

RE: 2718981 - DETAILS

MiTek USA, Inc. 6904 Parke East Blvd. Tampa, FL 33610-4115

Site Information:

Customer Info: DETAILS Project Name: N/A Model: N/A Lot/Block: N/A Subdivision: N/A

Address: N/A, N/A

City: N/A

State: N/A

Name Address and License # of Structural Engineer of Record, If there is one, for the building.

Name: License #:

Address:

City: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special **Loading Conditions):**

Design Code: FBC2020/TPI2014 Design Program: MiTek 20/20 8.4

Wind Code: ASCE 7-16 Wind Speed: 130 mph Roof Load: 37.0 psf Floor Load: N/A psf

This package includes 20 individual, General Truss Details and 0 Additional Drawings. With my seal affixed to this sheet, I hereby certify that I am the Truss Design Engineer and this index sheet conforms to 61G15-31.003, section 5 of the Florida Board of Professional Engineers Rules.

No.	Seal#	Detail Name	Date	No.	Seal#	Detail Name	Date
1	T23399806	MII-REP10	4/2/21	15	T23399820	MII-VALLEY HIGH WIND2	4/2/21
2	T23399807	MII-T-BRACE 2	4/2/21	16	T23399821	MII-VALLEY SP	4/2/21
3	T23399808	MII-SCAB-BRACE	4/2/21	17	T23399822	MII-VALLEY SP	4/2/21
4	T23399809	MII-REP05	4/2/21	18	T23399823	MII-GE146-001	4/2/21
5	T23399810	MII-GE130-D-SP	4/2/21	19	T23399824	MII-REP13B	4/2/21
6	T23399811	MII-GE130-SP	4/2/21	20	T23399825	MII-STRGBCK	4/2/21
/	T23399812	MII-GE140-001	4/2/21				
8	T23399813	MII-GE170-D-SP	4/2/21				
9	T23399814	MII-GE180-D-SP	4/2/21				
10	T23399815	MII-GE180-D-SP MII-PIGGY-ALT-7-16	4/2/21				
11 12	T23399816 T23399817	MII-REP01A1	4/2/21 4/2/21				
13	T23399818	MII-TOENAIL SP	4/2/21 4/2/21				
14	T23399819	MII-VALLEY HIGH WIND1					
14	123399019	MIII-AMPEL LIGH MIND!	4/2/21				

This item has been electronically signed and sealed by ORegan, Philip, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Builders FirstSource-Jacksonville.

Truss Design Engineer's Name: ORegan, Philip

My license renewal date for the state of Florida is February 28, 2023.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

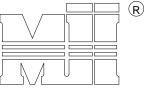
MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

RE: \$JOBNAME - \$JOBDESC

MiTek USA, Inc. 6904 Parke East Blvd. Tampa, FL 33610-4115

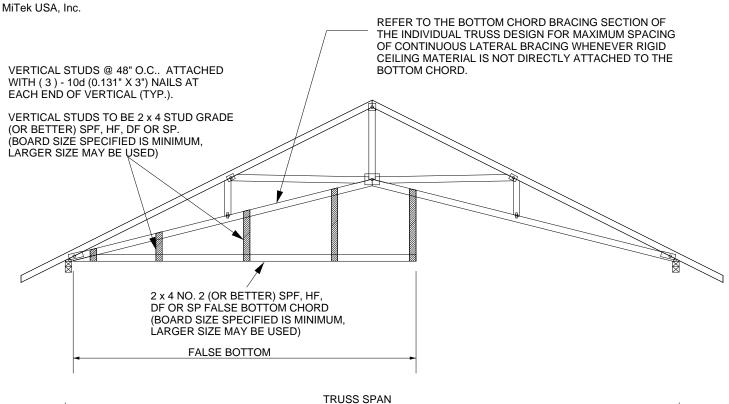
Site Information:

Customer Info: \$SI_CUSTOMER Project Name: \$SI_JOBNAME Model: \$SI_MODEL Lot/Block: \$SI_LOTNUM Subdivision: \$SI_SUBDIV Address: \$SI_SITEADDR


City: \$SI_SITECITY State: \$SI_SITESTATE OCTOBER 28, 2016

STANDARD REPAIR FOR ADDING A FALSE BOTTOM CHORD

MII-REP10 T23399806


MiTek USA, Inc.

Page 1 of 1

MAIN TRUSS MANUFACTURED WITHOUT FALSE BOTTOM CHORD.

MAIN TRUSS (SPACING = 24" O.C.)

NOTES:

- 1. LOADING: TOP CHORD: (REFER TO THE MAIN TRUSS DESIGN FOR TOP CHORD LOADING). BOTTOM CHORD: LL = 0 PSF, DL = 10 PSF.
- 2. REFER TO THE MAIN TRUSS DESIGN FOR LUMBER AND PLATING REQUIREMENTS.
- 3. MAXIMUM BOTTOM CHORD PITCH = 6/12.
- 4. THE END DISTANCE, EDGE DISTANCE, AND SPACING OF NAILS SHALL BE SUCH AS TO AVOID SPLITTING OF THE WOOD.
- 5. FALSE BOTTOM CHORD ONLY DESIGNED TO CARRY VERTICAL LOAD. NO LATERAL (SHEAR) LOAD ALLOWED.
- 6. FILLER MAY EXTEND FOR FULL LENGTH OF TRUSS.

This item has been electronically signed and sealed by ORegan, Philip, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

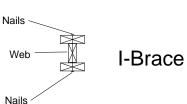
Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

T-BRACE / I-BRACE DETAIL WITH 2X BRACE ONLY

MII-T-BRACE 2 T23399807

MiTek USA, Inc.

Page 1 of 1


Note: T-Bracing / I-Bracing to be used when continuous lateral bracing is impractical. T-Brace / I-Brace must cover 90% of web length.

Note: This detail NOT to be used to convert T-Brace / I-Brace webs to continuous lateral braced webs.

Nailing Pattern					
T-Brace size Nail Size Nail Spacing					
2x4 or 2x6 or 2x8	10d (0.131" X 3")	6" o.c.			

Note: Nail along entire length of T-Brace / I-Brace (On Two-Ply's Nail to Both Plies)

	Nails
WEB	SPACING
	T-BRACE
Nails \	Section Detail T-Brace Web

	Brace Size for One-Ply Truss				
	Specified Continuous Rows of Lateral Bracing				
Web Size	1	2			
2x3 or 2x4	2x4 T-Brace	2x4 I-Brace			
2x6	2x6 T-Brace	2x6 I-Brace			
2x8	2x8 T-Brace	2x8 I-Brace			

	Brace Size for Two-Ply Truss			
	Specified Continuous Rows of Lateral Bracing			
Web Size	1 2			
2x3 or 2x4	2x4 T-Brace	2x4 I-Brace		
2x6	2x6 T-Brace 2x6 I-Brace			
2x8	2x8 T-Brace 2x8 I-Brace			

T-Brace / I-Brace must be same species and grade (or better) as web member.

This item has been electronically signed and sealed by ORegan, Philip, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

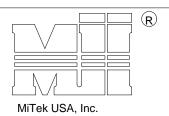
April 2,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information

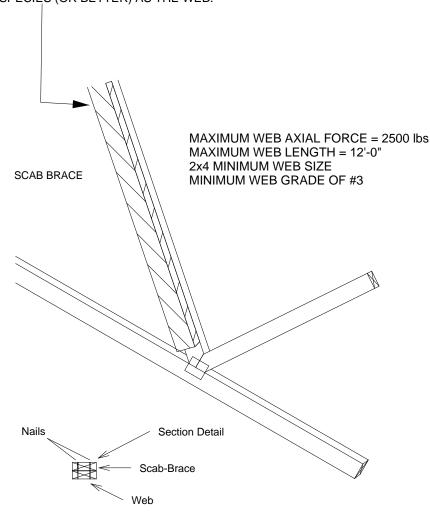
available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


6904 Parke East Blvd. Tampa, FL 36610

SCAB-BRACE DETAIL

MII-SCAB-BRACE T23399808

MiTek USA, Inc.


Page 1 of 1

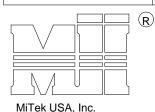
Note: Scab-Bracing to be used when continuous lateral bracing at midpoint (or T-Brace) is impractical. Scab must cover full length of web +/- 6".

*** THIS DETAIL IS NOT APLICABLE WHEN BRACING IS *** REQUIRED AT 1/3 POINTS OR I-BRACE IS SPECIFIED.

SCAB TO ONE FACE OF WEB WITH APPLY 2x 2 ROWS OF 10d (0.131" X 3") NAILS SPACED 6" O.C. SCAB MUST BE THE SAME GRADE, SIZE AND SPECIES (OR BETTER) AS THE WEB.

Scab-Brace must be same species grade (or better) as web member.

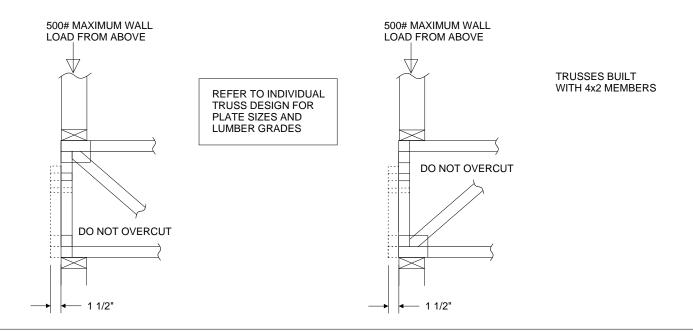
This item has been electronically signed and sealed by ORegan, Philip, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

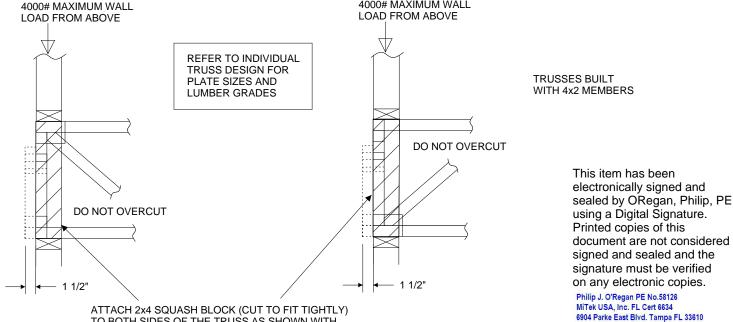

Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

STANDARD REPAIR TO REMOVE END **VERTICAL (RIBBON NOTCH VERTICAL)**

MII-REP05 T23399809

MiTek USA, Inc. Page 1 of 1




- 1. THIS IS A SPECIFIC REPAIR DETAIL TO BE USED ONLY FOR ITS ORIGINAL INTENTION. THIS REPAIR DOES NOT IMPLY THAT THE REMAINING PORTION OF THE TRUSS IS UNDAMAGED. THE ENTIRE TRUSS SHALL BE INSPECTED TO VERIFY THAT NO FURTHER REPAIRS ARE REQUIRED. WHEN THE REQUIRED REPAIRS ARE PROPERLY APPLIED, THE TRUSS WILL BE CAPABLE OF SUPPORTING THE LOADS INDICATED.
- 2. ALL MEMBERS MUST BE RETURNED TO THEIR ORIGINAL POSITIONS BEFORE
- APPLYING REPAIR AND HELD IN PLACE DURING APPLICATION OF REPAIR.

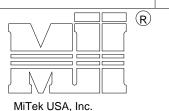
 3. THE END DISTANCE, EDGE DISTANCE, AND SPACING OF NAILS SHALL BE
- SUCH AS TO AVOID SPLITTING OF THE WOOD.

 4. LUMBER MUST BE CUT CLEANLY AND ACCURATELY AND THE REMAINING WOOD MUST BE UNDAMAGED.

 5. THIS REPAIR IS TO BE USED FOR SINGLE PLY TRUSSES IN THE 4X_ ORIENTATION ONLY.
- 6. CONNECTOR PLATES MUST BE FULLY IMBEDDED AND UNDISTURBED.

4000# MAXIMUM WALL

TO BOTH SIDES OF THE TRUSS AS SHOWN WITH 10d (0.131" X 3") NAILS SPACED 3" O.C.



Standard Gable End Detail

MII-GE130-D-SP T23399810

Page 1 of 2

MiTek USA. Inc.

Typical _x4 L-Brace Nailed To 2x_ Verticals W/10d Nails spaced 6" o.c. Vertical Stud SECTION B-B

DIAGONAL BRACE 4'-0" O.C. MAX TRUSS GEOMETRY AND CONDITIONS SHOWN ARE FOR ILLUSTRATION ONLY. 12 Varies to Common Truss SEE INDIVIDUAL MITEK ENGINEERING DRAWINGS FOR DESIGN CRITERIA ** 3x4 = - Diagonal Bracing - L-Bracing Refer ** Refer to Section A-A to Section B-B

Vertical Stud DIAGONAL (4) - 16d Nails 16d Nails Spaced 6" o.c. (2) - 10d Nails into 2x6 2x6 Stud or 2x4 No.2 of better Typical Horizontal Brace Nailed To 2x_ Verticals w/(4)-10d Nails **SECTION A-A** 2x4 Stud

> PROVIDE 2x4 BLOCKING BETWEEN THE FIRST TWO TRUSSES AS NOTED. TOENAIL BLOCKING TO TRUSSES WITH (2) - 10d NAILS AT EACH END. ATTACH DIAGONAL BRACE TO BLOCKING WITH (5) - 10d NAILS.

(4) - 8d (0.131" X 2.5") NAILS MINIMUM, PLYWOOD SHEATHING TO 2x4 STD SPF BLOCK

Roof Sheathing

24" Max

1'-3" (2) - 10d/ Max. **NAILS** (2) - 10d NAILS

2x6 DIAGONAL BRACE SPACED 48" O.C. Diag. Brace ATTACHED TO VERTICAL WITH (4) -16d at 1/3 points NAILS AND ATTACHED TO BLOCKING WITH (5) - 10d NAILS. if needed

HORIZONTAL BRACE **End Wall** (SEE SECTION A-A)

NOTE:

- 1. MINIMUM GRADE OF #2 MATERIAL IN THE TOP AND BOTTOM CHORDS.
- 2. CONNECTION BETWEEN BOTTOM CHORD OF GABLE END TRUSS AND WALL TO BE PROVIDED BY PROJECT ENGINEER OR ARCHITECT.
- 3. BRACING SHOWN IS FOR INDIVIDUAL TRUSS ONLY. CONSULT BLDG. ARCHITECT OR ENGINEER FOR TEMPORARY AND PERMANENT BRACING OF ROOF SYSTEM
- 4. "L" BRACES SPECIFIED ARE TO BE FULL LENGTH. GRADES: 1x4 SRB OR 2x4 STUD OR BETTER WITH ONE ROW OF 10d NAILS SPACED 6" O.C. 5. DIAGONAL BRACE TO BE APPROXIMATELY 45 DEGREES TO ROOF
- DIAPHRAM AT 4'-0" O.C.
- 6. CONSTRUCT HORIZONTAL BRACE CONNECTING A 2x6 STUD AND A 2x4 STUD AS SHOWN WITH 16d NAILS SPACED 6" O.C. HORIZONTAL BRACE TO BE LOCATED AT THE MIDSPAN OF THE LONGEST STUD. ATTACH TO VERTICAL STUDS WITH (4) 10d NAILS THROUGH 2x4. (REFER TO SECTION A-A)
- 7. GABLE STUD DEFLECTION MEETS OR EXCEEDS L/240.
- 8. THIS DETAIL DOES NOT APPLY TO STRUCTURAL GABLES
- DO NOT USE FLAT BOTTOM CHORD GABLES NEXT TO SCISSOR TYPE TRUSSES.
- 10. SOUTHERN PINE LUMBER DESIGN VALUES ARE THOSE EFFECTIVE 06-01-13 BY SPIB/ALSC
- 11. NAILS DESIGNATED 10d ARE (0.131" X 3") AND NAILS DESIGNATED 16d ARE (0.131" X 3.5")

Minimum Stud Size Species	Stud Spacing	Without Brace	1x4 L-Brace	2x4 L-Brace	DIAGONAL BRACE	2 DIAGONAL BRACES AT 1/3 POINTS	
and Grade		Maximum Stud Length					
2x4 SP No. 3 / Stud	12" O.C.	3-9-13	4-1-1	5-9-6	7-1-3	11-5-7	
2x4 SP No. 3 / Stud	16" O.C.	3-5-4	3-6-8	5-0-2	6-10-8	10-3-13	
2x4 SP No. 3 / Stud	24" O.C.	2-9-11	2-10-11	4-1-1	5-7-6	8-5-1	

Diagonal braces over 6'-3" require a 2x4 T-Brace attached to one edge. Diagonal braces over 12'-6" require 2x4 I-braces attached to both edges. Fasten T and I braces to narrow edge of diagonal brace with 10d nails 8" o.c., with 3" minimum end distance. Brace must cover 90% of diagonal length.

MAX MEAN ROOF HEIGHT = 30 FEET CATEGORY II BUILDING EXPOSURE D

sealed by ORegan, Philip, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

This item has been electronically signed and

Trusses @ 24" o.c.

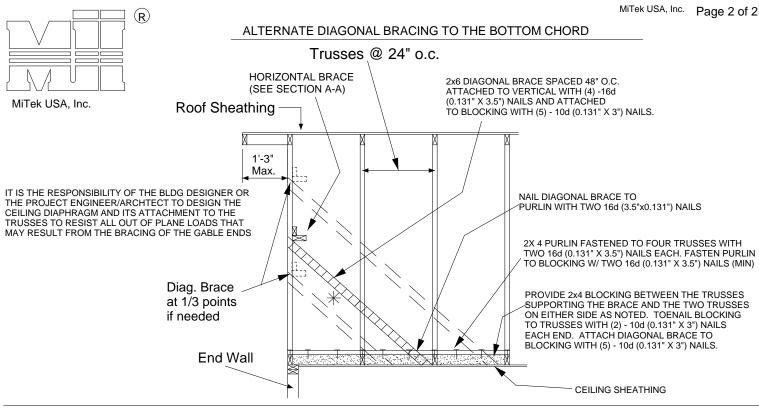
Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

April 2,2021

ASCE 7-10, ASCE 7-10 130 MPH

STUD DESIGN IS BASED ON COMPONENTS AND CLADDING.

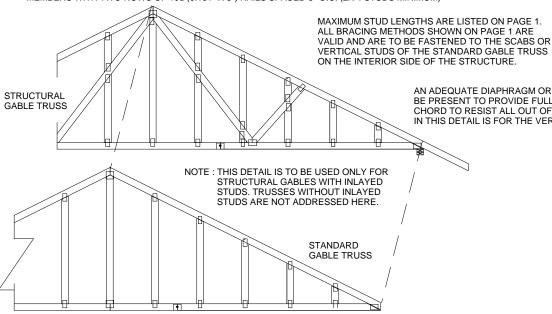
DURANION OF COAD INCREASE LIFE AS OF READ NOT CONNECTION OF BRACTING IS BASED ON MY FIRST. 519/2020 BEFORE USE.

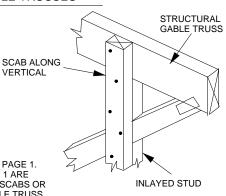

Design valid for use only with MITEK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSITP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Standard Gable End Detail

MII-SHEET 2 T23399810


BRACING REQUIREMENTS FOR STRUCTURAL GABLE TRUSSES


STRUCTURAL GABLE TRUSSES MAY BE BRACED AS NOTED: METHOD 1: ATTACH A MATCHING GABLE TRUSS TO THE INSIDE FACE OF THE STRUCTURAL GABLE AND FASTEN PER THE FOLLOWING NAILING SCHEDULE.

METHOD 2: ATTACH 2X_SCABS TO THE FACE OF EACH VERTICAL
MEMBER ON THE STRUCTURAL GABLE PER THE FOLLOWING
NAILING SCHEDULE. SCABS ARE TO BE OF THE SAME SIZE, GRADE AND SPECIES AS THE TRUSS VERTICALS

NAILING SCHEDULE:

EING SCHEDEL:
- FOR WIND SPEEDS 120 MPH (ASCE 7-98, 02, 05), 150 MPH (ASCE 7-10, 16) OR LESS, NAIL ALL
- MEMBERS WITH ONE ROW OF 10d (0.131" X 3") NAILS SPACED 6" O.C.
- FOR WIND SPEEDS 120-150 MPH (ASCE 7-98, 02, 05), 150-190 MPH (ASCE 7-10, 16) NAIL ALL
- MEMBERS WITH TWO ROWS OF 10d (0.131" X 3") NAILS SPACED 6" O.C. (2X 4 STUDS MINIMUM)

AN ADEQUATE DIAPHRAGM OR OTHER METHOD OF BRACING MUST BE PRESENT TO PROVIDE FULL LATERAL SUPPORT OF THE BOTTOM CHORD TO RESIST ALL OUT OF PLANE LOADS. THE BRACING SHOWN IN THIS DETAIL IS FOR THE VERTICAL/STUDS ONLY.

VERTICAL

This item has been electronically signed and sealed by ORegan, Philip, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

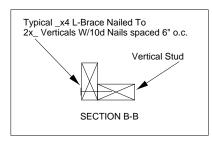
Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

April 2,2021

🗥 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Standard Gable End Detail


MII-GE130-SP T23399811

Page 1 of 2

MiTek USA, Inc.

MiTek USA, Inc.

DIAGONAL BRACE TRUSS GEOMETRY AND CONDITIONS 4'-0" O.C. MAX SHOWN ARE FOR ILLUSTRATION ONLY. 12 Varies to Common Truss SEE INDIVIDUAL MITEK ENGINEERING DRAWINGS FOR DESIGN CRITERIA 3x4 = - Diagonal Bracing - L-Bracing Refer Refer to Section A-A to Section B-B

Vertical Stud DIAGONAL (4) - 16d Nails 16d Nails Spaced 6" o.c. (2) - 10d Nails into 2x6 2x6 Stud or 2x4 No.2 of better Typical Horizontal Brace Nailed To 2x_ Verticals w/(4)-10d Nails **SECTION A-A** 2x4 Stud

> PROVIDE 2x4 BLOCKING BETWEEN THE FIRST TWO TRUSSES AS NOTED. TOENAIL BLOCKING TO TRUSSES WITH (2) - 10d NAILS AT EACH END. ATTACH DIAGONAL BRACE TO BLOCKING WITH (5) - 10d NAILS.

