d (0.162" X 3.5") NAILS WITH SPF SPECIES BOTTOM CHORD

For load duration increase of 1.15: 3 (nails) X 84.5 (lb/nail) X 1.15 (DOL) = 291.5 lb Maximum Capacity








Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610





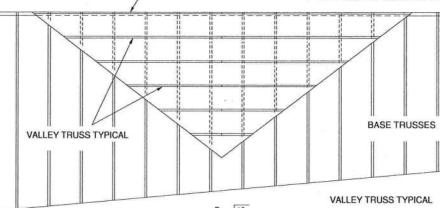
### TRUSSED VALLEY SET DETAIL

### MII-VALLEY HIGH WIND1

MiTek USA, Inc.

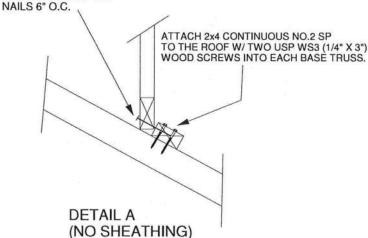
Page 1 of 1




MiTek USA, Inc.

ENGINEERED BY E NEW

GABLE END, COMMON TRUSS OR GIRDER TRUSS


### **GENERAL SPECIFICATIONS**

- 1. NAIL SIZE 10d (0.131" X 3")
- 2. WOOD SCREW = 3" WS3 USP OR EQUIVALENT DO NOT USE DRYWALL OR DECKING TYPE SCREW
- INSTALL VALLEY TRUSSES (24" O.C. MAXIMUM) AND SECURE PER DETAIL A
- 4. BRACE VALLEY WEBS IN ACCORDANCE WITH THE INDIVIDUAL DESIGN DRAWINGS.
  5. BASE TRUSS SHALL BE DESIGNED WITH A PURLIN SPACING
- EQUILIVANT TO THE RAKE DIMENSION OF THE VALLEY TRUSS SPACING.
- 6. NAILING DONE PER NDS 01
- 7. VALLEY STUD SPACING NOT TO EXCEED 48" O.C.



GABLE END, COMMON TRUSS OR GIRDER TRUSS P 12 SEE DETAIL A BELOW (TYP.)

SECURE VALLEY TRUSS W/ ONE ROW OF 10d



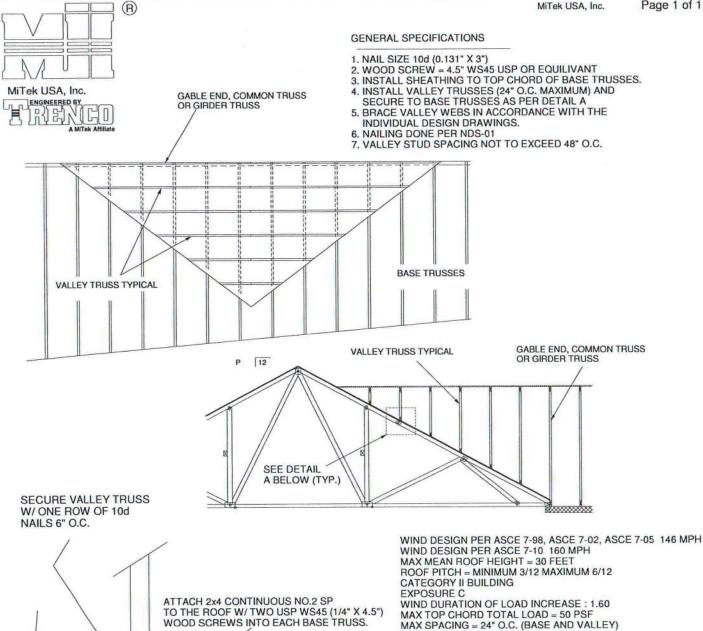
N.T.S.

