

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

RE: Barry - Barry

MiTek USA, Inc.

16023 Swingley Ridge Rd Chesterfield, MO 63017

Site Information:

Customer Info: BB Homes Project Name: . Model: .

Lot/Block: .

Subdivision: .

Address: ., . City: Lake City

State: FL

Name Address and License # of Structural Engineer of Record, If there is one, for the building.

License #:

Address:

City:

State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: FBC2020/TPI2014

Design Program: MiTek 20/20 8.5

Wind Code: ASCE 7-16

Wind Speed: 130 mph

Roof Load: 40.0 psf

T30164941

T30164943

T30164944 T30164945

Floor Load: N/A psf

This package includes 33 individual, Truss Design Drawings and 0 Additional Drawings. With my seal affixed to this sheet, I hereby certify that I am the Truss Design Engineer and this index sheet conforms to 61G15-31.003, section 5 of the Florida Board of Professional Engineers Rules.

No. 1	Seal# T30164925	Truss Name A01GE	Date 3/28/23	No. 23	Seal# T30164947	Truss Name E01GE	Date 3/28/23
2 3 4 5 6	T30164926 T30164927 T30164928	A02 A03 A04GE	3/28/23 3/28/23 3/28/23	25	T30164948 T30164949 T30164950	E02GIR J1 J2	3/28/23 3/28/23 3/28/23
7	T30164929 T30164930 T30164931	B01GE B02 B03	3/28/23 3/28/23 3/28/23	27 28	T30164951 T30164952 T30164953	J3 M01GE M02	3/28/23 3/28/23 3/28/23
8 9 10	T30164932 T30164933 T30164934	C01GE C02 C03	3/28/23 3/28/23 3/28/23	30 31	T30164954 T30164955 T30164956	PB01GE PB02 PB03GE	3/28/23 3/28/23 3/28/23
11	T30164935 T30164936 T30164937	C04 C05 C06	3/28/23 3/28/23 3/28/23		T30164957	PB04	3/28/23
12 13 14 15 16	T30164938 T30164939 T30164940	C07 C08 C09	3/28/23 3/28/23 3/28/23				

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Mayo Truss Company, Inc..

Truss Design Engineer's Name: Lee, Julius

D01GE D02

D03

My license renewal date for the state of Florida is February 28, 2025.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

March 28,2023

Truss Truss Type Job Otv Ply Barry T30164925 BARRY A01GE Piggyback Base Structural Gable COMMON I I Gable I Gable 1 Job Reference (optional) Mayo, FL - 32066. Mayo Truss Company, Inc., 8.530 s Mar 9 2023 MiTek Industries, Inc. Mon Mar 27 14:45:30 2023 Page 1 ID:JsjMRXyynZ1Jac60bHxruRzrX5Y-I4wrdsoW5GaWS25CFv2nufqZJIQuJ6IrAP?8MezWiMZ 39-5-0 5-10-9 3-10-3 16-8-5 Scale = 1:86.4 5x7 = 6x8 = 8.00 12 5x5 = 6 10 7778 79 11 76 3x5 🔷 5x5 / 4x6 / 2x4 || 3x4 \Rightarrow 3x4 \Rightarrow 12 13₈₀ 4x12 || 3×8 4x6 3x5 / 75 6x8 3x8 / 15 3x4 / 1 4x6 || 13 18 17 19 20 5x5 || 32 31 30 25 24 23 29 28 22 21 2x4 || 3x8 || 5x5 = 5x5 = 3x8 = 5x5 = 4x8 = 3x4 II 2x4 || 4x6 // 7x8 = TOP CHORD UNDER PIGGYBACKS TO BE LATERALLY BRACED BY PURLINS AT 2-0-0 OC. MAX. 3x4 = 40-1-13 8-2-0 10-5-9 15-7-11 16-2-0 21-9-15 5-7-15 0-7-0 0-1-13 [2:0-3-8,Edge], [5:0-2-8,0-3-0], [6:0-5-4,0-2-4], [11:0-3-0,0-2-0], [20:0-2-12,Edge], [23:0-2-8,0-3-0], [25:0-2-8,0-3-0], [26:0-2-8,0-3-0], [28:0-0-15,0-2-4], Plate Offsets (X,Y)--[41:0-2-12,0-2-12] LOADING (psf) SPACING-2-0-0 CSI. DEFL. I/defl **PLATES** in (loc) L/d TCLL 20.0 Plate Grip DOL 1.25 TC 0.52 Vert(LL) -0.11 23-24 >999 240 MT20 244/190 TCDL 10.0 Lumber DOL 1.25 BC 0.61 Vert(CT) -0.19 25-26 >999 180 BCLL 0.0 Rep Stress Incr YES WB 0.60 Horz(CT) 0.04 17 n/a n/a BCDL Code FBC2020/TPI2014 10.0 Matrix-AS Weight: 504 lb FT = 20%LUMBER-BRACING-TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied, except end verticals, and BOT CHORD 2x4 SP No.2 2-0-0 oc purlins (5-0-0 max.): 6-11. 2x4 SP No.2 Rigid ceiling directly applied. WEBS BOT CHORD OTHERS 2x4 SP No.2 WEBS 24-33, 22-41, 11-20 1 Row at midpt WEDGE JOINTS 1 Brace at Jt(s): 33, 34, 35, 36, 39, 40, 41, 42 Left: 2x4 SP No.2 All bearings 8-5-8 except (jt=length) 17=4-0-0, 19=4-0-0, 19=4-0-0, 18=4-0-0, 27=0-3-8 (lb) - Max Horz 2=245(LC 11) Max Uplift All uplift 100 lb or less at joint(s) 30, 19, 28, 18 except 2=-171(LC 24)

REACTIONS.

Max Grav All reactions 250 lb or less at joint(s) 2, 28, 29, 31, 32, 18 except

17=298(LC 18), 30=1676(LC 17), 19=1700(LC 18), 19=1506(LC 1), 27=322(LC 17)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD

2-4=-113/617, 4-5=-822/73, 5-6=-1015/103, 6-7=-934/98, 7-8=-955/100, 8-9=-1252/116,

9-10=-1216/92, 10-11=-823/106, 11-12=-420/145, 12-13=-292/10

2-32=-435/57, 31-32=-426/55, 30-31=-426/55, 29-30=-426/55, 28-29=-426/55,

25-26=-41/1038, 24-25=0/1209, 23-24=0/1190, 22-23=0/1191, 21-22=0/270 4-30=-1672/76, 4-38=0/1186, 26-38=0/1141, 26-37=-640/41, 5-37=-627/39, 5-36=0/331,

25-36=0/330, 6-34=0/346, 24-34=0/348, 23-40=0/262, 10-40=0/259, 10-41=-702/0, 22-41=-677/0, 22-42=0/756, 11-42=0/753, 22-43=0/613, 20-43=0/489, 11-20=-1066/0,

13-20=-58/934, 13-19=-1145/32, 8-33=-357/31, 33-34=-386/32, 34-35=-400/30,

35-36=-402/30, 36-37=-410/29, 37-38=-390/28, 28-38=-508/23

NOTES.

WEBS

BOT CHORD

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=44ft; eave=5ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 3-4-13, Interior(1) 3-4-13 to 16-2-0, Exterior(2R) 16-2-0 to 22-4-11, Interior(1) 22-4-11 to 33-6-7, Exterior(2R) 33-6-7 to 39-9-2, Interior(1) 39-9-2 to 45-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1,60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding.
- 5) All plates are 1.5x4 MT20 unless otherwise indicated.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

Continued on page 2

16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

March 28,2023

Job	Truss	Truss Type	Qty	Ply	Barry	
BARRY	A01GE	Piggyback Base Structural Gable COMMON I I Gal	ole i Gable		Job Reference (optional)	T30164925

Mayo Truss Company, Inc.,

NOTES-

Mayo, FL - 32066,

8.530 s Mar 9 2023 MiTek Industries, Inc. Mon Mar 27 14:45:31 2023 Page 2 ID:JsjMRXyynZ1Jac60bHxruRzrX5Y-DGUDrCo8saiN4CgPocZ0RtNk28m72Z?_P3khu4zWiMY

- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 30, 19, 28, 18 except (jt=lb) 2=171.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

March 28,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEX REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information

available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Barry Ph T30164926 BARRY A02 Piggyback Base 1 Job Reference (optional) Mayo Truss Company, Inc. Mayo, FL - 32066, 8.530 s Mar 9 2023 MiTek Industries, Inc. Mon Mar 27 14:45:33 2023 Page 1 ID:JsjMRXyynZ1Jac60bHxruRzrX5Y-9fc_GuqOOBy4JVqnw1bUWIS2XyPwWWMHsNDozyzWiMW 27-10-7 36-6-11 41-10-11 5-4-0 6-2-4 Scale = 1:85.3 5x7 = 1.5x4 II 6x8 = 8.00 12 9 5x5 = 4x6 / 6 8 32 33 10 5x5 / 4x6 > 4x8 > 35 11 3x5 / 12 6x8 4x6 22 21 20 19 18 15 14 36 37 39 26 25 246x8 = 6x8 = 1.5x4 II 3x8 = 2x4 || 4x8 = 1.5x4 II 3x8 = 3x4 || 4x6 || 2x4 || 3x5 = 15-7-11 [4:0-2-8,0-3-0], [6:0-5-4,0-2-4], [9:0-3-0,0-2-0], [12:0-2-14,0-2-0], [17:0-2-12,0-2-4], [23:0-6-0,0-4-0] Plate Offsets (X,Y)-LOADING (psf) SPACING-2-0-0 CSI DEFI (loc) I/defl L/d **PLATES** GRIP in TCLL 20.0 Plate Grip DOL 1.25 TC 0.65 Vert(LL) -0.11 21-22 >999 240 MT20 244/190 TCDL 10 0 Lumber DOL 1.25 BC 0.78 Vert(CT) -0.20 21-22 >999 180 BCLL 0.0 Rep Stress Incr YES WB 0.40 Horz(CT) 0.12 14 n/a n/a BCDI 10.0 Code FBC2020/TPI2014 Matrix-AS Weight: 368 lb FT = 20% BRACING-TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied, except end verticals, and

BOT CHORD

WEBS

LUMBER-

BOT CHORD 2x4 SP No.2

2x4 SP No.2 WEBS

WEDGE

Left: 2x4 SP No.2

REACTIONS. (size) 2=0-3-8, 24=0-5-8, 14=0-5-8

Max Horz 2=248(LC 11)

Max Uplift 2=-132(LC 12), 24=-149(LC 12), 14=-18(LC 12) Max Grav 2=652(LC 23), 24=2008(LC 17), 14=1443(LC 18)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD

2-3=-761/303, 3-4=-419/203, 5-6=-333/107, 6-7=-848/103, 7-8=-848/103,

8-9=-1000/110, 9-10=-1377/133, 10-11=-1426/60, 11-12=-773/54, 12-14=-1540/17

2-26=-239/637, 25-26=-239/637, 23-24=-1961/287, 5-23=-1547/47, 20-21=0/1070,

19-20=0/1070, 16-17=-12/706, 15-16=-816/0, 11-16=-737/23

3-25=-399/189, 4-25=-230/325, 23-25=-70/380, 4-23=-422/261, 5-22=0/1144,

6-22=-917/18, 6-21=-26/1162, 7-21=-440/86, 8-21=-486/18, 8-20=0/396, 8-19=-277/0,

17-19=0/1063, 9-17=-48/511, 11-17=0/456, 12-15=0/1128

NOTES-

WEBS

BOT CHORD

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=44ft; eave=5ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 3-4-13, Interior(1) 3-4-13 to 15-7-11, Exterior(2R) 15-7-11 to 21-9-15, Interior(1) 21-9-15 to 34-0-11, Exterior(2R) 34-0-11 to 40-3-5, Interior(1) 40-3-5 to 45-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14 except (jt=lb) 2=132, 24=149.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

A THE TOTAL OF THE PARTY OF THE ENGIN ONAL Julius Lee PE No. 34869

2-0-0 oc purlins (4-9-4 max.): 6-9.

