APPLICABLE CODES AND STANDARDS

1. 2023 FLORIDA BUILDING CODE, BUILDING

- 2. 2023 FLORIDA BUILDING CODE, RESIDENTIAL
- 3. ASCE 7-22: MINIMUM DESIGN LOADS ON BUILDINGS AND OTHER STRUCTURES
- 4. AISC STEEL CONSTRUCTION MANUAL (15TH EDITION)
- 5. ACI 318-19: BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE
- 6. TMS 402-16: BUILDING CODE REQUIREMENTS FOR MASONRY STRUCTURES
- 7. AWS D1.1: STRUCTURAL WELDING

DESIGN LOADS

- 1. DEAD LOAD = 1.5 PSF
- 2. ROOF LIVE LOAD = 12 PSF
- 3. WIND LOAD
- A. RISK CATEGORY = I
- B. WIND EXPOSURE CATEGORY = C
- C. ULTIMATE WIND SPEED = 120 MPH

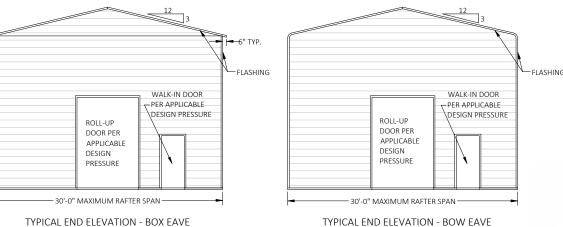
NOMINAL WIND SPEED = 94 MPH

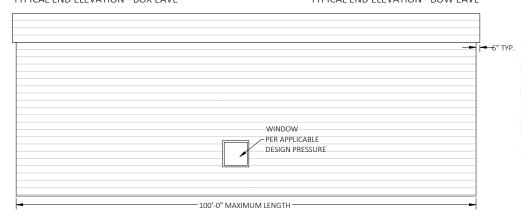
INSTALLATION NOTES AND SPECIFICATIONS

- 1. THESE PLANS BELONG EXCLUSIVELY TO THE STRUCTURE, INCLUDING MAIN WIND FORCE RESISTING SYSTEM (MWFRS), COMPONENTS AND CLADDING (C&C), AND BASE RAIL ANCHORAGE. OTHER DESIGN ISSUES, INCLUDING BUT NOT LIMITED TO PROPERTY SET-BACKS, ELECTRICAL, PLUMBING, INGRESS/EGRESS, FINISH FLOOR SLOPES AND ELEVATIONS, OR OTHER LOCAL ZONING REQUIREMENTS ARE THE LIABILITY OF OTHERS.
- 2. THESE STRUCTURES ARE ENGINEERED AS CAPABLE OF SUPPORTING DEAD LOAD OF THE STRUCTURE AND LIVE AND WIND LOADS. UPGRADES NOT SPECIFICALLY ADDRESSED HEREIN, SUCH AS WINDOWS, DOORS, OR ANOTHER COMPONENT NOT LISTED IN THE BUILDING CODE APROVED PRODUCT LIST, AND NOT PROVIDED AND INSTALLED BY THE CONTRACTOR, WHICH CAUSE ADDITIONAL LOADS ON THE STRUCTURE SHALL BE AT THE OWNER'S RISK. THE ENGINEER SHALL NOT BE RESPONSIBLE FOR FAILURE OR STRUCTURAL DAMAGE DUE TO THE EXTRA LOAD.
- 3. ALL STEEL TUBING SHALL BE 50 KSI GALVANIZED STEEL. ALL FASTENERS SHALL BE ZINC COATED HARDWARE
- 4. END WALL COLUMNS (POST) AND SIDE WALL COLUMNS ARE EQUIVALENT IN SIZE AND SPACING U.N.O.
- 5. SPECIFICATIONS APPLICABLE TO 29 GA METAL PANELS FASTENED DIRECTLY TO 2.5"X2.5"X14 GA TUBE STEEL (TS) FRAMING MEMBERS FOR VERTICAL PANELS. 29 GA METAL PANELS SHALL BE FASTENED DIRECTLY TO 18 GA HAT CHANNELS U.N.O.
- 6. AVERAGE FASTENER SPACING ON-CENTERS ALONG RAFTERS OR PURLINS, AND POSTS, INTERIOR = 9" AND FND = 6" MAX.
- 7. FASTENERS CONSIST OF #12-14X3/4" SELF-DRILLING SCREWS (SDS), USE CONTROL SEAL WASHER WITH EXTERIOR FASTENERS. SPECIFICATIONS APPLICABLE ONLY FOR MEAN ROOF HEIGHT OF 20'-0" OR LESS, AND ROOF SLOPES OF 14° (3:12 PITCH) OR LESS. SPACING REQUIREMENTS FOR OTHER ROOF HEIGHTS AND/OR SLOPES MAY VARY.
- 8. ANCHORS SHALL BE INSTALLED THROUGH THE BASE RAIL WITHIN 6" OF EACH RAFTER COLUMN ALONG SIDES AND ENDS.
- 9. STANDARD GROUND ANCHORS (SOIL NAILS) CONSIST OF #4 REBARS WITH WELDED NUT X 36" LONG AND MAY BE USED IN SUITABLE SOILS. OPTIONAL ANCHORAGE MAY BE USED IN SUITABLE SOILS AND MUST BE USED IN UNSUITABLE SOILS AS NOTED. SOIL NAILS MAY BE USED FOR WIND SPEEDS LESS THAN OR EQUAL TO 145 MPH.
- 10. RAFTER SPACING IS 5'-0" MAX.
- 11. PURLIN SPACING IS 4'-0" MAX.
- 12. WIND FORCES GOVERN OVER SEISMIC FORCES. SEISMIC PARAMETERS ANALYZED ARE SOIL SITE CLASS = D RISK CATEGORY I
- R = 3.25le = 1.0 Sds = 0.087 g V = CsW Sdi = 0.084 g

13. CONSTRUCTION IN SPECIAL FLOOD HAZARD AREAS:

CONTRACTOR TO VERIFY THAT THE FINISHED FLOOR ELEVATION FOR THE PROPOSED STRUCTURE IS AT OR ABOVE THE GREATER OF THE FOLLOWING ELEVATIONS:


I) BFE (BASE FLOOD ELEVATION) + 2'-0"


II) DFE (DESIGN FLOOD ELEVATION)

III) THE MINIMUM ELEVATION MANDATED BY THE BUILDING CODES ADOPTED BY THE AUTHORITY HAVING JURISDICTION

	DRAWING INDEX
PAGE NO.	DESCRIPTION
1	TITLE PAGE WITH INDEX
2	TRUSS DESIGN FOR RAFTER SPAN
3	CONNECTION DETAILS (1-2)
4	BASE RAIL AND FOUNDATION ANCHORAGE
5	RAFTER END WALL, SIDE WALL AND OPENING FRAMING
6	CONNECTION DETAILS (4-14)
7	BOX EAVE RAFTER LEAN-TO OPTIONS
8	CONNECTION DETAILS (16-18)
9	BOX EAVE RAFTER VERTICAL ROOF/SIDING OPTION
10	OPTIONAL HELICAL ANCHORING ON GRADE DETAIL
11	OPTIONAL CONCRETE STRIP FOOTING
12	OPTIONAL HELICAL ANCHORING ON TIMBER BEAM DETAIL

