

RE: Structural Certification for Installation of Residential Solar JIM LANCE:321 SW WELL ST, FORT WHITE, FL, 32038

Attn: To Whom It May Concern

This Letter is for the existing roof framing which supports the new PV modules as well as the attachment of the PV system to existing roof framing. From the field observation report, the roof is made of Metal roofing over 1/2 inch plywood supported by 2X6 Rafters at 24 inches .The slope of the roof was approximated to be 10 degrees.

After review of the field observation data and based on our structural capacity calculation, the existing roof framing has been determined to be adequate to support the imposed loads without structural upgrades. Contractor shall verify that existing framing is consistent with the described above before install. Should they find any discrepancies, a written approval from SEOR is mandatory before proceeding with install. Capacity calculations were done in accordance with applicable building codes.

Code	2023 Florida Building Cod	e (A3CE 7-22)			
Risk category		II	Wind Load	(component and	Cladding)
Roof Dead Load	Dr	10 psf		V	120 mph
PV Dead Load	DPV	3 psf		Exposure	В
Roof Live Load	Lr	20 psf			
Ground Snow	S	0 psf			

If you have any questions on the above, please do not hesitate to call.

2022 Flantila Dutlibra Carla /ACCE 7 22\

Sincerely,

Vincent Mwumvaneza, P.E **EV Engineering LLC**

This item has been digitally signed and sealed by Vincent Mwumvaneza on the date adjacent to the seal. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Vincent Mwumvaneza eza

Digitally signed by Vincent Date: 2024.10.22 17:52:30 +02'00'

Structural Letter for PV Installation

Date: 10/22/2024

Job Address: 321 SW WELL ST

FORT WHITE, FL, 32038

Job Name: JIM LANCE Job Number: 102224JL

Scope of Work

This Letter is for the existing roof framing which supports the new PV modules as well as the attachment of the PV system to existing roof framing. All PV mounting equipment shall be designed and installed per manufacturer's approved installation specifications.

Table of Content

Sheet

- 2 Cover
- 3 Attachment checks
- 4 **Roof Framing Check**
- 5 Seismic Check and Scope of work

Engineering Calculations Summary

<u>Code</u>	2023 Florida Buil	ding Code (ASCE 7-22)	
Risk category		II	
Roof Dead Load	Dr	10 psf	
PV Dead Load	DPV	3 psf	
Roof Live Load	Lr	20 psf	
Ground Snow	S	0 psf	
Wind Load	(component and Cladding)		
	V	120 mph	
	Exposure	В	

References

NDS for Wood Construction

Sincerely,

Vincent Mwumvaneza, P.E **EV Engineering LLC**

This item has been digitally signed and sealed by Vincent Mwumvaneza on the date adjacent to the seal. Printed copies of this document are

not considered signed and sealed and the signature must be verified on any electronic copies.

Vincent Mwumvaneza eza

Digitally signed by Vincent Date: 2024.10.22 17:52:47 +02'00'

Wind Load Cont.

Risk Category =	11	I
V=	120	mph ASCE 7-22 Figure 26.5-1B
Exposure =	В	
$K_{Zt} =$	1.0	ASCE 7-22 Sec 26.8.2
K _Z =	0.57	ASCE 7-22 Table 26.10-1
K _d =	0.85	ASCE 7-22 Table 26.6-1
K _e =	1.00	ASCE 7-22 Table 26.9-1
$q_h = 0.00256 K_z K_{zt} K_e V^2 =$	17.82	psf
Pitch =	10.0	Degrees
γ _E =	1.0	(1.5 for Exposed Modules)
γ_a =	0.7	considering 1 module

Uplift (W)		Zone(1)	Zone(2)	Zone(2)	Zone(3)
Fig. 30-3-2	GC _p =	-1.7	-2.3	-2.3	-3
Eq. 29.4-7	$P=q_hKd(GC_p)(\gamma_E)(\gamma_a)=$	-19.99	-27.04	-27.04	-35.27
Do	ownpressure (W)	All Zones			
	GC _p =	0.55			Figure 30.3-2
	$P=q_hKd(GC_p)(\gamma_E)(\gamma_a)=$	6.47			Equation 29.4-7

Rafter Attachments: 0.6D+0.6W (CD=1.6)

Connection Check

•	miconon oncon				
	Attachement m	ax. spacing=	4	ft	(Max)
	K2 Splice Foot Rafter A	Attachment=	700	lbs	Manufacturer Test
	S	afety Factor	2		
	Allowab	le Capacity=	700	lbs	
Zone	Average Trib Width	Area (ft)	Uplift (lbs)	Down (lbs)	
Zone(1)	4	10.2	140.7	96.6	
Zone(2)	4	10.2	183.9	96.6	
Zone(2)	4	10.2	183.9	96.6	
Zone(3)	2	5.1	117.1	96.6	
	Conserv	vative Max=	183.9	<	700

1. Pv seismic dead weight is negligible to result in significant seismic uplift, therefore the wind uplift governs

CONNECTION IS OK

Vertical Load Resisting System Design

Rafters

Max Length, L = 10.0 ft (Beam maximum Allowable Horizontal Span)

Tributary Width, $W_T = 24$ in

Dr = 10 psf 20 plf

 $L_r = 20 \text{ psf}$

 W_{down} = 6.47 psf 12.9 plf

Pv= 3 psf 6 plf

Load Case: DL+0.6W (CD=1.6)

Pv max Shear= 96.6 lbs

Max Moment, M_{II} = 390 lb-ft Conservative

Max Shear, $V_u=wL/2+Pv$ Point Load = 227 lb

Note: Proposed loading will add less than 5% of the existing loads.

Member Capacity

DF-L No.2									
2X6	Design Value	C_L	C_F	C _i	C_{r}	K _F	ф	λ	Adjusted Value
F _b =	900 psi	1.0	1.3	1.0	1.15	2.54	0.85	0.8	1346 psi
F _v =	180 psi	N/A	N/A	1.0	N/A	2.88	0.75	0.8	180 psi
E =	1600000 psi	N/A	N/A	1.0	N/A	N/A	N/A	N/A	psi
E _{min} =	580000 psi	N/A	N/A	1.0	N/A	1.76	0.85	N/A	580000 psi

Depth, d = 5.5 in

Width, b = 1.5 in

Cross-Sectonal Area, $A = 8.25 \text{ in}^2$ Moment of Inertia, $I_{xx} = 20.7969 \text{ in}^4$

Section Modulus, $S_{xx} = 7.5625 \text{ in}^3$

Allowable Moment, $M_{all} = F_b'S_{xx} = 847.9 \text{ lb-ft}$ DCR= $M_u/M_{all} = 0.46 < 1$ Satisfactory

Allowable Shear, $V_{all} = 2/3F_vA = 990.0 \text{ lb}$ DCR= $V_uV_{all} = 0.23 < 1$ Satisfactory

Siesmic Loads Check

Roof Dead Load	10 psf
% or Roof with Pv	44.1%
Dpv and Racking	3 psf
Average Total Dead Load	11.3 psf
Increase in Dead Load	5.3% <mark>ОК</mark>

The increase in seismic Dead weight as a result of the solar system is less than 10% of the existing structure and therefore no further seismic analysis is required.

Limits of Scope of Work and Liability

We have based our structural capacity determination on information in pictures and a drawing set titled PV plans - JIM LANCE. The analysis was according to applicable building codes, professional engineering and design experience, opinions and judgments. The calculations produced for this structure's assessment are only for the proposed solar panel installation referenced in the stamped plan set and were made according to generally recognized structural analysis standards and procedures.