1 Row at midpt

1 Row at midpt

Rigid ceiling directly applied. Except:

5-23

6-22, 7-21, 8-21, 8-19, 9-19

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

March 28,2023

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not Design valid for use only with will execonnectors. This based only upon parameters shown, and is for an individual distinction of a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply Barry T30164927 BARRY A03 Piggyback Base 1 Job Reference (optional) Mayo Truss Company, Inc., Mayo, FL - 32066, 8.530 s Mar 9 2023 MiTek Industries, Inc. Mon Mar 27 14:45:36 2023 Page 1 ID:JsjMRXyynZ1Jac60bHxruRzrX5Y-aDI6uwsHh6KfAzZMbA9B8w4cg9XcjsKjYLSSaHzWiMT Scale = 1:80.3 5x7 = 3x4 = 1.5x4 II 5x5 = 5x5 = 8.00 12 4x6 / 7 9 8 30 31 10 5x5 / 3x5 > 11 33 34 4x6 > 3x5 / 29 12 18 4-2-3 6x8 = 19 17 3x4 = 3x4 > 20 16 15 14 21 3x4 = 5.00 12 35 24 23 22 5x12 = 6x6 = 3x4 = 2x4 || 1.5x4 II 4x8 = 3x4 || 4x6 || 15-7-11 Plate Offsets (X,Y)-[4:0-2-8,0-3-0], [6:0-5-4,0-2-4], [9:0-2-8,0-3-0], [10:0-2-12,0-2-0], [12:0-2-14,0-2-0], [16:0-3-0,0-2-4], [10:0-3-0,0LOADING (psf) SPACING-2-0-0 CSI. DEFL. (loc) I/defi L/d **PLATES** GRIP TCLL 20.0 Plate Grip DOL 1.25 TC 0.40 Vert(LL) -0.07 18 >999 240 MT20 244/190 TCDI 1.25 10 0 Lumber DOL BC 0.33 Vert(CT) -0.13 17-18 >999 180 BCLL 0.0 Rep Stress Incr YES WB 0.46 Horz(CT) 0.09 14 n/a n/a BCDL 10 0 Code FBC2020/TPI2014 Matrix-AS Weight: 347 lb FT = 20% BRACING-2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied, except end verticals, and **BOT CHORD** 2x4 SP No.2 2-0-0 oc purlins (5-5-15 max.): 6-10. 2x4 SP No.2 BOT CHORD Rigid ceiling directly applied. Except: WEDGE 1 Row at midpt 5-21 WEBS

1 Row at midpt

LUMBER-

TOP CHORD

WEBS

Left: 2x4 SP No.2

REACTIONS.

(size) 2=0-3-8, 22=0-5-8, 14=0-5-8

Max Horz 2=248(LC 11)

Max Uplift 2=-145(LC 12), 22=-129(LC 12), 14=-24(LC 12) Max Grav 2=353(LC 21), 22=2205(LC 1), 14=1119(LC 22)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD

2-3=-262/334, 3-4=0/317, 4-5=-51/662, 5-6=0/289, 6-7=-335/70, 7-8=-985/14,

8-9=-985/14, 9-10=-907/72, 10-11=-898/116, 11-12=-889/69, 12-14=-1069/52

2-24=-252/186, 23-24=-252/186, 21-22=-2162/270, 5-21=-1526/37, 20-21=-523/159,

19-20=-347/192, 18-19=0/377, 17-18=0/1004, 16-17=0/767, 15-16=0/674 3-23=-397/185, 4-23=-226/383, 4-21=-469/261, 5-20=0/1089, 6-20=-1183/0

6-19=0/1126, 7-19=-1093/1, 7-18=0/1038, 8-18=-300/61, 9-17=-335/13, 10-17=0/418,

11-15=-314/32, 12-15=0/764

NOTES-

WEBS

BOT CHORD

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=44ft; eave=5ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 3-4-13, Interior(1) 3-4-13 to 15-7-11, Exterior(2R) 15-7-11 to 21-10-6, Interior(1) 21-10-6 to 34-0-11, Exterior(2R) 34-0-11 to 40-3-5, Interior(1) 40-3-5 to 45-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14 except (jt=lb) 2=145, 22=129,
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

NO 34869

* NO 34869

* ORIO ON OLIVINIA minin Julius Lee PE No. 34869

6-20, 7-19, 10-16

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

March 28,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Paracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information. available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

18=-109(LC 12), 17=-274(LC 18)

Max Grav All reactions 250 lb or less at joint(s) 15, 16, 17 except 2=1898(LC 17),

18=2703(LC 18), 18=2420(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2789/17, 3-4=-2470/54, 4-5=-2028/108, 5-6=-1696/110, 6-7=-1696/110,

7-8=-1442/78, 8-9=-772/106, 11-13=-61/417, 13-15=-30/356 BOT CHORD

2-26=-47/2393, 25-26=-47/2393, 24-25=-21/2089, 23-24=0/1726, 22-23=0/1492,

21-22=0/1492, 20-21=0/354, 18-19=-303/122

3-25=-371/70, 4-25=0/476, 4-24=-630/55, 5-24=0/707, 5-23=-32/252, 6-23=-310/80, 23-27=0/547, 8-27=0/546, 22-29=0/259, 8-29=0/256, 8-28=-987/0, 21-28=-954/0,

21-30=0/994, 9-30=0/991, 21-31=0/701, 19-31=0/333, 9-19=-1586/0, 11-19=-41/1216,


11-18=-1479/28, 13-18=-381/119, 7-27=-311/53, 27-29=-321/52, 28-30=-360/49,

28-29=-323/51, 30-31=-366/48

WEBS

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=44ft; eave=5ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 3-4-13, Interior(1) 3-4-13 to 15-7-11, Exterior(2R) 15-7-11 to 21-9-15, Interior(1) 21-9-15 to 33-6-6, Exterior(2R) 33-6-6 to 39-9-1, Interior(1) 39-9-1 to 45-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 1.5x4 MT20 unless otherwise indicated.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 16 except Cor(itribed)5ff400ce12=109, 17=274.

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

March 28,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MIL-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Statistics (ARC) (Criteria, DSB-89 and BCSI Building Component Statistics) (Criteria, DSB-89 and BCSI Building Component Sta fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPH Qu Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Barry	
BARRY	A04GE	Piggyback Base Structural Gable COMMON I I Gal	ie I Gable	1		T30164928
				1.55	Job Reference (optional)	

Mayo Truss Company, Inc.,

Mayo, FL - 32066,

8.530 s Mar 9 2023 MiTek Industries, Inc. Mon Mar 27 14:45:40 2023 Page 2 ID:JsjMRXyynZ1Jac60bHxruRzrX5Y-S?XdkHvnlLr5fas7q?D7lmFGmoAfagJTzQgj2zWiMP

NOTES-

- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Date:

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEX REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information

available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20501

LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	I/defl	L/d	PLATES	GRIP
CLL	20.0	Plate Grip DOL	1.25	TC	0.16	Vert(LL)	-0.00	41	>999	240	MT20	244/190
CDL	10.0	Lumber DOL	1.25	BC	0.13	Vert(CT)	-0.00	41	>999	180	E21/03/75/310	
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.16	Horz(CT)	0.01	29	n/a	n/a		
BCDL	10.0	Code FBC2020/Ti	PI2014	Matri	x-AS	0.0000000000000000000000000000000000000					Weight: 335 lb	FT = 20%

TOP CHORD

BOT CHORD

WEBS

JOINTS

Structural wood sheathing directly applied, except

18-35

2-0-0 oc purlins (6-0-0 max.): 12-16.

Rigid ceiling directly applied.

1 Row at midpt

1 Brace at Jt(s): 48

TOP CHORD

2x4 SP No.2

BOT CHORD 2x4 SP No.2 2x4 SP No.2 WEBS

2x4 SP No.2 OTHERS

WEDGE

Left: 2x4 SP No.2, Right: 2x4 SP No.2

REACTIONS. All bearings 36-5-8. Max Horz 2=225(LC 11) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 2, 29, 32, 38, 41, 42, 43, 44, 45,

46, 47, 35, 34, 33, 31, 30

Max Grav All reactions 250 lb or less at joint(s) 2, 32, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 37, 36, 35, 34, 33, 31, 30 except 29=707(LC 1), 29=707(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

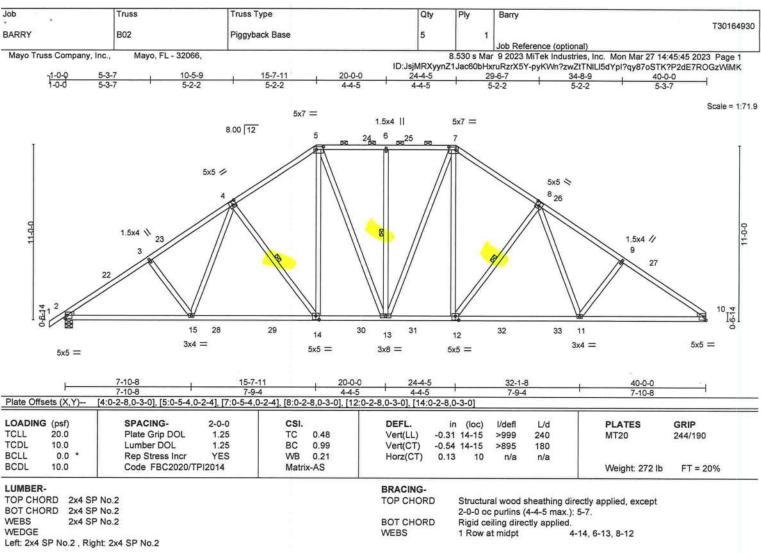
TOP CHORD 23-25=-167/391, 25-26=-169/342

BOT CHORD 31-32=-285/183, 30-31=-285/183, 29-30=-285/183, 28-29=-285/183, 26-28=-286/188

23-29=-423/140, 32-48=-92/313, 48-49=-93/317, 23-49=-79/275

WEBS NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=40ft; eave=5ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 3-0-0, Interior(1) 3-0-0 to 16-2-0, Exterior(2R) 16-2-0 to 22-0-0, Interior(1) 22-0-0 to 23-10-0, Exterior(2R) 23-10-0 to 29-5-14, Interior(1) 29-5-14 to 41-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For stude exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) Provide adequate drainage to prevent water ponding.
- 6) All plates are 1.5x4 MT20 unless otherwise indicated.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 29, 32, 38, 41, 42, 43, 44, 45, 46, 47, 35, 34, 33, 31, 30.
- 11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


14-38, 13-39, 11-40, 10-41, 15-37, 17-36,

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

March 28,2023

BOT CHORD

WEBS

REACTIONS.

