

TYPICAL PORCH POST DETAIL

Fb (psi) | E (10⁶ psi)

1.6

1.6

1.8

1.7

2.0

2.0

1200 1050

975

2400

Specific Requirements

5.5"x2.75"x11.5"

or 304SS

ASTM C 270, Type N, UNO

8" block bearing walls F'm = 1500 psi

ASTM C 90-02, Normal weight, Hollow,

bond and 12"x12" or 16"x16" column

ASTM C 216-02, Grade SW, Type FBS,

ASTM 615, Grade 60, Fy = 60 ksi, Lap

splices min 48 bar dia. (30" for #5)

embedded in mortar or grout, ASTM

A525, Class G60, 0.60 oz/ft2 or 304SS

moisture or wire ties, anchors, sheet metal

ties not completely embedded in mortar or

Contractor assumes responsibility for type

and location of movement joints if not

grout, ASTM A153, Class B2, 1.50 oz/ft2

require engineering approval.

detailed on project drawings.

ASTM C 476, admixtures require approval

medium surface finish, 8"x8"x16" running

MASONRY TRUSS ANCHOR TABLE OBTAIN UPLIFT REQUIREMENTS FROM TRUSS MANUFACTURER'S ENGINEERING

PLIFT LBS.	TRUSS CONNECTOR MASONRY *	
< 1205	TA22	10-10d x 1 1/2"
< 1605	TA22	11-10d
< 860	MTSM20	4 - 1/4"x2 1/4" TITEN IN BLOCK 7 - 10d IN TRUSS
< 1175	HTSM20	4 - 1/4"x2 1/4" TITEN IN BLOCK 10 - 10d IN TRUSS
< 1040	META20	7-10d, 1 1/2"
< 1490	META20	10-10d, 1 1/2"
< 1780	HETA20	7-16d
< 1780	LGT2	7 - 1/4"x2 1/4" TITEN IN BLOCK 14 - 16d SINKER IN GIRDER
< 2130	HHETA20	17-10d, 1 1/2"
< 2310	HHETA24	21-10d, 1 1/2"
< 3965	MGT	22-10d TO TRUSS 5/8 AB TO WALL 15" EMBEDMENT
< 10980	HGT-2	16-10d TO TRUSS (2) 3/4 AB TO WALL 15" EMBEDMENT
< 10530	HGT-3	16-10d TO TRUSS (2) 3/4 AB TO WALL 15" EMBEDMENT

