

RE: 2845633 - IC CONST. - SLAYMAKER RES.

MiTek USA, Inc. 6904 Parke East Blvd. Tampa, FL 33610-4115

Site Information:

Customer Info: IC Construction Project Name: Slaymaker Res. Model: Custom

Lot/Block: N/A Subdivision: N.A

Address: TBD, TBD

T24494670

T24494672

T24494673

T24494674

T24494675

T06

T06D

18 19

20

21 22

City: Columbia Cty State: FL

Name Address and License # of Structural Engineer of Record, If there is one, for the building.

Name: License #:

Address:

City: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

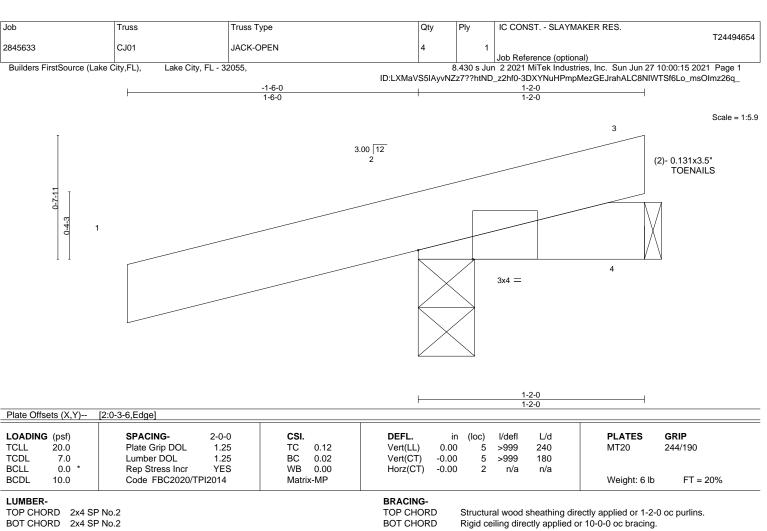
Design Code: FBC2020/TPI2014 Design Program: MiTek 20/20 8.4

Wind Code: ASCE 7-16 Wind Speed: 130 mph Roof Load: 37.0 psf Floor Load: N/A psf

This package includes 36 individual, Truss Design Drawings and 0 Additional Drawings. With my seal affixed to this sheet, I hereby certify that I am the Truss Design Engineer and this index sheet conforms to 61G15-31.003, section 5 of the Florida Board of Professional Engineers Rules.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	T24494654	CJ01	6/28/21	23	T24494676	T08	6/28/21
2	T24494655	CJ03	6/28/21	24	T24494677	T09	6/28/21
2	T24494656	EJ01	6/28/21	25	T24494678	T09G	6/28/21
4	T24494657	EJ02	6/28/21	26	T24494679	T10	6/28/21
5	T24494658	HJ08	6/28/21	27	T24494680	T11	6/28/21
6	T24494659	PB01	6/28/21	28	T24494681	T12	6/28/21
7	T24494660	PB01G	6/28/21	29	T24494682	T13	6/28/21
8	T24494661	T01	6/28/21	30	T24494683	T14	6/28/21
8 9	T24494662	T01G	6/28/21	31	T24494684	T15	6/28/21
10	T24494663	T01GG	6/28/21	32	T24494685	V01	6/28/21
11	T24494664	T02	6/28/21	33	T24494686	V02	6/28/21
12	T24494665	T02G	6/28/21	34	T24494687	V03	6/28/21
13	T24494666	T03	6/28/21	35	T24494688	V04	6/28/21
14	T24494667	T03G	6/28/21	36	T24494689	V05	6/28/21
15	T24494668	T04	6/28/21				
16	T24494669	T04D	6/28/21				

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Builders FirstSource-Lake City, FL.


Truss Design Engineer's Name: Magid, Michael

My license renewal date for the state of Florida is February 28, 2023.

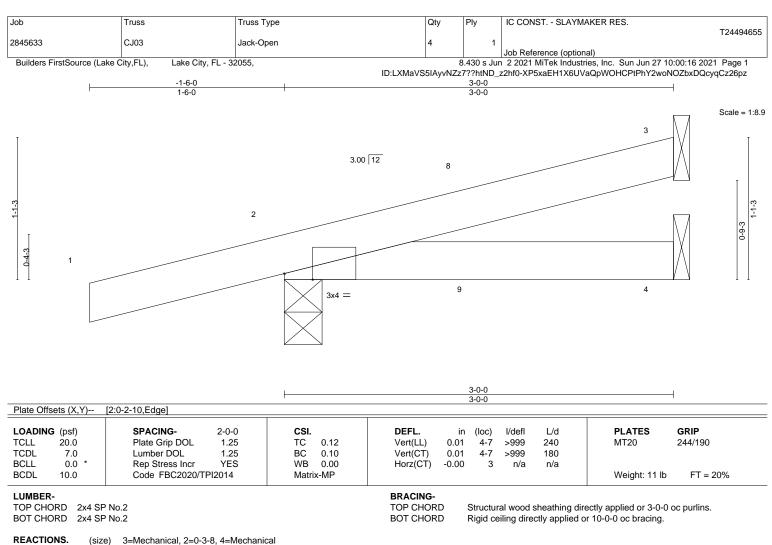
IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Michael S. Magid PE No.53681 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

REACTIONS.

(size) 2=0-3-8, 4=Mechanical Max Horz 2=27(LC 8)

Max Uplift 2=-114(LC 8), 4=-16(LC 1) Max Grav 2=176(LC 1), 4=20(LC 16)

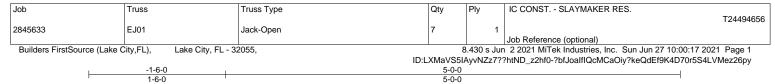

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 114 lb uplift at joint 2 and 16 lb uplift at joint 4.

Max Horz 2=42(LC 8) Max Uplift 3=-28(LC 8), 2=-121(LC 8), 4=-15(LC 9) Max Grav 3=57(LC 1), 2=210(LC 1), 4=47(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


NOTES-

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior(1) 1-6-0 to 2-11-4 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 28 lb uplift at joint 3, 121 lb uplift at joint 2 and 15 lb uplift at joint 4.

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

Scale = 1:12.7

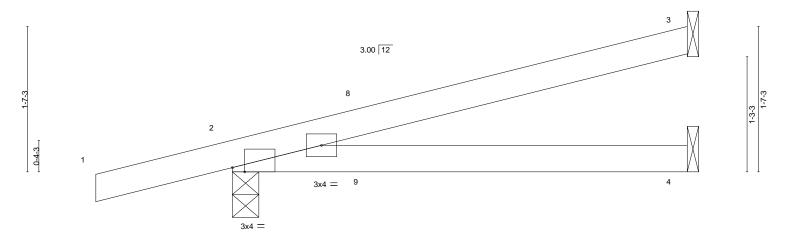


Plate Offsets (X,Y)--[2:0-1-10,Edge] SPACING-GRIP LOADING (psf) 2-0-0 CSI. DEFL. in (loc) I/defI L/d **PLATES** 1.25 244/190 TCLL 20.0 Plate Grip DOL TC 0.36 Vert(LL) 0.09 4-7 >673 240 MT20 TCDL 7.0 Lumber DOL 1.25 ВС 0.38 Vert(CT) 0.08 4-7 >767 180 **BCLL** 0.0 Rep Stress Incr YES WB 0.00 Horz(CT) -0.00 3 n/a n/a Code FBC2020/TPI2014 FT = 20% **BCDL** 10.0 Matrix-MP Weight: 18 lb

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

REACTIONS.

TOP CHORD 2x4 SP No.2 BOT CHORD

2x4 SP No.2

(size)

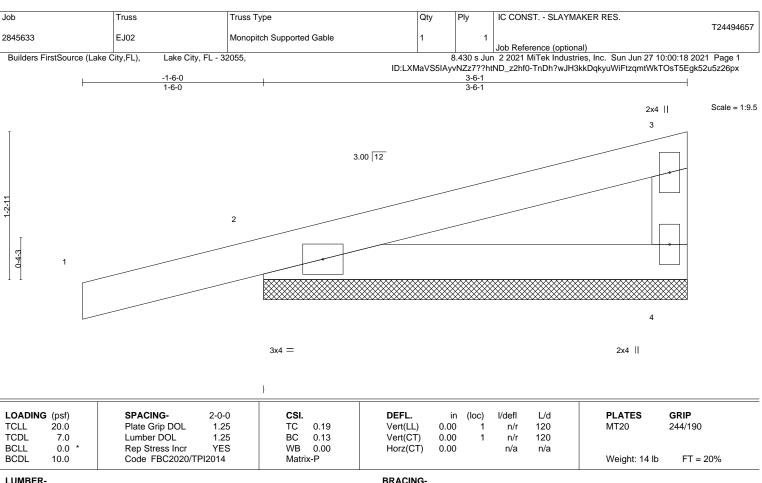
Max Horz 2=60(LC 8) Max Uplift 3=-57(LC 8), 2=-149(LC 8), 4=-30(LC 8) Max Grav 3=110(LC 1), 2=276(LC 1), 4=85(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

3=Mechanical, 2=0-3-8, 4=Mechanical

NOTES-

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior(1) 1-6-0 to 4-11-4 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 57 lb uplift at joint 3, 149 lb uplift at joint 2 and 30 lb uplift at joint 4.



Structural wood sheathing directly applied or 5-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

TOP CHORD

BOT CHORD

TOP CHORD

2x4 SP No.2 BOT CHORD 2x4 SP No.2

WEBS 2x4 SP No.3

REACTIONS. (size)

4=3-6-1, 2=3-6-1 Max Horz 2=45(LC 8) Max Uplift 4=-30(LC 12), 2=-99(LC 8) Max Grav 4=106(LC 1), 2=223(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl. GCpi=0.18; MWFRS (envelope) gable end zone and C-C Corner(3E) -1-6-0 to 1-6-0, Exterior(2N) 1-6-0 to 3-4-5 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 30 lb uplift at joint 4 and 99 lb uplift at

Structural wood sheathing directly applied or 3-6-1 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

6904 Parke East Blvd. Tampa FL 33610

Job Truss Truss Type Qty IC CONST. - SLAYMAKER RES T24494658 2845633 HJ08 Diagonal Hip Girder 2 Job Reference (optional) 8.430 s Jun 2 2021 MiTek Industries, Inc. Sun Jun 27 10:00:19 2021 Page 1 Builders FirstSource (Lake City,FL), Lake City, FL - 32055, ID:LXMaVS5IAyvNZz7??htND_z2hf0-x_n3DGKvq1s4StX44Qm6V2JwB8ifbwLNvOqcQXz26pw

Scale = 1:17.0

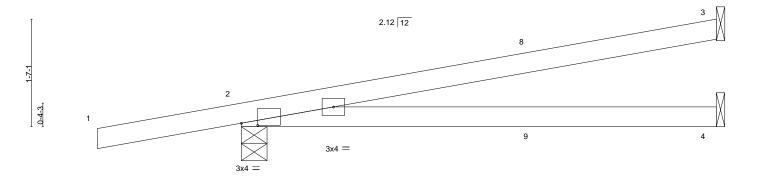


Plate Offsets (X,Y)--[2:0-2-15,0-0-6] SPACING-LOADING (psf) 2-0-0 CSI. DEFL. in (loc) I/defI L/d **PLATES** GRIP 1.25 TCLL 20.0 Plate Grip DOL TC 0.64 Vert(LL) 0.14 4-7 >596 240 MT20 244/190 TCDL 7.0 Lumber DOL 1.25 ВС 0.51 Vert(CT) -0.214-7 >400 180 **BCLL** 0.0 Rep Stress Incr NO WB 0.00 Horz(CT) 0.00 n/a n/a Code FBC2020/TPI2014 FT = 20% **BCDL** 10.0 Matrix-MS Weight: 24 lb

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

REACTIONS.