(size) 2=0-5-8, 10=Mechanical

Max Horz 2=217(LC 11) Max Uplift 2=-24(LC 12)

Max Grav 2=1920(LC 17), 10=1864(LC 18)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-2828/40, 3-4=-2690/68, 4-5=-2060/120, 5-6=-1745/125, 6-7=-1745/125, TOP CHORD

7-8=-2061/120, 8-9=-2696/70, 9-10=-2834/42

BOT CHORD 2-15=0/2425, 14-15=0/2097, 13-14=0/1753, 12-13=0/1696, 11-12=0/1961, 10-11=0/2276 WEBS 4-15=0/559, 4-14=-582/70, 5-14=-0/679, 5-13=-23/341, 6-13=-258/51, 7-13=-23/340,

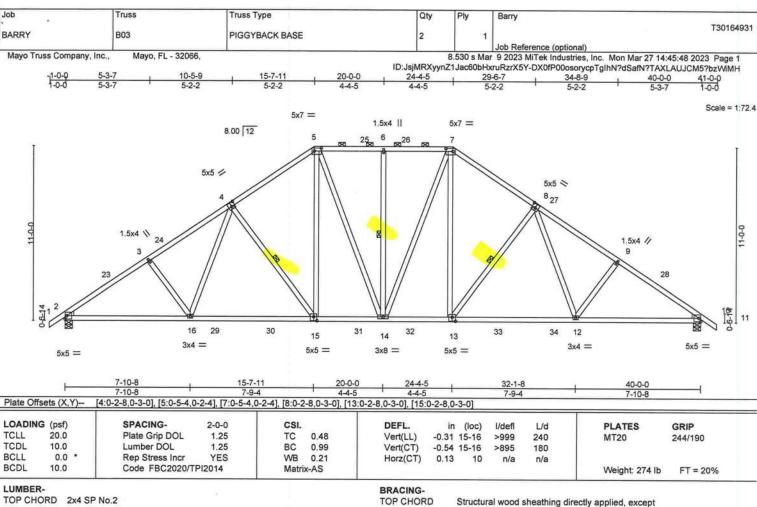
7-12=-1/680, 8-12=-584/71, 8-11=0/565, 9-11=-251/108

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=40ft; eave=5ft; Cat, II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 3-0-0, Interior(1) 3-0-0 to 15-7-11, Exterior(2R) 15-7-11 to 21-3-9, Interior(1) 21-3-9 to 24-4-5, Exterior(2R) 24-4-5 to 30-0-3, Interior(1) 30-0-3 to 40-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate arip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:


March 28,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MIN-14/3 (av 2/18/2020 Design valid for use only with MITEK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/PHI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BOT CHORD

WEBS

TOP CHORD **BOT CHORD** 2x4 SP No.2 2x4 SP No.2

WEBS WEDGE

Left: 2x4 SP No.2, Right: 2x4 SP No.2

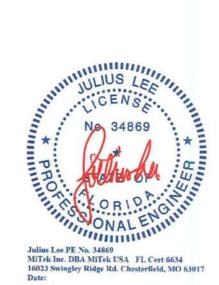
REACTIONS. (size) 2=0-5-8, 10=0-5-8 Max Horz 2=-222(LC 10)

Max Uplift 2=-24(LC 12), 10=-24(LC 12) Max Grav 2=1920(LC 17), 10=1920(LC 18)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD

2-3=-2827/39, 3-4=-2689/67, 4-5=-2059/119, 5-6=-1744/124, 6-7=-1744/124,

7-8=-2059/119, 8-9=-2690/67, 9-10=-2828/39


BOT CHORD 2-16=0/2431, 15-16=0/2102, 14-15=0/1758, 13-14=0/1701, 12-13=0/1965, 10-12=0/2265 WEBS

4-16=0/559, 4-15=-582/70, 5-15=-0/679, 5-14=-23/341, 6-14=-258/51, 7-14=-23/341,

7-13=-0/679, 8-13=-582/70, 8-12=0/559

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=40ft; eave=5ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 3-0-0, Interior(1) 3-0-0 to 15-7-11, Exterior(2R) 15-7-11 to 21-3-9, Interior(1) 21-3-9 to 24-4-5, Exterior(2R) 24-4-5 to 30-0-3, Interior(1) 30-0-3 to 41-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

2-0-0 oc purlins (4-4-5 max.): 5-7.

4-15, 6-14, 8-13

Rigid ceiling directly applied.

1 Row at midpt

March 28,2023

🗥 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSITPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information

available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type		Qty	Ply	Barry	
		377		land of	20000	Janny	T30164932
BARRY	C01GE	Common Suppo	rted Gable	1	1	Job Reference (optiona	D.
Mayo Truss Company, Inc.	Mayo, FL - 32066,			V SETON PROSEZ	8.530 s Ma		s, Inc. Mon Mar 27 14:45:51 2023 Page 1
	100	40.00		ID:JsjMRXyyn	Z1Jac60bH		KTGCFzpwiF5CGoCkmkjAw?AblcwzWiME
	1-0-0 1-0-0	16-0-0 16-0-0		-1		32-0-0 16-0-0	
	3. 4.14)					10-0-0	
			8.00 12	4x4 =			Scale = 1:69.0
			3x4 / 11 10 9	12	3x4 \\ 3 14		RE NOT DESIGNED FOR LATERAL LY SUPPORTS (BEARINGS).
-10		7				16	
10:10:10	3x4 // 3x12	6		8	1	8 18	3x4 №
	3 4 9						20 3x12 21 22
6-13	1 2		8 8		8		F. F
_	4x6 = 3x8 37 36	35 34	33 32 31	30 29 5x5 =	28	27 26 25	4x6 = 24 23 3x8
				22.0.0			
				32-0-0 32-0-0			
Plate Offsets (X,Y) [2:0	0-3-8,Edge], [22:0-3-8,Edge], [30:0-2-8,0-3-0]	With the second				
LOADING (psf)	SPACING- 2-	0-0	SI.	DEFL.	in (loc)	I/defi L/d	PLATES GRIP
TCLL 20.0		10.70	C 0.09	Vert(LL) -0.0		n/r 120	MT20 244/190
TCDL 10.0			C 0.03	Vert(CT) -0.0		n/r 120	
BCLL 0.0 *			VB 0.13	Horz(CT) 0.0	01 22	n/a n/a	
BCDL 10.0	Code FBC2020/TPI20	14 N	latrix-S				Weight: 238 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP No BOT CHORD 2x4 SP No			1.7	BRACING- TOP CHORD BOT CHORD		al wood sheathing directling directly applied or	etty applied or 6-0-0 oc purlins.

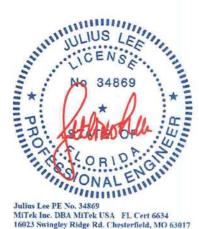
WEBS

1 Row at midpt

OTHERS 2x4 SP No.2 WEDGE

Left: 2x4 SP No.2, Right: 2x4 SP No.2

REACTIONS. All bearings 32-0-0.


(lb) - Max Horz 2=206(LC 11)

Max Uplift All uplift 100 lb or less at joint(s) 31, 32, 33, 34, 35, 36, 37, 29, 28, 27, 26, 25, 24, 23, 2, 22 Max Grav All reactions 250 lb or less at joint(s) 30, 31, 32, 33, 34, 35, 36, 37, 29, 28, 27, 26, 25, 24, 23,

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=32ft; eave=2ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Corner(3E) -1-0-0 to 1-11-13, Exterior(2N) 1-11-13 to 16-0-0, Corner(3R) 16-0-0 to 19-2-6, Exterior(2N) 19-2-6 to 31-9-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) All plates are 1.5x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 31, 32, 33, 34, 35, 36, 37, 29, 28, 27, 26, 25, 24, 23, 2, 22.

12-30, 11-31, 13-29

16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

March 28,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Barry T30164933 BARRY C02 Roof Special 1 Job Reference (optional) Mayo, FL - 32066, Mayo Truss Company, Inc., 8.530 s Mar 9 2023 MiTek Industries, Inc. Mon Mar 27 14:45:54 2023 Page 1 ID:JsjMRXyynZ1Jac60bHxruRzrX5Y-2hNwg44ZSeb6KkxqfxTPtjqh1QZuxz6Nh8pPCEzWMB 32-0-0 25-10-3 30-0-0 6x8 = Scale = 1:74.7 8.00 12 5 1.5x4 II 6 VERTICAL LEGS ARE NOT DESIGNED FOR LATERAL LOADS IMPOSED BY SUPPORTS (BEARINGS) 5x5 4 25 5x5 > 3x5 > 3x5 / 1.5x3 = 8x8 = 10x10 = 10 14 12 13 6x8 = 26 3x4 = 19 18 17 16 4x4 = 5x5 = 3x4 = 1.5x4 || 4x6 || 4x8 = 17-6-8 1-6-8 30-0-0 5-4-14 [4:0-2-8,0-3-0], [7:0-2-8,0-3-0], [9:0-5-8,Edge], [10:Edge,0-6-0], [15:0-2-0,0-3-0], [19:0-2-8,0-3-0], [20:0-1-4,0-1-0] Plate Offsets (X,Y)--LOADING (psf) SPACING-CSI. DEFL in (loc) I/def L/d PLATES GRIP TCLL 20.0 Plate Grip DOL 1.25 TC 0.41 -0.15 14-15 Vert(LL) >999 240 MT20 244/190 TCDL 10.0 Lumber DOL 1.25 BC 0.78 Vert(CT) -0.28 14-15 >999 180 BCLL 0.0 Rep Stress Incr WB Horz(CT) YES 0.63 0.21 20 n/a n/a BCDL 10.0 Code FBC2020/TPI2014 Matrix-AS Weight: 234 lb FT = 20% LUMBER-BRACING-TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied, except end verticals. 2x4 SP No.2 *Except* BOT CHORD **BOT CHORD** Rigid ceiling directly applied. Except: 11-15: 2x4 SP No.1 1 Row at midpt 6-15 WEBS 2x4 SP No.2 WEBS 1 Row at midpt 4-17, 5-17 WEDGE Left: 2x4 SP No.2 (size) 2=0-5-8, 20=Mechanical

REACTIONS.

Max Horz 2=236(LC 11) Max Uplift 2=-24(LC 12)

Max Grav 2=1478(LC 17), 20=1397(LC 18)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD

2-3=-2082/76, 3-4=-1731/106, 4-5=-1312/156, 5-6=-1450/179, 6-7=-1538/143,

7-8=-1969/108, 8-9=-2523/81, 9-10=-464/22, 11-20=-1397/26

BOT CHORD 2-19=-78/1813, 18-19=-78/1813, 17-18=-8/1471, 14-15=-9/1606, 13-14=-63/2084, 12-13=-119/3441, 11-12=-107/3398

3-18=-418/86, 4-18=0/479, 4-17=-624/72, 15-17=0/1299, 5-15=-48/1324, 7-15=-657/59,

7-14=0/584, 8-14=-699/70, 8-13=0/434, 9-13=-1400/56, 9-11=-3130/51

NOTES-

WEBS

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=32ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-2-6, Interior(1) 2-2-6 to 16-0-0, Exterior(2R) 16-0-0 to 19-2-6, Interior(1) 19-2-6 to 31-10-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Nr. Nr. 34869 ENG ONAL Julius Lee PF No. 34869

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

March 28,2023

🗥 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply Barry T30164934 BARRY C03 Roof Special Job Reference (optional) Mayo Truss Company, Inc., Mayo, FL - 32066, 8.530 s Mar 9 2023 MiTek Industries, Inc. Mon Mar 27 14:45:59 2023 Page 1 ID:JsjMRXyynZ1Jac60bHxruRzrX5Y-OfApjn8iGBEOQVpnRV3aanXYmRJvcB36rQXAuSzWiM6 28-0-0 32-0-0 5-2-12 Scale = 1:74 7 6x8 = 8.00 12 5 VERTICAL LEGS ARE NOT DESIGNED FOR LATERAL LOADS IMPOSED BY SUPPORTS (BEARINGS). 1.5x4 || 6 5x5 / 3x5 > 3x5 / 1.5x3 = 2x4 || 4x8 = 12 11 6x8 = 18 25 3x4 = 17 16 15 14 1.5x4 || 4x6 = 5x5 = 3x4 = 1.5x4 || 4x6 || 4x8 = 10-8-7 16-0-0 5-4-14 Plate Offsets (X,Y)--[4:0-2-8,0-3-0], [8:0-5-12,0-2-0], [13:0-2-0,0-3-0], [17:0-2-8,0-3-0], [18:0-1-4,0-1-0] LOADING (psf) SPACING-2-0-0 CSI. DEFL. in (loc) I/def L/d PLATES GRIP TCLL 20.0 Plate Grip DOL 1.25 TC 0.41 Vert(LL) -0.14 12-13 >999 240 MT20 244/190 TCDL 10.0 Lumber DOL 1.25 BC 0.66 Vert(CT) -0.26 12-13 >999 180 BCLL 0.0 Rep Stress Incr YES WB 0.78 Horz(CT) 0.15 18 n/a n/a BCDL 10.0 Code FBC2020/TPI2014 Matrix-AS Weight: 230 lb FT = 20% LUMBER-BRACING-TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied, except end verticals. BOT CHORD 2x4 SP No.2 **BOT CHORD** Rigid ceiling directly applied. Except: 2x4 SP No.2 WEBS 1 Row at midpt 6-13 WEDGE WEBS 1 Row at midpt 4-15, 5-15 Left: 2x4 SP No.2 (size) 2=0-5-8, 18=Mechanical Max Horz 2=251(LC 11) Max Uplift 2=-24(LC 12) Max Grav 2=1480(LC 17), 18=1383(LC 18)

REACTIONS.

