

Lumber design values are in accordance with ANSI/TPI 1 section 6.3
These truss designs rely on lumber values established by others.

RE: 1025-005 -

MiTek, Inc.

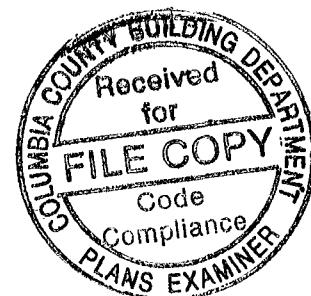
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200

Site Information:

Customer Info: Jerry Lerner Project Name: . Model: .
Lot/Block: . Subdivision: .
Address: .
City: High Springs State: FL

Name Address and License # of Structural Engineer of Record, If there is one, for the building.

Name: License #: .
Address: .
City: . State: .


General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: FBC2023/TPI2014 Design Program: MiTek 20/20 8.8
Wind Code: ASCE 7-22 Wind Speed: 130 mph
Roof Load: 40.0 psf Floor Load: N/A psf

This package includes 62 individual, Truss Design Drawings and 0 Additional Drawings.

With my seal affixed to this sheet, I hereby certify that I am the Truss Design Engineer and this index sheet conforms to 61G15-31.003, section 5 of the Florida Board of Professional Engineers Rules.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	T38942944	A01	10/23/25	23	T38942966	C02	10/23/25
2	T38942945	A02	10/23/25	24	T38942967	C03	10/23/25
3	T38942946	A03	10/23/25	25	T38942968	CJ01	10/23/25
4	T38942947	A04	10/23/25	26	T38942969	CJ02	10/23/25
5	T38942948	A05	10/23/25	27	T38942970	D01	10/23/25
6	T38942949	A06	10/23/25	28	T38942971	D02	10/23/25
7	T38942950	A07	10/23/25	29	T38942972	D03	10/23/25
8	T38942951	A08	10/23/25	30	T38942973	F01	10/23/25
9	T38942952	A09	10/23/25	31	T38942974	F02	10/23/25
10	T38942953	A10	10/23/25	32	T38942975	F03	10/23/25
11	T38942954	A11	10/23/25	33	T38942976	F04	10/23/25
12	T38942955	A12	10/23/25	34	T38942977	F05	10/23/25
13	T38942956	A13	10/23/25	35	T38942978	F06	10/23/25
14	T38942957	B01	10/23/25	36	T38942979	F07	10/23/25
15	T38942958	B02	10/23/25	37	T38942980	F10	10/23/25
16	T38942959	B03	10/23/25	38	T38942981	F11	10/23/25
17	T38942960	B04	10/23/25	39	T38942982	F12	10/23/25
18	T38942961	B05	10/23/25	40	T38942983	F13	10/23/25
19	T38942962	B06	10/23/25	41	T38942984	F14	10/23/25
20	T38942963	B07	10/23/25	42	T38942985	F15	10/23/25
21	T38942964	B08	10/23/25	43	T38942986	F16	10/23/25
22	T38942965	C01	10/23/25	44	T38942987	GIR1	10/23/25

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Mayo Truss Company, Inc..

Truss Design Engineer's Name: Lee, Julius

My license renewal date for the state of Florida is February 28, 2027.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENSCO. Any project specific information included is for MiTek's or TRENSCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENSCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Julius Lee PE No. 34869
MiTek Inc DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

October 23, 2025

RE: 1025-005 -

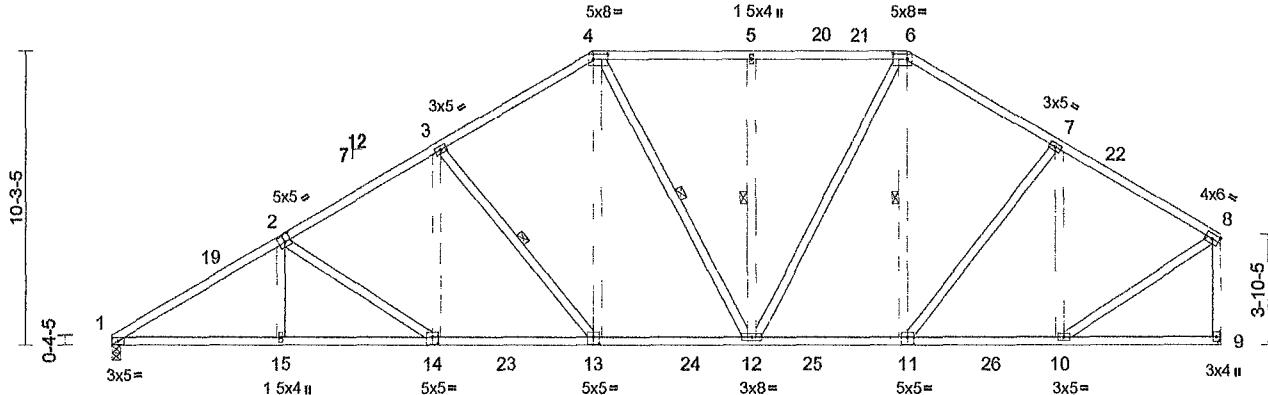
MiTek, Inc.
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200

Site Information:

Customer Info: Jerry Lerner Project Name: . Model: .
Lot/Block: . Subdivision: .
Address: ., .
City: High Springs State: FL

No.	Seal#	Truss Name	Date
45	T38942988	J01	10/23/25
46	T38942989	J01A	10/23/25
47	T38942990	J02	10/23/25
48	T38942991	J02A	10/23/25
49	T38942992	J03	10/23/25
50	T38942993	J03R	10/23/25
51	T38942994	J04	10/23/25
52	T38942995	J04A	10/23/25
53	T38942996	M01	10/23/25
54	T38942997	M02	10/23/25
55	T38942998	M03	10/23/25
56	T38942999	MG01	10/23/25
57	T38943000	PB01	10/23/25
58	T38943001	PB02	10/23/25
59	T38943002	PB03	10/23/25
60	T38943003	T01	10/23/25
61	T38943004	T01GE	10/23/25
62	T38943005	T02	10/23/25

Job	Truss	Truss Type	Qty	Ply	
1025-005	A01	Hip	2	1	Job Reference (optional)


T38942944

Mayo Truss Company Inc. Mayo, FL 32066,

Run 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 Mitek Industries, Inc. Wed Oct 22 11 42 11
ID:pN98mKWA7EUN8ZndkKnpuTVcx-RfC?PsB70Hq3NSgPqnL8w3uTxBGKw/CDol7J4zJC?f

Page. 1

5-11-11	11-5-14	17-0-0	22-6-0	28-0-0	33-4-4	39-0-0
5-11-11	5-6-2	5-6-2	5-6-0	5-6-0	5-4-4	5-7-12
			39-0-0			

5-11-11	11-4-2	17-0-0	22-6-0	28-0-0	33-4-4	39-0-0
5-11-11	5-4-6	5-7-14	5-6-0	5-6-0	5-4-4	5-7-12

Scale = 1 80.5

Plate Offsets (X, Y) [2 0-2-8,0-3-0], [4 0-6-0 0-2-4], [6 0-6-0,0-2-4], [11 0-2-8,0-3-0], [13 0-2-8,0-3-0], [14 0-2-8,0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.41	Vert(LL)	-0.15	13-14	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.25	BC	0.72	Vert(CT)	-0.28	13-14	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.49	Horz(CT)	0.10	9	n/a	n/a		
BCDL	10.0	Code	FBC2023/TPI2014	Matrix-AS							Weight: 272 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No 2
WEBS 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied except end verticals
BOT CHORD Rigid ceiling directly applied
WEBS 1 Row at midpt 3-13, 4-12, 5-12, 6-11

REACTIONS (size)

1=0-3-8 9= Mechanical
Max Horiz 1=250 (LC 11)
Max Uplift 1=86 (LC 12), 9=88 (LC 12)
Max Grav 1=1801 (LC 17), 9=1780 (LC 18)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-3=3109/243, 3-4=2111/267,
4-5=1725/264, 5-6=1725/264,
6-7=1730/248, 7-8=1555/182,
8-9=1692/164

BOT CHORD 1-15=290/2774, 12-15=292/2769,
10-12=136/1462, 9-10=51/71


WEBS 3-13=750/127, 4-13=32/825,
4-12=102/160, 5-12=361/103,
6-12=54/680, 6-11=127/124, 7-11=20/316,
7-10=599/131, 8-10=102/1483, 2-15=0/231
2-14=543/99, 3-14=0/521

NOTES

1) Unbalanced roof live loads have been considered for this design

- 2) Wind ASCE 7-22, Vult=130mph (3-second gust)
Vasd=101mph TCDL=6 0psf; BCDL=6 0psf; h=25ft;
B=45ft; L=39ft; eave=5ft, Cat. II, Exp B, Enclosed,
MWFRS (directional) and C-C Zone3 0-0 to 3-10-13,
Zone1 3-10-13 to 17-0-0, Zone2 17-0-0 to 22-6-0, Zone1
22-6-0 to 28-0-0, Zone2 28-0-0 to 33-4-4, Zone1 33-4-4
to 38-10-4 zone, cantilever left and right exposed, end
vertical left and right exposed, C-C for members and
forces & MWFRS for reactions shown, Lumber
DOL=1 60 plate grip DOL=1 60
- 3) Building Designer / Project engineer responsible for
verifying applied roof live load shown covers rain loading
requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding
- 5) This truss has been designed for a 10.0 psf bottom
chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20 0psf
on the bottom chord in all areas where a rectangle
3-06-00 tall by 2-00-00 wide will fit between the bottom
chord and any other members, with BCDL = 10 0psf
- 7) Refer to girder(s) for truss to truss connections
- 8) Provide mechanical connection (by others) of truss to
bearing plate capable of withstanding 86 lb uplift at joint
1 and 88 lb uplift at joint 9
- 9) This truss design requires that a minimum of 7/16"
structural wood sheathing be applied directly to the top
chord and 1/2" gypsum sheetrock be applied directly to
the bottom chord

LOAD CASE(S) Standard

Julius Lee PE. No. 34869
Mitek Inc DBA Mitek USA FL Cert 6634
16023 Swingley Ridge Rd Chesterfield, MO 63017
Date:

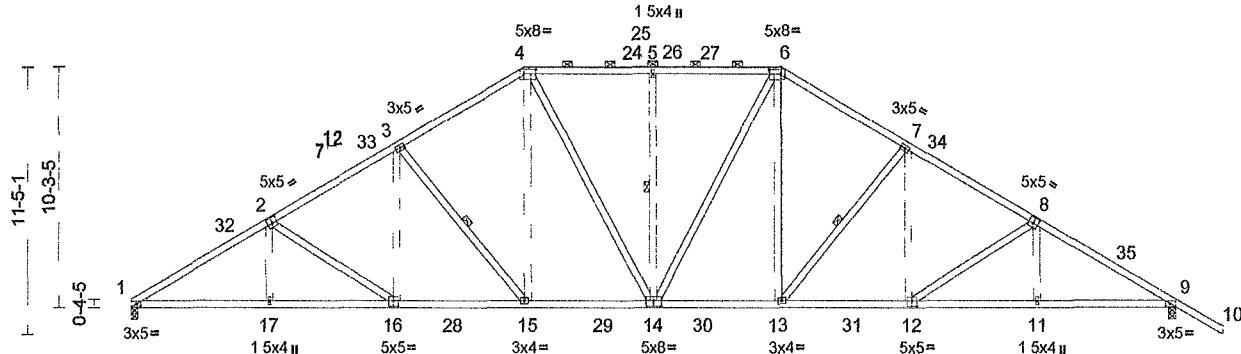
October 23, 2025

 WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII 7473 rev 1/2/2023 BEFORE USE.

Design valid for use only with Mitek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpiinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcsccomponents.com)

Mitek
16023 Swingley Ridge Rd
Chesterfield, MO 63017
314.434.1200 / Mitek-US.com

Job	Truss	Truss Type	Qty	Ply	T38942945
1025-005	A02	Piggyback Base	6	1	Job Reference (optional)


Mayo Truss Company Inc. Mayo, FL - 32066,

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MITEk Industries, Inc. Wed Oct 22 11:42:12
ID:ml81ctQMXmOJu4FnTca6yTV8m-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKwCd0l7J4zJC?f

Page: 1

5-11-11	11-5-14	17-0-0	22-6-0	28-0-0	33-6-2	39-0-5	45-0-0	47-0-0
5-11-11	5-6-2	5-6-2	5-6-0	5-6-0	5-6-2	5-6-2	5-11-11	2-0-0

45-0-0

5-11-11	11-4-2	17-1-12	22-6-0	27-10-4	33-7-14	39-0-5	45-0-0
5-11-11	5-4-6	5-9-10	5-4-4	5-4-4	5-9-10	5-4-6	5-11-11

Scale = 1 98.6

Plate Offsets (X, Y) [1 0-2-3,0-1-8], [2 0-2-8,0-3-0], [4 0-6-0,0-2-4], [6 0-6-0,0-2-4], [8 0-2-8,0-3-0], [9 0-2-3,0-1-8], [12 0-2-8,0-3-0], [14 0-4-0,0-3-0], [16 0-2-8,0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	l/dell	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.47	Vert(LL)	-0.24	13-14	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.25	BC	0.80	Vert(CT)	-0.42	13-14	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.39	Horz(CT)	0.19	9	n/a	n/a		
BCDL	10.0	Code	FBC2023/TP12014	Matrix-AS						Weight. 294 lb	FT = 20%	

LUMBER

TOP CHORD 2x4 SP No 2
BOT CHORD 2x4 SP No 2
WEBS 2x4 SP No 2

BRACING

TOP CHORD Structural wood sheathing directly applied, except 2-0-0 oc purlins (3-8-0 max.) 4-6
BOT CHORD Rigid ceiling directly applied
WEBS 1 Row at midpt 3-15, 5-14, 7-13

REACTIONS (size) 1=0-3-8, 9=0-3-8
Max Horiz 1=214 (LC 10)
Max Uplift 1=99 (LC 12), 9=165 (LC 12)
Max Grav 1=2068 (LC 17), 9=2179 (LC 18)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 4-5=2331/306, 5-6=2331/306,
1-3=3628/282, 3-4=2625/304,
6-7=2621/303, 7-9=3611/276, 9-10=0/60

BOT CHORD 1-17=124/3240, 15-17=125/3236
13-15=0/2309, 11 13=-115/3039,
9-11=-114/3043

WEBS 3-15=-755/132, 4-15=-34/823, 4-14=-50/410,
5-14=-357/106, 6-14=-40/414, 6-13=-32/817,
7 13=-748/129, 2-17=0/227, 2-16=-534/103,
3-16=0/522, 7-12=0/511, 8-12=-506/71,
8-11=0/222

NOTES

1) Unbalanced roof live loads have been considered for this design

- Wind: ASCE 7-22, Vult=130mph (3-second gust)
Vasd=101mph, TCDL=6 0psf; BCDL=6 0psf; h=25ft;
B=45ft; L=45ft; eave=6ft; Cat. II, Exp B, Enclosed
MWFRS (directional) and C-C Zone3 0-0-0 to 4-6-0,
Zone1 4-6-0 to 17-0-0, Zone2 17-0-0 to 23-4-6, Zone1
23-4-6 to 28-0-0, Zone2 28-0-0 to 34-4-6, Zone1 34-4-6
to 47-0-0 zone; cantilever left and right exposed, end
vertical left and right exposed, C-C for members and
forces & MWFRS for reactions shown, Lumber
DOL=1 60 plate grip DOL=1 60
- Building Designer / Project engineer responsible for
verifying applied roof live load shown covers rain loading
requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding
- This truss has been designed for a 10.0 psf bottom
chord live load nonconcurrent with any other live loads
- * This truss has been designed for a live load of 20 0psf
on the bottom chord in all areas where a rectangle
3-06-0 tall by 2-00-0 wide will fit between the bottom
chord and any other members, with BCDL = 10 0psf
- Provide mechanical connection (by others) of truss to
bearing plate capable of withstanding 99 lb uplift at joint
1 and 165 lb uplift at joint 9
- This truss design requires that a minimum of 7/16"
structural wood sheathing be applied directly to the top
chord and 1/2" gypsum sheetrock be applied directly to
the bottom chord
- Graphical purlin representation does not depict the size
or the orientation of the purlin along the top and/or
bottom chord

LOAD CASE(S) Standard

Julius Lee PE No. 34869
Mitek Inc DBA Mitek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date

October 23, 2025

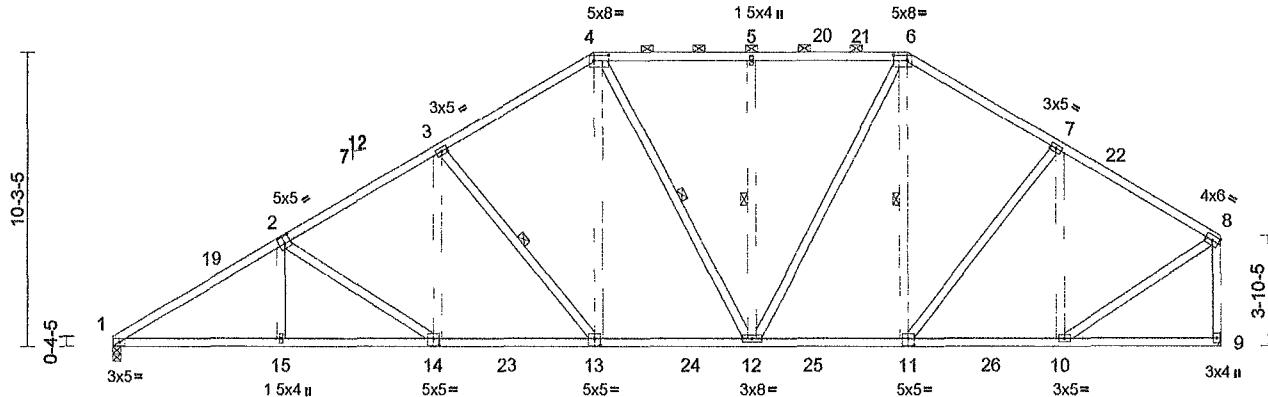
WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev 1/2/2023 BEFORE USE.

Design valid for use only with Mitek® connectors. This design is based only upon parameters shown and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems see ANSI/TP1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpiinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcsccomponents.com).

Mitek®

16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / Mitek-US.com

Job	Truss	Truss Type	Qty	Ply	
1025-005	A03	Piggyback Base	3	1	Job Reference (optional)


T38942946

Mayo Truss Company Inc., Mayo, FL 32066,

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 22 11:42:13
ID: tCxIXjvZy4B8wQBUk7Es_yTVbN-RfC?PsB70Hq3NSgPqnL8w3uTXbGKwCDoI7J4zJC?f

Page 1

5-11-11	11-5-14	17-0-0	22-6-0	28-0-0	33-4-4	39-0-0
5-11-11	5-6-2	5-6-2	5-6-0	5-6-0	5-4-4	5-7-12
			39-0-0			

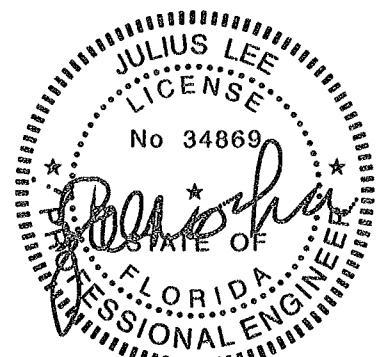
5-11-11	11-4-2	17-0-0	22-6-0	28-0-0	33-4-4	39-0-0
5-11-11	5-4-6	5-7-14	5-6-0	5-6-0	5-4-4	5-7-12

Scale = 1 80.5

Plate Offsets (X, Y) [2 0-2-8,0-3-0], [4 0-6-0,0-2-4], [6 0-6-0,0-2-4], [11 0-2-8,0-3-0], [13 0-2-8,0-3-0], [14 0-2-8,0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.41	Vert(LL)	-0.15	13-14	>999	240	MT20
TCDL	10.0	Lumber DOL	1.25	BC	0.72	Vert(CT)	-0.28	13-14	>999	180	
BCLL	0.0*	Rep Stress Incr	YES	WB	0.49	Horz(CT)	0.10	9	n/a	n/a	
BCDL	10.0	Code	FBC2023/TPI2014	Matrix-AS						Weight: 272 lb	FT = 20%

LUMBERTOP CHORD 2x4 SP No 2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.2**BRACING**TOP CHORD Structural wood sheathing directly applied, except end verticals, and 2-0-0 cc purlins (4-3-10 max.) 4-6
BOT CHORD Rigid ceiling directly applied
WEBS 1 Row at midpt 3-13, 4-12, 5-12, 6-11REACTIONS (size) 1=0-3-8 9= Mechanical
Max Horiz 1=250 (LC 11)
Max Uplift 1=.86 (LC 12), 9=.88 (LC 12)
Max Grav 1=1801 (LC 17), 9=1780 (LC 18)


FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-3=.3109/243, 3-4=.2111/267,
4-5=.1726/264, 5-6=.1726/264,
6-7=.1730/248, 7-8=.1555/182,
8-9=.1692/164BOT CHORD 1-15=.290/2774, 12-15=.292/2769,
10-12=.136/1463, 9-10=.51/71WEBS 3-13=.750/127, 4-13=.32/825,
4-12=.101/160, 5-12=.361/103,
6-12=.54/679, 6-11=.128/124, 7-11=.21/317,
7-10=.599/131 8-10=.102/1483, 2-15=.0/231,
2-14=.543/99, 3-14=.0/521**NOTES**

1) Unbalanced roof live loads have been considered for this design

- Wind ASCE 7-22, Vult=130mph (3-second gust)
Vasd=.101mph, TCDL=6 0psf; BCDL=6 0psf, h=25ft,
B=45ft; L=39ft, eave=5ft; Cat. II, Exp B, Enclosed,
MWFRS (directional) and C-C Zone3 0-0-0 to 3-10-13,
Zone1 3-10-13 to 17-0-0, Zone2 17-0-0 to 22-6-0, Zone1
22-6-0 to 28-0-0, Zone2 28-0-0 to 33-4-4, Zone1 33-4-4
to 38-10-4 zone; cantilever left and right exposed, end
vertical left and right exposed, C-C for members and
forces & MWFRS for reactions shown, Lumber
DOL=1 60 plate grip DOL=1 60
- Building Designer / Project engineer responsible for
verifying applied roof live load shown covers rain loading
requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding
- This truss has been designed for a 10.0 psf bottom
chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20 0psf
on the bottom chord in all areas where a rectangle
3-0-0 tall by 2-0-0 wide will fit between the bottom
chord and any other members, with BCDL = 10 0psf
- Refer to girder(s) for truss to truss connections
- Provide mechanical connection (by others) of truss to
bearing plate capable of withstanding 86 lb uplift at joint
1 and 88 lb uplift at joint 9
- This truss design requires that a minimum of 7/16"
structural wood sheathing be applied directly to the top
chord and 1/2" gypsum sheetrock be applied directly to
the bottom chord
- Graphical purlin representation does not depict the size
or the orientation of the purlin along the top and/or
bottom chord

LOAD CASE(S) Standard

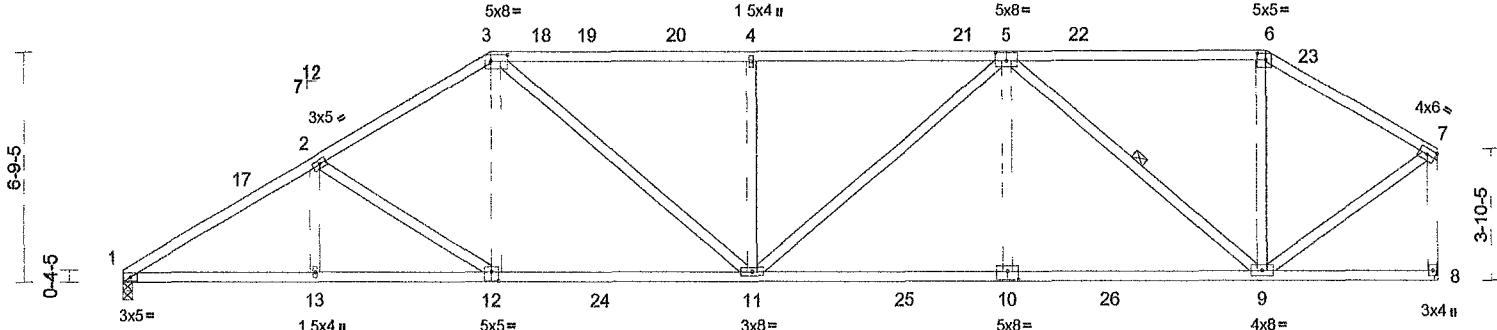
Julius Lee PE No. 34869
MiTek Inc DBA MiTek USA PE Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

October 23, 2025

 WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpiinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcsccomponents.com).