ANCHOR TABLE

OBTAIN UPLIFT REQUIREMENTS FROM TRUSS MANUFACTURER'S ENGINEERING

LIFT LBS. SYP	UPLIFT LBS. SPF	TRUSS CONNECTOR*	TO PLATES	TO RAFTER/TRUSS	TO STUDS
< 420	< 245	H5A	3-8d	3-8d	
< 455	< 265	H5	4-8d	4-8d	
< 360	< 235	H4	4-8d	4-8d	
< 455	< 320	НЗ	4-8d	4-8d	
< 415	< 365	H2.5	5-8d	5-8d	
< 600	< 535	H2.5A	5-8d	5-8d	
< 950	< 820	H6	8-8d	8-8d	
< 745	< 565	H8	5-10d, 1 1/2"	5-10d, 1 1/2"	
< 1465	< 1050	H14-1	13-8d	12-8d, 1 1/2"	
< 1465	< 1050	H14-2	15-8d	12-8d, 1 1/2"	
< 990	< 850	H10-1	8-8d, 1 1/2"	8-8d, 1 1/2"	
< 760	< 655	H10-2	6-10d	6-10d	
< 1470	< 1265	H16-1	10-10d, 1 1/2"	2-10d, 1 1/2"	
< 1470	< 1265	H16-2	10-10d, 1 1/2"	2-10d, 1 1/2"	
< 1000	< 860	MTS24C	7-10d 1 1/2"	7-10d 1 1/2"	
< 1450	< 1245	HTS24	12-10d 1 1/2"	12-10d 1 1/2"	
< 2900	< 2490	2 - HTS24			
< 2050	< 1785	LGT2	14 -16d	14 -16d	
		HEAVY GIRDER TIEDOWNS*			TO FOUNDATION
< 3965	< 3330	MGT		22 -10d	1-5/8" THREADED ROD 12" EMBEIDMENT
< 10980	< 6485	HGT-2		16 -10d	2-5/8" THREADED ROD 12" EMBEIDMENT
< 10530	< 9035	HGT-3		16 -10d	2-5/8" THREADED ROD 12" EMBEIDMENT
< 9250	< 9250	HGT-4		16 -10d	2-5/8" THREADED ROD 12" EMBEIDMENT
		STUD STRAP CONNECTOR*			TO STUDS
< 435	< 435	SSP DOUBLE TOP PLATE	3 -10d		4 -10d
< 455	< 420	SSP SINGLE SILL PLATE	1 -10d		4 -10ld
< 825	< 825	DSP DOUBLE TOP PLATE	6 -10d		8 -10ld
< 825	< 600	DSP SINGLE SILL PLATE	2 -10d		8 -10ld
< 885	< 760	SP4			6-10d, 1 1/2"
< 1240	< 1065	SPH4			10-10d, 11 1/2"
< 885	< 760	SP6	y 24 = 12-4		6-10d, 1 1/2"
< 1240	< 1065	SPH6			10-10d, 1 1/2"
< 1235	< 1165	LSTA18	14-10d		
< 1235	< 1235	LSTA21	16-10d		
< 1030	< 1030	CS20	18-8d		
< 1705	< 1705	CS16	28-8d		
		STUD ANCHORS*	TO STUDS		TO FOUNDATION
< 1350	< 1305	LTT19	8-16d		1/2" AB
< 2310	< 2310	LTTI31	18-10d, 1 1/2"		1/2" AB
< 2775	< 2570	HD2A	2-5/8" BOLTS		5/8" A ₄ B
< 4175	< 3695	HTT16	18 - 16d		5/8" A ₄ B
< 1400	< 1400	PAHD42	16-16d		
< 3335	< 3335	HPAHD22	16-16d		
< 2200	< 2200	ABU44	12-16d		1/2" A.B
< 2300	< 2300	ABU66	12-16d		1/2" A.B
< 2320	< 2320	ABU88	18 - 16d		2-5/8" AB

GENERAL NOTES:

TRUSSES: TRUSSES SHALL BE DESIGNED BY A FLORIDA LICENSED ENGINEER IN ACCORDANCE WITH THE FBC 2001. TRUSS ENGINEERING SHALL INCLUDE TRUSS DESIGN, PLACEMENT PLANS, TEMPORARY AND PERMANENT BRACING DETAILS, TRUSS-TO-TRUSS CONNECTIONS, AND UPLIFT AND REACTION LOADS FOR ALL BEARING LOCATIONS. TRUSS ENGINEERING IS THE RESPONSIBILITY OF THE TRUSS MANUFACTURER ALL BEARING LOCATIONS. TRUSS ENGINEERING IS THE RESPONSIBILITY OF THE TRUSS MANUFACTURER AND SHALL BE SIGNED & SEALED BY THE MANUFACTURER'S DESIGN ENGINEER. IT IS THE BUILDER'S RESPONSIBILITY VERIFY THE TRUSS DESIGNER FULLY SATISFIED ALL THE ABOVE REQUIREMENTS AND TO SELECT UPLIFT CONNECTIONS BASED ON TRUSS ENGINEERING THE TRUSP PROVIDE FOOTINGS FOR INTERIOR BEARING WALLS. BUILDER IS TO FURNISH TRUSS ENGINEERING TO WIND LOAD ENGINEER FOR REVIEW OF TRUSS REACTIONS ON THE BUILDING STRUCTURE. STRAP 2X6 RAFTERS WITH MIN UPLIFT CONNECTION 415LB EACH END; 2X8 RAFTERS 700 LB EACH END.