TOP CHORD 2x4 SP No.2 BOT CHORD

2x4 SP No.2

(size) 3=Mechanical, 2=0-4-9, 4=Mechanical Max Horz 2=59(LC 4)

Max Uplift 3=-78(LC 4), 2=-219(LC 4), 4=-44(LC 4) Max Grav 3=157(LC 1), 2=394(LC 1), 4=121(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone; porch left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 78 lb uplift at joint 3, 219 lb uplift at joint 2 and 44 lb uplift at joint 4.
- 7) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 21 lb down and 33 lb up at 4-4-0, and 21 lb down and 33 lb up at 4-4-0 on top chord, and 44 lb down and 22 lb up at 1-6-1, 44 lb down and 22 lb up at 1-6-1, and 18 lb down and 23 lb up at 4-4-0, and 18 lb down and 23 lb up at 4-4-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)

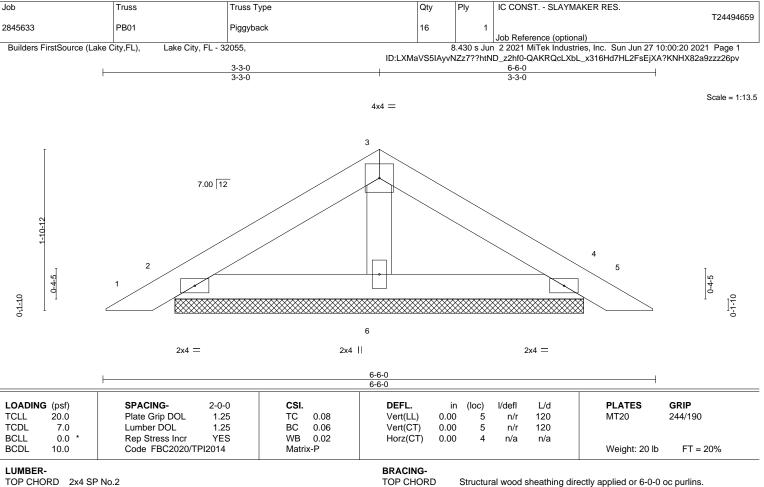
Vert: 1-3=-54, 4-5=-20 Concentrated Loads (lb)

Vert: 8=-0(F=-0, B=-0) 9=-13(F=-7, B=-7)

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610


June 28,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

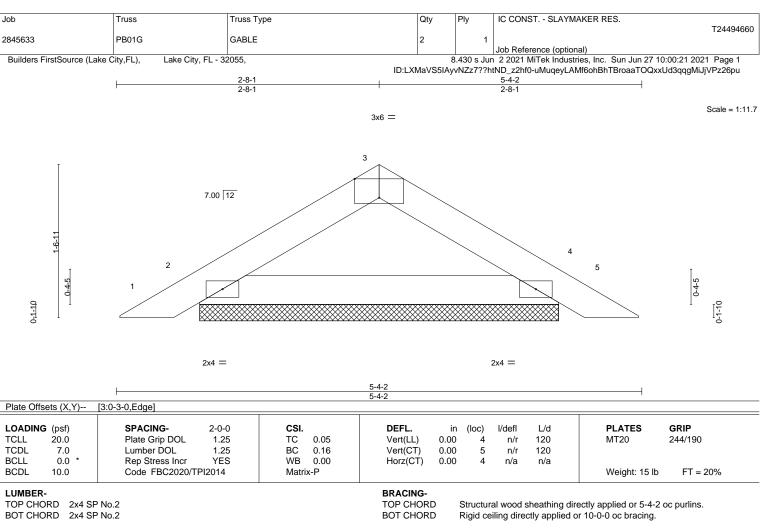
2x4 SP No.2 2x4 SP No.2

BOT CHORD OTHERS 2x4 SP No.3

2=4-9-11, 4=4-9-11, 6=4-9-11 REACTIONS. (size) Max Horz 2=-38(LC 10)

Max Uplift 2=-41(LC 12), 4=-46(LC 13), 6=-13(LC 12) Max Grav 2=124(LC 1), 4=124(LC 1), 6=165(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 41 lb uplift at joint 2, 46 lb uplift at joint 4 and 13 lb uplift at joint 6.
- 8) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building

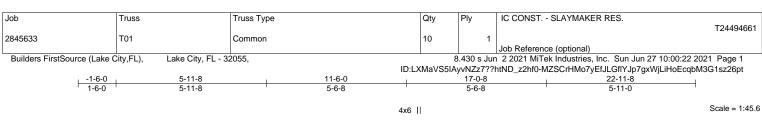
6904 Parke East Blvd. Tampa FL 33610

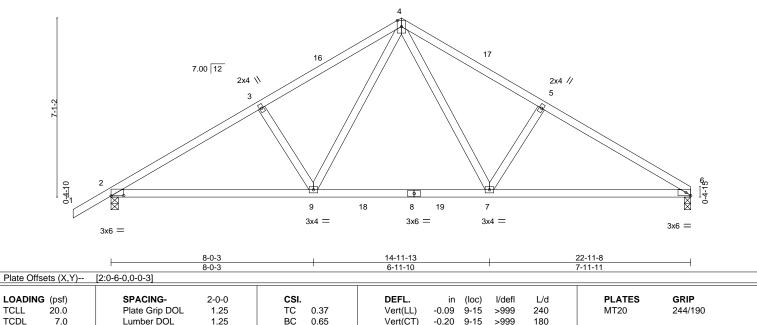
REACTIONS.

(size) 2=3-7-13, 4=3-7-13

Max Horz 2=-30(LC 10) Max Uplift 2=-39(LC 12), 4=-39(LC 13) Max Grav 2=164(LC 1), 4=164(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


NOTES-


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 39 lb uplift at joint 2 and 39 lb uplift at
- 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

6904 Parke East Blvd. Tampa FL 33610

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

0.03

6

n/a

n/a

Rigid ceiling directly applied or 10-0-0 oc bracing.

Structural wood sheathing directly applied or 4-6-14 oc purlins.

LUMBER-

REACTIONS.

TCLL

TCDL

BCLL

BCDL

TOP CHORD 2x4 SP No.2 2x4 SP No.2 **BOT CHORD** WEBS 2x4 SP No.3

0.0

10.0

(size) 6=0-3-0, 2=0-3-8 Max Horz 2=160(LC 9)

Max Uplift 6=-172(LC 13), 2=-205(LC 12) Max Grav 6=971(LC 20), 2=1049(LC 19)

Rep Stress Incr

Code FBC2020/TPI2014

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-1451/266, 3-4=-1336/286, 4-5=-1340/291, 5-6=-1456/271 TOP CHORD

BOT CHORD 2-9=-261/1322, 7-9=-88/858, 6-7=-175/1216

WFBS 4-7=-155/650, 5-7=-326/205, 4-9=-149/646, 3-9=-324/201

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior(1) 1-6-0 to 11-6-0, Exterior(2R) 11-6-0 to 14-6-0, Interior(1) 14-6-0 to 22-11-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WB

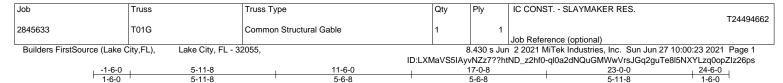
Matrix-MS

0.22

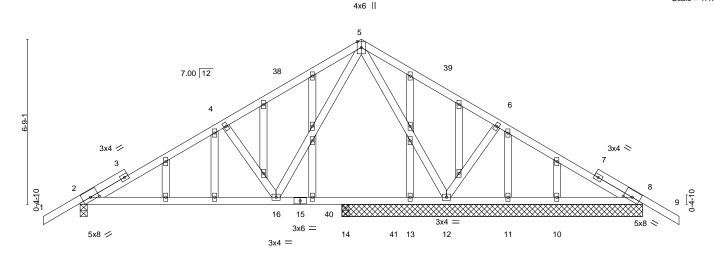
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

YES

- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 172 lb uplift at joint 6 and 205 lb uplift at joint 2.



FT = 20%


Weight: 110 lb

6904 Parke East Blvd. Tampa FL 33610

Plate Offsets (X,Y)	8-0 [2:0-4-1,0-1-12], [8:0-4-1,0-1-		4-3-5		8-0-3	·
LOADING (psf) TCLL 20.0 TCDL 7.0 BCLL 0.0 * BCDL 10.0	Plate Grip DOL Lumber DOL	-0-0 CSI. 1.25 TC 0.52 1.25 BC 0.46 VES WB 0.83 14 Matrix-MS	DEFL. in (loc Vert(LL) -0.09 16-34 Vert(CT) -0.19 16-34 Horz(CT) 0.01 2	>999 240	PLATES MT20 Weight: 152 lb	GRIP 244/190 FT = 20%

10-8-8

LUMBER-**BRACING-**

2x4 SP No.2 TOP CHORD BOT CHORD 2x4 SP No.2 **WEBS** 2x4 SP No.3 **OTHERS** 2x4 SP No.3

TOP CHORD **BOT CHORD**

14-11-13

Structural wood sheathing directly applied or 6-0-0 oc purlins.

23-0-0

Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. All bearings 12-3-8 except (jt=length) 2=0-3-8, 14=0-3-8.

Max Horz 2=160(LC 11)

Max Uplift All uplift 100 lb or less at joint(s) 8, 10 except 2=-141(LC 12), 12=-234(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 8, 13, 11, 10, 14, 8 except 2=608(LC 19), 12=933(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

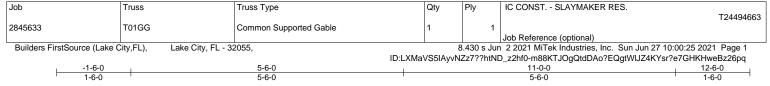
TOP CHORD $2-4=-596/139,\ 4-5=-482/150,\ 5-6=-39/395,\ 6-8=-55/258$

BOT CHORD 2-16=-144/621

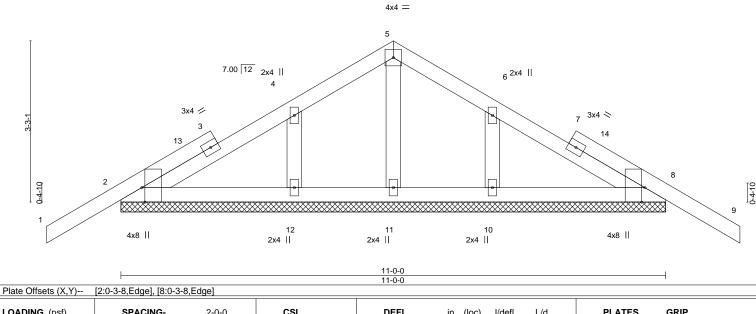
WEBS 5-12=-804/192, 6-12=-300/196, 5-16=-149/598, 4-16=-358/200

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior(1) 1-6-0 to 11-6-0, Exterior(2R) 11-6-0 to 14-6-0, Interior(1) 14-6-0 to 24-6-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 10, 8 except (it=lb) 2=141, 12=234,

6904 Parke East Blvd. Tampa FL 33610


June 28,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Scale = 1:23.3

SPACING-GRIP LOADING (psf) 2-0-0 CSI. DEFL. in (loc) I/defI L/d **PLATES** 1.25 TCLL 20.0 Plate Grip DOL TC 0.15 Vert(LL) -0.00 9 120 MT20 244/190 n/r TCDL 7.0 Lumber DOL 1.25 ВС 0.08 Vert(CT) -0.00 9 n/r 120 **BCLL** 0.0 Rep Stress Incr YES WB 0.05 Horz(CT) 0.00 8 n/a n/a Code FBC2020/TPI2014 FT = 20% **BCDL** 10.0 Weight: 54 lb Matrix-S

LUMBER-

TOP CHORD 2x4 SP No.2 2x4 SP No.2 **BOT CHORD OTHERS** 2x4 SP No.3 **BRACING-**

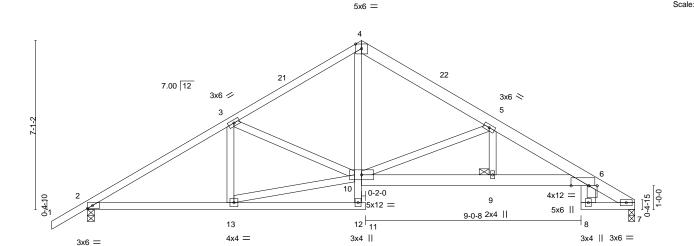
TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. All bearings 11-0-0. (lb) -Max Horz 2=-83(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 2, 8, 12, 10 Max Grav All reactions 250 lb or less at joint(s) 2, 8, 11, 12, 10

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl. GCpi=0.18; MWFRS (envelope) gable end zone and C-C Corner(3E) -1-6-0 to 1-6-0, Exterior(2N) 1-6-0 to 5-6-0, Corner(3R) 5-6-0 to 8-6-0, Exterior(2N) 8-6-0 to 12-6-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOI = 1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8, 12, 10.

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

Job Truss Truss Type Qty Ply IC CONST. - SLAYMAKER RES T24494664 2845633 T02 Roof Special 6 Job Reference (optional) 8.430 s Jun 2 2021 MiTek Industries, Inc. Sun Jun 27 10:00:26 2021 Page 1 Builders FirstSource (Lake City,FL), Lake City, FL - 32055, ID:LXMaVS5IAyvNZz7??htND_z2hf0-EKijhfPIBBI4nyaR_OOIHW5A0y?WkyIPW_1UAdz26pp 22-11-8 <u>17-0-0</u> 20-8-8 1-6-0 6-0-0 5-6-0 5-6-0 3-8-8 2-3-0

	6-0-0	11-6-0	17-0-0	20-8-8 22-11-8
	6-0-0	5-6-0	5-6-0	3-8-8 2-3-0
Plate Offsets (X,Y)	[6:0-8-15,0-0-0], [6:0-0-0,0-4-3]			
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl	L/d PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.25	TC 0.41	Vert(LL) -0.11 6-9 >999	240 MT20 244/190
TCDL 7.0	Lumber DOL 1.25	BC 0.95	Vert(CT) -0.21 6-9 >999	180
BCLL 0.0 *	Rep Stress Incr YES	WB 0.63	Horz(CT) 0.15 7 n/a	n/a
BCDL 10.0	Code FBC2020/TPI2014	Matrix-MS		Weight: 141 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

JOINTS

LUMBER-

2x4 SP No.2 *Except* TOP CHORD

4-7: 2x6 SP M 26

BOT CHORD 2x4 SP No.2 *Except*

4-12: 2x4 SP No.3, 6-10: 2x6 SP No.2, 6-8: 2x8 SP 2400F 2.0E

WEBS 2x4 SP No.3

REACTIONS. (size) 7=0-3-0, 2=0-3-8

Max Horz 2=159(LC 9)

Max Uplift 7=-168(LC 13), 2=-204(LC 12) Max Grav 7=849(LC 1), 2=932(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1342/255, 3-4=-1083/238, 4-5=-1079/241, 5-6=-1877/338, 6-16=-557/126

BOT CHORD 2-13=-249/1101, 4-10=-130/747, 9-10=-246/1673, 6-9=-246/1673 10-13=-245/1026, 3-10=-303/163, 5-10=-891/275, 5-9=-0/369 **WEBS**

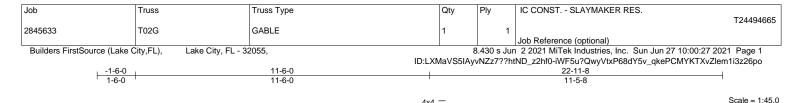
NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior(1) 1-6-0 to 11-6-0, Exterior(2R) 11-6-0 to 14-6-0, Interior(1) 14-6-0 to 22-10-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 7=168, 2=204.