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2085/77, 3-4=-1733/107, 4-5=-1311/158, 5-6=-1451/179, 6-7=-1587/140,

7-8=-2112/87, 10-18=-1383/30 BOT CHORD

2-17=-132/1813, 16-17=-132/1813, 15-16=-63/1471, 12-13=-83/1740, 11-12=-111/2429,

10-11=-106/2438

3-16=-418/86, 4-16=0/479, 4-15=-623/72, 13-15=0/1321, 5-13=-74/1327, 7-13=-748/75,

7-12=0/497, 8-12=-785/50, 8-10=-2656/62

NOTES-

WEBS

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=32ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-2-6, Interior(1) 2-2-6 to 16-0-0, Exterior(2R) 16-0-0 to 19-2-6, Interior(1) 19-2-6 to 31-10-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

March 28,2023

🗥 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MITe&e connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

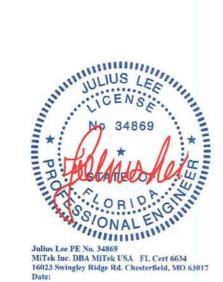
ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Truss Type Job Truss Qty Ply Barry T30164935 BARRY C04 Roof Special 1 Job Reference (optional) Mayo Truss Company, Inc., Mayo, FL - 32066, 8.530 s Mar 9 2023 MiTek Industries, Inc. Mon Mar 27 14:46:01 2023 Page 1 ID:JsjMRXyynZ1Jac60bHxruRzrX5Y-L1IZ8TAyooU6gpzAZw52fCct7E?E47FPlk0HyLzWiM4 26-0-0 32-0-0 4-2-12 Scale = 1:74 7 6x8 = 8.00 12 5 VERTICAL LEGS ARE NOT DESIGNED FOR LATERAL 1.5x4 || LOADS IMPOSED BY SUPPORTS (BEARINGS) 6 5x5 / 23 22 3x5 > 1.5x3 = 3x4 || 4x12 = 3x5 / 9 4-6-14 100 12 11 6x8 = 18 25 17 16 15 14 3x4 = 1.5x4 || 4x6 = 5x5 = 3x4 = 1.5x4 || 4x6 || 4x8 = 32-0-0 5-4-14 Plate Offsets (X,Y)-[4:0-2-8,0-3-0], [13:0-2-0,0-3-0], [17:0-2-8,0-3-0], [18:0-1-4,0-1-0] LOADING (psf) SPACING-2-0-0 CSI. DEFL in (loc) I/defl L/d **PLATES** GRIP TCLL 20.0 Plate Grip DOL 1.25 TC 0.48 Vert(LL) -0.12 12-13 >999 240 MT20 244/190 TCDL 10.0 Lumber DOL 1.25 BC 0.60 Vert(CT) -0.23 12-13 >999 180 BCLL 0.0 Rep Stress Incr YES WB 0.67 Horz(CT) 0.14 18 n/a n/a BCDL 10.0 Code FBC2020/TPI2014 Matrix-AS Weight: 237 lb FT = 20%LUMBER-BRACING-TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied, except end verticals. BOT CHORD 2x4 SP No.2 **BOT CHORD** Rigid ceiling directly applied. Except: 2x4 SP No.2 WEBS 1 Row at midpt WEDGE WEBS 1 Row at midpt 4-15, 5-15, 8-10 Left: 2x4 SP No.2 REACTIONS. (size) 2=0-5-8, 18=Mechanical Max Horz 2=266(LC 11) Max Uplift 2=-23(LC 12) Max Grav 2=1482(LC 17), 18=1387(LC 17) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-2089/79, 3-4=-1737/109, 4-5=-1309/160, 5-6=-1436/175, 6-7=-1569/137,

BOT CHORD

7-8=-1987/94, 10-18=-1387/37

2-17=-183/1814, 16-17=-183/1814, 15-16=-114/1472, 12-13=-119/1641, 11-12=-124/2073, 10-11=-121/2081


3-16=-417/87, 4-16=0/479, 4-15=-623/72, 13-15=-55/1304, 5-13=-90/1291,

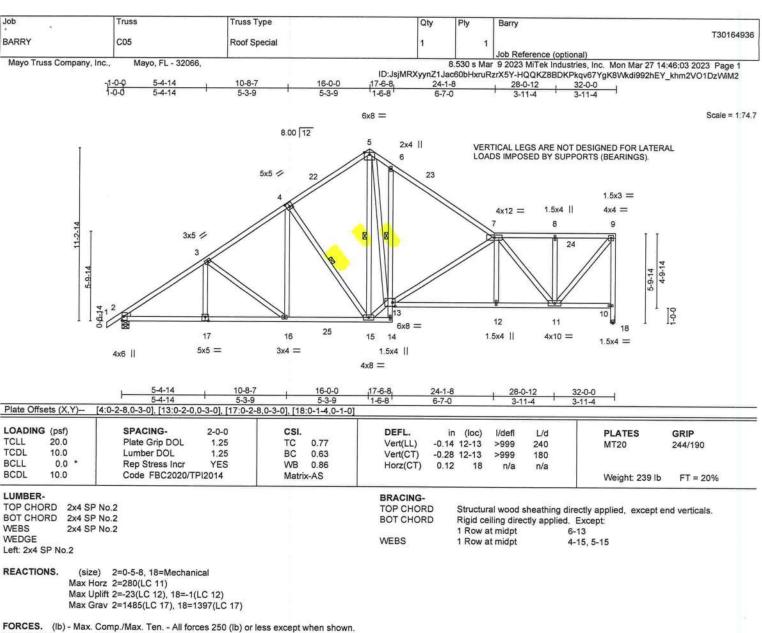
7-13=-695/75, 7-12=0/532, 8-12=-597/49, 8-10=-2301/67

NOTES-

WEBS

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=32ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-2-6, Interior(1) 2-2-6 to 16-0-0, Exterior(2R) 16-0-0 to 19-2-6, Interior(1) 19-2-6 to 31-10-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

March 28,2023



🗥 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MITEK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TP/1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TOP CHORD 2-3=-2094/82, 3-4=-1742/112, 4-5=-1307/162, 5-6=-1505/201, 6-7=-1625/118,

7-8=-1047/79, 8-9=-1047/79, 10-18=-1397/46, 9-10=-1322/62

BOT CHORD 2-17=-227/1816, 16-17=-227/1816, 15-16=-157/1474, 6-13=-297/136, 12-13=-149/1875,

11-12=-147/1882

3-16=-417/87, 4-16=0/477, 4-15=-623/72, 13-15=-73/1385, 5-13=-125/1415,

7-13=-751/78, 7-11=-1245/55, 9-11=-58/1608

NOTES-

WEBS

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=32ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-2-6, Interior(1) 2-2-6 to 16-0-0, Exterior(2R) 16-0-0 to 19-2-6, Interior(1) 19-2-6 to 31-10-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 18.

9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

March 28,2023

🗥 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information

available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply Barry T30164937 BARRY C06 Roof Special 1 Job Reference (optional) Mayo Truss Company, Inc., Mayo, FL - 32066, 8.530 s Mar 9 2023 MiTek Industries, Inc. Mon Mar 27 14:46:05 2023 Page 1 ID:JsjMRXyynZ1Jac60bHxruRzrX5Y-DpY4zqDTs1_Y9QGxoIA_p2nZMsNA0w5_DL_U56zWiM0 21-10-0 29-0-12 32-0-0 4-3-8 6x8 = Scale = 1:74.7 8.00 12 5 VERTICAL LEGS ARE NOT DESIGNED FOR LATERAL LOADS IMPOSED BY SUPPORTS (BEARINGS). 1.5x4 || 6 5x5 / 25 24 3x5 > 1.5x3 = 4x12 = 1.5x44x4 = 3x5 / 10 4-5-14 100 12 14 13 6x8 = 20 26 4x10 = 19 18 17 16 3x4 = 1.5x4 || 1.5x4 = 5x5 = 3x4 = 1.5x4 II 4x6 || 4x8 = 21-10-0 29-0-12 5-4-14 5-3-9 Plate Offsets (X,Y)--[4:0-2-8,0-3-0], [15:0-2-0,0-3-0], [19:0-2-8,0-3-0], [20:0-1-4,0-1-0] LOADING (psf) SPACING-2-0-0 CSI. DEFL. (loc) I/defl L/d **PLATES** GRIP TCLL 20.0 Plate Grip DOL 1.25 TC 0.47 Vert(LL) -0.11 14-15 >999 240 MT20 244/190 TCDL 10.0 Lumber DOL 1.25 BC 0.60 Vert(CT) -0.22 14-15 >999 180 BCLL 0.0 Rep Stress Incr 0.68 YES WB Horz(CT) 0.12 20 n/a n/a BCDL 10.0 Code FBC2020/TPI2014 Matrix-AS Weight: 244 lb FT = 20%LUMBER-BRACING-TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied, except end verticals. 2x4 SP No.2 BOT CHORD Rigid ceiling directly applied. Except: 2x4 SP No.2 WEBS 1 Row at midpt 6-15 WEBS 1 Row at midpt 4-17, 5-17 Left: 2x4 SP No.2 REACTIONS. (size) 2=0-5-8, 20=Mechanical Max Horz 2=265(LC 11) Max Uplift 2=-23(LC 12) Max Grav 2=1482(LC 17), 20=1387(LC 17)

BOT CHORD

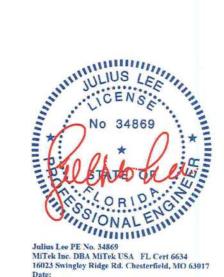
WEDGE

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD

2-3=-2088/79, 3-4=-1737/109, 4-5=-1309/159, 5-6=-1435/175, 6-7=-1571/138,

7-8=-1980/91, 8-9=-1125/58, 9-10=-1125/58, 11-20=-1387/37, 10-11=-1328/49

BOT CHORD 2-19=-180/1814, 18-19=-180/1814, 17-18=-111/1472, 14-15=-116/1650, 13-14=-124/2066,


12-13=-122/2072 WEBS

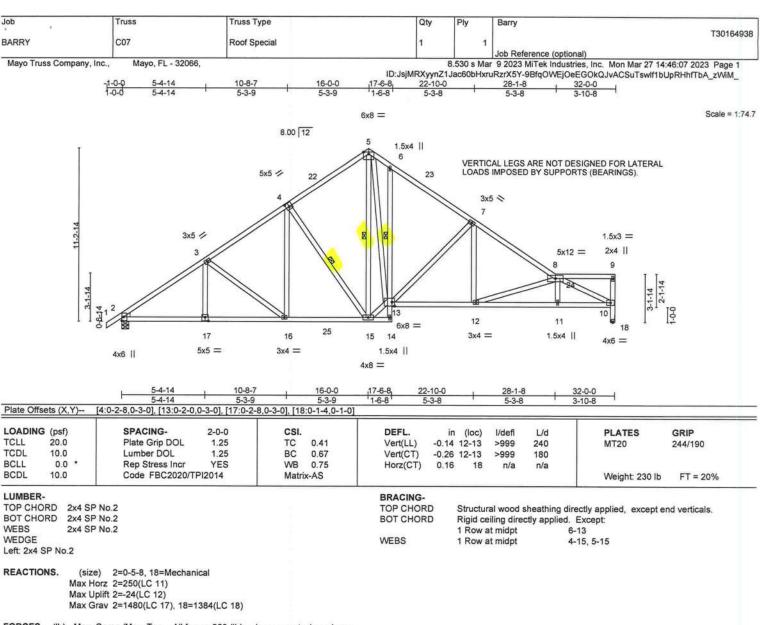
3-18=-417/87, 4-18=0/479, 4-17=-623/72, 15-17=-54/1303, 5-15=-89/1288,

7-15=-704/74, 7-14=0/523, 8-14=-571/51, 8-12=-1389/44, 10-12=-49/1671

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=32ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-2-6, Interior(1) 2-2-6 to 16-0-0, Exterior(2R) 16-0-0 to 19-2-6, Interior(1) 19-2-6 to 31-10-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

March 28,2023


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE

warking - Verify design parameters and READ NOTES ON THIS AND INCLUDED WITE REPORT OF THE NAME OF THE PROPERTY a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information

available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2084/77, 3-4=-1733/107, 4-5=-1311/157, 5-6=-1452/179, 6-7=-1589/140,

7-8=-2122/87, 10-18=-1384/30

BOT CHORD 2-17=-129/1813, 16-17=-129/1813, 15-16=-60/1471, 12-13=-81/1747, 11-12=-111/2463,

10-11=-106/2472

3-16=-418/86, 4-16=0/479, 4-15=-623/72, 13-15=0/1322, 5-13=-72/1330, 7-13=-752/75,

7-12=0/496, 8-12=-810/50, 8-10=-2689/62

NOTES-

WEBS

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=32ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-2-6, Interior(1) 2-2-6 to 16-0-0, Exterior(2R) 16-0-0 to 19-2-6, Interior(1) 19-2-6 to 31-10-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

4) Provide adequate drainage to prevent water ponding.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads,
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2.