(4) - 8d (0.131" X2.5") NAILS MINIMUM, PLYWOOD SHEATHING TO 2x4 STD SPF BLOCK

2 NOTE:

1. MINIMUM GRADE OF #2 MATERIAL IN THE TOP AND BOTTOM CHORDS. 2. CONNECTION BETWEEN BOTTOM CHORD OF GABLE END TRUSS AND WALL TO BE PROVIDED BY PROJECT ENGINEER OR ARCHITECT.

3. BRACING SHOWN IS FOR INDIVIDUAL TRUSS ONLY. CONSULT BLDG. ARCHITECT OR ENGINEER FOR TEMPORARY AND PERMANENT BRACING OF ROOF SYSTEM.

4. "L" BRACES SPECIFIED ARE TO BE FULL LENGTH. GRADES: 1x4 SRB

OR 2x4 STUD OR BETTER WITH ONE ROW OF 10d NAILS SPACED 6" O.C. 5. DIAGONAL BRACE TO BE APPROXIMATELY 45 DEGREES TO ROOF DIAPHRAM AT 4'-0" O.C.

6. CONSTRUCT HORIZONTAL BRACE CONNECTING A 2x6 STUD AND A 2x4 STUD AS SHOWN WITH 16d NAILS SPACED 6" O.C. HORIZONTAL BRACE TO BE LOCATED AT THE MIDSPAN OF THE LONGEST STUD. ATTACH TO VERTICAL STUDS WITH (4) 10d NAILS THROUGH 2x4. (REFER TO SECTION A-A)

- GABLE STUD DEFLECTIÓN MEETS OR EXCEEDS L/240.
- THIS DETAIL DOES NOT APPLY TO STRUCTURAL GABLES.
 DO NOT USE FLAT BOTTOM CHORD GABLES NEXT TO SCISSOR
- TYPE TRUSSES.
- 10. SOUTHERN PINE LUMBER DESIGN VALUES ARE THOSE EFFECTIVE 06-01-13 BY SPIB/ALSC.
- NAILS DESIGNATED 10d ARE (0.131" X 3") AND NAILS DESIGNATED 16d ARE (0.131" X 3.5")

Roof Sheathing	
24" Max 1'-3" Max.	(2) - 10d NAILS (2) - 10d NAILS Trusses @ 24" o.c
Diag. Brace at 1/3 points if needed	2x6 DIAGONAL BRACE SPACED 48" O.C. ATTACHED TO VERTICAL WITH (4) -16d NAILS AND ATTACHED TO BLOCKING WITH (5) - 10d NAILS.
End Wall	HORIZONTAL BRACE (SEE SECTION A-A)

Minimum Stud Size Species	Stud Spacing	Without Brace	1x4 L-Brace	2x4 L-Brace	DIAGONAL BRACE	2 DIAGONAL BRACES AT 1/3 POINTS
and Grade				n Stud Length		
2x4 SP No. 3 / Stud	12" O.C.	4-0-7	4-5-6	6-3-8	8-0-15	12-1-6
2x4 SP No. 3 / Stud	16" O.C.	3-8-0	3-10-4	5-5-6	7-4-1	11-0-1
2x4 SP No. 3 / Stud	24" O.C.	3-0-10	3-1-12	4-5-6	6-1-5	9-1-15

Diagonal braces over 6'-3" require a 2x4 T-Brace attached to one edge. Diagonal braces over 12'-6" require 2x4 I-braces attached to both edges. Fasten T and I braces to narrow edge of diagonal brace with 10d nails 8" o.c., with 3" minimum end distance. Brace must cover 90% of diagonal length.

MAX MEAN ROOF HEIGHT = 30 FEET CATEGORY II BUILDING EXPOSURE B or C

ASCE 7-98, ASCE 7-02, ASCE 7-05 130 MPH

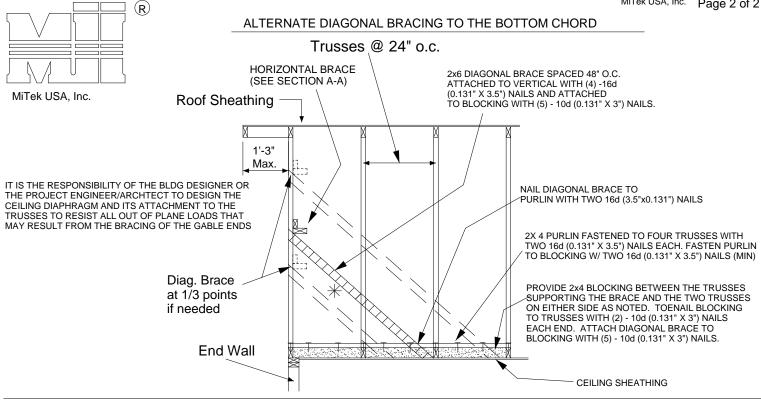
ASCE 7-36, ASCE 7-20 ISO MPH

STUD DESIGN IS BASED ON COMPONENTS AND CLADDING.

DURANION OF GABUNGREASE 1914.60 READ NOT CONNECTION OF BRACTINGRS BASED ON MWFRS. 5/19/2020 BEFORE USE.

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


6904 Parke East Blvd

electronically signed and sealed by ORegan, Philip, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

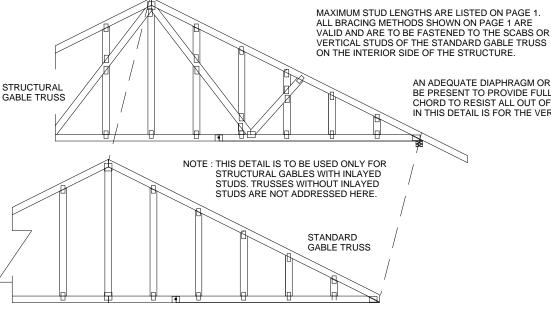
This item has been

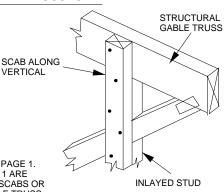
Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

MiTek USA, Inc. Page 2 of 2

BRACING REQUIREMENTS FOR STRUCTURAL GABLE TRUSSES

STRUCTURAL GABLE TRUSSES MAY BE BRACED AS NOTED: METHOD 1 : ATTACH A MATCHING GABLE TRUSS TO THE INSIDE


FACE OF THE STRUCTURAL GABLE AND FASTEN PER THE FOLLOWING NAILING SCHEDULE.


METHOD 2: ATTACH 2X _ SCABS TO THE FACE OF EACH VERTICAL MEMBER ON THE STRUCTURAL GABLE PER THE FOLLOWING NAILING SCHEDULE. SCABS ARE TO BE OF THE SAME SIZE, GRADE AND SPECIES AS THE TRUSS VERTICALS

NAILING SCHEDULE:

FOR WIND SPEEDS 120 MPH (ASCE 7-98, 02, 05), 150 MPH (ASCE 7-10, 16) OR LESS, NAIL ALL MEMBERS WITH ONE ROW OF 10d (0.131" X 3") NAILS SPACED 6" O.C.

- FOR WIND SPEEDS 120-150 MPH (ASCE 7-98, Ó2, 05), 150-190 MPH (ASCE 7-10, 16) NAIL ALL MEMBERS WITH TWO ROWS OF 10d (0.131" X 3") NAILS SPACED 6" O.C. (2X 4 STUDS MINIMUM)

AN ADEQUATE DIAPHRAGM OR OTHER METHOD OF BRACING MUST BE PRESENT TO PROVIDE FULL LATERAL SUPPORT OF THE BOTTOM CHORD TO RESIST ALL OUT OF PLANE LOADS. THE BRACING SHOWN IN THIS DETAIL IS FOR THE VERTICAL/STUDS ONLY.

> This item has been electronically signed and sealed by ORegan, Philip, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

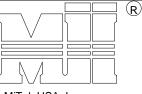
Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

April 2,2021

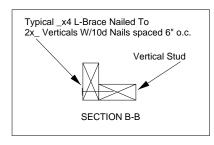
🗥 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


JANUARY 6, 2017

Standard Gable End Detail


MII-GE140-001 T23399812

Page 1 of 2

MiTek USA, Inc.

MiTek USA, Inc.

DIAGONAL BRACE TRUSS GEOMETRY AND CONDITIONS SHOWN ARE FOR ILLUSTRATION ONLY. 4'-0" O.C. MAX Varies to Common Truss SEE INDIVIDUAL MITEK ENGINEERING DRAWINGS FOR DESIGN CRITERIA 3x4 =Diagonal Bracing ** - L-Bracing Refer Refer to Section A-A to Section B-B

Vertical Stud DIAGONAL (4) - 16d Nails 16d Nails Spaced 6" o.c. (2) - 10d Nails into 2x6 2x6 Stud or 2x4 No.2 of better Typical Horizontal Brace Nailed To 2x_ Verticals w/(4)-10d Nails **SECTION A-A** 2x4 Stud

> PROVIDE 2x4 BLOCKING BETWEEN THE FIRST TWO TRUSSES AS NOTED. TOENAIL BLOCKING TO TRUSSES WITH (2) - 10d NAILS AT EACH END. ATTACH DIAGONAL BRACE TO BLOCKING WITH (5) - 10d NAILS.

(4) - 8d (0.131" X 2.5") NAILS MINIMUM, PLYWOOD SHEATHING TO 2x4 STD DF/SPF BLOCK

- 1. MINIMUM GRADE OF #2 MATERIAL IN THE TOP AND BOTTOM CHORDS. 2. CONNECTION BETWEEN BOTTOM CHORD OF GABLE END TRUSS AND
- WALL TO BE PROVIDED BY PROJECT ENGINEER OR ARCHITECT.

 3. BRACING SHOWN IS FOR INDIVIDUAL TRUSS ONLY. CONSULT BLDG. ARCHITECT OR ENGINEER FOR TEMPORARY AND PERMANENT BRACING OF ROOF SYSTEM.
- "L" BRACES SPECIFIED ARE TO BE FULL LENGTH. GRADES: 1x4 SRB OR 2x4 STUD OR BETTER WITH ONE ROW OF 10d NAILS SPACED 6" O.C.
- 5. DIAGONAL BRACE TO BE APPROXIMATELY 45 DEGREES TO ROOF
- DIAPHRAM AT 4'-0" O.C. 6. CONSTRUCT HORIZONTAL BRACE CONNECTING A 2x6 STUD AND A 2x4 STUD AS SHOWN WITH 16d NAILS SPACED 6" O.C. HORIZONTAL BRACE TO BE LOCATED AT THE MIDSPAN OF THE LONGEST STUD. ATTACH TO VERTICAL STUDS WITH (4) 10d NAILS THROUGH 2x4. (REFER TO SECTION A-A)
- GABLE STUD DEFLECTION MEETS OR EXCEEDS L/240.
- THIS DETAIL DOES NOT APPLY TO STRUCTURAL GABLES. DO NOT USE FLAT BOTTOM CHORD GABLES NEXT TO SCISSOR TYPE TRUSSES.
- 10. NAILS DESIGNATED 10d ARE (0.131" X 3") AND NAILS DESIGNATED 16d ARE (0.131" X 3.5")

	Roof Sheathi	ng —			
24" Max	1'-3" Max.	(2) - 1 NAILS	0d 33	Truss	(2) - 10d NAILS
at 1	g. Brace /3 points eeded	/ / /	ATTACHED NAILS AND	TO VERTICA	SPACED 48" O.C. AL WITH (4) -16d - 10d NAILS.
	End Wall			IORIZONTA SEE SECTI	

Minimum Stud Size Species	Stud Spacing	Without Brace	1x4 L-Brace	2x4 L-Brace	DIAGONAL BRACE	2 DIAGONAL BRACES AT 1/3 POINTS
and Grade			ngth			
2x4 DF/SPF Std/Stud	12" O.C.	3-10-1	3-11-7	5-7-2	7-8-2	11-6-4
2x4 DF/SPF Std/Stud	16" O.C.	3-3-14	3-5-1	4-10-2	6-7-13	9-11-11
2x4 DF/SPF Std/Stud	24" O.C.	2-8-9	2-9-8	3-11-7	5-5-2	8-1-12

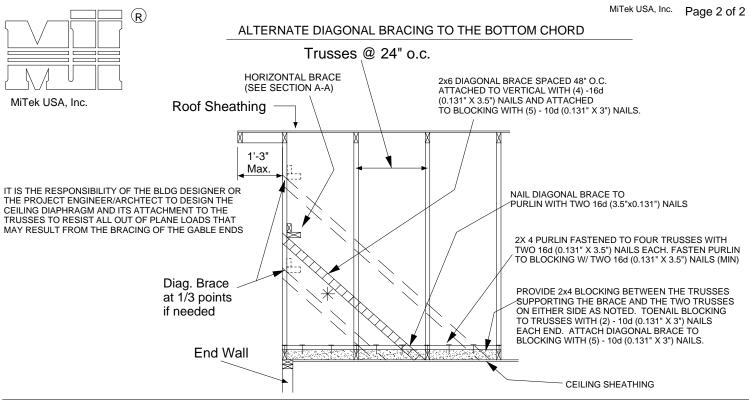
Diagonal braces over 6'-3" require a 2x4 T-Brace attached to one edge. Diagonal braces over 12'-6" require 2x4 I-braces attached to both edges. Fasten T and I braces to narrow edge of web with 10d nails 8" o.c., with 3" minimum end distance. Brace must cover 90% of diagonal length.

MAXIMUM WIND SPEED = 140 MPH MAX MEAN ROOF HEIGHT = 30 FEET CATEGORY II BUILDING **EXPOSURE B or C**

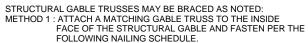
This item has been electronically signed and sealed by ORegan, Philip, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

April 2,2021


ASCE 7-98, ASCE 7-02, ASCE 7-05

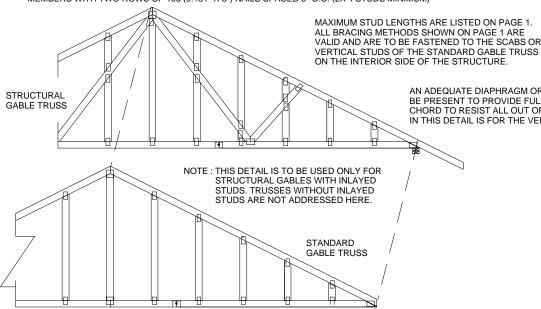
DURANON-OFIGOAD/INGREASE::pt.6:0 REAP GONNECTION IOFISBASED ON COMPONENTS AND CLADDING.

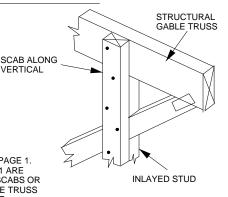

Design valid for use only with MITEK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSITP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information
**available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BRACING REQUIREMENTS FOR STRUCTURAL GABLE TRUSSES

METHOD 2 : ATTACH 2X _ SCABS TO THE FACE OF EACH VERTICAL


MEMBER ON THE STRUCTURAL GABLE PER THE FOLLOWING


NAILING SCHEDULE. SCABS ARE TO BE OF THE SAME SIZE, GRADE AND SPECIES AS THE TRUSS VERTICALS

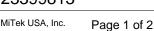
NAILING SCHEDULE:

FOR WIND SPEEDS 120 MPH (ASCE 7-98, 02, 05), 150 MPH (ASCE 7-10, 16) OR LESS, NAIL ALL MEMBERS WITH ONE ROW OF 10d (0.131" X 3") NAILS SPACED 6" O.C.
FOR WIND SPEEDS 120-150 MPH (ASCE 7-98, 02, 05), 150-190 MPH (ASCE 7-10, 16) NAIL ALL

MEMBERS WITH TWO ROWS OF 10d (0.131" X 3") NAÎLS SPACED 6" O.C. (2X 4 STÚDS MINIMUM)

AN ADEQUATE DIAPHRAGM OR OTHER METHOD OF BRACING MUST BE PRESENT TO PROVIDE FULL LATERAL SUPPORT OF THE BOTTOM CHORD TO RESIST ALL OUT OF PLANE LOADS. THE BRACING SHOWN IN THIS DETAIL IS FOR THE VERTICAL/STUDS ONLY.

> This item has been electronically signed and sealed by ORegan, Philip, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.


Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

Standard Gable End Detail

MII-GE170-D-SP T23399813

2x4 Verticals W/10d Nails spaced 6" o.c. Vertical Stud

3x4 =

24" Max

SECTION B-B DIAGONAL BRACE 4'-0" O.C. MAX TRUSS GEOMETRY AND CONDITIONS SHOWN ARE FOR ILLUSTRATION ONLY. Varies to Common Truss SEE INDIVIDUAL MITEK ENGINEERING DRAWINGS FOR DESIGN CRITERIA

**

- L-Bracing Refer

to Section B-B

Vertical Stud 2X6 SP OR SPF No. 2 DIAGONAL BRACE (4) - 16d Nails 16d Nails Spaced 6" o.c. (2) - 10d Nails into 2x6 2X6 SP OR SPF No. 2 Typical Horizontal Brace Nailed To 2x4 Verticals w/(4)-10d Nails **SECTION A-A** 2X4 SP OR SPF No. 2

> PROVIDE 2x4 BLOCKING BETWEEN THE FIRST TWO TRUSSES AS NOTED. TOENAIL BLOCKING TO TRUSSES WITH (2) - 10d NAILS AT EACH END. ATTACH DIAGONAL BRACE TO BLOCKING WITH (5) - 10d NAILS.

(4) - 8d (0.131" X 2.5") NAILS MINIMUM, PLYWOOD SHEATHING TO 2x4 STD SPF BLOCK

10d/

NAILS

Roof Sheathing

1'-0"

Max.

NOTE:

- Diagonal Bracing

Refer to Section A-A

1. MINIMUM GRADE OF #2 MATERIAL IN THE TOP AND BOTTOM CHORDS. 2. CONNECTION BETWEEN BOTTOM CHORD OF GABLE END TRUSS AND

**

- WALL TO BE PROVIDED BY PROJECT ENGINEER OR ARCHITECT.
- 3. BRACING SHOWN IS FOR INDIVIDUAL TRUSS ONLY. CONSULT BLDG. ARCHITECT OR ENGINEER FOR TEMPORARY AND PERMANENT BRACING OF ROOF SYSTEM.
- "L" BRACES SPECIFIED ARE TO BE FULL LENGTH, SPF or SP No.3 OR BETTER WITH ONE ROW OF 10d NAILS SPACED 6" O.C.
 5. DIAGONAL BRACE TO BE APPROXIMATELY 45 DEGREES TO ROOF
- DIAPHRAM AT 4'-0" O.C.
- 6. CONSTRUCT HORIZONTAL BRACE CONNECTING A 2x6 AND A 2x4 AS SHOWN WITH 16d NAILS SPACED 6" O.C. HORIZONTAL BRACE TO BE LOCATED AT THE MIDSPAN OF THE LONGEST GABLE STUD. ATTACH TO VERTICAL GABLE STUDS WITH (4) 10d NAILS THROUGH 2x4. (REFER TO SECTION A-A)
- 7. GABLE STUD DEFLECTION MEETS OR EXCEEDS L/240.
- THIS DETAIL DOES NOT APPLY TO STRUCTURAL GABLES.
- DO NOT USE FLAT BOTTOM CHORD GABLES NEXT TO SCISSOR TYPE TRUSSES.
- 10. SOUTHERN PINE LUMBER DESIGN VALUES ARE THOSE EFFECTIVE 06-01-13 BY SPIB/ALSC.
- 11. NAILS DESIGNATED 10d ARE (0.131" X 3") AND NAILS DESIGNATED 16d ARE (0.131" X 3.5")

at	iag. Brace 1/3 points needed	
	End Wall	\ \ \$I
DIAGONAL BRACES AT /3 POINTS		

Minimum Stud Size Species	Stud Spacing			DIAGONAL BRACE	2 DIAGONAL BRACES AT 1/3 POINTS		
and Grade		Maximum Stud Length					
2x4 SP No. 3 / Stud	12" O.C.	3-9-7	5-8-8	6-11-1	11-4-4		
2x4 SP No. 3 / Stud	16" O.C.	3-4-12	4-11-15	6-9-8	10-2-3		
2x4 SP No. 3 / Stud	24" O.C.	2-9-4	4-0-7	5-6-8	8-3-13		
2x4 SP No. 2	12" O.C.	3-11-13	5-8-8	6-11-1	11-11-7		
2x4 SP No. 2	16" O.C.	3-7-7	4-11-5	6-11-1	10-10-5		
2x4 SP No. 2	24" O.C.	3-1-15	4-0-7	6-3-14	9-5-14		
. 1 .				-			

Diagonal braces over 6'-3" require a 2x4 T-Brace attached to one edge. Diagonal braces over 12'-6" require 2x4 l-braces attached to both edges. Fasten T and I braces to narrow edge of diagonal brace with 10d nails 6" o.c., with 3" minimum end distance. Brace must cover 90% of diagonal length. T or I braces must be 2x4 SPF No. 2 or SP No. 2.

This item has been electronically signed and sealed by ORegan, Philip, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

(2) - 10d NAILS

∕Trusses @ 24" o.c.

2x6 DIAGONAL BRACE SPACED

BLOCKING WITH (5) -10d NAILS.

