

RE: 240606-04KM - Mitchell Brown

Site Information:

Customer Info: Mitchell Browm Project Name: 352-318-0895 Model: . Lot/Block: Subdivision: . Address: 1256 S.W. Scrubtown Rd., . City: Fort White State: Fl.

MiTek, Inc. 16023 Swinalev Ridae Rd. Chesterfield, MO 63017 314.434.1200

Name Address and License # of Structural Engineer of Record, If there is one, for the building. Name: License #: Address:

City:

State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: FBC2023/TPI2014 Wind Code: ASCE 7-22 Roof Load: 34.0 psf

Design Program: MiTek 20/20 8.7 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 24 individual, Truss Design Drawings and 0 Additional Drawings. With my seal affixed to this sheet, I hereby certify that I am the Truss Design Engineer and this index sheet conforms to 61G15-31.003, section 5 of the Florida Board of Professional Engineers Rules.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	T34153570	H01	6/12/24	23	T34153592	M02	6/12/24
2	T34153571	H02	6/12/24	- 24	T34153593	T08	6/12/24
3	T34153572	H03	6/12/24				
4	T34153573	H04	6/12/24				
5	<u>T34153574</u>	H05	6/12/24				
6	134153575	H06	6/12/24	-			
(134153576	CJ01	6/12/24	•			
8	134153577	J01	6/12/24				
9	134153578	JU3	6/12/24	•			
10	T24153579	J04 J05	6/12/24	•			
12	T2/152500	106	6/12/24				
13	T34153582	G01	6/12/24	•			
14	T34153583	T01	6/12/24				
15	T34153584	T02	6/12/24				
16	T34153585	T03	6/12/24	-			
17	T34153586	T04	6/12/24				
18	T34153587	GE01	6/12/24				
19	T34153588	<u>T05</u>	6/12/24				
20	T34153589	106	6/12/24	•			
21	134153590	107	6/12/24	•			
- 22	134153591	J08	6/12/24				

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Coastal Truss & Vinyl Siding.

Truss Design Engineer's Name: Lee, Julius

My license renewal date for the state of Florida is February 28, 2025.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

June 13,2024

Job	Truss	Truss Type	Qty	Ply	Mitchell Brown	
240606-04KM	H01	Hip Girder	1	2	Job Reference (optional)	T34153570

Run: 8,73 S Apr 25 2024 Print: 8,730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 12 08:35:27 ID:omCzf7REblCNw7xCdTSE?pz8zJm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


```
Scale = 1:66.4
```

Plate Offsets (X, Y): [6:0-2	2-12,0-3-1	2], [23:0-2-9,Edge],	[28:0-10-4,0-3-12], [33:	0-8-4,0-3-12]									
Loading		(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)		20.0	Plate Grip DOL	1.25	TC	0.45	Vert(LL)	-0.09	30-31	>999	240	MT20	244/190	
TCDL		7.0	Lumber DOL	1.25	BC	0.36	Vert(CT)	-0.16	30-31	>999	180			
BCLL		0.0*	Rep Stress Incr	NO	WB	0.31	Horz(CT)	0.05	23	n/a	n/a			
BCDL		7.0	Code	FBC2023/TPI2014	Matrix-MS							Weight: 511 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD JOINTS REACTIONS	2x4 SP No No.2 2x6 SP No 2x4 SP No 2x4 SP No Structural 6-0-0 oc pi 5tructural 6-0-0 oc bi 1 Brace at 47, 48, 51 (size) Max Horiz Max Uplift Max Grav	2 *Excep .2 .2 .2 .2 .2 .2 wood shea urlins, exc urlins, exc	t* 6-15,15-19:2x6 S athing directly applic ept -0 max.): 6-19. athing directly applic 23=0-3-8, 36=13-2: 8, 38=13-2-8, 40=13 8, 42=13-2-8 7) C 25), 23=-420 (LC (LC 8), 37=-35 (LC (LC 8), 37=-35 (LC LC 20), 42=-66 (LC 17), 23=1192 (LC 2 (LC 1), 37=18 (LC 5 (LC 1), 40=55 (LC 1) LC 2), 40=55 (LC 1) LC 3), 40=55 (LC 1) C 8), 42=112 (LC 1) pression/Maximum	TOP CHORD P ed or ed or BOT CHORD -8, -2-8, 8), 3), 25), 25), 0),), 7), 3)	1-2=0/28, 2-3=-1 4-5=-406/1472, 1 6-7=-883/3065, 8-9=-883/3066, 12-13=-220/129 14-16=-2777/93 17-18=-2777/93 19-20=-2220/76 21-22=-2508/80 23-24=0/28 2-42=-526/198, 1 40-41=-526/198, 1 40-41=-526/198, 1 31-32=-239/889 29-30=-948/3277 27-28=-602/213 25-26=-661/232	163/583, 3- 5-6=-391/1 7-8=-883/3 9-10=-883/ 0, 11-12=-{ 5, 16-17=-2 5, 16-17=-2 6, 22-23=-2 41-42=-52(, 38-40=-52 6, 36-37= 34-35=-33; 32-33=-32! 9, 23-25=-(9, 23-25=-(4=-146/588, 500, 060, 3060, 383/3060, 777/935, 22777/935, 2280/1082, 22515/827, 22545/793, 5/198, 26/198, 1364/476, 142, 3/1211, 148/3278, 597/2494, 502/2131, 561/2329		WEBS		4-41= 38-43 36-46 47-48 12-33 31-49 31-50 18-51 29-52 26-53 5-43= 7-44= 10-44= 10-44= 10-45 27-53	-1019/11/2019 -201/662, 4-43=- =-953/316, 6-38 =-3774/1179, 46- =-3538/1106, 12- =-509/1770, 13-3 =-202/821, 13-49 =-665/2147, 16-3 =-599/183, 50-51 =-547/166, 18-29 =-633/2099, 19-5 =-839/209, 20-53 =-95/253, 21-26= -43/82, 40-43=-3: 0/135, 37-44=-76 =-521/158, 11-47 =-643/217, 14-49 =-039, 22125 33 C E N	322/309, -6/54, =-1899/605, =-64/50, 47=-3515/1100, 48=-3863/1216, 3=-1982/614, -660/2129, 1=-382/177, =-553/163, =-52/78, 2=-566/1882, =-76/281, -116/124, 1/17, 8-45=-142/5 =0/173, 35-47=0/ =-10/41, 28-52=-294/9 3/28 869	, i5, 126, 11,
FORCES	38=1007 (LC 1), 40=55 (LC 17), 41=190 (LC 8), 42=112 (LC 13) (lb) - Maximum Compression/Maximum Tension							fer in						

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

ON 111111

June 13,2024

Page: 1

Job	Truss	Truss Type	Qty	Ply	Mitchell Brown	T0 / / 50 570
240606-04KM	H01	Hip Girder	1	2	Job Reference (optional)	134153570

Run: 8 73 S. Apr 25 2024 Print: 8 730 S. Apr 25 2024 MiTek Industries. Inc. Wed. Jun 12 08:35:27

ID:omCzf7REblCNw7xCdTSE?pz8zJm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

Coastal Truss & amp; Vinyl Siding, Patterson, GA - 31577,

- 2-ply truss to be connected together with 10d 1) (0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc, 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc.
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-22; Vult=130mph (3-second gust) 4) Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=18ft; B=50ft; L=35ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 5) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable. or consult qualified building designer as per ANSI/TPI 1.
- Building Designer / Project engineer responsible for 6) verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 7) Provide adequate drainage to prevent water ponding. 8) All plates are 2x4 MT20 unless otherwise indicated.
- Gable studs spaced at 2-0-0 oc. 9)
- 10) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) All bearings are assumed to be SP No.2 .
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 197 lb uplift at joint 2, 420 lb uplift at joint 23, 643 lb uplift at joint 41, 271 lb uplift at joint 38, 1048 lb uplift at joint 36, 91 lb uplift at joint 40, 66 lb uplift at joint 42 and 35 lb uplift at joint 37.
- 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 15) Use Simpson Strong-Tie LTHJA26 (LTHJA26 on 2 ply, Right Hand Hip) or equivalent at 7-0-6 from the left end to connect truss(es) to back face of bottom chord.
- 16) Use Simpson Strong-Tie LTHJA26 (LTHJA26 on 2 ply, Left Hand Hip) or equivalent at 27-7-10 from the left end to connect truss(es) to back face of bottom chord.
- 17) Fill all nail holes where hanger is in contact with lumber. 18) "NAILED" indicates 3-10d (0.148"x3") or 3-12d
- (0.148"x3.25") toe-nails per NDS guidlines.

LOAD CASE(S) Standard

Dead + Roof Live (balanced): Lumber Increase=1.25, 1) Plate Increase=1.25

Uniform Loads (lb/ft)

- Vert: 1-6=-54, 6-19=-54, 19-24=-54, 2-33=-14, 32-33=-14, 29-32=-14, 28-29=-14, 23-28=-14
- Concentrated Loads (lb)
- Vert: 6=-107 (B), 15=-86 (B), 33=-54 (B), 38=-447 (B), 12=-107 (B), 18=-86 (B), 19=-107 (B), 7=-107 (B), 37=-54 (B), 8=-107 (B), 10=-34 (B), 11=-107 (B), 35=-54 (B), 34=-54 (B), 60=-107 (B), 62=-86 (B),
- 63=-86 (B), 65=-54 (B), 66=-75 (B), 67=-75 (B),
- 68=-75 (B), 69=-75 (B), 70=-447 (B)

Job	Truss	Truss Type	Qty	Ply	Mitchell Brown	
240606-04KM	H02	Нір	1	1	Job Reference (optional)	T34153571

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 12 08:35:27 ID:Z1Aam2Kaj_3fLkIUb4n78wz8zJv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:67.7

NOTES

this design.

1)

Plate Offsets (X, Y): [4:0-3-0,0-2-4], [7:0-5-4,Edge], [11:0-2-8,0-2-7], [14:0-0-14,Edge], [16:0-2-12,0-1-12], [18:0-5-4,Edge], [19:0-2-4,0-2-0], [20:0-5-4,0-2-8]

	()	. .		0.01									
Loading	(pst)	Spacing	2-0-0	CSI		DEFL	ın	(IOC)	I/defi	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.80	Vert(LL)	-0.58	20-21	>720	240	MT20	244/190	
TCDL	7.0	Lumber DOL	1.25	BC	0.92	Vert(CT)	-1.01	20-21	>413	180	MT20HS	187/143	
BCLL	0.0*	Rep Stress Incr	YES	WB	0.64	Horz(CT)	0.49	14	n/a	n/a			
BCDL	7.0	Code	FBC2023/TPI2014	Matrix-MS							Weight: 189 lb	FT = 20%	
LUMBER 2) Wind: ASCE 7-22; Vult=130mph (3-second gust)													

TOP CHORD	2x4 SP No.2 *Except* 1-4:2x4 SP No.1
BOT CHORD	2x4 SP No.2 *Except* 2-22:2x4 SP No.1
WEBS	2x4 SP No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	2-1-15 oc purlins, except
	2-0-0 oc purlins (2-10-12 max.): 4-11.
BOT CHORD	Structural wood sheathing directly applied or
	2-2-0 oc bracing.
REACTIONS	(size) 2=0-3-8, 14=0-3-8
	Max Horiz 2=-100 (LC 10)
	Max Uplift 2=-411 (LC 12), 14=-411 (LC 12)
	Max Grav 2=1251 (LC 1), 14=1251 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/28, 2-3=-5579/1971, 3-4=-5316/1749,
	4-5=-3651/1269, 5-6=-2658/999,
	6-8=-2664/1002, 8-9=-3608/1284,
	9-10=-3613/1287, 10-11=-2748/1005,
	11-12=-3139/1133, 12-13=-2403/877,
	13-14=-2630/967, 14-15=0/28
BOT CHORD	2-22=-1785/5246, 21-22=-1125/3766,
	20-21=-1017/3209, 19-20=-837/2696,
	18-19=-1104/3633, 17-18=-1053/3340,
	16-17=-930/2954, 14-16=-828/2404
WEDS	3-22=-237/200, 4-22=-701/2400,
	4-21=-353/130, 0-20=-150/03, 0-20=-121/43, 8-102480/740, 8-18786/2658
	9-18-91/66 11-17-381/1096
	12-17=-461/1676 12-16=-1909/610
	10-18=-73/422, 10-17=-810/308.
	5-21=-151/658, 5-20=-697/251.
	13-16=-251/154

Unbalanced roof live loads have been considered for

Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=18ft; B=50ft; L=35ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Zone3 -1-4-0 to 2-1-10, Zone1 2-1-10 to 9-0-0, Zone2 9-0-0 to 13-10-13, Zone1 13-10-13 to 25-8-0, Zone2 9-0-0 to 30-6-1, Zone1 30-6-1 to 36-0-0 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Building Designer / Project engineer responsible for

- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
 Provide adequate drainage to prevent water ponding.
- 5) All plates are MT20 plates unless otherwise indicated.
- 6) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearings are assumed to be: Joint 2 SP No.1 , Joint 14 SP No.2 .
- Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 411 lb uplift at joint 14 and 411 lb uplift at joint 2.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

June 13,2024

Job	Truss	Truss Type	Qty	Ply	Mitchell Brown	
240606-04KM	H03	Нір	1	1	Job Reference (optional)	134153572

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 12 08:35:27 ID:1EkyzOLDUIBWyuKg9oIMg7z8zJu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:66.6

Plate Offsets (X, Y): [4:0-3-0,0-2-4], [14:0-5-4,0-2-8], [16:0-3-0,0-3-4]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.25		TC	1.00	Vert(LL)	-0.51	15-16	>818	240	MT20	244/190	
TCDL	7.0	Lumber DOL	1.25		BC	0.92	Vert(CT)	-0.86	15-16	>484	180	MT20HS	187/143	
BCLL	0.0*	Rep Stress Incr	YES		WB	0.69	Horz(CT)	0.40	9	n/a	n/a			
BCDL	7.0	Code	FBC202	3/TPI2014	Matrix-MS							Weight: 174 lb	FT = 20%	
			2)	Wind: ASCE	7-22: Vult=130n	nph (3-sec	ond aust)							
TOP CHORD	2x4 SP No.2 *Excep	t* 1-4:2x4 SP No.1	,	Vasd=101m	oh; TCDL=4.2ps	f; BCDL=4	.2psf; h=18ft	;						
BOT CHORD	2x4 SP No.2 *Excep	t* 2-16:2x4 SP No.1		B=50ft; L=35	B=50ft; L=35ft; eave=4ft; Cat. II; Exp C; Enclosed;									
WEBS	2x4 SP No.2			MWFRS (dir	ectional) and C-0	C Zone3 -1	-4-0 to 2-1-1	0,						
BRACING				Zone1 2-1-1	0 to 11-0-0, Zone	e2 11-0-0 t	o 15-8-12, Z	one1						
TOP CHORD	Structural wood she	athing directly applie	h	15-8-12 to 23	3-8-0, Zone2 23-	-8-0 to 28-	10-2, Zone1							
	except	atting anoony applie	,	28-10-2 to 36	6-0-0 zone; canti	ilever left a	ind right							
	2-0-0 oc purlins (3-5	-13 max.): 4-7.	d vertical left an	d right exp	osed;C-C for	r								
BOT CHORD	Structural wood she	athing directly applie	d or	members an	d forces & MWF	RS for rea	ctions showr	n;						
	2-2-0 oc bracing.	0 7 11		Lumber DOL	=1.60 plate grip	DOL=1.60) ,							
REACTIONS	(size) 2=0-3-8, 9	=0-3-8	3)	Building Des	igner / Project ei	ngineer res	sponsible for							
	Max Horiz 2=119 (LC	C 11)		verifying app	lied roof live load	a snown co	overs rain loa	ading						
	Max Uplift 2=-411 (L	C 12), 9=-411 (LC 1	2) (1)	Provide eder	s specific to the t	use of this	truss compo	nent.						
	Max Grav 2=1251 (L	.C 1), 9=1251 (LC 1)	/ 4) 5)	All plates are	MT20 platos un	b prevent v	wice indicate	y. M						
FORCES	(lb) - Maximum Com	pression/Maximum	5)	This trues ha	s heen designer	d for a 10 () nef hottom	u.						
I ONOLO	Tension	proceden/maximum	0)	chord live loa	ad nonconcurren	t with any	other live loa	aha						
TOP CHORD	1-2=0/28, 2-3=-5618	/1990, 3-4=-5275/17	790, 7)	* This truss h	has been designed	ed for a liv	e load of 20.0	Opsf						
	4-5=-2547/972, 5-6=	-2202/877,	,	on the bottor	n chord in all are	eas where	a rectangle	-1					111.	
	6-7=-1939/779, 7-8=	-2142/798,		3-06-00 tall b	y 2-00-00 wide	will fit betw	een the bott	om				MININIS.	1.111	
	8-9=-2601/938, 9-10	=0/28		chord and ar	y other member	rs.						JULIOO	LEE	
BOT CHORD	2-16=-1799/5286, 15	5-16=-779/2635,	8)	Bearings are	assumed to be:	Joint 2 SF	No.1, Joint	t 9			11	CEN	0	
	14-15=-686/2261, 12	2-14=-663/2158,		SP No.2 .							2		E.	
	11-12=-793/2357, 9-	11=-793/2357	9)	Bearing at jo	int(s) 2 consider	s parallel t	o grain value)				No. 24	260	
WEBS	3-16=-314/274, 4-16	=-959/3042,		using ANSI/	PI 1 angle to gra	ain formula	a. Building					~ ~ 34		
	4-15=-300/121, 5-15	=-132/472,		designer sho	uld verify capac	ity of beari	ng surface.				*:		A 🔆 🕇 🖬	
	5-14=-526/223, 6-14	=-20/155,	10) Provide mec	hanical connecti	on (by othe	ers) of truss t	to						
	0-12=-440/175, 7-12	-100/571,		bearing plate	capable of with	standing 4	11 lb uplift at	t joint			D			
	0-12=-403/202, 8-11	=0/100		9 and 411 lb	uplift at joint 2									

NOTES

1) Unbalanced roof live loads have been considered for this design.

- 9 and 411 lb uplift at joint 2.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

June 13,2024

Job	Truss	Truss Type	Qty	Ply	Mitchell Brown			
240606-04KM	H04	Нір	1	1	Job Reference (optional)	T34153573		

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 12 08:35:28 ID:1EkyzOLDUIBWyuKg9oIMg7z8zJu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:66.7

Plate Offsets (X, Y): [4:0-4-0,0-1-13], [15:0-3-4,0-3-4]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.95	Vert(LL)	-0.53	14-15	>778	240	MT20	244/190	
TCDL	7.0	Lumber DOL	1.25	BC	0.90	Vert(CT)	-0.91	14-15	>458	180	MT20HS	187/143	
BCLL	0.0*	Rep Stress Incr	YES	WB	0.80	Horz(CT)	0.41	8	n/a	n/a			
BCDL	7.0	Code	FBC2023/TPI2014	Matrix-MS							Weight: 177 lb	FT = 20%	

LUMBER

I OF CHORD	2X4 SF NU.2 EXCEPT 1-4.2X4 SF 33
BOT CHORD	2x4 SP No.2 *Except* 2-15:2x4 SP No.1
WEBS	2x4 SP No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied,
	except
	2-0-0 oc purlins (3-9-5 max.): 4-6.
BOT CHORD	Structural wood sheathing directly applied or
	4-9-4 oc bracing.
REACTIONS	(size) 2=0-3-8, 8=0-3-8
	Max Horiz 2=-138 (LC 10)
	Max Uplift 2=-411 (LC 12), 8=-411 (LC 12)
	Max Grav 2=1251 (LC 1), 8=1251 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/28, 2-3=-5583/1945, 3-4=-5358/1888,
	4-5=-2001/821, 5-6=-1774/752,
	6-7=-1981/764, 7-8=-2562/920, 8-9=0/28
BOT CHORD	2-15=-1749/5251, 14-15=-593/2071,
	13-14=-565/1925, 12-13=-549/1870,
	10-12=-768/2313, 8-10=-768/2313
WEB5	3-15=-294/230, 4-15=-11/8/3532,
	4-14=-244/09, 5-14=-00/337, 5-13=-434/171
	7-12610/285 7-10-0/227
NOTES	1 12- 010/200, 1 10-0/221
NUIES	

CD No 2 *Event* 1 4:2v4 CD CC

Unbalanced roof live loads have been considered for 1) this design.

2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=18ft; B=50ft; L=35ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Zone3 -1-4-0 to 2-1-10, Zone1 2-1-10 to 13-0-0, Zone2 13-0-0 to 17-10-13, Zone1 17-10-13 to 21-8-0, Zone2 21-8-0 to 26-6-13, Zone1 26-6-13 to 36-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component. 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are MT20 plates unless otherwise indicated.
- This truss has been designed for a 10.0 psf bottom 6)
- chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 8) Bearings are assumed to be: Joint 2 SP No.1, Joint 8 SP No.2
- Bearing at joint(s) 2 considers parallel to grain value 9) using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 411 lb uplift at joint 8 and 411 lb uplift at joint 2.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

June 13,2024

🗥 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only using the mathematical network of the intervention of the in

Job	Truss	Truss Type	Qty	Ply	Mitchell Brown	
240606-04KM	H05	Нір	1	1	Job Reference (optional)	134153574

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 12 08:35:28 ID:1EkyzOLDUIBWyuKg9oIMg7z8zJu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:66.8

Plate Offsets (X, Y): [6:0-5-4,0-2-0], [14:0-7-12,0-3-0]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 7.0 0.0* 7.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES FBC202	3/TPI2014	CSI TC BC WB Matrix-MS 7-22: Vult=130mph	0.82 0.89 0.82	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.57 -1.01 0.46	(loc) 14-15 14-15 9	l/defl >726 >410 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 170 lb	GRIP 244/190 187/143 FT = 20%	
LUMBER TOP CHORD SOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 *Excep 2x4 SP No.1 *Excep No.2 2x4 SP No.2 Structural wood shea 2-2-0 oc purlins, exc 2-0-0 oc purlins (4-5 Structural wood shea 4-10-0 oc bracing. 2 Rows at 1/3 pts (size) 2-0-3-8.9	t* 1-4:2x4 SP SS t* 12-9,12-14:2x4 SP athing directly applied ept -13 max.): 5-6. athing directly applied 3-14 =0-3-8	2) d or d or 3)	Vasd=101mp B=50ft; L=35 MWFRS (dire Zone1 2-1-1(19-8-0 to 24- cantilever left right exposed for reactions DOL=1.60 Building Desi verifying app requirements	h; TCDL=4.2ps; B h; TCDL=4.2ps; B ft; eave=4ft; Cat. II; ectional) and C-C Z to 15-0-0, Zone3 1 6-13, Zone1 24-6-1 and right exposed d;C-C for members shown; Lumber DO gner / Project engir lied roof live load sh specific to the use	CDL=4 Exp C one3 - 1 5-0-0 3 to 36 ; end v and for L=1.60 meer re- nown c of this	.2psf; h=18ft; Enclosed; I-4-0 to 2-1-1 to 19-8-0, Zor -0-0 zone; ertical left an ces & MWFR) plate grip sponsible for overs rain loa truss compor	0, ne2 d S ding nent.						
FORCES	(abc) 2=0-3-6, 8 Max Horiz 2=157 (LC Max Uplift 2=-411 (Lr Max Grav 2=1251 (L (lb) - Maximum Com Tension 1-2=0/28, 2-3=-5554 5-6=-1614/718, 6-8=)=0:530 C 12), 9=-411 (LC 12 C 1), 9=1251 (LC 1) pression/Maximum /1894, 3-5=-1786/71 -1816/721,	4) 5) 6) 7) 8) 7,	Provide adeo All plates are The Fabricati This truss ha chord live loa * This truss h on the botton 3-06-00 tall b	Juate drainage to pr MT20 plates unles ion Tolerance at joir s been designed fo id nonconcurrent wi as been designed f n chord in all areas y 2-00-00 wide will	event v s other nt 15 = r a 10.0 th any or a liv where fit betw	vater ponding wise indicate 8%) psf bottom other live loa e load of 20.0 a rectangle veen the botto	g. d. ds. Opsf				JULIUS		
BOT CHORD	8-9=-2520/903, 9-10 2-15=-1695/5220, 1/ 13-14=-445/1605, 11 9-11=-744/2268 3-15=-736/2546, 3-1 5-14=-92/372, 6-14= 8-13=-738/330, 8-11	=0/28 4-15=-1591/4862, I-13=-744/2268, 4=-3442/1220, -154/180, 6-13=-84/3 =0/280	9) 10) 894, 11	chord and an Bearings are SP No.2 .) Bearing at joi using ANSI/T designer sho) Provide mecl	y other members. assumed to be: Joi int(s) 2 considers pa 'PI 1 angle to grain uld verify capacity on nanical connection	nt 2 SF arallel t formula of beari (by oth	P No.1 , Joint o grain value a. Building ng surface. ers) of truss t	9 0		ALL DAY	* 7		S.K	
VOTES I) Unbalance this desigr	ed roof live loads have h.	been considered for	12 LC	bearing plate 9 and 411 lb) Graphical pu or the orienta bottom chord PAD CASE(S)	capable of withstar uplift at joint 2. rlin representation o tion of the purlin alo Standard	nding 4 loes no	11 lb uplift at ot depict the s top and/or	joint iize			ROUIN	OR VONA	P.A. HAN	