MiTek®
16023 Swingley Ridge Rd
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com


Job	Truss	Truss Type	Qty	Ply	Job Reference (optional)
1025-005	A06	Hip	1	1	T38942949

Mayo Truss Company Inc. Mayo FL 32066,

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 22 11:42:14
ID:xE4BKrh2LqTudGoMJ4mnZyTVbP-RfC?PsB70Hq3NsPqnL8w3uTXbGKwCDoi7J4zJC?f

Page: 1

5-8-13 11-0-0 18-8-9 26-3-7 34-0-0 39-0-0
5-8-13 5-3-3 7-8-9 7-6-13 7-8-9 5-0-0
39-0-0

5-8-13 11-0-0 18-8-9 26-3-7 33-10-4 39-0-0
5-8-13 5-3-3 7-8-9 7-6-13 7-6-13 5-1-12

Scale = 1 67 9

Plate Offsets (X, Y) [3 0-6-0,0-2-4], [5 0-4-0,0-3-0], [6 0-3-0,0-2-4], [10 0-4-0 0-3-0], [12 0-2-8,0-3-4]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	In	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20 0	Plate Grip DOL	1 25	TC	0 65	Vert(LL)	-0 24	11-12	>999	240	MT20
TCDL	10 0	Lumber DOL	1 25	BC	0 84	Vert(CT)	-0 44	11-12	>999	180	
BCLL	0 0*	Rep Stress Incr	YES	WB	0 70	Horz(CT)	0 13	8	n/a	n/a	
BCDL	10 0	Code	FBC2023/TPI2014	Matrlx-AS							Weight: 227 lb FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2
BOT CHORD 2x4 SP No 2
WEBS 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied except end verticals

BOT CHORD Rigid ceiling directly applied

WEBS 1 Row at midpt 5-9

REACTIONS (size) 1=0-3-8, 8= Mechanical

Max Horiz 1=181 (LC 11)

Max Uplift 1=86 (LC 12), 8=88 (LC 12)

Max Grav 1=1782 (LC 17), 8=1751 (LC 18)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1.2=-3081/226, 2-3=-2639/237, 3-4=-2721/262, 4-6=-2721/262,

6-7=-1479/168 7-8=-1688/154

BOT CHORD 1-13=-299/2701, 11 13=-299/2701, 9-11=-202/2438, 8-9=-50/63

WEBS 2-13=0/203, 2-12=-513/107, 3 12=0/558, 3-11=-39/749, 4-11=-483/139, 5-11=-30/426,

5-10=0/413, 5-9=-1581/97, 6-9=0/431,

7-9=-99/1485

NOTES

- Unbalanced roof live loads have been considered for this design
- Wind ASCE 7-22, Vult=130mph (3-second gust)
Vasd=101mph, TCDL=6 0psf; BCDL=6 0psf; h=25ft; B=45ft, L=39ft, eave=5ft; Cat. II Exp B, Enclosed, MWFRS (directional) and C-C Zone3 0-0-0 to 3-10-13, Zone1 3-10-13 to 11-0-0, Zone2 11-0-0 to 16-6-3, Zone1 16-6-3 to 34-0-0, Zone3 34-0-0 to 38-10-4 zone; cantilever left and right exposed , end vertical left and right exposed,C-C for members and forces & MWFRS for reactions shown, Lumber DOL=1 60 plate grip
DOL=1 60

- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding
- This truss has been designed for a 10 0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20 0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10 0psf
- Refer to girder(s) for truss to truss connections
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 86 lb uplift at joint 1 and 88 lb uplift at joint 8
- This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord

LOAD CASE(S)

Standard

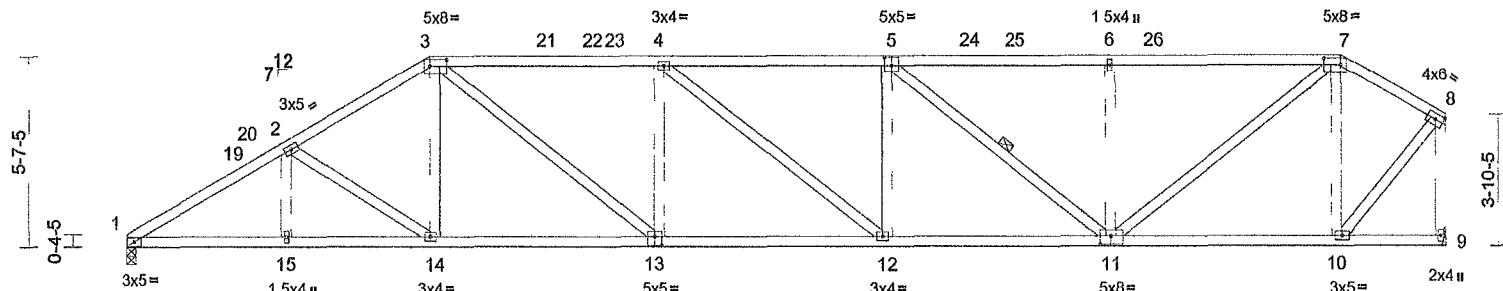
Julius Lee PE No. 34869
MiTek Inc DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd, Chesterfield, MO 63017
Date

October 23, 2025

 WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems see AN81/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.lpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com


Job	Truss	Truss Type	Qty	Ply	
1025-005	A07	Hip	1	1	T38942950

Mayo Truss Company Inc. Mayo, FL - 32066,

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 Mitek Industries, Inc. Wed Oct 22 11 42:14
ID:xE4BKhe2LqTudGoMJ4mnZyTVbP-Rfc?PsB70Hq3NSgPqnL8w3uITXbGKWrCdolJ74zJC?!

Page: 1

4-8-13	9-0-0	15-9-14	22-7-12	29-2-2	36-0-0	39-0-0
4-8-13	4-3-3	6-9-14	6-9-14	6-6-6	6-9-14	3-0-0
			39-0-0			

4-8-13	9-1-12	15-8-2	22-6-0	29-2-2	35-10-4	39-0-0
4-8-13	4-4-15	6-6-6	6-9-14	6-8-2	6-8-2	3-1-12

Scale = 1 67 9

Plate Offsets (X, Y). [3 0-6-0,0-2-4], [5 0-2-8,0-3-0], [7 0-6-0,0-2-4], [11 0-3-12,0-3-0], [13 0-2-8,0-3-4]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.52	Vert(LL)	-0.19	12-13	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.25	BC	0.69	Vert(CT)	-0.41	12-13	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.44	Horz(CT)	0.13	9	n/a	n/a		
BCDL	10.0	Code	FBC2023/TPI2014	Matrix-AS							Weight: 228 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No 2

BRACING

TOP CHORD Structural wood sheathing directly applied, except end verticals
BOT CHORD Rigid ceiling directly applied
WEBS 1 Row at midpt 5-11

REACTIONS (size)

1=0-3-8, 9= Mechanical
Max Horiz 1=158 (LC 11)
Max Uplift 1=-86 (LC 12), 9=-88 (LC 12)

Max Grav 1=1554 (LC 1), 9=1554 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-2757/224, 2-3=-2435/231, 3-4=-2787/266, 4-6=-2812/255,

6-7=-2182/218, 7-8=-992/139, 8-9=-1540/131

BOT CHORD 1-15=-310/2329, 14-15=-310/2329, 12-14=-259/2800, 10-12=-246/2809,

9-10=-58/65

WEBS 2-14=-343/92, 3-14=0/361, 7-10=-890/159,

8-10=-110/1298, 4-13=-492/118,

3-13=-56/1006 4-12=-23/81, 5-12=0/254,

5-11=-814/50, 6-11=-426/126,

7-11=-121/1750, 2-15=0/160

2) Wind ASCE 7-22; Vult=130mph (3-second gust)
Vasd=101mph, TCDL=6 0psf; BCDL=6 0psf; h=25ft;
B=45ft; L=39ft; eave=5ft; Cat. II, Exp B, Enclosed,
MWFRS (directional) and C-C Zone3 0-0-0 to 3-10-13,
Zone1 10-13 to 9-0-0, Zone2 9-0-0 to 14-6-3, Zone1
14-6-3 to 36-0-0, Zone3 36-0-0 to 38-10-4 zone,
cantilever left and right exposed , end vertical left and
right exposed,C-C for members and forces & MWFRS
for reactions shown, Lumber DOL=1 60 plate grip
DOL=1 60

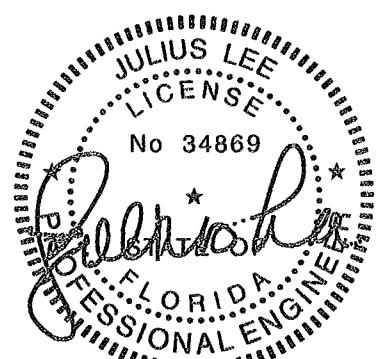
3) Building Designer / Project engineer responsible for
verifying applied roof live load shown covers rain loading
requirements specific to the use of this truss component.

4) Provide adequate drainage to prevent water ponding

5) This truss has been designed for a 10 0 psf bottom
chord live load nonconcurrent with any other live loads

6) * This truss has been designed for a live load of 20 0psf
on the bottom chord in all areas where a rectangle
3-06-00 tall by 2-00-00 wide will fit between the bottom
chord and any other members

7) Refer to girder(s) for truss to truss connections


8) Provide mechanical connection (by others) of truss to
bearing plate capable of withstanding 86 lb uplift at joint
1 and 88 lb uplift at joint 9

9) This truss design requires that a minimum of 7/16"
structural wood sheathing be applied directly to the top
chord and 1/2" gypsum sheetrock be applied directly to
the bottom chord

LOAD CASE(S) Standard

NOTES

1) Unbalanced roof live loads have been considered for
this design

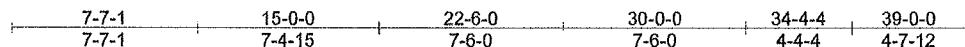
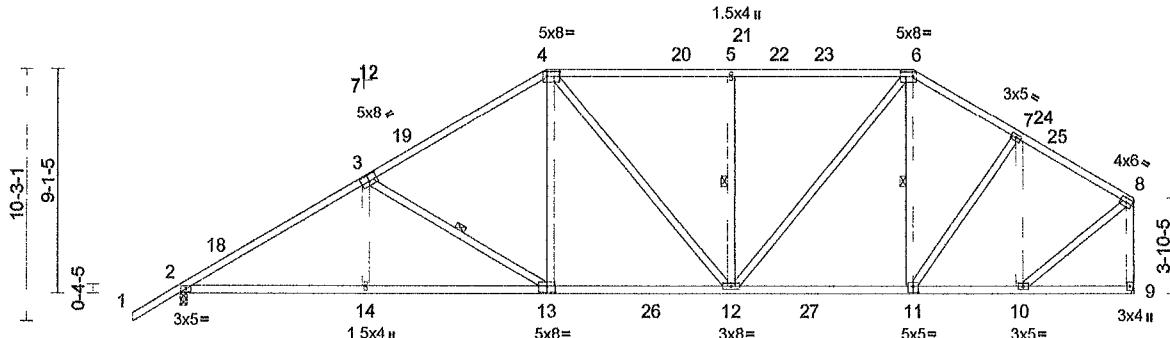
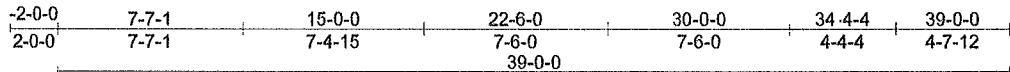
Julius Lee PE. No. 34869
Mitek Inc DBA Mitek USA FL Cert 6634
16023 Swingley Ridge Rd Chesterfield, MO 63017
Date

October 23, 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev 1/2/2023 BEFORE USE.

Design valid for use only with Mitek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpiinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcsccomponents.com)

Mitek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / Mitek-US.com

Job	Truss	Truss Type	Qty	Ply	Job Reference (optional)	
1025-005	A09	Hip	1	1		T38942952

Mayo Truss Company Inc. Mayo FL 32066,

Run: 8.83 S Sep 3 2025 Print: 8 830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 22 11:42:16
ID:pN98mKWA7EUN8ZnzdKKnpuvTVcx-RfC?PsB70Hq3NsPqnL8w3uITxbGKwvCDol7J4zJC?f

Page: 1

Scale = 1 93.7

Plate Offsets (X, Y) [3.0-4-0,0-3-0], [4.0-6-0,0-2-4], [6 0-6-0,0-2-4], [11 0-2-8,0-3-0], [13 0-4-0,0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20 0	Plate Grip DOL	1 25	TC	0 56	Vert(LL)	-0 19	12-13	>999	240	MT20
TCDL	10 0	Lumber DOL	1 25	BC	0 81	Vert(CT)	-0 33	12-13	>999	180	
BCLL	0 0*	Rep Stress Incr	YES	WB	0 52	Horz(CT)	0 11	9	n/a	n/a	
BCDL	10 0	Code	FBC2023/TPI2014	Matrix-AS							Weight: 248 lb FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2
BOT CHORD 2x4 SP No 2
WEBS 2x4 SP No 2

BRACING

TOP CHORD Structural wood sheathing directly applied, except end verticals

BOT CHORD Rigid ceiling directly applied

WEBS 1 Row at midpt 3-13, 5-12, 6-11

REACTIONS (size) 2=0-3-8, 9= Mechanical

Max Horiz 2=245 (LC 11)

Max Uplift 2=150 (LC 12), 9=86 (LC 12)

Max Grav 2=1890 (LC 17), 9=1751 (LC 18)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/60, 2-4=-2978/234, 4-5=-1949/251, 5-6=1949/251, 6-7=-1688/225,

7-8=-1392/169, 8-9=-1671/158

BOT CHORD 2-14=-277/2615, 12-14=-278/2611, 10-12=-130/1426, 9-10=-49/66

WEBS 3-14=0/310, 3-13=-754/131, 4-13=0/699, 4-12=-48/265, 5-12=-509/139, 6-12=-64/895, 6-11=-241/91 7 11=-21/510, 8-10=-105/1421, 7-10=-771/121

NOTES

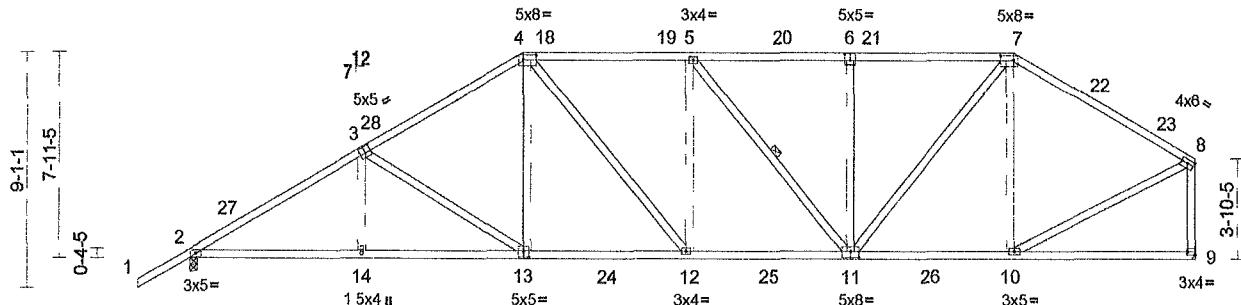
- 1) Unbalanced roof live loads have been considered for this design
- 2) Wind ASCE 7-22, Vult=130mph (3-second gust)
Vasd=101mph, TCDL=6 0psf; BCDL=6 0psf; h=25ft; B=45ft; L=39ft; eave=5ft; Cat. II, Exp B, Enclosed, MWFRS (directional) and C-C Zone3 -2-0-0 to 1-10-13, Zone1 1-10-13 to 15-0-0, Zone2 15-0-0 to 20-6-3, Zone1 20-6-3 to 30-0-0, Zone2 30-0-0 to 35-6-3, Zone1 35-6-3 to 38-10-4 zone, cantilever left and right exposed , end vertical left and right exposed,C-C for members and forces & MWFRS for reactions shown, Lumber DOL=1 60 plate grip DOL=1 60

- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding
- 5) This truss has been designed for a 10 0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20 0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10 0psf
- 7) Refer to girder(s) for truss to truss connections
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 150 lb uplift at joint 2 and 86 lb uplift at joint 9
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord

LOAD CASE(S)

Standard

Julius Lee PE No. 34869
MiTek Inc DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date


October 23, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpiinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com

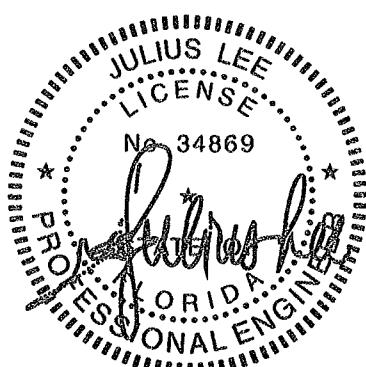
Job	Truss	Truss Type	Qty	Ply	Job Reference (optional)	
1025-005	A10	Hip	1	1		T38942953
Mayo Truss Company Inc. Mayo, FL - 32066	Run 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 22 11:42:16	Page 1	ID:HaJWzgWouXcEmjM9BR0L6yTVcw-RfC?PsB70Hq3NSgPqnL8w3uTXbGKW/CDel7J4zC?f			
-2-0-0 2-0-0	6-8-13 6-8-13	13-0-0 6-3-3	19-4-9 6-4-9	25-7-7 6-2-13	32-0-0 6-4-9	39-0-0 7-0-0
			39-0-0			

6-8-13 13-0-0 19-4-9 26-7-7 31-10-4 39-0-0
6-8-13 6-3-3 6-4-9 6-2-13 6-2-13 7-1-12

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20 0	Plate Grip DOL	1.25	TC	0.55	Vert(LL)	-0.18	12-13	>999	240	MT20
TCDL	10 0	Lumber DOL	1.25	BC	0.72	Vert(CT)	-0.32	12-13	>999	180	
BCLL	0 0*	Rep Stress Incr	YES	WB	0.62	Horz(CT)	0.11	9	n/a	n/a	
BCDL	10 0	Code	FBC2023/TPI2014	Matrix-AS						Weight: 243 lb	FT = 20%

LUMBER
TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.2

BRACING	None
TOP CHORD	Structural wood sheathing directly applied, except end verticals
BOT CHORD	Rigid ceiling directly applied
WEBS	1 Row at midpt 5-11
REACTIONS	(size) 2=0-3-8, 9=Mechanical Max Horiz 2=222 (LC 11) Max Uplift 2=-150 (LC 12), 9=-86 (LC 12) Max Grav 2=1896 (LC 17), 9=1754 (LC 18)


FORCES	(lb) - Maximum Compression/Maximum Tension
TOP CHORD	4-5=-2300/248, 5-7=-2041/234, 7-8=-1665/182, 8-9=-1642/171, 1-2=0/60, 2-4=-3027/227
BOT CHORD	2-14=-282/2646, 12-14=-283/2642, 10-12=-190/2348, 9-10=-56/88
WEBS	3-14=0/265, 3-13=-632/114, 4-13=0/601, 7 10=-450/129, 8-10=-85/1476, 5-12=-239/107, 4-12=-38/500, 5-11=-409/235 6-11=-397/110, 7-11=-74/1135

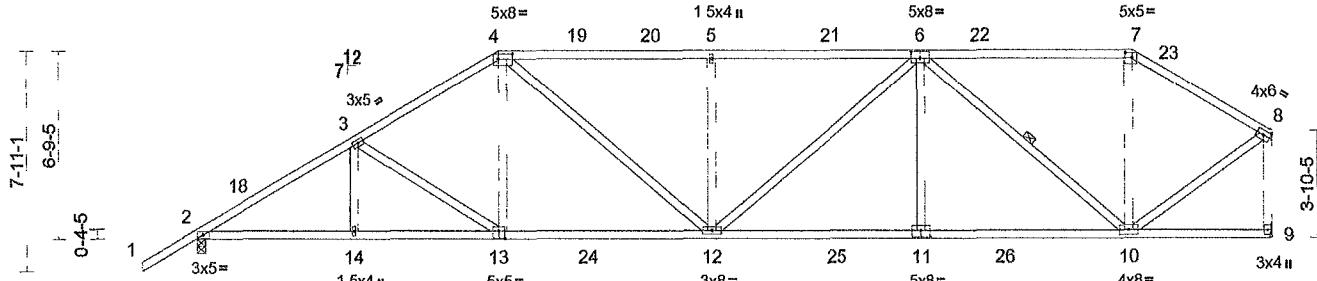
NOTES

- 1) Unbalanced roof live loads have been considered for this design
- 2) Wind ASCE 7-22, $V_{ult}=130\text{ mph}$ (3-second gust)
 $V_{asd}=101\text{ mph}$, TCDL=6 0psf, BCDL=6 0psf; $h=25\text{ ft}$;
 $B=45\text{ ft}$; $L=39\text{ ft}$ eave=5ft, Cat. II, Exp B, Enclosed,
MWFRS (directional) and C-C Zone3 -2-0-0 to 1-10-13,
Zone1 1-10-13 to 13-0-0, Zone2 13-0-0 to 18-6-3, Zone1
18-6-3 to 32-0-0, Zone2 32-0-0 to 37-6-3, Zone1 37-6-3
to 38-10-4 zone, cantilever left and right exposed , end
vertical left and right exposed,C-C for members and
forces & MWFRS for reactions shown, Lumber
 $DOL=1.60$ plate grip $DOL=1.60$

- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding
- 5) This truss has been designed for a 10 0 psf bottom chord live load nonconcurrent with any other live loads
- 6) * This truss has been designed for a live load of 20 0 psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10 0 psf
- 7) Refer to girder(s) for truss to truss connections
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 150 lb uplift at joint 2 and 86 lb uplift at joint 9
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord

LOAD CASE(S) Standard

Julius Lee PI No. 34869
MiTek Inc DBA MiTek USA PI Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date


October 23, 2025

 WARNING Verify design parameters and **READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.**

WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MTR REFERENCE PAGE MN-7473 rev 1/2/2023 BEFORE USE. Design valid for use only with MITEK® connectors. This design is based only upon parameters shown and is for an individual building component, not a truss system. Before use the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and fruss systems, see ANSI/TPMI-21 Quality Criteria and DSE-22 available from Truss Plate Institute (www.tpinst.org) and ECSI Building Component Safety Information available from the Structural Building Component Association (www.sbccomponents.com).