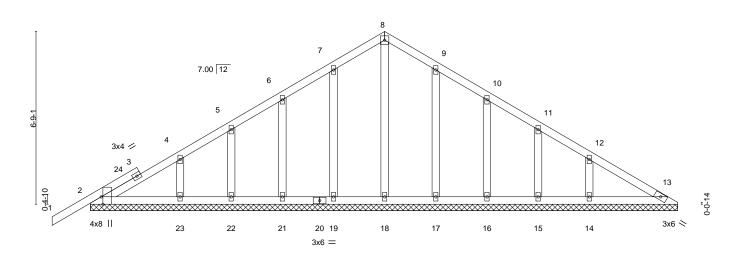
Structural wood sheathing directly applied or 4-9-9 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing. Except:

10-0-0 oc bracing: 10-12


1 Brace at Jt(s): 9

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610


June 28,2021

Scale: 1/4"=1

4x4 =

Plate Offsets (X,	- [2:0-3-8,Edge]			
LOADING (psf) TCLL 20.0	SPACING- 2-0-0 Plate Grip DOL 1.25	CSI. TC 0.13	DEFL. in (loc) I/defl L/d Vert(LL) 0.00 1 n/r 120	PLATES GRIP MT20 244/190
TCDL 7.0 BCLL 0.0	Lumber DOL 1.25 Rep Stress Incr YES	BC 0.08 WB 0.09	Vert(CT) -0.00 1 n/r 120 Vert(CT) -0.00 1 n/r 120 Horz(CT) 0.00 13 n/a n/a	W1120 244/190
BCDL 10.0	Code FBC2020/TPI2014	Matrix-S	1.0.2(0.1) 0.000 1.0 1.00	Weight: 127 lb FT = 20%

TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP No.2 **OTHERS** 2x4 SP No.3 BRACING-

22-11-8

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 22-11-8.

(lb) -Max Horz 2=154(LC 9)

Max Uplift All uplift 100 lb or less at joint(s) 2, 19, 21, 22, 23, 17, 16, 15, 14

Max Grav All reactions 250 lb or less at joint(s) 2, 13, 18, 19, 21, 22, 23, 17, 16, 15, 14

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

LUMBER-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Corner(3E) -1-6-0 to 1-6-0, Exterior(2N) 1-6-0 to 11-6-0, Corner(3R) 11-6-0 to 14-6-0, Exterior(2N) 14-6-0 to 22-6-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 19, 21, 22, 23, 17, 16, 15, 14.

6904 Parke East Blvd. Tampa FL 33610

Job Truss Truss Type Qty IC CONST. - SLAYMAKER RES T24494666 2845633 T03 Common 2 Job Reference (optional) 8.430 s Jun 2 2021 MiTek Industries, Inc. Sun Jun 27 10:00:29 2021 Page 1 Builders FirstSource (Lake City,FL), Lake City, FL - 32055, ID:LXMaVS5IAyvNZz7??htND_z2hf0-fvNrJhSBT67feQI?fWxSv9jdrA4DxHmsCyF8nyz26pm 16-5-0 24-2-14 3-1-0 5-6-10 7-9-7 7-9-14 Scale = 1:55.8 4x6 = 3 7.00 12 3x4 // 5x8 💸 2x4 || 9-5-14 Bracing 7 17 15 18 16 8 6 9 3x6 =3x6 = 3x6 =3x8 =2x4 || 16-5-0 24-2-14 7-9-14 Plate Offsets (X,Y)--[4:0-4-0,0-3-0], [5:0-2-8,Edge] SPACING-DEFL. L/d GRIP LOADING (psf) 2-0-0 CSI. in (loc) I/defI **PLATES** 1.25 TCLL 20.0 Plate Grip DOL TC 0.69 Vert(LL) -0.22 8-9 >999 240 MT20 244/190 TCDL 7.0 Lumber DOL 1.25 ВС 0.75 Vert(CT) -0.37 8-9 >789 180 **BCLL** 0.0 Rep Stress Incr YES WB 0.71 Horz(CT) 0.03 5 n/a n/a Code FBC2020/TPI2014 FT = 20% **BCDL** 10.0 Matrix-MS Weight: 138 lb

BRACING-

TOP CHORD

BOT CHORD

WEBS

LUMBER-

2x4 SP No.2 TOP CHORD 2x4 SP No.2 **BOT CHORD** WEBS 2x4 SP No.3

REACTIONS. (size) 9=Mechanical, 5=0-3-8

Max Horz 9=-217(LC 13)

Max Uplift 9=-170(LC 13), 5=-186(LC 13) Max Grav 9=1010(LC 20), 5=1019(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-815/215, 3-4=-828/199, 4-5=-1502/279 **BOT CHORD** 8-9=-86/514, 6-8=-154/1240, 5-6=-154/1239

WFBS 2-8=-48/380, 3-8=-62/456, 4-8=-794/298, 4-6=0/318, 2-9=-888/200

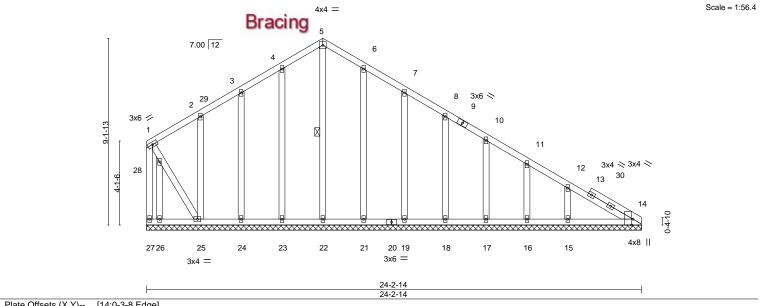
NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-1-12 to 2-11-12, Interior(1) 2-11-12 to 8-7-9, Exterior(2R) 8-7-9 to 11-7-9, Interior(1) 11-7-9 to 24-2-14 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 9=170, 5=186.

Structural wood sheathing directly applied or 4-1-7 oc purlins,

4-8


Rigid ceiling directly applied or 10-0-0 oc bracing.


except end verticals.

1 Row at midpt

Michael S. Magid PE No.53681 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

I late Oil	3013 (A, I)	[14.0-5-0,Luge]									
LOADIN	G (psf)	SPACING- 2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL 1.25	TC	0.10	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	7.0	Lumber DOL 1.25	BC	0.09	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0 *	Rep Stress Incr YES	WB	0.14	Horz(CT)	0.01	14	n/a	n/a		
BCDL	10.0	Code FBC2020/TPI2014	Matrix	(-S						Weight: 179 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 **WEBS** 2x4 SP No.3 **OTHERS** 2x4 SP No.3 BRACING-TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. **WEBS** 1 Row at midpt 5-22

REACTIONS. All bearings 24-2-14.

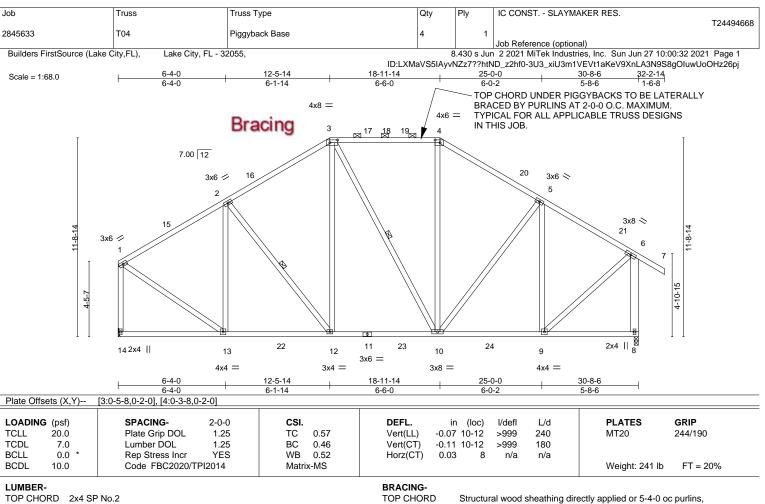
Max Horz 27=-207(LC 13) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 23, 24, 26, 21, 19, 18, 17, 16, 15 except 27=-108(LC 8),

25=-163(LC 12)

All reactions 250 lb or less at joint(s) 27, 22, 23, 24, 26, 21, 19, 18, 17, 16, 14 except 25=260(LC Max Grav

19), 15=250(LC 20)


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Corner(3E) 0-1-12 to 3-1-12, Exterior(2N) 3-1-12 to 8-7-9, Corner(3R) 8-7-9 to 11-7-9, Exterior(2N) 11-7-9 to 24-2-14 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 23, 24, 26, 21, 19. 18. 17. 16. 15 except (it=lb) 27=108. 25=163.

6904 Parke East Blvd. Tampa FL 33610

BOT CHORD

WEBS

BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 *Except*

3-10: 2x4 SP No.2, 6-8: 2x6 SP No.2

REACTIONS. (size) 14=Mechanical, 8=0-3-0

Max Horz 14=274(LC 11) Max Uplift 14=-229(LC 12), 8=-257(LC 13)

Max Grav 14=1274(LC 2), 8=1356(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1-2=-1046/214, 2-3=-1057/281, 3-4=-825/268, 4-5=-1023/259, 5-6=-936/188, TOP CHORD

1-14=-1182/244, 6-8=-1275/270

BOT CHORD 13-14=-268/254, 12-13=-217/973, 10-12=-173/905, 9-10=-126/756

WEBS 2-13=-357/119, 3-12=-66/362, 4-10=-48/268, 5-9=-433/120, 1-13=-135/1006,

6-9=-124/980

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-1-12 to 3-2-9, Interior(1) 3-2-9 to 12-5-14, Exterior(2R) 12-5-14 to 16-9-15, Interior(1) 16-9-15 to 18-11-14, Exterior(2R) 18-11-14 to 23-3-15, Interior(1) 23-3-15 to 32-2-14 zone; end vertical right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 14=229 8=257
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

except end verticals, and 2-0-0 oc purlins: 3-4.

1 Row at midpt

Rigid ceiling directly applied or 10-0-0 oc bracing.

2-12, 3-10

6904 Parke East Blvd. Tampa FL 33610

June 28,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

AMSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty IC CONST. - SLAYMAKER RES T24494669 PIGGYBACK BASE 2845633 T04D 3 Job Reference (optional) 8.430 s Jun 2 2021 MiTek Industries, Inc. Sun Jun 27 10:00:33 2021 Page 1 Builders FirstSource (Lake City,FL) Lake City, FL - 32055, ID:LXMaVS5IAyvNZz7??htND_z2hf0-XgdM92VhXLd571cnuM0O4?uK9nVit7OR7aDLwjz26pi 18-11-14 25-0-0 30-8-6 6-4-0 6-1-14 6-6-0 6-0-2 5-8-6 Scale = 1:68.1 4x8 = 4x6 = Bracing 3 ⊠ 17 18 19 ⊠ 7.00 12 20 3x6 <> 3x6 / 5 21 4x6 =3x6 < 6 3x6 🖊 1-5-7 3-3-8 22 10 23 24 5x6 =13 2x4 || 12 8 11 9 3x6 4x4 = 3x4 =3x8 =3x4 =12-5-14 18-11-14 25-0-0 30-8-6 6-4-0 6-1-14 6-6-0 6-0-2 5-8-6 Plate Offsets (X,Y)--[3:0-5-8,0-2-0], [4:0-3-8,0-2-0] LOADING (psf) SPACING-2-0-0 CSI. DEFL. in (loc) I/defI L/d **PLATES** GRIP 1.25 TCLL 20.0 Plate Grip DOL TC 0.61 Vert(LL) -0.07 9-11 >999 240 MT20 244/190 TCDL 7.0 Lumber DOL 1.25 ВС 0.46 Vert(CT) -0.11 9-11 >999 180 **BCLL** 0.0 Rep Stress Incr YES WB 0.54 Horz(CT) 0.03

BRACING-

TOP CHORD

BOT CHORD

WEBS

n/a

1 Row at midpt

n/a

except end verticals, and 2-0-0 oc purlins: 3-4.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Structural wood sheathing directly applied or 5-4-1 oc purlins,