WIND DESIGN PER ASCE 7-98, ASCE 7-02, ASCE 7-05 146 MPH WIND DESIGN PER ASCE 7-10 160 MPH MAX MEAN ROOF HEIGHT = 30 FEET ROOF PITCH = MINIMUM 3/12 MAXIMUM 6/12 CATEGORY II BUILDING **EXPOSURE C** 

EXPOSURE G
WIND DURATION OF LOAD INCREASE: 1.60
MAX TOP CHORD TOTAL LOAD = 50 PSF
MAX SPACING = 24" O.C. (BASE AND VALLEY)
MINIMUM REDUCED DEAD LOAD OF 6 PSF ON THE TRUSSES



Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610


January 19, 2018

### TRUSSED VALLEY SET DETAIL

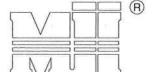
### MII-VALLEY HIGH WIND2

MiTek USA, Inc.

Page 1 of 1



₹1.5" Max

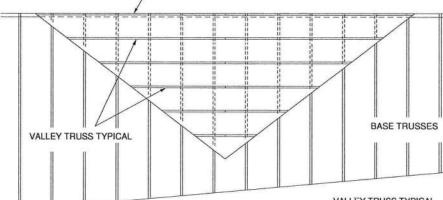

MAX TOP CHORD TOTAL LOAD = 50 PSF MAX SPACING = 24" O.C. (BASE AND VALLEY) MINIMUM REDUCED DEAD LOAD OF 6 PSF No 39380

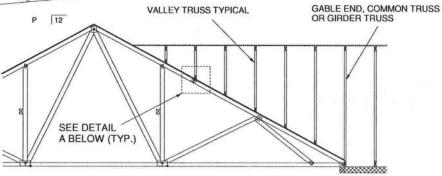
STATE OF THE STATE OF ON THE TRUSSES

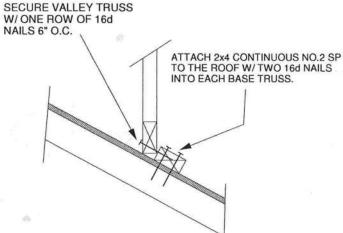
Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

MiTek USA, Inc.

Page 1 of 1





MiTek USA, Inc.


GABLE END, COMMON TRUSS OR GIRDER TRUSS

### GENERAL SPECIFICATIONS

- 1. NAIL SIZE 16d (0.131" X 3.5")
- 2. INSTALL VALLÈY TRUSSES (24" O.C. MAXIMUM) AND SECURE PER DETAIL A
- 3. BRACE VALLEY WEBS IN ACCORDANCE WITH THE INDIVIDUAL DESIGN DRAWINGS.
- 4. BASE TRUSS SHALL BE DESIGNED WITH A PURLIN SPACING EQUILIVANT TO THE RAKE DIMENSION OF THE VALLEY TRUSS SPACING.
- 5. NAILING DONE PER NDS 01 6. VALLEY STUD SPACING NOT TO EXCEED 48" O.C.
- 7. ALL LUMBER SPECIES TO BE SP.