June 13,2024

THILL WITH

Julius Lee PE No. 34869

Date:

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Mitchell Brown	
240606-04KM	H06	Нір	1	1	Job Reference (optional)	134153575

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 12 08:35:28 ID:VQHKBkLrEcKNa2vsjVqbDLz8zJt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:66.9

Plate Offsets (X, Y): [11:0-0-14,Edge], [17:0-5-0,0-2-4], [18:0-4-12,Edge]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 7.0 0.0* 7.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES FBC202	3/TPI2014	CSI TC BC WB Matrix-MS	0.81 0.88 0.96	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.54 -0.96 0.43	(loc) 17-18 17-18 11	l/defl >772 >433 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 190 lb	GRIP 244/190 187/143 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.2 *Excep 2x4 SP No.1 *Excep No.2 2x4 SP No.2 Structural wood shea 2-2-0 oc purlins, exc 2-0-0 oc purlins (4-9	t* 1-4:2x4 SP SS t* 17-14,14-11:2x4 S athing directly applie ept -14 max.): 6-7.	2) P d or	Wind: ASCE Vasd=101mp B=50ft; L=35 MWFRS (dirr Zone1 2-1-10 17-8-0 to 22- cantilever lef right exposed for reactions	7-22; Vult=130mpł h; TCDL=4.2psf; E ft; eave=4ft; Cat. II ectional) and C-C Z) to 17-0-0, Zone3 6-13, Zone1 22-6-1 t and right exposed d;C-C for members shown; Lumber DC	n (3-seo 3CDL=4 ; Exp C 2one3 - 17-0-0 13 to 36 1 ; end v and for DL=1.60	cond gust) .2psf; h=18ft; ; Enclosed; I-4-0 to 2-1-1 to 17-8-0, Zor -0-0 zone; rertical left an rces & MWFR) plate grip	; 0, ne2 nd &S						
BOT CHORD WEBS REACTIONS	Structural wood shea 4-11-14 oc bracing. 1 Row at midpt (size) 2=0-3-8, 1 Max Horiz 2=177 (LC Max Uplift 2=-411 (LL Max Grav 2=1251 (L	athing directly applied 3-17 (1=0-3-8 C 11) C 12), 11=-411 (LC 1 .C 1), 11=1251 (LC 1	d or 3) 4) 2) 6)) 7)	DOL=1.60 Building Des verifying app requirements Provide adec All plates are All plates are The Exbrind	igner / Project engi lied roof live load s specific to the use juate drainage to p MT20 plates unles 3x4 MT20 unless in Tolorage at in	neer re hown c of this revent ss other otherwi	sponsible for overs rain loa truss compor water ponding wise indicate se indicated.	nding nent. g. d.						
FORCES	(lb) - Maximum Com Tension	pression/Maximum	8)	This truss ha	s been designed fo	or a 10.0) psf bottom	do						
TOP CHORD	1-2=0/28, 2-3=-5546 5-6=-1644/734, 6-7= 7-8=-1616/651, 8-10 10-11=-2554/885, 11	/1771, 3-5=-1782/68 -1441/636, =-2313/815, -12=0/28	1, 9)	* This truss h on the botton 3-06-00 tall b chord and an	as been designed n chord in all areas y 2-00-00 wide will n other members	for a liv where fit betv	e load of 20.0 a rectangle veen the botto	opsf Opsf			S. MAR	ULIUS		
BOT CHORD	2-18=-1576/5212, 17 16-17=-389/1567, 15	7-18=-1379/4480, 5-16=-331/1441,	10) Bearings are SP No.2 .	assumed to be: Jo	oint 2 SI	P No.1 , Joint	11				Ng 34	869	
WEBS	13-15=-555/1888, 11 3-18=-681/2533, 3-1 5-17=-87/388, 5-16= 6-16=-436/744, 7-15 8-15=-609/298, 8-13 10-13=-326/202	-1.3=-740/2325 7=-3077/1046, -772/400, =-101/470, =-72/440,	11) Bearing at jo using ANSI/T designer sho) Provide mect bearing plate 11 and 411 ll	int(s) 2 considers p PI 1 angle to grain uld verify capacity hanical connection capable of withsta p uplift at joint 2.	arallel t formula of beari (by oth inding 4	o grain value a. Building ng surface. ers) of truss t 11 lb uplift at	o joint			* PROY	fulte	A A	
NOTES 1) Unbalance	ed roof live loads have	been considered for	13) Graphical pu or the orienta	rlin representation ation of the purlin al	does no Iona the	ot depict the s	size			11	dd OH	NGIN	

live loads have been considered for this design.

bottom chord.

LOAD CASE(S) Standard

Page: 1

Job	Truss	Truss Type	Qty	Ply	Mitchell Brown	
240606-04KM	CJ01	Diagonal Hip Girder	2	1	Job Reference (optional)	T34153576

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 12 08:35:25 ID:w?zTpIOjXXiyRVeROdNIqzz8zJq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:40.2

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.25		TC	0.28	Vert(LL)	-0.04	8-11	>999	240	MT20	244/190	
TCDL	7.0	Lumber DOL	1.25		BC	0.31	Vert(CT)	-0.05	8-11	>999	180			
BCLL	0.0*	Rep Stress Incr	NO		WB	0.26	Horz(CT)	0.01	7	n/a	n/a			
BCDL	7.0	Code	FBC202	3/TPI2014	Matrix-MS							Weight: 45 lb	FT = 20%	
LUMBER			7)	Provide med	chanical connection	on (by othe	ers) of truss	to						
TOP CHORD	2x4 SP No.2			bearing plate	e capable of withs	standing 1	43 lb uplift a	t joint						
BOT CHORD	2x4 SP No.2			2 and 104 lb	uplift at joint 7.									
WEBS	2x4 SP No.2		8)	"NAILED" in	dicates 3-10d (0.1	148"x3") o	r 2-12d							
BRACING				(0.148"x3.25	5") toe-nails per N	IDS guidlir	nes.							
TOP CHORD	Structural wood shea	athing directly applie	ed or ⁹⁾	In the LOAD	CASE(S) section	n, loads ap	plied to the	face						
	6-0-0 oc purlins, exe	cept end verticals.		of the truss a	are noted as front	(F) or bac	ск (В).							
BOT CHORD	Structural wood she	athing directly applie	ed or LO	AD CASE(S)	Standard									
	10-0-0 oc bracing.		1)	Dead + Ro	of Live (balanced): Lumber	Increase=1.	.25,						
REACTIONS	(size) 2=0-4-9, 7	7= Mechanical		Plate Incre	ase=1.25									
	Max Horiz 2=139 (LC	C 7)		Vort: 1.4		0 11								
	Max Uplift 2=-143 (L	C 8), 7=-104 (LC 8)		Concentrat	=-54, 4-5=-14, 6-	9=-14								
	Max Grav 2=454 (LC	C 13), 7=413 (LC 1)		Vort: 14-	.eu Luaus (ID)	24) 15-20	(E_10 B_1	0)						
FORCES	(lb) - Maximum Com	pression/Maximum		16-12 (=-09 (F=-34, B=-3 F6 B6) 17	55 (E-29	(F=19, D=1 2 B=-28)	9),						
	Tension			10=-12 (1 =-0, D=-0), 17 =-	-55 (1 =-20	, D=-20)							
TOP CHORD	1-2=0/29, 2-3=-822/	137, 3-4=-128/62,												
	4-5=-1/0, 4-7=-128/7	74												
BOT CHORD	2-8=-177/723, 7-8=-	177/723, 6-7=0/0												
WEBS	3-8=0/203, 3-7=-715	5/149											111.	
NOTES												1111115	1.111	
 Wind: ASC 	CE 7-22; Vult=130mph	(3-second gust)										JULIOU	LEE	
Vasd=101	mph; TCDL=4.2psf; B0	CDL=4.2psf; h=18ft;	;								11	CEA	10. 11	
B=50ft; L=	=30ft; eave=4ft; Cat. II;	Exp C; Enclosed;									5		· · · · · · · · · · · · · · · · · · ·	
MWFRS (directional); cantilever	left and right expose	ed ;									No. 24	960	
end vertic	al left and right expose	d; Lumber DOL=1.6	50								1	NU 34		
plate grip	DUL=1.60										7:		// *=	
 Building D 	vesigner / Project engin	eer responsible for	dina							=		1 0. *		
requiremo	applied 1001 live 1080 Sh	of this trues compor	nont							-	PA	[] // []_		
3) This trues	has been designed for	r a 10.0 nsf hottom	IGHL.								P	LV KTATE	OR LANS	
chord live	load nonconcurrent wi	th any other live loa	ds							5	- X	· · ·		
 4) * This trus 	s has been designed for	or a live load of 20.0	Opsf								1	C. OR	10.01.1	

- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearings are assumed to be: Joint 2 SP No.2 . 5)
- 6) Refer to girder(s) for truss to truss connections.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

June 13,2024

SIONALE minim

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

Julius Lee PE No. 34869

Date:

Job	Truss	Truss Type	Qty	Ply	Mitchell Brown	
240606-04KM	J01	Jack-Open	8	1	Job Reference (optional)	T34153577

Scale = 1:27.1 Loading TCLL (roof) TCDL BCLL BCDL

LUMBER

BRACING TOP CHORD

TOP CHORD

BOT CHORD

2x4 SP No.2

2x4 SP No.2

6-0-0 oc purlins.

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 12 08:35:28 ID:OBXr15PLIqqp3fDdyLuXNBz8zJp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3x4 =

				7	'-0-0				-		
(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.25	CSI TC	0.65	DEFL Vert(LL)	in 0.14	(loc) 4-7	l/defl >585	L/d 240	PLATES MT20	GRIP 244/190
7.0	Lumber DOL	1.25	BC	0.49	Vert(CT)	-0.19	4-7	>439	180 p/a		
7.0	Code	FBC2023/TPI2014	Matrix-MP	0.00		0.00	3	n/a	n/a	Weight: 24 lb	FT = 20%

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 93 lb uplift at joint 3 and 118 lb uplift at joint 2.

LOAD CASE(S) Standard

* PROT ON 11111

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

June 13,2024

BOT CHORD	Structural 10-0-0 oc	wood sheathing directly applied or bracing.
REACTIONS	(size)	2=0-3-8, 3= Mechanical, 4= Mechanical
	Max Horiz	2=138 (LC 12)
	Max Uplift	2=-118 (LC 12), 3=-93 (LC 12)
	Max Grav	2=315 (LC 1), 3=161 (LC 1), 4=107
		(LC 3)
FORCES	(lb) - Max Tension	imum Compression/Maximum
TOP CHORD	1-2=0/28,	2-3=-126/56
BOT CHORD	2-4=-73/1	16
NOTES		
1) Wind: AS	CE 7-22; Vu	lt=130mph (3-second gust)
Vasd=101	mph; TCDL	=4.2psf; BCDL=4.2psf; h=18ft;
B=50ft; L=	=30ft; eave=	4ft; Cat. II; Exp C; Enclosed;
MWFRS (directional)	and C-C Zone3 -1-4-0 to 1-8-0,
Zone1 1-8	3-0 to 6-11-4	zone; cantilever left and right
exposed ;	end vertical	left and right exposed;C-C for
members	and forces &	MWFRS for reactions shown:

Structural wood sheathing directly applied or

- Lumber DOL=1.60 plate grip DOL=1.60 Building Designer / Project engineer responsible for 2) verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearings are assumed to be: , Joint 2 SP No.2 . 5)
- 6) Refer to girder(s) for truss to truss connections.