2-11, 3-9

LUMBER-

BCDL

TOP CHORD 2x4 SP No.2 2x4 SP No.2 **BOT CHORD** 2x4 SP No.3 *Except* **WEBS**

3-9,6-7: 2x4 SP No.2 2x6 SP No.2

OTHERS

10.0

REACTIONS. (size) 13=Mechanical, 7=0-3-0

Max Horz 13=269(LC 11)

Max Uplift 13=-226(LC 12), 7=-214(LC 13) Max Grav 13=1270(LC 2), 7=1260(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Code FBC2020/TPI2014

TOP CHORD 1-2=-1042/212, 2-3=-1053/278, 3-4=-818/258, 4-5=-1016/254, 5-6=-911/178,

1-13=-1178/241, 6-7=-1185/229

BOT CHORD 12-13=-263/239, 11-12=-228/960, 9-11=-184/891, 8-9=-149/744

2-12=-356/117, 3-11=-67/363, 4-9=-46/265, 5-8=-446/141, 1-12=-133/1002, **WEBS**

6-8=-147/940

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-1-12 to 3-2-9, Interior(1) 3-2-9 to 12-5-14, Exterior(2R) 12-5-14 to 16-9-15, Interior(1) 16-9-15 to 18-11-14, Exterior(2R) 18-11-14 to 23-3-15, Interior(1) 23-3-15 to 30-1-2 zone; end vertical right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Matrix-MS

- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 13=226, 7=214,
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

FT = 20%

Weight: 241 lb

Michael S. Magid PE No.53681 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

June 28,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty IC CONST. - SLAYMAKER RES T24494670 2845633 T04G GABLE Job Reference (optional) 8.430 s Jun 2 2021 MiTek Industries, Inc. Sun Jun 27 10:00:35 2021 Page 1 Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

ID:LXMaVS5IAyvNZz7??htND_z2hf0-T3k6akWy3ytpMLm90n2s9QzhlaBjL4_katiS?cz26pg 32-2-14 1-6-8 13-0-13 18-4-15 25-0-0 6-4-0 6-8-13 5-4-2 6-7-1 5-8-6

4x8 = 4x6 = 7.00 12 45_⊠ 4 5 Bracing 46 47 8-7-8 3x4 / 48 3x10 \\ 3x6 ≥ 6 3x4 ≥ 4x8 < 5x8 || 7 49 8 4-10-15

15

3x8 =

13 12

 14 3x4 =

11

Structural wood sheathing directly applied or 6-0-0 oc purlins,

2-17, 4-15, 5-15, 6-12

except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 4-5.

Rigid ceiling directly applied or 6-0-0 oc bracing.

1 Row at midpt

10

	6-4-0	13-0-13	18-4-15	24-2-14	25-0 ₁ 0	30-8-6	1
·	6-4-0	6-8-13	5-4-2	5-9-15	0-9-2	5-8-6	
[2:0-7-0,Edge], [4:0-5-8,0-2-0], [5:0-3-8,0	-2-0], [8:0-4-8,0-1-8], [34	:0-2-0,0-0-12]				

TOP CHORD

BOT CHORD

WEBS

16

3x4 = 3x6 =

17

Plate Offsets (X,Y)--SPACING-LOADING (psf) 2-0-0 (loc) I/defI L/d **PLATES** GRIP TCLL 20.0 Plate Grip DOL 1.25 TC 0.57 Vert(LL) -0.07 17-18 >999 240 MT20 244/190 TCDL 7.0 Lumber DOL 1.25 ВС 0.49 Vert(CT) -0.13 17-18 >999 180 **BCLL** 0.0 Rep Stress Incr YES WB 0.34 Horz(CT) 0.01 10 n/a n/a Code FBC2020/TPI2014 FT = 20% **BCDL** 10.0 Matrix-MS Weight: 382 lb

LUMBER-**BRACING-**

18

3x4 =

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 *Except* **WEBS**

4-15: 2x4 SP No.2, 8-10: 2x6 SP No.2

3x6 /

19

4-5-7

OTHERS 2x4 SP No.3

REACTIONS. All bearings 6-9-0 except (jt=length) 19=Mechanical, 14=0-3-8.

Max Horz 19=271(LC 11) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 10 except 19=-190(LC 12), 12=-275(LC 13), 13=-664(LC 18) Max Grav All reactions 250 lb or less at joint(s) 11 except 19=1030(LC 19), 12=1417(LC 2), 10=291(LC 24), 14=522(LC 18)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-831/180, 2-4=-736/224, 4-5=-442/196, 5-6=-592/191, 1-19=-942/204,

8-10=-280/54

18-19=-265/251, 17-18=-213/820, 15-17=-160/650 **BOT CHORD**

2-18=-252/107, 2-17=-266/162, 4-17=-86/457, 4-15=-407/127, 6-15=-107/671, WFBS

6-12=-1031/274, 1-18=-111/804

NOTES-

1) Unbalanced roof live loads have been considered for this design.

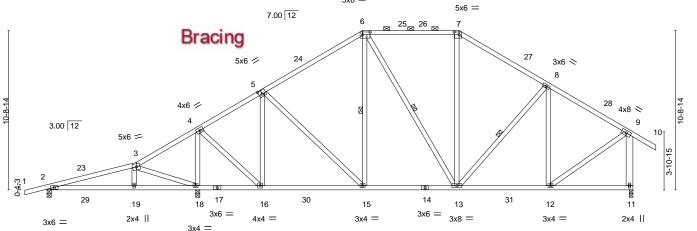
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-1-12 to 3-2-9, Interior(1) 3-2-9 to 13-0-13, Exterior(2R) 13-0-13 to 17-4-15, Interior(1) 17-4-15 to 18-4-15, Exterior(2R) 18-4-15 to 22-9-1, Interior(1) 22-9-1 to 32-2-14 zone; end vertical right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) Provide adequate drainage to prevent water ponding.
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) Refer to girder(s) for truss to truss connections.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10 except (jt=lb) 19=190, 12=275, 13=664
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Michael S. Magid PE No.53681 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

June 28,2021

Scale = 1:75.5

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

ID:LXMaVS5IAyvNZz7??htND_z2hf0-QRst?QYCbZ7WcevY7C5KEr31sOt3py512BBZ3Uz26pe 10-1-12 27-9-0 33-9-2 39-5-8 41-0-0 6-0-2 4-1-10 4-4-4 6-9-0 6-6-0 6-0-2 5-8-6 1-6-8 Scale = 1:77.6 5x8 =

	6-0-2	10-1-12	14-6-0	21-3-0	27-9-0	33-9-2	39-5-8	
	6-0-2	4-1-10	4-4-4	6-9-0	6-6-0	6-0-2	5-8-6	1
Plate Offsets (X,Y)	[5:0-2-12,0-3-0], [6:0-6	-0,0-2-4], [7:0-4	0,0-2-4]					
LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.5	66 Vert(LL) -0.07 15-16	>999 240	MT20	244/190
TCDL 7.0	Lumber DOL	1.25	BC 0.5	50 Vert(CT) -0.13 15-16	>999 180		
BCLL 0.0 *	Rep Stress Incr		WB 0.4	- (-	T) 0.02 11	n/a n/a		
BCDL 10.0	Code FBC2020	/TPI2014	Matrix-MS	3			Weight: 262 lb	FT = 20%

LUMBER-

2x4 SP No.2 TOP CHORD **BOT CHORD** 2x4 SP No.2 WEBS 2x4 SP No.3 *Except*

9-11: 2x6 SP No.2

BRACING-

BOT CHORD

TOP CHORD Structural wood sheathing directly applied or 5-4-1 oc purlins,

except end verticals, and 2-0-0 oc purlins: 6-7.

Rigid ceiling directly applied or 10-0-0 oc bracing, Except: 9-11-1 oc bracing: 2-19

6-0-0 oc bracing: 16-18.

WEBS 1 Row at midpt 6-15, 6-13, 8-13

REACTIONS. (size) 2=0-3-8, 18=0-3-8, 11=0-3-0

Max Horz 2=291(LC 11)

Max Uplift 2=-222(LC 8), 18=-355(LC 12), 11=-228(LC 13) Max Grav 2=345(LC 23), 18=1807(LC 2), 11=1259(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-283/310, 3-4=-357/431, 4-5=-725/136, 5-6=-955/316, 6-7=-785/353, 7-8=-978/346, TOP CHORD

8-9=-976/287, 9-11=-1177/364

BOT CHORD 2-19=-308/231, 18-19=-280/218, 16-18=-371/350, 15-16=-118/681, 13-15=-122/805,

12-13=-148/780

3-19=-293/228, 3-18=-563/605, 4-18=-1497/555, 5-16=-590/316, 5-15=-96/300,

8-12=-330/126, 9-12=-156/921, 4-16=-399/1213

NOTES-

WFBS

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 2-5-6, Interior(1) 2-5-6 to 21-3-0, Exterior(2R) 21-3-0 to 25-2-6, Interior(1) 25-2-6 to 27-9-0, Exterior(2R) 27-9-0 to 31-8-6, Interior(1) 31-8-6 to 41-0-0 zone; end vertical right exposed; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=222, 18=355, 11=228,
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Michael S. Magid PE No.53681 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

Job Truss Truss Type Qty IC CONST. - SLAYMAKER RES T24494672 2845633 T05G **GABLE** Job Reference (optional) 8.430 s Jun 2 2021 MiTek Industries, Inc. Sun Jun 27 10:00:40 2021 Page 1 Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

ID:LXMaVS5IAyvNZz7??htND_z2hf0-q0Y?dRa4uUV5T6e7oKe1sTha2buU0J?Tk9QDgpz26pb 41-0-0 1-6-8 10-1-12 14-6-0 21-3-0 27-2-1 33-5-8 39-5-8 6-0-2 4-1-10 4-4-4 6-9-0 5-11-1 6-3-7 6-0-0

Scale = 1:78.4 5x8 = 5x6 = 7 00 12 6 Bracing 49 5x6 // 3x6 < 8 3x4 ≈ 3x4 ≈ ⁹ 50 5x8 || 3x6 / 3.00 12 10 5x6 = 3-10-15 53 16 ₩ 51 20 52 17 54 22 19 18 15 21 13 12 3x6 14 4x4 =3x4 =3x8 = 3x6 =

Plate Offsets (X,Y)	6-0-2 10-1-12 6-0-2 4-1-10 [5:0-2-12,0-3-0], [6:0-6-0,0-2-4], [7:0-4-0	4-4-4 6-	-3-0 27-2-1 9-0 5-11-1	33-5-8 6-3-7	34-9-8 39-5-8 1-4-0 4-8-0
LOADING (psf) TCLL 20.0 TCDL 7.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.25 Lumber DOL 1.25 Rep Stress Incr YES Code FBC2020/TPI2014	CSI. TC 0.44 BC 0.45 WB 0.48 Matrix-MS	DEFL. in (loc) Vert(LL) -0.08 15-16 Vert(CT) -0.14 18-19 Horz(CT) 0.02 12	l/defl L/d >999 240 >999 180 n/a n/a	PLATES GRIP MT20 244/190 Weight: 355 lb FT = 20%

LUMBER-BRACING-

3x4

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 **WEBS**

2x4 SP No.3 *Except* 10-12: 2x6 SP No.2

OTHERS 2x4 SP No.3 TOP CHORD **BOT CHORD**

Structural wood sheathing directly applied or 5-5-7 oc purlins,

except end verticals, and 2-0-0 oc purlins: 6-7. Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

3x4

6-18, 6-16, 8-16

9-11-1 oc bracing: 2-22

6-0-0 oc bracing: 19-21. **WEBS** 1 Row at midpt

3x6

REACTIONS. All bearings 0-3-8 except (jt=length) 12=4-11-8, 13=4-11-8.

Max Horz 2=288(LC 11) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 13, 14 except 2=-221(LC 8), 21=-352(LC 12), 12=-227(LC 13) Max Grav All reactions 250 lb or less at joint(s) 13, 14 except 2=346(LC 23), 21=1775(LC 2), 12=1102(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-284/307, 3-4=-358/429, 4-5=-706/135, 5-6=-914/307, 6-7=-747/342, 7-8=-938/331,

8-10=-909/259, 10-12=-1061/329

BOT CHORD 2-22=-308/234, 21-22=-281/221, 19-21=-369/348, 18-19=-114/664, 16-18=-114/772,

15-16=-135/727

WFBS 3-22=-293/229, 3-21=-565/604, 4-21=-1471/549, 4-19=-394/1186, 5-19=-571/312,

5-18=-93/278, 8-15=-393/151, 10-15=-123/821

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 2-5-6, Interior(1) 2-5-6 to 21-3-0, Exterior(2R) 21-3-0 to 25-2-6, Interior(1) 25-2-6 to 27-2-1, Exterior(2R) 27-2-1 to 31-1-7, Interior(1) 31-1-7 to 41-0-0 zone; end vertical right exposed; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) Provide adequate drainage to prevent water ponding.
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 13, 14 except (jt=lb) 2=221, 21=352, 12=227.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Michael S. Magid PE No.53681 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

June 28,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

6904 Parke East Blvd

Job Truss Truss Type Qty IC CONST. - SLAYMAKER RES T24494673 2845633 T06 Piggyback Base 2 Job Reference (optional) 8.430 s Jun 2 2021 MiTek Industries, Inc. Sun Jun 27 10:00:41 2021 Page 1 Builders FirstSource (Lake City,FL), Lake City, FL - 32055, ID:LXMaVS5IAyvNZz7??htND_z2hf0-ID6Oqnbifoey4GDJM19GOhDjK?Fmlkbdzp9mCFz26pa

1-7-4

5-1-12

. 27-9-0

6-6-0

27-9-0

29-0-0

1-3-0

33-9-2

4-9-2

33-9-2

Structural wood sheathing directly applied or 4-8-13 oc purlins,

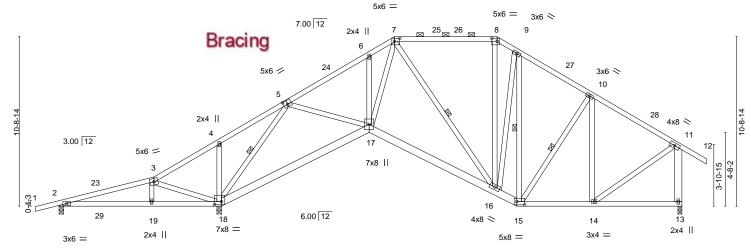
5-18, 7-16, 9-15, 10-15

Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

except end verticals, and 2-0-0 oc purlins: 7-8.