ENCLOSED METAL BUILDING DESIGN MAXIMUM 30'-0" WIDE X 100'-0" LONG X 20'-0" HIGH (EAVE) BOX EAVE FRAME / BOW EAVE FRAME

TYPICAL SIDE ELEVATION - HORIZONTAL ROOF

		TYPICAL SIDE E	LEVATION -	HORIZONTAL ROOF	
ADJUSTED C & (C WIND PI	RESSURES (ROOF, ASD, I	PSF)	ADJUSTED C & C WIND PRESSURES	(WALL, ASD,
EFFECTIVE WIND AREA (SQ. FT) : ALL ZONES (POSITIVE) = ZONE 1' (NEGATIVE) =	10.00 NA NA	EFFECTIVE WIND AREA (SQ. FT) : ALL ZONES (POSITIVE) = ZONE 1' (NEGATIVE) =	200.00 NA NA	EFFECTIVE WIND AREA (SQ. FT) : ALL ZONES (POSITIVE) = ZONE 4 (NEGATIVE) =	10.00 26.9 -28.6
ZONE 1' (OVERHANG) = ZONE 1 (NEGATIVE) =	NA -44.1	ZONE 1' (OVERHANG) = ZONE 1 (NEGATIVE) =	NA -21.3	ZONE 5 (NEGATIVE) =	-33.8
ZONE 1 (OVERHANG) = ZONE 2 (NEGATIVE) = ZONE 2 (OVERHANG) = ZONE 3 (NEGATIVE) = ZONE 3 (OVERHANG) =	-61.4 -56.3 -73.5 -71.8 -89.1	ZONE 1 (OVERHANG) = ZONE 2 (NEGATIVE) = ZONE 2 (OVERHANG) = ZONE 3 (NEGATIVE) = ZONE 3 (OVERHANG) =	-34.6 -26.9 -40.2 -40.7 -54.0	EFFECTIVE WIND AREA (SQ. FT): ALL ZONES (POSITIVE) = ZONE 4 (NEGATIVE) = ZONE 5 (NEGATIVE) =	20.00 26.0 -27.7 -32.0
EFFECTIVE WIND AREA (SQ. FT): ALL ZONES (POSITIVE) = ZONE 1' (NEGATIVE) = ZONE 1' (OVERHANG) =	20.00 NA NA NA	EFFECTIVE WIND AREA (SQ. FT): ALL ZONES (POSITIVE) = ZONE 1' (NEGATIVE) = ZONE 1' (OVERHANG) =	300.00 NA NA NA	EFFECTIVE WIND AREA (SQ. FT): ALL ZONES (POSITIVE) = ZONE 4 (NEGATIVE) = ZONE 5 (NEGATIVE) =	50.00 24.8 -26.4 -29.5
ZONE 1 (NEGATIVE) = ZONE 1 (OVERHANG) = ZONE 2 (NEGATIVE) = ZONE 2 (OVERHANG) = ZONE 3 (NEGATIVE) =	-38.9 -55.2 -49.5 -65.8 -62.4	ZONE 1 (NEGATIVE) = ZONE 1 (OVERHANG) = ZONE 2 (NEGATIVE) = ZONE 2 (OVERHANG) = ZONE 3 (NEGATIVE) =	-18.2 -31 -26.9 -39.6 -40.7	EFFECTIVE WIND AREA (SQ. FT): ALL ZONES (POSITIVE) = ZONE 4 (NEGATIVE) = ZONE 5 (NEGATIVE) =	100.00 23.8 -25.5 -27.7
ZONE 3 (OVERHANG) = EFFECTIVE WIND AREA (SQ. FT) : ALL ZONES (POSITIVE) =	-78.8 50.00 NA NA	ZONE 3 (OVERHANG) = EFFECTIVE WIND AREA (SQ. FT): ALL ZONES (POSITIVE) = ZONE 1' (NEGATIVE) =	-53.5 500.00 NA NA	EFFECTIVE WIND AREA (SQ. FT): - ALL ZONES (POSITIVE) = - ZONE 4 (NEGATIVE) = - ZONE 5 (NEGATIVE) =	200.00 22.9 -24.6 -25.8
ZONE 1' (NEGATIVE) = ZONE 1' (OVERHANG) = ZONE 1 (NEGATIVE) = ZONE 1 (OVERHANG) = ZONE 2 (NEGATIVE) =	NA -31.9 -47 -40.5	ZONE 1' (OVERHANG) = ZONE 1 (NEGATIVE) = ZONE 1 (OVERHANG) = ZONE 2 (NEGATIVE) =	NA -18.2 -30.3 -26.9	EFFECTIVE WIND AREA (SQ. FT) : ALL ZONES (POSITIVE) = ZONE 4 (NEGATIVE) = ZONE 5 (NEGATIVE) =	300.00 22.4 -24.1 -24.8
ZONE 2 (OVERHANG) = ZONE 3 (NEGATIVE) = ZONE 3 (OVERHANG) =	-55.6 -50.1 -65.2	ZONE 2 (OVERHANG) = ZONE 3 (NEGATIVE) = ZONE 3 (OVERHANG) =	-39 -40.7 -52.8	EFFECTIVE WIND AREA (SQ. FT) : ALL ZONES (POSITIVE) = ZONE 4 (NEGATIVE) =	500.00 21.7 -23.4
EFFECTIVE WIND AREA (SQ. FT) : ALL ZONES (POSITIVE) =	100.00 NA	EFFECTIVE WIND AREA (SQ. FT) : ALL ZONES (POSITIVE) =	1000.00 NA	ZONE 5 (NEGATIVE) =	-23.4
ZONE 1' (NEGATIVE) = ZONE 1' (OVERHANG) = ZONE 1 (NEGATIVE) = ZONE 1 (OVERHANG) =	NA NA -26.6 -40.8	ZONE 1' (NEGATIVE) = ZONE 1' (OVERHANG) = ZONE 1 (NEGATIVE) = ZONE 1 (OVERHANG) =	NA NA -18.2 -30.3	EFFECTIVE WIND AREA (SQ. FT): ALL ZONES (POSITIVE) = ZONE 4 (NEGATIVE) = ZONE 5 (NEGATIVE) =	1000.00 21.7 -23.4 -23.4
ZONE 2 (NEGATIVE) = ZONE 2 (OVERHANG) =	-33.6 -47.9	ZONE 2 (NEGATIVE) = ZONE 2 (OVERHANG) =	-26.9 -39		

-40.7

-52.8

ZONE 3 (NEGATIVE) =

ZONE 3 (OVERHANG) =

-40.7

ZONE 3 (NEGATIVE) =

ZONE 3 (OVERHANG) =

ORIDA CHEN

for Code

O EDWARD WALLED Digitally signed by Richard E Walker Date: STATE OF 2025.01.17 13:12:53-05'00'

UNIT 101 PORT CHARLOTTE, FLORIDA 33952 (941) 391-5980 FLEng.com Orders@FLEng.com TAMIAMI TRAIL, 161

DR. STEEL BUILDINGS AND STRUCTURES INC. 800PIEDMONT TRIAD WEST D MOUNT AIRY, NC 27030

DOTY 8249 SW OLD WIRE RD, FORT WHITE FL 32038

2501569

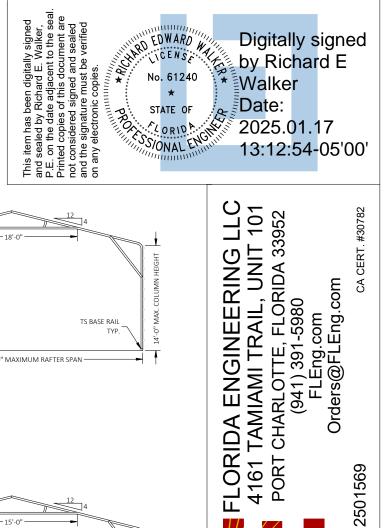
o N

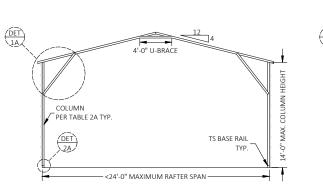
PROJECT

DESIGN DATE: 01/16/2025 DATE REVISION 1: REVISION 2: DATE SHEET: DRAWN BY: JS SCALE: NTS OF 12

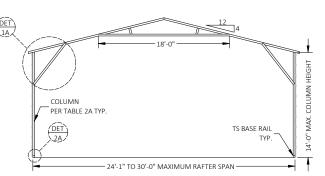
THE ENGINEERING ON THESE PLANS IS SITE SPECIFIC FOR (1) STRUCTURE ONLY AT THE PROVIDED ADDRESS(ES).