48" O.C. ATTACHED TO VERTICAL WITH

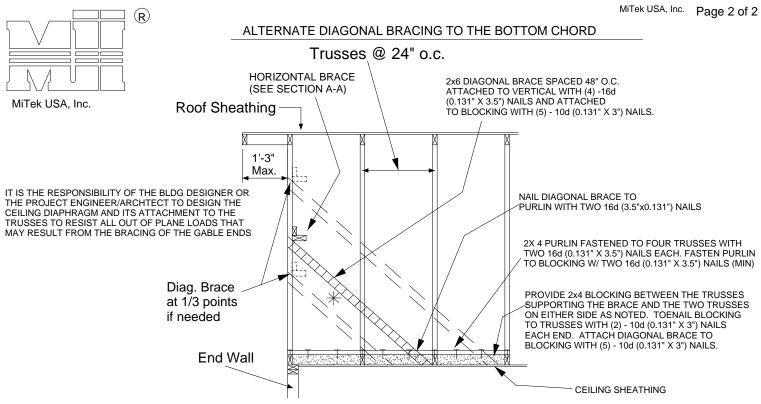
HORIZONTAL BRACE

(SEE SECTION A-A)

(4) -16d NAILS, AND ATTACHED TO

Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

April 2,2021

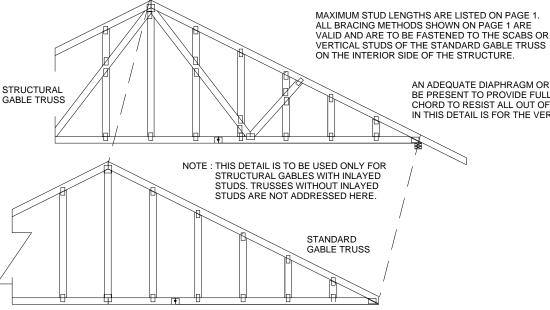

MAX MEAN ROOF HEIGHT = 30 FEET EXPOSURE D

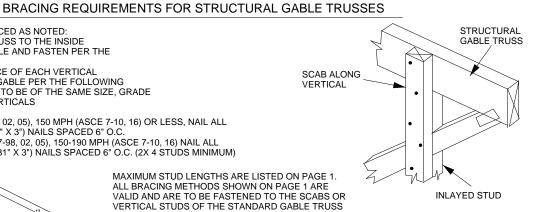
TUD DESIGN IS BASED ON COMPONENTS DURATION OF LOAD INCREASE: 1.60
WARNING - Verify design parameters and READ NOTE CONNECTION OF BRACING IS BASED ON MAYERS: 5/19/2020 BEFORE USE

Design valid for use only with MITek® connectors. This design is based only upon parameters and roperly incorporate this design in the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

STRUCTURAL GABLE TRUSSES MAY BE BRACED AS NOTED:


METHOD 1: ATTACH A MATCHING GABLE TRUSS TO THE INSIDE FACE OF THE STRUCTURAL GABLE AND FASTEN PER THE


FOLLOWING NAILING SCHEDULE.

METHOD 2: ATTACH 2X_SCABS TO THE FACE OF EACH VERTICAL
MEMBER ON THE STRUCTURAL GABLE PER THE FOLLOWING
NAILING SCHEDULE. SCABS ARE TO BE OF THE SAME SIZE, GRADE AND SPECIES AS THE TRUSS VERTICALS

NAILING SCHEDULE:

EING SCHEDEL:
- FOR WIND SPEEDS 120 MPH (ASCE 7-98, 02, 05), 150 MPH (ASCE 7-10, 16) OR LESS, NAIL ALL
- MEMBERS WITH ONE ROW OF 10d (0.131" X 3") NAILS SPACED 6" O.C.
- FOR WIND SPEEDS 120-150 MPH (ASCE 7-98, 02, 05), 150-190 MPH (ASCE 7-10, 16) NAIL ALL
- MEMBERS WITH TWO ROWS OF 10d (0.131" X 3") NAILS SPACED 6" O.C. (2X 4 STUDS MINIMUM)

AN ADEQUATE DIAPHRAGM OR OTHER METHOD OF BRACING MUST BE PRESENT TO PROVIDE FULL LATERAL SUPPORT OF THE BOTTOM CHORD TO RESIST ALL OUT OF PLANE LOADS. THE BRACING SHOWN IN THIS DETAIL IS FOR THE VERTICAL/STUDS ONLY.

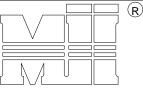
This item has been electronically signed and sealed by ORegan, Philip, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

April 2,2021

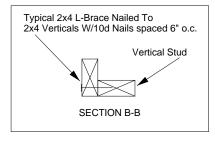
🗥 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Standard Gable End Detail

MII-GE180-D-SP T23399814

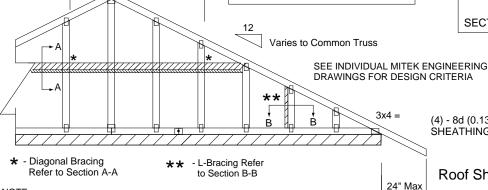

Page 1 of 2

DIAGONAL BRACE

4'-0" O.C. MAX

MiTek USA, Inc.

TRUSS GEOMETRY AND CONDITIONS SHOWN ARE FOR ILLUSTRATION ONLY.


Vertical Stud 2X6 SP OR SPF No. 2 DIAGONAL BRACE (4) - 16d Nails 16d Nails Spaced 6" o.c. (2) - 10d Nails into 2x6 2X6 SP OR SPF No. 2 Typical Horizontal Brace Nailed To 2x4 Verticals w/(4)-10d Nails **SECTION A-A** 2X4\SP OR SPF No. 2

> PROVIDE 2x4 BLOCKING BETWEEN THE FIRST TWO TRUSSES AS NOTED. TOENAIL BLOCKING TO TRUSSES WITH (2) - 10d NAILS AT EACH END. ATTACH DIAGONAL BRACE TO BLOCKING WITH (5) - 10d NAILS.

SHEATHING TO 2x4 STD SPF BLOCK

End Wall

(4) - 8d (0.131" X 2.5") NAILS MINIMUM, PLYWOOD

NOTE

- 1. MINIMUM GRADE OF #2 MATERIAL IN THE TOP AND BOTTOM CHORDS.
- 2. CONNECTION BETWEEN BOTTOM CHORD OF GABLE END TRUSS AND WALL TO BE PROVIDED BY PROJECT ENGINEER OR ARCHITECT.
- 3. BRACING SHOWN IS FOR INDIVIDUAL TRUSS ONLY. CONSULT BLDG. ARCHITECT OR ENGINEER FOR TEMPORARY AND PERMANENT BRACING OF ROOF SYSTEM.
- 4. "L" BRACES SPECIFIED ARE TO BE FULL LENGTH, SPF or SP No.3 OR BETTER WITH ONE ROW OF 10d NAILS SPACED 6" O.C.

 5. DIAGONAL BRACE TO BE APPROXIMATELY 45 DEGREES TO ROOF
- DIAPHRAM AT 4'-0" O.C.
- 6. CONSTRUCT HORIZONTAL BRACE CONNECTING A 2x6 AND A 2x4 AS SHOWN WITH 16d NAILS SPACED 6" O.C. HORIZONTAL BRACE TO BE LOCATED AT THE MIDSPAN OF THE LONGEST GABLE STUD. ATTACH TO VERTICAL GABLE STUDS WITH (4) 10d NAILS THROUGH 2x4. (REFER TO SECTION A-A)
- 7. GABLE STUD DEFLECTION MEETS OR EXCEEDS L/240.
- THIS DETAIL DOES NOT APPLY TO STRUCTURAL GABLES.
- DO NOT USE FLAT BOTTOM CHORD GABLES NEXT TO SCISSOR TYPE TRUSSES.
- 10. SOUTHERN PINE LUMBER DESIGN VALUES ARE THOSE EFFECTIVE 06-01-13 BY SPIB/ALSC.
- 11. NAILS DESIGNATED 10d ARE (0.131" X 3") AND

NAILS DESIGNATED 16d ARE (0.131" X 3.5")									
Minimum Stud Size Species	Stud Spacing	Without Brace	2x4 L-Brace	55465					
and Grade			Maximum Stud Length						
2x4 SP No. 3 / Stud	12" O.C.	3-7-12	5-4-11	6-2-1	10-11-3				
2x4 SP No. 3 / Stud	16" O.C.	3-2-8	4-8-1	6-2-1	9-7-7				
2x4 SP No. 3 / Stud	24" O.C.	2-7-7	3-9-12	5-2-13	7-10-4				
2x4 SP No. 2	12" O.C.	3-10-0	5-4-11	6-2-1	11-6-1				
2x4 SP No. 2	16" O.C.	3-5-13	4-8-1	6-2-1	10-5-7				
2x4 SP No. 2	24" O.C.	3-0-8	3-9-12	6-1-1	9-1-9				

Diagonal braces over 6'-3" require a 2x4 T-Brace attached to one edge. Diagonal braces over 12'-6" require 2x4 I-braces attached to both edges. Fasten T and I braces to narrow edge of diagonal brace with 10d nails 6in o.c., with 3in minimum end distance. Brace must cover 90% of diagonal length. T or I braces must be 2x4 SPF No. 2 or SP No. 2.

Roof Sheathing 1'-0' (2) - 10d/ Max. NAILS (2) - 10d NAILS Trusses @ 24" o.c. Diag. Brace at 1/3 points 2x6 DIAGONAL BRACE SPACED 48" O.C. ATTACHED TO VERTICAL WITH if needed (4) -16d NAILS, AND ATTACHED TO BLOCKING WITH (5) -10d NAILS.

> This item has been electronically signed and sealed by ORegan, Philip, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

HORIZONTAL BRACE

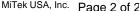
(SEE SECTION A-A)

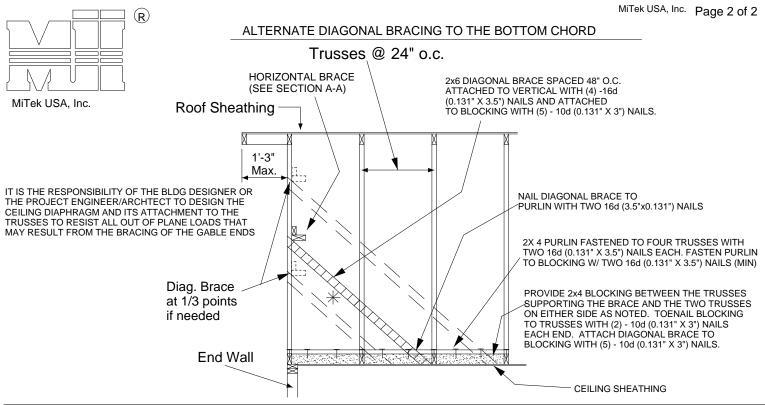
Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

April 2,2021

MAX MEAN ROOF HEIGHT = 30 FEET EXPOSURE D

DURATION ARIJE OAD, INCREASE 1. 1910 READ NOTES CONNECTION OF BRACING I SEASED ON MAY FRS. 5/19/2020 BEFORE USE


Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

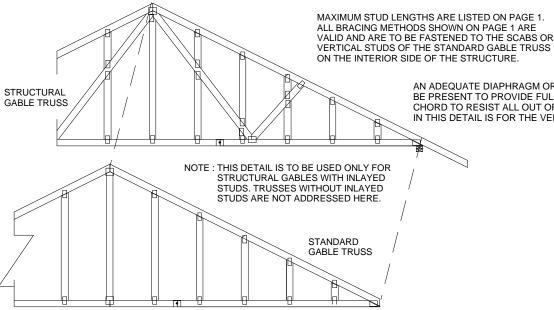

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

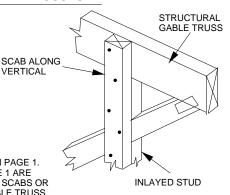
Standard Gable End Detail

MII-SHEET 2 T23399814

BRACING REQUIREMENTS FOR STRUCTURAL GABLE TRUSSES

STRUCTURAL GABLE TRUSSES MAY BE BRACED AS NOTED: METHOD 1 : ATTACH A MATCHING GABLE TRUSS TO THE INSIDE FACE OF THE STRUCTURAL GABLE AND FASTEN PER THE FOLLOWING NAILING SCHEDULE.


METHOD 2: ATTACH 2X _ SCABS TO THE FACE OF EACH VERTICAL MEMBER ON THE STRUCTURAL GABLE PER THE FOLLOWING NAILING SCHEDULE. SCABS ARE TO BE OF THE SAME SIZE, GRADE


AND SPECIES AS THE TRUSS VERTICALS

NAILING SCHEDULE:

FOR WIND SPEEDS 120 MPH (ASCE 7-98, 02, 05), 150 MPH (ASCE 7-10, 16) OR LESS, NAIL ALL MEMBERS WITH ONE ROW OF 10d (0.131" X 3") NAILS SPACED 6" O.C. FOR WIND SPEEDS 120-150 MPH (ASCE 7-98, 02, 05), 150-190 MPH (ASCE 7-10, 16) NAIL ALL

MEMBERS WITH TWO ROWS OF 10d (0.131" X 3") NAILS SPACED 6" O.C. (2X 4 STUDS MINIMUM)

AN ADEQUATE DIAPHRAGM OR OTHER METHOD OF BRACING MUST BE PRESENT TO PROVIDE FULL LATERAL SUPPORT OF THE BOTTOM CHORD TO RESIST ALL OUT OF PLANE LOADS. THE BRACING SHOWN IN THIS DETAIL IS FOR THE VERTICAL/STUDS ONLY.

> This item has been electronically signed and sealed by ORegan, Philip, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

April 2,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

AMSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

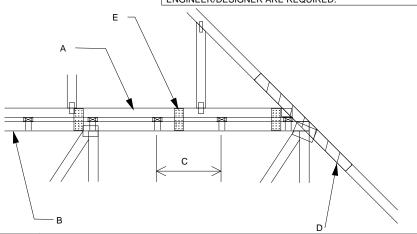
STANDARD PIGGYBACK TRUSS CONNECTION DETAIL

MiTek USA, Inc. Page 1 of 1

MAXIMUM WIND SPEED = REFER TO NOTES D AND OR E MAX MEAN ROOF HEIGHT = 30 FEET MAX TRUSS SPACING = 24 " O.C. CATEGORY II BUILDING EXPOSURE B or C **ENCLOSED BUILDING** LOADING = 5 PSF TCDL ASCE 7-10, ASCE 7-16

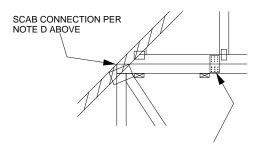
DETAIL IS NOT APPLICABLE FOR TRUSSES TRANSFERING DRAG LOADS (SHEAR TRUSSES).

ADDITIONAL CONSIDERATIONS BY BUILDING ENGINEER/DESIGNER ARE REQUIRED.

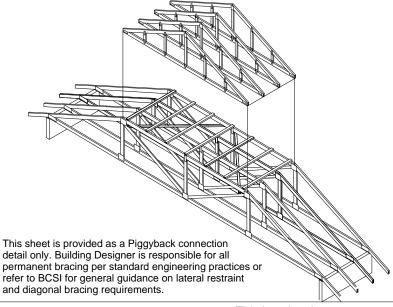

DURATION OF LOAD INCREASE: 1.60

(R)

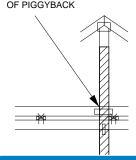
MiTek USA, Inc.


- A PIGGBACK TRUSS, REFER TO MITEK TRUSS DESIGN DRAWING.
- A PIGGBACK TRUSS, REFER TO MITEK TRUSS DESIGN DRAWING.
 SHALL BE CONNECTED TO EACH PURLIN
 WITH (2) (0.131" X 3.5") TOE-NAILED.
 B BASE TRUSS, REFER TO MITEK TRUSS DESIGN DRAWING.
 C PURLINS AT EACH BASE TRUSS JOINT AND A MAXIMUM 24" O.C.
 UNLESS SPECIFIED CLOSER ON MITEK TRUSS DESIGN DRAWING.
- UNLESS SPECIFIED CLOSER ON MITEK TRUSS DESIGN DRAWING. CONNECT TO BASE TRUSS WITH (2) (0.131" X 3.5") NAILS EACH.

 2 X __ X 4'-0" SCAB, SIZE TO MATCH TOP CHORD OF PIGGYBACK TRUSS, MIN GRADE #2, ATTACHED TO ONE FACE, CENTERED ON INTERSECTION, WITH (2) ROWS OF (0.131" X 3") NAILS @ 4" O.C. SCAB MAY BE OMITTED PROVIDED THE TOP CHORD SHEATHING IS CONTINUOUS OVER INTERSECTION AT LEAST 1 FT. IN BOTH DIRECTIONS AND:
- 1. WIND SPEED OF 115 MPH OR LESS FOR ANY PIGGYBACK SPAN, OR 2. WIND SPEED OF 116 MPH TO 180 MPH WITH A MAXIMUM
- PIGGYBACK SPAN OF 12 ft.
 FOR WIND SPEEDS BETWEEN 116 AND 180 MPH, ATTACH
 MITEK NP37 20 GA Nail-On PLATES TO EACH FACE OF TRUSSES AT 72" O.C. W/ (4) (0.131" X 1.5") NAILS PER MEMBER. STAGGER NAILS FROM OPPOSING FACES. ENSURE 0.5" NAIL EDGE DISTANCE. (MIN. 2 PAIRS OF PLATES REQ. REGARDLESS OF SPAN)



WHEN NO GAP BETWEEN PIGGYBACK AND BASE TRUSS EXISTS:


REPLACE TOE NAILING OF PIGGYBACK TRUSS TO PURLINS WITH Nail-On PLATES AS SHOWN, AND INSTALL PURLINS TO BOTTOM EDGE OF BASE TRUSS TOP CHORD AT SPECIFIED SPACING SHOWN ON BASE TRUSS MITEK DESIGN DRAWING.

FOR ALL WIND SPEEDS, ATTACH MITEK NP37 20 GA Nail-On PLATES TO EACH FACE OF TRUSSES AT 48" O.C. W/ (4) (0.131" X 1.5") PER MEMBER. STAGGER NAILS FROM OPPOSING FACES ENSURE 0.5" NAIL EDGE DISTANCE.

VERTICAL WEB TO EXTEND THROUGH BOTTOM CHORD

FOR LARGE CONCENTRATED LOADS APPLIED TO CAP TRUSS REQUIRING A VERTICAL WEB:

- VERTICAL WEBS OF PIGGYBACK AND BASE TRUSS MUST MATCH IN SIZE, GRADE, AND MUST LINE UP AS SHOWN IN DETAIL
- x 4'-0" SCAB TO EACH FACE OF TRUSS ASSEMBLY WITH 2 ROWS OF 10d (0.131" X 3") NAILS SPACED 4" O.C. FROM EACH FACE. (SIZE AND GRADE TO MATCH VERTICAL WEBS OF PIGGYBACK AND BASE TRUSS.) (MINIMUM 2X4)
- THIS CONNECTION IS ONLY VALID FOR A MAXIMUM CONCENTRATED LOAD OF 4000 LBS (@1.15). REVIEW BY A QUALIFIED ENGINEER IS REQUIRED FOR LOADS GREATER THAN 4000 LBS.
- 4) FOR PIGGYBACK TRUSSES CARRYING GIRDER LOADS,
 NUMBER OF PLYS OF PIGGYBACK TRUSS TO MATCH BASE TRUSS.
 5) CONCENTRATED LOAD MUST BE APPLIED TO BOTH

This item has been electronically signed and sealed by ORegan, Philip, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

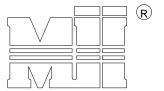
Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

April 2,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

AMSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



JANUARY 8, 2019

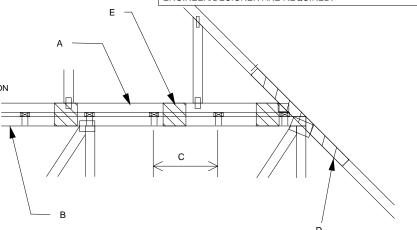
STANDARD PIGGYBACK TRUSS CONNECTION DETAIL

MII-PIGGY-ALT-7-16 T23399816

Page 1 of 1 MiTek USA, Inc.

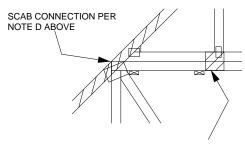
MiTek USA, Inc.

MAXIMUM WIND SPEED = REFER TO NOTES D AND OR E MAX MEAN ROOF HEIGHT = 30 FEET MAX TRUSS SPACING = 24 " O.C. CATEGORY II BUILDING EXPOSURE B or C ENCLOSED BUILDING LOADING = 5 PSF TCDL MINIMUM

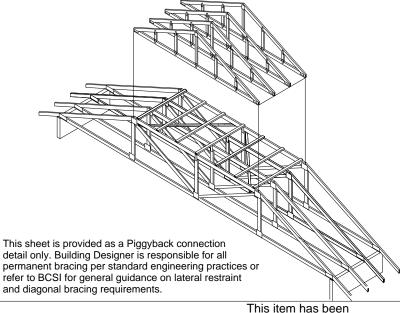

ASCE 7-10, ASCE 7-16 **DURATION OF LOAD INCREASE: 1.60**

DETAIL IS NOT APPLICABLE FOR TRUSSES TRANSFERING DRAG LOADS (SHEAR TRUSSES). ADDITIONAL CONSIDERATIONS BY BUILDING ENGINEER/DESIGNER ARE REQUIRED.

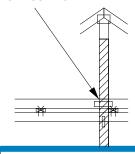
- A PIGGBACK TRUSS, REFER TO MITEK TRUSS DESIGN DRAWING. SHALL BE CONNECTED TO EACH PURLIN
 WITH (2) 0(0.131" X 3.5") TOE-NAILED.


 BASE TRUSS, REFER TO MITEK TRUSS DESIGN DRAWING.
 - PURLINS AT EACH BASE TRUSS JOINT AND A MAXIMUM 24" O.C.
 UNLESS SPECIFIED CLOSER ON MITEK TRUSS DESIGN DRAWING.

