

ANCHOR TABLE

OBTAIN UPLIFT REQUIREMENTS FROM TRUSS MANUFACTURER'S ENGINEERING

TRUSS CONNECTOR	UPLIFT SYP	UPLIFT SPF	F1 SYP	F2 SYP	F1 SPF	F2 SPF	TO RAFTER/TRUSS	TO PLATES	
H5	455	265	115	200	100	170	4-8d x 1 1/2"	4-8d x 1 1/2"	
H3	415	290	125	160	105	140	4-8d x 1 1/2"	4-8d x 1 1/2"	
H2.5	415	365	150	150	130	130	5-8d x 1 1/2"	5-8d x 1 1/2"	
H2.5A	480	480	110	110	110	110	5-8d x 1 1/2"	5-8d x 1 1/2"	
H6	950	820					8-8d	8-8d	
H8	745	565					5-10d x 1 1/2"	5-10d x 1 1/2"	
H14-1	1465	1050	515	265	480	245	12-8d x 1 1/2"	13-8d	
H14-2	1465	1050	515	265	480	245	12-8d x 1 1/2"	15-8d	
H10	990	850	585	525	505	450	8-8d x 1 1/2"	8-8d x 1 1/2"	
H10-2	760	655	455	395	390	340	6-10d	6-10d	
H16	1470	1265					2-10d x 1 1/2"	10-10d x 1 1/2"	
H16-2	1470	1265					2-10d x 1 1/2"	10-10d x 1 1/2"	
LTS12 - LTS20	1000	620					6-10d x 1 1/2"	6-10d x 1 1/2"	
MTS12 - MTS30	1000	860					7-10d x 1 1/2"	7-10d x 1 1/2"	
HTS16 - HTS30	1450	1245					12-10d x 1 1/2"	12-10d x 1 1/2"	
HEAVY GIRDER TIEDOWNS									TO FOUNDATIO
LGT2	2050	1785	700	170	700	170	14-16d	14-16d	
LGT3-SDS2.5	3685	2655	795	410	795	410	12-SDS 1/4" x 2 1/2"	26-16dS	
LGT4-SDS3	4060	3860	2000	675	2000	675	12-SDS 1/4" x 3"	36-16dS	
MGT	3965	3330					22 -10d		5/8" ANCHOR
HGT-2	10980	6485					16 -10d		2-5/8" ANCHOR
HGT-3	10530	9035					16 -10d		2-5/8" ANCHOR
HGT-4	9250	9250					16 -10d		2-5/8" ANCHOR
STUD STRAP CONNECTOR							and the same same		TO STUDS
SSP DOUBLE TOP PLATE	435	435						3-10d	4 -10d
SSP SINGLE SILL PLATE	455	420						1-10d	4 -10d
DSP DOUBLE TOP PLATE	825	825						6 -10d	8 -10d
DSP SINGLE SILL PLATE	825	600						2 -10d	8 -10d
SP1	585	535						4 -10d	6 -10d
SP2	1065	605						6 -10d	6 -10d
SP4	885	760							6-10d x 1 1/2"
SPH4	1240	1065							10-10d x 1 1/2"
SP6	885	760							6-10d x 1 1/2"
SPH6	1240	1065							10-10d x 1 1/2"
LSTA18	1235	1110							14-10d
LSTA21	1235	1235							16-10d
CS20	1030	1030							14-10d
CS16	1705	1705							22-10d
STUD ANCHORS							TO STUDS		TO FOUNDATION
LTT19	1350	1305					8-16d		1/2" ANCHOR
LTTI31	2310	2310					18-10d x 1 1/2"		5/8" ANCHOR
HD2A	2775	2570					2-5/8" BOLTS		5/8" ANCHOR
HTT16	4175	3695					18-16d		5/8" ANCHOR
HTT22	5260	5250					32-16d		5/8" ANCHOR
ABU44	2200	2200					12-16d		5/8" ANCHOR
ABU66	2300	2300					12-16d		
775/50E-16450	0.0000						12-100		5/8" ANCHOR

(1) w/ INSTALLATION OF 4-16dS OPTIONAL NAIL HOLES (2) FOR SYP GIRDER & SPF STUDS

MASONRY NOTES:

MASONRY CONSTRUCTION AND MATERIALS FOR THIS PROJECT SHALL CONFORM TO ALL REQUIREMENTS OF "SPECIFICATION FOR MASONRY STRUCTURES" (ACI 530.1/ASCE 6/TMS 602). THE CONTRACTOR AND MASON MUST IMMEDIATELY, BEFORE PROCEDING, NOTIFY THE ENGINEER OF ANY CONFLICTS BETWEEN ACI 530.1-02 AND THESE DESIGN DRAWINGS. ANY EXCEPTIONS TO ACI 530.1-02 MUST BE APPROVED BY THE ENGINEER IN WRITING.