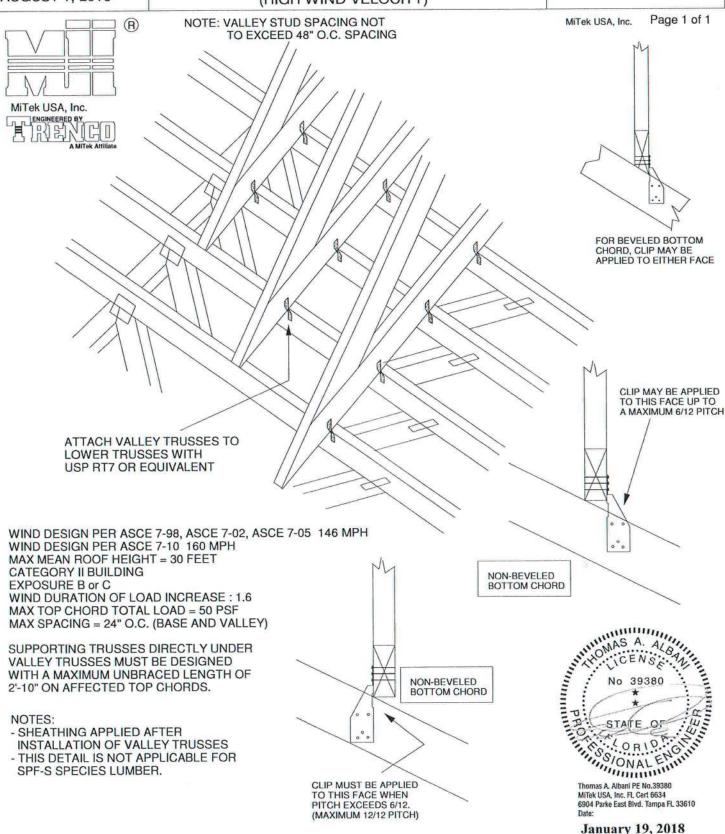






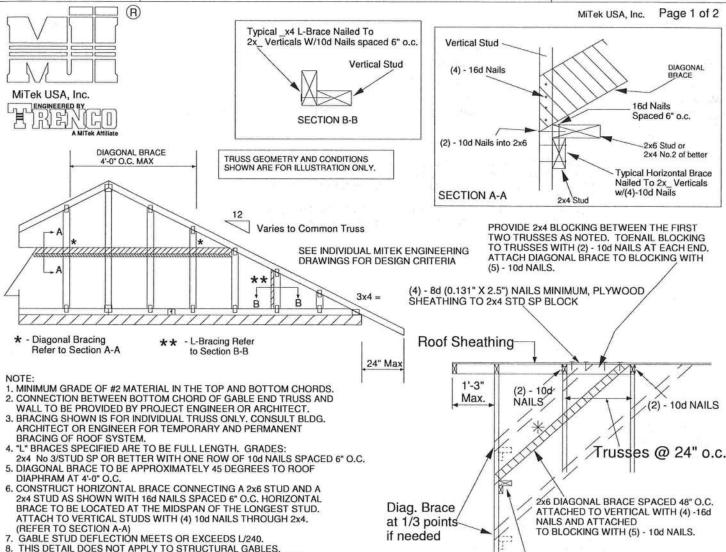
**DETAIL A** (MAXIMUM 1" SHEATHING) N.T.S.

WIND DESIGN PER ASCE 7-98, ASCE 7-02, ASCE 7-05 120 MPH WIND DESIGN PER ASCE 7-10 150 MPH MAX MEAN ROOF HEIGHT = 30 FEET MAX MEAIN HOOF HEIGHT = 30 FEET ROOF PITCH = MINIMUM 3/12 MAXIMUM 10/12 CATEGORY II BUILDING EXPOSURE C OR B WIND DURATION OF LOAD INCREASE : 1.60 MAX TOP CHORD TOTAL LOAD = 60 PSF MAX SPACING = 24" O.C. (BASE AND VALLEY) MINIMUM REDUCED DEAD LOAD OF 4.2 PSF


ON THE TRUSSES



Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610


### TRUSSED VALLEY SET DETAIL (HIGH WIND VELOCITY)

MII-VALLEY



### Standard Gable End Detail

### MII-GE146-001



End Wall

8. THIS DETAIL DOES NOT APPLY TO STRUCTURAL GABLES.
9. DO NOT USE FLAT BOTTOM CHORD GABLES NEXT TO SCISSOR TYPE TRUSSES.

1. THIS DETAIL DOES NOT APPLY TO STRUCTURAL GABLES.

1. THIS DETAIL DOES NOT APPLY TO STRUCTURAL GABLES.

1. THIS DETAIL DOES NOT APPLY TO STRUCTURAL GABLES.

1. THIS DETAIL DOES NOT APPLY TO STRUCTURAL GABLES.

10. NAILS DESIGNATED 10d ARE (0.131" X 3") AND NAILS DESIGNATED 16d ARE (0.131" X 3.5")

Minimum Stud Size Species	Stud Spacing	Without Brace	2x4 L-Brace	DIAGONAL BRACE	2 DIAGONAI BRACES AT 1/3 POINTS
and Grade	131	Maxim	num Stud L	ength.	
2x4 SP No 3/Stud	12" O.C.	3-11-3	6-8-0	7-2-14	11-9-10
2x4 SP No 3/Stud	16" O.C.	3-6-14	5-9-5	7-1-13	10-8-11
2x4 SP No 3/Stud	24" O.C.	3-1-8	4-8-9	6-2-15	9-4-7