9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

No No 34869 NG ONAL Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

March 28,2023

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE

Design valid for use only with MITEK® connectors. This design is based only upon parameters shown, and is for an individual building component, not

Design valid for use only with Mil lews connectors. This design is based only upon parameters shown, and is for an individual cultifung component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPH** Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Type Truss Qty Ply Barry T30164939 BARRY C08 Roof Special Job Reference (optional) Mayo Truss Company, Inc., Mayo, FL - 32066, 8.530 s Mar 9 2023 MiTek Industries, Inc. Mon Mar 27 14:46:09 2023 Page 1 ID:JsjMRXyynZ1Jac60bHxruRzrX5Y-6anbpCG_vFUzd1ai1bFwzuxFoTk6ylpa8zyiDtzWiLy 32-0-0 25-11-3 30-1-8 6x8 = Scale = 1:74.7 8.00 12 5 1.5x4 II VERTICAL LEGS ARE NOT DESIGNED FOR LATERAL 6 LOADS IMPOSED BY SUPPORTS (BEARINGS) 5x5 4 25 5x5 > 3x5 < 3x5 / 1.5x3 = 7x8 = 8x8 = 10 12 14 13 6x8 = 26 3x4 = 4x4 = 19 18 17 16 5x5 = 3x4 = 1.5x4 || 4x6 || 4x8 = 17-6-8 25-11-3 32-0-0 5-4-14 Plate Offsets (X,Y)--[4:0-2-8,0-3-0], [7:0-2-8,0-3-0], [9:0-2-0,0-5-0], [10:Edge,0-5-0], [15:0-2-0,0-3-0], [19:0-2-8,0-3-0], [20:0-1-4,0-1-0] LOADING (psf) SPACING-2-0-0 CSI. DEFL. (loc) I/def PLATES GRIP TCLL 20.0 Plate Grip DOL 1.25 TC 0.44 Vert(LL) -0.15 14-15 >999 240 MT20 244/190 TCDL 10.0 Lumber DOL 1.25 BC 0.60 Vert(CT) -0.28 14-15 >999 180 BCLL WB 0.21 0.0 Rep Stress Incr YES 0.63 Horz(CT) 20 n/a n/a BCDL Code FBC2020/TPI2014 10.0 Matrix-AS Weight: 234 lb FT = 20% LUMBER-BRACING-TOP CHORD 2x4 SP No.2 *Except* TOP CHORD Structural wood sheathing directly applied, except end verticals. 9-10: 2x4 SP No.1 BOT CHORD Rigid ceiling directly applied. Except: BOT CHORD 2x4 SP No.2 *Except* 1 Row at midpt 6-15 11-15: 2x4 SP SS WEBS 1 Row at midpt 4-17, 5-17 WEBS 2x4 SP No.2 *Except* 10-20: 2x4 SP SS WEDGE Left: 2x4 SP No.2 REACTIONS. (size) 2=0-5-8, 20=Mechanical Max Horz 2=235(LC 11)

Max Uplift 2=-24(LC 12)

Max Grav 2=1478(LC 17), 20=1398(LC 18)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2082/76, 3-4=-1731/106, 4-5=-1312/156, 5-6=-1451/180, 6-7=-1538/143, 7-8=-1975/107, 8-9=-2544/81, 9-10=-652/29, 11-20=-1398/26

BOT CHORD 2-19=-74/1813, 18-19=-74/1813, 17-18=-5/1471, 14-15=-5/1609, 13-14=-61/2103,

12-13=-122/3564, 11-12=-107/3489

3-18=-418/86, 4-18=0/479, 4-17=-624/72, 15-17=0/1295, 5-15=-46/1324, 7-15=-657/59,

7-14=0/583, 8-14=-713/71, 8-13=0/437, 9-13=-1498/62, 9-12=-300/56, 9-11=-3006/45

NOTES-

WEBS

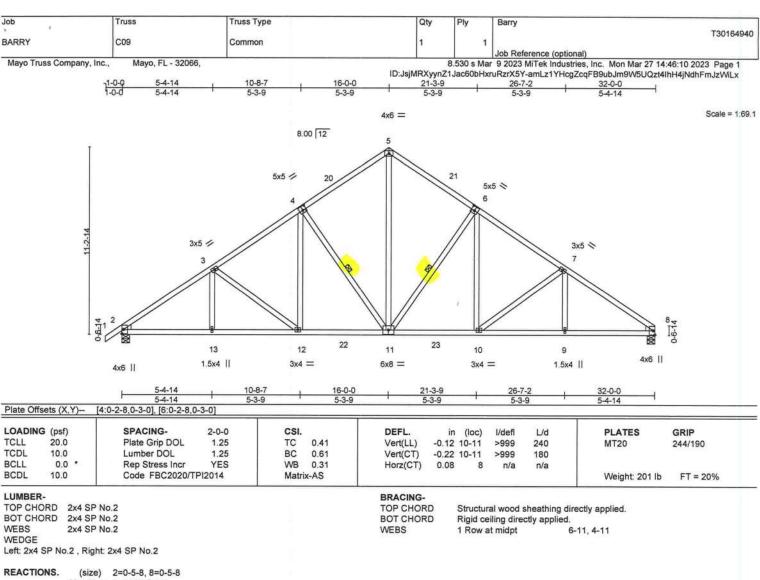
1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=32ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-2-6, Interior(1) 2-2-6 to 16-0-0, Exterior(2R) 16-0-0 to 19-2-6, Interior(1) 19-2-6 to 31-10-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

34869 ONAL

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

March 28,2023



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BOT CHORD

WEDGE

Max Horz 2=212(LC 11) Max Uplift 2=-25(LC 12)

Max Grav 2=1498(LC 17), 8=1442(LC 18)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2124/68, 3-4=-1768/106, 4-5=-1337/158, 5-6=-1336/159, 6-7=-1771/107,

7-8=-2131/72

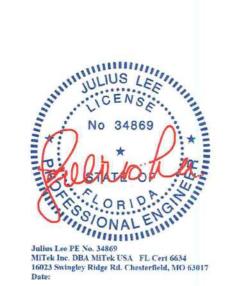
BOT CHORD 2-13=-5/1846, 12-13=-5/1846, 11-12=0/1503, 10-11=0/1424, 9-10=-2/1701, 8-9=-2/1701 WEBS

5-11=-56/1100, 6-11=-647/68, 6-10=0/506, 7-10=-427/81, 4-11=-645/68, 4-12=0/502,

3-12=-420/80

NOTES-

1) Unbalanced roof live loads have been considered for this design.


- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=32ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-2-6, Interior(1) 2-2-6 to 16-0-0, Exterior(2R) 16-0-0 to 19-2-6, Interior(1) 19-2-6 to 32-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

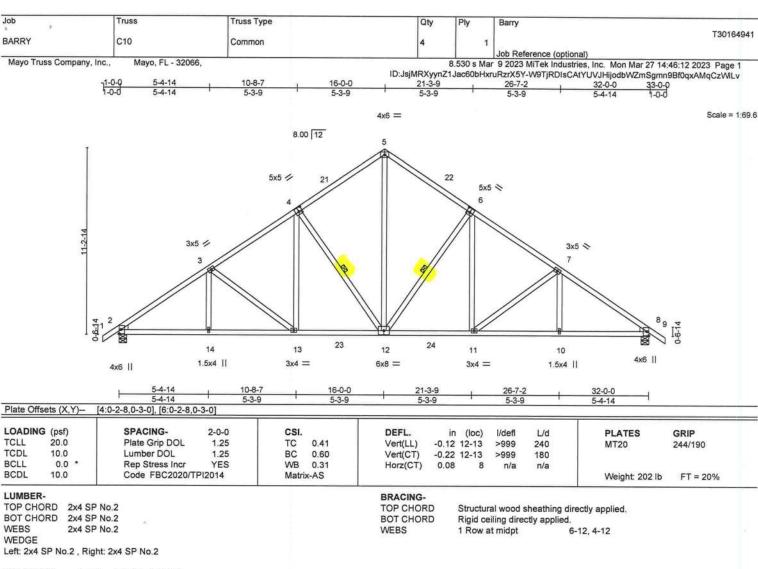
4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

March 28,2023


🗥 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE

Design valid for use only with MTReke connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSITPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information

available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TOP CHORD **BOT CHORD**

REACTIONS.

(size) 2=0-5-8, 8=0-5-8 Max Horz 2=-217(LC 10)

Max Uplift 2=-24(LC 12), 8=-24(LC 12) Max Grav 2=1498(LC 17), 8=1498(LC 18)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD

2-3=-2123/68, 3-4=-1767/106, 4-5=-1335/158, 5-6=-1335/158, 6-7=-1767/106,

7-8=-2123/68 BOT CHORD

2-14=0/1852, 13-14=0/1852, 12-13=0/1508, 11-12=0/1429, 10-11=0/1690, 8-10=0/1690

5-12=-55/1099, 6-12=-645/68, 6-11=0/503, 7-11=-420/80, 4-12=-645/68, 4-13=0/502,

3-13=-420/80

NOTES-

WEBS

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=32ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-2-6. Interior(1) 2-2-6 to 16-0-0. Exterior(2R) 16-0-0 to 19-2-6, Interior(1) 19-2-6 to 33-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads,

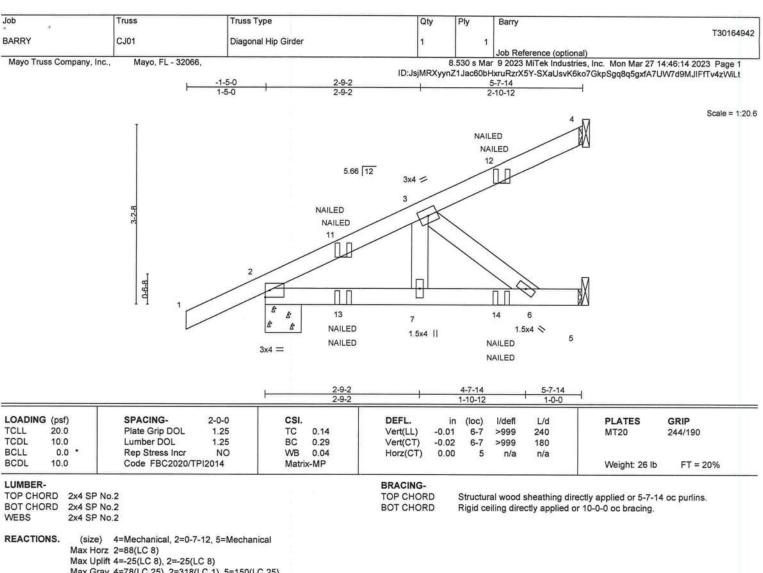
5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Date:

March 28,2023



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Max Grav 4=78(LC 25), 2=318(LC 1), 5=150(LC 25)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-296/0

WEBS 3-6=-277/22

NOTES-

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.
- 7) "NAILED" indicates 3-10d (0.148"x3") or 2-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)

Vert: 1-4=-60, 5-8=-20

Concentrated Loads (lb)

Vert: 13=7(F=4, B=4) 14=-18(F=-9, B=-9)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

March 28,2023

🗥 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information
available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

1633							
ob ,	Truss	Truss Type		Qty	Ply	Barry	T30164943
BARRY	D01GE	Common Su	pported Gable	1	1		130104943
			0.001			Job Reference (option	
Mayo Truss Company	, Inc., Mayo, FL - 32066	ò,		ID: IsiMPYw			ies, Inc. Mon Mar 27 14:46:16 2023 Page 1 GPN_z6c2xZtZmMkXVHGj53kclZ8azzzWiLr
	-1-0-0	8-0-0)	ID.JSJNIKAYY	IIZ I Jacob	16-0-0	
	1-0-0	8-0-0)			8-0-0	17-0-0
				4x4 =			Scale = 1:35.9
A. A	3x10 3	8.00 12	6	7	8	9	10 3x10 11 12 13 \frac{\text{P}_{\text{-}}}{\text{-}}
		***************************************	***************************************	***************************************	*********	***************************************	,,
	4x6 =	20 19	18	17	16	15	14 3x8 II 4x6 =
	3x8						
	1			16-0-0 16-0-0			
Plate Offsets (X,Y)-	[2:0-3-8,Edge], [12:0-3-8,	Edge]		10-0-0			
				######################################	020 020	000 00 0000	
LOADING (psf) TCLL 20.0	SPACING- Plate Grip DOL	2-0-0 1.25	CSI. TC 0.09	DEFL. Vert(LL) -0.	in (loc) 00 13	l/defl L/d n/r 120	PLATES GRIP MT20 244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.03		00 13	n/r 120 n/r 120	W120 244/190
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.04		00 12	n/a n/a	
BCDL 10.0	Code FBC2020/T		Matrix-S	10000000000000000000000000000000000000	NO. 11	STATE STATE	Weight: 94 lb FT = 20%
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S	SP No.2 SP No.2	'		BRACING- TOP CHORD BOT CHORD		ral wood sheathing directly applied o	ectly applied or 6-0-0 oc purlins. r 10-0-0 oc bracing.