👠 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only using the mathematical network of the intervention of the in

Job	Truss	Truss Type	Qty	Ply	Mitchell Brown	
240606-04KM	J03	Jack-Open	6	1	Job Reference (optional)	134153578

-1-4-0

1-4-0

Coastal Truss & amp; Vinyl Siding, Patterson, GA - 31577,

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 12 08:35:28 ID:VQHKBkLrEcKNa2vsjVqbDLz8zJt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

0-9-1

2x4 =

1-0-0 1-0-0

12 5 Г

1-0-0

Scale = 1:25.2 Plate Offsets (X, Y): [2:0-1-2,Edge]

		•••												
Loading	(p	sf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20	0.0	Plate Grip DOL	1.25		TC	0.17	Vert(LL)	0.00	7	>999	240	MT20	244/190
TCDL	7	7.0	Lumber DOL	1.25		BC	0.03	Vert(CT)	0.00	7	>999	180		
BCLL	(0.0*	Rep Stress Incr	YES		WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL		7.0	Code	FBC2023/TPI	2014	Matrix-MP							Weight: 5 lb	FT = 20%
LUMBER				6) Ref	er to airde	er(s) for truss to t	russ con	nections.						
TOP CHORD	2x4 SP No.2			7) Pro	vide mecl	nanical connectio	n (by oth	ers) of truss to	0					
BOT CHORD	2x4 SP No.2			bea	ring plate	capable of withs	tanding 1	21 Ib uplift at	joint					
BRACING				2, 1	4 lb uplift	at joint 4 and 1 lt	o uplift at	joint 3.						
TOP CHORD	Structural woo	d she	athing directly applie	ed or LOAD C	CASE(S)	Standard								
	1-0-0 oc purlin	s.												
BOT CHORD	Structural woo	d she	athing directly applie	ed or										
	10-0-0 oc brac	ing.												
REACTIONS	(size) 2=0- Mec	-3-8, 3 hanic	3= Mechanical, 4= al											
	Max Horiz 2=46	5 (LC	12)											
	Max Uplift 2=-1	21 (L	, C 12). 3=-1 (LC 1). 4	4=-14										
	(LC	1) `	<i>,, , , ,</i>											
	Max Grav 2=1	54 (LC	C 1), 3=11 (LC 12), 4	=26										
	(LC	12)												
FORCES	(lb) - Maximum	Com	pression/Maximum											
	Tension													
TOP CHORD	1-2=0/28, 2-3=	-77/3	1										IIIIIII	1111.
BOT CHORD	2-4=-32/81												IN JUS	LEMA
NOTES													10	THE MAN
1) Wind: AS(CE 7-22; Vult=13	0mph	(3-second gust)									5	CEN	Sp. 1
Vasd=101	1mpn; 1CDL=4.2p	OST; BU	JDL=4.2pst; n=18π;								0	-	. ×	
D=3011, L=	directional) and (a_1 . II,	EXP C, ENCLOSEU,	r								1 1	No 34	869 🧯 💈
left and ric	and content and co	l verti	cal left and right	1								*		
exposed:	C-C for members	and for	prces & MWFRS for								=		/ 📩	
reactions	shown; Lumber D	OL=1	.60 plate grip									7:		
DOL=1.60)											D	A B H	
2) Building D	Designer / Project	engin	eer responsible for									:0		and there
verifying a	applied roof live lo	ad sh	own covers rain load	ding								1	A Y On	04:25
requireme	ents specific to the	e use	of this truss compon	ent.								1	COLOH	GN
3) This truss	has been design	ed to	a 10.0 pst bottom										ONA	ENIN
 4) * This true 		uned f	un any other live load	us. nef									1111	innu.
on the bot	tom chord in all a	reas	where a rectande	hai							т	iline I o	PF No 34869	
3-06-00 ta	all by 2-00-00 wid	e will	fit between the botto	m							M	iTek In	c. DBA MiTek USA	FL Cert 6634
chord and	any other memb	ers.									16	5023 Sw	ingley Ridge Rd. C	hesterfield, MO 63017
5) Bearings a	are assumed to b	e:,Jo	pint 2 SP No.2 .								D	ate:		

June 13,2024

Job	Truss	Truss Type	Qty	Ply	Mitchell Brown	
240606-04KM	J04	Jack-Open	6	1	Job Reference (optional)	T34153579

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 12 08:35:28 ID:VQHKBkLrEcKNa2vsjVqbDLz8zJt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-1-4-0 3-0-0 3-0-0 1-4-0

2x4 =

3-0-0

Scolo	_	1.22	0	

TOP CHORD

BOT CHORD

BOT CHORD

FORCES

NOTES

1)

2)

3)

4)

5)

TOP CHORD

BOT CHORD

REACTIONS (size)

BRACING TOP CHORD 2x4 SP No.2

2x4 SP No.2

Tension

2-4=-15/72

3-0-0 oc purlins.

10-0-0 oc bracing.

Structural wood sheathing directly applied or

Structural wood sheathing directly applied or

Mechanical Max Horiz 2=76 (LC 12)

(LC 3)

1-2=0/28, 2-3=-108/25

Wind: ASCE 7-22; Vult=130mph (3-second gust)

Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=18ft; B=50ft; L=30ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Zone3 -1-4-0 to 1-8-0, Zone1 1-8-0 to 2-11-4 zone; cantilever left and right

exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown;

Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

on the bottom chord in all areas where a rectangle

Bearings are assumed to be: , Joint 2 SP No.2 .

6) Refer to girder(s) for truss to truss connections.

* This truss has been designed for a live load of 20.0psf

3-06-00 tall by 2-00-00 wide will fit between the bottom

Lumber DOL=1.60 plate grip DOL=1.60

chord and any other members.

Max Uplift 2=-101 (LC 12), 3=-30 (LC 12) Max Grav 2=188 (LC 1), 3=59 (LC 1), 4=42

(lb) - Maximum Compression/Maximum

2=0-3-8, 3= Mechanical, 4=

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	тс	0.17	Vert(LL)	0.00	4-7	>999	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.07	Vert(CT)	-0.01	4-7	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	7.0	Code	FBC2023/TPI2014	Matrix-MP							Weight: 12 lb	FT = 20%

bearing plate capable of withstanding 30 lb uplift at joint 3 and 101 lb uplift at joint 2.

LOAD CASE(S) Standard

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

June 13,2024

Page: 1

🗥 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only using the mathematical network of the intervention of the in

Job	Truss	Truss Type	Qty	Ply	Mitchell Brown	
240606-04KM	J05	Jack-Open	4	1	Job Reference (optional)	134153580

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 12 08:35:28 ID:VQHKBkLrEcKNa2vsjVqbDLz8zJt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 =

5-0-0	

_oading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.33	Vert(LL)	0.04	4-7	>999	240	MT20	244/190	
FCDL	7.0	Lumber DOL	1.25	BC	0.28	Vert(CT)	-0.05	4-7	>999	180			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a			
BCDL	7.0	Code	FBC2023/TPI2014	Matrix-MP							Weight: 18 lb	FT = 20%	
ICDL BCLL BCDL	7.0 0.0* 7.0	Lumber DOL Rep Stress Incr Code	1.25 YES FBC2023/TPI2014	BC WB Matrix-MP	0.28 0.00	Vert(CT) Horz(CT)	-0.05 0.00	4-7 3	>999 n/a	180 n/a	Weight: 18 lb	FT = 20%	

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 63 lb uplift at joint 3 and 107 lb uplift at joint 2.
 LOAD CASE(S) Standard

BRACING TOP CHORD Structural wood sheathing directly applied or 5-0-0 oc purlins. BOT CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing. **REACTIONS** (size) 2=0-3-8, 3= Mechanical, 4= Mechanical Max Horiz 2=107 (LC 12) Max Uplift 2=-107 (LC 12), 3=-63 (LC 12) Max Grav 2=250 (LC 1), 3=111 (LC 1), 4=75 (LC 3) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/28, 2-3=-118/42 BOT CHORD 2-4=-52/83

2x4 SP No.2

2x4 SP No.2

NOTES

Scale - 1.24.8

LUMBER

TOP CHORD

BOT CHORD

- Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=18ft; B=50ft; L=30ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Zone3 -1-4-0 to 1-8-0, Zone1 1-8-0 to 4-11-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
 This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) Bearings are assumed to be: , Joint 2 SP No.2 .
- 6) Refer to girder(s) for truss to truss connections.

NO 34869 TOENSE NO 34869 TOENSE NO 34869 * TOENSE NO 34869 * TOENSE NO 34869 * TOENSE NO 34869 * TOENSE NO 34869 *

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

June 13,2024

Job	Truss	Truss Type	Qty	Ply	Mitchell Brown	
240606-04KM	J06	Jack-Open	4	1	Job Reference (optional)	134153581

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 12 08:35:28 ID:VQHKBkLrEcKNa2vsjVqbDLz8zJt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:32.1

4)

Plate Offsets (X, Y): [2:0-0-2,Edge], [3:0-2-12,0-3-4]

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle

3-06-00 tall by 2-00-00 wide will fit between the bottom

5) Bearings are assumed to be: , Joint 2 SP No.2 .

chord and any other members.

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.25		TC	0.42	Vert(LL)	0.16	3-5	>511	240	MT20	244/190
TCDL		7.0	Lumber DOL	1.25		BC	0.56	Vert(CT)	-0.19	3-5	>443	180		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.00	Horz(CT)	0.09	5	n/a	n/a		
BCDL		7.0	Code	FBC202	23/TPI2014	Matrix-MR							Weight: 25 lb	FT = 20%
LUMBER				6)	Refer to gird	ler(s) for truss to	truss con	nections.						
TOP CHORD	2x4 SP No.	.2		7)	Provide mee	chanical connection	on (by oth	ers) of truss	to					
BOT CHORD	2x4 SP No.	.2			bearing plat	e capable of withs	standing 7	2 lb uplift at	joint					
BRACING					4, 118 lb up	lift at joint 2 and 1	3 lb uplift	at joint 5.						
TOP CHORD	Structural v	wood shea	athing directly appli	ed or LO	DAD CASE(S)	Standard								
	6-0-0 oc pu	urlins.												
BOT CHORD	Structural v	wood shea	athing directly appli	ed or										
	6-0-0 oc br	acing.												
REACTIONS	(size) 2	2=0-3-8, 4	I= Mechanical, 5=											
	Max Horiz (Mechanic 2-138 (I C	al 12)											
	Max Liplift	2-118 (LC	C 12) /=-72 (I C 13	2)										
	Max Opint 2	5=-13 (I C	: 12), += 72 (EO 12	-),										
	Max Grav 2	2=315 (LC	C 1), 4=140 (LC 1),	5=98										
	((LC 3)	,, -(-,,											
FORCES	(lb) - Maxin	num Com	pression/Maximum											
	1 2_0/28 2	2 2 206/	196 2 1- 90/50											
BOT CHORD	2-6-205/3	2-3=-390/ 11 3-6'	220/203 3-58/8										annun .	1111.
NOTES	2-0293/3	41, 3-0	223/233, 3-3=-0/0										11 ILIUS	LEN
NUIES		100	(2 cocord suct)										. Jo	1.5 14
Vasd=10	CE 7-22, Vull: 1mph: TCDI -	- 130mpn	(3-Second gust)									5	. UER	Sr.
B-50ft I	-30ft: eave-4t	ft: Cat II:	Evn C: Enclosed	,								5	1 X X	
MWFRS	(directional) a	nd C-C 70	200, 21000000, 2000000, 20000000, 20000000000)									No 34	869
Zone1 1-8	8-0 to 6-11-4 z	zone; can	tilever left and right	,								*:		
exposed :	end vertical l	eft and rig	ght exposed;C-C for								-	1:	/ . *	
members	and forces &	MWFRS	for reactions shown	;								12	CONE .	
Lumber DOL=1.60 plate grip DOL=1.60												D	UKTATA	STALLES
2) Building E	Designer / Pro	ject engin	eer responsible for									=0		
verifying a	applied roof liv	ve load sh	own covers rain loa	ding								X	Allon	101.53
2) This trues	ents specific to	o the use	of this truss compoi	nent.								(1)	South	NO N
chord live	load nonconc	signed for current wi	th any other live loa	ds								U	IN ONA	LEIM
4) * This true	ss has been d	lesigned f	or a live load of 20.0	Opsf									in min	IIIII.