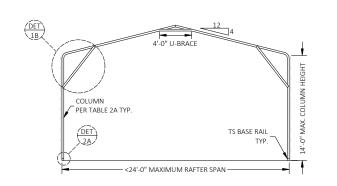
MEMBER LEGEND:

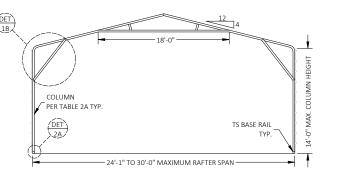

1. SIDEWALL TS COLUMN = 2.5X2.5X14 GA U.N.O.


2. SIDEWALL TS DOUBLE COLUMN = (2)2.5X2.5X14 GA U.N.O.

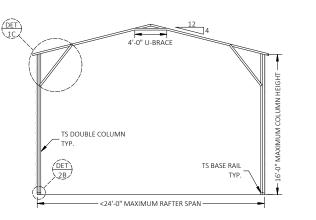
- 3. TRUSS MEMBERS = 2.5X2.5X14 GA U.N.O.
- 4. KNEE-BRACE = 2.5"X2"X18GA CHANNEL
- 5. PURLIN = 1.125"X18GA HAT CHANNEL
- 6. U-BRACE = 2.5"X2"X16GA CHANNEL 7. ENDWALL COLUMN:

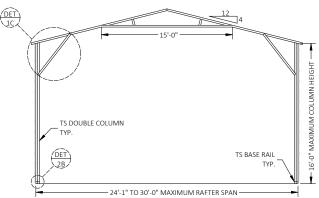

MAX. EAVE HEIGHT	END WALL COLUMN DIMENSIONS
20'	(2) 2.5X2.5X14 GA
14'	2.5X2.5X14 GA

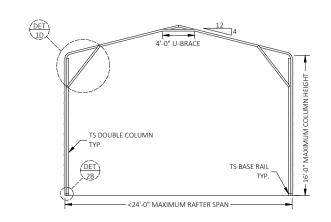

TRUSS LAYOUT- BOW EAVE

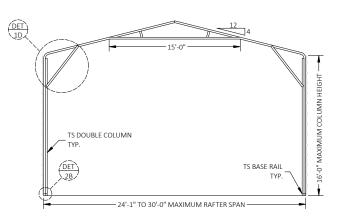


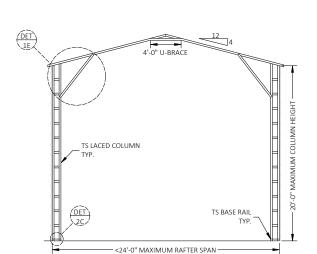
TRUSS LAYOUT- BOX EAVE

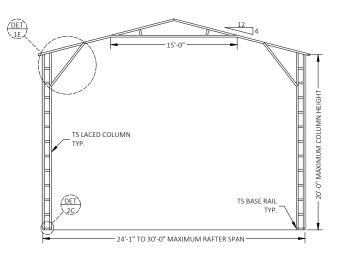


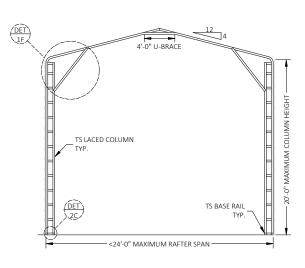


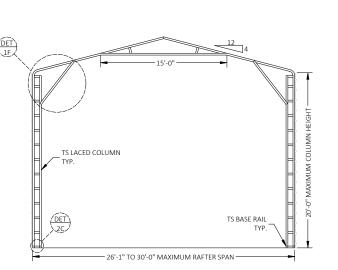


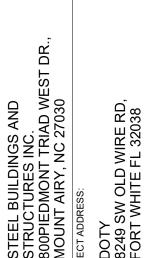

THE ETT.				
FOR COLUMN HEIGHT OF MAX. 14'-0"				
BUILDING LENGTH	COLUMN DIMENSIONS			
< = 60'-0" ALL COLUMNS TO BE 2.5X2.5X14 GA				
60'-1" TO 100'-0"	(N-10) CENTRAL COLUMNS TO BE (2)2.5X2.5X14 GA			
	REST 2.5X2.5X14 GA			

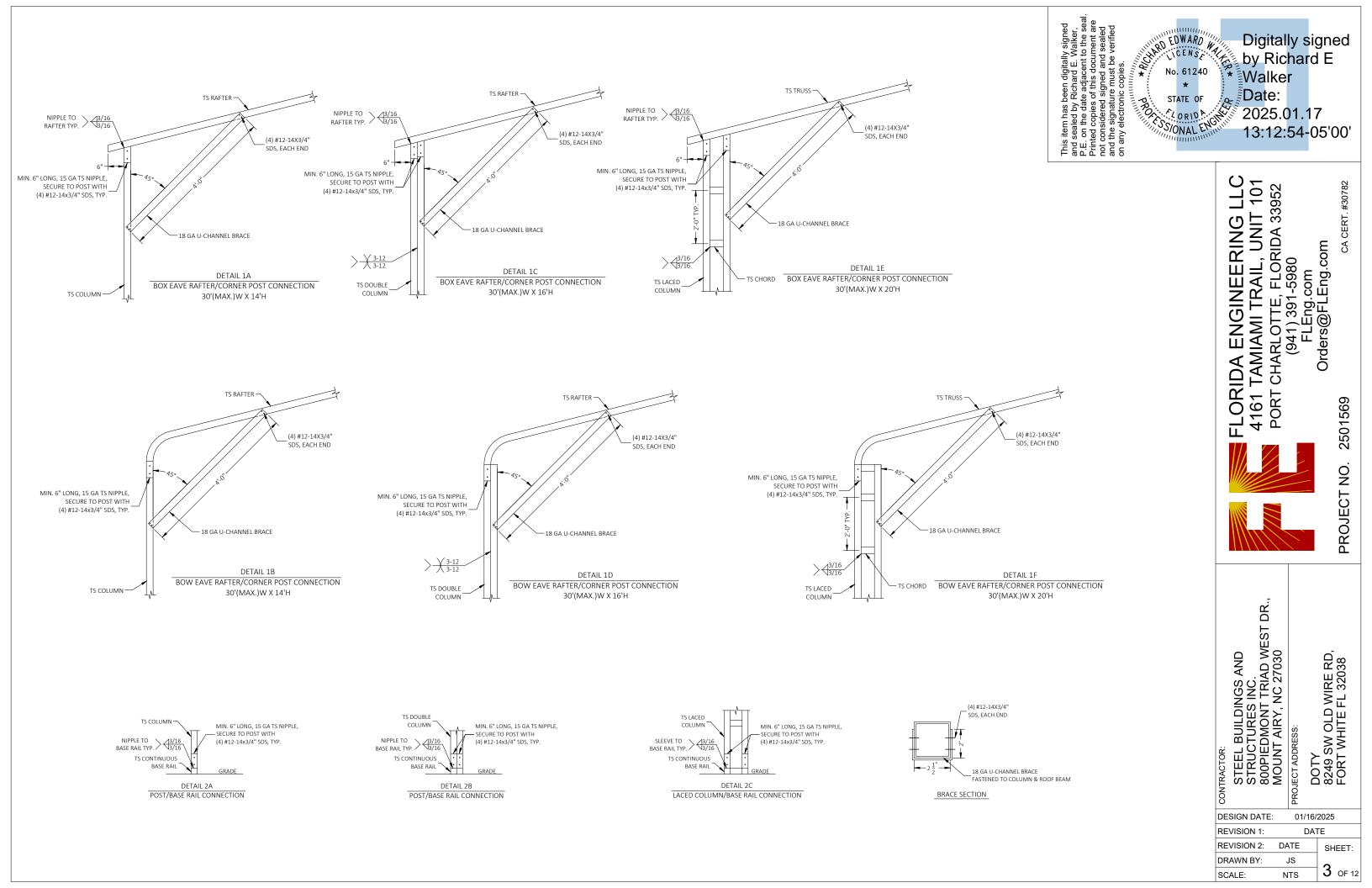

*N = NO. OF COLUMNS PER SIDE ELEVATION











2501569

PROJECT NO.

CONTRACTOR: STEEL BUI	800PIEDM MOUNT AII	PROJECT ADDRESS:	YTOU	8249 SW C	FORT WHI	
DESIGN DA	ATE:	01/	/16/2	2025		
REVISION	1:		DAT	Έ		
REVISION :	2: DA	ΛTE		SH	EET:	
DRAWN BY	′ :	JS		_		
SCALE:	N	TS			OF 1	

GENERAL NOTES

CONCRETE MONOLITHIC SLAB DESIGN IS BASED ON A MINIMUM SOIL BEARING CAPACITY OF 2500 PSF.