6-0-0 oc bracing: 2-19,18-19.

1 Row at midpt


Scale = 1:73.0

41-0-0

1-6-8

5-8-6

39-5-8

10₇3-8 0-1-12 6-0-2 4-1-10 9-4-4 Plate Offsets (X,Y)--[5:0-3-0,0-3-0], [7:0-4-0,0-2-4], [8:0-4-0,0-2-4], [15:0-6-0,0-2-8], [18:0-5-8,0-2-4] LOADING (psf) SPACING-2-0-0 CSI. in (loc) I/defI L/d **PLATES** GRIP 1.25 TCLL 20.0 Plate Grip DOL TC 0.53 Vert(LL) -0.10 17-18 >999 240 244/190 MT20 TCDL 7.0 Lumber DOL 1.25 ВС 0.39 Vert(CT) -0.21 17-18 >999 180 **BCLL** 0.0 Rep Stress Incr YES WB 0.59 Horz(CT) 0.10 13 n/a n/a Code FBC2020/TPI2014 **BCDL** 10.0 Matrix-MS FT = 20%Weight: 295 lb

BRACING-

TOP CHORD

BOT CHORD

WEBS

19-7-12

LUMBER-

2x4 SP No.2 TOP CHORD BOT CHORD 2x4 SP No.2 *Except*

17-18,15-17: 2x6 SP No.2

2x4 SP No.3 *Except* WEBS 11-13: 2x6 SP No.2

REACTIONS. (size) 2=0-3-8, 18=0-3-8, 13=0-3-0

Max Horz 2=291(LC 11)

6-0-2

6-0-2

4-3-6

4-2-8

Max Uplift 2=-244(LC 8), 18=-380(LC 12), 13=-224(LC 13) Max Grav 2=232(LC 23), 18=1786(LC 1), 13=1079(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-152/495, 3-4=-455/758, 4-5=-372/771, 5-6=-1336/286, 6-7=-1282/376, 7-8=-675/340, 8-9=-779/375, 9-10=-811/339, 10-11=-805/278, 11-13=-1028/350

10-1-12

BOT CHORD 2-19=-297/39, 18-19=-302/37, 17-18=-162/554, 16-17=-207/1023, 15-16=-106/760,

WFBS 3-19=-306/218, 3-18=-372/601, 5-18=-1776/582, 5-17=-149/783, 7-17=-152/884, 7-16=-440/179, 9-16=-155/322, 9-15=-360/86, 10-14=-304/112, 11-14=-134/737

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 2-5-6, Interior(1) 2-5-6 to 21-3-0, Exterior(2R) 21-3-0 to 25-2-6, Interior(1) 25-2-6 to 27-9-0, Exterior(2R) 27-9-0 to 31-8-6, Interior(1) 31-8-6 to 41-0-0 zone; end vertical right exposed; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=244, 18=380, 13=224,
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Michael S. Magid PE No.53681 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

Job Truss Truss Type Qty IC CONST. - SLAYMAKER RES T24494674 PIGGYBACK BASE 2845633 T06D 6 Job Reference (optional) 8.430 s May 12 2021 MiTek Industries, Inc. Mon Jun 28 14:55:32 2021 Page 1

Builders FirstSource, Lake City, FL 32055

ID:LXMaVS5IAyvNZz7??htND_z2hf0-Nti7l3ZBsjV?0ejQtMfX?Clv2Xh?SgE0qkPqm8z1kHP -1-6-0 1-6-0 39-5-8 0-5-8 6-0-2 10-3-8 14-6-0 19-7-12 21-3-0 27-9-0 29-0-0 33-9-2 39-0-0 1-3-0 5-1-12 6-6-0 6-0-2 4-3-6 4-2-8 4-9-2 5-2-14

Scale = 1:73.4

8-1-4

4-9-2

Structural wood sheathing directly applied or 4-8-15 oc purlins,

5-17, 7-15, 9-14, 10-14

Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

except end verticals, and 2-0-0 oc purlins: 7-8.

6-0-0 oc bracing: 2-18,17-18.

1 Row at midpt

5-8-6

4-3-6 Plate Offsets (X,Y)--[5:0-3-0,0-3-0], [7:0-4-0,0-2-4], [8:0-4-0,0-2-4], [14:0-6-0,0-2-8], [17:0-5-8,0-2-4]

LOADING TCLL TCDL	20.0 7.0	SPACING- Plate Grip DOL Lumber DOL	2-0-0 1.25 1.25	CSI. TC BC	0.53 0.39	DEFL. Vert(LL) Vert(CT)	-0.10 16 -0.21 16	-17 > -17 >	defl L 999 24		PLATES MT20	GRIP 244/190
BCLL BCDL	0.0 * 10.0	Rep Stress Incr Code FBC2020/TPI	YES 12014	WB Matri	0.59 ix-MS	Horz(CT)	0.10	12	n/a n	a	Weight: 293 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

WFBS

9-4-4

LUMBER-TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP No.2 *Except*

16-17,14-16: 2x6 SP No.2

WFBS 2x4 SP No 3

2x6 SP No 2 **OTHERS**

REACTIONS. 2=0-3-8, 17=0-3-8, 12=0-3-0 (size)

6-0-2

Max Horz 2=286(LC 11)

Max Uplift 2=-240(LC 8), 17=-383(LC 12), 12=-178(LC 13) Max Grav 2=234(LC 23), 17=1779(LC 1), 12=964(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-23=-163/440. 3-23=-160/478. 3-4=-503/753. 4-5=-420/766. 5-24=-1328/312. TOP CHORD

6-24=-1249/323, 6-7=-1274/412, 7-25=-667/332, 25-26=-667/332, 8-26=-667/332, 8-9=-768/365, 9-27=-729/327, 10-27=-801/309, 10-28=-649/257, 11-28=-773/245,

12-19=-917/258, 11-19=-916/258

BOT CHORD 2-29=-292/35, 18-29=-292/35, 17-18=-297/33, 16-17=-175/542, 15-16=-223/1015,

14-15=-161/749, 13-14=-177/615

WEBS 3-18=-306/218, 3-17=-374/591, 5-17=-1765/646, 5-16=-189/777, 7-16=-165/872,

7-15=-434/188, 9-15=-161/326, 9-14=-363/92, 10-13=-327/140, 11-13=-169/712

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 2-5-6, Interior(1) 2-5-6 to 21-3-0, Exterior(2R) 21-3-0 to 25-2-6, Interior(1) 25-2-6 to 27-9-0, Exterior(2R) 27-9-0 to 31-8-6, Interior(1) 31-8-6 to 38-10-4 zone; end vertical right exposed; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=240, 17=383, 12=178.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Michael S. Magid PE No.53681 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

June 28,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not

Design Valid to its 80 mly with win New Commercials. This design is based only upon parameters shown, and is for an individual orusining Component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

6904 Parke East Blvd

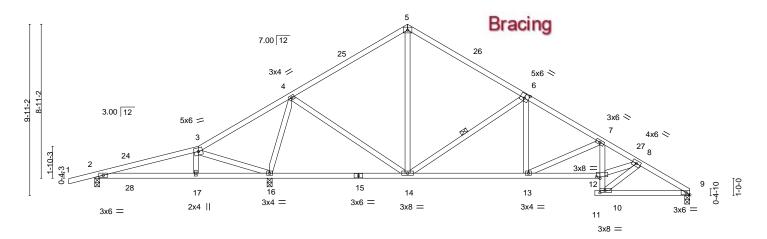
Job Truss Truss Type Qty Ply IC CONST. - SLAYMAKER RES T24494675 2845633 T07 Roof Special 2 Job Reference (optional) 8.430 s Jun 2 2021 MiTek Industries, Inc. Sun Jun 27 10:00:45 2021 Page 1 Builders FirstSource (Lake City,FL), Lake City, FL - 32055, ID:LXMaVS5IAyvNZz7??htND_z2hf0-B_Lug9eDi18OZtX4btECZXOODcXkhXgCuR7_L0z26pW 31-6-8 18-1-11 29-0-0 34-6-0

6-10-5

6-8-10

Structural wood sheathing directly applied or 4-3-13 oc purlins.

Rigid ceiling directly applied or 6-0-0 oc bracing. Except:


10-0-0 oc bracing: 10-12

1 Row at midpt

2-6-8

2-11-8

4-0-0

		6-0-1	10-1-12	1	18-1-11	1	25-0-0		29-0-0	34-6-0	1
		6-0-1	4-1-10	1	7-11-15	ı	6-10-5		4-0-0	5-6-0	1
Plate Offs	sets (X,Y)	[6:0-3-0,0-3-0], [9:0-2-8,E	dge], [10:0-3-8	,0-1-8], [12:0)-2-8,0-1-0]						
LOADING	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.54	Vert(LL)	-0.08 14-16	>999	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.71	Vert(CT)	-0.18 14-16	>999	180		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.65	Horz(CT	0.06 9	n/a	n/a		
BCDL	10.0	Code FBC2020/T	PI2014	Matri	x-MS					Weight: 188 lb	FT = 20%

BRACING-

WEBS

TOP CHORD

BOT CHORD

LUMBER-

REACTIONS.

2x4 SP No.2 TOP CHORD 2x4 SP No.2 *Except* **BOT CHORD**

7-10: 2x4 SP No.3

WEBS 2x4 SP No.3

(size) 2=0-3-7, 9=0-3-8, 16=0-3-8

6-0-1

5-5-0

Max Horz 2=211(LC 11)

Max Uplift 2=-215(LC 8), 9=-196(LC 13), 16=-320(LC 12) Max Grav 2=301(LC 23), 9=817(LC 1), 16=1581(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 2-3=-78/325, 3-4=-365/697, 4-5=-581/218, 5-6=-582/189, 6-7=-1193/306, TOP CHORD

7-8=-1821/429. 8-9=-1378/343

BOT CHORD 2-17=-318/167, 16-17=-320/165, 14-16=-198/288, 13-14=-122/1005, 12-13=-298/1611,

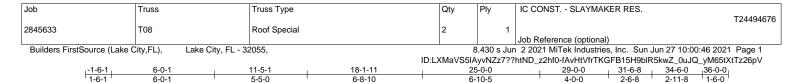
10-12=-165/826, 7-12=-78/454, 9-10=-257/1155

WEBS 3-17=-304/191, 3-16=-455/592, 4-16=-1372/556, 4-14=-199/714, 5-14=-74/271, 6-14=-728/286, 6-13=-43/435, 7-13=-664/193, 8-12=-272/1438, 8-10=-1238/290

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-1 to 1-11-6, Interior(1) 1-11-6 to 18-1-11, Exterior(2R) 18-1-11 to 21-7-1, Interior(1) 21-7-1 to 34-6-0 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=215, 9=196, 16=320,

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

June 28,2021


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

AMSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

6904 Parke East Blvd

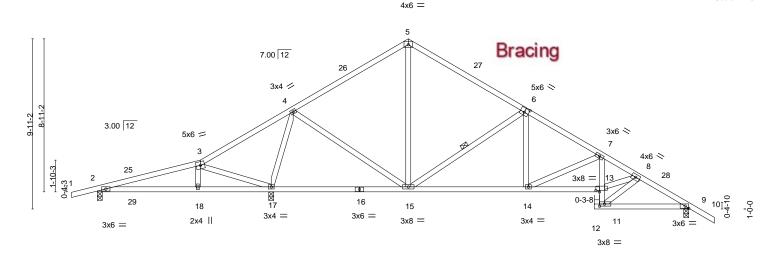
6-10-5

4-0-0

Structural wood sheathing directly applied or 4-3-13 oc purlins.