Mitek
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.424.4200 / MITEK.COM

Job	Truss	Truss Type	Qty	Ply	Job Reference (optional)	
1025-005	A11	Hip	1	1		T38942954
Mayo Truss Company Inc. Mayo, FL - 32066,			Run 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries Inc. Wed Oct 22 11 42 16			Page 1
			ID: HajWzgWouXcEmjM9BRr0L6yTVcw-Rfc?PsB70Hq3NSgPqnL8w3uITxbGKw/CDol7J4zJC?f			
-2-0-0	5-8-13	11-0-0	18-8-9	26-3-7	34-0-0	39-0-0
2-0-0	5-8-13	5-3-3	7-8-9	7-6-13	7-8-9	5-0-0
			39-0-0			

5-8-13 11-0-0 18-8-9 26-3-7 33-10-4 39-0-0
 5-8-13 5-3-3 7-8-9 7-6-13 7-6-13 5-1-12

Scale = 1 83

Plate Offsets (X, Y) [4 0-6-0,0-2-4] [6 0-4-0,0-3-0], [7 0-3-0,0-2-4], [11 0-4-0,0-3-0], [13 0-2-8,0-3-4]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP	
TCLL (roof)	20 0	Plate Grip DOL	1 25	TC	0 64	Vert(LL)	-0 24	12-13	>999	240	MT20	244/190
TCDL	10 0	Lumber DOL	1 25	BC	0 84	Vert(CT)	-0 43	12-13	>999	180		
BCLL	0 0 *	Rep Stress Incr	YES	WB	0 70	Horz(CT)	0 13	9	n/a	n/a		
BCDL	10 0	Code	FBC2023/TP12014	Matrix-AS							Weight: 230 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2
 BOT CHORD 2x4 SP No.2
 WEBS 2x4 SP No.2

BRACING
 TOP CHORD Structural wood sheathing directly applied, except end verticals
 BOT CHORD Rigid ceiling directly applied
 WEBS 1 Row at midpt 6-10
REACTIONS (size) 2=0-3-8, 9= Mechanical
 Max Horiz 2=198 (LC 11)
 Max Uplift 2=-150 (LC 12), 9=-86 (LC 12)
 Max Grav 2=1893 (LC 17), 9=1749 (LC 18)
FORCES (lb) - Maximum Compression/Maximum Tension
TOP CHORD 1-2=0/60, 2-3=-3059/188, 3-4=-2625/216, 4-5=-2712/249, 5-7=-2712/249, 7-8=-1477/164, 8-9=-1686/154
BOT CHORD 2-14=-288/2665, 12-14=-298/2665, 10-12=-200/2432, 9-10=-50/63
WEBS 3-14=0/198, 3-13=-483/97, 4-13=0/546, 4-12=-43/750, 5-12=-483/138, 6-12=-25/421, 6-11=0/413, 6-10=-1577/95, 7-10=0/430, 8-10=-98/1482

NOTES

- 1) Unbalanced roof live loads have been considered for this design
- 2) Wind ASCE 7-22, Vult=130mph (3-second gust)
 Vasd=101mph, TCDL=6 0psf; BCDL=6 0psf; h=25ft; B=45ft; L=39ft; eave=5ft, Cat. II Exp B, Enclosed, MWFRS (directional) and C-C Zone3 2-0-0 to 1-10-13, Zone1 1-10-13 to 11-0-0, Zone2 11-0-0 to 16-6-3, Zone1 16-6-3 to 34-0-0, Zone3 34-0-0 to 38-10-4 zone, cantilever left and right exposed, end vertical left and right exposed, C-C for members and forces & MWFRS for reactions shown Lumber DOL=1 60 plate grip DOL=1 60

- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding
- 5) This truss has been designed for a 10 0 psf bottom chord live load nonconcurrent with any other live loads
- 6) * This truss has been designed for a live load of 20 0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10 0psf
- 7) Refer to girder(s) for truss to truss connections
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 150 lb uplift at joint 2 and 86 lb uplift at joint 9
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord

LOAD CASE(S)

Standard

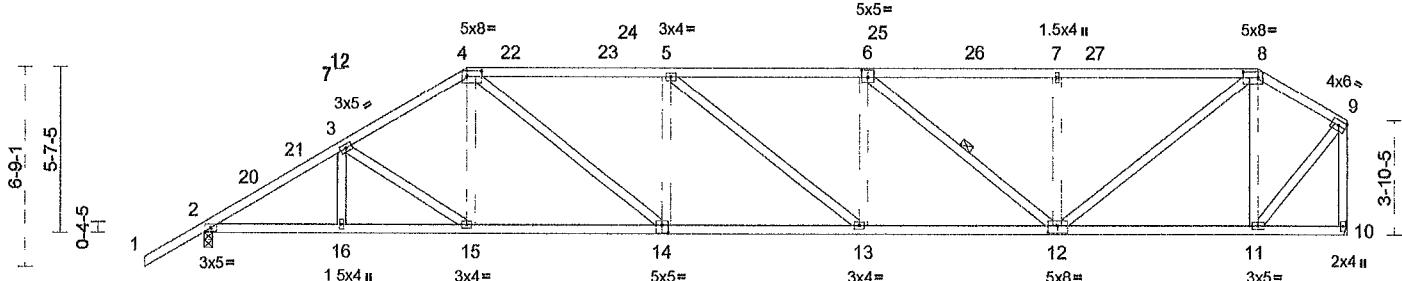
Julius Lee PE No. 34869
 MiTek Inc DBA MiTek USA ET Cert 6634
 16023 Swingley Ridge Rd. Chesterfield, MO 63017
 Date

October 23,2025

WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MI-7473 rev 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP1 Quality Criteria and DS-B-22 available from Truss Plate Institute (www.tpiinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
 16023 Swingley Ridge Rd.
 Chesterfield, MO 63017
 314.434.1200 / MiTek-US.com


Job	Truss	Truss Type	Qty	Ply	
1025-005	A12	Hip	1	1	T38942955

Mayo Truss Company Inc. Mayo FL - 32066,

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries Inc. Wed Oct 22 11:42:17
ID: HaJWzgWouXcEmjM9BR0L6yTVcw-RfC?PsB70Hq3NSgPqnL8w3uITxbGKwRCDol7J4zJC?f

Page: 1

-2-0-0	4-8-13	9-0-0	15-9-14	22-7-12	29-2-2	36-0-0	39-0-0
2-0-0	4-8-13	4-3-3	6-9-14	6-9-14	6-6-6	6-9-14	3-0-0
39-0-0							

4-8-13	9-1-12	15-8-2	22-6-0	29-2-2	35-10-4	39-0-0
4-8-13	4-4-15	6-6-6	6-9-14	6-8-2	6-8-2	3-1-12

Scale = 1 78.1

Plate Offsets (X, Y) [4 0-6-0,0-2-4], [6 0-2-8,0-3-0] [8 0-6-0,0-2-4], [12 0-3-12 0-3-0], [14 0-2-8,0-3-4]

Loading	(psf)	Spacing	2-0-0	CSI	DEFI	in	(loc)	I/delf	L/d	PLATES	GRIP
TCLL (roof)	20 0	Plate Grip DOL	1 25	TC	0 51	Vert(LL)	-0 19	13-14	>999	240	MT20
TCDL	10 0	Lumber DOL	1 25	BC	0 69	Vert(CT)	-0 41	13-14	>999	180	
BCLL	0 0*	Rep Stress Incr	YES	WB	0.44	Horz(CT)	0 12	10	n/a	n/a	
BCDL	10 0	Code	FBC2023/TPI2014	Matrix-AS							Weight: 231 lb FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2
BOT CHORD 2x4 SP No 2
WEBS 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied, except end verticals
BOT CHORD Rigid ceiling directly applied
WEBS 1 Row at midpt 6-12

REACTIONS (size) 2=0-3-8, 10= Mechanical
Max Horiz 2=175 (LC 11)
Max Uplift 2=-150 (LC 12), 10=-86 (LC 12)
Max Grav 2=1677 (LC 1), 10=1551 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/60, 2-3=-2709/181, 3-4=-2415/205, 4-5=-2774/249, 5-7=-2803/242, 7-8=-2176/211, 8-9=-990/137, 9-10=-1537/130

BOT CHORD 2-16=-296/2281, 15-16=-296/2281, 13-15=-255/2786, 11-13=-243/2799, 10-11=-58/65

WEBS 3-15=-308/81, 4-15=0/356, 8-11=-888/159, 9-11=-109/1295, 5-14=-493/122, 4-14=-61/1008, 5-13=-24/83, 6-13=0/253, 6-12=-810/49, 7-12=-426/126, 8-12=-120/1745, 3-16=0/153

NOTES

1) Unbalanced roof live loads have been considered for this design

- Wind ASCE 7-22, Vult=130mph (3-second gust)
Vasd=101mph, TCDL=6 0psf; BCDL=6 0psf; h=25ft; B=45ft; L=39ft; eave=5ft, Cat. II Exp B, Enclosed, MWFRS (directional) and C-C Zone3 -2-0-0 to 1-10-13, Zone1 1-10-13 to 9-0-0, Zone2 9-0-0 to 14-6-3, Zone1 14-6-3 to 36-0-0, Zone3 36-0-0 to 38-10-4 zone, cantilever left and right exposed, end vertical left and right exposed, C-C for members and forces & MWFRS for reactions shown, Lumber DOL=1 60 plate grip DOL=1 60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding
- This truss has been designed for a 10 0 psf bottom chord live load nonconcurrent with any other live loads
- * This truss has been designed for a live load of 20 0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 150 lb uplift at joint 2 and 86 lb uplift at joint 10
- This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord

LOAD CASE(S) Standard

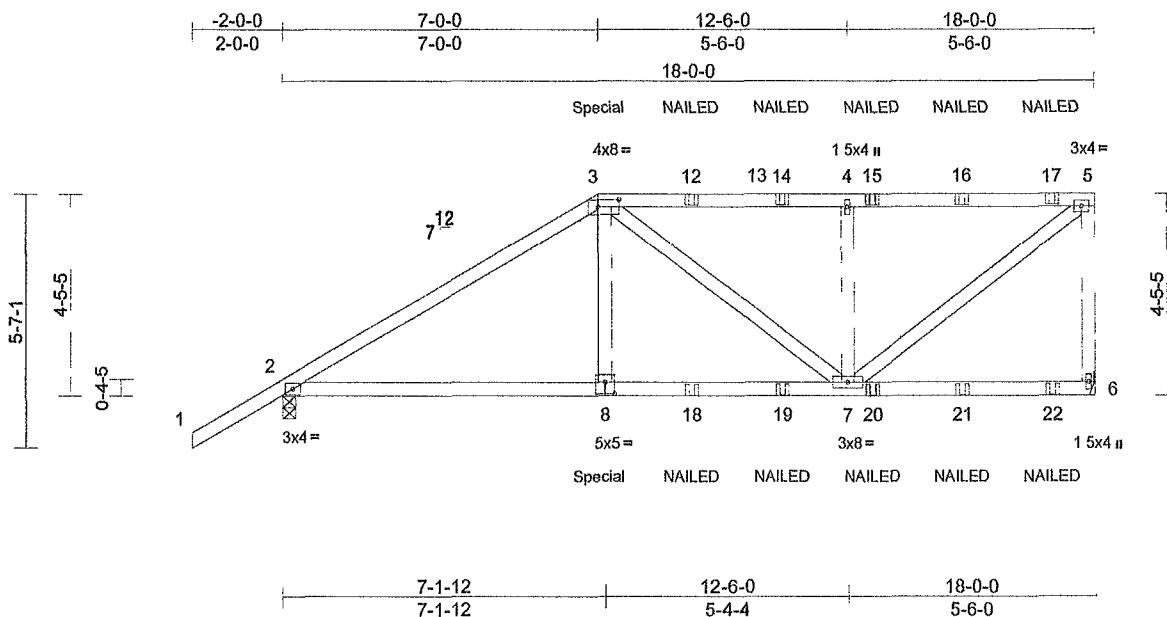
Julius Lee PE No. 34869
MiTek Inc DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date

October 23, 2025

 WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpiinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com



Job	Truss	Truss Type	Qty	Ply	
1025-005	B01	Half Hip Girder	1	2	Job Reference (optional)

Mayo Truss Company Inc. Mayo, FL 32066,

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MITek Industries, Inc. Wed Oct 22 11:42:18
ID: Hp9BWnZAQWq6fqVCuqlsq7lyTUzz-RfC?PsB70Hq3NSgPqnL8w3u1TxBgKWrCD0l7J4zJC?r

Page. 1

Scale = 1 50 7

Plate Offsets (X, Y). [3 0-5-8,0-2-0], [8 0-2-8,0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	In	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20 0	Plate Grip DOL	1 25	TC	0 43	Vert(LL)	-0 03	8-11	>999	240	MT20
TCDL	10 0	Lumber DOL	1 25	BC	0 39	Vert(CT)	-0 08	8-11	>999	180	
BCLL	0 0*	Rep Stress Incr	NO	WB	0 21	Horz(CT)	0 02	6	n/a	n/a	
BCDL	10 0	Code	FBC2023/TPI2014	Matrix-MS						Weight: 190 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2
BOT CHORD 2x4 SP No 2
WERS 2x4 SP No 2

WEBS

BRACING
TOP CHORD Structural wood sheathing directly applied or
6-0-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc
REACTIONS (size) 2=0-3-8, 6= Mechanical

Max Horiz 2=167 (LC 25)
 Max Uplift 2=-105 (LC 8) 6=-139 (LC 5)
 Max Grav 2=1368 (LC 1), 6=1563 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/60, 2-3=-2027/71, 3-4=-1515/125
4-5=-1515/125, 5-6=-1434/199

BOT CHORD 2-7=-86/1707, 6-7=-4/38
WEBS 3-8=0/641, 3-7=-245/0, 4-7=-761/287,
5-7=-153/1232

5-7--153/1869

1) 2-ply truss to be connected together with 10d (0 131"x3") nails as follows.
Top chords connected as follows 2x4 - 1 row at 0-9

OC.
Bottom chords connected as follows 2x4 - 1 row at

0-9-0 oc.
Web connected as follows. 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Unbalanced roof live loads have been considered for this design

- 4) Wind ASCE 7-22, Vult=130mph (3-second gust)
 $V_{asd}=101\text{ mph}$, $TCDL=6\text{ opsf}$; $BCDL=6\text{ opsf}$; $h=25\text{ ft}$;
 $B=45\text{ ft}$; $L=24\text{ ft}$; $eave=4\text{ ft}$; Cat. II, Exp B, Enclosed,
MWFRS (directional), cantilever left and right exposed ,
end vertical left exposed, Lumber DOL=1 60 plate grip
DOL=1 60
- 5) Building Designer / Project engineer responsible for
verifying applied roof live load shown covers rain loading
requirements specific to the use of this truss component.
- 6) Provide adequate drainage to prevent water ponding
- 7) This truss has been designed for a 10 0 psf bottom
chord live load nonconcurrent with any other live loads
- 8) * This truss has been designed for a live load of 20 0psf
on the bottom chord in all areas where a rectangle
3-06-00 tall by 2-00-00 wide will fit between the bottom
chord and any other members
- 9) Refer to girder(s) for truss to truss connections
- 10) Provide mechanical connection (by others) of truss to
bearing plate capable of withstanding 139 lb uplift at joint
6 and 105 lb uplift at joint 2
- 11) "NAILED" indicates 3-10d (0 148"x3") or 3-12d
(0 148"x3 25") toe-nails per NDS guidelines
- 12) Hanger(s) or other connection device(s) shall be
provided sufficient to support concentrated load(s) 217
lb down and 109 lb up at 7-0-0 on top chord, and 344 lb
down at 7-0-0 on bottom chord. The design/selection of
such connection device(s) is the responsibility of others

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced) Lumber Increase=1 25,
Plate Increase=1 25
Uniform Loads (lb/ft)
Vert: 1-3=-60, 3-5=-60, 6-9=-20
- Concentrated Loads (lb)
Vert: 3=-170 (F), 8=-303 (F), 12=-122 (F), 14=-122
(F), 15=-122 (F), 16=-122 (F), 17=-128 (F), 18=-59
(F), 19=-59 (F), 20=-59 (F), 21=-59 (F), 22=-61 (F)

Julius Lee PE No. 34869
MiTek Inc DBA MiTek USA FI Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date

October 23, 2025

WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII 7473 rev 1/2/2023 BEFORE USE
Design valid for use only with MITEK® connectors. This design is based only upon parameters shown and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery erection and bracing of trusses and truss systems, see **ANSI/TP1 Quality Criteria** and **DSB-22** available from Truss Plate and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply		
1025-005	B02	Half Hip	1	1		T38942958

Mayo Truss Company Inc. Mayo, FL - 32066,

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 Mitek Industries, Inc. Wed Oct 22 11:42:18
ID:WYCbPsgpObENPIOcnFVs?CyTUzQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDol7J4zJC?f

Page. 1

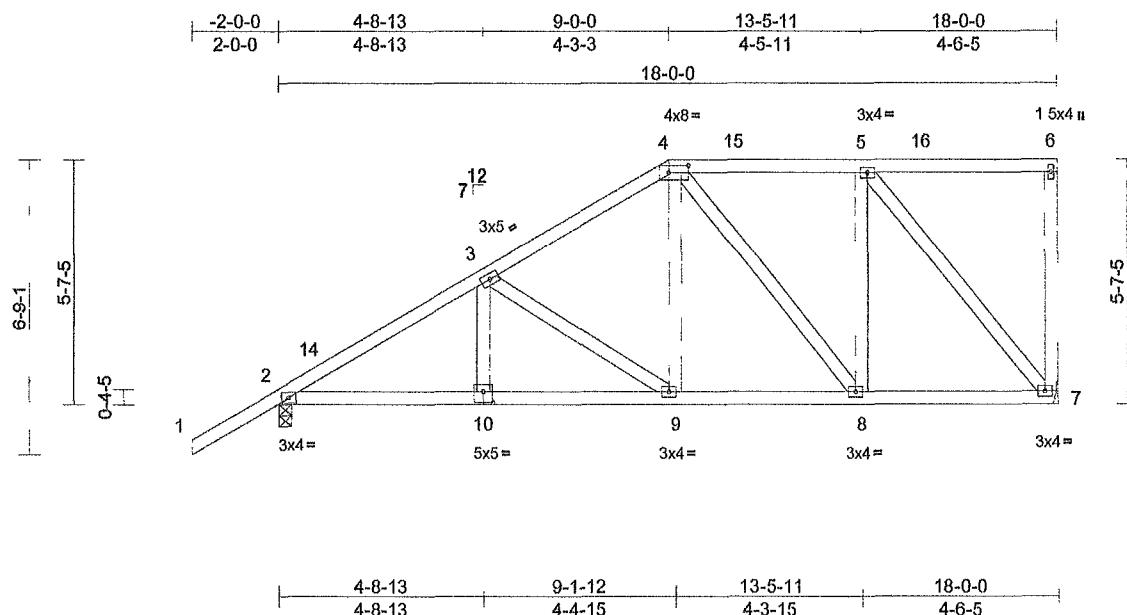


Plate Offsets (X, Y) [4 0-5-8,0-2-0], [10 0-2-8,0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.25	Vert(LL)	-0.02	9-10	>999	240	MT20
TCDL	10.0	Lumber DOL	1.25	BC	0.26	Vert(CT)	-0.05	9-10	>999	180	
BCLL	0.0*	Rep Stress Incr	YES	WB	0.58	Horz(CT)	0.02	7	n/a	n/a	
BCDL	10.0	Code	FBC2023/TPI2014	Matrix-AS							Weight 112 lb FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2
BOT CHORD 2x4 SP No 2
WEBS 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied, except end verticals.