4 4 4		Specific Requirements				
1.4A	Compressive strength	8" block bearing walls F'm = 1500 psi				
2.1	Mortar	ASTM C 270, Type N, UNO				
2.2	Grout	ASTM C 476, admixtures require approva				
2.3	CMU standard	ASTM C 90-02, Normal weight, Hollow, medium surface finish, 8"x8"x16" running bond and 12"x12" or 16"x16" column block				
2.3	Clay brick standard	ASTM C 216-02, Grade SW, Type FBS, 5.5"x2.75"x11.5"				
2.4	Reinforcing bars, #3 - #11	ASTM 615, Grade 60, Fy = 60 ksi, Lap splices min 48 bar dia. (30" for #5)				
2.4F	Coating for corrosion protection	Anchors, sheet metal ties completely embedded in mortar or grout, ASTM A525, Class G60, 0.60 oz/ft2 or 304SS				
2.4F	Coating for corrosion protection	Joint reinforcement in walls exposed to moisture or wire ties, anchors, sheet metal ties not completely embedded in mortar or grout, ASTM A153, Class B2, 1.50 oz/ft2 or 304SS				
3.3.E.2	Pipes, conduits, and accessories	Any not shown on the project drawings require engineering approval.				
3.3.E.7	Movement joints	Contractor assumes responsibility for type and location of movement joints if not detailed on project drawings.				

GRADE & SPECIES TABLE

SYP #2

SYP #2

SYP #2

24F-V3 SP

LSL TIMBERSTRAND 1700

MICROLAM

PARALAM

LVL

Fb (psi) E (10⁶ psi)

1.6

1.6

1.8

2.0

2.0

1200

1050

975

2400

2900

2900

EXTERIOR WALL STUD TABLE FOR SPF #2 STUDS

(1) 2x4 @ 24" OC	TO 9'-8" STUD HEIGHT
(1) 2x4 @ 16" OC	TO 11'-2" STUD HEIGHT
(1) 2x4 @ 12" OC	TO 12'-4" STUD HEIGHT
(1) 2x6 @ 24" OC	TO 15'-0" STUD HEIGHT
(1) 2x6 @ 16" OC	TO 17'-3" STUD HEIGHT
(1) 2x6 @ 12" OC	TO 19'-1" STUD HEIGHT
(1) 2x8 @ 24" OC	TO 19'-5" STUD HEIGHT
(2) 2x8 @ 24" OC	TO 24'-0" STUD HEIGHT

THIS STUD HEIGHT TABLE IS PER 2012 WFCM, TABLE 3.20B4, EXTERIOR LOAD BEARING & NON LOAD BEARING STUD LENGTHS FOR WALLS WITH OSB EXTERIOR AND 1/2" GYP INTERIOR RESISTING INTERIOR ZONE WINDLOADS, 130 MPH, EXPOSURE C, STUD DEFLECTION LIMIT H/180 (NOT OK FOR SOME BRITTLE FINISH?). STUD SPACINGS SHALL BE MULTIPLIED BY 0.8 FOR FRAMING LOCATED WITHIN 4 FEET OF CORNERS FOR END ZONE LOADING. (END ZONE EXAMPLE 16" O.C. x 0.8 = 12.8" O.C.)

TRUSSES: TRUSSES SHALL BE DESIGNED BY A FLORIDA LICENSED ENGINEER IN ACCORDANCE WITH THE 2010 FBCR. TRUSS ENGINEERING SHALL INCLUDE TRUSS DESIGN, PLACEMENT PLANS, TEMPORARY AND PERMANENT BRACING DETAILS, TRUSS-TO-TRUSS CONNECTIONS, AND UPLIFT AND REACTION LOADS FOR ALL BEARING LOCATIONS. TRUSS ENGINEERING IS THE RESPONSIBILITY OF THE TRUSS MANUFACTURER AND SHALL BE SIGNED & SEALED BY THE MANUFACTURER'S DESIGN ENGINEER. IT IS THE BUILDER'S RESPONSIBILITY VERIFY THE TRUSS DESIGNER FULLY SATISFIED ALL THE ABOVE REQUIREMENTS AND TO SELECT UPLIFT CONNECTIONS BASED ON TRUSS ENGINEERING UPLIFT AND PROVIDE FOOTINGS FOR INTERIOR BEARING WALLS. BUILDER IS TO FURNISH TRUSS ENGINEERING TO WIND LOAD ENGINEER FOR REVIEW OF TRUSS REACTIONS ON THE BUILDING STRUCTURE. STRAP 2X6 RAFTERS WITH MIN UPLIFT CONNECTION 415LB EACH END; 2X8 RAFTERS 700 LB EACH END.

GENERAL NOTES:

SITE PREPARATION: SITE ANALYSIS AND PREPARATION IS NOT PART OF THIS PLAN

FOUNDATION: CONFIRM THAT THE FOUNDATION DESIGN & SITE CONDITIONS MEET GRAVITY LOAD REQUIREMENTS (ASSUME 1000 PSF BEARING CAPACITY UNLESS VISUAL OBSERVATION OR SOILS TEST PROVES OTHERWISE

CONCRETE: MINIMUM COMPRESSIVE STRENGTH OF CONCRETE AT 28 DAYS, F'c = 3000 PSI. WELDED WIRE REINFORCED SLAB: 6" × 6" W1.4 × W1.4, FB = 85KSI, WELDED WIRE REINFORCEMENT FABRIC (W.W.M.) CONFORMING TO ASTM A185; LOCATED IN MIDDLE OF THE SLAB; SUPPORTED WITH APPROVED MATERIALS OR SUPPORTS AT SPACINGS NOT TO EXCEED 3'.