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

June 13,2024

Job	Truss	Truss Type	Qty	Ply	Mitchell Brown	
240606-04KM	G01	Common Girder	1	1	Job Reference (optional)	T34153582

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 12 08:35:26 ID:OBXr15PLlqqp3fDdyLuXNBz8zJp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:66.7

Plate Offsets (X, Y): [2:0-3-10,0-2-4], [2:1-0-3,0-3-7], [7:0-6-0,0-2-8], [10:0-5-0,0-2-8], [14:0-5-0,0-2-8], [20:0-3-10,0-2-4], [2

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 7.0 0.0 7.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 NO FBC202	23/TPI2014	CSI TC BC WB Matrix-MS	0.29 0.51 0.58	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.04 -0.07 0.00	(loc) 22-48 22-48 28	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 279 lb	GRIP 244/190 FT = 20%		
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD JOINTS	2x4 SP No.2 2x6 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood si 5-6-11 oc purlins. Structural wood si 6-0-0 oc bracing, 10-0 oc bracing 1 Brace at Jt(s): 3	neathing directly applic neathing directly applic Except: 22-23,20-22. 9.	W ed or ed or	EBS 12-41=-221/645, 26-41=-179/578, 14-26=-518/205, 14-42=-166/487, 23-42=-152/465, 17-23=-372/176, 17-22=-139/500, 18-22=-243/136, 29-38=-771/282, 12-38=-654/222, 10-29=-310/104, 33-39=-129/56, 10-39=-131/54, 7-33=-449/159, 36-40=-141/472, 7-40=-145/481, 5-36=-160/82, 12-27=-396/111, 11-38=-122/64, 10-30=-65/121, 9-39=-145/71, 32-39=-184/78, 7-34=-31/166, 6-40=-76/55, 35-40=-63/49, 4-37=-60/44, 13-41=-70/44, 14-25=0/63, 15-42=-25/16						 (b) Provide mechanical connection (by orriers) of truss to bearing plate capable of withstanding 127 lb uplift at joint 2, 165 lb uplift at joint 32, 211 lb uplift at joint 20 and 373 lb uplift at joint 28. 11) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines. 12) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s). The design/selection of such connection device(s) is the responsibility of others. 13) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). 					
REACTIONS	40, 42 (size) 2=0-3- 32=0-3 Max Horiz 2=-171 Max Uplift 2=-127 28=-37 Max Grav 2=329 28=147	, 20=0-3-8, 28=0-3-8, 8 (LC 6) (LC 8), 20=-211 (LC 8 3 (LC 8), 32=-165 (LC LC 19), 20=563 (LC 2 7 (LC 1), 32=710 (LC	13-41=-70/44, 14-25=0/63, 15-42=-25/16 LOAD CASE(S) Standard 8, NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=18ft; 20), B=50ft; L=35ft; eave=4ft; Cat. II; Exp C; Enclosed; Yert: 29=-188/F), MWFRS (directional); cantilever left and right exposed ;							ndard e (balanced): Lumber Increase=1.25, I.25 b/ft) 4, 12-21=-54, 43-46=-14 aads (lb) (F), 10=-186 (F), JLIUS LEN					
FORCES	(lb) - Maximum Co	mpression/Maximum	,	end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60						CENS					
TOP CHORD	1-2=0/31, 2-4=-25 5-6=-231/173, 6-7 9-10=-52/500, 10- 12-13=0/178, 13- 15-17=-401/172, 4 18-20=-973/263, 2	9/152, 4-5=-259/164, =-210/178, 7-9=-84/5 11=-95/623, 11-12=-6 4=0/157, 14-15=-365, 7-18=-923/282, 10-21=0/31	3) 19, 3/615, /184, 4)	 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component 											
BOT CHORD	2-37=-160/239, 36 35-36=-344/200, 3 3-34=-334/199, 3 0-32=-453/312, 2 28-29=-348/254, 2 26-27=-356/256, 2 23-25=-46/114, 22 20-22=-170/894	-37=-160/239, 14-35=-344/200, 12-33=-453/312, 19-30=-451/312, 17-28=-348/254, 15-26=-45/116, 1-23=-25/456,	5) 6) 7) 8) 9)	 All plates are 3x4 MT20 unless otherwise indicated. Gable studs spaced at 2-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. All bearings are assumed to be SP No.2. 						ulius Lee fiTek Inc 6023 Swi Date:	PE No . DBA ngley F	ORIDA ONALET MITEK USA FLC tidge Rd. Chesterfin	ert 6634 eld, MO 63017		

June 13,2024

Page: 1

Job	Truss	Truss Type	Qty	Ply	Mitchell Brown	
240606-04KM	T01	Common	1	1	Job Reference (optional)	T34153583

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 12 08:35:29 ID:zcriO4MT?vSECBU3HCLqIYz8zJs-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:65

1)

this design.

Plate Offsets (X, Y): [2:0-0-10,Edge], [10:0-0-10,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.44	Vert(LL)	-0.24	12-14	>947	240	MT20	244/190	
TCDL	7.0	Lumber DOL	1.25	BC	0.90	Vert(CT)	-0.45	12-14	>510	180			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.62	Horz(CT)	0.08	10	n/a	n/a			
BCDL	7.0	Code	FBC2023/TPI2014	Matrix-MS							Weight: 171 lb	FT = 20%	
2) Wind: ASCE 7.22: Vult=120mpb (2 second quint)													

LUMBER		
TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
WEBS	2x4 SP N	0.2
BRACING		
TOP CHORD	Structura	wood sheathing directly applied or
	3-9-1 oc p	ourlins.
BOT CHORD	Structura	wood sheathing directly applied or
	2-2-0 oc l	pracing.
REACTIONS	(size)	2=0-3-8, 10=0-3-8, 15=0-3-8,
		17=0-3-8
	Max Horiz	2=-180 (LC 10)
	Max Uplift	2=-351 (LC 12), 10=-361 (LC 12),
		15=-112 (LC 12)
	Max Grav	2=1000 (LC 1), 10=1053 (LC 1),
		15=403 (LC 1), 17=60 (LC 3)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=0/28,	2-3=-1878/732, 3-5=-1621/656,
	5-6=-1054	4/518, 6-7=-1054/520,
	7-9=-1810	0/704, 9-10=-2056/778, 10-11=0/28
BOT CHORD	2-18=-57	7/1706, 17-18=-399/1300,
	15-17=-39	99/1300, 14-15=-399/1300,
	12-14=-43	37/1392, 10-12=-630/1864
WEBS	6-14=-194	4/486, 7-14=-637/335,
	7-12=-99/	482, 9-12=-333/211,
	5-14=-540	0/305, 5-18=-57/331, 3-18=-355/218
NOTES		

Unbalanced roof live loads have been considered for

- Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=18ft; B=50ft; L=35ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C Zone3 -1-4-0 to 2-1-10, Zone1 2-1-10 to 17-4-0, Zone2 17-4-0 to 22-2-13, Zone1 22-2-13 to 36-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading
- requirements specific to the use of this truss component. 4) All plates are 3x4 MT20 unless otherwise indicated.
- 5) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 6) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.2 . 7)
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 351 lb uplift at joint 2, 361 Ib uplift at joint 10 and 112 Ib uplift at joint 15.

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

June 13,2024

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	Mitchell Brown	
240606-04KM	T02	Common	4	1	Job Reference (optional)	T34153584

Run: 8,73 S Apr 25 2024 Print: 8,730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 12 08:35:29 ID:zcriO4MT?vSECBU3HCLqIYz8zJs-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:65

Plate Offsets (X, Y): [2:0-0-10,Edge], [10:0-0-10,Edge]

Zone1 2-1-10 to 17-4-0, Zone2 17-4-0 to 22-2-13, Zone1 22-2-13 to 36-0-0 zone; cantilever left and right

exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown;

Lumber DOL=1.60 plate grip DOL=1.60

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)		20.0	Plate Grip DOL	1.25		TC	0.42	Vert(LL)	-0.24	12-14	>942	240	MT20	244/190	
TCDL		7.0	Lumber DOL	1.25		BC	0.97	Vert(CT)	-0.45	12-14	>507	180			
BCLL		0.0*	Rep Stress Incr	YES		WB	0.62	Horz(CT)	0.08	10	n/a	n/a			
BCDL		7.0	Code	FBC2)23/TPI2014	Matrix-MS							Weight: 171 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural w 3-9-1 oc pui Structural w 2-2-0 oc bra (size) 2 Max Horiz 2 Max Uplift 2 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	athing directly applied athing directly applied 0=0-3-8, 15=0-3-8 C 10) C 12), 10=-361 (LC 1 LC 12)	d or d or 12),	 Building Desverifying apprequirements All plates are chord live loading of the bottor This truss has not bottor 3-06-00 tall be chord and ar All bearings Provide mection bearing plate the of the bottor 	igner / Project engi lied roof live load si s specific to the use 3x4 MT20 unless is been designed fo ad nonconcurrent w has been designed in chord in all areas by 2-00-00 wide will by other members. are assumed to be hanical connection a capable of withsta	neer reachown co of this otherwi or a 10.0 ith any for a liv where fit betw SP No. (by oth nding 3	sponsible for overs rain loa truss compor se indicated.) psf bottom other live loa e load of 20.0 a rectangle veen the botto 2. ers) of truss t 61 lb uplift at	ding hent. ds.)psf om joint						
	Max Grav 2	=1008 (L 5=444 (L	.C 1), 10=1049 (LC 1 .C 1)	I),	10, 351 lb up OAD CASE(S)	Standard	n id up	lift at joint 15.							
FORCES	(lb) - Maxim Tension	um Com	pression/Maximum												
TOP CHORD	1-2=0/28, 2- 5-6=-1044/5	-3=-1903 518, 6-7=	/731, 3-5=-1647/655 -1045/520,	i,									MULUS		
BOT CHORD	7-9=-1801/7 2-17=-576/1 14-15=-399/ 10-12=-631/	705, 9-10 1729, 15- /1308, 12 /1856	=-2047/779, 10-11=0 17=-399/1308, 2-14=-438/1383,	0/28							1	S. S	JULICEN	SE	
WEBS	6-14=-194/4 7-12=-99/48 5-14=-563/3	479, 7-14 33, 9-12≕ 304, 5-17	=-638/335, -333/211, =-55/374, 3-17=-352	2/218								*	No 34	869	
NOTES											=	70:			
1) Unbalance	ed roof live loa	ads have	been considered for									л:	KALIN	6	
this desigr). 		(a									:0		:413	
2) Wind: ASC	CE 7-22; Vult=	=130mph	(3-second gust)									21	ALON	01.51	
Vasd=101	mpn; ICDL=4	∔.∠pst; BC	DL=4.2pst; n=18ft;									11	H. P.	NO IN	
D=3011; L=	directional) an	i, Cal. II; I od C-C Zo	EXP 0, ENCIOSED;	`									ONA	LEIM	
Zone1 2-1	-10 to 17-4-0,	Zone2 1	7-4-0 to 22-2-13, Zoi	,, ne1									111111	inni.	

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

June 13,2024

Job	Truss	Truss Type	Qty	Ply	Mitchell Brown	
240606-04KM	Т03	Common	3	1	Job Reference (optional)	T34153585

Run: 8,73 S Apr 25 2024 Print: 8,730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 12 08:35:29 ID:RoP4cQN5mDa5pL3Fqws3Imz8zJr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:65

3)

Plate Offsets (X, Y): [2:0-0-14,Edge], [10:0-0-14,Edge]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.25		тс	0.41	Vert(LL)	-0.18	14	>999	240	MT20	244/190	
TCDL	7.0	Lumber DOL	1.25		BC	0.77	Vert(CT)	-0.33	14-16	>999	180			
BCLL	0.0*	Rep Stress Incr	YES		WB	0.59	Horz(CT)	0.11	10	n/a	n/a			
BCDL	7.0	Code	FBC202	3/TPI2014	Matrix-MS		. ,					Weight: 171 lb	FT = 20%	
LUMBER			4)	All plates are	3x4 MT20 unless	otherwi	se indicated.							
TOP CHOR	D 2x4 SP No.2		5)	This truss ha	s been designed f	for a 10.0) psf bottom							
BOT CHOR	D 2x4 SP No.2		,	chord live loa	ad nonconcurrent	with any	other live loa	ds.						
NEBS	2x4 SP No.2		6)	* This truss h	has been designed	d for a liv	e load of 20.0	Opsf						
BRACING				on the bottor	n chord in all area	s where	a rectangle							
TOP CHOR	D Structural wood shea	athing directly applie	ed or	3-06-00 tall b	y 2-00-00 wide wi	ill fit betw	een the botto	om						
	3-3-6 oc purlins.			chord and ar	y other members.									
BOT CHOR	D Structural wood shea	athing directly applie	ed or 7)	All bearings a	are assumed to be	e SP No.:	2.							
	6-7-13 oc bracing.	0 7 11	8)	Provide mec	hanical connectior	n (by oth	ers) of truss t	0						
REACTION	S (size) 2=0-3-8.1	0=0-3-8		bearing plate	capable of withst	anding 4	11 lb uplift at	joint						
	Max Horiz 2=-180 (L0	C 10)		10 and 411 ll	b uplift at joint 2.									
	Max Uplift 2=-411 (LO	C 12). 10=-411 (LC	12) LC	DAD CASE(S)	Standard									
	Max Grav 2=1251 (L	.C 1), 10=1251 (LC	1)											
FORCES	(lb) - Maximum Com	pression/Maximum	,											
ONOLO	Tension	procolori/Maximam												
TOP CHOR	D 1-2=0/28. 2-3=-2547	/933. 3-5=-2300/859	9.											
	5-6=-1603/693. 6-7=	-1603/693.	-,											
	7-9=-2300/859, 9-10	=-2547/933, 10-11=	=0/28										11.	
BOT CHOR	D 2-16=-758/2318, 14-	16=-573/1870,										2111.111	1111	
	12-14=-590/1870, 10)-12=-776/2318										ULIUU	LEF	
NEBS	6-14=-327/909, 7-14	=-609/323,									Nº.	CEN	6 · · · · ·	
	7-12=-82/440, 9-12=	-336/212,									5		0 F	
	5-14=-609/323, 5-16	=-82/440, 3-16=-33	6/212								-	No. 04		
NOTES											1.1	HO 34	609	
1) Unbalar	nced roof live loads have	been considered for	r								*:		· · · · ·	-
this des	ign.									=	:			
2) Wind: A	SCE 7-22; Vult=130mph	(3-second gust)									ט:			-
Vasd=1	01mph; TCDL=4.2psf; BC	CDL=4.2psf; h=18ft;									J.	XS# AFH	CALL . W	-
B=50ft;	L=35ft; eave=4ft; Cat. II;	Exp C; Enclosed;									:0	- garning	:41	
MWFRS	6 (directional) and C-C Zo	one3 -1-4-0 to 2-1-1	0,								24	1.160-1	01:25	
Zone1 2	-1-10 to 17-4-0, Zone2 1	7-4-0 to 22-2-13, Zo	one1								11	CO H	Gin	
22-2-13	to 36-0-0 zone; cantileve	er left and right										1. 1010	ENI	

exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

"III WILLING Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

ONALE

June 13,2024

Page: 1

Job	Truss	Truss Type	Qty	Ply	Mitchell Brown	
240606-04KM	T04	Roof Special	8	1	Job Reference (optional)	T34153586