Rigid ceiling directly applied or 6-0-0 oc bracing. Except:

10-0-0 oc bracing: 11-13


1 Row at midpt

2-6-8

2-11-8

6-8-10

Scale = 1:67.2

ŀ	6-0-1 6-0-1	10-1-12 4-1-10	18-1-11 7-11-15	-	25-0-0 6-10-5	-	29-0-0 4-0-0	34-6-0 5-6-0	—
Plate Offsets (X,Y)	[6:0-3-0,0-3-0], [9:0-2-8	,Edge], [11:0-3-8,	0-1-8], [13:0-2-8,0-1-0]						
LOADING (psf) TCLL 20.0 TCDL 7.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code FBC2020/	2-0-0 1.25 1.25 YES TPI2014	CSI. TC 0.54 BC 0.68 WB 0.65 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.08 15-17 -0.18 15-17 0.06 9	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 190 lb	GRIP 244/190 FT = 20%

BRACING-

TOP CHORD

BOT CHORD

WEBS

LUMBER-

2x4 SP No.2 TOP CHORD 2x4 SP No.2 *Except* **BOT CHORD**

7-11: 2x4 SP No.3

WEBS 2x4 SP No.3

REACTIONS. (size) 2=0-3-7, 9=0-3-8, 17=0-3-8

6-0-1

5-5-0

Max Horz 2=218(LC 11)

Max Uplift 2=-217(LC 8), 9=-232(LC 13), 17=-316(LC 12) Max Grav 2=301(LC 23), 9=901(LC 1), 17=1577(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 2-3=-80/329, 3-4=-332/693, 4-5=-580/220, 5-6=-580/192, 6-7=-1197/303, TOP CHORD

7-8=-1796/410. 8-9=-1347/332

BOT CHORD 2-18=-318/171, 17-18=-318/170, 15-17=-200/302, 14-15=-94/998, 13-14=-255/1589,

11-13=-139/803, 7-13=-61/434, 9-11=-218/1122

WEBS 3-18=-304/191, 3-17=-455/604, 4-17=-1367/535, 4-15=-189/710, 5-15=-76/271,

6-15=-721/280, 6-14=-37/433, 7-14=-647/177, 8-13=-239/1430, 8-11=-1211/253

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-1 to 1-11-6, Interior(1) 1-11-6 to 18-1-11, Exterior(2R) 18-1-11 to 21-7-1, Interior(1) 21-7-1 to 36-0-0 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=217, 9=232, 17=316.

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

Job Truss Truss Type Qty IC CONST. - SLAYMAKER RES T24494677 2845633 T09 Common 2 Job Reference (optional) 8.430 s Jun 2 2021 MiTek Industries, Inc. Sun Jun 27 10:00:47 2021 Page 1 Builders FirstSource (Lake City,FL), Lake City, FL - 32055, ID:LXMaVS5IAyvNZz7??htND_z2hf0-7NTf5rgTEeO6oBgTjIGgeyTnWQCy9Y3VLlc5Qvz26pU 13-5-4 18-8-0 20-2-0 1-6-0 5-2-12 4-1-4 4-1-4 5-2-12 1-6-0

4x4 =

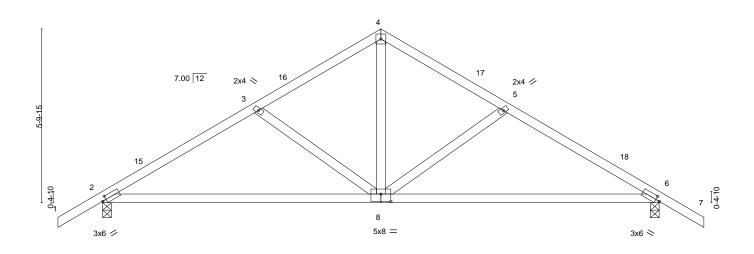


Plate Offsets (X,Y)--[2:0-1-8,0-1-8], [6:0-1-8,0-1-8], [8:0-4-0,0-3-0] SPACING-GRIP LOADING (psf) CSI. DEFL. in (loc) I/defI L/d **PLATES** 1.25 TC TCLL 20.0 Plate Grip DOL 0.36 Vert(LL) -0.12 8-11 >999 240 MT20 244/190 TCDL 7.0 Lumber DOL 1.25 ВС 0.79 Vert(CT) -0.26 8-11 >870 180 **BCLL** 0.0 Rep Stress Incr YES WB 0.21 Horz(CT) 0.02 6 n/a n/a Code FBC2020/TPI2014 FT = 20% **BCDL** 10.0 Matrix-MS Weight: 88 lb

BRACING-

TOP CHORD

BOT CHORD

9-4-0

Structural wood sheathing directly applied or 5-7-3 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

LUMBER-

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD WEBS 2x4 SP No.3

REACTIONS. (size) 2=0-3-8, 6=0-3-8 Max Horz 2=-139(LC 10)

Max Uplift 2=-173(LC 12), 6=-173(LC 13) Max Grav 2=772(LC 1), 6=772(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1001/210, 3-4=-775/180, 4-5=-775/180, 5-6=-1001/211

BOT CHORD 2-8=-187/834, 6-8=-110/834

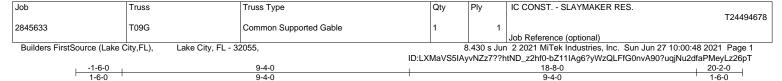
WFBS 4-8=-89/540, 5-8=-293/173, 3-8=-293/173

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl. GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior(1) 1-6-0 to 9-4-0, Exterior(2R) 9-4-0 to 12-4-0, Interior(1) 12-4-0 to 20-2-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

9-4-0

- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=173, 6=173.



MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

June 28,2021

Scale = 1:38.6

Scale = 1:37.4

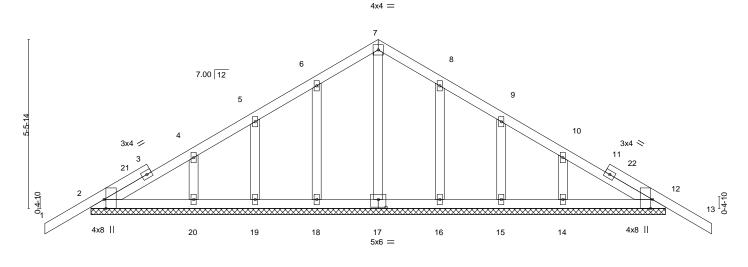


Plate Offsets (X,Y)--[2:0-3-8,Edge], [12:0-3-8,Edge], [17:0-3-0,0-3-0] SPACING-DEFL. GRIP LOADING (psf) CSI. in (loc) I/defI L/d **PLATES** 1.25 TCLL 20.0 Plate Grip DOL TC 0.13 Vert(LL) -0.00 13 120 MT20 244/190 n/r TCDL 7.0 Lumber DOL 1.25 ВС 0.07 Vert(CT) -0.01 13 n/r 120 **BCLL** 0.0 Rep Stress Incr YES WB 0.06 Horz(CT) 0.00 12 n/a n/a Code FBC2020/TPI2014 FT = 20% **BCDL** 10.0 Weight: 101 lb Matrix-S

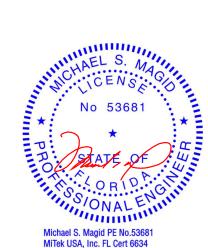
LUMBER-

TOP CHORD 2x4 SP No.2 2x4 SP No.2 **BOT CHORD OTHERS** 2x4 SP No.3 **BRACING-**

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 6-0-0 oc purlins.

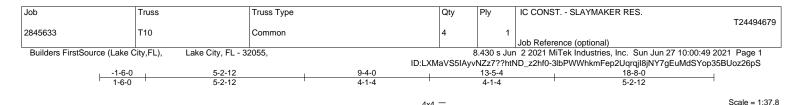
Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. All bearings 18-8-0.

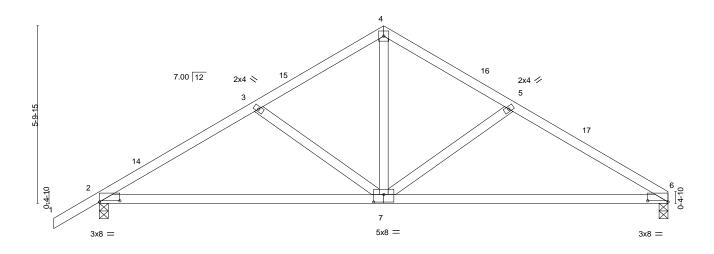

(lb) -Max Horz 2=-132(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 2, 12, 18, 19, 20, 16, 15, 14 Max Grav All reactions 250 lb or less at joint(s) 2, 12, 17, 18, 19, 20, 16, 15, 14

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl. GCpi=0.18; MWFRS (envelope) gable end zone and C-C Corner(3E) -1-6-0 to 1-6-0, Exterior(2N) 1-6-0 to 9-4-0, Corner(3R) 9-4-0 to 12-4-0, Exterior(2N) 12-4-0 to 20-2-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 12, 18, 19, 20, 16, 15, 14.



MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

4x4 =

9-4-0 Plate Offsets (X,Y)--[2:0-8-0,0-0-7], [6:0-8-0,0-0-7], [7:0-4-0,0-3-0] SPACING-LOADING (psf) CSI. DEFL. in (loc) I/defI L/d **PLATES** GRIP Plate Grip DOL 1.25 7-10 TCLL 20.0 TC 0.38 Vert(LL) -0.12 >999 240 MT20 244/190

BRACING-

TOP CHORD

BOT CHORD

TCDL 7.0 Lumber DOL 1.25 ВС 0.79 Vert(CT) -0.26 7-10 >853 180 **BCLL** 0.0 Rep Stress Incr YES WB 0.21 Horz(CT) 0.02 6 n/a n/a Code FBC2020/TPI2014 **BCDL** 10.0 Matrix-MS

Structural wood sheathing directly applied or 5-4-10 oc purlins.

Weight: 85 lb

18-8-0

Rigid ceiling directly applied or 10-0-0 oc bracing.

LUMBER-

REACTIONS.

2x4 SP No.2 TOP CHORD 2x4 SP No.2 **BOT CHORD** WEBS 2x4 SP No.3

> (size) 6=0-3-8, 2=0-3-8 Max Horz 2=133(LC 9)

Max Uplift 6=-139(LC 13), 2=-173(LC 12) Max Grav 6=687(LC 1), 2=775(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1009/216, 3-4=-782/182, 4-5=-783/188, 5-6=-1015/222

BOT CHORD 2-7=-201/840, 6-7=-140/849

4-7=-97/542, 5-7=-304/179, 3-7=-292/173 WFBS

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl. GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior(1) 1-6-0 to 9-4-0, Exterior(2R) 9-4-0 to 12-4-0, Interior(1) 12-4-0 to 18-8-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=139, 2=173.

FT = 20%

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

Job Truss Truss Type Qty Ply IC CONST. - SLAYMAKER RES T24494680 2845633 T11 Common Girder Job Reference (optional)
8.430 s Jun 2 2021 MiTek Industries, Inc. Sun Jun 27 10:00:51 2021 Page 1 Builders FirstSource (Lake City,FL), Lake City, FL - 32055, ID:LXMaVS5IAyvNZz7??htND_z2hf0-?8iAxCj_ItuXHo_Ey8LcooeQu1f?5EQ5GNalZgz26pQ 13-7-12 4-3-12 4-3-12 5-0-4 Scale = 1:34.8 4x6 || 3 7.00 12 3x8 / 3x8 < 8 18 14 15 17 20 16 19 9 7 6x8 6x8 = 3x8 || 10x12 =3x8 || 18-8-0 Plate Offsets (X,Y)--[1:0-2-6,Edge], [5:0-2-6,Edge], [7:0-5-4,0-1-8], [8:0-6-0,0-6-0], [9:0-5-4,0-1-8] LOADING (psf) SPACING-2-0-0 CSI. in (loc) I/defI L/d **PLATES GRIP** 1.25 TCLL 20.0 Plate Grip DOL TC 0.53 Vert(LL) -0.12 7-8 >999 240 MT20 244/190 TCDL 7.0 Lumber DOL 1.25 ВС 0.39 Vert(CT) -0.207-8 >999 180 **BCLL** 0.0 Rep Stress Incr NO WB 0.69 Horz(CT) 0.04 5 n/a n/a Code FBC2020/TPI2014 FT = 20% **BCDL** 10.0 Matrix-MS Weight: 250 lb

LUMBER-

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x8 SP 2400F 2.0E **WEBS**

2x4 SP No.3 *Except* 3-8: 2x4 SP No.2

BRACING-

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 3-9-3 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

(size) 1=0-3-8, 5=(0-3-8 + bearing block) (req. 0-3-12)

Max Horz 1=118(LC 24)

Max Uplift 1=-1015(LC 8), 5=-1212(LC 9) Max Grav 1=5303(LC 2), 5=6338(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 1-2=-8787/1683, 2-3=-6353/1249, 3-4=-6354/1250, 4-5=-9252/1771 TOP CHORD BOT CHORD 1-9=-1472/7560, 8-9=-1472/7560, 7-8=-1469/7968, 5-7=-1469/7968 **WEBS** 3-8=-1163/6156, 4-8=-3011/667, 4-7=-518/2929, 2-8=-2523/575, 2-9=-425/2437

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc.