FIBER CONCRETE SLAB: CONCRETE SLABS ON GROUND CONTAINING SYNTHETIC FIBER REINFORCEMENT. FIBER LENGTH 1/2 INCH TO 2 INCHES. DOSAGE AMOUNTS FROM 0.75 TO 1.5 POUNDS PER CUBIC YARD PER THE MANUFACTURER'S RECOMMENDATIONS. FIBERS TO COMPLY WITH ASTM C 1116. SUPPLIER TO PROVIDE ASTM C 1116 CERTIFICATION OF COMPLIANCE WHEN REQUESTED BY BUILDING OFFICIAL.

CONTROL JOINTS: WHERE SPECIFIED, SAWN CONTROL JOINTS IN SLAB-ON-GRADE SHALL BE CUT IN ACCORDANCE WITH ACI 302. JOINTS SHALL BE CUT WITHIN 12 HOURS OF SLAB PLACEMENT. THE LENGTH / WIDTH RATIOS OF SLAB AREAS SHALL NOT EXCEED 1.5 AND TYPICAL SPACING OF CUTS TO BE 12FT. DO NOT CUT WWM OR REINFORCING STEEL. (RECOMMENDED LOCATION OF CONTROL JOINTS IS SUBJECT TO OWNER AND CONTRACTOR'S APPROVAL. THE CONTROL JOINTS ARE NOT INTENDED TO PREVENT CRACKS BUT RATHER TO ENCOURAGE THE SLAB TO CRACK ON A GIVEN LINE.)

REBAR: ASTM A 615, GRADE 60, DEFORMED BARS, FY = 60 KSI. ALL LAP SPLICES 40 * DB (25" FOR #5 BARS); UNO. ALL REINFORCEMENT SHALL BE DETAILED AND PLACED IN ACCORDANCE WITH ACI 315-96, U.N.O.

GLULAM BEAMS: GLB, 24F-V3SP, Fb = 2.4ksi, E = 1800ksi; UNO. SUPPLIER MAY SUPPLY AN ALTERNATE BEAM WITH EQUAL PROPERTIES OR MAY SUBMIT THEIR OWN SIZING CALCS.

ROOF SHEATHING: ALL ROOFS ARE HORIZONTAL DIAPHRAGMS; 7/16" OSB SHEATHING, UNBLOCKED, APPLIED PERPENDICULAR TO FRAMING, OVER A MINIMUM OF 3 FRAMING MEMBERS, WITH PANEL EDGES STAGGERED, FASTENED WITH 8d COMMON NAILS (.131), 6"OC PANEL EDGES, 12"0C INTERMEDIATE MEMBERS, GABLE ENDS AND DIAPHRAGM BOUNDARY; 4"OC, UNO.

STRUCTURAL CONNECTORS: MANUFACTURERS AND PRODUCT NUMBER FOR CONNECTORS, ANCHORS, AND REINFORCEMENT ARE LISTED FOR EXAMPLE NOT ENDORSEMENT. AN EQUIVALENT DEVICE OF THE SAME OR OTHER MANUFACTURER CAN BE SUBSTITUTED FOR ANY DEVICES LISTED IN THE EXAMPLE TABLES AS LONG AS IT MEETS THE REQUIRED LOAD CAPACITIES. MANUFACTURER'S INSTALLATION INSTRUCTIONS MUST BE FOLLOWED TO ACHIEVE RATED LOADS.

ANCHOR BOLTS: A-307 ANCHOR BOLTS WITH MINIMUM EMBEDMENT AS SPECIFIED IN DRAWINGS BUT NO LESS THAN 7" IN CONCRETE OR REINFORCED BOND BEAM OR 15" IN GROUTED CMU.

WASHERS: WASHERS USED WITH 1/2" BOLTS TO BE 2" x 2" x 9/64"; WITH 5/8" BOLTS TO BE 3" x 3" x 9/64"; WITH 3/4" BOLTS TO BE 3" x 3" x 9/64"; WITH 7/8" BOLTS TO BE 3" x 3" x 5/16"; UNO.

NAILS: ALL NAILS ARE COMMON NAILS UNLESS OTHERWISE SPECIFIED OR ACCEPTED BY FBC TEST REPORTS AS HAVING EQUAL STRUCTURAL VALUES.

BUILDER'S RESPONSIBILITY

THE BUILDER AND OWNER ARE RESPONSIBLE FOR THE FOLLOWING, WHICH ARE SPECIFICALLY NOT PART OF THE WIND LOAD ENGINEER'S SCOPE OF WORK.

CONFIRM SITE CONDITIONS, FOUNDATION BEARING CAPACITY, GRADE AND BACKFILL HEIGHT, WIND SPEED AND DEBRIS ZONE, AND FLOOD ZONE.

PROVIDE MATERIALS AND CONSTRUCTION TECHNIQUES, WHICH COMPLY WITH 2010 FBCR REQUIREMENTS FOR THE STATED WIND VELOCITY AND

DESIGN PRESSURES.

PROVIDE A CONTINUOUS LOAD PATH FROM TRUSSES TO FOUNDATION. IF YOU BELIEVE THE PLAN OMITS A CONTINUOUS LOAD PATH CONNECTION, CALL THE WIND LOAD ENGINEER IMMEDIATELY.