CONCRETE:

- 1. CONCRETE SHALL HAVE A MINIMUM SPECIFIED COMPRESSIVE STRENGTH OF 3000 PSI AT 28 DAYS.
- 2. ALL OPEN AREAS OF CONCRETE OUTSIDE OF THE PROPOSED STRUCTURE SHALL BE DESIGNED TO SLOPE AWAY FROM THE STRUCTURE.
- WHERE CONCRETE SPECIFICATIONS ARE REQUIRED, BY ONE OR MORE REGULATORY AGENCY, THE FOLLOWING SPECIFICATIONS ARE APPLICABLE:
- a. CONCRETE SHALL CONFORM TO ASTM C94 FOR THE FOLLOWING COMPONENTS:
- i. PORTLAND CEMENT TYPE 1 ASTM C 150
- ii AGGREGATES LARGE AGGREGATE 3/4 MAX. ASTM C 33
- iii. AIR ENTRAINING +/- 1 % ASTM C 260
- iv. WATER REDUCING AGENT ASTM C 494 v. CLEAN POTABLE WATER
- vi. OTHER ADMIXTURES NOT PERMITTED
- b. Concrete slump at discharge chute not less than 3" or more than 5". Water added after batching is not permitted.
- c. PREPARE & PLACE CONCRETE PER AMERICAN CONCRETE INSTITUTE MANUAL OF STANDARD PRACTICE, PART 1, 2, & 3 INCLUDING HOT WEATHER RECOMMENDATIONS.
- d. MOIST CURE OR POLYETHYLENE CURING PERMITTED.
- e. PRIOR TO PLACING CONCRETE, TREAT THE ENTIRE SUBSURFACE AREA FOR TERMITES IN COMPLIANCE WITH THE BUILDING CODE (FOR RISK CATEGORY II, III, & IV STRUCTURES ONLY). f. CONCRETE SLAB SHALL BE PLACED OVER A MIN. 6 MIL POLYETHYLENE VAPOR BARRIER
- 4. CONTROL JOINTS SHALL BE PROVIDED AT EVERY 12' O.C. OR 18' O.C. FOR 4" THICK OR 6" THICK CONCRETE SLAB RESPECTIVELY.

REINFORCING STEEL:

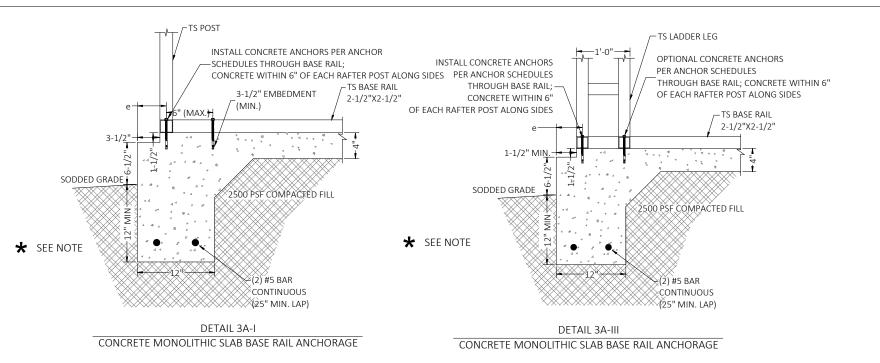
(SLAB ONLY).

- 1. THE REINFORCING STEEL SHALL BE ASTM A615 GRADE 60. THE SLAB REINFORCEMENT SHALL BE WELDED WIRE FABRIC MEETING ASTM A185 OR FIBERGLASS FIBER REINFORCEMENT.
- 2. REINFORCEMENT MAY BE BENT IN THE FIELD OR SHOP AS LONG AS:
- a. IT IS BENT COLD;
- b. REINFRCEMENT PARTIALLY EMBEDDED IN CONCRETE SHALL NOT BE FIELD BENT;
- c. THE DIAMETER OF THE BEND, MEASURED ON THE INSIDE OF THE BAR, IS NOT LESS THAN SIX-BAR DIAMETERS.
- 3. FOR FOUNDATIONS, MINIMUM CONCRETE COVER OVER REINFORCING BARS SHALL BE PER ACI-318: 3 INCHES WHERE THE CONCRETE IS POURED AGAINST AND TEMPORARY IN CONTACT WITH THE EARTH OR UNPROTECTED FROM THE EARTH OR WEATHER, OTHERWISE 1-1/2 INCHES

FROST PROTECTION

1. FOUNDATION SHALL BE PROTECTED AGAINST FROST USING RIGID FOAM INSULATION (EPS OR EQUIVALENT), FOR NO FROST PROTECTION OPTION, COORDINATE WITH LOCAL BUILDING CODE AND/OR BUILDING OFFICIAL REGARDING REQUIRED FOOTING DEPTH BASED ON FROST LINE DEPTH.

HELIX ANCHOR NOTES


- 1. FOR VERY DENSE AND/OR CEMENTED SANDS, COARSE GRAVEL AND COBBLES, CALICHE, PRELOADED SILTS AND CLAYS, CORALS, MEDIUM DENSE COARSE SANDS, SANDY GRAVELS, VERY STIFF SILTS AND CLAYS, MEDIUM TO VERY LOOSE DENSE SANDS, FIRM TO STIFF CLAYS AND SILTS, ALLUVIAL FILL, USE MINIMUM (2) 4" HELICES WITH MINIMUM 30" EMBEDMENT INSTALLED AT EVERY POST (LEG) / MAX. RAFTER SPACING.
- 2. THE UPLIFT/BEARING CAPACITY OF HELICAL ANCHOR MUST BE EQUAL TO OR GREATER THAN 8.5 KIPS FOR ANCHORS INSTALLED AT EVERY POST (LEG) / MAX. RAFTER SPACING.
- 3. THE UPLIFT/BEARING CAPACITY OF HELICAL ANCHORS MUST BE AS SHOWN IN TABLE A FOR ANCHORS PROVIDED AT THE JAMBS OF DOOR OPENINGS. THE INCREASE IN HELICAL ANCHOR CAPACITY MAY BE ACHIEVED BY INCREASING THE DIAMETER AND/OR THE EMBEDMENT OF THE ANCHORS, OR BY USING DIFFERENT ANCHORS DEPENDING ON THE MANUFACTURER'S SPECIFICATIONS


HP 9 BARBED DRIVE ANCHOR NOTES:

- 1. ANCHOR TO BE 3/4" DIA (A529 GRADE 50) WITH 30" MIN. EMBEDMENT & (4) MIN. BARBS AS SHOWN IN DETAIL 3C.
- 2. FOR VERY DENSE AND/OR CEMENTED SANDS, COARSE GRAVEL AND COBBLES, CALICHE, PRELOADED SILTS AND CLAYS, CORALS, MEDIUM DENSE COARSE SANDS, SANDY GRAVELS, VERY STIFF SILTS AND CLAYS, MEDIUM TO VERY LOOSE DENSE SANDS, FIRM TO STIFF CLAYS AND SILTS, ALLUVIAL FILL, ANCHOR SHALL BE INSTALLED AT EVERY POST (LEG) / MAX. RAFTER SPACING.
- 8.5 KIPS FOR ANCHORS INSTALLED AT EVERY POST (LEG) / MAX. RAFTER SPACING.
- 4. THE UPLIFT/BEARING CAPACITY OF THE ANCHORS MUST BE AS SHOWN IN TABLE A FOR ANCHORS PROVIDED AT THE JAMBS OF DOOR OPENINGS. THE INCREASE IN ANCHOR CAPACITY MAY BE ACHIEVED BY INCREASING THE DIAMETER AND/OR THE EMBEDMENT OF THE ANCHORS, OR BY USING DIFFERENT ANCHORS DEPENDING ON THE MANUFACTURER'S SPECIFICATIONS.

TABLE A

		IADLLA		
	REQUIRED UPLIFT / BEARING CAPACITY OF HELICAL ANCHORS		RAFTER SP	ACING (FT.)
			4	5
	·:	6	11.0	9.5
	(FI	8	13.0	11.5
	DPENING WIDTH (FT.)	10	15.0	13.0
		12	17.0	14.5
	> (0	14	19.5	16.5
	ž	16	21.5	18.0
) EP	18	23.5	20.0
	Ö	20	25.5	21.5

2" X 3/4" X 1/8" A36 BARBS

DETAIL 3C

ASPHALT BASE ANCHORAGE

(HP 9 BARBED DRIVE ANCHOR)

DETAIL 3B

GROUND BASE HELIX ANCHORAGE

O EDWARD WALL D

STATE OF

SSIONAL ENGINEER

This item has be and sealed by F P.E. on the date Printed copies o not considered and the signatur on any electroni

TYPICAL ANCHOR DETAIL WHEN BASE

RAIL IS NEAR EDGE OF CONCRETE

BASE RAIL ANCHORAGE OPTION

Digitally signed

by Richard E

2025.01.17

13:12:55-05'00'

T CHARLOTTE, FLORIDA 33952 (941) 391-5980 FLEng.com Orders@FLEng.com

Walker

Date:

101

LNO

TAMIAMI TRAIL,

161

DR

STEEL BUILDINGS AND STRUCTURES INC. 800PIEDMONT TRIAD WEST D MOUNT AIRY, NC 27030

DESIGN DATE:

REVISION 1:

REVISION 2:

DRAWN BY:

PORT

2501569

9

PROJECT

) WIRE RD, FL 32038

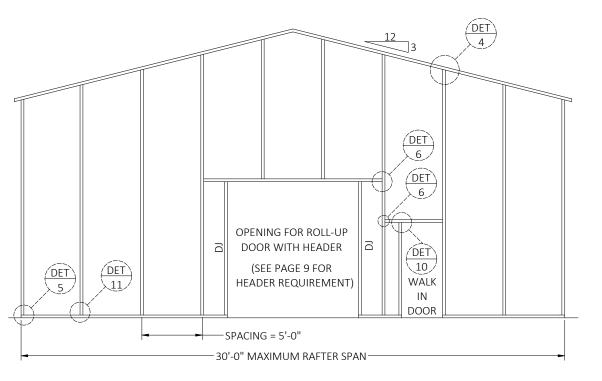
DOTY 8249 SW OLD \ FORT WHITE F

01/16/2025

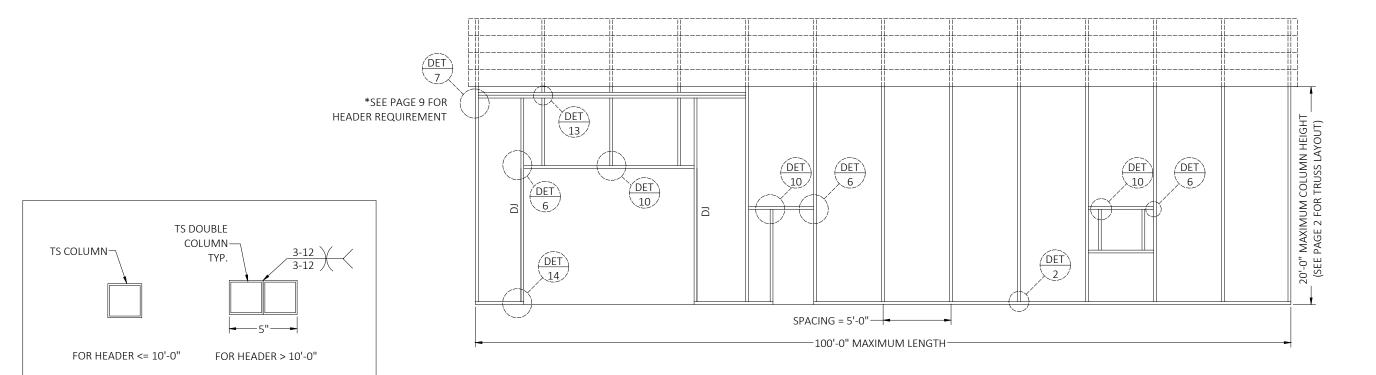
DATE

SHEET:

4 OF 12


DATE

JS


NTS

ENGINEERING

FLORIDA

SIDE WALL/END WALL DOOR JAMBS (DJ)

TYPICAL BOX EAVE RAFTER SIDE WALL FRAMING SECTION

FLORIDA ENGINEERING LLC
4161 TAMIAMI TRAIL, UNIT 101
PORT CHARLOTTE, FLORIDA 33952
(941) 391-5980
FLEng.com
Orders@FLEng.com

Digitally signed by Richard E
Walker

13:12:55-05'00'

CA CERT. #30782

2501569

PROJECT NO.

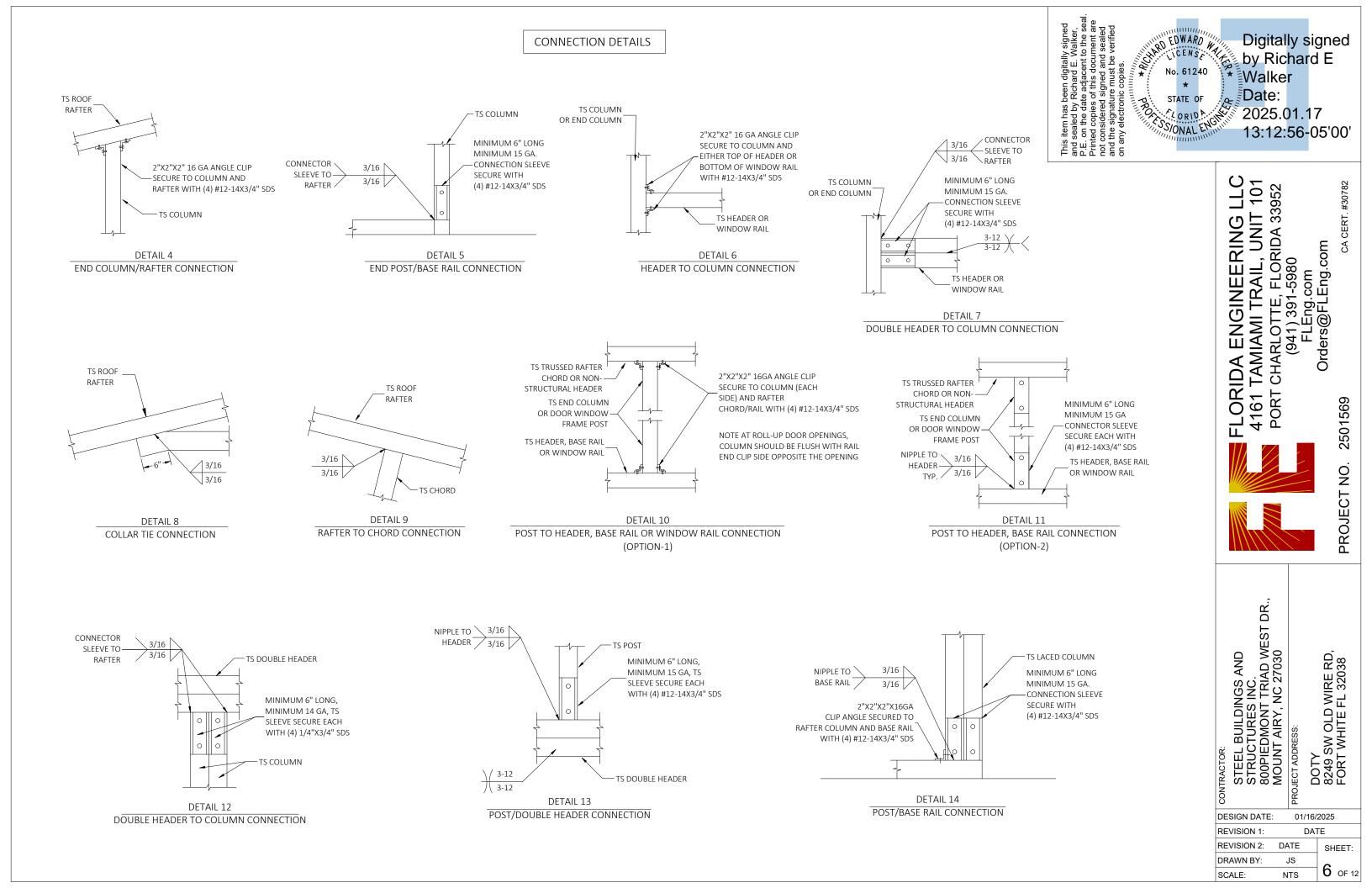
Date:

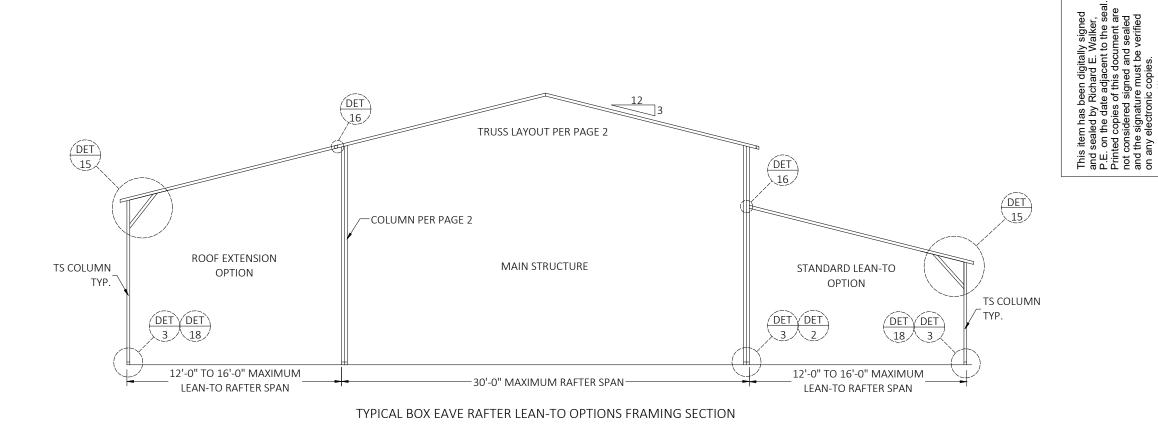
2025.01.17

This item has been digitally signed and sealed by Richard E. Walker, P.E. on the date adjacent to the seal. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