BOT CHORD Rigid ceiling directly applied

REACTIONS (size) 2=0-3-8, 7= Mechanical

Max Horiz 2=200 (LC 12)

Max Uplift 2=84 (LC 12), 7=94 (LC 9)

Max Grav 2=841 (LC 1), 7=707 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/60, 2-3=-1098/47, 3-4=-764/67, 4-5=-467/59, 5-6=-10/1, 6-7=-112/46

BOT CHORD 2-9=-149/895, 8-9=-86/608, 7-8=-59/467

WEBS 3-9=-357/75, 4-9=0/320, 5-7=-718/91,

3-10=0/185, 5-8=0/320, 4-8=-224/50

NOTES

1) Unbalanced roof live loads have been considered for this design

2) Wind ASCE 7-22, Vult=130mph (3-second gust)
Vasd=101mph TCDL=6 0psf; BCDL=6 0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II Exp B, Enclosed, MWFRS (directional) and C-C Zone3 2-0-0 to 1-0-0, Zone1 1-0-0 to 9-0-0, Zone2 9-0-0 to 13-5-11, Zone1 13-5-11 to 17-10-4 zone, cantilever left and right exposed, end vertical left exposed, C-C for members and forces & MWFRS for reactions shown Lumber DOL=1.60 plate grip DOL=1.60

3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

4) Provide adequate drainage to prevent water ponding

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0 psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

7) Refer to girder(s) for truss to truss connections

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 94 lb uplift at joint 7 and 84 lb uplift at joint 2.

9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord

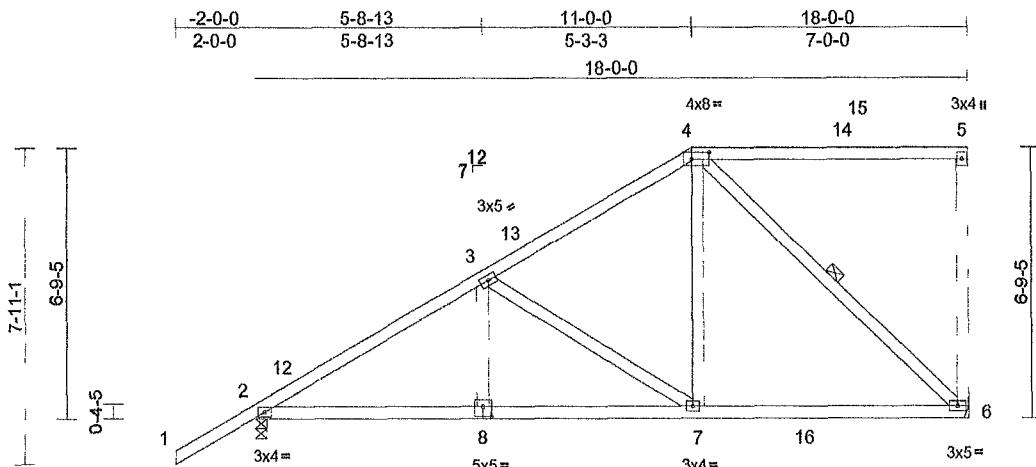
LOAD CASE(S) Standard

Julius Lee PE No. 34869
Mitek Inc DBA Mitek USA FL Cert 6634
16023 Swingley Ridge Rd Chesterfield, MO 63017
Date:

October 23, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII 7473 rev 1/2/2023 BEFORE USE.

Design valid for use only with Mitek® connectors. This design is based only upon parameters shown and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpiinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcsccomponents.com)


Mitek®
16023 Swingley Ridge Rd
Chesterfield, MO 63017
314.434.1200 / Mitek-US.com

Job	Truss	Truss Type	Qty	Ply		
1025-005	B03	Half Hip	1	1	Job Reference (optional)	T38942959

Mayo Truss Company Inc. Mayo FL 32066,

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 22 11:42:19
ID:tV7USZjyD7sgVfHaZo41fYfTUzL-RfC?PsB70Hq3NSgPqnL8w3ulTxbCKWrCDol7J4zJC?f

Page: 1

5-8-13 11-1-12 18-0-0
5-8-13 5-4-15 6-10-4

Scale = 1 57 8

Plate Offsets (X, Y) [4 0-5-8,0-2-0], [8 0-2-8 0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	In	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1 25	TC	0.49	Vert(LL)	-0 08	6-7	>999	240	MT20
TCDL	10 0	Lumber DOL	1 25	BC	0.47	Vert(CT)	-0 14	6-7	>999	180	
BCLL	0 0 *	Rep Stress Incr	YES	WB	0.36	Horz(CT)	0 02	6	n/a	n/a	
BCDL	10 0	Code	FBC2023/TPI2014	Matrix-AS						Weight: 105 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No 2

BRACING

TOP CHORD Structural wood sheathing directly applied, except end verticals

BOT CHORD Rigid ceiling directly applied

WEBS 1 Row at midpt 4-6

REACTIONS (size) 2=0-3-8, 6= Mechanical

Max Horiz 2=233 (LC 12)

Max Uplift 2=73 (LC 12) 6=82 (LC 9)

Max Grav 2=934 (LC 17), 6=819 (LC 17)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/60, 2-3=-1198/26, 3-4=-728/45,

4-5=-27/4, 5-6=-202/83

BOT CHORD 2-7=-152/1022, 6-7=-75/593

WEBS 3-8=0/215, 3-7=-520/91, 4-7=0/542,

4-6=-780/100

NOTES

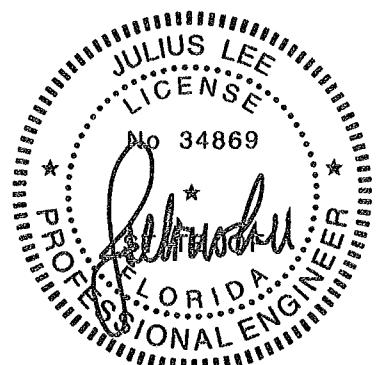
1) Unbalanced roof live loads have been considered for this design

2) Wind ASCE 7-22; Vult=130mph (3-second gust)
Vasd=101mph, TCDL=6 0psf BCDL=6 0psf; h=25ft;
B=45ft, L=24ft, eave=4ft, Cat. II, Exp B, Enclosed,
MWFRS (directional) and C-C Zone3 -2-0-0 to 1-0-0,
Zone1 1-0-0 to 11-0-0, Zone2 11-0-0 to 15-2-15, Zone1
15-2-15 to 17 10-4 zone; cantilever left and right
exposed, end vertical left exposed, C-C for members
and forces & MWFRS for reactions shown, Lumber
DOL=1 60 plate grip DOL=1 60

3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

4) Provide adequate drainage to prevent water ponding

5) This truss has been designed for a 10 0 psf bottom chord live load nonconcurrent with any other live loads.


6) * This truss has been designed for a live load of 20 0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10 0psf

7) Refer to girder(s) for truss to truss connections

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 73 lb uplift at joint 2 and 82 lb uplift at joint 6

9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord

LOAD CASE(S) Standard

Julius Lee PE No. 34869
MiTek Inc DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd Chesterfield, MO 63017
Date

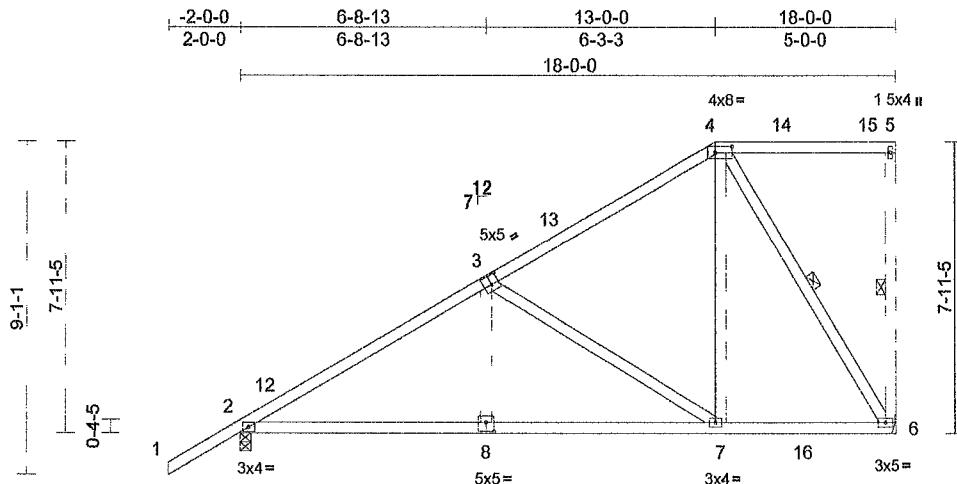
October 23,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage delivery erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.pinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbccomponents.com)

MiTek®

16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com


Job	Truss	Truss Type	Qty	Ply	
1025-005	B04	Half Hip	1	1	Job Reference (optional)

T38942960

Mayo Truss Company Inc. Mayo, FL 32066,

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 22 11:42:19
ID:IGF?lwmTGMN5_GbLoe9zs5yTUzH-RC?PsB70Hq3NSgPqnL8w3uITxbGKw/CDd7J4zJC?!

Page: 1

6-8-13 | 13-1-12 | 18-0-0
6-8-13 | 6-4-15 | 4-10-4

Scale = 1 62 9

Plate Offsets (X, Y) [3 0-2-8,0-3-0], [4 0-5-8,0-2-0], [8 0-2-8,0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	f/defl	L/d	PLATES	GRIP
TCLL (roof)	20 0	Plate Grip DOL	1 25	TC	0.38	Vert(LL)	-0 06	8-11	>999	240	MT20
TCDL	10 0	Lumber DOL	1 25	BC	0.46	Vert(CT)	-0 12	8-11	>999	180	
BCLL	0 0*	Rep Stress Incr	YES	WB	0.65	Horz(CT)	0 02	6	n/a	n/a	
BCDL	10 0	Code	FBC2023/TPI2014	Matrix-AS							Weight: 111 lb FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2
BOT CHORD 2x4 SP No 2
WEBS 2x4 SP No 2

BRACING

TOP CHORD Structural wood sheathing directly applied except end verticals
BOT CHORD Rigid ceiling directly applied

WEBS 1 Row at midpt 5-6, 4-6

REACTIONS (size) 2=0-3-8, 6= Mechanical
Max Horiz 2=267 (LC 12)
Max Uplift 2=60 (LC 12), 6=-82 (LC 12)
Max Grav 2=930 (LC 17), 6=831 (LC 17)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/60, 2-4=-1147/24, 4-5=-9/2,
5-6=140/56

BOT CHORD 2-7=151/977, 6-7=-668/419

WEBS 3-8=0/282, 3-7=-668/107, 4-7=0/586,

4-6=-767/110

NOTES

- 1) Unbalanced roof live loads have been considered for this design
- 2) Wind ASCE 7-22, Vult=130mph (3-second gust)
Vasd=101mph, TCDL=6 0psf; BCDL=6 0psf; h=25ft;
B=45ft; L=24ft; eave=4ft; Cat. II, Exp B, Enclosed,
MWFRS (directional) and C-C Zone3 -2-0-0 to 1-0-0
Zone1 1-0-0 to 13-0-0, Zone2 13-0-0 to 17-2-15, Zone1
17-2-15 to 17-10-4 zone; cantilever left and right
exposed, end vertical left exposed, C-C for members
and forces & MWFRS for reactions shown, Lumber
DOL=1 60 plate grip DOL=1 60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding
- 5) This truss has been designed for a 10 0 psf bottom chord live load nonconcurrent with any other live loads.

- 6) * This truss has been designed for a live load of 20 0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10 0psf
- 7) Refer to girder(s) for truss to truss connections
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 82 lb uplift at joint 6 and 60 lb uplift at joint 2
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord

LOAD CASE(S) Standard

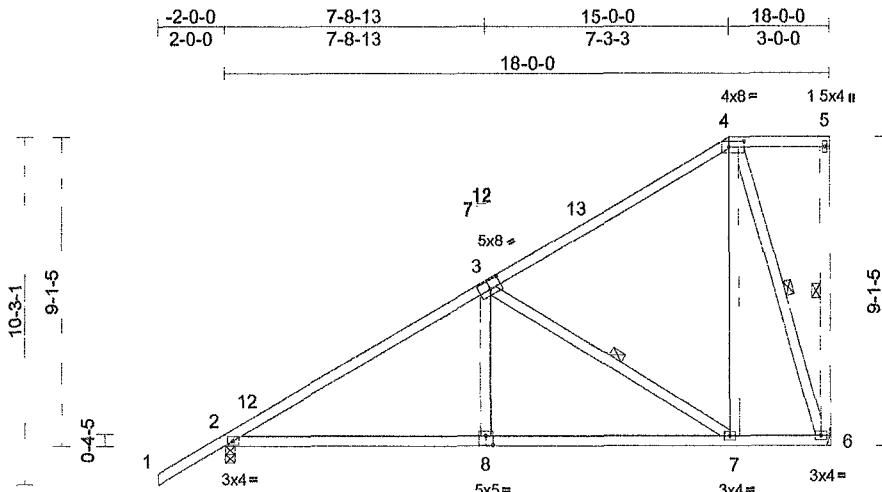
Julius Lee PE No. 34869
MiTek Inc DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date

October 23, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MI-7473 rev 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpiinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscscomponents.com)

MiTek®
16023 Swingley Ridge Rd
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com


Job	Truss	Truss Type	Qty	Ply	
1025-005	B05	Half Hip	1	1	Job Reference (optional)

T38942961

Mayo Truss Company Inc. Mayo, FL - 32066,

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 Mitek Industries, Inc. Wed Oct 22 11:42:19
ID:e2UW8lqzKatXTlu61UEv1xyTUzD-Rfc?PsB70Hq3NSgPqnl8w3ulTxbGKWrCDol7J4zJC?f

Page 1

7-8-13 15-1-12 18-0-0
7-8-13 7-4-15 2-10-4

Scale = 1 68.1

Plate Offsets (X, Y) [3 0-4-0,0-3-0], [4 0-5-8,0-2-0], [8.0-2-8,0-3-4]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.53	Vert(LL)	-0.07	8-11	>999	240	MT20
TCDL	10.0	Lumber DOL	1.25	BC	0.56	Vert(CT)	-0.17	8-11	>999	180	
BCLL	0.0*	Rep Stress Incr	YES	WB	0.27	Horz(CT)	0.02	6	n/a	n/a	
BCDL	10.0	Code	FBC2023/TPI2014	Matrix-AS						Weight. 118 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2
BOT CHORD 2x4 SP No 2
WEBS 2x4 SP No 2

BRACING

TOP CHORD Structural wood sheathing directly applied, except end verticals

- * This truss has been designed for a live load of 20 0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members

BOT CHORD Rigid ceiling directly applied

- Refer to girder(s) for truss to truss connections

WEBS 1 Row at midpt 5-6, 3-7, 4-6

- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 97 lb uplift at joint 6 and 45 lb uplift at joint 2.

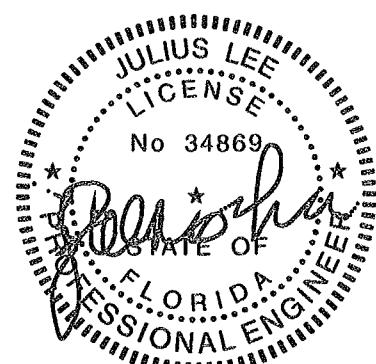
REACTIONS (size) 2=0-3-8, 6= Mechanical

- This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord

Max Horiz 2=300 (LC 12)
Max Uplift 2=45 (LC 12), 6=97 (LC 12)

Max Grav 2=841 (LC 1), 6=707 (LC 1)

LOAD CASE(S) Standard


FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/60, 2-4=-987/0, 4-5=-2/1, 5-6=-73/25
BOT CHORD 2-7=144/772, 6-7=-40/212

WEBS 3-8=0/332, 3-7=-670/123, 4-7=0/500,
4-6=-685/128

NOTES

- Unbalanced roof live loads have been considered for this design
- Wind ASCE 7-22, Vult=130mph (3-second gust)
Vasd=101mph TCDL=6 0psf; BCDL=6 0psf; h=25ft;
B=45ft; L=24ft; eave=4ft; Cat. II, Exp B, Enclosed,
MWFRS (directional) and C-C Zone3 2-0-0 to 1-0-0,
Zone1 1-0-0 to 15-0-0, Zone3 15-0-0 to 17-10-4 zone
cantilever left and right exposed , end vertical left
exposed,C-C for members and forces & MWFRS for
reactions shown, Lumber DOL=1 60 plate grip
DOL=1 60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding
- This truss has been designed for a 10 0 psf bottom chord live load nonconcurrent with any other live loads.

Julius Lee PE No. 34869
Mitek Inc DBA Mitek USA FL Cert 6634
16023 Swingley Ridge Rd Chesterfield, MO 63017
Date

October 23, 2025

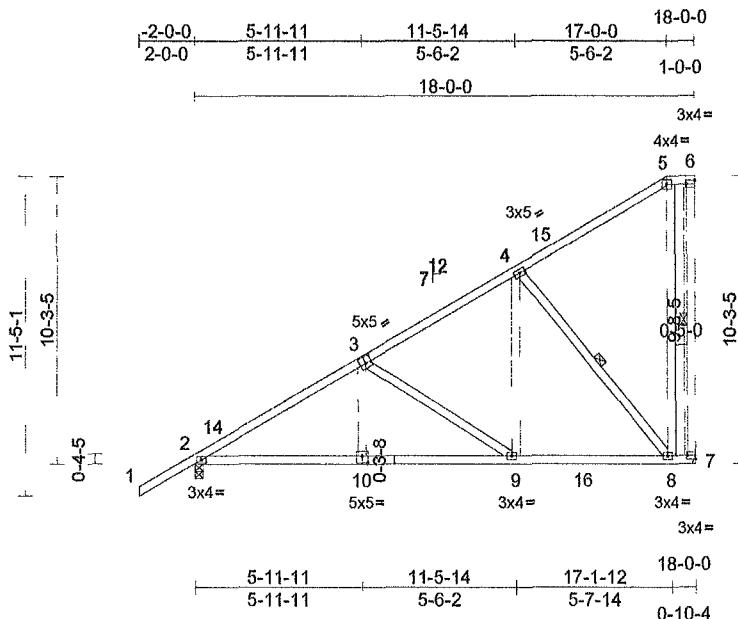
WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII 7473 rev 1/2/2023 BEFORE USE.

Design valid for use only with Mitek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpiinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscscomponents.com)

Mitek®

16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / Mitek-US.com

Job	Truss	Truss Type	Qty	Ply	
1025-005	B06	Half Hip	1	1	Job Reference (optional)


T38942962

Mayo Truss Company, Inc. Mayo, FL 32066,

Run. 8.83 S Sep 3 2025 Print: 8 830 S Sep 3 2025 Mitek Industries, Inc. Wed Oct 22 11:42:20

Page: 1

ID:xfxaAV61gyu7LZjkRWfX??yTUyr-RIC?PsB70Hq3NSgPqnL8w3uITxbGKVfCDol7J4zJC?f

Scale = 1 82.4

Plate Offsets (X, Y): [3 0-2-8,0-3-0], [6 Edge,0-1-8], [7 Edge,0-1-8], [10'0-2-8,0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/dell	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.52	Vert(LL)	-0.12	8.9	>999	240	MT20
TCDL	10.0	Lumber DOL	1.25	BC	0.63	Vert(CT)	-0.22	8.9	>965	180	
BCLL	0.0*	Rep Stress Incr	YES	WB	0.37	Horz(CT)	0.02	7	n/a	n/a	
BCDL	10.0	Code	FBC2023/TP12014	Matrix-AS							Weight: 126 lb FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2
 BOT CHORD 2x4 SP No.2
 WEBS 2x4 SP No 2

BRACING

TOP CHORD Structural wood sheathing directly applied, except end verticals
 BOT CHORD Rigid ceiling directly applied

WEBS 1 Row at midpt 6-7, 4-8

REACTIONS (size) 2=0-3-8, 7= Mechanical
 Max Horiz 2=33 (LC 12)
 Max Uplift 2=-27 (LC 12), 7=-114 (LC 12)
 Max Grav 2=929 (LC 17), 7=862 (LC 17)

FORCES (lb) - Maximum Compression/Maximum Tension


TOP CHORD 1-2=0/60, 2-4=-1168/0, 4-5=-136/15,
 5-6=-34/5, 6-7=-300/9

BOT CHORD 2-9=-147/1019, 8-9=-89/584, 7-8=-5/34
 WEBS 5-8=0/206, 3-10=0/224, 3-9=-515/70,
 4-9=0/592, 4-8=-860/129

NOTES

- 1) Unbalanced roof live loads have been considered for this design
- 2) Wind ASCE 7-22, Vult=130mph (3-second gust)
 $V_{as}=101\text{ mph}$, $T_{CDL}=6\text{ 0psf}$; $B_{CDL}=6\text{ 0psf}$; $h=25\text{ ft}$, $B=45\text{ ft}$, $L=24\text{ ft}$; eave=4ft; Cat. II, Exp B, Enclosed, MWFRS (directional) and C-C Zone3 -2-0-0 to 1-0-0, Zone1 1-0-0 to 17-0-0, Zone3 17-0-0 to 17-10-4 zone; cantilever left and right exposed, end vertical left exposed, C-C for members and forces & MWFRS for reactions shown, Lumber DOL=1 60 plate grip $DOL=1.60$
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component
- 4) Provide adequate drainage to prevent water ponding
- 5) This truss has been designed for a 10 0 psf bottom chord live load nonconcurrent with any other live loads.