- UNLESS SPECIFIED CLOSER OIN MITEX TRUSS DESIGN DRAWING.
 CONNECT TO BASE TRUSS WITH (2) (0.131" X 3.5") NAILS EACH.
 2 X _ X 4'-0" SCAB, SIZE TO MATCH TOP CHORD OF
 PIGGYBACK TRUSS, MIN GRADE #2, ATTACHED TO ONE FACE, CENTERED ON
 INTERSECTION, WITH (2) ROWS OF (0.131" X 3") NAILS @ 4" O.C.
 SCAB MAY BE OMITTED PROVIDED THE TOP CHORD SHEATHING IS CONTINUOUS OVER INTERSECTION AT LEAST 1 FT. IN BOTH DIRECTIONS AND:
- 1. WIND SPEED OF 115 MPH OR LESS FOR ANY PIGGYBACK SPAN, OR 2. WIND SPEED OF 116 MPH TO 180 MPH WITH A MAXIMUM
- PIGGYBACK SPAN OF 12 ft.
 E FOR WIND SPEED IN THE RANGE 116 MPH 180 MPH ADD 9" x 9" x 1/2" PLYWOOD (or 7/16" OSB) GUSSET EACH SIDE AT 48" O.C. OR LESS. ATTACH WITH 3 - 6d (0.113" X 2") NAILS INTO EACH CHORD FROM EACH SIDE (TOTAL - 12 NAILS)



WHEN NO GAP BETWEEN PIGGYBACK AND BASE TRUSS EXISTS:


REPLACE TOE NAILING OF PIGGYBACK TRUSS TO PURLINS WITH PLYWOOD GUSSETS AS SHOWN, AND INSTALL PURLINS TO BOTTOM EDGE OF BASE TRUSS TOP CHORD AT SPECIFIED SPACING SHOWN ON BASE TRUSS MITEK DESIGN DRAWING.

7" x 7" x 1/2" PLYWOOD (or 7/16" OSB) GUSSET EACH SIDE AT 24" O.C. ATTACH WITH 3 - 6d (0.113" X 2") NAILS INTO EACH CHORD FROM EACH SIDE (TOTAL - 12 NAILS)

VERTICAL WEB TO EXTEND THROUGH **BOTTOM CHORD** OF PIGGYBACK

FOR LARGE CONCENTRATED LOADS APPLIED TO CAP TRUSS REQUIRING A VERTICAL WEB:

- 1) VERTICAL WEBS OF PIGGYBACK AND BASE TRUSS MUST MATCH IN SIZE, GRADE, AND MUST LINE UP AS SHOWN IN DETAIL
- ATTACH 2 x ___ x 4-0" SCAB TO EACH FACE OF TRUSS ASSEMBLY WITH 2 ROWS OF 10d (0.131" X 3") NAILS SPACED 4" O.C. FROM EACH FACE. (SIZE AND GRADE TO MATCH ATTACH 2 x VERTICAL WEBS OF PIGGYBACK AND BASE TRUSS.) (MINIMUM 2X4)
- THIS CONNECTION IS ONLY VALID FOR A MAXIMUM CONCENTRATED LOAD OF 4000 LBS (@1.15). REVIEW BY A QUALIFIED ENGINEER IS REQUIRED FOR LOADS
- GREATER THAN 4000 LBS.
 4) FOR PIGGYBACK TRUSSES CARRYING GIRDER LOADS, NUMBER OF PLYS OF PIGGYBACK TRUSS TO MATCH BASE TRUSS.
- 5) CONCENTRATED LOAD MUST BE APPLIED TO BOTH IE PIGGYBACK AND THE BASE TRUSS DESIGN

6904 Parke East Blvd. Tampa FL 33610

electronically signed and

using a Digital Signature.

Printed copies of this

sealed by ORegan, Philip, PE

document are not considered

signed and sealed and the signature must be verified

on any electronic copies.

Philip J. O'Regan PE No.58126

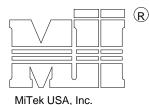
MiTek USA, Inc. FL Cert 6634

April 2,2021

\Lambda WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

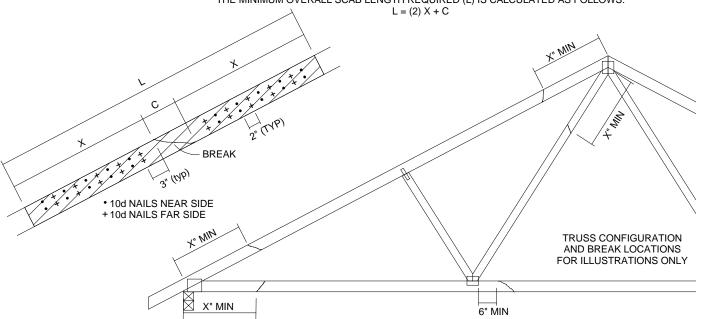


STANDARD REPAIR DETAIL FOR BROKEN CHORDS, WEBS AND DAMAGED OR MISSING CHORD SPLICE PLATES

MII-REP01A1 T23399817

MiTek USA, Inc.

Page 1 of 1



TOTAL NU	- 1		MAXIMUM FORCE (lbs) 15% LOAD DURATION							
NAILS EACH SIDE OF BREAK *		X INCHES	SP		DF		SPF		HF	
2x4	2x6		2x4	2x6	2x4	2x6	2x4	2x6	2x4	2x6
20	30	24"	1706	2559	1561	2342	1320	1980	1352	2028
26	39	30"	2194	3291	2007	3011	1697	2546	1738	2608
32	48	36"	2681	4022	2454	3681	2074	3111	2125	3187
38	57	42"	3169	4754	2900	4350	2451	3677	2511	3767
44	66	48"	3657	5485	3346	5019	2829	4243	2898	4347

^{*} DIVIDE EQUALLY FRONT AND BACK

ATTACH 2x_ SCAB OF THE SAME SIZE AND GRADE AS THE BROKEN MEMBER TO EACH FACE OF THE TRUSS (CENTER ON BREAK OR SPLICE) WITH 10d (0.131" X 3") NAILS (TWO ROWS FOR 2x4, THREE ROWS FOR 2x6) SPACED 4" O.C. AS SHOWN. STAGGER NAIL SPACING FROM FRONT FACE AND BACK FACE FOR A NET 0-2-0 O.C. SPACING IN THE MAIN MEMBER. USE A MIN. 0-3-0 MEMBER END DISTANCE.

THE LENGTH OF THE BREAK (C) SHALL NOT EXCEED 12". (C=PLATE LENGTH FOR SPLICE REPAIRS) THE MINIMUM OVERALL SCAB LENGTH REQUIRED (L) IS CALCULATED AS FOLLOWS:

THE LOCATION OF THE BREAK MUST BE GREATER THAN OR EQUAL TO THE REQUIRED X DIMENSION FROM ANY PERIMETER BREAK OR HEEL JOINT AND A MINIMUM OF 6" FROM ANY INTERIOR JOINT (SEE SKETCH ABOVE)

DO NOT USE REPAIR FOR JOINT SPLICES

NOTES

- THIS REPAIR DETAIL IS TO BE USED ONLY FOR THE APPLICATION SHOWN. THIS REPAIR DOES
 NOT IMPLY THAT THE REMAINING PORTION OF THE TRUSS IS UNDAMAGED. THE ENTIRE TRUSS
 SHALL BE INSPECTED TO VERIFY THAT NO FURTHER REPAIRS ARE REQUIRED. WHEN THE REQUIRED
 REPAIRS ARE PROPERLY APPLIED, THE TRUSS WILL BE CAPABLE OF SUPPORTING THE LOADS INDICATED.
- 2. ALL MEMBERS MUST BE RETURNED TO THEIR ORIGINAL POSITIONS BEFORE APPLING REPAIR AND HELD IN PLACE DURING APPLICATION OF REPAIR
- THE END DISTANCE, EDGE DISTANCE AND SPACING OF NAILS SHALL BE SUCH AS TO AVOID UNUSUAL SPLITTING OF THE WOOD. WHEN NAILING THE SCABS, THE USE OF A BACKUP WEIGHT IS RECOMMENDED TO AVOID
- LOOSENING OF THE CONNECTOR PLATES AT THE JOINTS OR SPLICES.
 THIS REPAIR IS TO BE USED FOR SINGLE PLY TRUSSES IN THE 2x_ ORIENTATION ONLY.
- 6. THIS REPAIR IS LIMITED TO TRUSSES WITH NO MORE THAN THREE BROKEN MEMBERS.

This item has been electronically signed and sealed by ORegan, Philip, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610



LATERAL TOE-NAIL DETAIL

MII-TOENAIL SP T23399818

MiTek USA. Inc.

Page 1 of 1

NOTES:

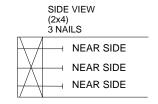
- TOE-NAILS SHALL BE DRIVEN AT AN ANGLE OF 45 DEGREES WITH THE MEMBER AND MUST HAVE FULL WOOD SUPPORT. (NAIL MUST BE DRIVEN THROUGH AND EXIT AT THE BACK CORNER OF THE MEMBER END AS SHOWN.
- 2. THE END DISTANCE, EDGE DISTANCE, AND SPACING OF NAILS SHALL BE SUCH AS TO AVOID UNUSUAL SPLITTING OF THE WOOD.
- 3. ALLOWABLE VALUE SHALL BE THE LESSER VALUE OF THE TWO SPECIES FOR MEMBERS OF DIFFERENT SPECIES.

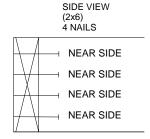
THIS DETAIL APPLICABLE TO THE THREE END DETAILS SHOWN BELOW

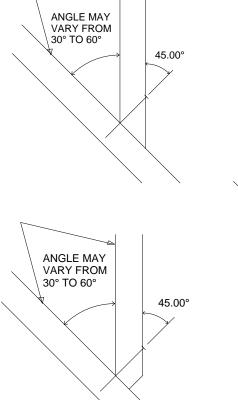
> VIEWS SHOWN ARE FOR ILLUSTRATION PURPOSES ONLY

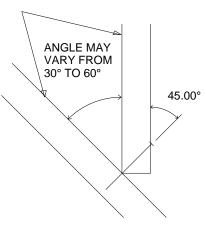
> > SIDE VIEW (2x3) 2 NAILS

> > > NEAR SIDE NEAR SIDE


	TOE-NAIL SINGLE SHEAR VALUES PER NDS 2018 (lb/nail)									
	DIAM. SP DF HF SPF SPF-S									
b	.131	88.0	80.6	69.9	68.4	59.7				
LONG	.135	93.5	85.6	74.2	72.6	63.4				
3.5" L	.162	108.8	99.6	86.4	84.5	73.8				
Э.										
5 G	.128	74.2	67.9	58.9	57.6	50.3				
LONG	.131	75.9	69.5	60.3	59.0	51.1				
3.25"	.148	81.4	74.5	64.6	63.2	52.5				
ω̈.										


VALUES SHOWN ARE CAPACITY PER TOE-NAIL APPLICABLE DURATION OF LOAD INCREASES MAY BE APPLIED.


(3) - 16d (0.162" X 3.5") NAILS WITH SPF SPECIES BOTTOM CHORD


For load duration increase of 1.15:

3 (nails) X 84.5 (lb/nail) X 1.15 (DOL) = 291.5 lb Maximum Capacity

This item has been electronically signed and sealed by ORegan, Philip, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

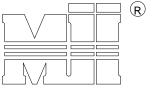
Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

April 2,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

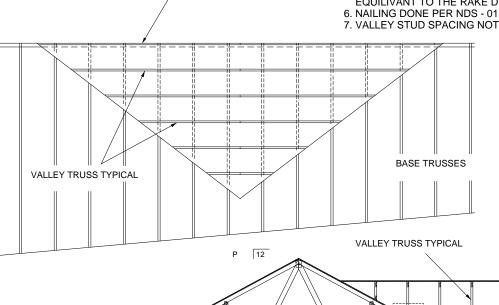
ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



TRUSSED VALLEY SET DETAIL

MII-VALLEY HIGH WIND1 T23399819

MiTek USA, Inc.


Page 1 of 1

MiTek USA, Inc.

GENERAL SPECIFICATIONS

- 1. NAIL SIZE 10d (0.131" X 3")
- 2. WOOD SCREW = 3" WS3 USP OR EQUIVALENT DO NOT USE DRYWALL OR DECKING TYPE SCREW
- 3. INSTALL VALLEY TRUSSES (24" O.C. MAXIMUM) AND SECURE PER DETAIL A
- 4. BRACE VALLEY WEBS IN ACCORDANCE WITH THE INDIVIDUAL DESIGN DRAWINGS.
- 5. BASE TRUSS SHALL BE DESIGNED WITH A PURLIN SPACING EQUILIVANT TO THE RAKE DIMENSION OF THE VALLEY TRUSS SPACING.
- 7. VALLEY STUD SPACING NOT TO EXCEED 48" O.C.

SEE DETAIL A BELOW (TYP.)

GABLE END, COMMON TRUSS

OR GIRDER TRUSS

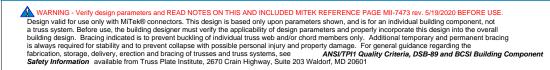
GABLE END, COMMON TRUSS OR GIRDER TRUSS

SECURE VALLEY TRUSS W/ ONE ROW OF 10d NAILS 6" O.C. ATTACH 2x4 CONTINUOUS NO.2 SP TO THE ROOF W/ TWO USP WS3 (1/4" X 3") WOOD SCREWS INTO EACH BASE TRUSS.

DETAIL A (NO SHEATHING) N.T.S.

WIND DESIGN PER ASCE 7-98, ASCE 7-02, ASCE 7-05 146 MPH WIND DESIGN PER ASCE 7-10, ASCE 7-16 160 MPH MAX MEAN ROOF HEIGHT = 30 FEET

ROOF PITCH = MINIMUM 3/12 MAXIMUM 6/12 CATEGORY II BUILDING

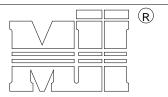

EXPOSURE C

WIND DURATION OF LOAD INCREASE: 1.60 MAX TOP CHORD TOTAL LOAD = 50 PSF MAX SPACING = 24" O.C. (BASE AND VALLEY)
MINIMUM REDUCED DEAD LOAD OF 6 PSF

ON THE TRUSSES

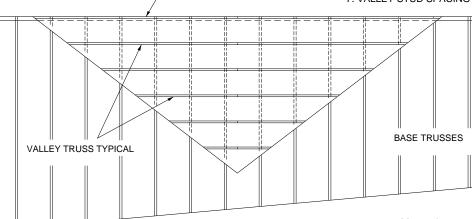
This item has been electronically signed and sealed by ORegan, Philip, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610


MiTek USA, Inc.

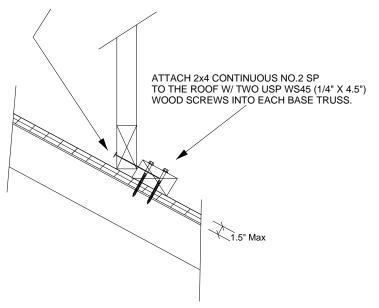
TRUSSED VALLEY SET DETAIL

MII-VALLEY HIGH WIND2 T23399820


MiTek USA, Inc.

Page 1 of 1

GENERAL SPECIFICATIONS


- 1. NAIL SIZE 10d (0.131" X 3")
- 2. WOOD SCREW = 4.5" WS45 USP OR EQUILIVANT
- 3. INSTALL SHEATHING TO TOP CHORD OF BASE TRUSSES.
- INSTALL SHEATING TO TOP CHORD OF BASE TRUS
 INSTALL VALLEY TRUSSES (24" O.C. MAXIMUM) AND
 SECURE TO BASE TRUSSES AS PER DETAIL A
 BRACE VALLEY WEBS IN ACCORDANCE WITH THE
- INDIVIDUAL DESIGN DRAWINGS.
- 6. NAILING DONE PER NDS-01
- 7. VALLEY STUD SPACING NOT TO EXCEED 48" O.C.

GABLE END, COMMON TRUSS OR GIRDER TRUSS

> GABLE END, COMMON TRUSS VALLEY TRUSS TYPICAL OR GIRDER TRUSS 12 SEE DETAIL A BELOW (TYP.)

SECURE VALLEY TRUSS W/ ONE ROW OF 10d NAILS 6" O.C.

WIND DESIGN PER ASCE 7-98, ASCE 7-02, ASCE 7-05 146 MPH WIND DESIGN PER ASCE 7-10, ASCE 7-16 160 MPH MAX MEAN ROOF HEIGHT = 30 FEET ROOF PITCH = MINIMUM 3/12 MAXIMUM 6/12 CATEGORY II BUILDING EXPOSURE C WIND DURATION OF LOAD INCREASE: 1.60 MAX TOP CHORD TOTAL LOAD = 50 PSF MAX SPACING = 24" O.C. (BASE AND VALLEY)
MINIMUM REDUCED DEAD LOAD OF 6 PSF ON THE TRUSSES

This item has been electronically signed and sealed by ORegan, Philip, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

April 2,2021

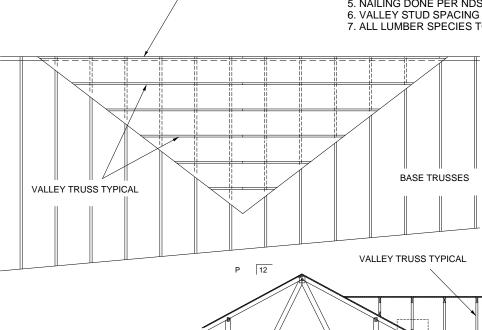
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TRUSSED VALLEY SET DETAIL

MII-VALLEY SP T23399821


MiTek USA, Inc.

Page 1 of 1

GENERAL SPECIFICATIONS

- 1. NAIL SIZE 16d (0.131" X 3.5")
- 2. INSTALL VALLÈY TRUSSES (24" O.C. MAXIMUM) AND SECURE PER DETAIL A
- 3. BRACE VALLEY WEBS IN ACCORDANCE WITH THE INDIVIDUAL DESIGN DRAWINGS.
- 4. BASE TRUSS SHALL BE DESIGNED WITH A PURLIN SPACING EQUILIVANT TO THE RAKE DIMENSION OF THE VALLEY TRUSS SPACING.
- 5. NAILING DONE PER NDS 01
- 6. VALLEY STUD SPACING NOT TO EXCEED 48" O.C.
- 7. ALL LUMBER SPECIES TO BE SP.

SEE DETAIL A BELOW (TYP.)

GABLE END, COMMON TRUSS OR GIRDER TRUSS

GABLE END, COMMON TRUSS OR GIRDER TRUSS

SECURE VALLEY TRUSS W/ ONE ROW OF 16d NAILS 6" O.C. ATTACH 2x4 CONTINUOUS NO.2 SP TO THE ROOF W/ TWO 16d NAILS INTO EACH BASE TRUSS. THE REAL PROPERTY. **DETAIL A** (MAXIMUM 1" SHEATHING) N.T.S.

WIND DESIGN PER ASCE 7-98, ASCE 7-02, ASCE 7-05 120 MPH WIND DESIGN PER ASCE 7-10, ASCE 7-16 150 MPH MAX MEAN ROOF HEIGHT = 30 FEET ROOF PITCH = MINIMUM 3/12 MAXIMUM 10/12 CATEGORY II BUILDING EXPOSURE C OR B
WIND DURATION OF LOAD INCREASE: 1.60
MAX TOP CHORD TOTAL LOAD = 60 PSF
MAX SPACING = 24" O.C. (BASE AND VALLEY)
MINIMUM REDUCED DEAD LOAD OF 4.2 PSF ON THE TRUSSES

This item has been electronically signed and sealed by ORegan, Philip, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

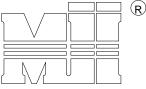
Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

April 2,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

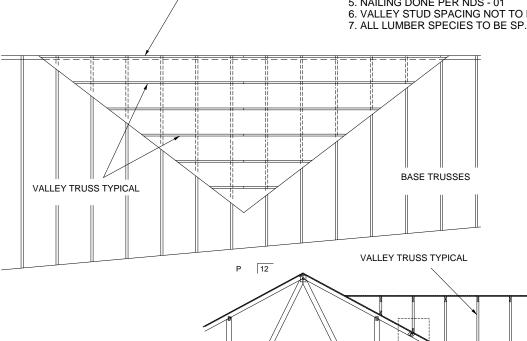
ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



TRUSSED VALLEY SET DETAIL

MII-VALLEY SP T23399822

MiTek USA, Inc.


Page 1 of 1

MiTek USA, Inc.

GENERAL SPECIFICATIONS

- 1. NAIL SIZE 16d (0.131" X 3.5")
- 2. INSTALL VALLÈY TRUSSES (24" O.C. MAXIMUM) AND SECURE PER DETAIL A
- 3. BRACE VALLEY WEBS IN ACCORDANCE WITH THE INDIVIDUAL DESIGN DRAWINGS.
- 4. BASE TRUSS SHALL BE DESIGNED WITH A PURLIN SPACING EQUILIVANT TO THE RAKE DIMENSION OF THE VALLEY TRUSS SPACING.
- 5. NAILING DONE PER NDS 01
- 6. VALLEY STUD SPACING NOT TO EXCEED 48" O.C.

SEE DETAIL A BELOW (TYP.)

GABLE END, COMMON TRUSS OR GIRDER TRUSS

GABLE END, COMMON TRUSS OR GIRDER TRUSS

SECURE VALLEY TRUSS W/ ONE ROW OF 16d NAILS 6" O.C. ATTACH 2x4 CONTINUOUS NO.2 SP TO THE ROOF W/ TWO 16d NAILS INTO EACH BASE TRUSS.

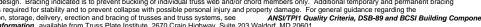
THE REAL PROPERTY. **DETAIL A**

(MAXIMUM 1" SHEATHING)

N.T.S.