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 12 08:35:29 ID:RoP4cQN5mDa5pL3Fqws3Imz8zJr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-1-4-0 17-4-0 15-8-12 8-4-15 22-10-12 28-5-7 34-8-0 1-7-4 8-4-15 7-3-13 5-6-12 5-6-12 6-2-9 1-4-0 4x5 ı 1.5x4 u 6 5 3x4 **≈** 512 51 3x4 🚅 ²⁴ 7 23 6x8 🚅 3x4~ 3 7-6-11 8 Bracing 1.5x4 u 9 22 25 15 MT20HS 7x10 =

Scale = 1:66.9

8-1-2

Plate Offsets (X, Y): [10:0-0-10,Edge], [13:0-2-8,0-3-0], [14:0-5-0,0-2-6]

members and forces & MWFRS for reactions shown;

Lumber DOL=1.60 plate grip DOL=1.60

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25		TC	0.89	Vert(LL)	-0.66	14-15	>632	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25		BC	0.99	Vert(CT)	-1.08	14-15	>385	180	MT20HS	187/143
BCLL	0.0*	Rep Stress Incr	YES		WB	0.83	Horz(CT)	0.45	10	n/a	n/a		
BCDL	7.0	Code	FBC202	3/TPI2014	Matrix-MS							Weight: 180 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 *Excep 2x4 SP No.2 *Excep 15-14:2x4 SP No.1 2x4 SP No.2 Structural wood shea 2 Rows at 1/3 pts (size) 2=0-3-8, 1 Max Horiz 2=-180 (LI Max Uplift 2=-411 (LI Max Grav 2=1390 (L	t* 1-4:2x4 SP SS t* 2-15:2x4 SP SS, athing directly applied athing directly applied 3-14 0=0-3-8 C 10) C 12), 10=-411 (LC 1 C 17), 10=-392 (LC	3) 4) 5) 6) d. d. 7) (2) 8) 18) 0)	Building Des verifying app requirements All plates are The Fabricat This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and an Bearings are No.2.	igner / Project eng lied roof live load s specific to the use MT20 plates unle ion Tolerance at jo s been designed fi d nonconcurrent w as been designed n chord in all areas by 2-00-00 wide will y other members, assumed to be: Jo	ineer re- shown c e of this ss other int 15 = or a 10.0 vith any for a liv for a liv	sponsible for overs rain loa truss compor- wise indicate 8% 0 psf bottom other live loa e load of 20.0 a rectangle ween the bottw DL = 7.0psf. P SS, Joint 1	ading nent. d. ds. Opsf om 0 SP					
FORCES	(lb) - Maximum Com	pression/Maximum	ý 9)	using ANSI/T	PI 1 angle to grain	n formula	a. Building	,					
TOP CHORD	Tension 1-2=0/28, 2-3=-6336 5-6=-1966/853, 6-7= 7-9=-2908/1009 9-1	/1861, 3-5=-1964/72 -2177/845, 0=-2884/911_10-11=	8, 10 =0/28	designer sho) Provide mech bearing plate	uld verify capacity hanical connection capable of withsta	of beari (by oth anding 4	ng surface. ers) of truss t 11 lb uplift at	to t joint					
BOT CHORD	2-15=-1655/6108, 14 12-14=-587/2081 10	4-15=-1447/5226, 1-12=-757/2612	-0,20 LC	DAD CASE(S)	Standard							ULIUS	LEDIN
WEBS	3-15=-716/3054, 3-1 5-14=-375/316, 6-14 7-13=-545/322, 6-13 7-12=-242/764, 9-12	4=-3604/1086, =-407/957, =-294/854, =-310/208									A. S.	No 34	S.E
NOTES											*:		· · · · ★ Ξ
 Unbalance this design Wind: AS Vasd=101 B=50ft; L= MWFRS (Zone1 2-1 22-2-13 to 	ed roof live loads have n. CE 7-22; Vult=130mph mph; TCDL=4.2psf; BC -35ft; eave=4ft; Cat. II; directional) and C-C Zc -10 to 17-4-0, Zone2 1 0 36-0-0 zone; cantileve	been considered for (3-second gust) CDL=4.2psf; h=18ft; Exp C; Enclosed; nne3 -1-4-0 to 2-1-10 7-4-0 to 22-2-13, Zor r left and right	l, ne1							1111WA	E C	CONATE SSIONA	

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

June 13,2024

Page: 1

36-0-0

1-4-0

10

Job	Truss	Truss Type	Qty	Ply	Mitchell Brown	
240606-04KM	GE01	Common Supported Gable	1	1	Job Reference (optional)	T34153587

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 12 08:35:26

19-1-0

Scale = 1:40.6

Loading TCLL (roof) TCDL BCLL BCDL	(p 20 (osf) 0.0 7.0 0.0* 7.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES FBC20)23/TPI2014	CSI TC BC WB Matrix-MS	0.13 0.06 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 23	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 88 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural woo 6-0-0 oc purlin Structural woo 10-0-0 oc brac (size) 2=1	nd shea is. ind shea ing. 9-1-0,	athing directly applie athing directly applie 10=19-1-0, 12=19-1	2 ed or ed or a	 Wind: ASCE Vasd=101mp B=50ft; L=30 MWFRS (dirr left and right exposed;C-C reactions sho DOL=1.60 Truss design only. For student 	7-22; Vult=130mp bh; TCDL=4.2psf; I ft; eave=2ft; Cat. I ectional) and C-C exposed ; end ver for members and ywn; Lumber DOL: ned for wind loads ds exposed to wirt Loduetry Cable B	h (3-sec BCDL=4 I; Exp C Zone3 z tical left forces 8 =1.60 pl in the p d (norm	cond gust) .2psf; h=18ft; ; Enclosed; one; cantileve and right & MWFRS for ate grip lane of the tru al to the face	er - ISS),					
	13= 16= 20= Max Horiz 2=-1 Max Uplift 2=-1 12= 14= 20= Max Grav 2=1! 12=: 14= 16= 19=: 23=	19-1-0 19-1-0 19-1-0 100 (L0 -67 (L0 -56 (L0 -49 (L0 -108 (L 93 (LC 218 (L 153 (L 153 (L 153 (L 218 (L 218 (L 218 (L 218 (L 218 (L	, 14=19-1-0, 15=19- , 18=19-1-0, 19=19- , 23=19-1-0 C 10), 20=-100 (LC C 12), 10=-108 (LC C 12), 10=-108 (LC C 12), 13=-49 (LC 1: C 12), 16=-56 (LC 1: C 12), 19=-67 (LC 1: C 12), 19=-67 (LC 1: C 12), 10=193 (LC 1), C 24), 13=103 (LC C 24), 15=113 (LC C 23), 18=103 (LC C 23), 20=193 (LC 1) C 1)	-1-0, -1-0, 4 10) 12), ε 2), ε 2), 7 2), ε 12, ε 13, ε 14, ε	 Building Des verifying app requirements All plates are Gable studs Gable studs This truss ha chord live loa This truss ha on the botton 3-06-00 tall b chord and ar All bearings a 	alified building designer / Project eng igner / Project eng ied roof live load s specific to the us 1.5x4 MT20 unle es continuous bott spaced at 2-0-0 or s been designed find nonconcurrent as been designed n chord in all areas y 2-00-00 wide wi y 2-00-00 wide vi y other members.	signer as ineer re shown c e of this ss other or a chor c. or a 10.0 with any l for a liv s where Il fit betw s SP No.	 as application as per ANSI/TF sponsible for overs rain loa truss compor wise indicated d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the bottod 2 . 	ding hent. d. ds. Opsf			S. S	JULIUS	
FORCES	(lb) - Maximum Tension 1-2=0/28, 2-3= 4-5=-51/129, 5 7-8=-48/129, 8	n Com =-70/68 5-6=-70 3-9=-39	oression/Maximum 3, 3-4=-64/80, 1/188, 6-7=-70/188, 0/79, 9-10=-64/31,	I	bearing plate 2, 108 lb upli uplift at joint 14, 49 lb upli	capable of withsta ft at joint 10, 56 lb 18, 67 lb uplift at jo ft at joint 13, 67 lb	anding 1 uplift at pint 19, t uplift at	08 lb uplift at joint 16, 49 lb 56 lb uplift at j joint 12, 108	joint o joint Ib			* PR	Julia	kel =
BOT CHORD	10-11=0/28 2-19=-23/98, 1 15-16=-23/98, 12-13=-23/98.	8-19= 14-15 10-12	-23/98, 16-18=-23/9 =-23/98, 13-14=-23/ =-23/98	^{18,} ^{/98,} L	 2) Beveled plate surface with OAD CASE(S) 	e or shim required truss chord at joint Standard	to provi t(s) 10, 2	de full bearing 23.	g			OXINI	C C R	P.A. CININ
WEBS	6-15=-86/0, 5- 3-19=-158/176 8-13=-88/114,	16=-12 5, 7-14 9-12=	21/135, 4-18=-88/11 =-121/136, -158/177	4,							Jı M	ılius Le iTek In	e PE No. 34869 c. DBA MiTek USA	FL Cert 6634
1) Unbalance	ed roof live loads	have	been considered for								16 D	5023 Sw ate:	ingley Ridge Rd. C	hesterfield, MO 63017

this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

June 13,2024

Job	Truss	Truss Type	Qty	Ply	Mitchell Brown	
240606-04KM	T05	Common	1	1	Job Reference (optional)	T34153588

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 12 08:35:29 ID:RoP4cQN5mDa5pL3Fqws3Imz8zJr-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Scale = 1:40.4

Plate Offsets (X, Y): [2:0-0-10,Edge], [6:0-0-10,Edge], [8:0-4-0,0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.37	Vert(LL)	-0.13	8-14	>999	240	MT20	244/190	
TCDL	7.0	Lumber DOL	1.25	BC	0.70	Vert(CT)	-0.24	8-14	>937	180			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.17	Horz(CT)	0.03	6	n/a	n/a			
BCDL	7.0	Code	FBC2023/TPI	2014 Matrix-MS							Weight: 84 lb	FT = 20%	
LUMBER			5) * Th	is truss has been designe	d for a liv	e load of 20.	Opsf						
TOP CHORD	2x4 SP No.2		, on t	he bottom chord in all area	as where	a rectangle							
BOT CHORD	2x4 SP No.2		3-06	5-00 tall by 2-00-00 wide w	vill fit betv	veen the bott	om						
WEBS	2x4 SP No.2		cho	rd and any other members	S.								
BRACING			6) All b	pearings are assumed to b	e SP No.	2.							
TOP CHORD	Structural wood shea	athing directly applie	edior 7) Pro	vide mechanical connection	on (by oth	ers) of truss	to						
	5-0-4 oc purlins.		bea	ring plate capable of withs	standing 2	255 id upiiπ a	tjoint						
BOT CHORD	Structural wood shea	athing directly applie	ed or ∠ar	ASE(S) Standard									
	8-6-11 oc bracing.		LOAD	ASE(S) Stanuaru									
REACTIONS	(SIZE) 2=0-3-8, 6	0-3-8											
	Max Horiz 2=-100 (L												
	Max Uplint $2=-255$ (L)	C 12), 6=-255 (LC 1 C 1) 6=721 (LC 1)	12)										
FURCES	(ib) - Maximum Com Tension	pression/maximum											
TOP CHORD	1-2=0/28 2-3=-1254	/587 3-4=-923/417											
	4-5=-923/417, 5-6=-	1254/586, 6-7=0/28	,										
BOT CHORD	2-6=-468/1137	,										111.	
WEBS	4-8=-135/474, 5-8=-3	381/283, 3-8=-381/2	283								M' UIS	1	
NOTES											JULIOU	LEE "	
1) Unbalance	ed roof live loads have	been considered for	r							S	CEA	SA.	
this design	٦.									5		S	
Wind: ASC	CE 7-22; Vult=130mph	(3-second gust)									No 34	869	
Vasd=101	mph; TCDL=4.2psf; B0	CDL=4.2psf; h=18ft;	;							4	1	A 1+	1
B=50ft; L=	30ft; eave=4ft; Cat. II;	Exp C; Enclosed;							= =	<u></u> :			
MWFRS (0	directional) and C-C Zo	one3 -1-4-0 to 1-8-0	,						- 3	-	$V \Lambda^{*}$		
20ne1 1-8	-0 10 9-6-8, 2011e2 9-6-	-8 to 13-9-7, Zone I	od ·							- NK		NO CE	
end vertics	al left and right expose	d.C-C for members	and							1	XUUNU	on the	
forces & M	WFRS for reactions st	hown: Lumber	and							3		A. 25	
DOL=1.60	plate grip DOL=1.60	. ,								11	C O R	GN	
3) Building D	esigner / Project engin	eer responsible for								1	SIONIA	ENIN	
verifying a	pplied roof live load sh	own covers rain loa	iding								THE NA	in the second se	
requireme	nts specific to the use	of this truss compor	nent.										
This truss	has been designed for	a 10.0 psf bottom							Ju	ilius Le	e PE No. 34869		

chord live load nonconcurrent with any other live loads.