2x4 SP No.2 **OTHERS**

WEDGE

Left: 2x4 SP No.2 , Right: 2x4 SP No.2

REACTIONS. All bearings 16-0-0.

(lb) - Max Horz 2=104(LC 11)

Max Uplift All uplift 100 lb or less at joint(s) 2, 12, 18, 19, 20, 16, 15, 14

Max Grav All reactions 250 lb or less at joint(s) 2, 12, 17, 18, 19, 20, 16, 15, 14

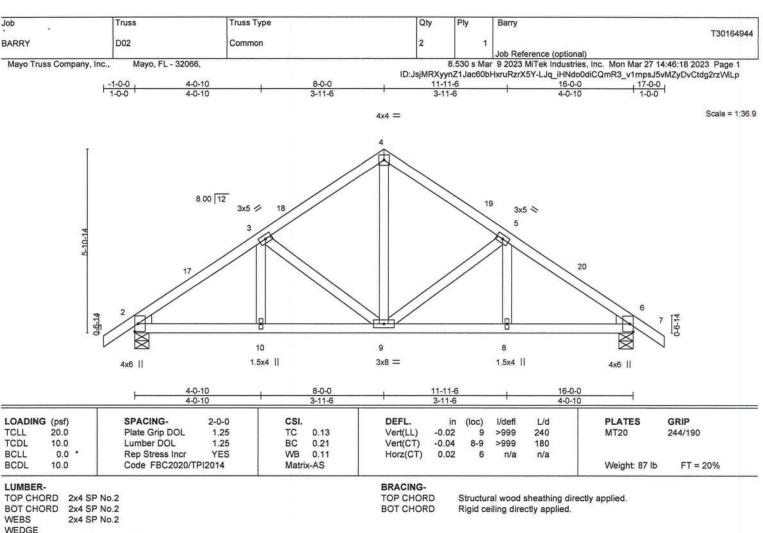
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Corner(3E) -1-0-0 to 1-11-13, Exterior(2N) 1-11-13 to 8-0-0, Corner(3R) 8-0-0 to 11-0-0, Exterior(2N) 11-0-0 to 17-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) All plates are 1.5x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 12, 18, 19, 20, 16, 15, 14.

16023 Swingley Ridge Rd. Chesterfield, MO 63017

March 28,2023



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20501

Left: 2x4 SP No.2 , Right: 2x4 SP No.2

REACTIONS.

(size) 2=0-5-8, 6=0-5-8 Max Horz 2=-111(LC 10)

Max Uplift 2=-24(LC 12), 6=-24(LC 12)

Max Grav 2=700(LC 1), 6=700(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

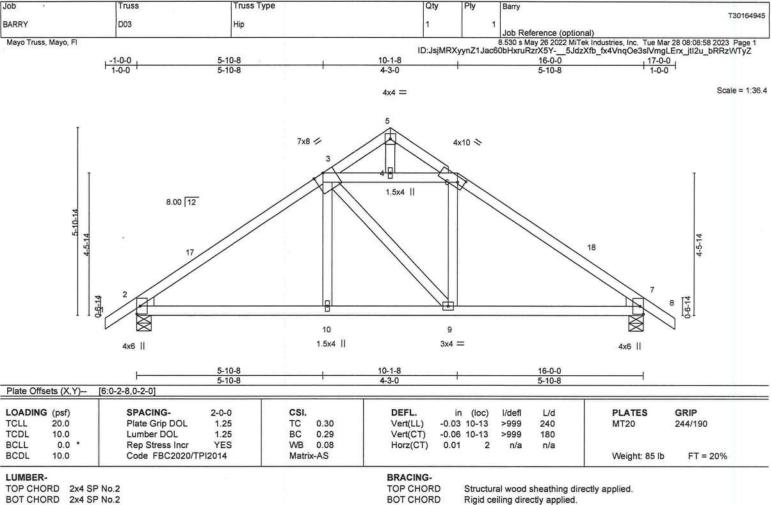
TOP CHORD 2-3=-862/60, 3-4=-631/92, 4-5=-631/92, 5-6=-862/60

2-10=0/668, 9-10=0/668, 8-9=0/668, 6-8=0/668 **BOT CHORD**

WEBS 4-9=-22/391, 5-9=-264/66, 3-9=-264/66

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 8-0-0, Exterior(2R) 8-0-0 to 11-0-0, Interior(1) 11-0-0 to 17-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.


March 28,2023

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not

Design value of use only with mine see Controllers. This design is based only ghort parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
ANSITPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BOT CHORD 2x4 SP No.2 2x4 SP No.2 WERS

WEDGE

Left: 2x4 SP No.2, Right: 2x4 SP No.2

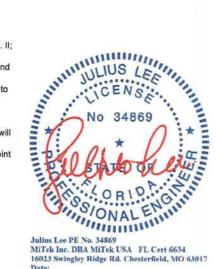
REACTIONS.

(size) 2=0-5-8, 7=0-5-8 Max Horz 2=-111(LC 10)

Max Uplift 2=-24(LC 12), 7=-24(LC 12) Max Grav 2=700(LC 1), 7=700(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-815/38, 3-4=-585/93, 4-6=-584/92, 6-7=-804/46


BOT CHORD 2-10=0/612, 9-10=0/609, 7-9=0/594

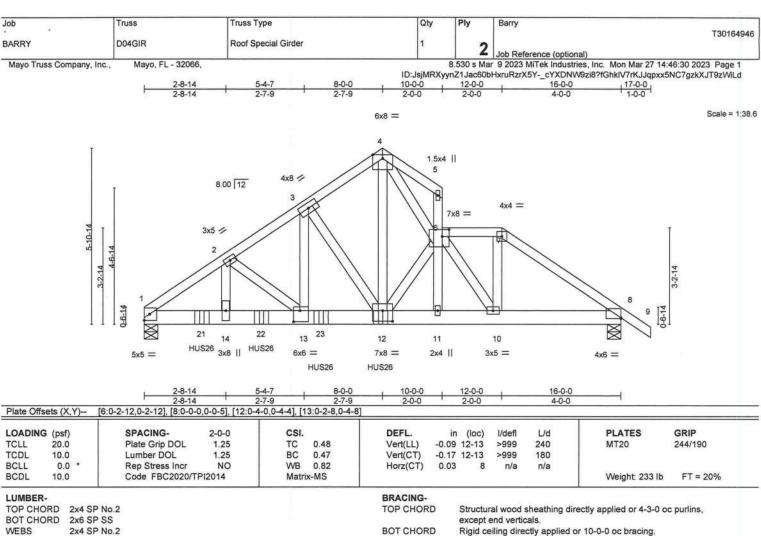
1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 8-0-0, Exterior(2E) 8-0-0 to 9-10-12, Interior(1) 9-10-12 to 17-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

Provide adequate drainage to prevent water ponding.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 24 lb uplift at joint 2 and 24 lb uplift at joint 7
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

March 28,2023



🗥 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TP/1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

REACTIONS.

BOT CHORD

(size) 1=0-5-8, 8=0-5-8 Max Horz 1=-90(LC 23)

Max Grav 1=5496(LC 2), 8=2928(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-8059/0, 2-3=-6520/0, 3-4=-4416/0, 4-5=-511/0, 5-6=-334/0, 6-7=-3857/0,

7-8=-4578/0

1-14=0/6643, 13-14=0/6643, 12-13=0/5410, 11-12=0/5307, 10-11=0/5414, 8-10=0/3742

2-14=0/1737, 2-13=-1554/0, 3-13=0/3528, 3-12=-3033/0, 4-12=0/7242, 4-6=-5696/0,

6-12=-3016/0, 6-10=-2718/0, 7-10=0/2265

NOTES-

WEBS

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-6-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 5) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 6) Provide adequate drainage to prevent water ponding.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Use MiTek HUS26 (With 14-16d nails into Girder & 6-16d nails into Truss) or equivalent spaced at 2-0-0 oc max. starting at 1-11-4 from the left end to 7-11-4 to connect truss(es) to back face of bottom chord.
- Fill all nail holes where hanger is in contact with lumber.
- 11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 135 lb down and 107 lb up at 12-0-0 on top chord, and 148 lb down at 11-11-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

Continued on page 2

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

March 28,2023

M WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE

Design valid for use only with MITE&® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component

Sets Linears to a wild before the control of the co fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Qu. Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Barry	
BARRY	D04GIR	Roof Special Girder	1	2	Job Reference (optional)	T30164946

Mayo Truss Company, Inc.,

Mayo, FL - 32066,

8.530 s Mar 9 2023 MiTek Industries, Inc. Mon Mar 27 14:46:30 2023 Page 2 ID:JsjMRXyynZ1Jac60bHxruRzrX5Y-_cYXDNW9zi8?fGhklV7rKJJqpxx5NC7gzkXJT9zWiLd

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

Vert: 1-4=-60, 4-5=-60, 6-7=-60, 7-9=-60, 15-18=-20

Concentrated Loads (lb)

Vert: 7=-40(B) 12=-1579(B) 10=-148(B) 21=-1579(B) 22=-1579(B) 23=-1579(B)

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

March 28,2023

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEX REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TP/1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information

available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

ob ,	Truss	Truss Type		Qty	Ply	Barry		T30164947
ARRY	E01GE	Common Supported	Gable	1	1	and the second s		130164947
Mayo Truss Company, Inc.,	Mayo, FL - 32066,				8 530 c Ma	Job Reference (optiona	l) s, Inc. Mon Mar 27 14:46:32 2	2023 Page 1
						HxruRzrX5Y-x?gHe3YPV	/KOjuar7tw9JPkOGSkjTrlkzR:	
H	1-0-0	8-0-0 8-0-0		-1	SYMMETRIC ACCRECATION	16-0-0 8-0-0	17-0-0	
	1-0-0	000					,,,,	
				4×4 =				Scale = 1;35.9
*				7				
			9	A				
			6	$\overline{}$	8			
		8.00 12	°//					
			1		18/			
	2	4 / 5				9 3x4		
5-6-10	3x	//				10		
2-6	3x10		11			THE WAY	3x10	
	3 /	/2/				1/0/	11	
							N	
	2 / F/ H						H 12	m
1990		181	181	191	- IBI		13	9-1
100		***************************************	***********	************	*****	***************************************	· .	0
,	4x6 = 20	19	18	17	16	15	14 3x8 4x6 =	
	3x8							
				5752,429,620				
	 			16-0-0 16-0-0				
Plate Offsets (X,Y) [2:0	0-3-8,Edge], [12:0-3-8,Edge	e]		1000				
CADING (6	SPACING- 2-	0-0 CSI.		DEFL.	in (loc)	I/defi L/d	PLATES GRIP	
OADING (psf)		0-0 CSI. .25 TC	0.09	Vert(LL) -0.		n/r 120	MT20 244/19	90
TCDL 10.0	Lumber DOL 1	.25 BC	0.03	Vert(CT) -0.	00 13	n/r 120		
BCLL 0.0 *		ES WB		Horz(CT) 0.	00 12	n/a n/a	146-1-64 00 Ib FT	- 220/
3CDL 10.0	Code FBC2020/TPI20	14 Matr	ix-S				Weight: 96 lb FT	= 20%
UMBER-				BRACING-				
TOP CHORD 2x4 SP No				TOP CHORD			ctly applied or 6-0-0 oc purli	ns.
OTHERS 2x4 SP No				BOT CHORD	Rigid ce	eiling directly applied or	10-0-0 oc bracing.	
ZITILING ZAT OF INC								

B

WEDGE

Left: 2x4 SP No.2, Right: 2x4 SP No.2

REACTIONS. All bearings 16-0-0.