- 6) * This truss has been designed for a live load of 20 0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with $BCDL = 10\text{ 0psf}$
- 7) Refer to girder(s) for truss to truss connections
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 114 lb uplift at joint 7 and 27 lb uplift at joint 2
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord

LOAD CASE(S) Standard

Julius Lee PE No. 34869
 Mitek Inc DBA Mitek USA FL Cert 6634
 16023 Swingley Ridge Rd Chesterfield, MO 63017
 Date

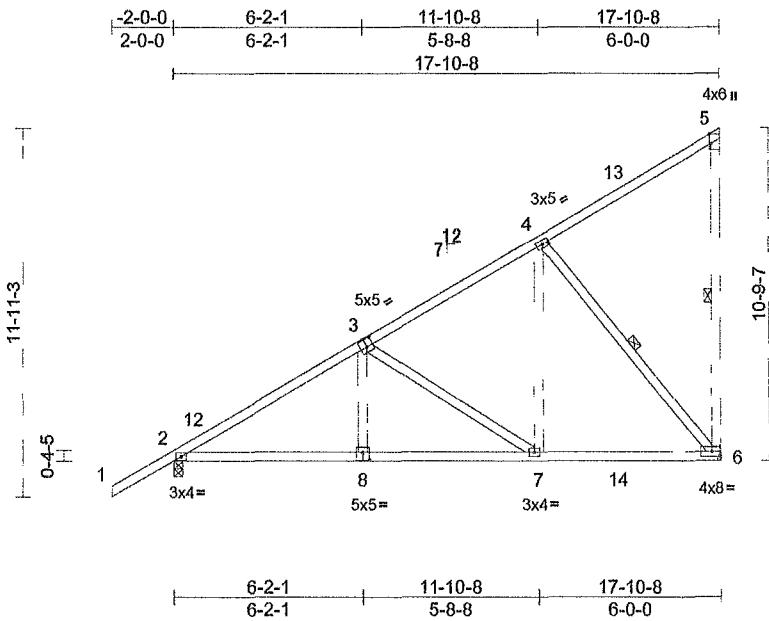
October 23, 2025

WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev 1/2/2023 BEFORE USE.

Design valid for use only with Mitek® connectors. This design is based only upon parameters shown and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TP1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpiinst.org) and BC81 Building Component Safety Information available from the Structural Building Component Association (www.sbcsccomponents.com)

Mitek
 16023 Swingley Ridge Rd.
 Chesterfield MO 63017
 314.434.1200 / Mitek-U8.com

Job	Truss	Truss Type	Qty	Ply	
1025-005	B07	Monopitch	15	1	Job Reference (optional)


T38942963

Mayo Truss Company Inc. Mayo FL - 32066,

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries Inc. Wed Oct 22 11:42:20

Page. 1

ID:u0s1r7PaA1IJWcg20jYs9syTUvu-RFC?PsB70Hq3NSgPqnL8w3uITxbGKWrCDol7J4zJC?f

Scale = 1 74.8

Plate Offsets (X, Y) [3 0-2-8,0-3-0], [5 0-3-12,Edge], [8 0-2-8,0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20 0	Plate Grip DOL	1 25	TC	0.76	Vert(LL)	-0 07	6-7	>999	240	MT20
TCDL	10 0	Lumber DOL	1.25	BC	0.41	Vert(CT)	-0 10	6-7	>999	180	
BCLL	0 0*	Rep Stress Incr	YES	WB	0.48	Horz(CT)	0 02	6	n/a	n/a	
BCDL	10 0	Code	FBC2023/TPI2014	Matrix-AS						Weight: 114 lb	FT = 20%

LUMBERTOP CHORD 2x4 SP No 2
BOT CHORD 2x4 SP No 2
WEBS 2x4 SP No.2**BRACING**

TOP CHORD Structural wood sheathing directly applied, except end verticals

BOT CHORD Rigid ceiling directly applied

WEBS 1 Row at midpt 5-6, 4-6

REACTIONS (size) 2=0-3-8, 6= Mechanical

Max Horiz 2=328 (LC 11)

Max Uplift 2=-122 (LC 12), 6=-116 (LC 9)

Max Grav 2=963 (LC 17), 6=933 (LC 17)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/60, 2-4=-1237/188, 4-5=-218/173, 5-6=-165/136

BOT CHORD 2-7=-283/1080, 6-7=-173/563

WEBS 4-6=-879/193, 3-8=0/243, 3-7=-613/131,

4-7=-43/584

NOTES

1) Unbalanced roof live loads have been considered for this design
 2) Wind ASCE 7-22, Vult=130mph (3-second gust)
 Vasd=101mph TCDL=6 0psf; BCDL=6 0psf; h=15ft;
 B=45ft; L=24ft, eave=4ft; Cat. II, Exp B, Partially
 Enclosed, MWFRS (directional) and C-C Zone3 -2-0-0 to
 1-0-0, Zone1 1-0-0 to 17-8-12 zone, cantilever left and
 right exposed , end vertical left and right exposed C-C
 for members and forces & MWFRS for reactions shown,
 Lumber DOL=1 60 plate grip DOL=1 60

3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
 4) This truss has been designed for a 10 0 psf bottom chord live load nonconcurrent with any other live loads

5) * This truss has been designed for a live load of 20 0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10 0psf
 6) Refer to girder(s) for truss to truss connections
 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 122 lb uplift at joint 2 and 116 lb uplift at joint 6
 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord

LOAD CASE(S) Standard

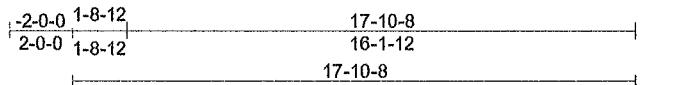
Julius Lee PE No. 34869
 MiTek Inc DBA MiTek USA FL Cert 6634
 16023 Swingley Ridge Rd. Chesterfield, MO 63017
 Date

October 23, 2025

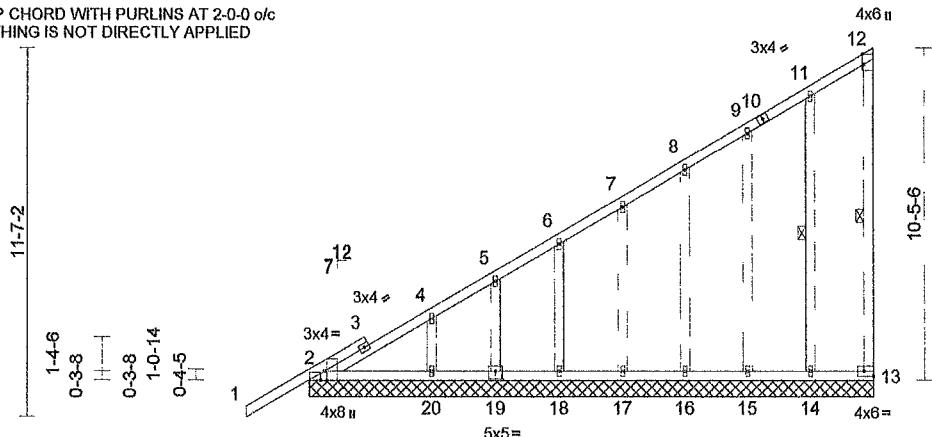
WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpiinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcsccomponents.com).

MiTek®
 16023 Swingley Ridge Rd.
 Chesterfield, MO 63017
 314.434.1200 / MiTek-US.com


Job	Truss	Truss Type	Qty	Ply	Job Reference (optional)
1025-005	B08	Monopitch Supported Gable	1	1	T38942964

Mayo Truss Company Inc. Mayo FL 32066,


Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 22 11:42:20

Page 1

ID:gqlU4glGHjsm0S5s_TVjg7yTUVV-Rfc?PsB70Hq3NSgPqnL8w3uTXbGKWrCDol7J4zJC?f

LATERALLY BRACE TOP CHORD WITH PURLLINS AT 2-0-0 o/c
IF STRUCTURAL SHEATHING IS NOT DIRECTLY APPLIED

Scale = 1 72.6

Plate Offsets (X, Y) [2.0-3-8,Edge], [2'0-1-9,Edge], [12 0-3-12,Edge], [13 Edge,0-2-0], [19'0-2-8,0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.64	Vert(LL)	n/a	-	n/a	999	MT20
TCDL	10.0	Lumber DOL	1.25	BC	0.44	Vert(CT)	n/a	-	n/a	999	
BCLL	0.0*	Rep Stress Incr	YES	WB	0.13	Horz(CT)	0.00	13	n/a	n/a	
BCDL	10.0	Code	FBC2023/TPI2014	Matrix-AS							Weight: 132 lb FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2
BOT CHORD 2x4 SP No 2
WEBS 2x4 SP No.2
OTHERS 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied, except end verticals
BOT CHORD Rigid ceiling directly applied
WEBS 1 Row at midpt 12-13, 11-14

REACTIONS (size) 2=17-10-8, 13=17-10-8,
14=17-10-8, 15=17-10-8,
16=17-10-8, 17=17-10-8,
18=17-10-8, 19=17-10-8,
20=17-10-8

Max Horiz 2=363 (LC 11)

Max Uplift 2=-25 (LC 13), 13=-61 (LC 11),
14=-42 (LC 12), 15=-18 (LC 12),
16=-33 (LC 12), 17=-28 (LC 12),
18=-24 (LC 12), 19=-47 (LC 12)

Max Grav 2=289 (LC 1), 13=84 (LC 19),
14=167 (LC 1), 15=163 (LC 17),
16=160 (LC 1), 17=159 (LC 17),
18=168 (LC 1), 19=132 (LC 17),
20=246 (LC 1)

FORCES (lb) Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/60, 2-4=-557/416, 4-5=-506/370,
5-6=-444/346, 6-7=-386/315, 7-8=-328/285,
8-9=-268/254, 9-11=-218/236,
11-12=-120/136, 12-13=-69/76

BOT CHORD 2-20=-158/203, 18-20=-158/203,
17-18=-158/203, 16-17=-158/203,
15-16=-158/203, 14-15=-158/203,
13-14=-158/203

WEBS 11-14=-240/192, 9-15=-125/125,
8-16=-121/94, 7-17=-119/93, 6-18=-124/91,
5-19=-104/101, 4-20=-176/81

NOTES

- 1) Unbalanced roof live loads have been considered for this design
- 2) Wind ASCE 7-22, Vult=130mph (3-second gust)
Vasd=101mph, TCDL=6 0psf; BCDL=6 0psf; h=25ft;
B=45ft; L=24ft; eave=2ft; Cat. II, Exp B, Enclosed,
MWFRS (directional) and C-C Zone3 zone, cantilever
left and right exposed, end vertical left and right
exposed, C-C for members and forces & MWFRS for
reactions shown, Lumber DOL=1 60 plate grip
DOL=1 60
- 3) Truss designed for wind loads in the plane of the truss
only. For studs exposed to wind (normal to the face),
see Standard Industry Gable End Details as applicable,
or consult qualified building designer as per ANSI/TPI 1
- 4) Building Designer / Project engineer responsible for
verifying applied roof live load shown covers rain loading
requirements specific to the use of this truss component.
- 5) All plates are 1 5x4 (||) MT20 unless otherwise
indicated
- 6) Gable requires continuous bottom chord bearing
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom
chord live load nonconcurrent with any other live loads
- 9) * This truss has been designed for a live load of 20.0 psf
on the bottom chord in all areas where a rectangle
3-06-00 tall by 2-00-00 wide will fit between the bottom
chord and any other members
- 10) Provide mechanical connection (by others) of truss to
bearing plate capable of withstanding 25 lb uplift at joint
2, 61 lb uplift at joint 13, 42 lb uplift at joint 14, 18 lb uplift
at joint 15, 33 lb uplift at joint 16, 28 lb uplift at joint 17,
24 lb uplift at joint 18, 47 lb uplift at joint 19 and 25 lb
uplift at joint 2
- 11) This truss design requires that a minimum of 7/16"
structural wood sheathing be applied directly to the top
chord and 1/2" gypsum sheetrock be applied directly to
the bottom chord

LOAD CASE(S) Standard

Julius Lee PE No. 34869
MiTek Inc DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd Chesterfield, MO 63017
Date

October 23, 2025

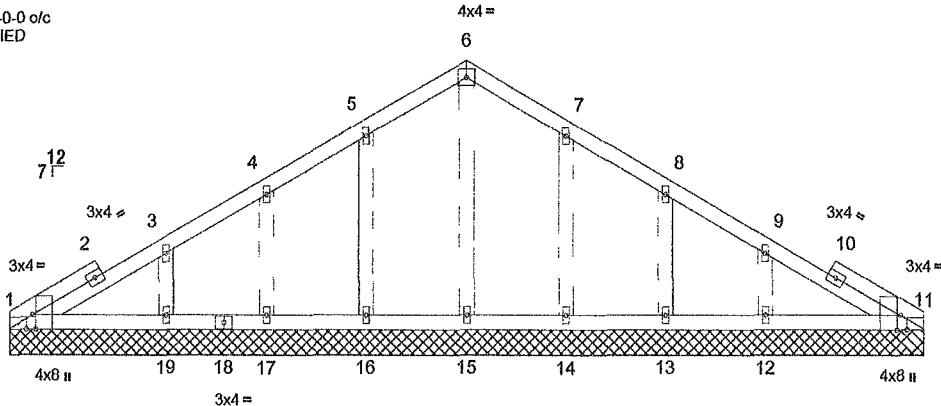
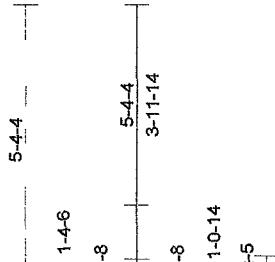
 WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpiinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek
16023 Swingley Ridge Rd
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com


Job	Truss	Truss Type	Qty	Ply	
1025-005	C01	Common Supported Gable	1	1	Job Reference (optional)

T38942965



Mayo Truss Company Inc. Mayo, FL 32066.

Run 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 22 11 42 20
ID:pSGrlaKq672Jl0z1c0YkZEyTVbl-Rfc?PeB70Hq3NSgPqlL8w3uITXbGKWrCDol7J4zJC7f

Page 1

LATERALLY BRACE TOP CHORD WITH PURLINS AT 2-0-0 o/c
IF STRUCTURAL SHEATHING IS NOT DIRECTLY APPLIED

Scale = 1:45.9

Plate Offsets (X, Y). [1 0-3-8,Edge], [1 0-1-9,Edge], [11 0-3-8,Edge], [11 0-1-9,Edge]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.09	Vert(LL)	n/a	-	n/a	999	MT20
TCDL	10.0	Lumber DOL	1.25	BC	0.07	Vert(TL)	n/a	-	n/a	999	
BCLL	0.0*	Rep Stress Incr	YES	WB	0.05	Horiz(TL)	0.00	11	n/a	n/a	
BCDL	10.0	Code	FBC2023/TPI2014	Matrix-AS						Weight: 93 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No 2
OTHERS 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied

BOT CHORD Rigid ceiling directly applied

REACTIONS (size) 1=18-3-8, 11=18-3-8, 12=18-3-8,
13=18-3-8, 14=18-3-8, 15=18-3-8,
16=18-3-8, 17=18-3-8, 19=18-3-8

Max Horiz 1=98 (LC 10)

Max Uplift 12=35 (LC 12), 13=27 (LC 12),
14=27 (LC 12), 16=27 (LC 12),
17=27 (LC 12) 19=35 (LC 12)Max Grav 1=106 (LC 1) 11=106 (LC 1),
12=249 (LC 1), 13=131 (LC 18),
14=175 (LC 24), 15=149 (LC 1),
16=175 (LC 23), 17=132 (LC 17),
19=249 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-3=64/92, 3-4=69/62, 4-5=54/73,
5-6=72/130, 6-7=72/130 7-8=41/73,
8-9=39/30, 9-11=57/63BOT CHORD 1 19=-44/81, 17-19=-44/81, 16-17=-44/81,
15-16=-44/81, 14-15=-44/81, 13-14=-44/81,
12-13=-44/81, 11-12=-44/81WEBS 6-15=-111/0, 5-16=-131/89, 4-17=-107/88,
3-19=-168/102, 7-14=-131/89, 8-13=-106/88,
9-12=-168/102**NOTES**

1) Unbalanced roof live loads have been considered for this design

- Wind, ASCE 7-22, Vult=130mph (3-second gust)
Vasd=101mph, TCDL=6 0psf; BCDL=6 0psf; h=25ft,
B=45ft; L=24ft; eave=2ft, Cat. II, Exp B, Enclosed,
MWFRS (directional) and C-C Zone3 zone; cantilever
left and right exposed, end vertical left and right
exposed, C-C for members and forces & MWFRS for
reactions shown, Lumber DOL=1 60 plate grip
DOL=1 60
- Truss designed for wind loads in the plane of the truss
only. For studs exposed to wind (normal to the face),
see Standard Industry Gable End Details as applicable,
or consult qualified building designer as per ANSI/TPI 1
- Building Designer / Project engineer responsible for
verifying applied roof live load shown covers rain loading
requirements specific to the use of this truss component.
- All plates are 1 5x4 (||) MT20 unless otherwise
indicated
- Gable requires continuous bottom chord bearing
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom
chord live load nonconcurrent with any other live loads
- * This truss has been designed for a live load of 20 0psf
on the bottom chord in all areas where a rectangle
3-06-00 tall by 2-00-00 wide will fit between the bottom
chord and any other members.
- Provide mechanical connection (by others) of truss to
bearing plate capable of withstanding 27 lb uplift at joint
16, 27 lb uplift at joint 17, 35 lb uplift at joint 19, 27 lb
uplift at joint 14, 27 lb uplift at joint 13 and 35 lb uplift at
joint 12
- This truss design requires that a minimum of 7/16"
structural wood sheathing be applied directly to the top
chord and 1/2" gypsum sheetrock be applied directly to
the bottom chord

LOAD CASE(S) Standard

Julius Lee PE No. 34869
MiTek Inc DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date

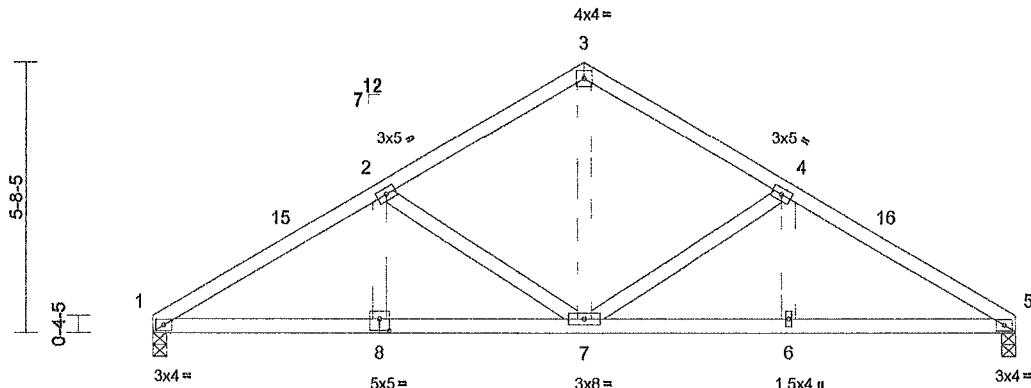
October 23, 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems see ANSI/TPI1 Quality Criteria and DS-B-22 available from Truss Plate Institute (www.tpiinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcsccomponents.com)

16023 Swingley Ridge Rd
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	
1025-005	C02	Common	2	1	Job Reference (optional)


T38942966

Mayo Truss Company Inc., Mayo, FL 32066,

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 22 11:42:21
ID: Tm_OYhUMH-pZ0ksuLJXmY2myTVbh-RFC?PsB70Hq3NSgPqnLBw3uITxbGKw/CDol7J4zJC?f

Page: 1

4-9-11	9-1-12	13-5-13	18-3-8
4-9-11	4-4-1	4-4-1	4-9-11
18-3-8			

4-9-11	9-1-12	13-5-13	18-3-8
4-9-11	4-4-1	4-4-1	4-9-11

Scale = 1 48.6

Plate Offsets (X, Y) [8.0-2-8,0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20 0	Plate Grip DOL	1 25	TC	0 21	Vert(LL)	-0 03	7	>999	240	MT20
TCDL	10 0	Lumber DOL	1 25	BC	0 31	Vert(CT)	-0 06	6-7	>999	180	
BCLL	0 0*	Rep Stress Incr	YES	WB	0 18	Horz(CT)	0 03	5	n/a	n/a	
BCDL	10 0	Code	FBC2023/TPI2014	Matrix-AS							Weight: 89 lb FT = 20%

LUMBERTOP CHORD 2x4 SP No 2
BOT CHORD 2x4 SP No 2

WEBS 2x4 SP No 2

BRACINGTOP CHORD Structural wood sheathing directly applied
BOT CHORD Rigid ceiling directly applied

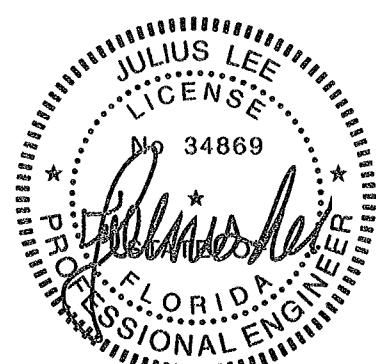
REACTIONS (size) 1=0-3-8, 5=0-3-8

Max Horiz 1=105 (LC 11)

Max Uplift 1=-41 (LC 12), 5=-41 (LC 12)

Max Grav 1=732 (LC 1), 5=732 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension


TOP CHORD 1-2=-1156/161, 2-3=-810/165, 3-4=-810/165, 4-5=-1156/161

BOT CHORD 1-7=-80/963, 6-7=-76/963, 5-6=-76/963

WEBS 3-7=-56/506, 4-7=-398/110, 2-7=-398/110, 2-8=0/191, 4-6=0/191

NOTES

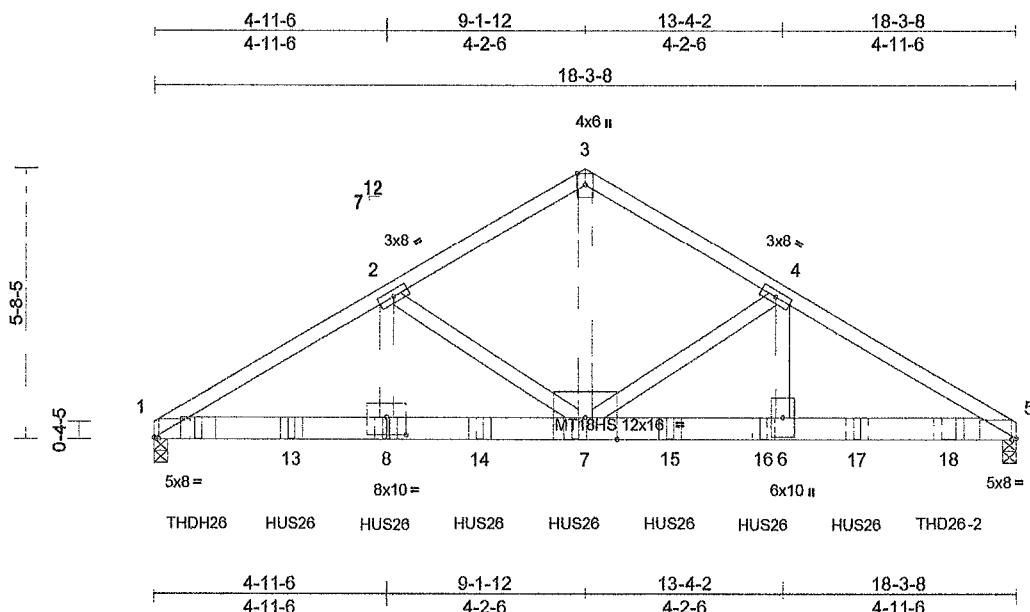
1) Unbalanced roof live loads have been considered for this design