Diagonal braces over 6'-3" require a 2x4 T-Brace attached to one edge. Diagonal braces over 12'-6" require 2x4 I-braces attached to both edges. Fasten T and I braces to narrow edge of web with 10d nails 8" o.c., with 3" minimum end distance. Brace must cover 90% of diagonal length.

MAXIMUM WIND SPEED = 146 MPH MAX MEAN ROOF HEIGHT = 30 FEET CATEGORY II BUILDING EXPOSURE B or C ASCE 7-98, ASCE 7-02, ASCE 7-05 DURATION OF LOAD INCREASE: 1.60

STUD DESIGN IS BASED ON COMPONENTS AND CLADDING. CONNECTION OF BRACING IS BASED ON MWFRS.

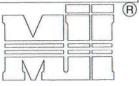


HORIZONTAL BRACE

(SEE SECTION A-A)

Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

January 19, 2018


**OCTOBER 5, 2016** 

### REPLACE BROKEN OVERHANG

MII-REP13B

MiTek USA, Inc.

Page 1 of 1

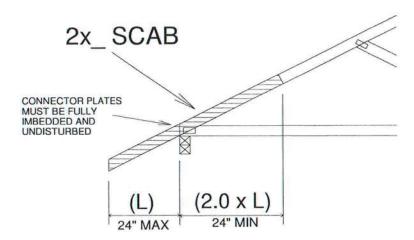


MiTek USA, Inc.

ENGINEERED BY 自認到 A MiTek Affiliate TRUSS CRITERIA:

LOADING: 40-10-0-10 **DURATION FACTOR: 1.15** SPACING: 24" O.C. TOP CHORD: 2x4 OR 2x6 PITCH: 4/12 - 12/12

HEEL HEIGHT: STANDARD HEEL UP TO 12" ENERGY HEEL END BEARING CONDITION


NOTES:

1. ATTACH 2x_ SCAB (MINIMUM NO.2 GRADE SPF, HF, SP, DF) TO ONE FACE OF

TRUSS WITH TWO ROWS OF 10d (0.131" X 3") SPACED 6" O.C.

2. THE END DISTANCE, EDGE DISTANCE, AND SPACING OF NAILS SHALL BE SUCH AS TO AVOID UNUSUAL SPLITTING OF THE WOOD.

3. WHEN NAILING THE SCABS, THE USE OF A BACKUP WEIGHT IS RECOMMENDED TO AVOID LOOSENING OF THE CONNECTOR PLATES AT THE JOINTS OR SPLICES.



This detail to be used only with trusses (spans less than 40') spaced 24" o.c. maximum and having pitches between 4/12 and 12/12 and total top chord loads not exceeding 50 psf. Trusses not fitting these criteria should be examined individually.