VERIFY THE TRUSS MANUFACTURER'S SEALED ENGINEERING INCLUDES TRUSS DESIGN, PLACEMENT PLANS, TEMPORARY AND PERMANENT BRACING DETAILS, TRUSS-TO-TRUSS CONNECTIONS, AND UPLIFT AND REACTION LOADS FOR ALL BEARING LOCATIONS.

ROOF SYSTEM DESIGN

THE SEAL ON THESE PLANS FOR COMPLIANCE WITH 2010 FBCR, SECTION R301.2.1 IS BASED ON REACTIONS, UPLIFTS, AND BEARING LOCATIONS IN TRUSS ENGINEERING SUBMITTED TO THE WIND LOAD ENGINEER. IT IS THE RESPONSIBILITY OF THE BUILDER TO CHECK ALL DETAILS OF THE COMPLETE ROOF SYSTEM DESIGN SUBMITTED BY THE TRUSS MANUFACTURER AND HAVE IT SIGNED, AND SEALED BY A DESIGN PROFESSIONAL FOR CORRECT APPLICATION OF 2010 FBCR REQUIRED LOADS AND ANY SPECIAL LOADS. THE BUILDER IS RESPONSIBLE TO REVIEW EACH INDIVIDUAL TRUSS MEMBER AND THE TRUSS ROOF SYSTEM AS A WHOLE AND TO PROVIDE RESTRAINT FOR ANY LATERAL BRACING. THE BUILDER SHOULD USE CARE CHECKING THE ROOF DESIGN BECAUSE THE WIND LOAD ENGINEER IS SPECIFICALLY NOT RESPONSIBLE FOR THE TRUSS LAYOUT WHICH WAS CREATED BY THE TRUSS MANUFACTURER AND THE TRUSS DESIGNER ALSO DENIES RESPONSIBILITY FOR THE LAYOUT PER NOTES ON THEIR SEALED TRUSS SHEETS.

WIND LOADS PER 2010 FLORIDA BUILDING CODE RESIDENTIAL, SECTION R301.2.1

BUILDING IS NOT IN THE HIGH VELOCITY HURRICANE ZONE

(ENCLOSED SIMPLE DIAPHRAGM BUILDINGS WITH FLAT, HIPPED, OR GABLE ROOFS;

DESIGN DATA

MEAN ROOF HEIGHT

ROOF 20 PSF (FLAT OR <4:12)

SOIL BEARING CAPACITY 1500 PSF

16 PSF (4:12 TO <12:12)

NOT IN FLOOD ZONE (BUILDER TO VERIFY)

12 PSF (12:12 AND GREATER)

STAIRS 40 PSF (ONE & TWO FAMILY DWELLINGS)

BUILDI	NG IS NOT IN THE	WIND-BORNE DEE	BRIS REGION	1				
1.) BA	SIC WIND SPEED) = 130 MPH, (3 SE	C GUST, 33 F	T, EX	P. C)			
2.) WI								
3.) TO	TOPOGRAPHIC FACTOR = 1.0, BUILDER MUST FIELD VERIFY							
4.) RIS	SK CATEGORY =	II, (MRI = 700 YR)						
5.) RC	OF ANGLE = 7-45	DEGREES						
6.) ME	AN ROOF HEIGH	T = <30 FT						
7.) INT	ERNAL PRESSUI	RE COEFFICIENT =	N/A (ENCLO	SED B	UILDIN	G)		
8.) CO	MPONENTS AND	CLADDING DESIGN	WIND PRES	SSURI	ES (TAB	LE R3	01.2(2))	
,	× ^							
			Zone	Effe	ctive W	ind A	rea (ft2	
4	2 2		20110		10			
1	< 1)	7	1	39	-43			
2	2	2 2 1	2	39	-68			
	1, 1,	3	-	00	100		-	
		55	3	39	-100	-	+	
*	3		4	43	-46		+	
/			5	43	-57			
X	2		Gara	ge Do	or			
5	2	13/14	2010	FBC	R,			
2	4	/2/ 5	Table	R301	2.(4)			
	//	A 1	8x7 Gar			37	-42	
		55	16x7 Ga	arage	Door	36	-40	
		242						
DESIGN								
FLOOR	40 PSF (ALL OT	HER DWELLING RO	DOMS)					
	30 PSF (SLEEPING ROOMS)							
	30 PSF (ATTICS	WITH STORAGE)						
	10 PSF (ATTICS	WITHOUT STORAG	GE, <3:12)					

REVISIONS

WINDLOAD ENGINEER: Mark Disosway, PE No.53915, POB 868, Lake City, FL 32056, 386-754-5419 DIMENSIONS:

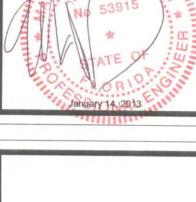
dimensions. Refer all questions to Mark Disosway, P.E. for resolution.

Do not proceed without clarification.

COPYRIGHTS AND PROPERTY RIGHTS:
Mark Disosway, P.E. hereby expressly reserves
its common law copyrights and property right in
these instruments of service. This document is
not to be reproduced, altered or copied in any
form or manner without first the express written
permission and consent of Mark Disosway.

CERTIFICATION: I hereby certify that I have

examined this plan, and that the applicable


portions of the plan, relating to wind enginee

comply with section R301.2.1, 2010 Florida
Building Code Residential
to the best of my knowledge.