2) Wind ASCE 7-22 Vult=130mph (3-second gust)
Vasd=101mph; TCDL=6 0psf; BCDL=6 0psf; h=25ft;
B=45ft; L=24ft; eave=4ft; Cat. II, Exp. B, Enclosed,
MWFRS (directional) and C-C Zone3 0-0-0 to 3-0-0,
Zone1 3-0-0 to 9-1-12, Zone2 9-1-12 to 13-5-13, Zone1
13-5-13 to 18-3-8 zone, cantilever left and rightexposed, end vertical left and right exposed; C-C for
members and forces & MWFRS for reactions shown,
Lumber DOL=1 60 plate grip DOL=1 603) Building Designer / Project engineer responsible for
verifying applied roof live load shown covers rain loading
requirements specific to the use of this truss component4) This truss has been designed for a 10 0 psf bottom
chord live load nonconcurrent with any other live loads5) * This truss has been designed for a live load of 20 0psf
on the bottom chord in all areas where a rectangle
3-06-00 tall by 2-00-00 wide will fit between the bottom
chord and any other members.6) Provide mechanical connection (by others) of truss to
bearing plate capable of withstanding 41 lb uplift at joint
1 and 41 lb uplift at joint 57) This truss design requires that a minimum of 7/16"
structural wood sheathing be applied directly to the top
chord and 1/2" gypsum sheetrock be applied directly to
the bottom chord**LOAD CASE(S)** Standard

Julius Lee PE No. 34869
MiTek Inc DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd Chesterfield, MO 63017
Date

October 23, 2025

WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MI-7473 rev 1/2/2023 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DB-22 available from Truss Plate Institute (www.tpiinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcsccomponents.com)


MiTek
16023 Swingley Ridge Rd
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	
1025-005	C03	Common Girder	1	3	T38942967

Mayo Truss Company Inc., Mayo, FL - 32066,

Run 8.83 E Feb 1 2025 Print. 8.830 E Feb 1 2025 MiTek Industries, Inc. Thu Oct 23 16:46:48
ID:mOrSbunPdBadcYkyjaBA1qyTVbj-uzu_803MG4RN?6NG3Sxv5ouq750qX?USGMJrmKyQe9r

Page: 1

Scale = 1 48.6

Plate Offsets (X, Y) [1 0-1-3,Edge], [5 0-1-3,Edge], [8 0-5-0,0-4-8]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	In	(loc)	I/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.87	Vert(LL)	-0.11	6-7	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.25	BC	0.76	Vert(CT)	-0.21	6-7	>999	180	MT18HS	244/190
BCLL	0.0*	Rep Stress Incr	NO	WB	0.65	Horz(CT)	0.06	5	n/a	n/a		
BCDL	10.0	Code	FBC2023/TPI2014	Matrix-MS							Weight: 310 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x6 SP 2400F 2 0E
WEBS 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 4-5-2 oc purlins
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing

REACTIONS (lb/size) 1=7952/0-3-8 5=9333/0-3-8
Max Horiz 1=-105 (LC 6)
Max Uplift 1=-520 (LC 8), 5=-713 (LC 8)
Max Grav 1=8799 (LC 13), 5=9638 (LC 14)

FORCES (lb) - Max Comp./Max. Tens. All forces 250 lb or less except when shown

TOP CHORD 1-2=-13415/823, 2-3=-9056/609,
3-4=-9063/610, 4-5=-13835/929

BOT CHORD 1 13=-657/11572, 8-13=-657/11572,
8-14=-657/11572, 7-14=-657/11572,
7-15=-753/1159, 15-16=-753/1159,
6-16=-753/1159, 6-17=-753/1159,
17-18=-753/1159, 5-18=-753/1159

WEBS 2-8=-205/4397, 2-7=-4547/315,
3-7=-543/8873, 4-7=-5111/431,
4-6=-314/4912

NOTES

1) N/A

2) 3-ply truss to be connected together with 10d (0 13" x 3") nails as follows.

Top chords connected as follows 2x4 - 1 row at 0-9-0 oc.

Bottom chords connected as follows 2x6 - 3 rows staggered at 0-4-0 oc.

Web connected as follows 2x4 - 1 row at 0-9-0 oc,
Except member 2-8 2x4 - 2 rows staggered at 0-5-0 oc,

member 3-7 2x4 - 1 row at 0-5-0 oc.

- All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- Unbalanced roof live loads have been considered for this design.
- Wind ASCE 7-22, Vult=130mph (3-second gust) Vasd=101mph, TCDL=6 0psf; BCDL=6 0psf, h=25ft, B=45ft, L=24ft; eave=4ft; Cat. II, Exp. B, Enclosed, MWFRS (directional), cantilever left and right exposed, end vertical left and right exposed, Lumber DOL=1 60 plate grip DOL=1 60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- All plates are MT20 plates unless otherwise indicated.
- This truss has been designed for a 10 0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20 0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 520 lb uplift at joint 1 and 713 lb uplift at joint 5.
- Use MiTek THDH26 (With 20-16d nails into Girder & 8-16d nails into Truss) or equivalent at 0-11-4 from the left end to connect truss(es) to back face of bottom chord
- Use MiTek HUS26 (With 14-16d nails into Girder & 6-16d nails into Truss) or equivalent spaced at 2-0-0 oc max, starting at 2-11-4 from the left end to 14-11-4 to connect truss(es) to back face of bottom chord
- Use MiTek THD26-2 (With 18-16d nails into Girder & 12-10d nails into Truss) or equivalent at 16-10-8 from the left end to connect truss(es) to back face of bottom chord
- Fill all nail holes where hanger is in contact with lumber

LOAD CASE(S)

Standard

- Dead + Roof Live (balanced). Lumber Increase=1 25, Plate Increase=1 25
Uniform Loads (lb/ft)
Vert: 1-3=-60, 3-5=-60, 1-5=-20
Concentrated Loads (lb)
Vert: 8=-1534 (B), 7=-1534 (B), 10=-1535 (B), 13=-1534 (B), 14=-1534 (B), 15=-1534 (B), 16=-1534 (B), 17=-1534 (B), 18=-3547 (B)

Julius Lee PE No. 34869
MiTek Inc DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date

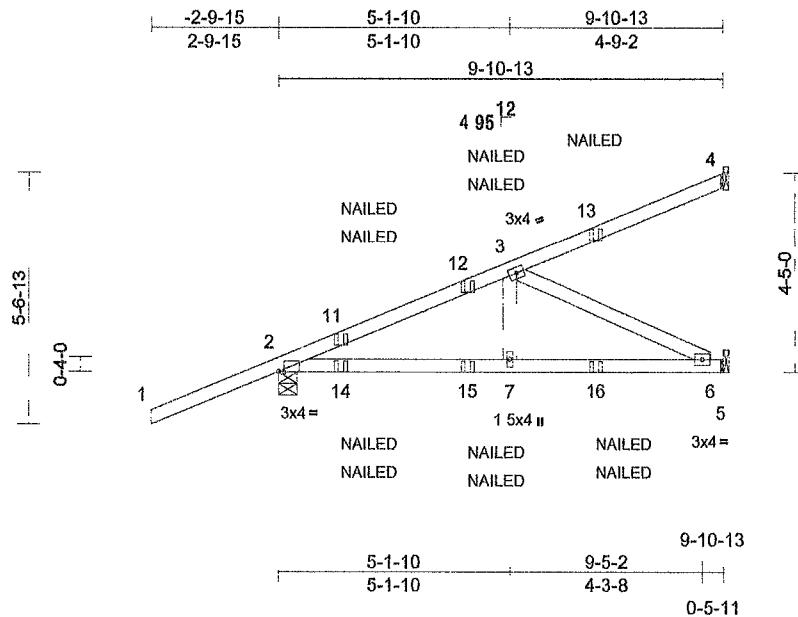
October 23, 2025

 WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpiinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	
1025-005	CJ01	Diagonal Hip Girder	3	1	Job Reference (optional)


T38942968

Mayo Truss Company Inc. Mayo, FL 32066,

Run 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MTek Industries, Inc. Wed Oct 22 11:42:21

Page: 1

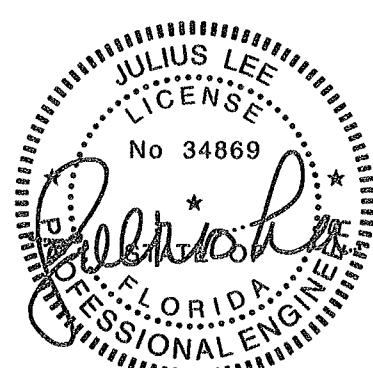
ID:z3aSyno6ZbbW6kwgJvnU3yyTVf9-Rfc?PsB70Hq3NsPqnL8w3uTXbGKWrCDol7J4zJC7f

Scale = 1:51

Plate Offsets (X, Y) [2 0-1-8, Edge]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.62	Vert(LL)	-0.08	7-10	>999	240	MT20
TCDL	10.0	Lumber DOL	1.25	BC	0.59	Vert(CT)	-0.08	6-7	>999	180	
BCLL	0.0*	Rep Stress Incr	NO	WB	0.27	Horz(CT)	0.01	5	n/a	n/a	
BCDL	10.0	Code	FBC2023/TPI2014	Matrix-MS							Weight. 45 lb FT = 20%

LUMBER


TOP CHORD	2x4 SP No 2	6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 45 lb uplift at joint 4 and 187 lb uplift at joint 2
BOT CHORD	2x4 SP No 2	7) "NAILED" indicates 3-10d (0.148" x 3") or 2-12d (0.148" x 3.25") toe-nails per NDS guidelines
WEBS	2x4 SP No 2	8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B)
BRACING	Structural wood sheathing directly applied or 6-0-0 oc purlins.	
TOP CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing	LOAD CASE(S) Standard
REACTIONS (size)	2=0-4-15, 4= Mechanical, 5= Mechanical	1) Dead + Roof Live (balanced) Lumber Increase=1.25, Plate Increase=1.25
Max Horiz	2=166 (LC 8)	Uniform Loads (lb/ft)
Max Uplift	2=-187 (LC 8), 4=-45 (LC 8)	Vert: 1-4=-60, 5-8=-20
Max Grav	2=556 (LC 13), 4=133 (LC 19), 5=309 (LC 13)	Concentrated Loads (lb)
		Vert: 11=73 (F=36, B=36), 13=-36 (B), 14=81 (F=41, B=41), 15=7 (F=4, B=4), 16=-48 (F=-24, B=-24)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD	1-2=0/65, 2-3=-663/229, 3-4=-77/40
BOT CHORD	2 7=-242/561, 6-7=-62/561, 5-6=0
WEBS	3-7=0/250, 3-8=-62/69

NOTES

- Wind ASCE 7-22, Vult=130mph (3-second gust)
Vasd=101mph, TCDL=6 0psf; BCDL=6 0psf; h=25ft;
B=45ft; L=24ft; eave=4ft; Cat. II, Exp B, Enclosed,
MWFRS (directional), cantilever left and right exposed,
end vertical left and right exposed, Lumber DOL=1.60
plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections

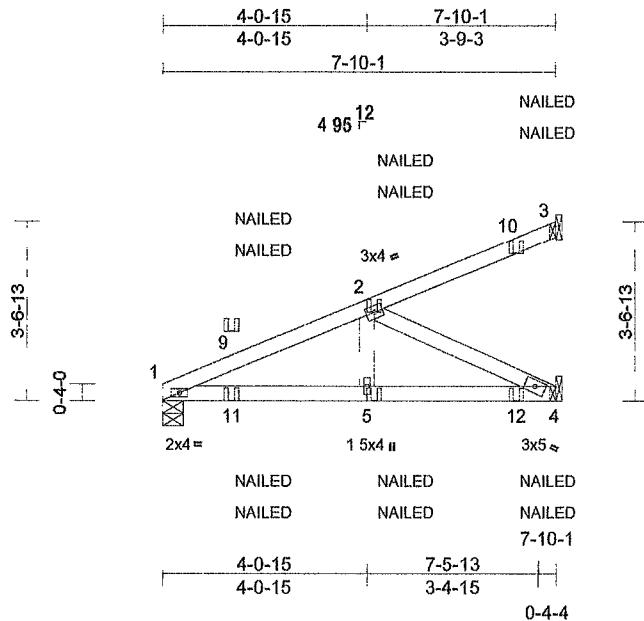
Julius Lee PE No. 34869
Mitek Inc DBA MTek USA FL Cert 6634
16023 Swingley Ridge Rd Chesterfield, MO 63017
Date

October 23, 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MTek® connectors. This design is based only upon parameters shown and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems see ANSI/TPI Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpiinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.bscscomponents.com)

Mitek®


16023 Swingley Ridge Rd
Chesterfield, MO 63017
314.434.1200 / Mitek-US.com

Job	Truss	Truss Type	Qty	Ply	
1025-005	CJ02	Diagonal Hip Girder	1	1	Job Reference (optional) T38942969

Mayo Truss Company Inc. Mayo FL 32066,

Run 8.83 S Sep 3 2025 Print: 8 830 S Sep 3 2025 MITek Industries, Inc. Wed Oct 22 11.42:21
ID:kb3UeWu7g3bO3zXCnbwMNeyTvF1-RfC?PsB70Hq3NSgPqnL8w3uITxbGKWrCDoi7J4zJC?7

Page 1

Scale = 1 45.8

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	In	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20 0	Plate Grip DOL	1.25	TC	0.34	Ver(LL)	-0.01	5-8	>999	240	MT20
TCDL	10 0	Lumber DOL	1.25	BC	0.31	Vert(CT)	-0.03	4-5	>999	180	
BCLL	0 0*	Rep Stress Incr	NO	WB	0.15	Horz(CT)	0.01	4	n/a	n/a	
BCDL	10 0	Code	FBC2023/TPI2014	Matrix-MP						Weight: 32 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2
BOT CHORD 2x4 SP No 2
WEB 2x4 SP No 2

WEBCO
BRACING

BRACING **TOP CHORD** Structural wood sheathing directly applied or
6-0-0 sc purlins

BOT CHORD Rigid ceiling directly applied or 10'-0-0 oc bracing

REACTIONS (s)

(Size) 1=6-470, 3=Mechanical, 4-Mechanical
 Max Horiz 1=91 (LC 8)
 Max Uplift 1=-45 (LC 8), 3=-78 (LC 8)
 Max Grav 1=336 (LC 14), 3=193 (LC 1)
 4=328 (LC 13)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-584/33, 2-3=-64/66
BOT CHORD 1-5=-95/514, 4-5=-95/51

WEBS 2-5=0/193, 2-4=-565/104

NOTES

1) Win

Vasd=101mph, TCDL=6 0psf; BCDL=6 0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II, Exp B, Enclosed, MWFRS (directional), cantilever left and right exposed end vertical left and right exposed, Lumber DOL=1.60 plate grip DOL=1.60

- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component
- 3) This truss has been designed for a 10 0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20 0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) Refer to [Section 4](#) for [truss connections](#).

5) Refer to girder(s) for truss to truss connections

- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 45 lb uplift at joint 1 and 78 lb uplift at joint 3
- 7) "NAILED" Indicates 3-10d (0 148"x3") or 2-12d (0 148"x3 25") toe-nails per NDS guidelines
- 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B)

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced) Lumber Increase=1.25, Plate Increase=1 25
- Uniform Loads (lb/ft)
 - Vert: 1-3=.60, 4-6=.20
- Concentrated Loads (lb)
 - Vert: 5=-10 (F=-13, B=4), 2=0 (F), 9=36 (B), 10=-137 (F=-69, B=-69), 11=35 (F=-6, B=41), 12=-85 (F=-43, B=-43)

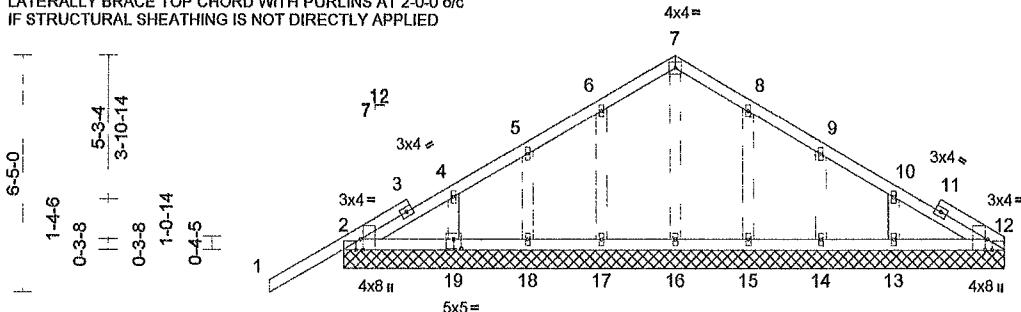
Julius Lee PE No. 34869
MiTek Inc DBA MiTek USA HI Cert 6634
16023 Swingley Ridge Rd Chesterfield, MO 63017
Date

October 23,2025

WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev 1/2/2023 BEFORE USE

Design valid for use only with MITEK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems see ANSI/TPI-1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpiinst.org) and EBCS Building Component Safety Information available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com


Job	Truss	Truss Type	Qty	Ply	
1025-005	D01	Common Supported Gable	1	1	Job Reference (optional)

T38942970

Mayo Truss Company Inc. Mayo, FL 32066,

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 22 11:42:22
ID:2Z0hWnCV?YKwejM9f_NwldyTVdk-Rfc?PsB70Hq3NSgPqnL8w3u1TXbGKWrCDol7J4zJC?f

Page: 1

LATERALLY BRACE TOP CHORD WITH PURLLINS AT 2-0-0 o/c
IF STRUCTURAL SHEATHING IS NOT DIRECTLY APPLIED

Scale = 1:62.4

18-0-0

Plate Offsets (X, Y) [2 0-3-8,Edge], [2 0-1-9,Edge], [12 0-3-8,Edge], [12 0-1-9,Edge], [19 0-2-8,0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.25	Vert(LL)	n/a	-	n/a	999	MT20
TCDL	10.0	Lumber DOL	1.25	BC	0.07	Vert(CT)	n/a	-	n/a	999	
BCLL	0.0*	Rep Stress Incr	YES	WB	0.04	Horz(CT)	0.00	12	n/a	n/a	
BCDL	10.0	Code	FBC2023/TPI2014	Matrix-AS						Weight: 94 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2

BOT CHORD 2x4 SP No 2

OTHERS 2x4 SP No 2

BRACINGTOP CHORD Structural wood sheathing directly applied
BOT CHORD Rigid ceiling directly applied

REACTIONS (size) 2=18-0-0, 12=18-0-0, 13=18-0-0,

14=18-0-0, 15=18-0-0, 16=18-0-0

17=18-0-0, 18=18-0-0, 19=18-0-0

Max Horiz 2=114 (LC 11)

Max Uplift 2=88 (LC 12), 13=34 (LC 12),

14=27 (LC 12), 15=27 (LC 12),

17=23 (LC 12), 18=45 (LC 12)

Max Grav 2=274 (LC 1), 12=104 (LC 1),

13=239 (LC 1), 14=136 (LC 18),

15=174 (LC 24), 16=144 (LC 1),

17=168 (LC 23), 18=158 (LC 1),

19=170 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/60, 2-4=-98/77, 4-5=-72/61,

5-6=60/78, 6-7=-77/134, 7-8=-77/134,

8-9=-46/77, 9-10=-45/26, 10-12=-53/55

BOT CHORD 2-18=54/110, 17 18=-40/77, 16-17=-40/77,

15-16=-40/77, 14-15=-40/77, 13-14=-40/77

12-13=-40/77

WEBS 7-16=-105/0, 6-17=-128/89, 5-18=-118/102,

4-19=-129/79, 8-15=-130/90, 9-14=-109/91,

10-13=-161/100

NOTES

1) Unbalanced roof live loads have been considered for this design

- Wind ASCE 7-22, Vult=130mph (3-second gust)
Vasd=101mph, TCDL=6 0psf; BCDL=6 0psf, h=25ft;
B=45ft; L=24ft; eave=2ft, Cat. II, Exp B, Enclosed
MWFRS (directional) and C-C Zone3 zone; cantilever
left and right exposed, end vertical left and right
exposed, C-C for members and forces & MWFRS for
reactions shown, Lumber DOL=1 60 plate grip
DOL=1 60
- Truss designed for wind loads in the plane of the truss
only. For studs exposed to wind (normal to the face),
see Standard Industry Gable End Details as applicable,
or consult qualified building designer as per ANSI/TPI 1
- Building Designer / Project engineer responsible for
verifying applied roof live load shown covers rain loading
requirements specific to the use of this truss component.
- All plates are 1 5x4 (||) MT20 unless otherwise
indicated
- Gable requires continuous bottom chord bearing
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10 0 psf bottom
chord live load nonconcurrent with any other live loads
- * This truss has been designed for a live load of 20 0psf
on the bottom chord in all areas where a rectangle
3-06-00 tall by 2-00-00 wide will fit between the bottom
chord and any other members
- Provide mechanical connection (by others) of truss to
bearing plate capable of withstanding 88 lb uplift at joint
2, 23 lb uplift at joint 17, 45 lb uplift at joint 18, 27 lb uplift
at joint 15, 27 lb uplift at joint 14, 34 lb uplift at joint 13
and 88 lb uplift at joint 2
- This truss design requires that a minimum of 7/16"
structural wood sheathing be applied directly to the top
chord and 1/2" gypsum sheetrock be applied directly to
the bottom chord

LOAD CASE(S) Standard

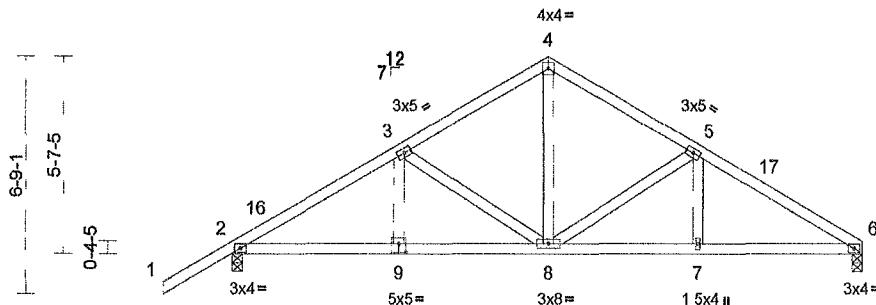
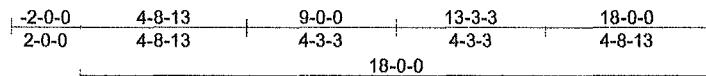
Julius Lee PE No. 34869
MiTek Inc DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd Chesterfield, MO 63017
Date

October 23, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown and is for an individual building component, not a truss system. Before use the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpiinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcsccomponents.com).