REFER TO INDIVIDUAL TRUSS DESIGN FOR PLATE SIZES AND LUMBER GRADES

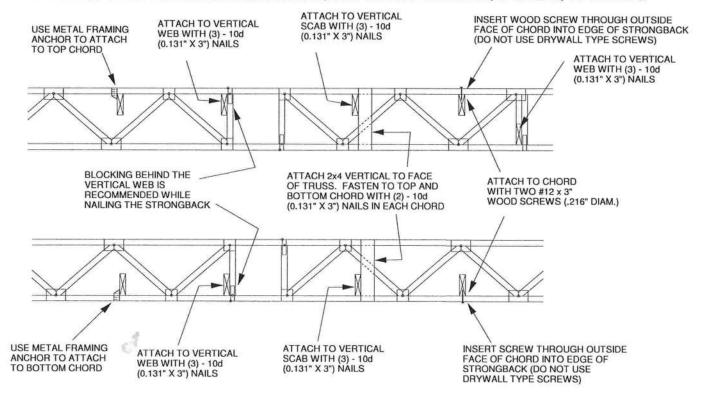


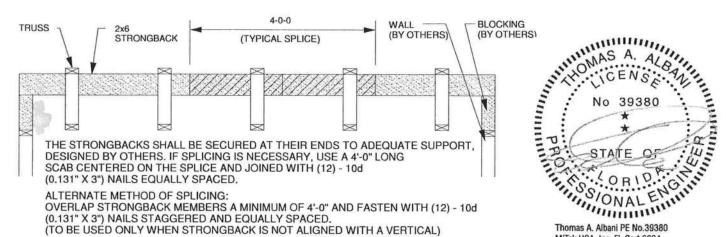
Thomas A. Albani PE No.39380 MITek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

### LATERAL BRACING RECOMMENDATIONS

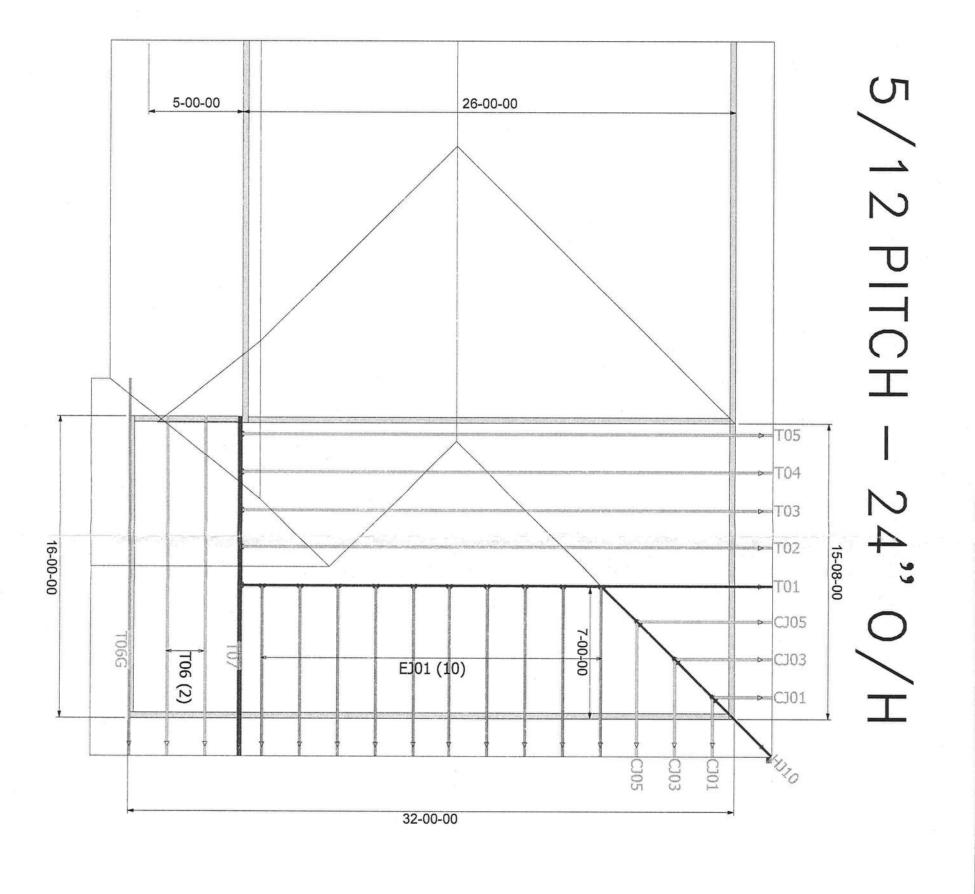
MII-STRGBCK

MiTek USA, Inc.