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

June 13,2024

Job	Truss	Truss Type	Qty	Ply	Mitchell Brown	
240606-04KM	Т06	Common	4	1	Job Reference (optional)	T34153589

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 12 08:35:29 ID:w?zTpIOjXXiyRVeROdNIqzz8zJq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:39.1 Plate Offsets (X, Y): [7:0-4-0.0-3-0]

	(,,,), [
Loading TCLL (roof) TCDL BCLL	(psf) 20.0 7.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.25 1.25 YES		CSI TC BC WB	0.39 0.70 0.17	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.13 -0.25 0.03	(loc) 7-10 7-10 5	l/defl >999 >923 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL	7.0	Code	FBC202	23/TPI2014	Matrix-MS							Weight: 81 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she 4-10-7 oc purlins. Structural wood she 8-4-1 oc bracing. (size) 1=0-3-8, 5 Max Horiz 1=-99 (LC Max Uplift 1=-189 (LC	athing directly applie athing directly applie 5=0-3-8 : 10) C 12), 5=-258 (LC 1	5) ed or 7) ed or L(2)	* This truss I on the bottor 3-06-00 tall I chord and at All bearings Provide mec bearing plate 1 and 258 lb DAD CASE(S)	has been designed in chord in all area by 2-00-00 wide w by other members are assumed to be hanical connection capable of withst uplift at joint 5. Standard	d for a liv is where ill fit betw e SP No. n (by oth tanding 1	e load of 20.0 a rectangle veen the botto 2 . ers) of truss t 89 lb uplift at	Dpsf om ∵joint					
	Max Grav 1=646 (LC	C 1), 5=723 (LC 1)											
FORCES	(lb) - Maximum Com	pression/Maximum											
TOP CHORD	1-2=-1271/618, 2-3= 4-5=-1261/608, 5-6=	931/442, 3-4=-930 =0/28	/430,										
BOT CHORD	1-5=-487/1156											minin	IIII.
WEBS	3-7=-158/476, 4-7=-	380/282, 2-7=-393/2	291									IN JUS	LEN
NOTES											1	. JO	1. S. 14
1) Unbalanc	ed roof live loads have	been considered fo	r								5	ICE!	Sr.
 this design Wind: ASI Vasd=101 B=50ft; L= MWFRS (Zone1 3-C 13-9-7 to end vertic forces & N DOL=1.6(Building D verifying a requiremet 	n. CE 7-22; Vult=130mph Imph; TCDL=4.2psf; Bt =30ft; eave=4ft; Cat. II; (directional) and C-C Z; 0-0 to 9-6-8, Zone2 9-6 20-5-0 zone; cantilever al left and right expose JWFRS for reactions s 0 plate grip DOL=1.60 Designer / Project engin applied roof live load sh ents specific to the use	(3-second gust) CDL=4.2psf; h=18ft; Exp C; Enclosed; one3 0-0-0 to 3-0-0, -8 to 13-9-7, Zone1 left and right expos d;C-C for members hown; Lumber meer responsible for own covers rain loa of this truss compor	ed ; and ding nent.								* PROYIN	AND 34	B69 ACAL HANNE DA CININ
 This truce 	has been designed for	r a 10.0 pcf bottom								Ju	lins Le	e PE No. 34869	

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

June 13,2024

Page: 1

Job	Truss	Truss Type	Qty	Ply	Mitchell Brown	
240606-04KM	Т07	Roof Special Girder	1	1	Job Reference (optional)	134153590

Run: 8,73 S Apr 25 2024 Print: 8,730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 12 08:35:29 ID:OBXr15PLIqqp3fDdyLuXNBz8zJp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff

Scale = 1:35.7

Plate Offsets (X, Y): [2:0-2-15,Edge]

(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
20.0	Plate Grip DOL	1.25		TC	0.23	Vert(LL)	-0.01	6-8	>999	240	MT20	244/190	
7.0	Lumber DOL	1.25		BC	0.15	Vert(CT)	-0.01	6-8	>999	180			
0.0*	Rep Stress Incr	NO		WB	0.06	Horz(CT)	0.00	5	n/a	n/a			
7.0	Code	FBC2023	3/TPI2014	Matrix-MP							Weight: 37 lb	FT = 20%	
x4 SP No.2 x6 SP No.2 x4 SP No.2 tructural wood she 0-0 oc purlins, ex tructural wood she 0-0-0 oc bracing. ze) 2=0-4-9, ix Horiz 2=96 (LC ix Uplift 2=-117 (L ix Grav 2=322 (Li b) - Maximum Com	eathing directly applie cept end verticals. eathing directly applie 5=0-4-3 23) .C 8), 5=-80 (LC 5) C 13), 5=277 (LC 15) npression/Maximum	6) 7) d or 8) d or LO 1)	Provide mech bearing plate 2 and 80 lb u "NAILED" inc (0.148"x3.25 In the LOAD of the truss a AD CASE(S) Dead + Roo Plate Increa Uniform Loa Vert: 1-4: Concentrate Vert: 4=-1 B=19)	hanical connection capable of withsta uplift at joint 5. dicates 3-10d (0.14 ") toe-nails per ND CASE(S) section, re noted as front (I Standard of Live (balanced): ase=1.25 ads (lb/ft) =-54, 2-5=-14 ed Loads (lb) 56 (B), 6=-12 (F=-6	(by othe anding 1 8"x3") o S guidlir loads ap F) or bac Lumber 6, B=-6),	ers) of truss f 17 lb uplift at r 2-12d hes. oplied to the ck (B). Increase=1 8=39 (F=19	to t joint face 25,						
ension -2=0/29, 2-3=-429/	28, 3-4=-48/26,		,										
-5=-114/68 -658/356 5-65	7/356												
-0=-30/330, 3-0=-3	190/42											1111	
-0=-33/130, 3-3=-3	00/42										ILIUS	LEFU	
7-22; Vult=130mpf h; TCDL=4.2psf; B t; eave=4ft; Cat. II; ctional); cantilever ff and right expose L=1.60 gner / Project engii ed roof live load sl specific to the use been designed fo d nonconcurrent w as been designed fo chord in all areas / 2-00-00 wide will / other members.	n (3-second gust) CDL=4.2psf; h=18ft; Exp C; Enclosed; left and right expose ad; Lumber DOL=1.60 neer responsible for nown covers rain load of this truss compon r a 10.0 psf bottom ith any other live load for a live load of 20.0 where a rectangle fit between the botto	d ; D ding ent. ds. psf m								thus Le	NO 34		ANNULUID.
	(psf) 20.0 7.0 0.0* 7.0 (4 SP No.2 (6 SP No.2 (4 SP No.2 (4 SP No.2 (4 SP No.2 (4 SP No.2 (4 SP No.2 tructural wood she 0-0 oc purlins, ex tructural wood she 0-0 oc bracing. (9) 2=0-4-9, x Horiz 2=96 (LC x Uplift 2=-117 (L x Grav 2=322 (Lf)) - Maximum Com ension 2=0/29, 2-3=-429/ 5=-114/68 6=-58/356, 5-6=-5 6=-33/130, 3-5=-3 7-22; Vult=130mph); TCDL=4.2psf; B t; eave=4ft; Cat. II; ctional); cantilever ft and right expose =1.60 nper / Project engined for flive load sl specific to the use been designed for d nonconcurrent w as been designed for d nonconcurrent we as been designed for d nonconcurrent we d nonconcurre	(psf) Spacing 20.0 Plate Grip DOL 10.0* Rep Stress Incr 7.0 Code (4 SP No.2 (6 SP No.2 (4 SP No.2 (4 SP No.2 tructural wood sheathing directly applie 0-0 oc purlins, except end verticals. tructural wood sheathing directly applie 0-0 oc bracing. (e) 2=0-4-9, 5=0-4-3 x Horiz 2=96 (LC 23) x Uplift 2=-117 (LC 8), 5=-80 (LC 5) x Grav 2=322 (LC 13), 5=277 (LC 15) (b) - Maximum Compression/Maximum ension 2=0/29, 2-3=-429/28, 3-4=-48/26, -5=-5114/68 (6=-58/356, 5-6=-57/356 (6=-33/130, 3-5=-380/42 7-22; Vult=130mph (3-second gust) (c) TCDL=4.2psf; BCDL=4.2psf; h=18ft; (c) eave=4ft; Cat. II; Exp C; Enclosed; tional; cantilever left and right exposed; Lumber DOL=1.6i =1.60 ner / Project engineer responsible for ed roof live load shown covers rain load specific to the use of this truss compon been designed for a 10.0 psf bottom d nonconcurrent with any other live load as been designed for a live load of 20.0 chord in all areas where a rectangle (2-00-00 wide will fit between the botto (other members.	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(psf) 20.0 Plate Grip DOL Plate Grip DOL 1.25 Rep Stress Incr NO Code1.25 FBC2023/TPI2014(4 SP No.2 (6 SP No.2 (4 SP No.2)6) Provide mec bearing plate 2 and 80 lb u (0.148*x3.25)(4 SP No.2 (6 SP No.2)7)(4 SP No.2) (7.0)7)(4 SP No.2) (7.0)7)(5 SP No.2) (7.0)7)(6)Provide mec bearing plate (2 and 80 lb u (0.148*x3.25)(7)NAILED" (0.148*x3.25)(8) $2=0.4-9, 5=0.4-3$ x Horiz 2=96 (LC 23) x Uplit 2=-117 (LC 8), 5=-80 (LC 5) x Grav 2=322 (LC 13), 5=277 (LC 15) (2) - Maximum Compression/Maximum ension $2=0/29, 2-3=-429/28, 3-4=-48/26, -5=-114/68$ (6)Provide mec (0.148*x3.25)(7)Dead + Roo Plate Increac Uniform Loc Vert: 1-4: Concentrate Vert: 4=- B=19)(2)2, 2-3=-429/28, 3-4=-48/26, -5=-57/356 (5=-33/130, 3-5=-380/42)(7-22; Vult=130mph (3-second gust) n; TCDL=4.2psf; BCDL=4.2psf; h=18ft; t; eave=4ft; Cat. II; Exp C; Enclosed; ctional); cantilever left and right exposed ; ft and right exposed; Lumber DOL=1.60 .=1.60 jner / Project engineer responsible for ed roof live load shown covers rain loading specific to the use of this truss component. Expendesigned for a 10.0 psf bottom d nonconcurrent with any other live loads. as been designed for a 10.0 psf bottom d nonconcurrent with any other live loads. as been designed for a live load of 20.0psf chord in all areas where a rectangle (-2-00-00 wide will fit between the bottom vother members.		(psf) 20.0Spacing Plate Grip DOL 1.252-0-0 TCCSI TC20.0Plate Grip DOL Lumber DOL 0.0*1.25BC0.150.0*Rep Stress IncrNOWB0.067.0CodeFBC2023/TPI2014Matrix-MP4SP No.26Provide mechanical connection (by othe bearing plate capable of withstanding 1 2 and 80 lb uplift at joint 5.7.0CodeFBC2023/TPI2014Matrix-MP6Provide mechanical connection (by othe bearing plate capable of withstanding 1 2 and 80 lb uplift at joint 5.7.0CodeStandard0-0 oc purlins, except end verticals. tructural wood sheathing directly applied or 0-0 oc bracing.(DAD CASE(S) Standard10-00 cb bracingDead + Roof Live (balanced): Lumber Plate Increase=1.25 Uniform Loads (lb/t) Vert: 14=-54, 2-5=-14Concentrated Loads (lb) Vert: 4=-56 (B), 6=-12 (F=-6, B=-6), B=19)Nert: 4=-56 (B), 6=-12 (F=-6, B=-6), B=19)-22: Vult=130mph (3-second gust) n; TCDL=4.2psf; BCDL=4.2psf; h=18ft; ; eave=4ft; Cat. II; Exp C; Enclosed; ctional); cantilever left and right exposed; tand right exposed; Lumber DoL=1.60 .=1.60 prer / Project engineer responsible for ed roof live load shown covers rain loading specific to the use of this truss component. been designed for a 10.0 psf bottom r onconcurrent with any other live loads. as been designed for a live load of 20.0psf chord in all areas where a rectangle 2.00-00 wide will fit between the bottom r other members.	(psf) 20.0 Plate Grip DOL 1.252-0-0 TCCSI TCDEFL Vert(LL) Vert(CT) Horz(CT)0.0° 7.0Rep Stress Incr Rop Stress Incr 7.0NOWB0.06Horz(CT) Horz(CT)7.0CodeFBC2023/TPI2014Matrix-MPHorz(CT)4SP No.26Provide mechanical connection (by others) of truss bearing plate capable of withstanding 117 lb uplift a 2 and 80 lb uplift at joint 5.Structural wood sheathing directly applied or 0-0 oc purlins, except end verticals. tructural wood sheathing directly applied or 0-0 co bracing.6)Provide mechanical connection (by others) of truss bearing plate capable of withstanding 117 lb uplift a 2 and 80 lb uplift at joint 5.7.0CodeStandard7)NAALED' indicates 3-10d (0.148"x3") or 2-12d (0.148"x3.25") toe-nails per NDS guidlines.8)In the LOAD CASE(S) StandardStandard1)Dead + Roof Live (balanced): Lumber Increase=1. Plate Increase=1.25 Uniform Loads (lb/) Vert: 1-4=-54, 2-5=-1410Dead + Roof Live (balanced): Lumber Increase=1.25 Uniform Loads (lb/) Vert: 1-4=-56 (B), 6=-12 (F=-6, B=-6), 8=39 (F=19) B=19)2-0/29, 2-3=-429/28, 3-4=-48/26, 5=-71/356	(psf) 20.0Spacing Plate Grip DOL 1.252-0-0CSI TCDEFLin Vert(LL)0.0° 7.0Code1.25BC0.15Vert(CT)-0.010.0° 7.0CodeFBC2023/TPI2014Matrix-MPNo4 SP No.26 SP No.2Matrix-MP66 SP No.27.0CodeFBC2023/TPI2014Matrix-MP7.0CodeFBC2023/TPI2014Matrix-MP7.0CodeFBC2023/TPI2014Matrix-MP6 SP No.2Standard1.0point at joint 5.7.0NNLEDP' indicates 3-10d (0.148'x3)'' or 2-12d (0.148'x3.25') toe-nails per NDS guildines.7.08.1In the LOAD CASE(S) Standard1.09.22-0-4-9, 5=0-4-3 x Horiz 2-96 (LC 23) x Uplit 2 2-117 (LC 8), 5=-80 (LC 5) x Grav 2-322 (LC 13), 5=277 (LC 15)1.09.1Aximum Compression/Maximum ansion1.02=0/29, 2-3=-429/28, 3-4=-48/26, 5=-114/68-1.2 (F=-6, B=-6), 8=39 (F=19, B=19)2=0/29, 2-3=-429/28, 3-4=-48/26, 5=-114/68-1.2 (F=-6, B=-6), 8=39 (F=19, B=19)2-22; Vult=130mph (3-second gust) Y; TCDL=4.2psf; BCDL=4.2psf; h=18ft; ; eave-aft; Cat. II; Exp C; Enclosed; tional; cantilever left and right exposed ; tand right exposed; Lumber DOL=1.60 _=1.60 _per / Project engineer responsible for ed roof live load shown covers rain loading specific to the use of this truss component. been designed for a 10.0 psf bottom 1 nonconcurrent with any other live loads. as been designed for a 10.0 psf bottom 1 nonconcurrent will any other live loads. as been designed for a 10.0 psf bottom 1 nonconcurrent will nor	$ \begin{array}{ c c c c } (pst) \\ 20.0 \\ 7.0 \\ 100 \\$		(psf) Spacing 2-0-0 CSI DEFL in (loc) l/deft L/d 20.0 Plate Grip DOL 1.25 BC 0.16 Vert(CI) -0.01 6-8 >999 180 0.0* Rep Stress Incr NO Code FBC2023/TPI2014 WB 0.06 Horz(CT) 0.01 6-8 >999 180 4 SP No.2 Code FBC2023/TPI2014 Matrix-MP Horz(CT) 0.00 5 n/a n/a 4 SP No.2 Foroide mechanical connection (by others) of truss to bearing plate capable of withstanding 117 lb uplift at joint 2. 2.and 80 lb uplift at joint 5. N/ALED* intercuration (Br variance and stront (F) or back (B). 10.048 x3.25') to e-naits per NDS guidlines. 10.148 x3.25') to e-naits per NDS guidlines. 10.1048 x3.25') to e-naits per NDS guidlines.	(psf) Spacing 2-0-0 CSI DEFL in (loc) I/deft Lude De DL 1.25 TC 0.23 Vert(CT) -0.01 6-8 >999 240 MT20 0.0* Rep Stress Incr NO WB 0.06 Horz(CT) 0.00 5 n/a N/a 4 SP No.2 Code FBC2023/TPI2014 Matrix-MP Matrix-MP Weight: 37 ib 4 SP No.2 FBC2023/TPI2014 Matrix-MP Image: Code Spacing 1/2 of the pipe of the pip	(pst) Spacing 2-0-0 CSI DEFL in (loc) Videl Lid PLATES GRIP 2.0.0 Rep Stress Incr NO Code FG2022/TP12014 Wart(L) 0.01 6-8 9-99 240 MT20 24/190 4.5 P No.2 Code FBC2022/TP12014 Wath:AUP Verif(L) 0.00 5 n/a Veright: 37 lb FT = 20% 4 SP No.2 65 P No.2 7.0 Code FBC2022/TP12014 Matrix-MP Veright: 37 lb FT = 20% 0-0 oc purins: except end verificals, tructural wood sheathing directly applied or 0 5 N/ALED' indicates 3-100 (0.148/x3') or 2-12d (0.148/x32') or 2-1