No. 61240

STATE OF STATE OF A CHANGE





STEEL BUILDINGS AND STRUCTURES INC. 800PIEDMONT TRIAD WEST DR., MOUNT AIRY, NC 27030 DOTY 8249 SW OLD WIRE RD, FORT WHITE FL 32038 ROJECT ADDRESS

0	П.	
DESIGN DATE:	01/16/	2025
REVISION 1:	DA	ΓΕ
REVISION 2:	DATE	SHEET:
DRAWN BY:	JS	_
SCALE:	NTS	5 OF 12

Digitally signed by Richard E

13:12:56-05'00'

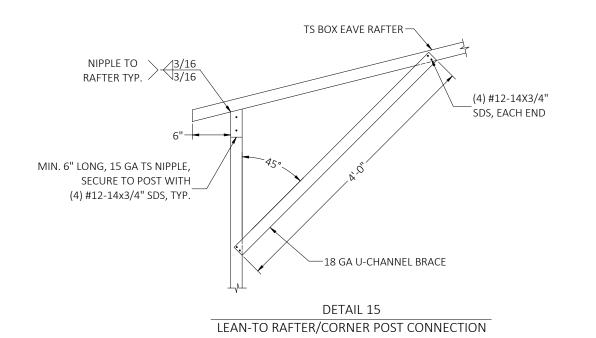
Walker Date:

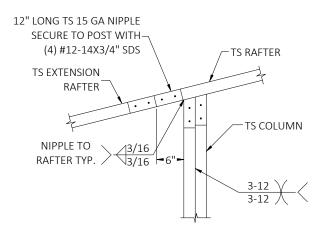
2025.01.17

No. 61240

STATE OF STATE OF QUELLE SOUND A CHARLES SOUND A CHARLE

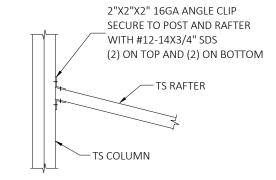
2501569


PROJECT NO.

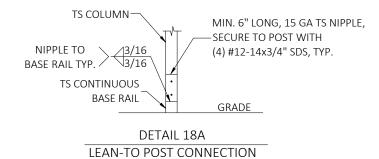

STEEL BUILDINGS AND STRUCTURES INC. 800PIEDMONT TRIAD WEST DR., MOUNT AIRY, NC 27030 DOTY 8249 SW OLD WIRE RD, FORT WHITE FL 32038

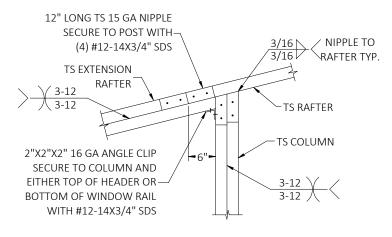
PROJECT ADDRESS 01/16/2025 DATE

DESIGN DATE: REVISION 1: REVISION 2: DATE SHEET: DRAWN BY: JS 7 OF 12 SCALE: NTS

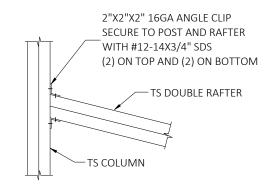


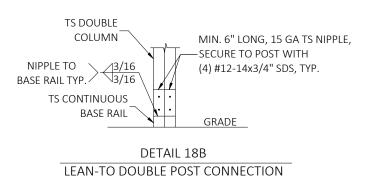
CONNECTION DETAILS


DETAIL 16A


SIDE EXTENSION RAFTER/COLUMN CONNECTION
FOR RAFTER SPANS LESS THAN 12'-0"

DETAIL 17A


LEAN TO RAFTER/COLUMN CONNECTION
FOR RAFTER SPANS LESS THAN 12'-0"


DETAIL 16B

SIDE EXTENSION RAFTER/COLUMN CONNECTION
FOR RAFTER SPANS BETWEEN 12'-0" AND 16'-0"

DETAIL 17B

LEAN TO RAFTER/COLUMN CONNECTION
FOR RAFTER SPANS BETWEEN 12'-0" AND 16'-0"

FLORIDA ENGINEERING LLC 4161 TAMIAMI TRAIL, UNIT 101 PORT CHARLOTTE, FLORIDA 33952 (941) 391-5980 FLEng.com Orders@FLEng.com

O EDWARD WALL b

STATE OF CORIDA CHANGE

Digitally signed by Richard E

Walker Date:

2025.01.17

13:12:56-05'00'

DOTY
8249 SW OLD WIRE RD,
FORT WHITE FL 32038

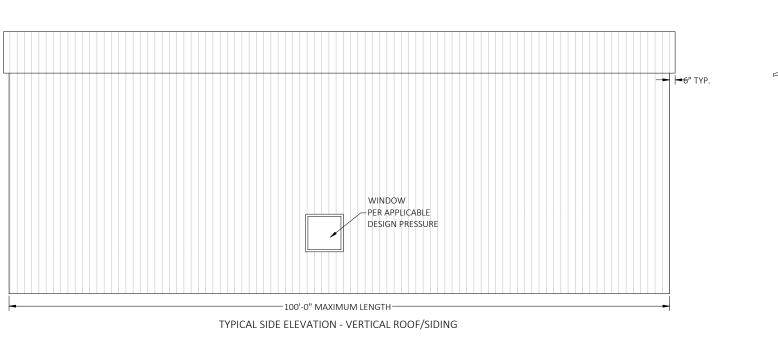
2501569

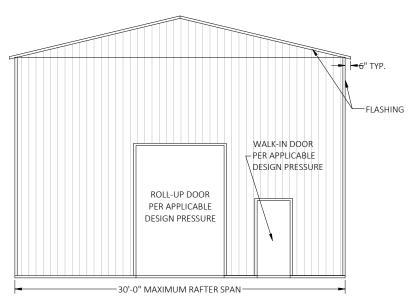
PROJECT NO.

DESIGN DATE: 01/16/2025

REVISION 1: DATE

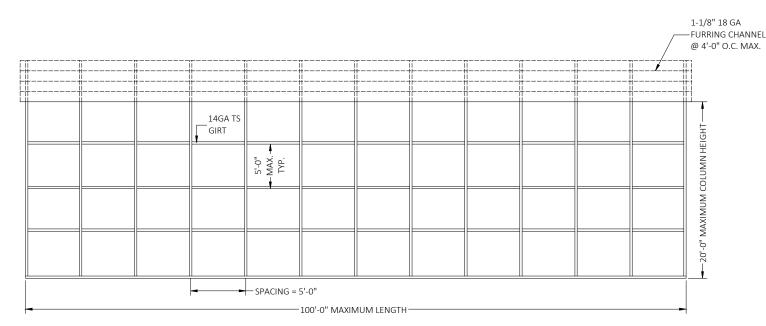
REVISION 2: DATE

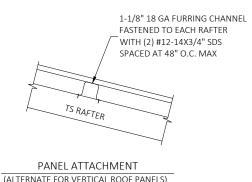

DRAWN BY: JS


SCALE: NTS

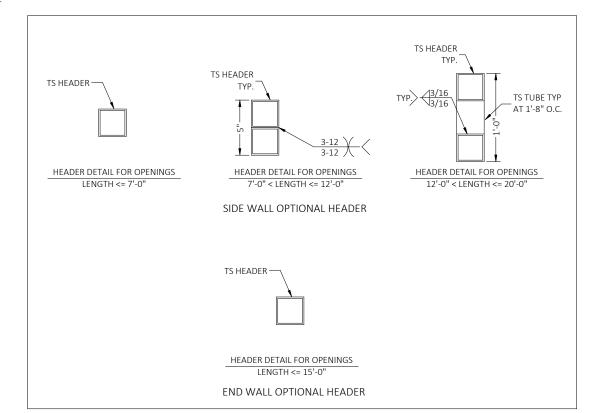
O1/16/2025

SHEET:


OF 12



TYPICAL END ELEVATION - VERICAL ROOF/SIDING


BOX EAVE FRAME RAFTER ENCLOSED BUILDING

TYPICAL RAFTER/POST SIDE FRAME SECTION

(ALTERNATE FOR VERTICAL ROOF PANELS)

FLORIDA ENGINEERING LLC
4161 TAMIAMI TRAIL, UNIT 101
PORT CHARLOTTE, FLORIDA 33952
(941) 391-5980
FLEng.com
Orders@FLEng.com

Digitally signed by Richard E

13:12:57-05'00'

CA CERT. #30782

2501569

PROJECT NO.