SITE PREPARATION: SITE ANALYSIS AND PREPARATION IS NOT PART OF THIS PLAN FOUNDATION: CONFIRM THAT THE FOUNDATION DESIGN & SITE CONDITIONS MEET

GRAVITY LOAD REQUIREMENTS (ASSUME 1000 PSF BEARING CAPACITY UNLESS VISUAL OBSERVATION OR SOILS TEST PROVES OTHERWISE CONCRETE: MINIMUM COMPRESSIVE STRENGTH OF CONCRETE AT 28 DAYS, F'c = 3000 PSI.

WELDED WIRE REINFORCED SLAB: 6" x 6" W1.4 x W1.4, FB = 85KSI, WELDED WIRE REINFORCEMENT FABRIC (W.W.M.) CONFORMING TO ASTM A185; LOCATED IN MIDDLE OF THE SLAB; SUPPORTED WITH APPROVED MATERIALS OR SUPPORTS AT SPACINGS NOT TO EXCEED 3'.

FIBER CONCRETE SLAB: CONCRETE SLABS ON GROUND CONTAINING SYNTHETIC FIBER REINFORCEMENT. FIBER LENGTH 1/2 INCH TO 2 INCHES. DOSAGE AMOUNTS FROM 0.75 TO 1.5 POUNDS PER CUBIC YARD PER THE MANUFACTURER'S RECOMMENDATIONS. FIBERS TO COMPLY WITH ASTM C 1116. SUPPLIER TO PROVIDE ASTM C 1116 CERTIFICATION OF COMPLIANCE WHEN REQUESTED BY BUILDING OFFICIAL.

CONTROL JOINTS: WHERE SPECIFIED, SAWN CONTROL JOINTS IN SLAB-ON-GRADE SHALL BE CUT IN ACCORDANCE WITH ACI 302. JOINTS SHALL BE CUT WITHIN 12 HOURS OF SLAB PLACEMENT. THE LENGTH / WIDTH RATIOS OF SLAB AREAS SHALL NOT EXCEED 1.5 AND TYPICAL SPACING OF CUTS TO BE 12FT. DO NOT CUT WWM OR REINFORCING STEEL. (RECOMMENDED LOCATION OF CONTROL JOINTS IS SUBJECT TO OWNER AND CONTRACTOR'S APPROVAL. THE CONTROL JOINTS ARE NOT INTENDED TO PREVENT CRACKS BUT RATHER TO ENCOURAGE THE SLAB TO CRACK ON A GIVEN LINE.)

REBAR; ASTM A 615, GRADE 60, DEFORMED BARS, FY = 60 KSI. ALL LAP SPLICES 48 * DB (30" FOR #5 BARS); UNO. ALL REINFORCEMENT SHALL BE DETAILED AND PLACED IN ACCORDANCE WITH ACI 315-96, U.N.O.

GLULAM BEAMS: GLULAM BEAM, GLB, 24F-V3SP, Fb = 2.4ksi, E = 1800ksi; UNO. SUPPLIER MAY SUPPLY AN ALTERNATE BEAM WITH EQUAL PROPERTIES OR MAY SUBMIT THEIR OWN SIZING CALCS.

ROOF SHEATHING: ALL ROOFS ARE HORIZONTAL DIAPHRAGMS; 7/16" OSB SHEATHING, UNBLOCKED, APPLIED PERPENDICULAR TO FRAMING, OVER A MINIMUM OF 3 FRAMING MEMBERS, WITH PANEL EDGES STAGGERED, FASTENED WITH 8d COMMON NAILS (.131), 6"OC PANEL EDGES, 12"OC INTERMEDIATE MEMBERS, GABLE ENDS AND DIAPHRAGM BOUNDARY; 4"OC, UNO.