WIND DESIGN PER ASCE 7-98, ASCE 7-02, ASCE 7-05 120 MPH WIND DESIGN PER ASCE 7-10, ASCE 7-16 150 MPH MAX MEAN ROOF HEIGHT = 30 FEET ROOF PITCH = MINIMUM 3/12 MAXIMUM 10/12 CATEGORY II BUILDING EXPOSURE C OR B WIND DURATION OF LOAD INCREASE: 1.60 MAX TOP CHORD TOTAL LOAD = 60 PSF MAX SPACING = 24" O.C. (BASE AND VALLEY) MINIMUM REDUCED DEAD LOAD OF 4.2 PSF ON THE TRUSSES

This item has been electronically signed and sealed by ORegan, Philip, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

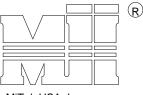

Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

April 2,2021

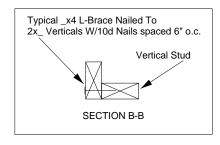
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Standard Gable End Detail


MII-GE146-001 T23399823

Page 1 of 2

MiTek USA, Inc.

DIAGONAL BRACE TRUSS GEOMETRY AND CONDITIONS 4'-0" O.C. MAX SHOWN ARE FOR ILLUSTRATION ONLY. Varies to Common Truss SEE INDIVIDUAL MITEK ENGINEERING DRAWINGS FOR DESIGN CRITERIA 3x4 =Ŕ Diagonal Bracing - L-Bracing Refer Refer to Section A-A to Section B-B

Vertical Stud DIAGONAL (4) - 16d Nails 16d Nails Spaced 6" o.c. (2) - 10d Nails into 2x6 2x6 Stud or 2x4 No.2 of better Typical Horizontal Brace Nailed To 2x_ Verticals w/(4)-10d Nails **SECTION A-A** 2x4 Stud

> PROVIDE 2x4 BLOCKING BETWEEN THE FIRST TWO TRUSSES AS NOTED. TOENAIL BLOCKING TO TRUSSES WITH (2) - 10d NAILS AT EACH END. ATTACH DIAGONAL BRACE TO BLOCKING WITH (5) - 10d NAILS.

(4) - 8d (0.131" X 2.5") NAILS MINIMUM, PLYWOOD SHEATHING TO 2x4 STD SP BLOCK

NOTE:

- 1. MINIMUM GRADE OF #2 MATERIAL IN THE TOP AND BOTTOM CHORDS.
- 2. CONNECTION BETWEEN BOTTOM CHORD OF GABLE END TRUSS AND WALL TO BE PROVIDED BY PROJECT ENGINEER OR ARCHITECT.
- 3. BRACING SHOWN IS FOR INDIVIDUAL TRUSS ONLY. CONSULT BLDG. ARCHITECT OR ENGINEER FOR TEMPORARY AND PERMANENT BRACING OF ROOF SYSTEM.
- 4. "L" BRACES SPECIFIED ARE TO BE FULL LENGTH. GRADES: 2x4 No 3/STUD SP OR BETTER WITH ONE ROW OF 10d NAILS SPACED 6" O.C.
- 5. DIAGONAL BRACE TO BE APPROXIMATELY 45 DEGREES TO ROOF DIAPHRAM AT 4'-0" O.C.
- 6. CONSTRUCT HORIZONTAL BRACE CONNECTING A 2x6 STUD AND A 2x4 STUD AS SHOWN WITH 16d NAILS SPACED 6" O.C. HORIZONTAL BRACE TO BE LOCATED AT THE MIDSPAN OF THE LONGEST STUD. ATTACH TO VERTICAL STUDS WITH (4) 10d NAILS THROUGH 2x4. (REFER TO SECTION A-A)
- 7. GABLE STUD DEFLECTION MEETS OR EXCEEDS L/240.
- THIS DETAIL DOES NOT APPLY TO STRUCTURAL GABLES
- DO NOT USE FLAT BOTTOM CHORD GABLES NEXT TO SCISSOR TYPE TRUSSES
- 10. NAILS DESIGNATED 10d ARE (0.131" X 3") AND NAILS DESIGNATED 16d ARE (0.131" X 3.5")

Minimum Stud Size Species	Stud Spacing	Without Brace	2x4 L-Brace	DIAGONAL BRACE	2 DIAGONAL BRACES AT 1/3 POINTS
and Grade		Maxir			
2x4 SP No 3/Stud	12" O.C.	3-11-3	6-8-0	7-2-14	11-9-10
2x4 SP No 3/Stud	16" O.C.	3-6-14	5-9-5	7-1-13	10-8-11
2x4 SP No 3/Stud	24" O.C.	3-1-8	4-8-9	6-2-15	9-4-7

Diagonal braces over 6'-3" require a 2x4 T-Brace attached to one edge. Diagonal braces over 12'-6" require 2x4 I-braces attached to both edges. Fasten T and I braces to narrow edge of web with 10d nails 8" o.c., with 3" minimum

end distance. Brace must cover 90% of diagonal length.

Roof Sheathing 24" Max 1'-3' (2) - 10d/ Max. **NÁILS** (2) - 10d NAILS Trusses @ 24" o.c. 2x6 DIAGONAL BRACE SPACED 48" O.C. Diag. Brace ATTACHED TO VERTICAL WITH (4) -16d at 1/3 points NAILS AND ATTACHED TO BLOCKING WITH (5) - 10d NAILS. if needed HORIZONTAL BRACE **End Wall** (SEE SECTION A-A)

> This item has been electronically signed and sealed by ORegan, Philip, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

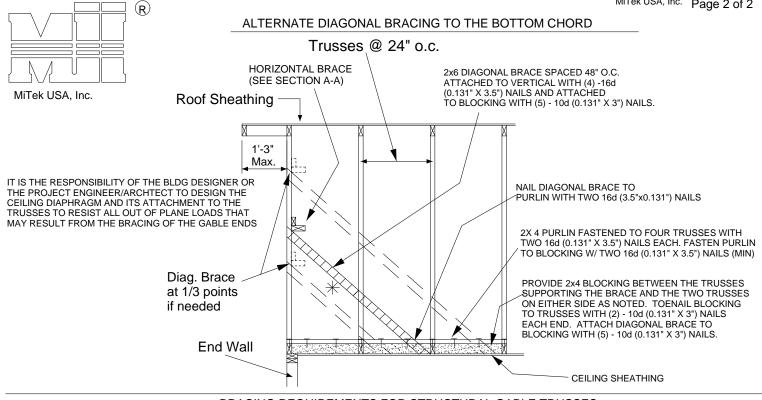
Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

April 2,2021

MAXIMUM WIND SPEED = 146 MPH MAX MEAN ROOF HEIGHT = 30 FEET CATEGORY II BUILDING

EXPOSURE B or C

ASCE 7-98, ASCE 7-02, ASCE 7-05
STUD DESIGN IS BASED ON COMPONENTS AND CLADDING.
DURANOMONONO ON COMPONENTS AND CLADDING.
DURANOMONO ON COMPONENTS AND CLADDING.
DURANOMONO ON COMPONENTS AND CLADDING.


Design valid for use only with MTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Standard Gable End Detail

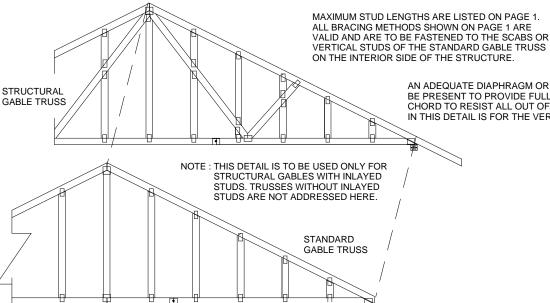
MII-SHEET 2 T23399823

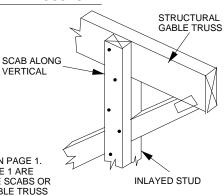
MiTek USA, Inc. Page 2 of 2

BRACING REQUIREMENTS FOR STRUCTURAL GABLE TRUSSES

STRUCTURAL GABLE TRUSSES MAY BE BRACED AS NOTED: METHOD 1: ATTACH A MATCHING GABLE TRUSS TO THE INSIDE FACE OF THE STRUCTURAL GABLE AND FASTEN PER THE

FOLLOWING NAILING SCHEDULE.


METHOD 2: ATTACH 2X SCABS TO THE FACE OF EACH VERTICAL


MEMBER ON THE STRUCTURAL GABLE PER THE FOLLOWING

NAILING SCHEDULE. SCABS ARE TO BE OF THE SAME SIZE, GRADE AND SPECIES AS THE TRUSS VERTICALS

FOR WIND SPEEDS 120 MPH (ASCE 7-98, 02, 05), 150 MPH (ASCE 7-10, 16) OR LESS, NAIL ALL MEMBERS WITH ONE ROW OF 10d (0.131" X 3") NAILS SPACED 6" O.C. - FOR WIND SPEEDS 120-150 MPH (ASCE 7-98, 02, 05), 150-190 MPH (ASCE 7-10, 16) NAIL ALL

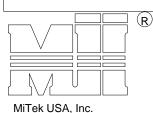
MEMBERS WITH TWO ROWS OF 10d (0.131" X 3") NAILS SPACED 6" O.C. (2X 4 STUDS MINIMUM)

AN ADEQUATE DIAPHRAGM OR OTHER METHOD OF BRACING MUST BE PRESENT TO PROVIDE FULL LATERAL SUPPORT OF THE BOTTOM CHORD TO RESIST ALL OUT OF PLANE LOADS. THE BRACING SHOWN IN THIS DETAIL IS FOR THE VERTICAL/STUDS ONLY.

> This item has been electronically signed and sealed by ORegan, Philip, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

April 2,2021


OCTOBER 5, 2016

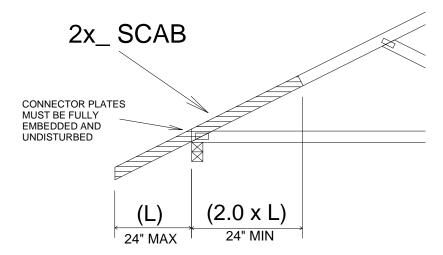
REPLACE BROKEN OVERHANG

MII-REP13B T23399824

MiTek USA. Inc.

Page 1 of 1

TRUSS CRITERIA:


LOADING: 40-10-0-10 DURATION FACTOR: 1.15 SPACING: 24" O.C. TOP CHORD: 2x4 OR 2x6 PITCH: 4/12 - 12/12

HEEL HEIGHT: STANDARD HEEL UP TO 12" ENERGY HEEL

END BEARING CONDITION

NOTES:

- 1. ATTACH 2x_ SCAB (MINIMUM NO.2 GRADE SPF, HF, SP, DF) TO ONE FACE OF TRUSS WITH TWO ROWS OF 10d (0.131" X 3") SPACED 6" O.C.
- 2. THE END DISTANCE, EDGE DISTANCE, AND SPACING OF NAILS SHALL BE SUCH AS TO AVOID UNUSUAL SPLITTING OF THE WOOD.
- 3. WHEN NAILING THE SCABS, THE USE OF A BACKUP WEIGHT IS RECOMMENDED TO AVOID LOOSENING OF THE CONNECTOR PLATES AT THE JOINTS OR SPLICES.

IMPORTANT

This detail to be used only with trusses (spans less than 40') spaced 24" o.c. maximum and having pitches between 4/12 and 12/12 and total top chord loads not exceeding 50 psf.

Trusses not fitting these criteria should be examined individually.

REFER TO INDIVIDUAL TRUSS DESIGN FOR PLATE SIZES AND LUMBER GRADES This item has been electronically signed and sealed by ORegan, Philip, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

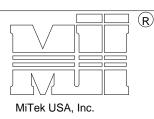
Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 2,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

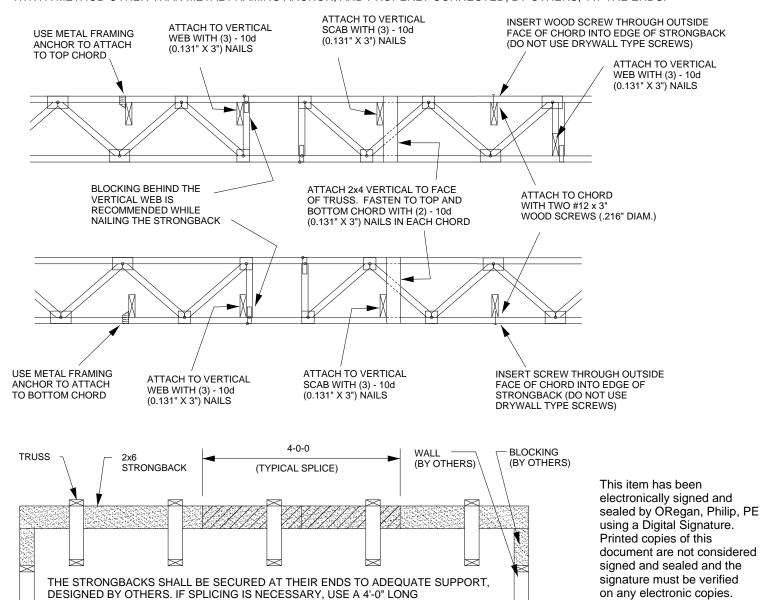
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information


available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

6904 Parke East Blvd. Tampa, FL 36610

MiTek USA, Inc.


Page 1 of 1

TO MINIMIZE VIBRATION COMMON TO ALL SHALLOW FRAMING SYSTEMS, 2x6 "STRONGBACK" IS RECOMMENDED, LOCATED EVERY 8 TO 10 FEET ALONG A FLOOR TRUSS.

NOTE 1: 2X6 STRONGBACK ORIENTED VERTICALLY MAY BE POSITIONED DIRECTLY UNDER THE TOP CHORD OR DIRECTLY ABOVE THE BOTTOM CHORD. SECURELY FASTENED TO THE TRUSS USING ANY OF THE METHODS ILLUSTRATED BELOW.

NOTE 2: STRONGBACK BRACING ALSO SATISFIES THE LATERAL BRACING REQUIREMENTS FOR THE BOTTOM CHORD OF THE TRUSS WHEN IT IS PLACED ON TOP OF THE BOTTOM CHORD, IS CONTINUOUS FROM END TO END, CONNECTED WITH A METHOD OTHER THAN METAL FRAMING ANCHOR, AND PROPERLY CONNECTED, BY OTHERS, AT THE ENDS.

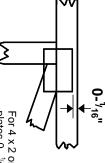
(0.131" X 3") NAILS EQUALLY SPACED.
ALTERNATE METHOD OF SPLICING:

OVERLAP STRONGBACK MEMBERS A MINIMUM OF 4'-0" AND FASTEN WITH (12) - 10d (0.131" X 3") NAILS STAGGERED AND EQUALLY SPACED.

(TO BE USED ONLY WHEN STRONGBACK IS NOT ALIGNED WITH A VERTICAL)

SCAB CENTERED ON THE SPLICE AND JOINED WITH (12) - 10d

Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:



Symbols

PLATE LOCATION AND ORIENTATION

Center plate on joint unless x, y offsets are indicated.
Dimensions are in ft-in-sixteenths.
Apply plates to both sides of truss and fully embed teeth.

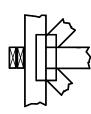
For 4 x 2 orientation, locate plates 0- $\frac{1}{16}$ " from outside edge of truss.

This symbol indicates the required direction of slots in connector plates.

* Plate location details available in MiTek 20/20 software or upon request.

PLATE SIZE

4 × 4

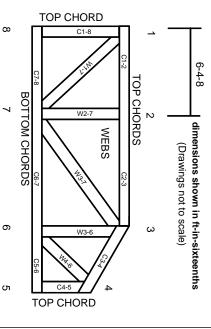

The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated.

BEARING

Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number where bearings occur.


Min size shown is for crushing only

Industry Standards:

National Design Specification for Metal Plate Connected Wood Truss Construction. Design Standard for Bracing.
Building Component Safety Information, Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses.

ANSI/TPI1: DSB-89:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

PRODUCT CODE APPROVALS

ICC-ES Reports:

ESR-1311, ESR-1352, ESR1988 ER-3907, ESR-2362, ESR-1397, ESR-3282

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2012 MiTek® All Rights Reserved

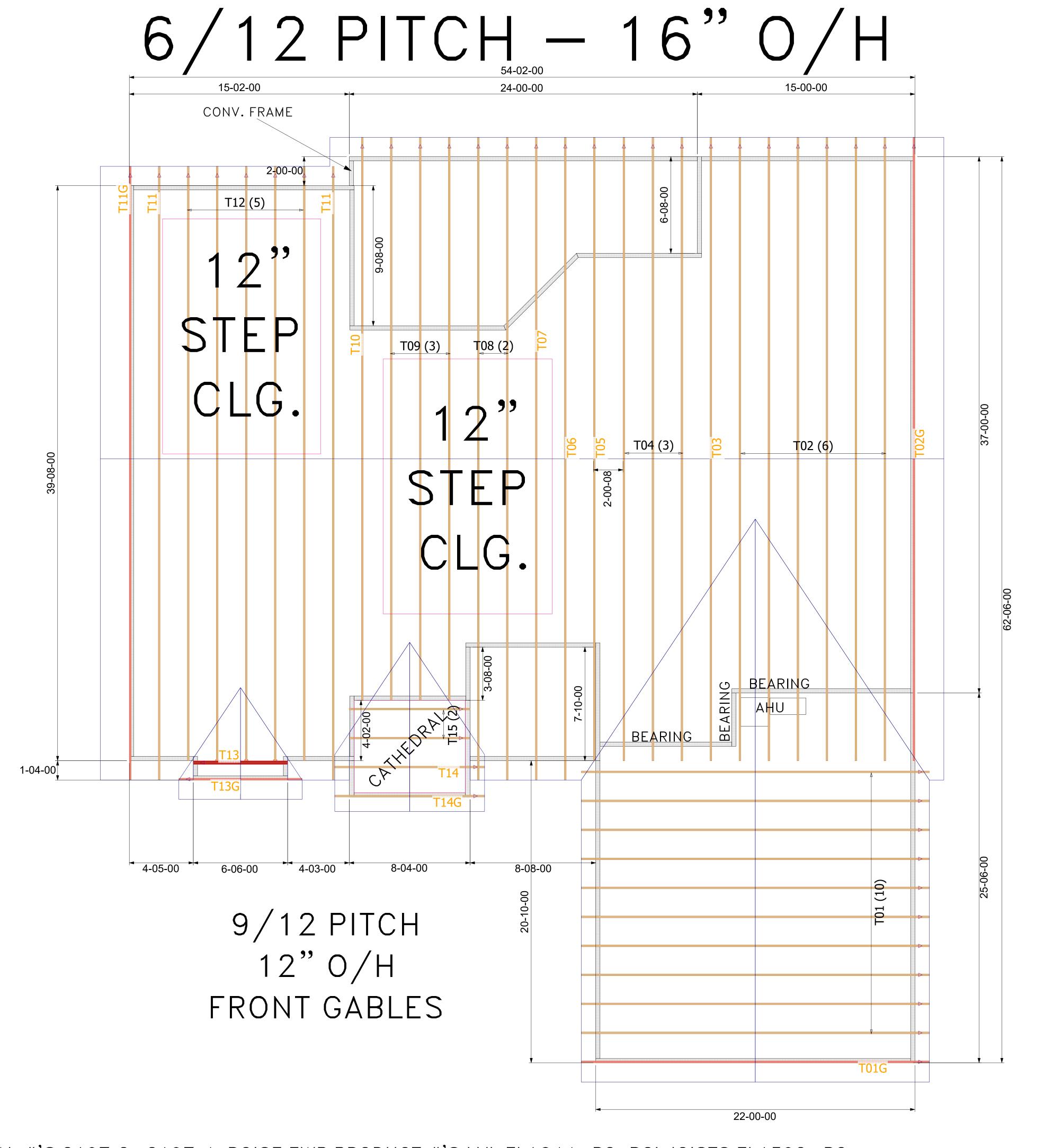
MiTek Engineering Reference Sheet: MII-7473 rev. 5/19/2020

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.

ω


- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other.

Ģ

- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.

œ

- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21.The design does not take into account any dynamic or other loads other than those expressly stated.

THE ARROW HEAD AT THE
END OF THE TRUSS ON
THE TRUSS PLACEMENT
PLAN (LAYOUT)
CORRESPONDS WITH THE
LEFT SIDE OF THE
INDIVIDUAL TRUSS
DRAWING. USE THIS AS AN
ORIENTATION GUIDE
WHEN SETTING THE
TRUSSES ON THE
STRUCTURE.

General Notes:

Per ANSI/TPI 1-2002 all "Truss to Wall" connections are the responsibility of the Building Designer, not the Cruss Manufacturer.

- Use Manufacturer's specifications for all hanger connections unless noted otherwise.

Trusses are to be 24" o.c. U.N.O.
All hangers are to be Simpson or equivalent U.N.O.
Use 10d x 1 1/2" Nails in hanger connections to single ply

- Trusses are not designed to support brick U.N.O.
- Dimensions are Feet-Inches- Sixteenths

Notes:

No back charges will be accepted by Builders FirstSource unless approved in writing first. 850-835-4541

ACQ lumber is corrisive to truss plates. Any ACQ lumber that comes in contact with truss plates (i.e. scabbed on tails) must have an approved barrier applied first.

Refer to BCSI-B1 Summary Sheet-Guide for handling, Installing and Bracing of Metal Plate Connected Wood Truss prior to and during truss installation.

It is the responsibility of the Contractor to ensure of the proper orientation of the truss placement plans as to the construction documents and field conditions of the structure orientation. If a reversed or flipped layout is

required, it will be supplied at no extra cost by Builders FirstSource.

It is the responsibility of the Contractor to make sure the placement of trusses are adjusted for plumbing drops, can

type of items.

All common framed roof or floor systems must be designed as to NOT impose any loads on the floor trusses below. The floor trusses have not been designed to carry

lights, ect..., so the trusses do not interfere with these

any additional loads from above.