Walker Date:

2025.01.17

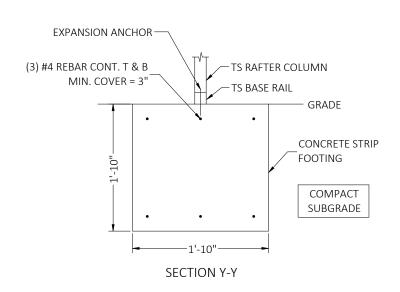
This item has been digitally signed and sealed by Richard E. Walker, P.E. on the date adjacent to the seal. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

No. 61240

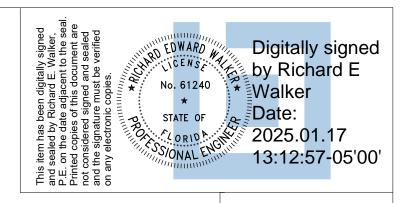
STATE OF STATE OF A CONTROL OF THE STATE OF THE STATE

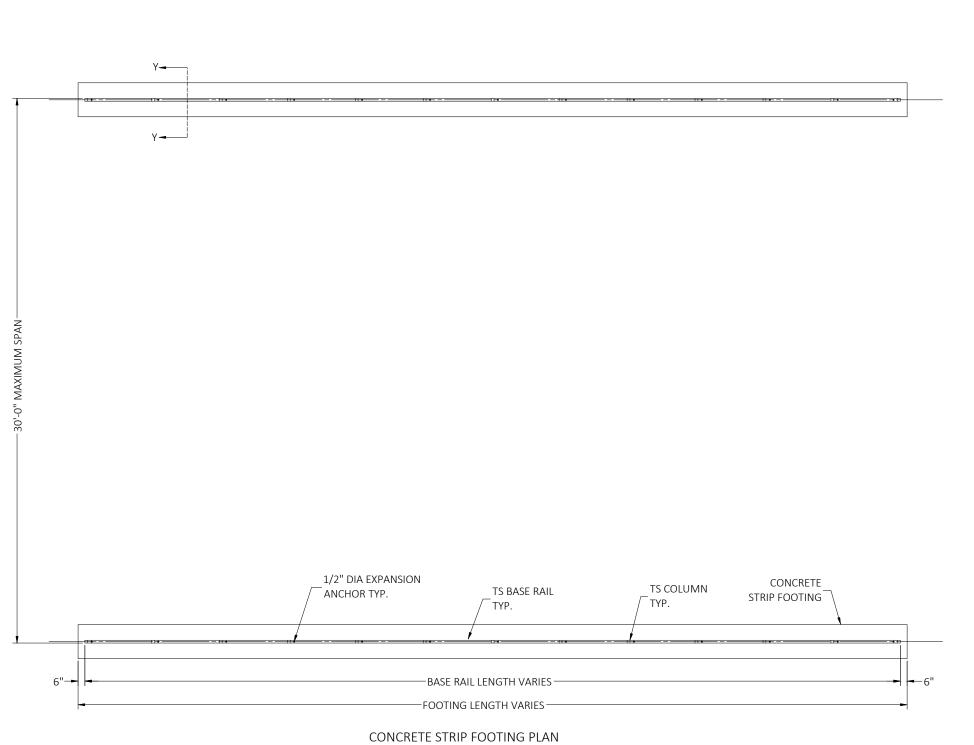
STEEL BUILDINGS AND STRUCTURES INC. 800PIEDMONT TRIAD WEST DR., MOUNT AIRY, NC 27030 DOTY 8249 SW OLD WIRE RD, FORT WHITE FL 32038

01/16/2025 DATE


DESIGN DATE: REVISION 1: REVISION 2: DATE SHEET: DRAWN BY: JS 9 OF 12 SCALE: NTS

GENERAL NOTES


CONCRETE MONOLITHIC SLAB DESIGN IS BASED ON A MINIMUM SOIL BEARING CAPACITY OF 2500 PSF.


MINIMUM 28-DAY SPECIFIED COMPRESSIVE STRENGTH = 3000 PSI

- 1. TURNDOWN REINFORCING STEEL = ASTM A615 GRADE 60
- 2. SLAB REINFORCEMENT = WELDED WIRE FABRIC PER ASTM A185 OR FIBERGLASS FIBER REINFORCEMENT
- 3. REINFORCING STEEL COVER = 3" WHERE CASE AGAINST AND PERMENENTLY EXPOSED TO SOIL OR WATER, 1.5" EVERYWHERE ELSE.
- 4. REINFORCEMENT IS BENT COLD.
- 5. MINIMUM INSIDE DIAMETER OF BEND = (6) BAR DIAMETERS
- 6. REINFORCEMENT PARTIALLY EMBEDDED IN CONCRETE SHALL NOT BE FIELD BENT.

OPTIONAL CONCRETE STRIP FOOTING

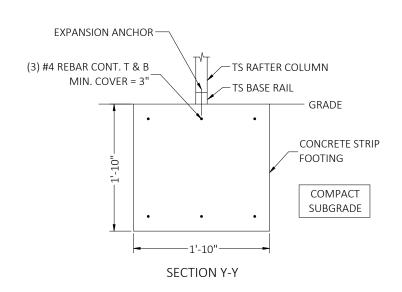
FLORIDA ENGINEERING LLC
4161 TAMIAMI TRAIL, UNIT 101
PORT CHARLOTTE, FLORIDA 33952
(941) 391-5980
FLEng.com
Orders@FLEng.com

STEEL BUILDINGS AND STRUCTURES INC. 800PIEDMONT TRIAD WEST DR.. MOUNT AIRY, NC 27030

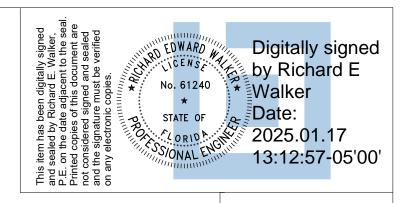
DOTY 8249 SW OLD WIRE RD, FORT WHITE FL 32038

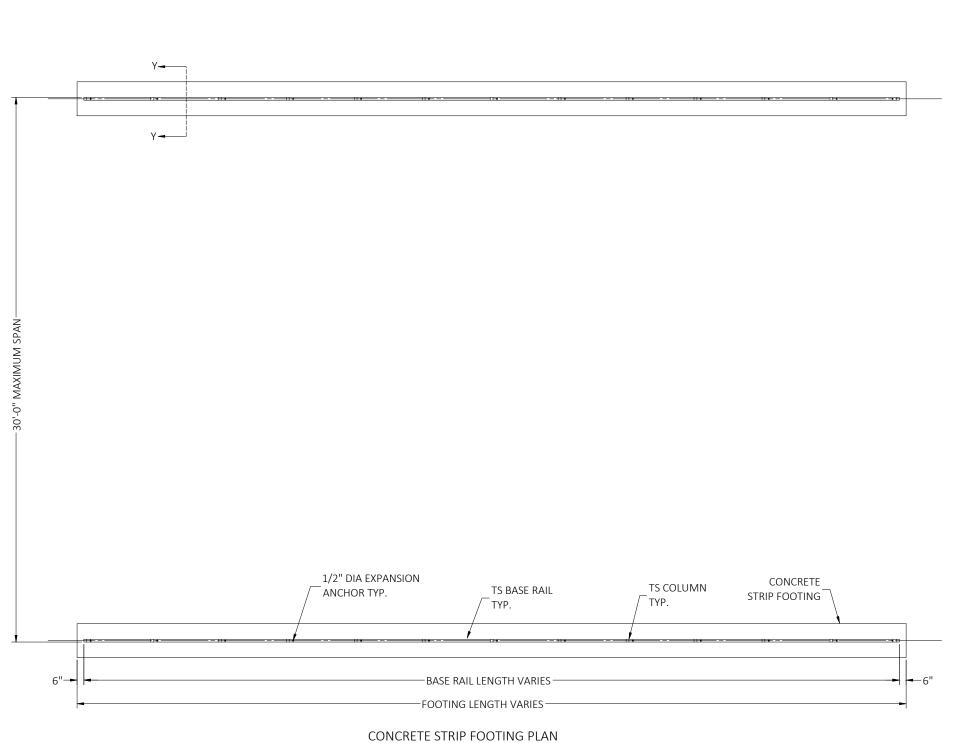
2501569

PROJECT NO.