MiTek
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com



Job	Truss	Truss Type	Qty	Ply	
1025-005	D02	Common	2	1	Job Reference (optional)

T38942971

Mayo Truss Company Inc. Mayo, FL - 32066,

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 22 11:42:22
ID: h1D1uM0BERD4ZHTMVbkn9yTVd8-Rfc?PsB70Hq3NSgPqnL8w3u1TxbGKw/CDol7J4zJC?F

Page 1

Scale = 1 65.5

Plate Offsets (X, Y). [9 0-2-8,0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.25	Vert(LL)	-0.03	8.9	>999	240	MT20
TCDL	10.0	Lumber DOL	1.25	BC	0.31	Vert(CT)	-0.06	8.9	>999	180	
BCLL	0.0*	Rep Stress Incr	YES	WB	0.17	Horz(CT)	0.02	6	n/a	n/a	
BCDL	10.0	Code	FBC2023/TPI2014	Matrix-AS						Weight: 91 lb	FT = 20%

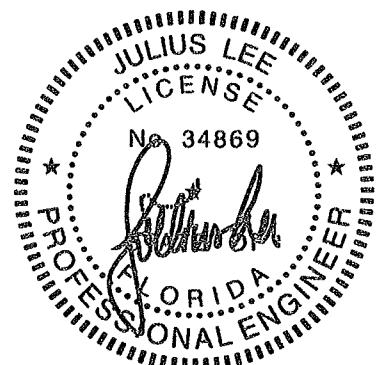
LUMBERTOP CHORD 2x4 SP No 2
BOT CHORD 2x4 SP No 2
WEBS 2x4 SP No.2**BRACING**TOP CHORD Structural wood sheathing directly applied
BOT CHORD Rigid ceiling directly appliedREACTIONS (size) 2=0-3-8, 6=0-3-8
Max Horiz 2=121 (LC 11)
Max Uplift 2=-107 (LC 12), 6=-35 (LC 12)
Max Grav 2=847 (LC 1), 6=713 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/60, 2-3=-1108/133, 3-4=-783/143,
4-5=-785/160, 5-6=-1123/157

BOT CHORD 2-8=-67/904, 7-8=-65/935, 6-7=-65/935

WEBS 4-8=-52/481, 5-8=-390/106, 3-8=-352/97,
3-9=0/181, 5-7=0/187**NOTES**


- 1) Unbalanced roof live loads have been considered for this design
- 2) Wind ASCE 7-22, Vult=130mph (3-second gust)
Vasd=101mph TCDL=6 0psf; BCDL=6 0psf; h=25ft;
B=45ft; L=24ft; eave=4ft; Cat. II, Exp. B, Enclosed,
MWFRS (directional) and C-C Zone3 -2-0-0 to 1-0-0,
Zone1 1-0-0 to 9-0-0, Zone2 9-0-0 to 13-3-3, Zone1
13-3-3 to 18-0-0 zone, cantilever left and right exposed,
end vertical left and right exposed, C-C for members and
forces & MWFRS for reactions shown, Lumber
DOL=1.60 plate grip DOL=1.80
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads

5) * This truss has been designed for a live load of 20.0 psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss bearing plate capable of withstanding 35 lb uplift at joint 6 and 107 lb uplift at joint 2

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord

LOAD CASE(S) Standard

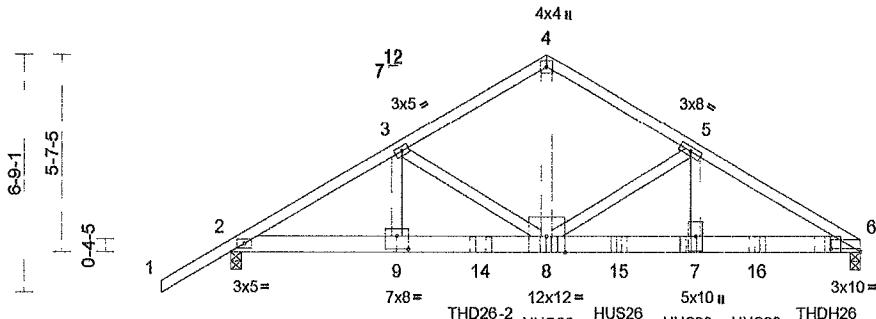
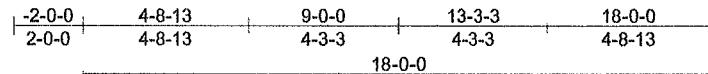
Julius Lee PE No. 34869
MiTek Inc DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date

October 23, 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpiinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcsccomponents.com)

16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com



Job	Truss	Truss Type	Qty	Ply	
1025-005	D03	Common Girder	1	3	Job Reference (optional)

T38942972

Mayo Truss Company Inc., Mayo, FL 32066

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 22 11.42.22
ID:6j4nEjbZTNMNUepJXlyQbNyTVcq-RfC?PsB70Hq3NSgPqnL8w3uITxbGKW/CDol7J4zJC?f

Page: 1

Scale = 1 65.5

Plate Offsets (X, Y) [6 0-10-0,0-1-1], [9 0-4-0,0-4-8]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20 0	Plate Grip DOL	1.25	TC	0.54	Vert(LL)	-0.10	8-9	>999	240	MT20
TCDL	10 0	Lumber DOL	1.25	BC	0.57	Vert(CT)	-0.19	8-9	>999	180	
BCLL	0 0*	Rep Stress Incr	NO	WB	0.57	Horz(CT)	0.05	6	n/a	n/a	
BCDL	10 0	Code	FBC2023/TPI2014	Matrix-MS						Weight: 315 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2

BOT CHORD 2x6 SP No 2 *Except* 9-6 2x6 SP 2400F
2 0E

WEBS 2x4 SP No 2

BRACINGTOP CHORD Structural wood sheathing directly applied or
5-11-3 oc purlinsBOT CHORD Rigid ceiling directly applied or 10-0-0 oc
bracing

REACTIONS (size) 2=0-3-8, 6=0-3-8

Max Horiz 2=121 (LC 7)

Max Uplift 2=412 (LC 8), 6=-506 (LC 8)

Max Grav 2=4865 (LC 1), 6=8067 (LC 14)

FORCES (lb) Maximum Compression/Maximum
TensionTOP CHORD 1-2=0/60, 2-3=-9348/680, 3-4=-7858/609,
4-5=-7877/610, 5-6=-12035/793

BOT CHORD 2-8=-531/8085, 7-8=-634/10292,

6-7=-634/10292

WEBS 3-9=-67/1404, 3-8=-1568/156,
4-8=-535/7641, 5-8=-4243/277,

5-7=-163/4020

NOTES1) 3-ply truss to be connected together with 10d
(0 131x3") nails as follows.Top chords connected as follows 2x4 - 1 row at 0-9-0
oc.Bottom chords connected as follows 2x6 - 3 rows
staggered at 0-4-0 oc.

Web connected as follows 2x4 - 1 row at 0-9-0 oc,

Except member 4-8 2x4 - 1 row at 0-6-0 oc, member 5-7
2x4 - 2 rows staggered at 0-5-0 oc.2) All loads are considered equally applied to all piles,
except if noted as front (F) or back (B) face in the LOAD
CASE(S) section Ply to ply connections have been
provided to distribute only loads noted as (F) or (B),
unless otherwise indicated3) Unbalanced roof live loads have been considered for
this design4) Wind ASCE 7-22, Vult=130mph (3-second gust)
Vasd=101mph, TCDL=6 0psf, BCDL=6 0psf, h=25ft,B=45ft; L=24ft, eave=4ft; Cat. II, Exp B Enclosed,
MWFRS (directional), cantilever left and right exposed,
end vertical left and right exposed Lumber DOL=1 60

plate grip DOL=1 60

5) Building Designer / Project engineer responsible for
verifying applied roof live load shown covers rain loading
requirements specific to the use of this truss component.

6) This truss has been designed for a 10 0 psf bottom

chord live load nonconcurrent with any other live loads

7) * This truss has been designed for a live load of 20 0psf
on the bottom chord in all areas where a rectangle

3-06-00 tall by 2-00-00 wide will fit between the bottom

chord and any other members.

8) Provide mechanical connection (by others) of truss to
bearing plate capable of withstanding 506 lb uplift at joint

6 and 412 lb uplift at joint 2

9) Use MiTek THD26-2 (With 18-16d nails into Girder &
12-10d nails into Truss) or equivalent at 7-1-8 from the
left end to connect truss(es) to back face of bottom

chord

10) Use MiTek HUS26 (With 14-16d nails into Girder &
6-16d nails into Truss) or equivalent spaced at 2-0-0 oc
max starting at 9-0-12 from the left end to 15-0-12 to

connect truss(es) to back face of bottom chord

11) Use MiTek THDH26 (With 20-16d nails into Girder &
8-16d nails into Truss) or equivalent at 17-0-12 from the

left end to connect truss(es) to back face of bottom

chord

12) Fill all nail holes where hanger is in contact with lumber

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced) Lumber Increase=1.25,

Plate Increase=1 25

Uniform Loads (lb/ft)

Vert: 1-4=-60, 4-6=-60, 2-6=-20

Concentrated Loads (lb)

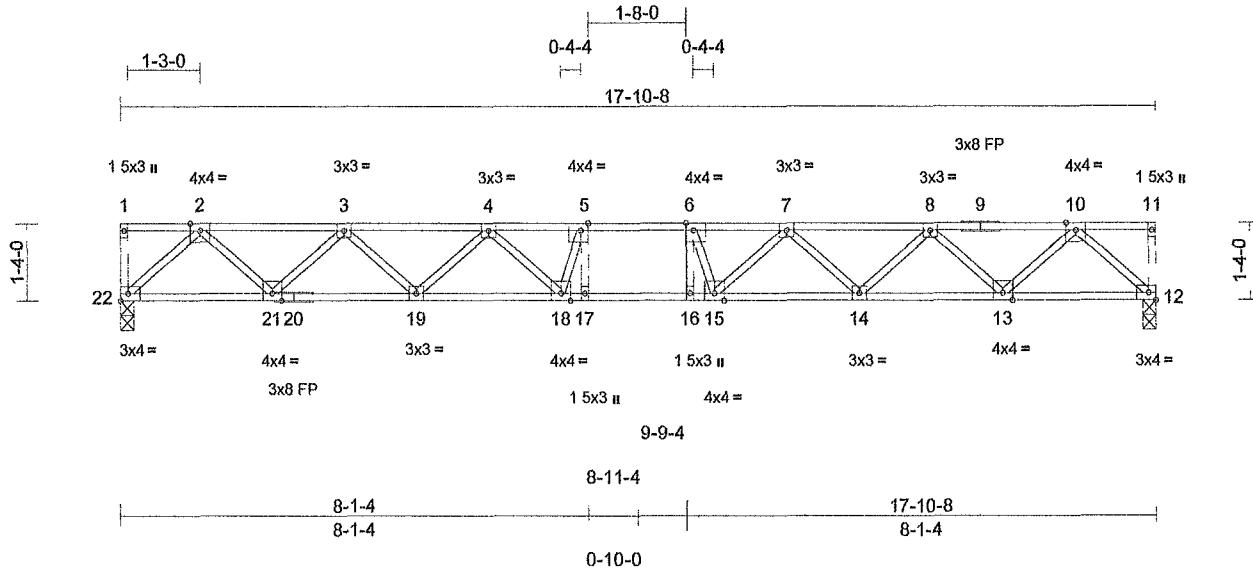
Vert: 8=-1531 (B), 7=-1531 (B), 11=-1535 (B),
14=-3222 (B), 15=-1531 (B), 16=-1531 (B)

Julius Lee PE No. 34869
MiTek Inc DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date

October 23, 2025

WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpiinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcsccomponents.com)


MiTek
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	T38942973
1025-005	F01	Floor	7	1	Job Reference (optional)

Mayo Truss Company Inc. Mayo, FL 32066,

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 Mitek Industries, Inc. Wed Oct 22 11:42:22
ID:P8J9AvgVCXjxUBvbjH8QgZyTY?4-RIC?PsB70Hq3NSgPqnL8w3uiTXbGKW/CDol7J4zJC?r

Page: 1

Scale = 1 39.5

Plate Offsets (X, Y). [5 0-1-8,Edge], [6 0-1-8,Edge]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	l/dell	L/d	PLATES	GRIP
TCLL	40 0	Plate Grip DOL	1 00	TC	0.42	Vert(LL)	-0 23	16-17	>913	360	MT20
TCDL	10 0	Lumber DOL	1 00	BC	0.86	Vert(CT)	-0 32	16-17	>663	240	
BCLL	0 0	Rep Stress Incr	YES	WB	0.29	Horz(CT)	0 06	12	n/a	n/a	
BCDL	5 0	Code	FBC2023/TPI2014	Matrix-S							Weight, 92 lb FT = 20%F 11%E

LUMBER

TOP CHORD 2x4 SP No.2(flat)

BOT CHORD 2x4 SP No 2(flat) *Except* 20-12'2x4 SP
No 1(flat)

WEBS 2x4 SP No.2(flat)

BRACING

TOP CHORD Structural wood sheathing directly applied or
6-0-0 oc purlins, except end verticals

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc
bracing

REACTIONS (size) 12=0-2-12, 22=0-2-12

Max Grav 12=976 (LC 1), 22=976 (LC 1)

FORCES (lb) Maximum Compression/Maximum
Tension

TOP CHORD 1-22=-38/0, 11-12=-38/0, 1-2=0/0

2-3=-1746/0, 3-4=-2892/0, 4-5=-3497/0,

5-6=-3555/0, 6-7=-3497/0, 7-8=-2892/0,

8-10=-1746/0, 10-11=0/0

BOT CHORD 21-22=0/1006, 19-21=0/2456, 18-19=0/3303,

17-18=0/3555, 16-17=0/3555 15-16=0/3555,

14-15=0/3303, 13-14=0/2456, 12-13=0/1006

WEBS 5-17=-311/319, 6-16=-311/320, 2-22=-1368/0,

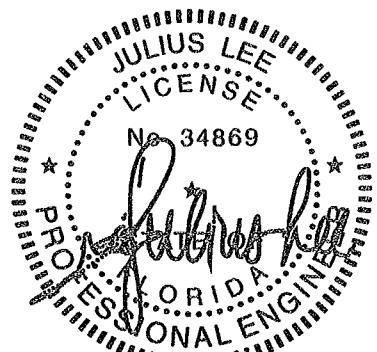
2-21=0/1028, 3-21=-988/0, 3-19=0/606,

4-19=-572/0, 4-18=0/448, 5-18=-540/239,

10-12=-1368/0, 10-13=0/1028, 8-13=-988/0,

8-14=0/607, 7-14=-572/0, 7-15=0/448,

6-15=-540/238


NOTES

1) Unbalanced floor live loads have been considered for
this design

2) Provide mechanical connection (by others) of truss to
bearing plate at joint(s) 12, 22

3) Recommend 2x6 strongbacks, on edge, spaced at
10-00-00 oc and fastened to each truss with 3-10d
(0 131" X 3") nails. Strongbacks to be attached to walls
at their outer ends or restrained by other means

LOAD CASE(S) Standard

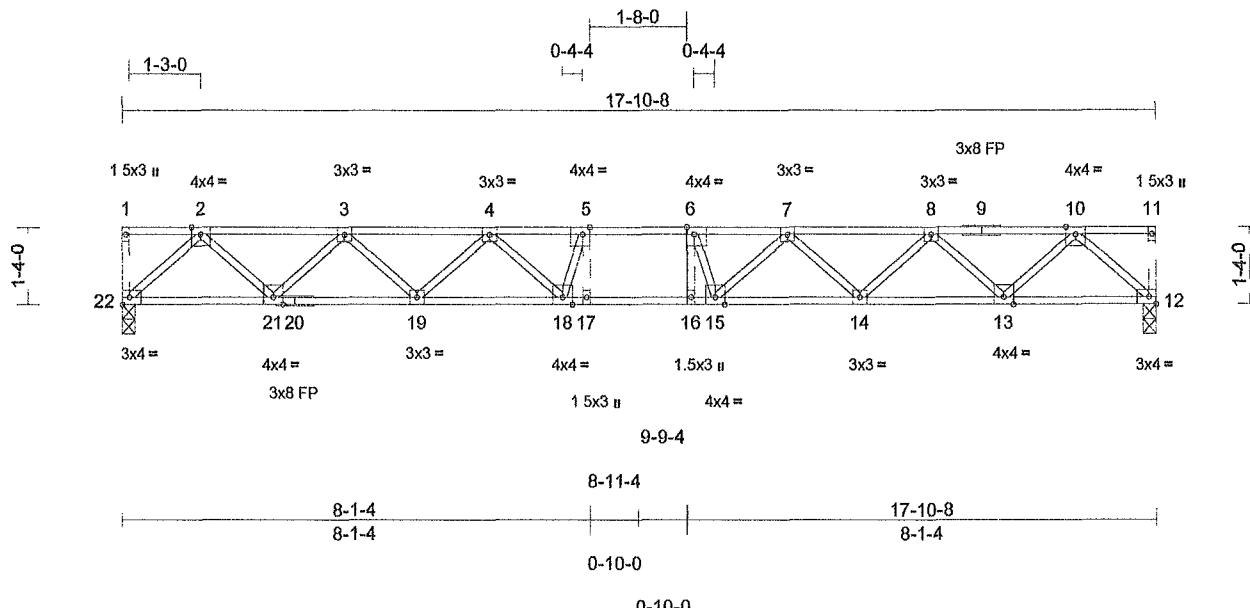
Julius Lee PE No. 34869
Mitek Inc DBA Mitek USA FL Cert 6634
16023 Swingley Ridge Rd Chesterfield, MO 63017
Date

October 23, 2025

WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MH-7473 rev 1/2/2023 BEFORE USE.