LIMITATION: This design is valid for one

LIMITATION: This design is valid for one building, at specified location.

MARK DISOSWAY
P.E. 53915

Mark Disosway P.E. P.O. Box 868 Lake City, Florida 32056 Phone: (386) 754 - 5419 Fax: (386) 269 - 4871

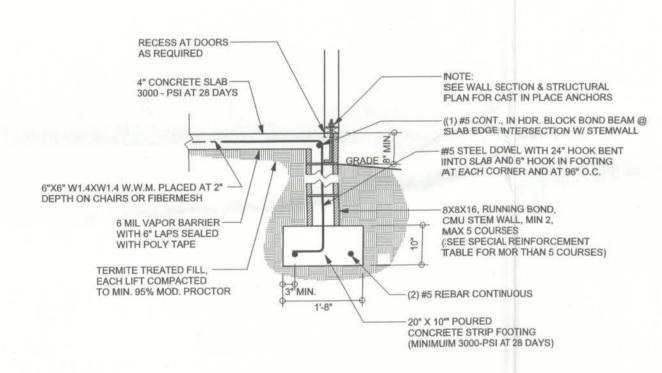
PRINTED DATE:
January 14, 2013

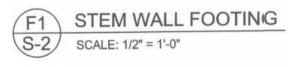
DRAWN BY: STRUCTURAL BY:

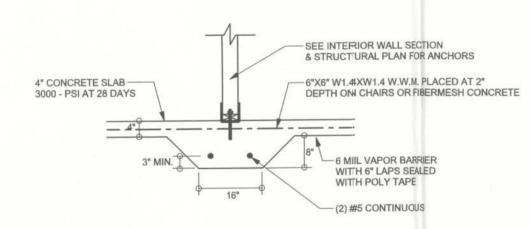
FINALS DATE:
9Jan13

JOB NUMBER: 1212029

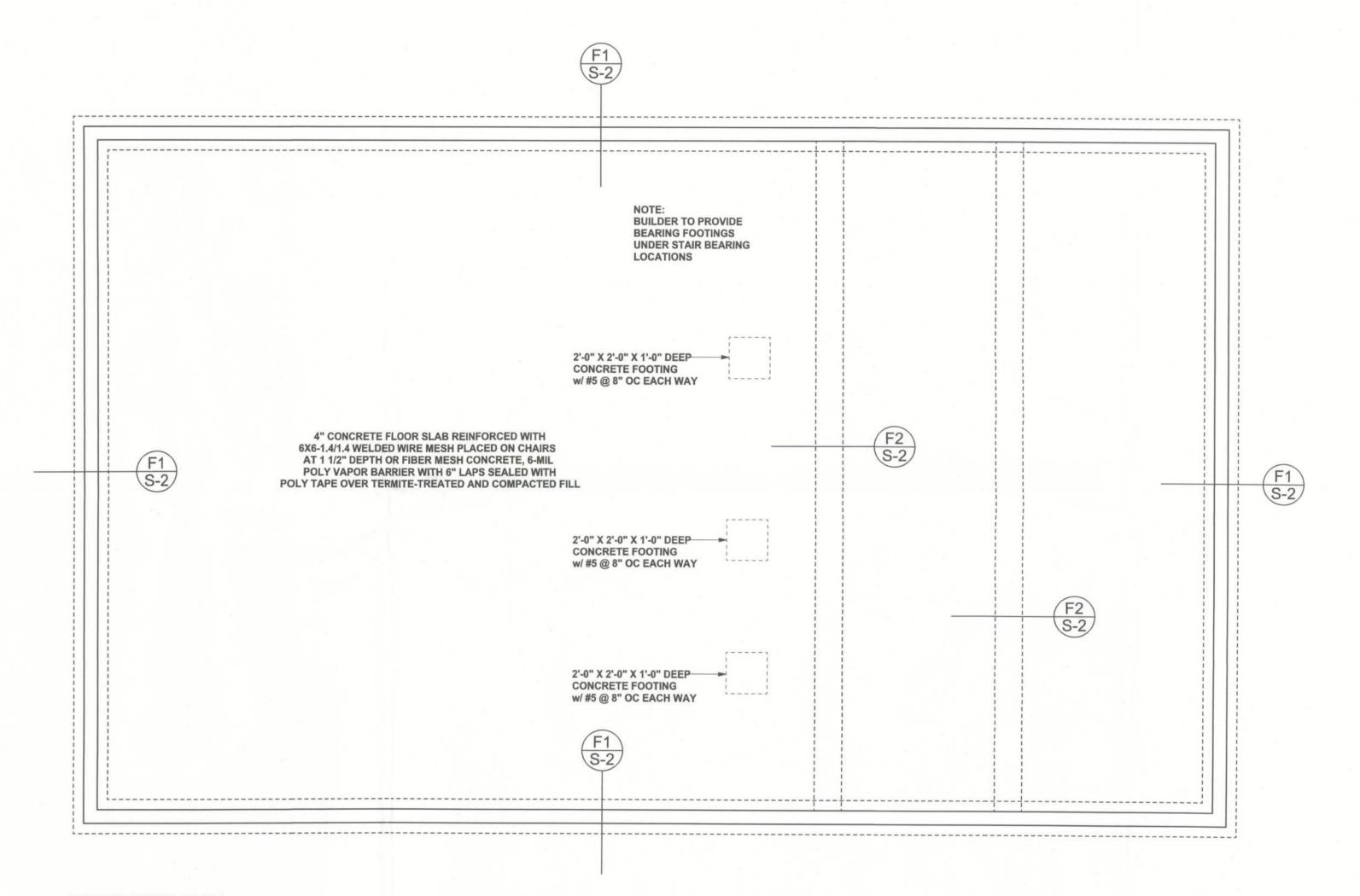
S-1


OF 3 SHEETS


REVISIONS


TALL STEM WALL TABLE

The table assumes 60 ksi reinforcing bars with 6" hook in the footing and benit 24" into the reinforced slab at the top. The vertical steel is to be placed toward the tensiom side of the CMU wall (away from the soil pressure, within 2" of the exterior side of the wall). If the wal is over 8' high, add Durowall ladder reinforcement at 16"OC vertically or a horizontal bond beam with 1#5 continuous at mid height. For higher parts of the wall 12" CMU may be used with reinforcement as shown in the table below.


STEMWALL UNBALANCED HEIGHT BACKFILL (FEET) HEIGHT		FOR 8	AL REINFOR " CMU STEN INCHES O.C	WALL	VERITICAL REINFORCEMENT FOIR 12" CMU \$TEMWALL (INCHESO.C.)		
		#5	#7	#8	#5	#7	#8
3.3	3.0	96	96	96	96	96	96
4.0	3.7	96	96	96	96	96	96
4.7	4.3	88	96	96	96	96	96
5.3	5.0	56	96	96	96	96	96
6.0	5.7	40	80	96	80	96	96
6.7	6.3	32	56	80	56	96	96
7.3	7.0	24	40	56	40	80	96
8.0	7.7	16	32	48	32	64	80
8.7	8.3	8	24	32	24	48	64
9.3	9.0	8	16	24	16	40	48


F2 INTERIOR BEARING FOOTING
S-2 SCALE: 1/2" = 1'-0"

FOUNDATION PLAN SCALE: 1/4" = 1'-0" DIMENSIONS ON STRUCTURAL SHEETS ARE NOT EXACT. REFER TO ARCHITECTURAL FLOOR PLAN FOR ACTUAL DIMENSIONS WINDLOAD ENGINEER: Mark Disosway, PE No.53915, POB 868, Lake City, FL 32056, 386-754-5419 DIMENSIONS:

dimensions supercede scaled dimensions. Refer all questions to Mark Disosway, P.E. for resolution. Do not proceed without clarification.

COPYRIGHTS AND PROPERTY RIGHTS: Mark Disosway, P.E. hereby expressly reserves its common law copyrights and property right in these instruments of service. This document is not to be reproduced, altered or copied in any form or manner without first the express written permission and consent of Mark Disosway. CERTIFICATION: I hereby certify that I have examined this plan, and that the applicable portions of the plan, relating to wind engineerin comply with section R301.2.1, 2010 Florida Building Code Residential to the best of my knowledge.

Paul Fountain Residence

ADDRESS: 4432 SW Herlong St. Ft White, FL

Mark Disosway P.E. P.O. Box 868 Lake City, Florida 32056 Phone: (386) 754 - 5419 Fax: (386) 269 - 4871

PRINTED DATE: January 09, 2013

DRAWN BY: STRUCTURAL BY

FINALS DATE: 9Jan13

JOB NUMBER: 1212029 DRAWING NUMBER

> **S-2** OF 3 SHEETS

STRUCTURAL PLAN NOTES

SN-1 ALL LOAD BEARING FRAME WALL & PORCH HEADERS SHALL BE A MINIMUM OF (3) 2X8 SYP #2 U.N.O.

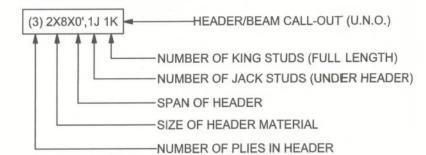
SN-2

ALL LOAD BEARING FRAME WALL HEADERS
SHALL HAVE (1) JACK STUD & (1) KING STUD
EACH SIDE (U.N.O.)