Bottom chords connected as follows: 2x8 - 2 rows staggered at 0-4-0 oc. Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) 2x8 SP 2400F 2.0E bearing block 12" long at jt. 5 attached to one face with 3 rows of 10d (0.131"x3") nails spaced 3" o.c. 8 Total fasteners per block. Bearing is assumed to be SP No.2. Block to be attached to face opposite of supported loads.
- 4) Unbalanced roof live loads have been considered for this design.
- 5) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone; Lumber DOL=1.60 plate grip DOL=1.60
- 6) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=1015, 5=1212,
- 10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 974 lb down and 190 lb up at 2-0-12, 974 lb down and 190 lb up at 4-0-12, 1004 lb down and 210 lb up at 5-8-12, 1254 lb down and 249 lb up at 7-8-12, 1250 lb down and 246 lb up at 9-8-12, 1250 lb down and 246 lb up at 11-8-12, 1250 lb down and 246 lb up at 13-8-12, and 1254 lb down and 249 lb up at 15-8-12, and 1254 lb down and 248 lb up at 17-8-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

Michael S. Magid PE No.53681 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

June 28,2021

Continued on page 2

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	IC CONST SLAYMAKER RES.
					T24494680
2845633	T11	Common Girder	1	2	Job Reference (optional)

Builders FirstSource (Lake City,FL),

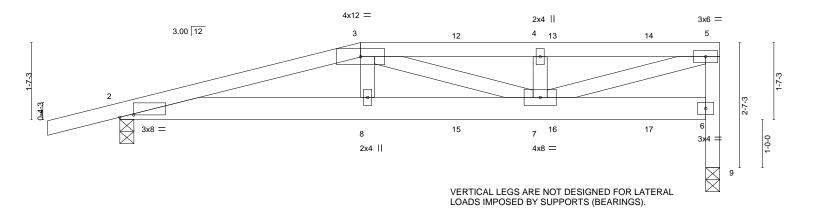
Lake City, FL - 32055,

8.430 s Jun 2 2021 MiTek Industries, Inc. Sun Jun 27 10:00:51 2021 Page 2 ID:LXMaVS5IAyvNZz7??htND_z2hf0-?8iAxCj_ltuXHo_Ey8LcooeQu1f?5EQ5GNaIZgz26pQ

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)


Vert: 1-3=-54, 3-5=-54, 1-5=-20

Concentrated Loads (lb)

Vert: 7=-1097(F) 6=-1100(F) 14=-871(F) 15=-871(F) 16=-888(F) 17=-1099(F) 18=-1097(F) 19=-1097(F) 20=-1099(F)

Job Truss Truss Type Qty IC CONST - SLAYMAKER RES T24494681 2845633 T12 Half Hip Girder Job Reference (optional) 8.430 s Jun 2 2021 MiTek Industries, Inc. Sun Jun 27 10:00:53 2021 Page 1 Builders FirstSource (Lake City,FL), Lake City, FL - 32055, ID:LXMaVS5IAyvNZz7??htND_z2hf0-yWqwLukEqU8FX68d3ZN4tDjpKrKuZA?Ojh3PdZz26pO 8-8-12 12-5-8 1-6-0 5-0-0 3-8-12 3-8-12

Scale: 1/2"=1

ŀ		5-0-0 5-0-0			8-8- 3-8-					12-5-8 3-8-12	
Plate Offsets (X,Y)	[2:0-3-6,0-0-9]					-				00.2	
LOADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC	0.34	Vert(LL)	0.08	7-8	>999	240	MT20	244/190
TCDL 7.0	Lumber DOL	1.25	BC	0.50	Vert(CT)	-0.12	7-8	>999	180		
BCLL 0.0 *	Rep Stress Incr	NO	WB	0.56	Horz(CT)	0.05	9	n/a	n/a		
BCDL 10.0	Code FBC2020/T	PI2014	Matrix-	MS						Weight: 66 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2

BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.3

REACTIONS. (size) 2=0-3-8, 9=0-3-8 Max Horz 2=61(LC 4)

Max Uplift 2=-372(LC 4), 9=-372(LC 4) Max Grav 2=711(LC 1), 9=729(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 2-3=-1829/915, 3-4=-1513/774, 4-5=-1513/774, 6-9=-729/372, 5-6=-610/312 TOP CHORD

BOT CHORD 2-8=-899/1760, 7-8=-915/1791

WFBS 3-8=-131/326, 3-7=-292/148, 4-7=-321/163, 5-7=-752/1471

NOTES-

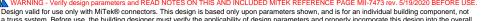
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone; porch left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Bearing at joint(s) 9 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb)
- 9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 75 lb down and 63 lb up at 5-0-0, 56 lb down and 63 lb up at 7-0-12, and 56 lb down and 58 lb up at 9-0-12, and 56 lb down and 63 lb up at 11-0-12 on top chord, and 110 lb down and 113 lb up at 5-0-0, 45 lb down and 45 lb up at 7-0-12, and 45 lb down and 45 lb up at 9-0-12, and 45 lb down and 45 lb up at 11-0-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others. 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)

Vert: 1-3=-54, 3-5=-54, 2-6=-20

Structural wood sheathing directly applied or 4-2-1 oc purlins,


Rigid ceiling directly applied or 7-8-0 oc bracing.

except end verticals.

Michael S. Magid PE No.53681 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

June 28,2021

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

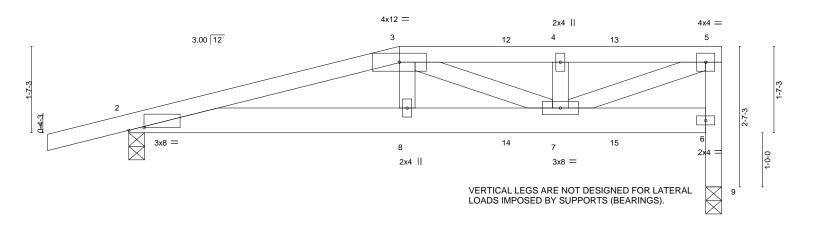
ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

ES.
T24494681
)

Builders FirstSource (Lake City,FL),

Lake City, FL - 32055,

8.430 s Jun 2 2021 MiTek Industries, Inc. Sun Jun 27 10:00:53 2021 Page 2 ID:LXMaVS5IAyvNZz7??htND_z2hf0-yWqwLukEqU8FX68d3ZN4tDjpKrKuZA?Ojh3PdZz26pO


LOAD CASE(S) Standard

Concentrated Loads (lb)

Vert: 3=-56(B) 8=-102(B) 12=-56(B) 13=-56(B) 14=-56(B) 15=-40(B) 16=-40(B) 17=-40(B)

Job Truss Truss Type Qty Ply IC CONST. - SLAYMAKER RES T24494682 2845633 T13 Half Hip Girder Job Reference (optional) 8.430 s Jun 2 2021 MiTek Industries, Inc. Sun Jun 27 10:00:54 2021 Page 1 Builders FirstSource (Lake City,FL), Lake City, FL - 32055, ID:LXMaVS5IAyvNZz7??htND_z2hf0-QjOIZElsboG68GjpdGuJQQG0vFh9lfaXyLpy9?z26pN 10-11-8 1-6-0 5-0-0 2-11-12 2-11-12

Scale = 1:21.3

		5-0-0 5-0-0		+	7-11-12 2-11-12	+	10-11-8 2-11-12	
Plate Offsets (X,Y)	[2:0-3-6,0-0-9]							
LOADING (psf) TCLL 20.0 TCDL 7.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code FBC2020/T	2-0-0 1.25 1.25 NO PI2014	CSI. TC 0.22 BC 0.43 WB 0.41 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) 0.05 8 -0.08 8-11 0.03 9	L/d 240 180 n/a	PLATES MT20 Weight: 58 lb	GRIP 244/190 FT = 20%

BRACING-

TOP CHORD

BOT CHORD

except end verticals.

LUMBER-

2x4 SP No.2 TOP CHORD

BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.3

REACTIONS. (size) 2=0-3-8, 9=0-3-8

Max Horz 2=61(LC 4) Max Uplift 2=-326(LC 4), 9=-312(LC 4) Max Grav 2=619(LC 1), 9=613(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 2-3=-1449/720, 3-4=-1070/547, 4-5=-1070/547, 6-9=-613/312, 5-6=-524/267 TOP CHORD

BOT CHORD 2-8=-710/1390, 7-8=-725/1419

WFBS 3-8=-124/305, 3-7=-378/192, 5-7=-553/1081

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone; porch left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Bearing at joint(s) 9 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb)
- 9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 75 lb down and 63 lb up at 5-0-0, and 56 lb down and 62 lb up at 7-0-12, and 56 lb down and 63 lb up at 9-0-12 on top chord, and 110 lb down and 113 lb up at 5-0-0, and 45 lb down and 45 lb up at 7-0-12, and 45 lb down and 45 lb up at 9-0-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)

Vert: 1-3=-54, 3-5=-54, 2-6=-20

Structural wood sheathing directly applied or 4-8-7 oc purlins,

Rigid ceiling directly applied or 8-7-8 oc bracing.

Michael S. Magid PE No.53681 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

June 28,2021

Continued on page 2

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

6904 Parke East Blvd

Job	Truss	Truss Type	Qty	Ply	IC CONST SLAYMAKER RES.
					T24494682
2845633	T13	Half Hip Girder	1	1	
					Job Reference (optional)

Builders FirstSource (Lake City,FL),

Lake City, FL - 32055,

8.430 s Jun 2 2021 MiTek Industries, Inc. Sun Jun 27 10:00:54 2021 Page 2 ID:LXMaVS5IAyvNZz7??htND_z2hf0-QjOIZEIsboG68GjpdGuJQQG0vFh9IfaXyLpy9?z26pN

LOAD CASE(S) Standard

Concentrated Loads (lb)

Vert: 3=-56(F) 8=-102(F) 12=-56(F) 13=-56(F) 14=-40(F) 15=-40(F)

Job Truss Truss Type Qty IC CONST. - SLAYMAKER RES T24494683 2845633 T14 MONO TRUSS 16 Job Reference (optional) 8.430 s Jun 2 2021 MiTek Industries, Inc. Sun Jun 27 10:00:55 2021 Page 1 Builders FirstSource (Lake City,FL), Lake City, FL - 32055, ID:LXMaVS5IAyvNZz7??htND_z2hf0-uvygmamVM5OzmPH?B_PYzeo8Ze4D18BhB?YWiRz26pM

5-8-0

5-8-0

Scale = 1:13.9

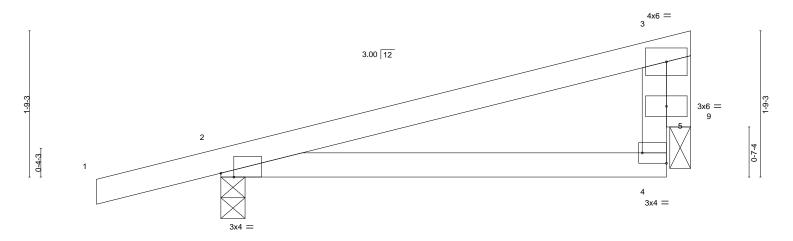


Plate Offsets (X,Y)--[2:0-1-14,Edge], [4:Edge,0-1-8] SPACING-GRIP LOADING (psf) 2-0-0 CSI. DEFL. in (loc) I/defI L/d **PLATES** 1.25 TCLL 20.0 Plate Grip DOL TC 0.42 Vert(LL) 0.04 4-8 >999 240 MT20 244/190 TCDL 7.0 Lumber DOL 1.25 ВС 0.25 Vert(CT) 0.04 4-8 >999 180 **BCLL** 0.0 Rep Stress Incr YES WB 0.26 Horz(CT) -0.00 n/a n/a Code FBC2020/TPI2014 Weight: 22 lb FT = 20% **BCDL** 10.0 Matrix-MR

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 **OTHERS** 2x4 SP No.3

REACTIONS. (size) 2=0-3-8, 9=0-3-0 Max Horz 2=62(LC 8)

Max Uplift 2=-159(LC 8), 9=-88(LC 8) Max Grav 2=296(LC 1), 9=172(LC 1)

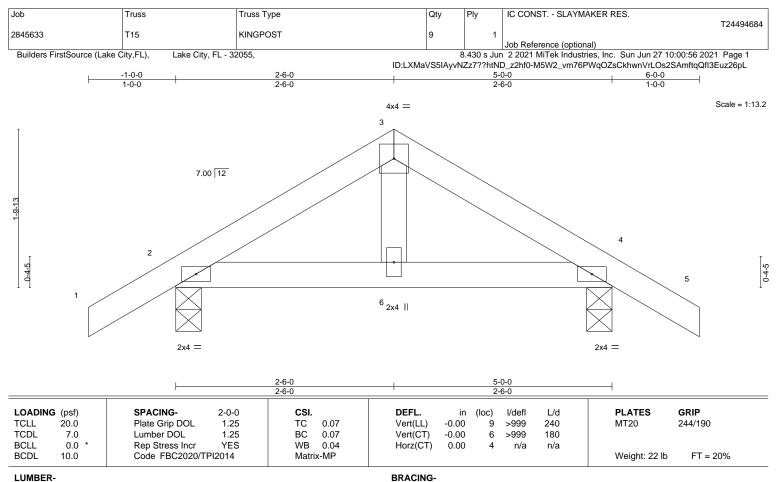
1-6-0

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-204/273 BOT CHORD 2-4=-306/183

NOTES-

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior(1) 1-6-0 to 5-2-12 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Bearing at joint(s) 9 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9 except (jt=lb)


Structural wood sheathing directly applied or 5-8-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

Michael S. Magid PE No.53681 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 2x4 SP No.2

BOT CHORD WEBS 2x4 SP No.3

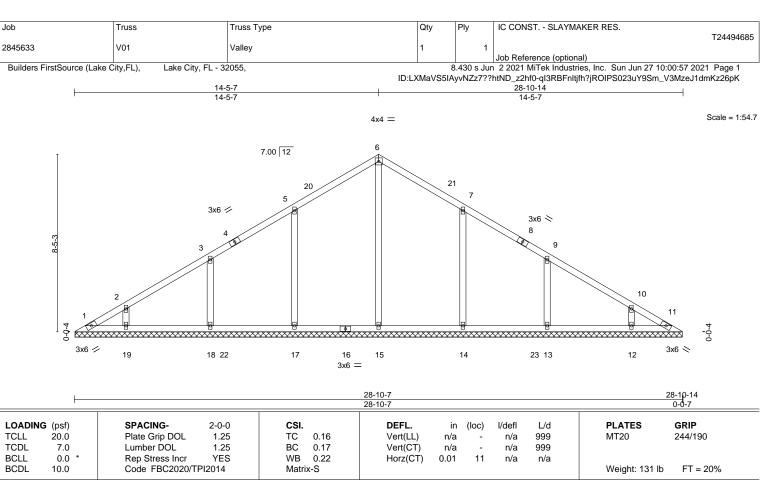
REACTIONS. 2=0-3-8, 4=0-3-8 (size) Max Horz 2=-45(LC 10)

Max Uplift 2=-60(LC 12), 4=-60(LC 13) Max Grav 2=239(LC 1), 4=239(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 2-6-0, Exterior(2R) 2-6-0 to 5-6-0, Interior(1) 5-6-0 to 6-0-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.