- * This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) All bearings are assumed to be SP No.2 .

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

June 13,2024

Page: 1

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

Job	Truss	Truss Type	Qty	Ply	Mitchell Brown	
240606-04KM	J08	Jack-Open	1	1	Job Reference (optional)	T34153591

-1-4-0

FBC2023/TPI2014

Coastal Truss & amp; Vinyl Siding, Patterson, GA - 31577,

Run: 8.73 E Nov 16 2023 Print: 8.730 E Nov 16 2023 MiTek Industries, Inc. Thu Jun 13 08:23:51 ID:zcriO4MT?vSECBU3HCLqIYz8zJs-TJIxpOjiZ4bhLXUs?OnqrsKxdsqiq3IyaXvKMJz6w5O

4-7-0

rage

2x4 =

Matrix-MP

LOAD CASE(S) Standard

				L		4-7-0			_			
Scale = 1:24.4									1			
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	ТС	0.26	Vert(LL)	0.03	7-8	>999	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.23	Vert(CT)	-0.03	7-8	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		

LUMBER		
TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
BRACING		
TOP CHORD	Structural 4-7-0 oc p	l wood sheathing directly applied or purlins.
BOT CHORD	Structural 10-0-0 oc	l wood sheathing directly applied or bracing.
REACTIONS	All bearing	s 4-7-0. except 3= Mechanical
(lb) -	Max Horiz	2=101 (LC 12), 5=101 (LC 12)
	Max Uplift	All uplift 100 (lb) or less at joint(s) 3 except 2=-106 (LC 12), 5=-106 (LC 12)
	Max Grav	All reactions 250 (lb) or less at joint (s) 2, 3, 4, 5

7.0

Code

FORCES (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES

BCDL

- Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=18ft; B=50ft; L=30ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C 1-8-0 to 4-6-4 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
 This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint (s) 3 except (jt=lb) 2=105, 2=105.

Weight: 17 lb

FT = 20%

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

June 13,2024

Job	Truss	Truss Type	Qty	Ply	Mitchell Brown	
240606-04KM	M02	Monopitch	4	1	Job Reference (optional)	134153592

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Wed Jun 12 08:35:29 ID:zcriO4MT?vSECBU3HCLqIYz8zJs-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

4-10-8

Scale = 1:26.3	
Plate Offsets (X, Y):	[2:0-0-10,Edge]

	, , , , , , <u>[</u> e,_age	1										
Loading TCLL (roof) TCDL BCLL	(psf) 20.0 7.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.25 1.25 YES	CSI TC BC WB	0.41 0.33 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.05 -0.04 0.00	(loc) 4-7 4-7 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL	7.0	Code	FBC2023/TPI2014	Matrix-MP	_						Weight: 20 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2		6) Provide me bearing plat 4 and 119 ll LOAD CASE(S	chanical connection e capable of withs o uplift at joint 2. Standard	on (by oth standing 4	ers) of truss 1 lb uplift at	to joint					
TOP CHORD	Structural wood shea	athing directly applie	ed or									
BOT CHORD	4-10-8 oc purlins, ex Structural wood she 10-0-0 oc bracing.	xcept end verticals. athing directly applie	ed or									
REACTIONS	(size) 2=0-3-8, 4 Max Horiz 2=104 (LC Max Uplift 2=-119 (L Max Grav 2=243 (LC	4=0-3-8 C 11) C 12), 4=-41 (LC 9) C 1), 4=151 (LC 17)										
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD BOT CHORD	1-2=0/28, 2-3=-143/3 2-4=-82/100	79, 3-4=-126/261										
NOTES											IIIIIII	1111.
1) Wind: ASC Vasd=101 B=50ft; L= MWFRS (i Zone1 1-8 exposed ; members i Lumber D	CE 7-22; Vult=130mph mph; TCDL=4.2psf; BG :30ft; eave=4ft; Cat. II; directional) and C-C Zo to 4-8-12 zone; cam end vertical left and rig and forces & MWFRS OL=1.60 plate grip DO	(3-second gust) CDL=4.2psf; h=18ft; Exp C; Enclosed; one3 -1-4-0 to 1-8-0. tilever left and right ght exposed;C-C for for reactions shown tL=1.60	;							*		
 Building D verifying a requireme 	esigner / Project engin pplied roof live load sh nts specific to the use	neer responsible for nown covers rain loa of this truss compor	ding nent.							B	EUSA ALE	OF H
 This truss chord live 	has been designed for load nonconcurrent wi	r a 10.0 psf bottom th any other live load	ds.								C. OR	DAGIN
4) * This trus on the bott 3-06-00 ta	s has been designed fo tom chord in all areas Il by 2-00-00 wide will	or a live load of 20.0 where a rectangle fit between the botto)psf pm							V	SIONA	LENIII
chord and 5) All bearing	any other members. gs are assumed to be S	SP No.2 .							Ji M 10	inus Le liTek In 5023 Sw	e PL No. 34869 ic. DBA MiTek USA /ingley Ridge Rd. C	A FL Cert 6634 Chesterfield, MO 63017

June 13,2024

Date:

Job	Truss	Truss Type	Qty	Ply	Mitchell Brown	
240606-04KM	Т08	Roof Special	2	1	Job Reference (optional)	134153593

Run: 8.73 E Nov 16 2023 Print: 8.730 E Nov 16 2023 MiTek Industries, Inc. Thu Jun 13 08:24:33 ID:w?zTpIOjXXiyRVeROdNIqzz8zJq-BnyZ2RFICb8SdIrJadZ8d78Qrbpu8zBQiNZfumz6w4i

3x4 =

1	5-11-0	I
		1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.44	Vert(LL)	0.08	4-7	>908	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.36	Vert(CT)	-0.09	4-7	>780	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCDL	7.0	Code	FBC2023/TPI2014	Matrix-MP							Weight: 24 lb	FT = 20%

LUMBER

Scale = 1:27.9

TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2

WEBS	2x4 SP No.2

BRACING

TOP CHORD	Structural wood sheathing directly applied or 5-11-0 oc purlins, except end verticals.
BOT CHORD	Structural wood sheathing directly applied or 10-0-0 oc bracing.

3-4-1

- REACTIONS (Ib/size) 2=277/0-3-8, 4=188/ Mechanical Max Horiz 2=124 (LC 11) Max Uplift 2=-127 (LC 12), 4=-53 (LC 12)
- FORCES (Ib) Max. Comp./Max. Ten. All forces 250 (Ib) or less except when shown.

NOTES

- Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=4.2psf; h=18ft; B=50ft; L=30ft; eave=4ft; Cat. II; Exp C; Enclosed; MWFRS (directional) and C-C 5-9-4 to 5-9-4 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 53 lb uplift at joint 4 and 127 lb uplift at joint 2.

LOAD CASE(S) Standard

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

June 13,2024

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- 1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor1 bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- 5. Cut members to bear tightly against each other
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- 14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.