SN-3 DIMENSIONS ON STRUCTURAL SHEETS ARE NOT EXACT. REFER TO ARCHITECTURAL FLOOR PLAN FOR ACTUAL DIMENSIONS

SN-4

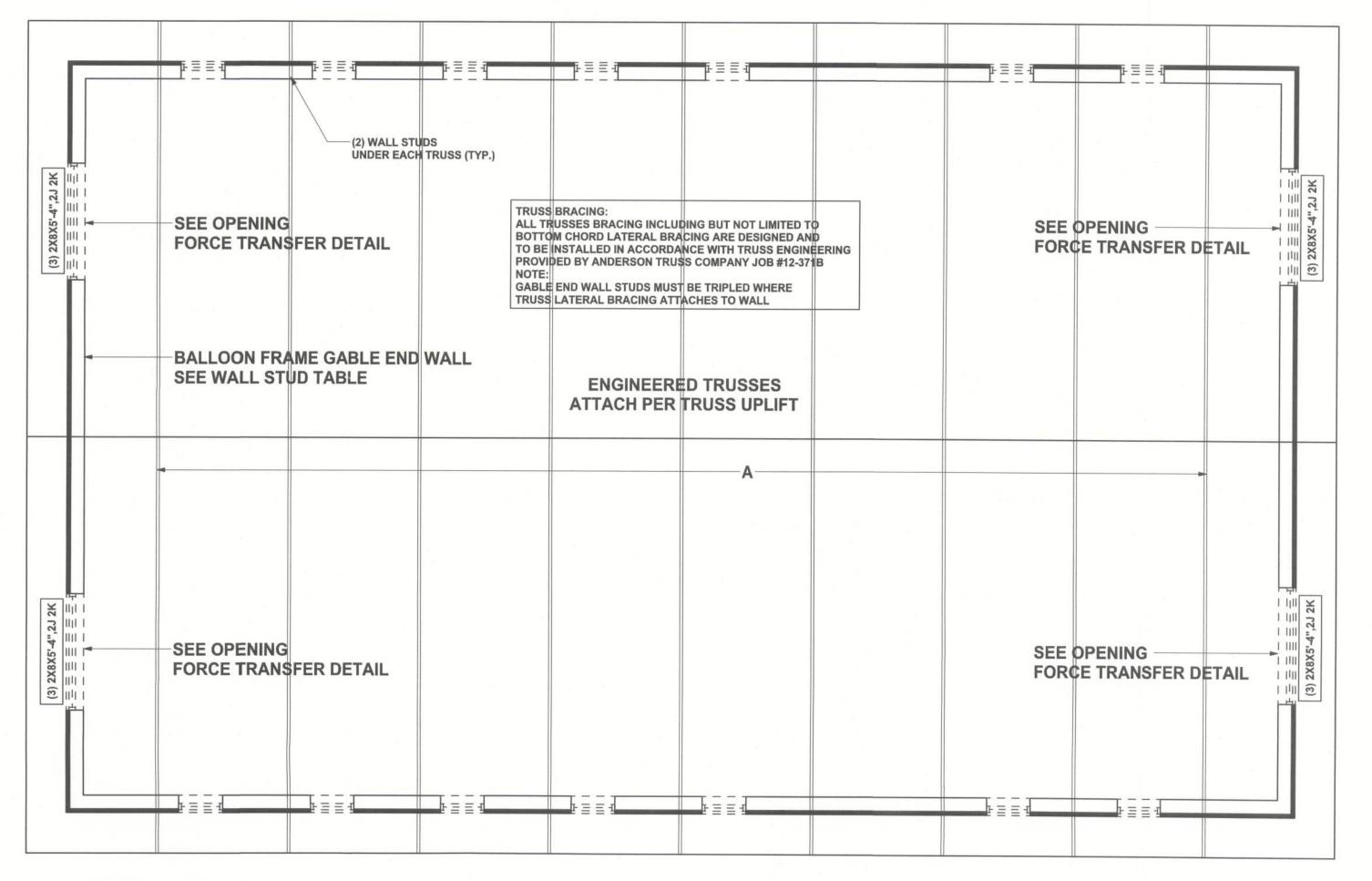
PERMANENT TRUSS BRACING IS TO BE INSTALLED AT LOCATIONS AS SHOWN ON THE SEALED TRUSS DRAWINGS.