This truss placement plan was not created by an engineer, but rather by the Builders FirstSource staff and is solely to be used as an installation guide and does not require a seal. Complete truss engineering and analysis can be found on the truss design drawings which may be

Gable end trusses require continuous bottom chord bearing. Refer to local codes for wall framing

sealed by the truss design engineer.

Although all attempts have been made to do so, trusses may not be designed symmetrically. Please refer to the individual truss drawings and truss placement plans for proper orientation and placement.

Lake City
PHONE: 386-755-6894
FAX: 386-755-7973

Jacksonville PHONE: 904-772-6100 FAX: 904-772-1973

Tallahassee PHONE: 850-576-5177

DWC CONTRACTING

Legal Address:

Lot 8 Thornwood

Model:

 $egin{array}{c} ext{Custom} \ ext{8-25-23} \end{array} egin{array}{c} ext{Date} : \ ext{3 } \end{array}$

3651002

N/A

MITEK PLATE APPROVAL #'S 2197.2-2197.4, BOISE EWP PRODUCT #'S LVL FL1644-R2, BCI JOISTS FL1392-R2

RE: 3651002 - DWC - LOT 8 TW

MiTek, Inc.

16023 Swingley Ridge Rd. Chesterfield, MO 63017

314.434.1200

Site Information:

Customer Info: DWC CONT. Project Name: Spec Hse Model: Custom

Lot/Block: 8 Subdivision: Thornwood

Address: 321 SW Greenwood Terrace, N/A

City: Columbia Cty State: FL

Name Address and License # of Structural Engineer of Record, If there is one, for the building.

Name: License #:

Address:

City: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

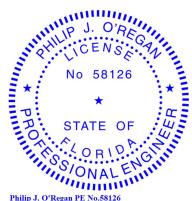
Design Code: FBC2020/TPI2014 Design Program: MiTek 20/20 8.5

Wind Code: ASCE 7-16 Wind Speed: 130 mph Roof Load: 37.0 psf Floor Load: N/A psf

This package includes 20 individual, Truss Design Drawings and 0 Additional Drawings. With my seal affixed to this sheet, I hereby certify that I am the Truss Design Engineer and this index sheet conforms to 61G15-31.003, section 5 of the Florida Board of Professional Engineers Rules.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	T31411935	T01	8/25/23	15	T31411949	T12	8/25/23
2	T31411936	T01G	8/25/23	16	T31411950	T13	8/25/23
2 3	T31411937	T02	8/25/23	17	T31411951	T13G	8/25/23
4	T31411938	T02G	8/25/23	18	T31411952	T14	8/25/23
5 6	T31411939	T03	8/25/23	19	T31411953	T14G	8/25/23
6	T31411940	T04	8/25/23	20	T31411954	T15	8/25/23
7	T31411941	T05	8/25/23				
8	T31411942	T06	8/25/23				
9	T31411943	T07	8/25/23				
10	T31411944	T08	8/25/23				
11	T31411945	T09	8/25/23				
12	T31411946	T10	8/25/23				
13	T31411947	T11	8/25/23				
14	T31411948	T11G	8/25/23				

This item has been electronically signed and sealed by ORegan, Philip, PE using a Digital Signature.


Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies

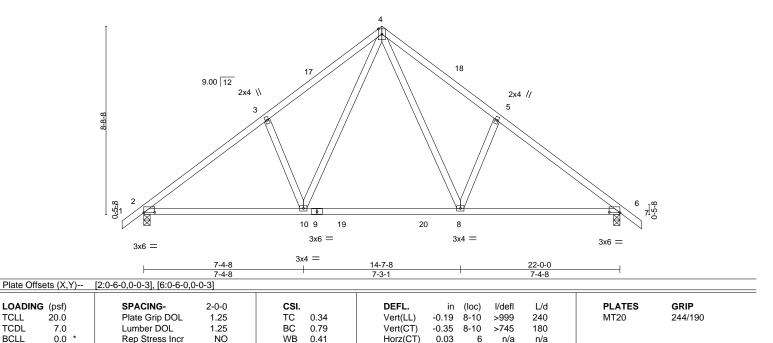
The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Builders FirstSource-Lake City, FL.

Truss Design Engineer's Name: ORegan, Philip

My license renewal date for the state of Florida is February 28, 2025.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Philip J. O'Regan PE No.58126 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:


August 25,2023

Job Truss Truss Type Qty DWC - LOT 8 TW T31411935 3651002 T01 COMMON 10 Job Reference (optional) 8.530 s Aug 2 2023 MiTek Industries, Inc. Fri Aug 25 07:18:44 2023 Page 1 Builders FirstSource (Lake City,FL) Lake City, FL - 32055, ID:cLQQfHVaoLGzE0HNaZzGxbyTax0-TABFF2mjl903TshVPMf?FcswlwWfU0voWahKkSykNZP 22-0-0 1-0-0 1-0-0

5-3-11

Scale = 1:53.2 4x6 ||

5-8-5

BRACING-

TOP CHORD

BOT CHORD

6

n/a

n/a

Rigid ceiling directly applied or 10-0-0 oc bracing.

Structural wood sheathing directly applied or 4-6-9 oc purlins.

5-3-11

LUMBER-

TCLL

TCDL

BCLL

BCDL

LOADING (psf)

2x4 SP No.2 TOP CHORD **BOT CHORD** 2x4 SP No.1 WEBS 2x4 SP No.3

20.0

7.0

0.0

10.0

REACTIONS. (size) 2=0-3-8, 6=0-3-8

Max Horz 2=-198(LC 10) Max Uplift 2=-236(LC 12), 6=-236(LC 13)

Max Grav 2=1193(LC 19), 6=1193(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Code FBC2020/TPI2014

TOP CHORD 2-3=-1583/315, 3-4=-1514/398, 4-5=-1514/398, 5-6=-1583/315

BOT CHORD 2-10=-279/1338, 8-10=-95/884, 6-8=-180/1228

WFBS 4-8=-257/879, 5-8=-282/222, 4-10=-257/879, 3-10=-282/222

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 11-0-0, Exterior(2R) 11-0-0 to 14-0-0, Interior(1) 14-0-0 to 23-0-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Matrix-MS

- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 236 lb uplift at joint 2 and 236 lb uplift at
- 7) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25. Plate Increase=1.25 Uniform Loads (plf)

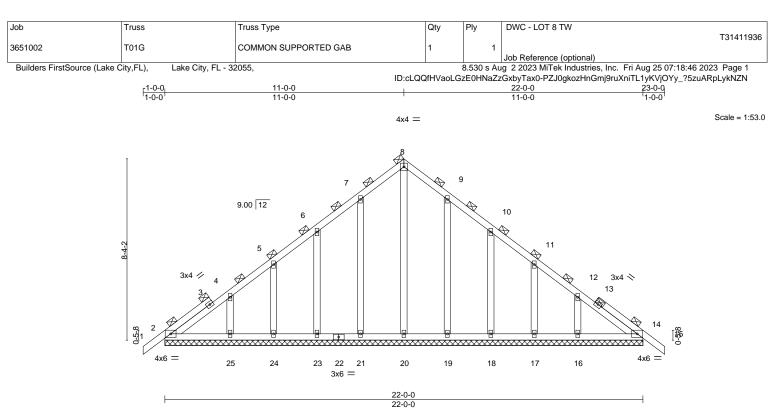
Vert: 1-4=-54, 4-7=-54, 10-11=-20, 8-10=-80(F=-60), 8-14=-20

This item has been electronically signed and sealed by ORegan, Philip, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

FT = 20%

Weight: 117 lb

Philip J. O'Regan PE No.58126 MITek Inc. DBA MITek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:


August 25,2023

M WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not Design Valid for use only with will relew connectors. This design is based only upon parameters shown, and is for an individual unulang component, nor a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/I/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

LOADING (psf) SPACING-DEFL. **PLATES** GRIP 2-0-0 CSI. (loc) I/defI L/d 20.0 1.25 -0.00 120 244/190 **TCLL** Plate Grip DOL TC 0.07 Vert(LL) 14 n/r MT20 TCDL 7.0 Lumber DOL 1.25 ВС 0.06 Vert(CT) 0.00 14 120 n/r **BCLL** 0.0 Rep Stress Incr YES WB 0.18 Horz(CT) 0.01 14 n/a n/a **BCDL** 10.0 Code FBC2020/TPI2014 Matrix-S Weight: 144 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

2-0-0 oc purlins (6-0-0 max.).

Rigid ceiling directly applied or 10-0-0 oc bracing

LUMBER-TOP CHORD

2x4 SP No 2

2x4 SP No.2 **BOT CHORD OTHERS** 2x4 SP No.3

REACTIONS. All bearings 22-0-0.

Max Uplift All uplift 100 lb or less at joint(s) 2, 21, 23, 24, 25, 19, 18, 17, 16

Max Grav All reactions 250 lb or less at joint(s) 2, 14, 20, 21, 23, 24, 25, 19, 18, 17, 16

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Corner(3E) -1-0-0 to 2-0-0, Exterior(2N) 2-0-0 to 11-0-0, Corner(3R) 11-0-0 to 14-0-0, Exterior(2N) 14-0-0 to 23-0-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 21, 23, 24, 25,
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

This item has been electronically signed and sealed by ORegan, Philip, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Philip J. O'Regan PE No.58126 MITek Inc. DBA MITek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

August 25,2023

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

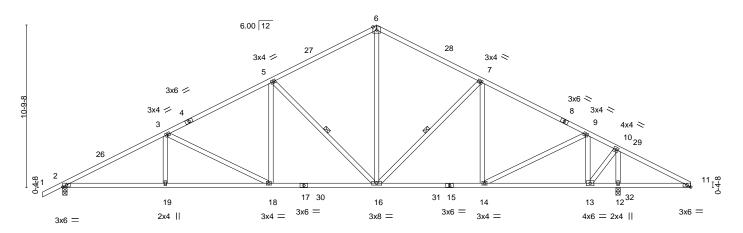
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not Design Valid for use only with will relew connectors. This design is based only upon parameters shown, and is for an individual unulang component, nor a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/I/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

7-0-2

7-0-2

Scale = 1:76.4 5x6 =

Structural wood sheathing directly applied or 3-1-8 oc purlins.


5-16, 7-16

Rigid ceiling directly applied or 6-0-0 oc bracing.

1 Row at midpt

6-9-12

7-0-2

	6-9-12	13-9-14	20-10-0	27-10-2	34-10-4	37-0-0 41-8-0
	6-9-12	7-0-2	7-0-2	7-0-2	7-0-2	2-1-12 4-8-0
Plate Offsets (X,	Y) [11:0-2-15,Edge]					
LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL. in (loc)	I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip D	OL 1.25	TC 0.54	Vert(LL) -0.18 16-18	>999 240	MT20 244/190
TCDL 7.0	Lumber DOL	1.25	BC 0.81	Vert(CT) -0.31 16-18	>999 180	
BCLL 0.0	* Rep Stress I	ncr YES	WB 0.72	Horz(CT) 0.10 12	n/a n/a	
BCDL 10.0	Code FBC2	020/TPI2014	Matrix-MS	, ,		Weight: 237 lb FT = 20%

BRACING-

LUMBER-

REACTIONS.

BOT CHORD

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 WEBS 2x4 SP No.3

TOP CHORD **BOT CHORD WEBS**

7-0-2

(size) 2=0-3-8, 12=0-3-8 Max Horz 2=175(LC 12)

6-9-12

Max Uplift 2=-322(LC 12), 12=-362(LC 13) Max Grav 2=1532(LC 2), 12=1913(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 $2\text{-}3\text{--}2777/538,\ 3\text{-}5\text{--}2171/440,\ 5\text{-}6\text{--}1517/357,\ 6\text{-}7\text{--}1518/368,\ 7\text{-}9\text{--}1677/314,}$ TOP CHORD

9-10=-724/146, 10-11=-311/382 2-19=-566/2440, 18-19=-566/2440, 16-18=-361/1888, 14-16=-166/1443, 13-14=-74/637,

12-13=-293/304, 11-12=-293/304 **WEBS**

3-19=0/281, 3-18=-618/229, 5-18=-57/558, 5-16=-843/302, 6-16=-191/1011,

7-16=-282/188, 9-14=-237/903, 9-13=-1004/316, 10-13=-278/1471, 10-12=-1757/424

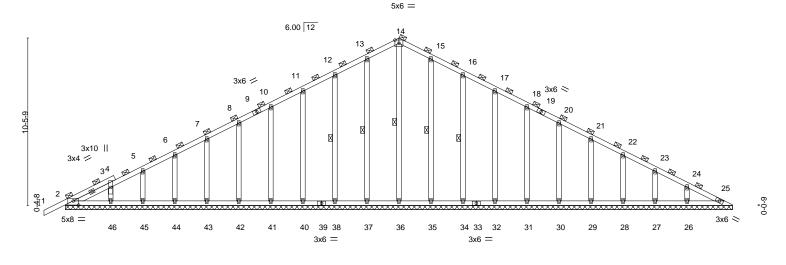
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-4-0 to 2-10-0, Interior(1) 2-10-0 to 20-10-0, Exterior(2R) 20-10-0 to 25-0-0, Interior(1) 25-0-0 to 41-8-0 zone; cantilever right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=322, 12=362.

This item has been electronically signed and sealed by ORegan, Philip, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Philip J. O'Regan PE No.58126 MITek Inc. DBA MITek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

August 25,2023

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MTRe% connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

ID:cLQQfHVaoLGzE0HNaZzGxbyTax0-HKYWW6rUL?mCBn8fmcmPVt60wKlaupAhuW8ey6ykNZJ 20-10-0 20-10-0

Scale = 1:71.9

41-8-0 Plate Offsets (X,Y)--[2:0-4-0,0-3-1] LOADING (psf) SPACING-2-0-0 CSI. DEFL. in (loc) I/defI L/d **PLATES GRIP** TCLL 20.0 Plate Grip DOL 1.25 TC 0.10 Vert(LL) -0.00 120 MT20 244/190 n/r TCDL 7.0 Lumber DOL 1.25 ВС 0.05 Vert(CT) -0.00 n/r 120 **BCLL** 0.0 Rep Stress Incr YES WB 0.11 Horz(CT) 0.01 25 n/a n/a Code FBC2020/TPI2014 FT = 20% **BCDL** 10.0 Weight: 283 lb Matrix-S

41-8-0

BRACING-

LUMBER-

TOP CHORD 2x4 SP No.2 TOP CHORD 2-0-0 oc purlins (6-0-0 max.).

BOT CHORD 2x4 SP No.2 **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing.

OTHERS 2x4 SP No.3 **WEBS** 1 Row at midpt 14-36, 13-37, 12-38, 15-35, 16-34

REACTIONS. All bearings 41-8-0.

(lb) -Max Horz 2=169(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 2, 37, 38, 40, 41, 42, 43, 44, 45, 46, 35, 34, 32, 31, 30, 29,

28, 27, 26

Max Grav All reactions 250 lb or less at joint(s) 2, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 35, 34, 32, 31,

30, 29, 28, 27, 26, 25

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

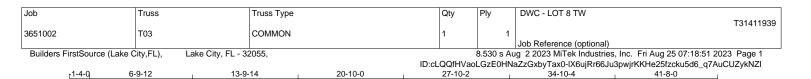
TOP CHORD 13-14=-101/280, 14-15=-101/280

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Corner(3E) -1-4-0 to 2-10-0, Exterior(2N) 2-10-0 to 20-10-0, Corner(3R) 20-10-0 to 24-10-0, Exterior(2N) 24-10-0 to 41-1-11 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 37, 38, 40, 41, 42, 43, 44, 45, 46, 35, 34, 32, 31, 30, 29, 28, 27, 26,
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

This item has been electronically signed and sealed by ORegan, Philip, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Philip J. O'Regan PE No.58126 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017


August 25,2023

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

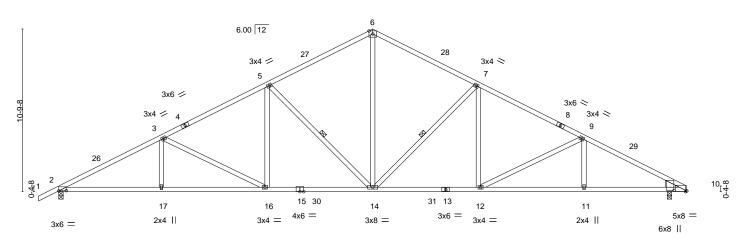
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not Design Valid for use only with will relew connectors. This design is based only upon parameters shown, and is for an individual unulang component, nor a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/I/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

7-0-2

7-0-2

Scale = 1:76.4 5x6 =

6-9-12


7-0-2

Structural wood sheathing directly applied.

1 Row at midpt

Rigid ceiling directly applied or 9-3-11 oc bracing.

5-14, 7-14

	6-9-12	13-9-14	20-10-0	27-10-2	34-10-4	<u>40-8-0</u> 4 <u>1-8-</u> 0
	6-9-12	7-0-2	7-0-2	7-0-2	7-0-2	5-9-12 1-0-0
Plate Offsets (X,Y)	[2:0-6-0,0-0-3], [10:0	-1-1,Edge], [10:0-0-	7,0-10-3]			
LOADING (psf) TCLL 20.0 TCDL 7.0 BCLL 0.0 *	SPACING- Plate Grip DO Lumber DOL Rep Stress In	1.25	CSI. TC 1.00 BC 0.87 WB 0.71	DEFL. in (loc) Vert(LL) -0.28 11-12 Vert(CT) -0.49 11-12 Horz(CT) 0.13 10	l/defl L/d >999 240 >999 180 n/a n/a	PLATES GRIP MT20 244/190
BCDL 10.0	Code FBC20		Matrix-MS	11012(01) 0.10 10	11/4 11/4	Weight: 231 lb FT = 20%

BRACING-

WEBS

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP 2850F 2.0E or 2x4 SP M 31 *Except*

6-9-12

7-0-2

13-15: 2x4 SP No.2

2x4 SP No.3 WEBS

WEDGE

Right: 2x6 SP No.2

REACTIONS. (size) 2=0-3-8, 10=0-3-8

Max Horz 2=175(LC 12)

Max Uplift 2=-344(LC 12), 10=-328(LC 13) Max Grav 2=1711(LC 2), 10=1734(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD $2-3=-3167/585,\ 3-5=-2570/506,\ 5-6=-1914/458,\ 6-7=-1917/461,\ 7-9=-2467/495,$

9-10=-2714/505

BOT CHORD 2-17=-608/2782, 16-17=-608/2782, 14-16=-404/2239, 12-14=-284/2171, 11-12=-370/2343,

10-11=-370/2343

WEBS 3-17=0/277, 3-16=-610/228, 5-16=-56/560, 5-14=-846/302, 6-14=-244/1371,

7-14=-759/285, 7-12=-31/437, 9-12=-254/154

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-4-0 to 2-10-0, Interior(1) 2-10-0 to 20-10-0, Exterior(2R) 20-10-0 to 25-0-0, Interior(1) 25-0-0 to 41-8-0 zone; cantilever right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=344, 10=328.

This item has been electronically signed and sealed by ORegan, Philip, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Philip J. O'Regan PE No.58126 MITek Inc. DBA MITek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

August 25,2023

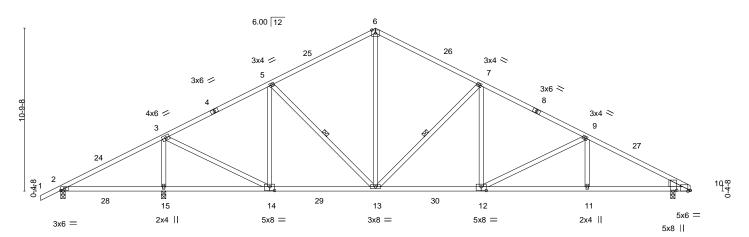
MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

20-10-0

7-0-2 7-0-2 7-0-2 7-0-2 6-9-12

27-10-2

Scale = 1:76.3 5x6 =


Structural wood sheathing directly applied or 2-9-7 oc purlins.

5-13, 7-13

Rigid ceiling directly applied or 6-0-0 oc bracing.

1 Row at midpt

34-10-4

20-10-0 27-10-2 34-10-4 40-8-0 41-8-0 13-9-14 7-0-2 7-0-2 7-0-2 7-0-2 Plate Offsets (X,Y)--[10:0-0-3,0-10-11], [10:0-1-13,Edge], [12:0-4-0,0-3-0], [14:0-3-12,0-3-0] SPACING-GRIP LOADING (psf) 2-0-0 CSI. in (loc) I/defI L/d **PLATES** 1.25 TCLL 20.0 Plate Grip DOL TC 0.76 Vert(LL) 0.10 15-18 >786 240 MT20 244/190 TCDL 7.0 Lumber DOL 1.25 ВС 0.70 Vert(CT) -0.33 11-12 >999 180 **BCLL** 0.0 Rep Stress Incr YES WB 0.62 Horz(CT) 0.05 10 n/a n/a Code FBC2020/TPI2014 FT = 20% **BCDL** 10.0 Matrix-MS Weight: 231 lb

BRACING-

WEBS

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP 2850F 2.0E or 2x4 SP M 31 *Except*

12-14: 2x4 SP No.2

2x4 SP No.3 WEBS

WEDGE

Right: 2x6 SP No.2

REACTIONS. (size) 2=0-3-8, 15=0-3-8, 10=0-3-8

Max Horz 2=175(LC 16)

Max Uplift 2=-131(LC 26), 15=-388(LC 12), 10=-288(LC 13) Max Grav 2=143(LC 23), 15=2074(LC 2), 10=1386(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD $2-3=-141/720,\ 3-5=-1075/267,\ 5-6=-1179/342,\ 6-7=-1182/344,\ 7-9=-1750/384,$

9-10=-2084/432

BOT CHORD 2-15=-599/213, 14-15=-599/213, 13-14=-153/920, 12-13=-182/1528, 11-12=-306/1791,

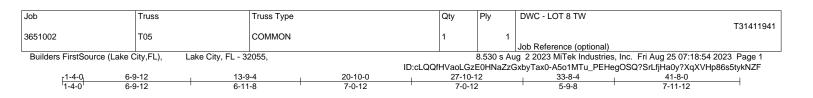
10-11=-306/1791

WEBS 3-15=-1783/410, 3-14=-192/1631, 5-14=-512/142, 6-13=-154/711, 7-13=-773/287,

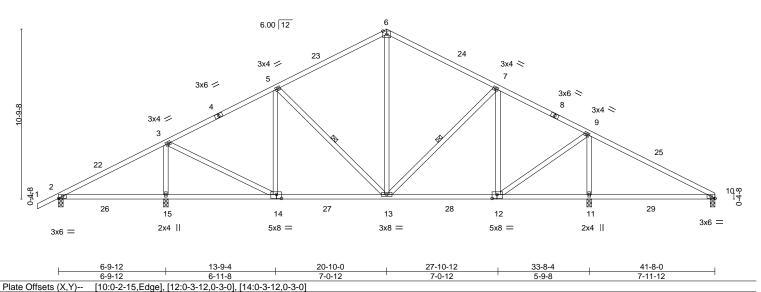
7-12=-34/458, 9-12=-315/165

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-4-0 to 2-10-0, Interior(1) 2-10-0 to 20-10-0, Exterior(2R) 20-10-0 to 25-0-0, Interior(1) 25-0-0 to 41-8-0 zone; cantilever right exposed; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=131, 15=388, 10=288.