(lb) - Max Horz 2=-104(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 2, 12, 18, 19, 20, 16, 15, 14

Max Grav All reactions 250 lb or less at joint(s) 2, 12, 17, 18, 19, 20, 16, 15, 14

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

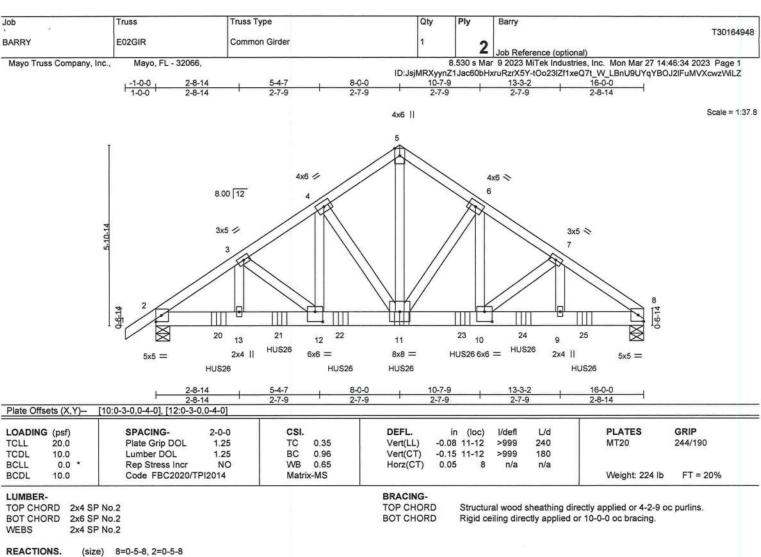
NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Corner(3E) -1-0-0 to 1-11-13, Exterior(2N) 1-11-13 to 8-0-0, Corner(3R) 8-0-0 to 11-0-0, Exterior(2N) 11-0-0 to 17-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) All plates are 1.5x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 12, 18, 19, 20, 16, 15, 14.

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

March 28,2023



🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 (ev. 5/19/2020 BEFORE USE

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Max Horz 2=107(LC 7)

Max Grav 8=5411(LC 2), 2=5399(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-8048/0, 3-4=-6962/0, 4-5=-5379/0, 5-6=-5379/0, 6-7=-6949/0, 7-8=-8085/0

2-13=0/6622, 12-13=0/6622, 11-12=0/5782, 10-11=0/5771, 9-10=0/6657, 8-9=0/6657 **BOT CHORD** WEBS

5-11=0/5751, 6-11=-2270/0, 6-10=0/2602, 7-10=-1120/0, 7-9=0/1267, 4-11=-2290/0,

4-12=0/2624, 3-12=-1062/0, 3-13=0/1217

NOTES-

- 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:
 - Top chords connected as follows: 2x4 1 row at 0-9-0 oc.
 - Bottom chords connected as follows: 2x6 2 rows staggered at 0-7-0 oc.
 - Webs connected as follows: 2x4 1 row at 0-9-0 oc.
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 5) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members
- 8) Use MiTek HUS26 (With 14-16d nails into Girder & 6-16d nails into Truss) or equivalent spaced at 2-0-0 oc max. starting at 2-0-12 from the left end to 14-0-12 to connect truss(es) to back face of bottom chord.
- 9) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)

Vert: 1-5=-60, 5-8=-60, 14-17=-20

N N N SIONAL minimi Julius Lee PE No. 34869

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

March 28,2023

Continued on page 2

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Barry	* JIMO SPRING SONIESS
BARRY	E02GIR	Common Girder	1	2	Job Reference (optional)	T30164948

Mayo Truss Company, Inc.,

Mayo, FL - 32066,

8.530 s Mar 9 2023 MiTek Industries, Inc. Mon Mar 27 14:46:34 2023 Page 2 ID:JsjMRXyynZ1Jac60bHxruRzrX5Y-tOo23lZf1xeQ7t_W_LBnU9UYqYBOJ2lFuMVXcwzWlLZ

LOAD CASE(S) Standard Concentrated Loads (lb)

Vert: 11=-1259(B) 20=-1259(B) 21=-1259(B) 22=-1259(B) 23=-1259(B) 24=-1259(B) 25=-1259(B)

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

March 28,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEX REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	1-	1= =	12	Ta:	-	
Job ·	Truss	Truss Type	Qty	Ply	Barry	T30164949
BARRY	J1	Jack-Open	1	1	Job Reference (optional)	Contraction and Contraction an
Mayo Truss Company, Inc	Mayo, FL - 32066,	1-0-0	ID:JsjMRXyy 4-0-0 4-0-0		r 9 2023 MiTek Industries	, Inc. Mon Mar 27 14:46:35 2023 Page 1 mHI1ZiY3i01N0mJyjG2f8P70F48MzWiLY
	3-2-14	8.00 8 2 4x4 =	9		2-9-10	Scale = 1:19.1
		· -	4-0-0 4-0-0		—	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	Plate Grip DOL Lumber DOL	0-0 CSI. 1.25 TC 0.18 1.25 BC 0.15 YES WB 0.00 14 Matrix-AS	Vert(CT) -0	in (loc) 0.01 4-7 0.02 4-7 0.00 2	l/defl L/d >999 240 >999 180 n/a n/a	PLATES GRIP MT20 244/190 Weight: 16 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP N BOT CHORD 2x4 SP N WEDGE Left 2x4 SP No 2			BRACING- TOP CHORD BOT CHORD		ral wood sheathing direct eiling directly applied.	ly applied.

REACTIONS.

(size) 3=Mechanical, 2=0-5-8, 4=Mechanical

Max Horz 2=87(LC 12)

Max Uplift 3=-33(LC 12), 2=-3(LC 12)

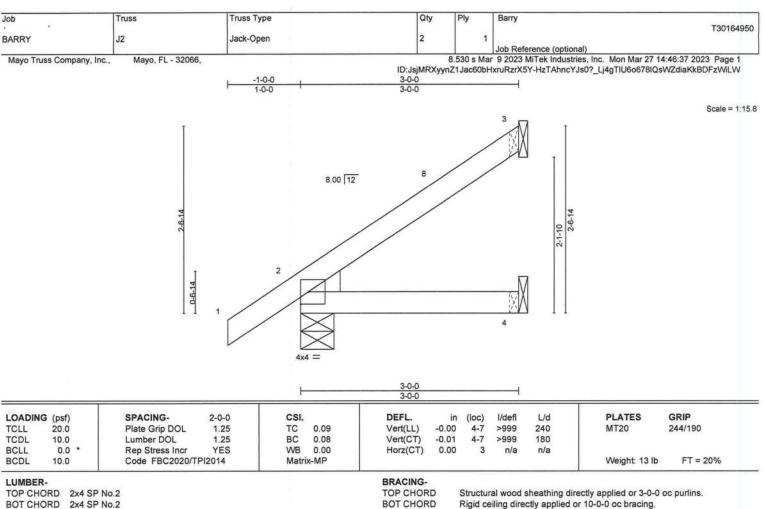
Max Grav 3=103(LC 17), 2=225(LC 1), 4=71(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 3-11-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.

 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.


MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

March 28,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20501

WEDGE Left: 2x4 SP No.2

REACTIONS.

(size) 3=Mechanical, 2=0-5-8, 4=Mechanical

Max Horz 2=71(LC 12)

Max Uplift 3=-23(LC 12), 2=-10(LC 12)

Max Grav 3=73(LC 17), 2=188(LC 1), 4=53(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 2-11-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific
 to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

March 28,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information

available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Qty Ply Barry Job Truss Truss Type T30164951 2 BARRY J3 Jack-Open Job Reference (optional) Mayo, FL - 32066, 8.530 s Mar 9 2023 MiTek Industries, Inc. Mon Mar 27 14:46:38 2023 Page 1 Mayo Truss Company, Inc., ID:JsjMRXyynZ1Jac60bHxruRzrX5Y-I91Yv6cA4A8scVIHDBGjf?elC9m7F0trp_TklhzWiLV 1-0-0 Scale = 1:9.1 8.00 12 2 0-9-10 0-6-14 4x4 = 1-0-0 **PLATES** GRIP LOADING (psf) SPACING-2-0-0 DEFL (loc) I/defl 1.25 TC MT20 244/190 TCLL 20.0 Plate Grip DOL 0.07 Vert(LL) 0.00 >999 240 TCDL 1.25 BC 0.01 Vert(CT) -0.00 >999 180 10.0 Lumber DOL Rep Stress Incr WB 0.00 Horz(CT) -0.00 YES 3 BCLL 0.0 n/a n/a Code FBC2020/TPI2014 Weight: 6 lb FT = 20% Matrix-MP BCDL 10.0 BRACING-LUMBER-Structural wood sheathing directly applied or 1-0-0 oc purlins. TOP CHORD TOP CHORD 2x4 SP No.2 **BOT CHORD** BOT CHORD 2x4 SP No.2 Rigid ceiling directly applied or 10-0-0 oc bracing. WEDGE Left: 2x4 SP No.2

REACTIONS.

(size) 3=Mechanical, 2=0-5-8, 4=Mechanical

Max Horz 2=40(LC 12)

Max Uplift 3=-4(LC 9), 2=-30(LC 12)

Max Grav 3=11(LC 17), 2=130(LC 1), 4=12(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.

March 28,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MIL-7473 rev. 5/19/2020 BEFORE USE

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply Barry T30164952 M01GE 2 BARRY Monopitch Supported Gable 1 Job Reference (optional) Mayo Truss Company, Inc., Mayo, FL - 32066, 8.530 s Mar 9 2023 MiTek Industries, Inc. Mon Mar 27 14:46:39 2023 Page 1 ID:JsjMRXyynZ1Jac60bHxruRzrX5Y-DLbx6SdorTGjEetTnunyBDBSDZ41_TR?2eDIH8zWiLU Scale = 1:13.9 1.5x4 II 2.50 12 5 3x4 = 1.5x4 II 3 2 0-3-13 3x4 = 4x8 || 3x4 = 1.5x4 || 1.5x4 ||

Plate Offsets (X,Y)--[2:0-3-8,Edge], [2:0-9-6,Edge] LOADING (psf) SPACING-2-0-0 CSI. DEFL. I/defl L/d **PLATES** GRIP TCLL 20.0 Plate Grip DOL 1.25 TC 0.18 Vert(LL) 0.00 n/r 120 MT20 244/190 TCDL 10.0 Lumber DOL 1.25 BC 0.16 Vert(CT) 0.00 n/r 120 BCLL 0.0 Rep Stress Incr YES WB 0.04 Horz(CT) 0.00 6 n/a n/a Code FBC2020/TPI2014 Weight: 25 lb FT = 20% Matrix-P BCDL 10.0

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2

2x4 SP No.2 **BOT CHORD**

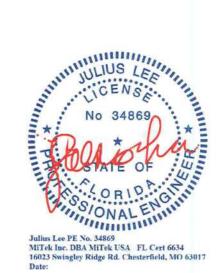
2x4 SP No.2 WEBS **OTHERS** 2x4 SP No.2

REACTIONS.