STRUCTURAL CONNECTORS: MANUFACTURERS AND PRODUCT NUMBER FOR CONNECTORS, ANCHORS, AND REINFORCEMENT ARE LISTED FOR EXAMPLE NOT ENDORSEMENT. AN EQUIVALENT DEVICE OF THE SAME OR OTHER MANUFACTURER CAN BE SUBSTITUTED FOR ANY DEVICES LISTED IN THE EXAMPLE TABLES AS LONG AS IT MEETS THE REQUIRED LOAD CAPACITIES. MANUFACTURER'S INSTALLATION INSTRUCTIONS MUST BE FOLLOWED TO ACHIEVE RATED LOADS

ANCHOR BOLTS: A-307 ANCHOR BOLTS WITH MINIMUM EMBEDMENT AS SPECIFIED IN DRAWINGS BUT NO LESS THAN 7" IN CONCRETE OR REINFORCED BOND BEAM OR 15" IN GROUTED CMU.

WASHERS: WASHERS USED WITH 1/2" BOLTS TO BE 2" \times 2" \times 9/64"; WITH 5/8" BOLTS TO BE 3" \times 3" \times 9/64"; WITH 3/4" BOLTS TO BE 3" \times 3" \times 9/64"; WITH 7/8" BOLTS TO BE 3" \times 3" \times 5/16"; UNO.

NAILS: ALL NAILS ARE COMMON NAILS UNLESS OTHERWISE SPECIFIED OR ACCEPTED BY FBC TEST REPORTS AS HAVING EQUAL STRUCTURAL VALUES.

BUILDER'S RESPONSIBILITY

THE BUILDER AND OWNER SPECIFICALLY NOT PART O	ARE RESPONSIBLE FOR THE FOLLOWING, WHICH ARE F THE WIND LOAD ENGINEER'S SCOPE OF WORK.
CONFIRM SITE CONDITIONS, FOUR	NDATION BEARING CAPACITY, GRADE AND ND DEBRIS ZONE, AND FLOOD ZONE.
PROVIDE MATERIALS AND CONST REQUIREMENTS FOR THE STATED	RUCTION TECHNIQUES, WHICH COMPLY WITH FBC 2001 O WIND VELOCITY AND DESIGN PRESSURES.
PROVIDE A CONTINUOUS LOAD PA	ATH FROM TRUSSES TO FOUNDATION. IF YOU
DESIGN, PLACEMENT PLANS, TEM	ER'S SEALED ENGINEERING INCLUDES TRUSS PORARY AND PERMANENT BRACING DETAILS, AND UPLIFT AND REACTION LOADS FOR ALL

ROOF SYSTEM DESIGN

THE SEAL ON THESE PLANS FOR COMPLIANCE WITH FBC 2001, SECTION 1606 IS BASED ON REACTIONS, UPLIFTS, AND BEARING LOCATIONS IN TRUSS ENGINEERING SUBMITTED TO THE WIND LOAD ENGINEER. IT IS THE RESPONSIBILITY OF THE BUILDER TO CHECK ALL DETAILS OF THE COMPLETE ROOF SYSTEM DESIGN SUBMITTED BY THE TRUSS MANUFACTURER AND HAVE IT SIGNED, AND SEALED BY A DESIGN PROFESSIONAL FOR CORRECT APPLICATION OF FBC 2001 REC OADS AND ANY SPECIAL LOADS. THE BUILDER IS RESPONSIBLE TO REVIEW EACH INDIVIDUAL TRUSS MEMBER AND THE TRUSS ROOF SYSTEM AS A WHOLE AND TO PROVIDE RESTRAINT FOR ANY LATERAL BRACING. THE BUILDER SHOULD USE CARE CHECKING THE ROOF DESIGN BECAUSE THE WIND LOAD ENGINEER IS SPECIFICALLY NOT RESPONSIBLE FOR THE TRUSS LAYOUT WHICH WAS CREATED BY THE TRUSS MANUFACTURER AND THE TRUSS DESIGNER ALSO DENIES RESPONSIBILITY FOR THE LAYOUT PER NOTES ON THEIR SEALED TRUSS SHEETS.