This item has been electronically signed and sealed by ORegan, Philip, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.


Philip J. O'Regan PE No.58126 MITek Inc. DBA MITek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

August 25,2023



M WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

5x6 =

SPACING-**PLATES** GRIP LOADING (psf) 2-0-0 DEFL. in (loc) I/defI L/d 1.25 TCLL 20.0 Plate Grip DOL TC 0.61 Vert(LL) 0.26 11-21 >367 240 MT20 244/190 TCDL 7.0 Lumber DOL 1.25 ВС 0.56 Vert(CT) -0.27 11-21 >353 180 **BCLL** 0.0 Rep Stress Incr YES WB 0.40 Horz(CT) 0.02 n/a n/a 11 Code FBC2020/TPI2014 FT = 20% **BCDL** 10.0 Matrix-MS Weight: 229 lb

LUMBER-

2x4 SP No.2 TOP CHORD 2x4 SP No.2 **BOT CHORD** WEBS 2x4 SP No.3 BRACING-

TOP CHORD **BOT CHORD WEBS**

Structural wood sheathing directly applied or 5-4-3 oc purlins.

Rigid ceiling directly applied or 6-0-0 oc bracing.

5-13, 7-13 1 Row at midpt

REACTIONS. All bearings 0-3-8.

Max Horz 2=175(LC 12) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 2 except 15=-317(LC 12), 11=-269(LC 13), 10=-105(LC 8) Max Grav All reactions 250 lb or less at joint(s) except 2=296(LC 23), 15=1435(LC 2), 11=1470(LC 2), 10=283(LC 24)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

3-5=-989/263, 5-6=-862/302, 6-7=-860/300, 7-9=-868/260 TOP CHORD

BOT CHORD 13-14=-143/846. 12-13=-60/716

WEBS 3-15=-1157/342, 3-14=-115/930, 6-13=-95/410, 7-12=-318/92, 9-12=-89/853,

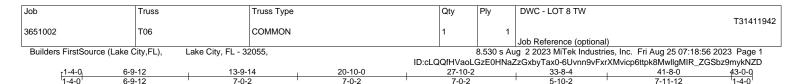
9-11=-1173/282

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-4-0 to 2-10-0, Interior(1) 2-10-0 to 20-10-0, Exterior(2R) 20-10-0 to 25-0-0, Interior(1) 25-0-0 to 41-8-0 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 15=317, 11=269, 10=105.

This item has been electronically signed and sealed by ORegan, Philip, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

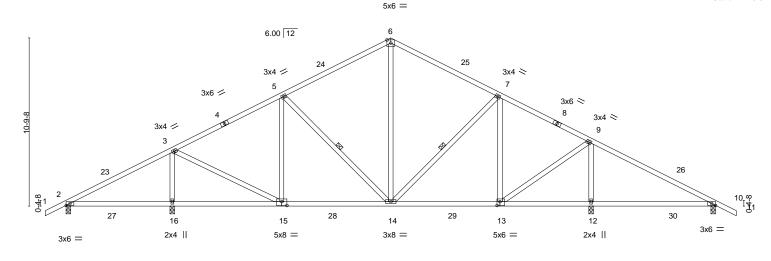
Scale = 1:73.1


Philip J. O'Regan PE No.58126 MITek Inc. DBA MITek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

August 25,2023

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

7-0-2


7-0-2

Scale = 1:73.9

1-4-0

7-11-12

41-8-0

	0-9-12	7-0-2	7-0-2	7-0-2	3-10-2	7-11-12
Plate Offsets (X,Y)	[10:0-2-15,Edge], [13:0-2	2-4,0-3-0], [15:0	-4-0,0-3-0]			
LOADING (psf) TCLL 20.0 TCDL 7.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code FBC2020/T	2-0-0 1.25 1.25 YES PI2014	CSI. TC 0.59 BC 0.54 WB 0.41 Matrix-MS	DEFL. in (loc) Vert(LL) 0.24 12-22 Vert(CT) -0.26 12-22 Horz(CT) 0.02 12	l/defl L/d >403 240 >372 180 n/a n/a	PLATES GRIP MT20 244/190 Weight: 231 lb FT = 20%

20-10-0

LUMBER-

2x4 SP No.2 TOP CHORD BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 BRACING-

TOP CHORD **BOT CHORD WEBS**

27-10-2

Structural wood sheathing directly applied or 5-5-0 oc purlins.

Rigid ceiling directly applied or 6-0-0 oc bracing.

1 Row at midpt 5-14, 7-14

5-10-2

All bearings 0-3-8. REACTIONS.

Max Horz 2=165(LC 12) (lb) -

6-9-12

7-0-2

Max Uplift All uplift 100 lb or less at joint(s) 2 except 16=-315(LC 12), 12=-264(LC 13), 10=-118(LC 8) Max Grav All reactions 250 lb or less at joint(s) except 2=296(LC 23), 16=1435(LC 2), 12=1470(LC 2),

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

3-5=-988/266, 5-6=-861/304, 6-7=-858/304, 7-9=-864/264 TOP CHORD

BOT CHORD 14-15=-135/851. 13-14=-48/715

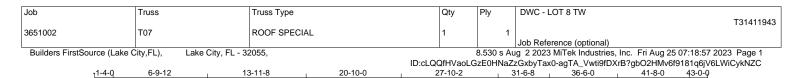
WEBS 3-16=-1157/340, 3-15=-111/928, 6-14=-99/412, 7-13=-321/91, 9-13=-87/860,

9-12=-1178/280

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-4-0 to 2-10-0, Interior(1) 2-10-0 to 20-10-0, Exterior(2R) 20-10-0 to 25-0-0, Interior(1) 25-0-0 to 43-0-0 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 16=315, 12=264, 10=118.

This item has been electronically signed and sealed by ORegan, Philip, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.


Philip J. O'Regan PE No.58126 MITek Inc. DBA MITek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

August 25,2023

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

27-10-2

7-0-2

20-10-0

6-10-8

4-11-8 Scale = 1:83.3 5x6 =

Structural wood sheathing directly applied or 6-0-0 oc purlins.

5-17, 7-17

Rigid ceiling directly applied or 6-0-0 oc bracing.

1 Row at midpt

36-6-0

43-0-0 1-4-0

5-2-0

31-6-8

3-8-6

	6-9-12	9-7-0 1 13-1	1-8 20-10-0	27-10-2	31-6-8	33-8-4	41-8-0	
	6-9-12	2-9-4 4-4	1-8 G-10-8	7-0-2	3-8-6	2-1-12	7-11-12	
Plate Offsets (X,Y)	[11:0-2-15,Edge]							
LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL. in (le	oc) I/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.52	Vert(LL) 0.15 13-	28 >656	240	MT20	244/190
TCDL 7.0	Lumber DOL	1.25	BC 0.50	Vert(CT) -0.16 13-	28 >613	180		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.67	Horz(CT) 0.04	13 n/a	n/a		
BCDL 10.0	Code FBC2020	/TPI2014	Matrix-MS				Weight: 250 lb	FT = 20%

TOP CHORD

BOT CHORD

WEBS

LUMBER-BRACING-

2x4 SP No.2 TOP CHORD 2x4 SP No.2 *Except* **BOT CHORD**

5-20,8-14: 2x4 SP No.3

6-9-12

WEBS 2x4 SP No.3

7-1-12

REACTIONS. All bearings 0-3-8 except (jt=length) 21=0-4-15. Max Horz 2=165(LC 16) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) except 2=-108(LC 8), 11=-114(LC 8), 21=-302(LC 12), 13=-266(LC

13)

Max Grav All reactions 250 lb or less at joint(s) 11 except 2=412(LC 23), 21=1349(LC 2), 13=1595(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-342/287, 3-5=-643/186, 5-6=-681/242, 6-7=-679/242, 7-8=-618/223, 8-10=0/528,

10-11=0/352

BOT CHORD 2-22=-176/280, 21-22=-169/276, 5-19=-408/137, 17-19=-86/573, 16-17=-11/533 WEBS

3-22=-293/229, 3-21=-1385/563, 19-21=-611/195, 3-19=-217/1207, 6-17=-72/294,

7-16=-359/106, 8-16=-94/746, 8-13=-1198/193, 10-13=-312/191

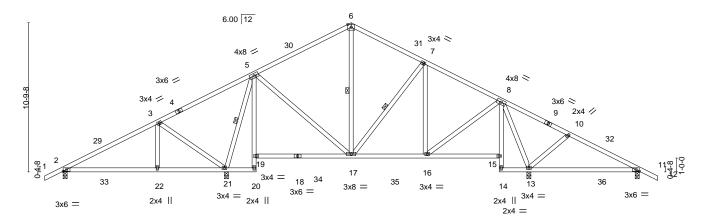
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-4-0 to 2-10-0, Interior(1) 2-10-0 to 20-10-0, Exterior(2R) 20-10-0 to 25-0-0, Interior(1) 25-0-0 to 43-0-0 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 108 lb uplift at joint 2, 114 lb uplift at joint 11, 302 lb uplift at joint 21 and 266 lb uplift at joint 13.

This item has been electronically signed and sealed by ORegan, Philip, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Philip J. O'Regan PE No.58126 MITek Inc. DBA MITek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

August 25,2023

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.



Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

ID:cLQQfHVaoLGzE0HNaZzGxbyTax0-W3bwPBy7Dmvwm9KOo?RWMn_RwzkZVmW0zQqdm5ykNZA 20-10-0 6-10-8 26-2-4 5-4-4

> Scale = 1:83.3 5x6 =

Plate Offsets (X,Y)	[11:0-2-15,Edge]			
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.25	TC 0.53	Vert(LL) 0.15 13-28 >650 240	MT20 244/190
TCDL 7.0	Lumber DOL 1.25	BC 0.44	Vert(CT) 0.12 13-28 >787 180	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.55	Horz(CT) 0.04 13 n/a n/a	
BCDL 10.0	Code FBC2020/TPI2014	Matrix-MS		Weight: 248 lb FT = 20%

LUMBER-BRACING-

2x4 SP No.2 TOP CHORD TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. **BOT CHORD** 2x4 SP No.2 *Except* **BOT CHORD** Rigid ceiling directly applied or 6-0-0 oc bracing. 5-20,8-14: 2x4 SP No.3 **WEBS** 1 Row at midpt 5-21, 6-17, 7-17

WEBS 2x4 SP No.3

REACTIONS. All bearings 0-3-8. Max Horz 2=165(LC 12) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) except 2=-158(LC 8), 11=-116(LC 8), 21=-320(LC 12), 13=-274(LC

13)

Max Grav All reactions 250 lb or less at joint(s) 11 except 2=384(LC 23), 21=1579(LC 2), 13=1379(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-285/454, 3-5=-43/590, 5-6=-445/270, 6-7=-423/256, 7-8=-528/254, 8-10=0/456,

10-11=0/287

BOT CHORD 2-22=-321/199, 21-22=-321/199, 16-17=0/425

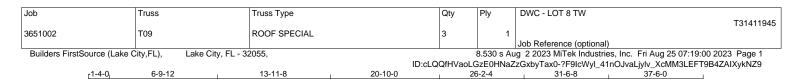
3-22=-300/267, 3-21=-588/509, 5-21=-1178/225, 5-17=0/455, 8-16=-34/496, **WEBS**

8-13=-1003/210, 10-13=-297/183

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-4-0 to 2-10-0, Interior(1) 2-10-0 to 20-10-0, Exterior(2R) 20-10-0 to 25-0-0, Interior(1) 25-0-0 to 43-0-0 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 158 lb uplift at joint 2, 116 lb uplift at joint 11, 320 lb uplift at joint 21 and 274 lb uplift at joint 13.

This item has been electronically signed and sealed by ORegan, Philip, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.


Philip J. O'Regan PE No.58126 MITek Inc. DBA MITek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

August 25,2023

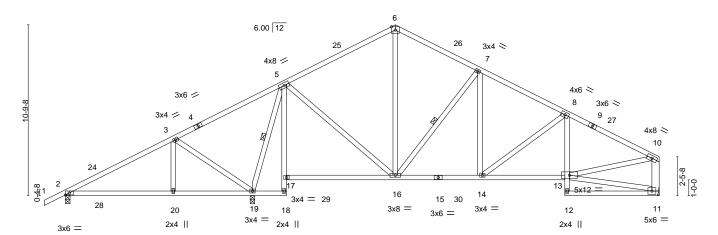
M WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

6-10-8

Scale = 1:72.8 5x6 =

Structural wood sheathing directly applied or 5-2-3 oc purlins,

5-19, 7-16


Rigid ceiling directly applied or 6-0-0 oc bracing.

except end verticals.

1 Row at midpt

5-11-8

5-4-4

\vdash	6-9-12 6-9-12	11-9-12 5-0-0	+ 13-11-8 2-1-12	20-10-0 6-10-8	26-2-4 5-4-4	31-6-8 5-4-4	37-6-0 5-11-8	\dashv
LOADING (psf) TCLL 20.0 TCDL 7.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code FBC2020/T	2-0-0 1.25 1.25 YES	CSI. TC 0.55 BC 0.47 WB 0.44 Matrix-MS	DEFL. Vert(LL) Vert(CT Horz(CT	in (loc) 0.11 20-23 -0.17 16-17	l/defl L/d >999 240 >999 180 n/a n/a	PLATES	GRIP 244/190 FT = 20%

BRACING-

TOP CHORD

BOT CHORD

WEBS

LUMBER-

REACTIONS.

TOP CHORD 2x4 SP No.2

2x4 SP No.2 *Except* **BOT CHORD**

5-18,8-12: 2x4 SP No.3 WEBS 2x4 SP No.3 *Except*

10-11: 2x6 SP No.2

(size) 2=0-3-8, 11=Mechanical, 19=0-3-8

Max Horz 2=217(LC 12)

Max Uplift 2=-128(LC 8), 11=-217(LC 13), 19=-375(LC 12) Max Grav 2=362(LC 23), 11=922(LC 2), 19=1855(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-222/351, 3-5=-110/614, 5-6=-616/260, 6-7=-594/246, 7-8=-969/291,

8-10=-1171/298. 10-11=-825/237

6-9-12

7-1-12

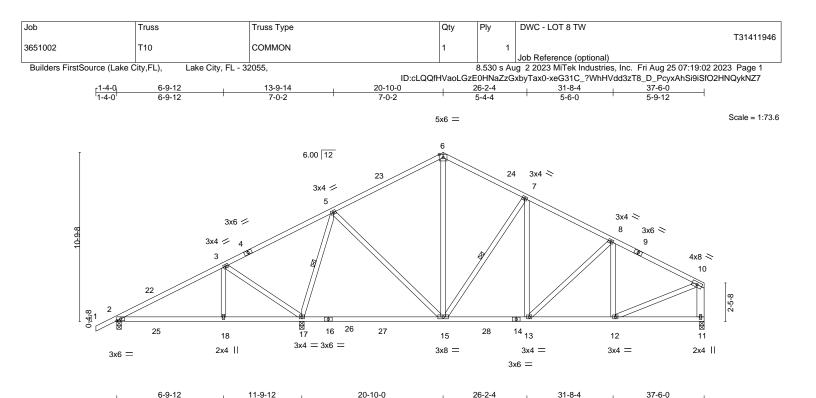
BOT CHORD 2-20=-311/156, 19-20=-311/156, 14-16=-107/818, 13-14=-210/1008

WEBS 3-20=-300/267, 3-19=-589/507, 5-19=-1436/283, 5-16=-52/688, 6-16=-119/277,

7-16=-557/221, 7-14=-44/355, 10-13=-202/968

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-4-0 to 2-0-5, Interior(1) 2-0-5 to 20-10-0, Exterior(2R) 20-10-0 to 24-2-5, Interior(1) 24-2-5 to 37-3-4 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Refer to girder(s) for truss to truss connections
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 128 lb uplift at joint 2, 217 lb uplift at joint 11 and 375 lb uplift at joint 19.

This item has been electronically signed and sealed by ORegan, Philip, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.


Philip J. O'Regan PE No.58126 MITek Inc. DBA MITek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

August 25,2023

M WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

DEFL.

Vert(LL)

Vert(CT)

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

WEBS

5-6-0

L/d

240

180

n/a

Rigid ceiling directly applied or 10-0-0 oc bracing.

I/defI

>999

>819

except end verticals.

1 Row at midpt

n/a

PLATES

Weight: 230 lb

MT20

Structural wood sheathing directly applied or 5-6-13 oc purlins,

5-17, 7-15

GRIP

244/190

FT = 20%

in (loc)

11

-0.23 15-17

-0.37 15-17

0.02

LUMBER-TOP CHORD

REACTIONS.

TCLL

TCDL

BCLL

BCDL

LOADING (psf)

20.0

7.0

0.0

10.0

2x4 SP No.2 2x4 SP No.2

BOT CHORD 2x4 SP No.3 *Except* **WEBS**

10-11: 2x6 SP No.2

(size) 2=0-3-8, 17=0-3-8, 11=0-3-8

SPACING-

Plate Grip DOL

Rep Stress Incr

Code FBC2020/TPI2014

Lumber DOL

Max Horz 2=217(LC 12)

Max Uplift 2=-95(LC 9), 17=-368(LC 12), 11=-200(LC 13) Max Grav 2=414(LC 23), 17=1755(LC 2), 11=965(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-329/265, 3-5=-145/359, 5-6=-647/232, 6-7=-625/218, 7-8=-915/248, TOP CHORD

8-10=-1019/225, 10-11=-876/214

BOT CHORD 2-18=-240/252, 17-18=-240/252, 13-15=-69/769, 12-13=-147/866 WEBS

3-18=-316/220, 3-17=-534/525, 5-17=-1189/349, 5-15=-91/616, 6-15=-93/300,

2-0-0

1.25

1.25

YES

CSI.

TC

ВС

WB

Matrix-MS

0.55

0.69

0.39

7-15=-476/219, 7-13=-46/274, 10-12=-139/879

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-4-0 to 2-5-0, Interior(1) 2-5-0 to 20-10-0, Exterior(2R) 20-10-0 to 24-7-0, Interior(1) 24-7-0 to 37-3-4 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 95 lb uplift at joint 2, 368 lb uplift at joint 17 and 200 lb uplift at joint 11.

This item has been electronically signed and sealed by ORegan, Philip, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Philip J. O'Regan PE No.58126 MITek Inc. DBA MITek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

August 25,2023

M WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

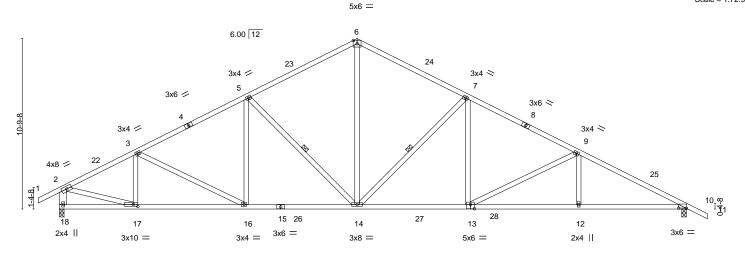
7-0-2

32-10-4

except end verticals.

1 Row at midpt

Structural wood sheathing directly applied or 2-11-8 oc purlins,


5-14, 7-14

Rigid ceiling directly applied or 8-11-7 oc bracing.

7-0-2

Scale = 1:72.9

6-9-12

	7012	102	702	102	0012
Plate Offsets (X,Y)	[10:0-6-0,0-0-3], [13:0-3-0,0-3	-4], [17:0-3-8,0-1-8]			
LOADING (psf) TCLL 20.0 TCDL 7.0 BCLL 0.0 *	Plate Grip DOL Lumber DOL	0-0 CSI. .25 TC 0.54 .25 BC 0.86 'ES WB 0.73	DEFL. in (loc) Vert(LL) -0.23 13-14 Vert(CT) -0.40 13-14 Horz(CT) 0.12 10	l/defl L/d >999 240 >999 180	PLATES GRIP MT20 244/190
BCDL 10.0	Code FBC2020/TPI20	-	Horz(CT) 0.12 10	n/a n/a	Weight: 234 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

WEBS

25-10-2

LUMBER-

REACTIONS.