01/16	6/2025
DA	ATE
DATE	SHEET:
JS	4.0
NTS	10 OF 12
	DATE JS

GENERAL NOTES


CONCRETE MONOLITHIC SLAB DESIGN IS BASED ON A MINIMUM SOIL BEARING CAPACITY OF 2500 PSF.


MINIMUM 28-DAY SPECIFIED COMPRESSIVE STRENGTH = 3000 PSI

- 1. TURNDOWN REINFORCING STEEL = ASTM A615 GRADE 60
- 2. SLAB REINFORCEMENT = WELDED WIRE FABRIC PER ASTM A185 OR FIBERGLASS FIBER REINFORCEMENT
- 3. REINFORCING STEEL COVER = 3" WHERE CASE AGAINST AND PERMENENTLY EXPOSED TO SOIL OR WATER, 1.5" EVERYWHERE ELSE.
- 4. REINFORCEMENT IS BENT COLD.
- 5. MINIMUM INSIDE DIAMETER OF BEND = (6) BAR DIAMETERS
- 6. REINFORCEMENT PARTIALLY EMBEDDED IN CONCRETE SHALL NOT BE FIELD BENT.

OPTIONAL CONCRETE STRIP FOOTING

FLORIDA ENGINEERING LLC
4161 TAMIAMI TRAIL, UNIT 101
PORT CHARLOTTE, FLORIDA 33952
(941) 391-5980
FLEng.com
Orders@FLEng.com

STEEL BUILDINGS AND STRUCTURES INC. 800PIEDMONT TRIAD WEST DR.. MOUNT AIRY, NC 27030 DOTY 8249 SW OLD WIRE RD, FORT WHITE FL 32038

2501569

PROJECT NO.

DESIGN DATE: 01/16/2025 DATE REVISION 1: REVISION 2: DATE SHEET:

JS

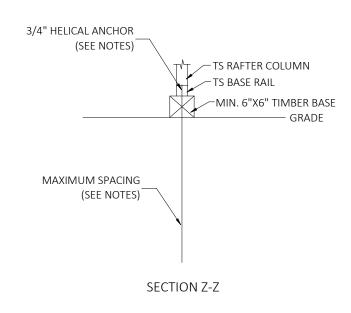
NTS

11_{OF 12}

DRAWN BY:

SCALE:

TIMBER NOTES:


1. TIMBER BASE TO BE NO. 2 SYP PT OR EQUIVALENT.

HELIX ANCHOR NOTES:

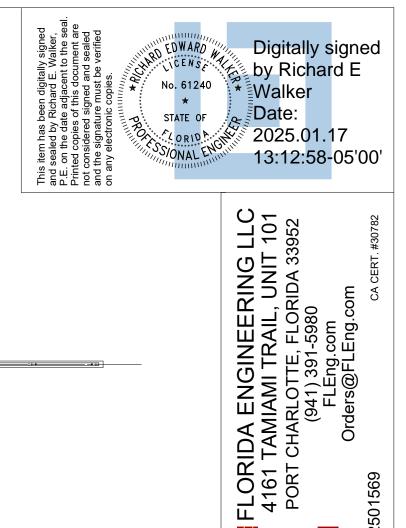

- 1. FOR VERY DENSE AND/OR CEMENTED SANDS, COARSE GRAVEL AND COBBLES, CALICHE, PRELOADED SILTS AND CLAYS, CORALS, MEDIUM DENSE COARSE SANDS, SANDY GRAVELS, VERY STIFF SILTS AND CLAYS, MEDIUM TO VERY LOOSE DENSE SANDS, FIRM TO STIFF CLAYS AND SILTS, ALLUVIAL FILL, USE MINIMUM (2) 4" HELICES WITH MINIMUM 30" EMBEDMENT INSTALLED AT EVERY POST (LEG) / MAX. RAFTER SPACING.
- 2. THE UPLIFT/BEARING CAPACITY OF HELICAL ANCHOR MUST BE EQUAL TO OR GREATER THAN 8.5 KIPS FOR ANCHORS INSTALLED AT EVERY POST (LEG) / MAX. RAFTER SPACING.
- 3. THE UPLIFT/BEARING CAPACITY OF HELICAL ANCHORS MUST BE AS SHOWN IN TABLE A FOR ANCHORS PROVIDED AT THE JAMBS OF DOOR OPENINGS. THE INCREASE IN HELICAL ANCHOR CAPACITY MAY BE ACHIEVED BY INCREASING THE DIAMETER AND/OR THE EMBEDMENT OF THE ANCHORS, OR BY USING DIFFERENT ANCHORS DEPENDING ON THE MANUFACTURER'S SPECIFICATIONS.

TABLE A

REQUIRED UPLIFT / BEARING CAPACITY		RAFTER SPACING (FT.)		
OF HELICAL ANCHORS		4	5	
· ·	6	11.0	9.5	
(FT.)	8	13.0	11.5	
WIDTH	10	15.0	13.0	
₽	12	17.0	14.5	
	14	19.5	16.5	
Ž	16	21.5	18.0	
OPENING	18	23.5	20.0	
Ö	20	25.5	21.5	

OPTIONAL HELICAL ANCHORING ON TIMBER BEAM DETAIL

FLORIDA ENGINEERING LLC

STEEL BUILDINGS AND STRUCTURES INC. 800PIEDMONT TRIAD WEST DR., MOUNT AIRY, NC 27030

DESIGN DATE:

REVISION 1:

REVISION 2:

DRAWN BY:

SCALE:

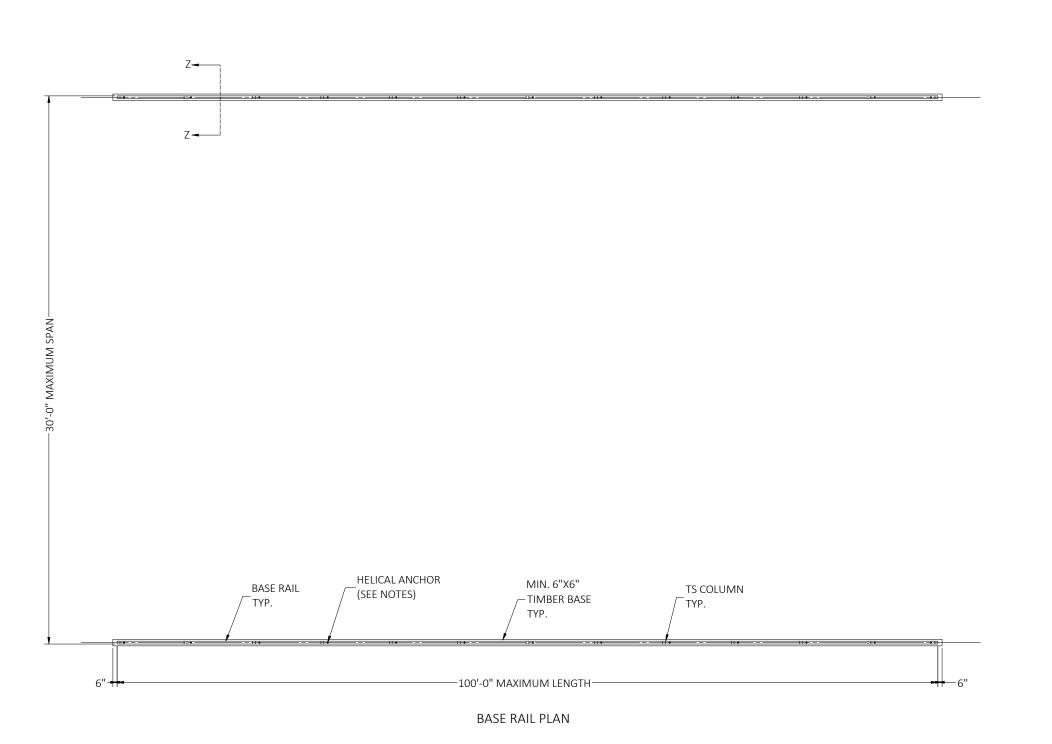
2501569

PROJECT NO.

DOTY 8249 SW OLD WIRE RD, FORT WHITE FL 32038

01/16/2025

DATE


SHEET:

12_{0F 12}

DATE

JS

NTS