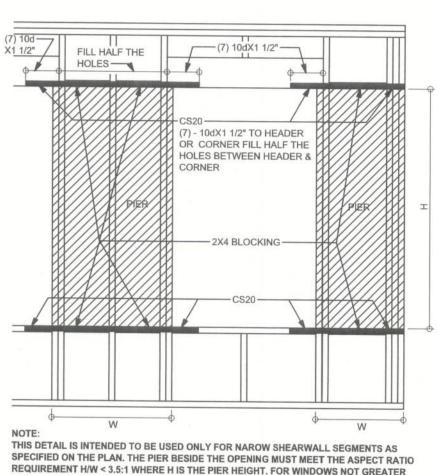

LATERAL BRACING IS TO BE RESTRAINED PER BCSI1-03, BCSI-B1, BCSI-B2, & BCSI-B3. BCSI-B1, BCSI-B2, & BCSI-B3

ARE FURNISHED BY THE TRUSS SUPPLIER, WITH THE SEALED TRUSS PACKAGE

WALL LEGEND

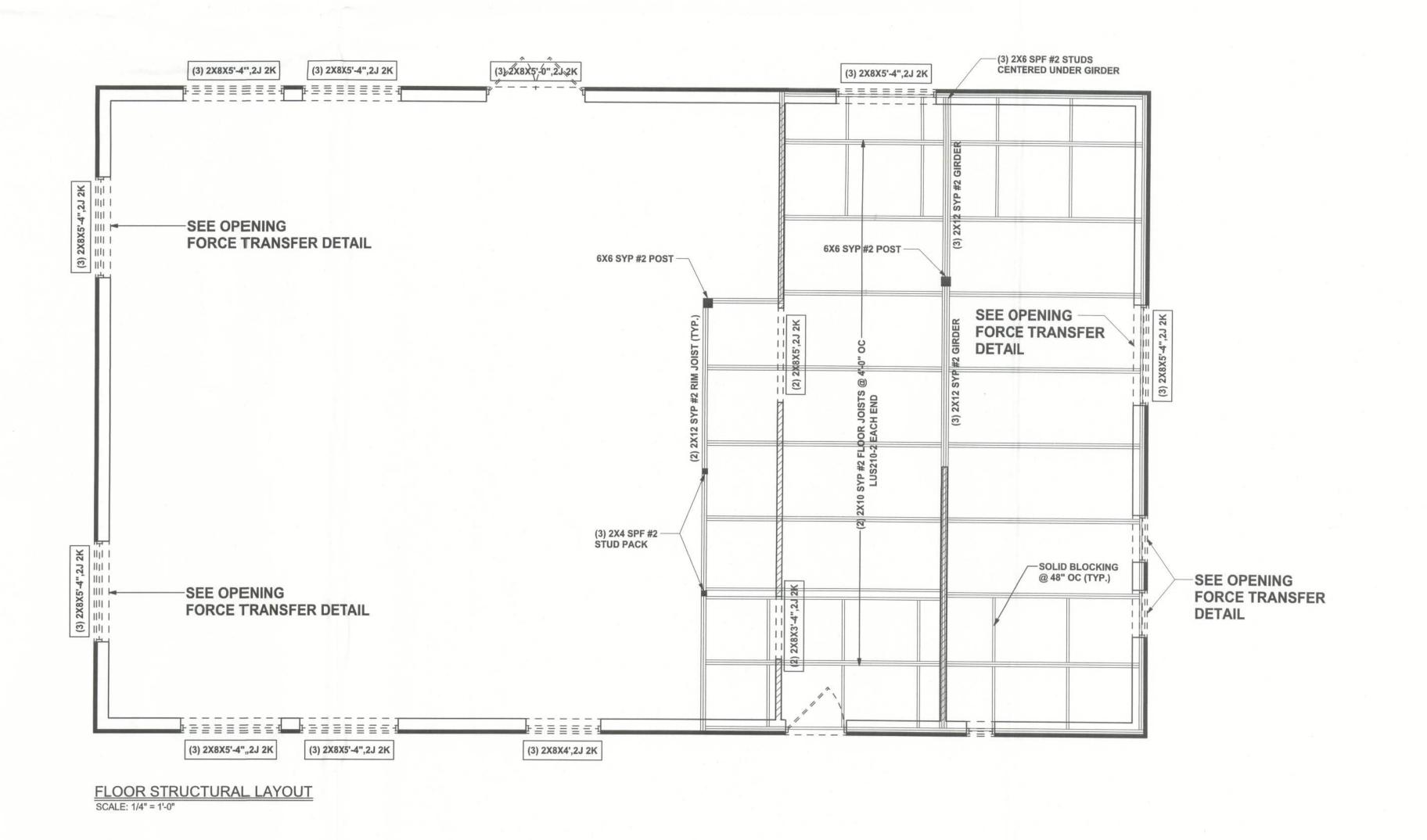
	EXTERIOR WALL
	INTERIOR NON-LOAD BEARING WALL
	INTERIOR LOAD BEARING WALL w/ NO UPLIFT
	INTERIOR LOAD BEARING WALL w/ UPLIFT


HEADER LEGEND



TOTAL SHEAR WALL SEGMENTS INDICATES SHEAR WALL SEGMENTS

REQUIRED ACTUAL
TRANSVERSE 40.0' 45.5'
LONGITUDINAL 35.0' 67.5'



REVISIONS

THIS DETAIL IS INTENDED TO BE USED ONLY FOR NAROW SHEARWALL SEGMENTS AS SPECIFIED ON THE PLAN. THE PIER BESIDE THE OPENING MUST MEET THE ASPECT RATIO REQUIREMENT H/W < 3.5:1 WHERE H IS THE PIER HEIGHT. FOR WINDOWS NOT GREATER THAN 2' HIGHT OR 5' WIDE THE WIDTH OF THE OPENING MAY BE INCLUDED AS FULL HEIGHT SHEARWALL IN ADDITION TO THE PIER WIDTH WHEN STRAPPED ACCORDING TO THIS DETAIL.

OPENING FORCE TRANSFER WOOD FRAME

ROOF STRUCTURAL LAYOUT SCALE: 1/4" = 1'-0"

PE No.53915, POB 868, Lake City, FL 32056, 386-754-5419 DIMENSIONS: limensions. Refer all questions to Mark Disosway, P.E. for resolution. Do not proceed without clarification. COPYRIGHTS AND PROPERTY RIGHTS: Mark Disosway, P.E. hereby expressly reserve its common law copyrights and property right in these instruments of service. This document is not to be reproduced, altered or copied in any form or manner without first the express written permission and consent of Mark Disosway. CERTIFICATION: I hereby certify that I have examined this plan, and that the applicable portions of the plan, relating to wind engineer comply with section R301.2.1, 2010 Florida Building Code Residential to the best of my knowledge. LIMITATION: This design is valid for one building, at specified location. P.E. 53915

VINDLOAD ENGINEER: Mark Disosway,

Paul Fountain Residence

ADDRESS: 4432 SW Herlong St.

Mark Disosway P.E.
P.O. Box 868
Lake City, Florida 32056
Phone: (386) 754 - 5419

Fax: (386) 269 - 4871

PRINTED DATE:
January 09, 2013

DRAWN BY: STRUCTURAL BY
FINALS DATE:

JOB NUMBER: 1212029

DRAWING NUMBER

OF 3 SHEETS