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2

WEBS 2x4 SP No.3 *Except* 2-18: 2x6 SP No.2

4-9-12

7-0-2

(size) 18=0-3-8, 10=0-3-8 Max Horz 18=-166(LC 17)

Max Uplift 18=-326(LC 12), 10=-337(LC 13) Max Grav 18=1676(LC 2), 10=1660(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 $2-3=-2197/402,\ 3-5=-2250/447,\ 5-6=-1804/436,\ 6-7=-1803/437,\ 7-9=-2464/486,$ TOP CHORD 9-10=-3053/572 2-18=-1605/369

BOT CHORD 16-17=-424/1945, 14-16=-337/1956, 13-14=-260/2132, 12-13=-423/2681, 10-12=-423/2681

WEBS 3-17=-320/117, 5-16=-1/325, 5-14=-612/255, 6-14=-224/1266, 7-14=-834/303,

7-13=-58/556, 9-13=-605/228, 9-12=0/274, 2-17=-310/1917

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-4-0 to 2-7-10, Interior(1) 2-7-10 to 18-10-0, Exterior(2R) 18-10-0 to 22-9-10, Interior(1) 22-9-10 to 41-0-0 zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 326 lb uplift at joint 18 and 337 lb uplift at joint 10.

This item has been electronically signed and sealed by ORegan, Philip, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Philip J. O'Regan PE No.58126 MITek Inc. DBA MITek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

August 25,2023

M WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

Scale = 1:72.7

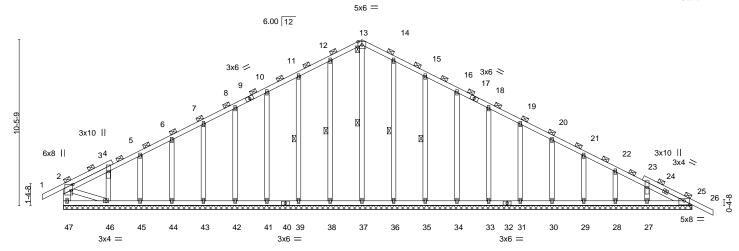


Plate Offsets (X,Y)--[2:0-4-8,0-1-8], [25:0-4-0,0-3-1] LOADING (psf) SPACING-2-0-0 CSI. DEFL. in (loc) I/defI L/d **PLATES** GRIP TCLL 20.0 Plate Grip DOL 1.25 TC 0.14 Vert(LL) -0.00 26 120 244/190 n/r MT20 TCDL 7.0 Lumber DOL 1.25 ВС 0.05 Vert(CT) -0.00 26 n/r 120 **BCLL** 0.0 Rep Stress Incr YES WB 0.11 Horz(CT) 0.01 25 n/a n/a Code FBC2020/TPI2014 **BCDL** 10.0 Weight: 289 lb FT = 20%Matrix-S

LUMBER-**BRACING-**

18-10-0

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x6 SP No.2 *Except* **WEBS**

2-46: 2x4 SP No.3 **OTHERS** 2x4 SP No.3

TOP CHORD **BOT CHORD**

WEBS

2-0-0 oc purlins (6-0-0 max.), except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

20-10-0

6-0-0 oc bracing: 46-47.

1 Row at midpt

13-37, 12-38, 11-39, 14-36, 15-35

REACTIONS. All bearings 39-8-0.

Max Horz 47=-163(LC 13) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 47, 38, 39, 41, 42, 43, 44, 45, 36, 35, 34, 33, 31, 30, 29, 28,

27, 25 except 46=-129(LC 12)

All reactions 250 lb or less at joint(s) 47, 37, 38, 39, 41, 42, 43, 44, 45, 46, 36, 35, 34, 33, 31, Max Grav

30, 29, 28, 27, 25

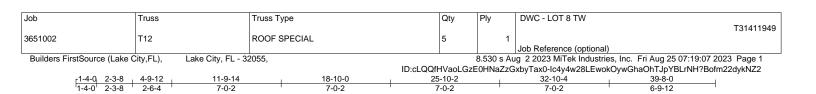
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 12-13=-102/282, 13-14=-102/282

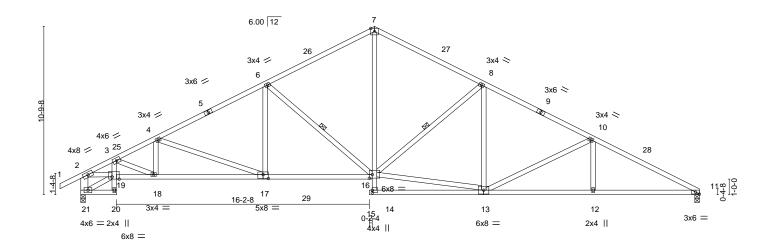
NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Corner(3E) -1-4-0 to 2-10-0, Exterior(2N) 2-10-0 to 18-10-0, Corner(3R) 18-10-0 to 22-10-0, Exterior(2N) 22-10-0 to 41-0-0 zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 47, 38, 39, 41, 42, 43, 44, 45, 36, 35, 34, 33, 31, 30, 29, 28, 27, 25 except (jt=lb) 46=129.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

This item has been electronically signed and sealed by ORegan, Philip, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.


Philip J. O'Regan PE No.58126 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

August 25,2023



MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

5x6 =

2-3-	8 ' 2-6-4 ' 7-0-2	6-10-6	7-1-14	7-0-2	6-9-12	<u>'</u>
Plate Offsets (X,Y)	[11:0-2-15,Edge], [14:0-2-0,0-0-0]	[16:0-2-4,0-2-12], [17:0-4-0,0	-3-0], [19:0-5-8,Edge]			
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc)	I/defl L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.25	TC 0.56	Vert(LL) -0.27 16-17	>999 240	MT20	244/190
TCDL 7.0	Lumber DOL 1.25	BC 0.93	Vert(CT) -0.48 16-17	>977 180		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.96	Horz(CT) 0.22 11	n/a n/a		
BCDL 10.0	Code FBC2020/TPI2014	Matrix-MS			Weight: 241 lb	FT = 20%
]	

18-8-4

25-10-2

TOP CHORD

BOT CHORD

WEBS

32-10-4

except end verticals.

1 Row at midpt

10-0-0 oc bracing: 14-16

39-8-0

Structural wood sheathing directly applied or 2-10-15 oc purlins,

6-16, 8-16

Rigid ceiling directly applied or 2-2-0 oc bracing. Except:

LUMBER-BRACING-

11-9-14

2x4 SP No.2 TOP CHORD **BOT CHORD** 2x4 SP No.2 *Except*

3-20,7-14: 2x4 SP No.3

2-3-8 | 4-9-12

2x4 SP No.3 *Except* WEBS 2-21: 2x6 SP No.2

> (size) 11=0-3-8, 21=0-3-8 Max Horz 21=-146(LC 17)

Max Uplift 11=-308(LC 13), 21=-325(LC 12) Max Grav 11=1575(LC 2), 21=1661(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2973/667, 3-4=-2980/596, 4-6=-2596/491, 6-7=-1941/449, 7-8=-1935/455,

8-10=-2399/491, 10-11=-3014/578, 2-21=-1570/391

18-19=-704/2815, 17-18=-609/2687, 16-17=-402/2254, 7-16=-240/1386, 12-13=-448/2648, **BOT CHORD**

11-12=-448/2648

WFBS 4-17=-462/219, 6-17=-29/471, 6-16=-777/288, 13-16=-271/1966, 8-16=-595/276,

8-13=-23/290, 10-13=-630/236, 10-12=0/279, 2-19=-548/2528

NOTES-

REACTIONS.

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-4-0 to 2-7-10, Interior(1) 2-7-10 to 18-10-0, Exterior(2R) 18-10-0 to 22-9-10, Interior(1) 22-9-10 to 39-8-0 zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 11=308, 21=325,

This item has been electronically signed and sealed by ORegan, Philip, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Scale = 1:73.9

Philip J. O'Regan PE No.58126 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

August 25,2023

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

Job Truss Truss Type Qty Ply DWC - LOT 8 TW T31411950 3651002 T13 **COMMON GIRDER** Job Reference (optional) Builders FirstSource (Lake City,FL), Lake City, FL - 32055, 8.530 s Aug 2 2023 MiTek Industries, Inc. Fri Aug 25 07:19:08 2023 Page 1 ID:cLQQfHVaoLGzE0HNaZzGxbyTax0-moeKIG3m6X2fLYX7pO5dEgs5Lbsx6r2L1JVba3ykNZ1 3-3-0 3-3-0 Scale = 1:19.5 4x4 = 2 9.00 12 2-10-12 0-5-8 0-5-8 9 10 3x8 II 5x6 = 5x6 = Plate Offsets (X,Y)--[1:0-3-0,0-2-2], [3:0-3-0,0-2-2], [4:0-6-0,0-1-8] LOADING (psf) SPACING-CSI. DEFL. in (loc) I/defI L/d **PLATES** GRIP TCLL 20.0 Plate Grip DOL 1.25 TC 0.11 Vert(LL) -0.01 >999 240 MT20 244/190 TCDL 7.0 Lumber DOL 1.25 ВС 0.17 Vert(CT) -0.024 >999 180 **BCLL** 0.0 Rep Stress Incr NO WB 0.53 Horz(CT) 0.00 3 n/a n/a Code FBC2020/TPI2014 FT = 20% **BCDL** 10.0 Matrix-MP Weight: 71 lb **BRACING-**

TOP CHORD

BOT CHORD

LUMBER-

2x4 SP No.2 TOP CHORD **BOT CHORD** 2x8 SP 2400F 2.0E

2x4 SP No.3 **WEBS**

REACTIONS. (size) 1=0-3-8, 3=0-3-8 Max Horz 1=-54(LC 25)

Max Uplift 1=-451(LC 8), 3=-582(LC 9)

Max Grav 1=2215(LC 2), 3=2867(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1-2=-2452/517, 2-3=-2451/517 TOP CHORD **BOT CHORD** 1-4=-381/1948, 3-4=-381/1948

WFBS 2-4=-560/2771

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc.

Bottom chords connected as follows: 2x8 - 2 rows staggered at 0-7-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone; Lumber DOL=1.60 plate grip DOL=1.60
- 5) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb)
- 9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1555 lb down and 328 lb up at 1-7-12, and 1555 lb down and 328 lb up at 3-7-12, and 1556 lb down and 326 lb up at 5-7-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)

Vert: 1-2=-54, 2-3=-54, 1-3=-20

This item has been electronically signed and sealed by ORegan, Philip, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Philip J. O'Regan PE No.58126 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

August 25,2023

Continued on page 2

Job Truss Truss Type Qty Ply DWC - LOT 8 TW T31411950 T13 COMMON GIRDER 3651002

Builders FirstSource (Lake City,FL),

Lake City, FL - 32055,

| Z | Job Reference (optional) 8.530 s Aug 2 2023 MiTek Industries, Inc. Fri Aug 25 07:19:09 2023 Page 2 ID:cLQQfHVaoLGzE0HNaZzGxbyTax0-E_CiVb3PtrAWzh5JN6csmuPG4?CArlIUGzF97WykNZ0

LOAD CASE(S) Standard

Concentrated Loads (lb) Vert: 8=-1442(B) 9=-1441(B) 10=-1441(B)

Job Truss Truss Type Qty DWC - LOT 8 TW T31411951 3651002 T13G COMMON SUPPORTED GAB Job Reference (optional) Builders FirstSource (Lake City,FL) Lake City, FL - 32055, 8.530 s Aug 2 2023 MiTek Industries, Inc. Fri Aug 25 07:19:10 2023 Page 1 ID:cLQQfHVaoLGzE0HNaZzGxbyTax0-iAl4jx41e9INbrgVxp75J5xR7Oacas4dUd_ifyykNZ?

3-3-0

Scale = 1:19.0

7-10-0

1-4-0

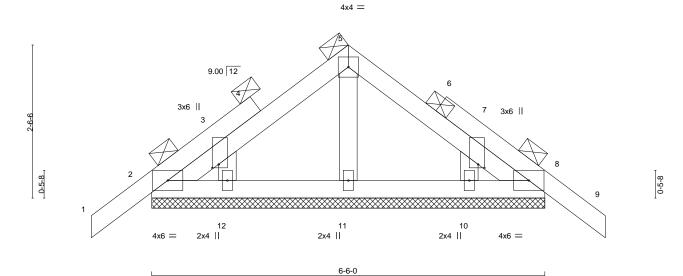


Plate Offsets (X,Y)--[3:0-0-11,0-1-4], [7:0-0-11,0-1-4] SPACING-GRIP LOADING (psf) 2-0-0 CSI. DEFL. in (loc) I/defI L/d **PLATES** TCLL 20.0 Plate Grip DOL 1.25 TC 0.09 Vert(LL) -0.00 9 120 MT20 244/190 n/r TCDL 7.0 Lumber DOL 1.25 ВС 0.03 Vert(CT) -0.00 9 n/r 120 **BCLL** 0.0 Rep Stress Incr YES WB 0.05 Horz(CT) 0.00 8 n/a n/a Code FBC2020/TPI2014 FT = 20% **BCDL** 10.0 Matrix-P Weight: 35 lb

BRACING-

TOP CHORD

BOT CHORD

2-0-0 oc purlins (6-0-0 max.).

Rigid ceiling directly applied or 6-0-0 oc bracing.

LUMBER-

TOP CHORD 2x4 SP No.2 2x4 SP No.2 **BOT CHORD**

OTHERS 2x4 SP No.3

REACTIONS. All bearings 6-6-0. (lb) -Max Horz 2=62(LC 11)

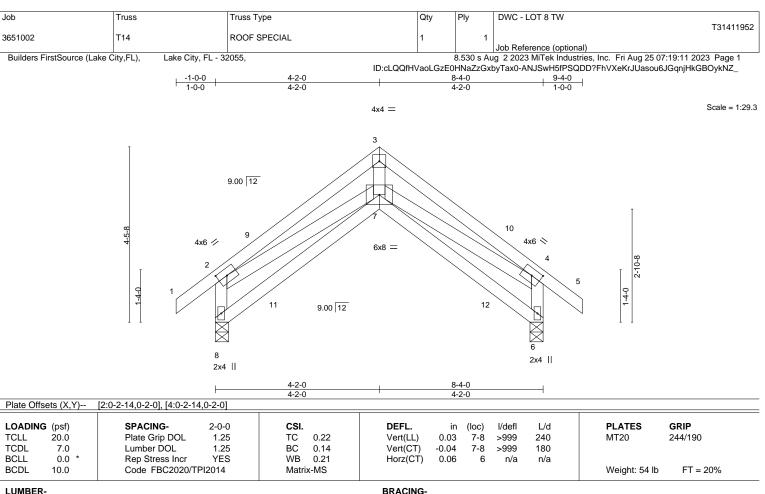
Max Uplift All uplift 100 lb or less at joint(s) 2, 8, 12, 10 Max Grav All reactions 250 lb or less at joint(s) 2, 8, 11, 12, 10

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl. GCpi=0.18; MWFRS (envelope) gable end zone and C-C Corner(3E) -1-0-0 to 2-0-0, Exterior(2N) 2-0-0 to 3-3-0, Corner(3R) 3-3-0 to 6-6-0, Exterior(2N) 6-6-0 to 7-6-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOI = 1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8, 12, 10.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

This item has been electronically signed and sealed by ORegan, Philip, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.


Philip J. O'Regan PE No.58126 MITek Inc. DBA MITek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

August 25,2023

M WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

TOP CHORD

BOT CHORD

LUMBER-

2x4 SP No.2 TOP CHORD BOT CHORD 2x4 SP No.2

WEBS 2x4 SP No.3

REACTIONS. (size) 8=0-4-0, 6=0-4-0 Max Horz 8=-125(LC 10)

Max Uplift 8=-77(LC 12), 6=-77(LC 13) Max Grav 8=359(LC 1), 6=359(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-8=-357/289, 2-3=-681/333, 3-4=-681/337, 4-6=-356/298

WEBS 3-7=-256/564, 4-7=-150/532, 2-7=-54/471

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 4-2-0, Exterior(2R) 4-2-0 to 7-2-0, Interior(1) 7-2-0 to 9-4-0 zone; end vertical left and right exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Bearing at joint(s) 8, 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6.

This item has been electronically signed and sealed by ORegan, Philip, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

Philip J. O'Regan PE No.58126 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

August 25,2023

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

Job Truss Truss Type Qty Ply DWC - LOT 8 TW T31411953 3651002 T14G **GABLE** Job Reference (optional) Builders FirstSource (Lake City,FL), Lake City, FL - 32055, 8.530 s Aug 2 2023 MiTek Industries, Inc. Fri Aug 25 07:19:12 2023 Page 1 ID:cLQQfHVaoLGzE0HNaZzGxbyTax0-eZtr8d6H9mY4q9qu2E9ZOW1dwCB42k_wyxTpjrykNYz 4-2-0 4-2-0 1-0-0 4-2-0 1-0-0 Scale = 1:29.3 4x4 = 3 9.00 12 2x4 || 2x4 || 14 4x6 || 4x6 II 5x8 || 2x4 || 2x4 || 15 16 9.00 12 3x4 || 3x4 8-4-0 Plate Offsets (X,Y)--[2:0-3-0,0-1-12], [4:0-3-0,0-1-12] LOADING (psf) SPACING-2-0-0 CSI. DEFL. in (loc) I/defI L/d **PLATES** GRIP TCLL 20.0 Plate Grip DOL 1.25 TC 0.71 Vert(LL) -0.15 >662 240 MT20 244/190 TCDL 7.0 Lumber DOL 1.25 ВС 0.35 Vert(CT) -0.28>348 180 **BCLL** 0.0 Rep Stress Incr YES WB 0.15 Horz(CT) 0.42 6 n/a n/a

BOT CHORD

LUMBER-

REACTIONS.

BCDL

BRACING-2x4 SP No.2 TOP CHORD TOP CHORD

BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 **OTHERS** 2x4 SP No.3

10.0

(size) 8=0-3-8, 6=0-3-8 Max Horz 8=-125(LC 10)

Max Uplift 8=-77(LC 12), 6=-77(LC 13) Max Grav 8=359(LC 1), 6=359(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Code FBC2020/TPI2014

TOP CHORD 2-8=-466/295, 2-3=-464/297, 3-4=-464/304, 4-6=-466/327

BOT CHORD 7-8=-108/399. 6-7=-100/392

WEBS 3-7=-230/395

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 4-2-0, Exterior(2R) 4-2-0 to 7-2-0, Interior(1) 7-2-0 to 9-4-0 zone; end vertical left and right exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Matrix-MR

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Bearing at joint(s) 8, 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6.

This item has been electronically signed and sealed by ORegan, Philip, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

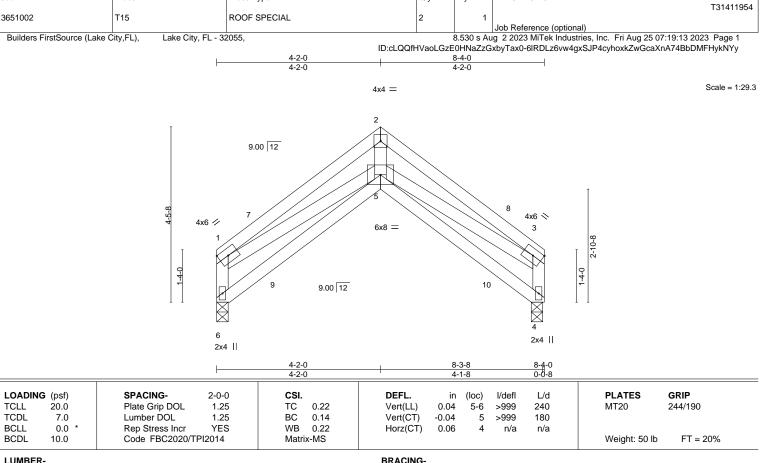
FT = 20%

Weight: 43 lb

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.


Philip J. O'Regan PE No.58126 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

August 25,2023

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

TOP CHORD

BOT CHORD

Qty

DWC - LOT 8 TW

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

LUMBER-

Job

Truss

Truss Type

TOP CHORD 2x4 SP No 2 2x4 SP No.2 **BOT CHORD**

WEBS 2x4 SP No.3

REACTIONS. (size) 6=0-3-8, 4=0-3-8

Max Horz 6=-106(LC 10) Max Uplift 6=-53(LC 12), 4=-53(LC 13) Max Grav 6=298(LC 1), 4=298(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1-6=-294/266, 1-2=-719/486, 2-3=-719/489, 3-4=-294/246 TOP CHORD

WEBS 2-5=-424/570, 3-5=-277/533, 1-5=-232/511

NOTES-

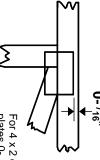
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 4-2-0, Exterior(2R) 4-2-0 to 7-2-0, Interior(1) 7-2-0 to 8-2-4 zone; end vertical left and right exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Bearing at joint(s) 6, 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 4.

This item has been electronically signed and sealed by ORegan, Philip, PE using a Digital Signature. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Philip J. O'Regan PE No.58126 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

August 25,2023

M WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE



Symbols

PLATE LOCATION AND ORIENTATION

Center plate on joint unless x, y offsets are indicated.
Dimensions are in ft-in-sixteenths.
Apply plates to both sides of truss and fully embed teeth.

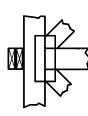
For 4 x 2 orientation, locate plates 0- $\frac{1}{16}$ from outside edge of truss.

This symbol indicates the required direction of slots in connector plates.

* Plate location details available in MiTek software or upon request.

PLATE SIZE

4 × 4

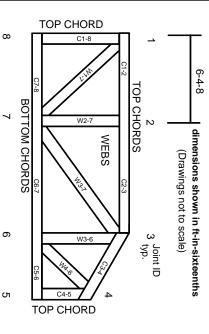

The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated.

BEARING

Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number/letter where bearings occur Min size shown is for crushing only.


Industry Standards:

National Design Specification for Metal Plate Connected Wood Truss Construction Design Standard for Bracing.

Building Component Safety Information, Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses.

ANSI/TPI1: DSB-22:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282 ESR-4722, ESL-1388

Design General Notes

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2023 MiTek® All Rights Reserved

MiTek Engineering Reference Sheet: MII-7473 rev. 1/2/2023

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.

ω

- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other.

'n

- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.

œ

- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- The design does not take into account any dynamic or other loads other than those expressly stated.