Structural wood sheathing directly applied or 5-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

LUMBER-TOP CHORD

2x4 SP No 2 2x4 SP No.2

BOT CHORD **OTHERS** 2x4 SP No.3 **BRACING-**

TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 28-10-0.

Max Horz 1=179(LC 9)

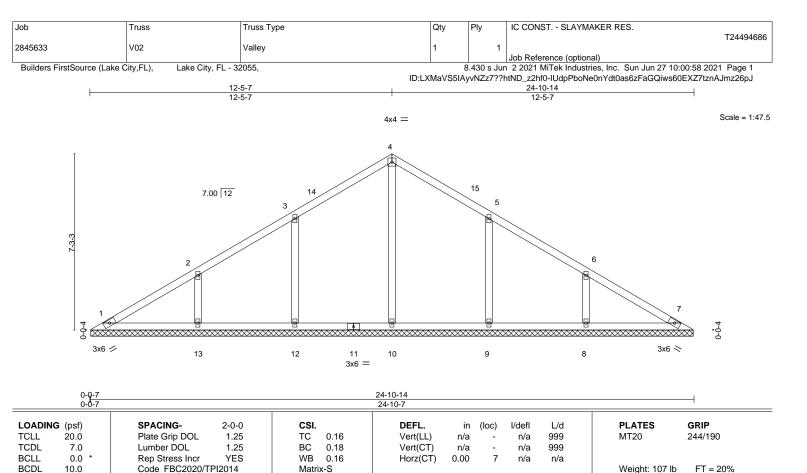
Max Uplift All uplift 100 lb or less at joint(s) 1, 11 except 17=-137(LC 12), 18=-128(LC 12), 19=-109(LC 12),

14=-137(LC 13), 13=-128(LC 13), 12=-109(LC 13)

All reactions 250 lb or less at joint(s) 1, 11 except 15=371(LC 22), 17=443(LC 19), 18=394(LC 19),

19=307(LC 19), 14=443(LC 20), 13=394(LC 20), 12=307(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-6-8 to 3-6-8, Interior(1) 3-6-8 to 14-5-7, Exterior(2R) 14-5-7 to 17-5-7, Interior(1) 17-5-7 to 28-4-6 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 11 except (jt=lb) 17=137, 18=128, 19=109, 14=137, 13=128, 12=109.

6904 Parke East Blvd. Tampa FL 33610

BRACING-

TOP CHORD

BOT CHORD

LUMBER-TOP CHORD

2x4 SP No 2

BOT CHORD 2x4 SP No.2 **OTHERS** 2x4 SP No.3

REACTIONS. All bearings 24-10-0. Max Horz 1=-153(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 1, 7 except 12=-134(LC 12), 13=-139(LC 12), 9=-134(LC 13),

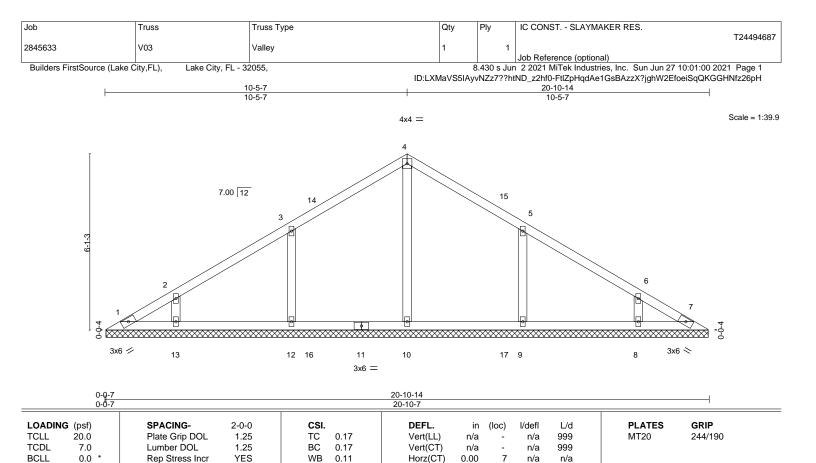
8=-139(LC 13)

All reactions 250 lb or less at joint(s) 1, 7 except 10=371(LC 22), 12=400(LC 19), 13=401(LC 19), Max Grav

9=400(LC 20), 8=402(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-6-8 to 3-6-8, Interior(1) 3-6-8 to 12-5-7, Exterior(2R) 12-5-7 to 15-5-7, Interior(1) 15-5-7 to 24-4-6 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7 except (jt=lb) 12=134, 13=139, 9=134, 8=139.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

BRACING-

TOP CHORD

BOT CHORD

LUMBER-TOP CHORD

BCDL

2x4 SP No 2 2x4 SP No.2

BOT CHORD **OTHERS** 2x4 SP No.3

10.0

REACTIONS. All bearings 20-10-0. (lb) -

Max Horz 1=-127(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 1, 7 except 12=-142(LC 12), 13=-104(LC 12), 9=-142(LC 13),

8=-104(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 7 except 10=356(LC 19), 12=415(LC 19), 13=300(LC 19),

Matrix-S

9=415(LC 20), 8=300(LC 20)

Code FBC2020/TPI2014

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 3-12=-250/167

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-6-8 to 3-6-8, Interior(1) 3-6-8 to 10-5-7, Exterior(2R) 10-5-7 to 13-5-7, Interior(1) 13-5-7 to 20-4-6 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7 except (jt=lb) 12=142, 13=104, 9=142, 8=104.

Weight: 85 lb

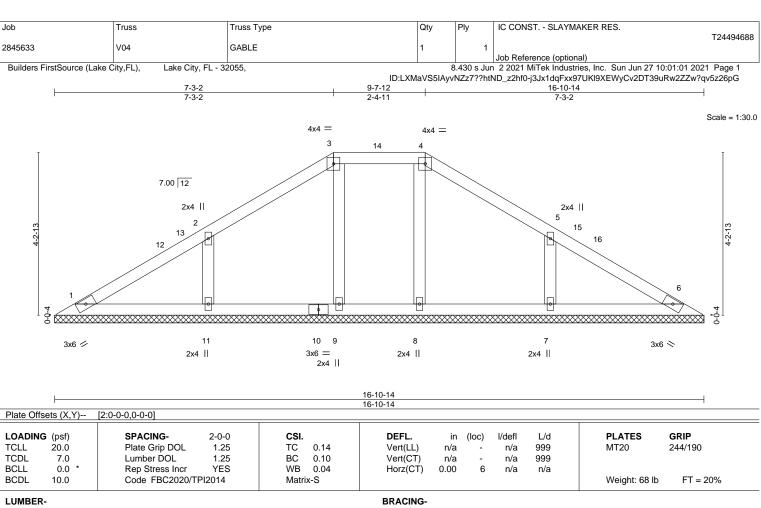
Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

FT = 20%

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

June 28,2021



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

AMSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TOP CHORD 2x4 SP No.2 2x4 SP No.2 **BOT CHORD OTHERS** 2x4 SP No.3 TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 16-10-14.

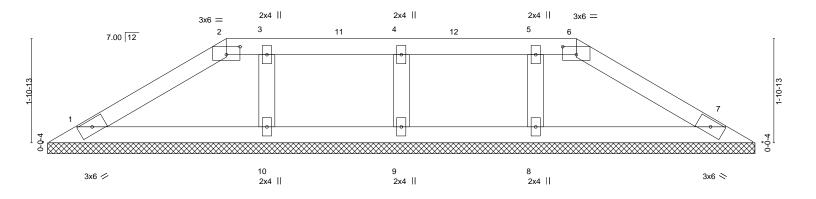
(lb) -Max Horz 1=-87(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 1, 6, 8, 9 except 7=-129(LC 13), 11=-129(LC 12) Max Grav All reactions 250 lb or less at joint(s) 1, 6, 8, 9 except 7=311(LC 20), 11=311(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-6-8 to 3-6-8, Interior(1) 3-6-8 to 7-3-2, Exterior(2E) 7-3-2 to 9-7-12, Exterior(2R) 9-7-12 to 13-10-11, Interior(1) 13-10-11 to 16-4-6 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 6, 8, 9 except (jt=lb) 7=129, 11=129.



MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

Job Truss Truss Type Qty IC CONST. - SLAYMAKER RES T24494689 2845633 V05 **GABLE** Job Reference (optional) 8.430 s Jun 2 2021 MiTek Industries, Inc. Sun Jun 27 10:01:02 2021 Page 1 Builders FirstSource (Lake City,FL), Lake City, FL - 32055, ID:LXMaVS5IAyvNZz7??htND_z2hf0-BFtKEzruiFHz6UKL5y1Bl6bPuTVIANYioalNSXz26pF 12-10-14 3-3-2 6-4-11 3-3-2

Scale = 1:21.0

12-10-14 Plate Offsets (X,Y)--[2:0-3-0,0-1-12], [6:0-3-0,0-1-12] DEFL. GRIP LOADING (psf) SPACING-2-0-0 CSI. in (loc) I/defI L/d **PLATES** TCLL 20.0 Plate Grip DOL 1.25 TC 0.09 Vert(LL) n/a 999 MT20 244/190 n/a TCDL 7.0 Lumber DOL 1.25 ВС 0.09 Vert(CT) n/a n/a 999 **BCLL** 0.0 Rep Stress Incr YES WB 0.03 Horz(CT) 0.00 n/a n/a Code FBC2020/TPI2014 FT = 20% **BCDL** 10.0 Weight: 44 lb Matrix-S

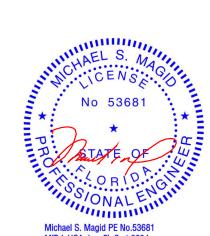
LUMBER-

TOP CHORD 2x4 SP No.2 2x4 SP No.2 **BOT CHORD OTHERS** 2x4 SP No.3 **BRACING-**

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 12-10-14.


(lb) -Max Horz 1=-35(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 1, 7, 9, 8, 10 Max Grav All reactions 250 lb or less at joint(s) 1, 7, 9, 8, 10

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-6-8 to 3-3-2, Exterior(2R) 3-3-2 to 7-6-0, Interior(1) 7-6-0 to 9-7-12, Exterior(2E) 9-7-12 to 12-4-6 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7, 9, 8, 10.

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

Symbols

PLATE LOCATION AND ORIENTATION

Center plate on joint unless x, y offsets are indicated.
Dimensions are in ft-in-sixteenths.
Apply plates to both sides of truss and fully embed teeth.

For 4 x 2 orientation, locate plates 0- ¹/16" from outside edge of truss.

This symbol indicates the required direction of slots in connector plates.

* Plate location details available in MiTek 20/20 software or upon request.

PLATE SIZE

4 × 4

The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated.

BEARING

Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number where bearings occur. Min size shown is for crushing only.

Industry Standards:

National Design Specification for Metal Plate Connected Wood Truss Construction. Design Standard for Bracing.
Building Component Safety Information, Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses.

ANSI/TPI1: DSB-89:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

PRODUCT CODE APPROVALS

ICC-ES Reports:

ESR-1311, ESR-1352, ESR1988 ER-3907, ESR-2362, ESR-1397, ESR-3282

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2012 MiTek® All Rights Reserved

MiTek Engineering Reference Sheet: MII-7473 rev. 5/19/2020

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.

ω

- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other.

Ģ

- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.

œ

- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21.The design does not take into account any dynamic or other loads other than those expressly stated.