(size) 2=6-3-8, 6=6-3-8, 7=6-3-8

Max Horz 2=32(LC 9)

Max Uplift 2=-30(LC 8), 6=-4(LC 8)


Max Grav 2=221(LC 1), 6=16(LC 1), 7=329(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 4-7=-237/255

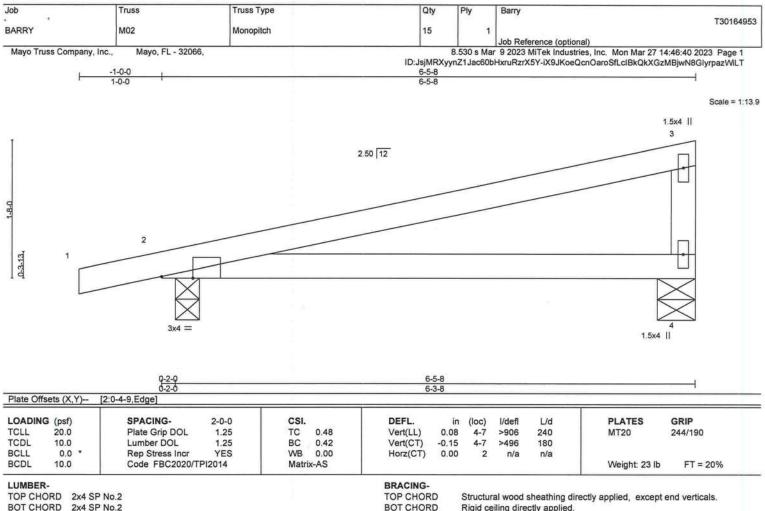
NOTES-

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Corner(3E) -1-0-0 to 2-0-0, Exterior(2N) 2-0-0 to 6-3-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Gable studs spaced at 2-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6.

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.


March 28,2023

🗥 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 (ev. 5/19/2020 BEFORE USE

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANS/ITP/1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Rigid ceiling directly applied.

BOT CHORD 2x4 SP No.2

2x4 SP No.2 WEBS

REACTIONS. (size) 4=0-5-8, 2=0-3-8 Max Horz 2=41(LC 11)

Max Uplift 4=-30(LC 8), 2=-57(LC 8)

Max Grav 4=248(LC 1), 2=317(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Part. Encl., GCpi=0.55; MWFRS (directional) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 6-3-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.
- 6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

16023 Swingley Ridge Rd. Chesterfield, MO 63017

March 28,2023

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component **Sets Letomation** swellbein from Truss Plate Institute. 2670 Crain Hinhway. Suite 203 Waldorf. MD 20601 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Qu. Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Barry T30164954 BARRY PB01GE GABLE 2 1 Job Reference (optional) Mayo Truss Company, Inc., Mayo, FL - 32066, 8.530 s Mar 9 2023 MiTek Industries, Inc. Mon Mar 27 14:46:42 2023 Page 1 ID:JsjMRXyynZ1Jac60bHxruRzrX5Y-ewH3kUfg8Ofl56b2S1Lfprp_Zm8kBpARkcRyuSzWiLR 18-4-15 Scale = 1:34.1 4x4 = 6 8.00 12 21 22 10 0-1-8 3x4 = 18 17 16 15 3x4 = 14 13 12 18-4-15 18-4-15 LOADING (psf) SPACING-CSI DEFL GRIP 2-0-0 (loc) I/defl L/d **PLATES** TCLL 20.0 Plate Grip DOL 1.25 TC 0.05 Vert(LL) 0.00 10 n/r 120 MT20 244/190 TCDL 10.0 Lumber DOL 1.25 BC 0.03 Vert(CT) 0.00 10 n/r 120 YES BCLL 0.0 Rep Stress Incr WB 0.04 Horz(CT) 0.00 10 BCDL 10.0 Code FBC2020/TPI2014 Matrix-S Weight: 84 lb FT = 20% LUMBER-**BRACING-**

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 OTHERS 2x4 SP No.2

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 15-11-3.

(lb) - Max Horz 2=103(LC 11)

Max Uplift All uplift 100 lb or less at joint(s) 16, 17, 18, 14, 13, 12

Max Grav All reactions 250 lb or less at joint(s) 2, 10, 15, 16, 17, 18, 14, 13, 12

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) 0-9-7 to 3-9-7, Interior(1) 3-9-7 to 9-2-8, Exterior(2R) 9-2-8 to 12-2-8, Interior(1) 12-2-8 to 17-7-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) All plates are 1.5x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 16, 17, 18, 14, 13, 12.
- 11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

16023 Swingley Ridge Rd. Chesterfield, MO 63017

March 28,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Type Truss Qty Barry Ply T30164955 BARRY 15 PB02 Piggyback 1 Job Reference (optional) Mayo Truss Company, Inc., Mayo, FL - 32066, 8.530 s Mar 9 2023 MiTek Industries, Inc. Mon Mar 27 14:46:44 2023 Page 1 ID:JsjMRXyynZ1Jac60bHxruRzrX5Y-aJOq9Ahxg0v0KQlRaSN7uGuEUaklfhykBww2zLzWiLP 18-4-15 Scale = 1:38.5 4x4 = 8.00 12 6-1-10 1.5x4 || 1.5x4 || 0-4-3 0-11-8 3x4 = 3x4 = 10 13 14 8 5x5 = 1.5x4 II 1.5x4 || 18-4-15 Plate Offsets (X,Y)-[9:0-2-8,0-3-0] LOADING (psf) SPACING-2-0-0 CSI. DEFL. I/defl L/d **PLATES** GRIP (loc) TCLL 20.0 Plate Grip DOL 1.25 TC 0.40 Vert(LL) -0.00 n/r 120 MT20 244/190 TCDL 10.0 Lumber DOL 1.25 BC 0.45 Vert(CT) -0.00 n/r 120 BCLL 0.0 Rep Stress Incr YES WB 0.15 Horz(CT) 0.00 6 n/a n/a BCDL 10.0 Code FBC2020/TPI2014 Matrix-S Weight: 71 lb FT = 20% LUMBER-BRACING-TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. 2x4 SP No.2 BOT CHORD **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing.

2x4 SP No.2 **OTHERS**

REACTIONS. All bearings 16-11-13.

Max Horz 2=-110(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 2, 10, 8, 6

Max Grav All reactions 250 lb or less at joint(s) 2, 6 except 9=476(LC 17), 10=577(LC 17), 8=577(LC 18)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

4-9=-274/10, 3-10=-348/151, 5-8=-348/151 WEBS

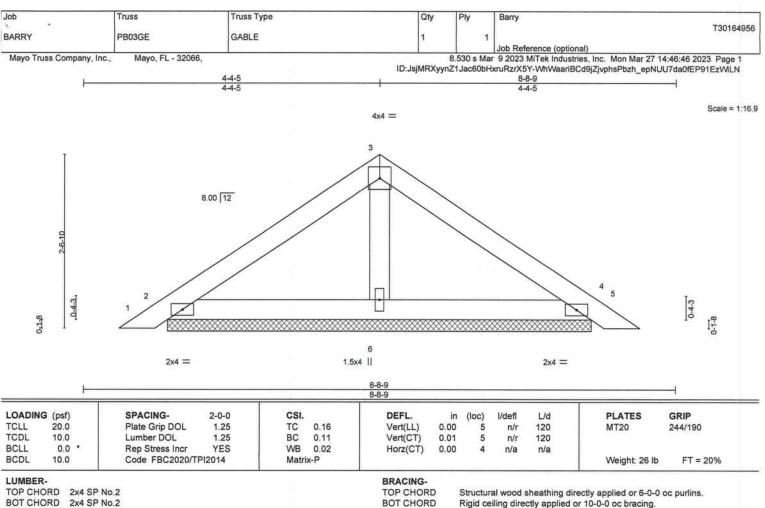
NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) 0-3-2 to 3-2-8, Interior(1) 3-2-8 to 9-2-8, Exterior(2R) 9-2-8 to 12-2-8, Interior(1) 12-2-8 to 18-1-13 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10, 8, 6.
- 8) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

March 28,2023


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information

available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BOT CHORD

OTHERS 2x4 SP No.2

(size) 2=6-2-13, 4=6-2-13, 6=6-2-13

Max Horz 2=-44(LC 10)

Max Uplift 2=-27(LC 12), 4=-27(LC 12)

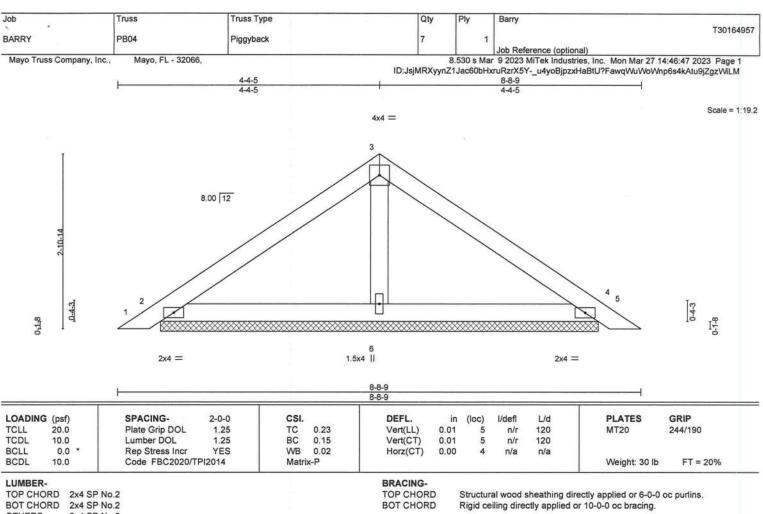
Max Grav 2=162(LC 1), 4=162(LC 1), 6=228(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

REACTIONS.

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) 0-9-7 to 3-9-7, Interior(1) 3-9-7 to 4-4-5, Exterior(2R) 4-4-5 to 7-5-11, Interior(1) 7-5-11 to 7-11-2 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads,
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

March 28,2023



MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE

Design valid for use only with MITe& connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

REACTIONS.

TOP CHORD 2x4 SP No.2 **BOT CHORD**

2x4 SP No.2 OTHERS

(size) 2=7-3-7, 4=7-3-7, 6=7-3-7


Max Horz 2=50(LC 11)

Max Uplift 2=-29(LC 12), 4=-29(LC 12)

Max Grav 2=185(LC 1), 4=185(LC 1), 6=268(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Exterior(2E) 0-3-2 to 3-3-2, Interior(1) 3-3-2 to 4-4-5, Exterior(2R) 4-4-5 to 7-4-5, Interior(1) 7-4-5 to 8-5-7 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- 8) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

16023 Swingley Ridge Rd. Chesterfield, MO 63017

March 28,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

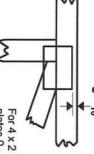

Symbols

PLATE LOCATION AND ORIENTATION

Center plate on joint unless x, y offsets are indicated.

Dimensions are in ft-in-sixteenths. Apply plates to both sides of truss and fully embed teeth.

For 4 x 2 orientation, locate plates 0- 1/16" from outside edge of truss.

œ

6

5

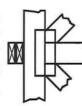
5

This symbol indicates the required direction of slots in connector plates.

* Plate location details available in MiTek 20/20 software or upon request.

PLATE SIZE

4 × 4


The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated.

BEARING

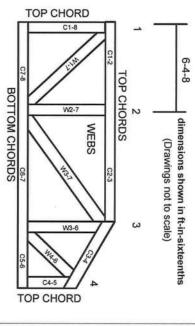
Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number where bearings occur.

Min size shown is for crushing only

Industry Standards:

ANSI/TPI1: Nationa

BCSI


National Design Specification for Metal Plate Connected Wood Truss Construction. Design Standard for Bracing.

Building Component Safety Information Guide to Good Practice for Handling, Installing & Bracing of Metal Plate

cing of Metal Plate

MiTek Enginee

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

PRODUCT CODE APPROVALS

ICC-ES Reports:

ESR-1311, ESR-1352, ESR1988 ER-3907, ESR-2362, ESR-1397, ESR-3282

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2012 MiTek® All Rights Reserved

MiTek Engineering Reference Sheet: MII-7473 rev. 5/19/2020

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others
- Do not cut or alter truss member or plate without prior approval of an engineer.
- Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.