DESIGN DATA

WIND	OADS PER ELORIDA BUILDING CODE 2004 CO	CTION	0000				
	LOADS PER FLORIDA BUILDING CODE 2001, SE					-	
ON UP	OSED SIMPLE DIAPHRAGM BUILDINGS WITH F ROOF HEIGHT NOT EXCEEDING LEAST HORIZ PER HALF OF HILL OR ESCARPMENT 60FT IN I AND UNOBSTRUCTED UPWIND FOR 50x HEIG	ONTAL [DIMENS	ON OF	R 60	FT; NO	OT
BUILDI	NG IS NOT IN THE HIGH VELOCITY HURRICANI	E ZONE					
	NG IS NOT IN THE WIND-BORNE DEBRIS REGI						
	ASIC WIND SPEED = 110 MPH						-
2.) W	IND EXPOSURE = B				-		
	IND IMPORTANCE FACTOR = 1.0			-			
	JILDING CATEGORY = II						
	OOF ANGLE = 10-45 DEGREES						
	EAN ROOF HEIGHT = <30 FT						
	TERNAL PRESSURE COEFFICIENT = N/A (ENCI						
8.) C	DMPONENTS AND CLADDING DESIGN WIND PR	RESSUR	ES (FBC	TABL	E 16	06.2 E	3&C)
		Zone	Effectiv	e Wind	Area	(ft2)	
`			10		10	-	
		1	19.9 -2	1.8 18	.1 -	18.1	
K	2 2	2	19.9 -2		_	21.8	
5	2 2 1	2 O'hg	19.9 -2	0.6		40.6	
3	4 2 5	3 O'hg		8.3		42.4	
	3 4	4	21.8 -2	3.6 18		20.4	
×	55	5	21.8 -2	9.1 18	.5 -	22.6	
	A CONTRACTOR OF THE PARTY OF TH	Doors	& Windov	vs 21	.8 -	29.1	
4	2	5350	st Case				
5			5, 10 ft2		-	00.0	
2	2 /3/5		age Door rage Doo			22.9	
	4 1		ago Doc	10	.0	21.0	
	55 22						
	***				-		
	LOADS						
FLOOR	40 PSF (ALL OTHER DWELLING ROOMS)						
	30 PSF (SLEEPING ROOMS)						
	30 PSF (ATTICS WITH STORAGE)						
	10 PSF (ATTICS WITHOUT STORAGE, <3:12)						
ROOF	20 PSF (FLAT OR <4:12)						
	16 PSF (4:12 TO <12:12)						
	12 PSF (12:12 AND GREATER)						
STAIRS	40 PSF (ONE & TWO FAMILY DWELLINGS)				-		
	ARING CAPACITY 1000PSF						
	managements That by Table 1. Lawred Mil.						

NOT IN FLOOD ZONE (BUILDER TO VERIFY)

INDLOAD ENGINEER: Mark Disosway,

PE No.53915, POB 868, Lake City, FL

REVISIONS

DIMENSIONS: ated dimensions supercede scaled mensions. Refer all questions to Mark Disosway, P.E. for resolution Do not proceed without clarification.

COPYRIGHTS AND PROPERTY RIGHTS: Mark Disosway, P.E. hereby expressly rese its common law copyrights and property right in these instruments of service. This document is not to be reproduced, altered or copied in any form or manner without first the express writte permission and consent of Mark Disosway.

CERTIFICATION: I hereby certify that I have camined this plan, and that the applicable portions of the plan, relating to wind engineer omply with section 1606, florida building con 001, to the best of my knowledge.

LIMITATION: This design is valid for one building, at specified location.

MARK DISOSWAY P.E. 53915

David & Judith Onorati Residence

ADDRESS: Columbia County, Florida

Mark Disosway P.E. P.O. Box 868 Lake City, Florida 32056 Phone: (386) 754 - 5419

PRINTED DATE: September 14, 2005

Fax: (386) 269 - 4871

DRAWN BY: CHECKED BY: David Disosway

FINALS DATE: 14 / Sep / 05

JOB NUMBER: 509064

> S-1 OF 3 SHEETS

DRAWING NUMBER