Page 1 of 1




TO MINIMIZE VIBRATION COMMON TO ALL SHALLOW FRAMING SYSTEMS, 2x6 "STRONGBACK" IS RECOMMENDED, LOCATED EVERY 8 TO 10 FEET ALONG A FLOOR TRUSS.


NOTE 1: 2X6 STRONGBACK ORIENTED VERTICALLY MAY BE POSITIONED DIRECTLY UNDER THE TOP CHORD OR DIRECTLY ABOVE THE BOTTOM CHORD. SECURELY FASTENED TO THE TRUSS USING ANY OF THE METHODS ILLUSTRATED BELOW.

NOTE 2: STRONGBACK BRACING ALSO SATISFIES THE LATERAL BRACING REQUIREMENTS FOR THE BOTTOM CHORD OF THE TRUSS WHEN IT IS PLACED ON TOP OF THE BOTTOM CHORD, IS CONTINUOUS FROM END TO END, CONNECTED WITH A METHOD OTHER THAN METAL FRAMING ANCHOR, AND PROPERLY CONNECTED, BY OTHERS, AT THE ENDS.





MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610



THE ARROW HEAD AT THE END OF THE TRUSS ON FIET TRUSS ON FREE TRUSS PLACEMENT PLAN (LAYOUT).
CORRESPONDS WITH THE LEFT SIDE OF THE INDIVIDUAL TRUSS DRAWING, USE THIS AS AN DRIENTATION GUIDE WHEN SETTING THE FRUSSES ON THE STRUCTURE.

ral Notes:

Per ANSI/TPI 1.2002 all "Truss to Wall" connections are the responsibility of the Building Designer, not the Pruss Manufacturer.

- Use Manufacturer's ejectifications for all hanger connections unless noted otherwise.

- Trusses are to be 24° o.c. U.N.O.

- All hangers are to be Simpson or equivalent U.N.O.

- Use 10d x 1 1/2° Nails in hanger connections to single ply pirider trusses.

Trusses are not designed to support brick U.N.O.
Dimensions are Feet-Inches: Sixteenths

No back charges will be accepted by Builders FirstSource unless approved in writing first, 860-885-4541

ACQ lumber is corrisive to truss plates. Any ACQ lumber that comes in contact with truss plates (i.e. scrabbed on tails) must have an approved barrier applied first.

Refer to BCSI-B1 Summary Sheet-Guide for handling. Installing and Bracing of Metal Plate Connected Wood Truss prior to and during truss installation.

It is the responsibility of the Contractor to ensure of the proper crientation of the truss placement plans as to the construction documents and field conditions of the structure orientation. If a reversed or flipped layout is required, it will be supplied at no extra cost by Builders Exercises.

It is the responsibility of the Contractor to make sure the placement of trusses are adjusted for plumbing drops, can lights, cet..., so the trusses do not interfere with these type of items.

All common framed roof or floor systems must be designed as to NOT impose any loads on the floor trusses below. The floor trusses have not been designed to carry any additional loads from above.

This truss placement plan was not created by an engineer, but rather by the Builders FirstSource staff and its solely to be used as an installation guide and does not require a seal. Complete truss engineering and analysis can be found on the fruss design drawings which may be sealed by the truss design engineer.

Gable end trusses require continuous bottom chord bearing. Refer to local codes for wall framing

Although all attempts have been made to do so, trussess may not be designed symmetrically. Please refer to the individual truss drawings and truss placement plans for proper orientation and placement.

Builders

FIRSTSOURCE

Lake City PHONE: 386-755-6894 FAX: 386-755-7973

Jacksonville PHONE: 904-772-6100 FAX: 904-772-1973

Tallahassee

PHONE: 850-576-5177

Builder:	×	KEVI	Z	-	HOLDER	
Legal Ad	dres	9.				
	,	O CHIT	4		2	

130 SW Joshua Court

del:		
Justom		
8-24-21	Drawn By: KLH	Driginal Ref#: 2720721
3-24-21	KLH	2720721

Phor 1 Job# N/A

Roof Job #: 2720721