Design valid for use only with Mitek® connectors. This design is based only upon parameters shown and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpiinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscscomponents.com)

Mitek
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / Mitek-US.com


Job	Truss	Truss Type	Qty	Ply	
1025-005	F02	Floor	15	1	Job Reference (optional)

T38942974

Mayo Truss Company Inc. Mayo FL - 32066,

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 22 11:42:23
ID:iUEoeJluYhcyqGxxdFm3S1yTY_z-Rfc?PsB70Hq3NSgPqnL8w3uiTXbGKWrCDol7J4zJC?f

Page: 1

Scale = 1 39.5

Plate Offsets (X, Y) [5.0-1-8,Edge], [6.0-1 8,Edge]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	40 0	Plate Grip DOL	1 00	TC	0.42	Vert(LL)	-0 23	16-17	>913	360	MT20
TCDL	10 0	Lumber DOL	1 00	BC	0.86	Vert(CT)	-0 32	16-17	>663	240	
BCLL	0 0	Rep Stress Incr	YES	WB	0.29	Horz(CT)	0 06	12	n/a	n/a	
BCDL	5 0	Code	FBC2023/TPI2014	Matrix-S							Weight: 92 lb FT = 20%F, 11%E

LUMBER

TOP CHORD 2x4 SP No.2(flat)

BOT CHORD 2x4 SP No 2(flat) *Except* 20-12 2x4 SP
No 1(flat)

WEBS 2x4 SP No.2(flat)

BRACINGTOP CHORD Structural wood sheathing directly applied or
6-0-0 oc purlins, except end verticalsBOT CHORD Rigid ceiling directly applied or 10-0-0 oc
bracing**REACTIONS** (size) 12=0-2-12, 22=0-2-12

Max Grav 12=976 (LC 1) 22=976 (LC 1)

FORCES (lb) - Maximum Compression/Maximum
TensionTOP CHORD 1-22=-38/0, 11-12=-38/0, 1-2=0/0,
2-3=-1746/0, 3-4=-2892/0, 4-5=-3497/0,
5-6=-3555/0, 6-7=-3497/0, 7-8=-2892/0,
8-10=-1746/0, 10-11=0/0BOT CHORD 21-22=0/1006, 19-21=0/2456 18-19=0/3303,
17-18=0/3555, 16-17=0/3555, 15-16=0/3555

14-15=0/3303, 13-14=0/2456, 12-13=0/1006

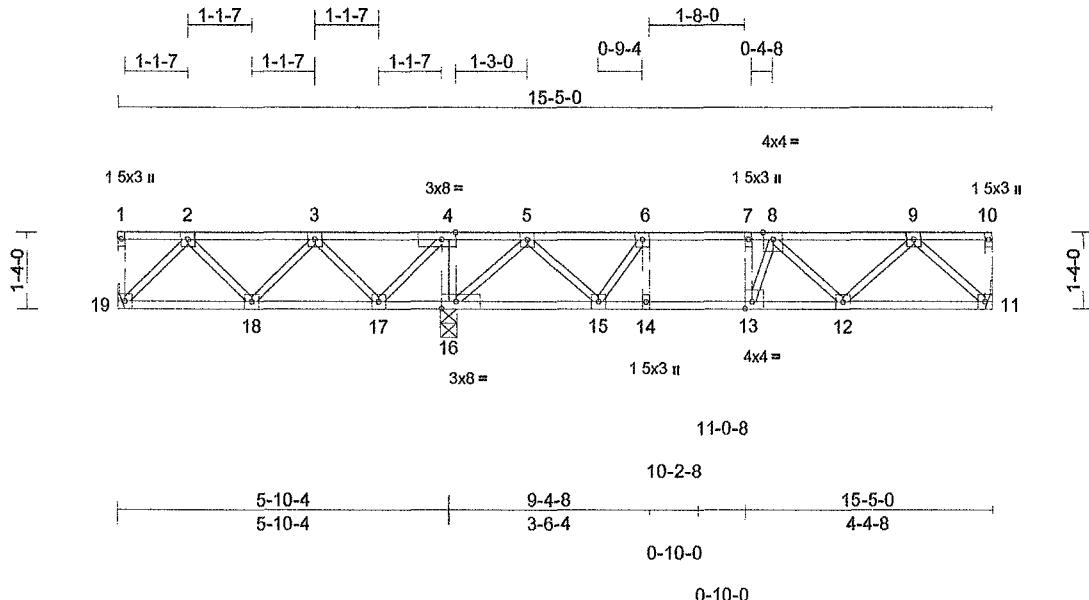
WEBS 5-17=-311/319, 6-16=-311/320, 2-22=-1368/0,
2-21=0/1028, 3-21=-988/0, 3-19=0/606,
4-19=-572/0, 4-18=0/448, 5-18=-540/239,
10-12=-1368/0, 10-13=0/1028, 8-13=-988/0,
8-14=0/607, 7-14=-572/0 7-15=0/448,
6-15=-540/238**NOTES**1) Unbalanced floor live loads have been considered for
this design2) Provide mechanical connection (by others) of truss to
bearing plate at joint(s) 12, 223) Recommend 2x6 strongbacks, on edge, spaced at
10-00-00 oc and fastened to each truss with 3-10d
(0 131" X 3") nails. Strongbacks to be attached to walls
at their outer ends or restrained by other means**LOAD CASE(S)** Standard

Julius Lee PE No. 34869
MiTek Inc DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd Chesterfield, MO 63017
Date

October 23, 2025

WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpiinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcsccomponents.com)


16023 Swingley Ridge Rd
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	
1025-005	F03	Floor	4	1	T38942975

Mayo Truss Company Inc. Mayo, FL - 32066,

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 Mitek Industries Inc. Wed Oct 22 11:42:23
ID:N9Mv85j26AnKHQU6Sr3rlyTW5f-Rfc?PbB70Hq3NSgPqnL8w3ulTXbGKWrCDol7J4zJC?f

Page 1

Scale = 1 40 3

Plate Offsets (X, Y) [4 0-3-0,Edge], [13 0-1-8,Edge] [16 0-3-0,Edge]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.37	Vert(LL)	-0.04	12-13	>999	360	MT20
TCDL	10.0	Lumber DOL	1.00	BC	0.50	Vert(CT)	-0.06	12-13	>999	240	
BCLL	0.0	Rep Stress Incr	YES	WB	0.13	Horz(CT)	0.01	11	n/a	n/a	
BCDL	5.0	Code	FBC2023/TPI2014	Matrix-S						Weight: 83 lb	FT = 20%F, 11%E

LUMBER

TOP CHORD 2x4 SP No.2(flat)
BOT CHORD 2x4 SP No.2(flat)
WEBS 2x4 SP No 2(flat)

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals
BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing

REACTIONS (size) 11= Mechanical, 16=0-3-8, 19= Mechanical
Max Grav 11=485 (LC 4), 16=960 (LC 1)
19=302 (LC 8)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-19=-34/0, 10-11=-35/0, 1-2=0/0,
2-3=-319/15, 3-4=-174/159, 4-5=0/435,
5-6=-602/0, 6-7=-842/0, 7-8=-842/0,
8-9=-710/0, 9-10=0/0

BOT CHORD 18-19=0/254, 17-18=-67/360, 16-17=-435/0,
15-16=0/271, 14-15=0/842, 13-14=0/842,
12-13=0/892, 11-12=0/480

WEBS 4-16=-485/0, 6-14=0/126, 7-13=-68/138,
5-16=-723/0, 5-15=0/478, 6-15=-443/0,
9-11=-652/0, 9-12=0/320, 8-12=-254/0,
8-13=-214/75, 2-19=-362/0, 2-18=-38/97,
3-18=-60/76, 3-17=-385/0, 4-17=0/419

NOTES

- 1) Unbalanced floor live loads have been considered for this design
- 2) All plates are 3x3 (=) MT20 unless otherwise indicated
- 3) Refer to girder(s) for truss to truss connections
- 4) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 5) CAUTION, Do not erect truss backwards

LOAD CASE(S) Standard

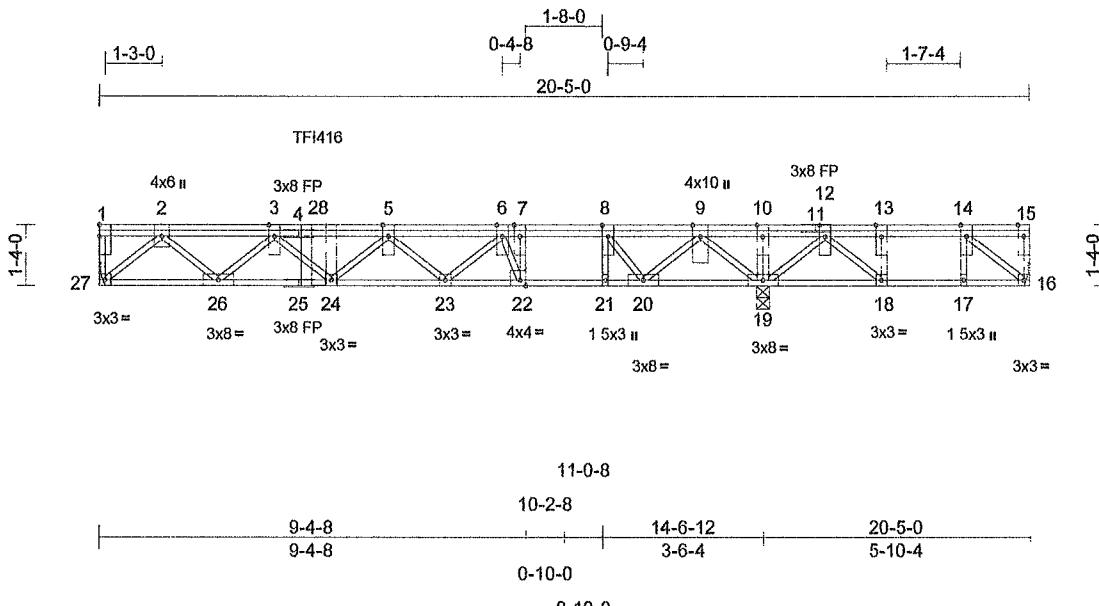
Julius Lee PE No. 34869
Mitek Inc DBA Mitek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date

October 23, 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev 1/2/2023 BEFORE USE.

Design valid for use only with Mitek® connectors. This design is based only upon parameters shown and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpiinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcsccomponents.com)

Mitek®


16023 Swingley Ridge Rd
Chesterfield, MO 63017
314.434.1200 / Mitek-US.com

Job	Truss	Truss Type	Qty	Ply	
1025-005	F04	Floor Girder	1	2	T38942976

Mayo Truss Company, Inc. Mayo, FL - 32066,

Run: 8.83 S Sep 3 2025 Print: 8 830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 22 11:42:23
ID:50UXP0fOAE_1WUnEWgq7s8yTVyl-RfC?PsB70Hq3NsGpqnL8w3uLTxbGKwrcDol7J4zJC?f

Page: 1

Scale = 1 50.2

Plate Offsets (X, Y) [22 0-1-8, Edge]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.82	Vert(LL)	-0.13	22-23	>999	360	MT20
TCDL	10.0	Lumber DOL	1.00	BC	0.89	Vert(CT)	-0.18	22-23	>994	240	
BCLL	0.0	Rep Stress Incr	NO	WB	0.29	Horz(CT)	0.03	19	n/a	n/a	
BCDL	5.0	Code	FBC2023/TPI2014	Matrix-S						Weight. 268 lb	FT = 20%F, 11%E

LUMBER

TOP CHORD 2x4 SP No.2(flat)
BOT CHORD 2x4 SP No.2(flat)
WEBS 2x4 SP No.2(flat)

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals
BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing

REACTIONS (size) 16= Mechanical, 19=0-3-8, 27= Mechanical
Max Uplift 16=-198 (LC 3)
Max Grav 16=205 (LC 4), 19=1956 (LC 9)
27=1487 (LC 10)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-27=106/0, 15-16=-196/0, 1-2=0/0, 2-3=3034/0, 3-5=-4667/0, 5-6=-4158/0, 6-7=-2488/0, 7-8=-2488/0, 8-9=-1359/0, 9-10=0/1536, 10-12=0/1536, 12-13=-142/451, 13-14=-142/451, 14-15=0/0
BOT CHORD 26-27=0/1567, 24-26=0/4465, 23-24=0/4862, 22-23=0/3324, 21-22=0/2488, 20-21=0/2488, 19-20=-353/0, 18-19=-1044/0, 17-18=-451/142, 16-17=-451/142

WEBS 7-22=0/2064, 8-21=0/362, 10-19=-419/0, 2-27=-2081/0, 2-26=0/1989, 3-26=-1942/0, 3-24=0/275, 5-24=-265/0, 5-23=-998/0, 6-23=0/1181, 6-22=-2450/0, 9-19=-1646/0, 9-20=0/2058, 8-20=-1943/0, 12-19=-709/0, 14-16=-184/587, 12-18=0/938, 13-18=-545/0, 14-17=-52/4

NOTES

- 1) Fasten trusses together to act as a single unit as per standard industry detail, or loads are to be evenly applied to all plies
- 2) Unbalanced floor live loads have been considered for this design

- 3) All plates are 3x8 (||) MT20 unless otherwise indicated
- 4) Refer to girder(s) for truss to truss connections
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 198 lb uplift at joint 16
- 6) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0 131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means
- 7) CAUTION: Do not erect truss backwards
- 8) Use MiTek TFI416 (With 10d nails into Girder & 2-10d x 1-1/2 nails into Truss) or equivalent at 4-10-4 from the left end to connect truss(es) to front face of top chord
- 9) Fill all nail holes where hanger is in contact with lumber
- 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Floor Live (balanced) Lumber Increase=1.00, Plate Increase=1.00
Uniform Loads (lb/ft)
Vert: 16-27=10, 1-15=-100
Concentrated Loads (lb)
Vert: 28=1126 (F)

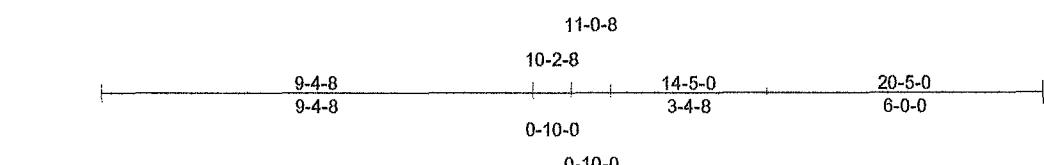
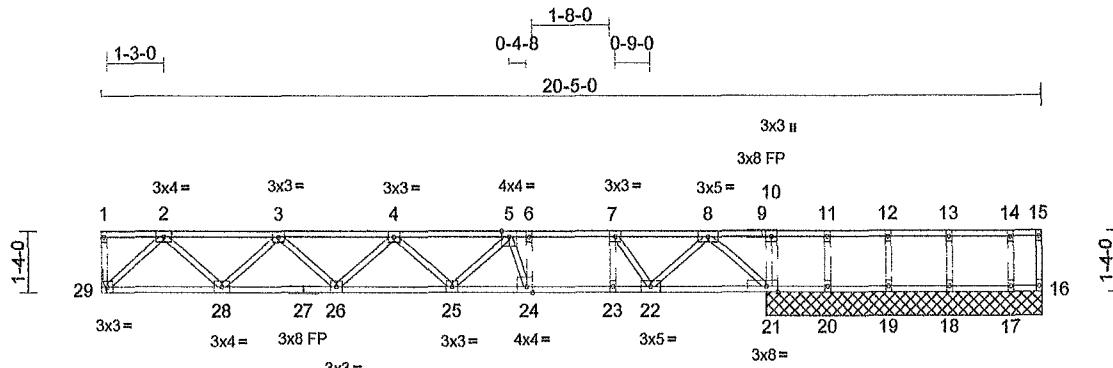
Julius Lee PE No. 34869
MiTek Inc DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date

October 23, 2025

 WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpiinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcsccomponents.com).

MiTek®
16023 Swingley Ridge Rd
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com



Job	Truss	Truss Type	Qty	Ply		
1025-005	F05	Floor	1	1	Job Reference (optional)	T38942977

Mayo Truss Company Inc. Mayo FL - 32066,

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries Inc. Wed Oct 22 11:42:24

Page: 1

ID:IEGw2iCFLMnV1Y14DLfVjyTVy_-RFC?PsB70Hq3NSgPqnl8w3u1TxGKWrCDol7J4zJC?7

Scale = 1 49 6

Plate Offsets (X, Y). [21 0-3-0,Edge], [24 0-1-8,Edge]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	40 0	Plate Grip DOL	1 00	TC	0 75	Vert(LL)	-0 18	24-25	>991	360	MT20
TCDL	10 0	Lumber DOL	1 00	BC	0 70	Vert(CT)	-0 24	24-25	>724	240	
BCLL	0 0	Rep Stress Incr	YES	WB	0 24	Horz(CT)	0 03	16	n/a	n/a	
BCDL	5 0	Code	FBC2023/TPI2014	Matrix-S							Weight: 103 lb FT = 20%F, 11%E

LUMBER

TOP CHORD 2x4 SP No 1(flat) *Except* 9-15 2x4 SP No 2 (flat)

- 1) Unbalanced floor live loads have been considered for this design

BOT CHORD 2x4 SP No.2(flat) *Except* 27 16.2x4 SP 2400F 2 0E(flat)

- 2) All plates are 1 5x3 (||) MT20 unless otherwise indicated

WEBS 2x4 SP No.2(flat)

- 3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web)

OTHERS 2x4 SP No.2(flat)

- 4) Gable studs spaced at 1-4-0 oc.

BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals

- 5) Refer to girder(s) for truss to truss connections

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 36 lb uplift at joint 20

REACTIONS (size) 16=6-0-0, 17=6-0-0, 18=6-0-0, 19=6-0-0, 20=6-0-0, 21=6-0-0, 29= Mechanical

- 7) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0 131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

Max Uplift 20=36 (LC 3)

- 8) CAUTION: Do not erect truss backwards

Max Grav 16=13 (LC 4), 17=124 (LC 1), 18=150 (LC 4), 19=163 (LC 1), 20=124 (LC 4), 21=922 (LC 1), 29=792 (LC 3)

LOAD CASE(S) Standard


FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-29=-37/0 15-16=-12/0, 1-2=0/0, 2-3=-1357/0, 3-4=-2121/0, 4-5=-2349/0, 5-6=-1938/0, 6-7=-1938/0, 7-8=-1376/0, 8-10=0/0, 10-11=0/0, 11-12=0/0, 12-13=0/0, 13-14=0/0, 14-15=0/0

BOT CHORD 28-29=0/809, 26-28=0/1871, 25-26=0/2363, 24-26=0/2196, 23-24=0/1938, 22-23=0/1938, 21-22=0/758, 20-21=0/0, 19-20=0/0, 18-19=0/0, 17-18=0/0, 16-17=0/0

WEBS 6-24=0/507, 7-23=0/469, 10-21=-188/0, 2-29=-1099/0, 2-28=0/762, 3-28=-716/0, 3-26=0/347, 4-26=-338/0, 4-25=-63/112, 5-25=-42/278, 5-24=-847/0, 8-21=-1009/0, 8-22=0/861, 7-22=-1008/0, 11-20=-124/12, 12-19=-141/0, 13-18=-137/0, 14-17=-112/0

NOTES

Julius Lee PE No. 34869
MiTek Inc DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd, Chesterfield, MO 63017
Date

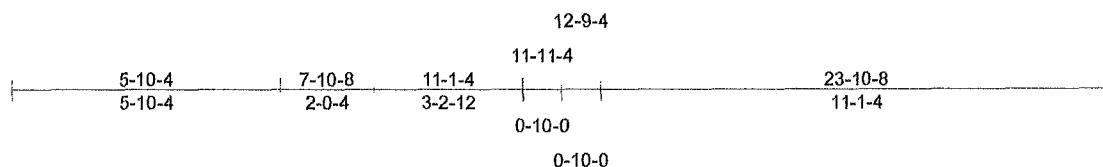
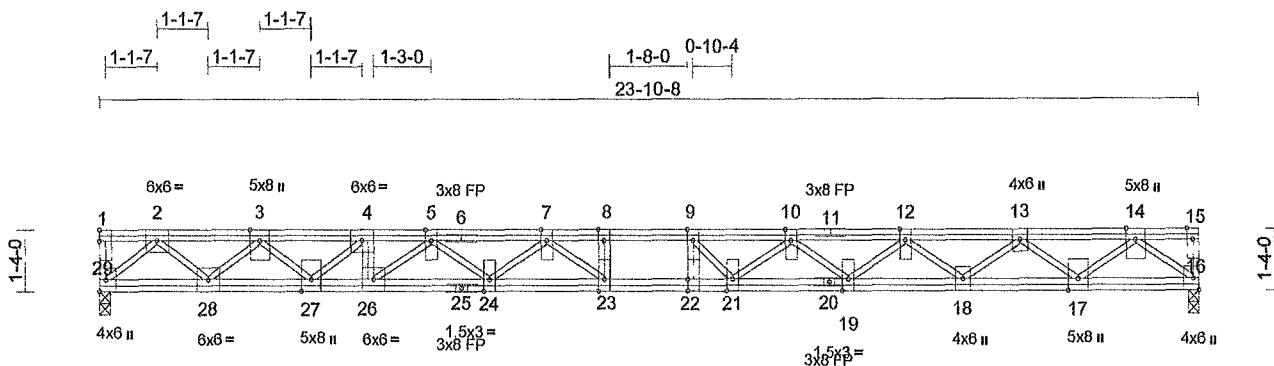
October 23, 2025

 WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpiinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbccomponents.com)

MiTek®

16023 Swingley Ridge Rd
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	T38942980
1025-005	F10	Floor	11	1	Job Reference (optional)

Mayo Truss Company Inc. Mayo, FL 32066,

Run 8.83 S Sep 3 2025 Print. 8.830 S Sep 3 2025 MiTek Industries Inc. Wed Oct 22 11:42:25
ID:x_t4e7t1?MNvWanX9B25mYyTY6Z-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDol7J4zJc?I

Page: 1

Scale = 1.49 7

Plate Offsets (X, Y) [22 0-3-0, Edge]

Loading	(psf)	Spacing	1 4-0	CSI	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40 0	Plate Grip DOL	1 00	TC	0 36	Vert(LL)	-0 40	23	>717	360	MT20
TCDL	10 0	Lumber DOL	1 00	BC	0 85	Vert(CT)	-0 55	23	>521	240	
BCLL	0 0	Rep Stress Incr	NO	WB	0 42	Horz(CT)	0.07	16	n/a	n/a	
BCDL	5 0	Code	FBC2023/TPI2014	Matrix-S							Weight. 188 lb FT = 20%F, 11%E

LUMBER

TOP CHORD 2x4 SP No 2(flat)
BOT CHORD 2x4 SP No 2(flat) *Except* 29-20,25-16 2x4
SP No 1(flat)
WEBS 2x4 SP No 2(flat)

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing

REACTIONS (size) 16=0-2-12, 29=0-2-12
Max Grav 16=981 (LC 1), 29=1211 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-29=-31/0, 15-16=-30/0, 1-2=0/0,
2-3=-2357/0, 3-4=-4320/0, 4-5=-5284/0,
5-7=-5852/0, 7-8=-5902/0, 8-9=-5902/0,
9-10=-5619/0, 10-12=-4840/0,
12-13=-3661/0, 13-14=-2057/0, 14-15=0/0

BOT CHORD 28-29=0/1274, 27-28=0/3427, 26-27=0/5284,
24-26=0/5660, 23-24=0/5988, 22-23=0/5902,
21-22=0/5902, 19-21=0/5305, 18-19=0/4349,

WEBS 17-18=0/2957, 16-17=0/1137

4-26=0/284, 8-23=-155/119, 9-22=-129/300,
5-26=-479/0, 5-24=0/337, 7-24=-350/60,
7-23=-448/395, 14-16=-1474/0,
14-17=0/1217, 13-17=-1191/0, 13-18=0/932,

12-18=-911/0, 12-19=0/849, 10-19=-616/0,
10-21=0/585, 9-21=-711/90, 2-29=-1728/0,

2-28=0/1506, 3-28=-1487/0, 3-27=0/1242,

4-27=-1277/0

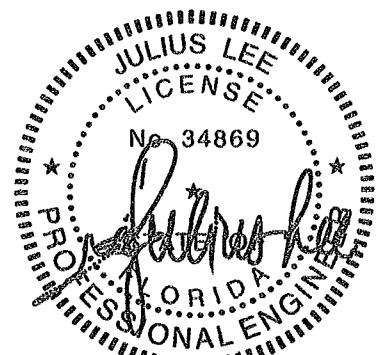
NOTES

1) Unbalanced floor live loads have been considered for this design

2) All plates are 3x8 (II) MT20 unless otherwise indicated

3) The Fabrication Tolerance at joint 25 = 11%, joint 20 = 11%

- Provide mechanical connection (by others) of truss to bearing plate at joint(s) 29, 16
- Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0 131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- CAUTION, Do not erect truss backwards.
- Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 450 lb down at 5-10-4 on top chord. The design/selection of such connection device(s) is the responsibility of others
- In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B)


LOAD CASE(S) Standard

- Dead + Floor Live (balanced) Lumber Increase=1 00, Plate Increase=1 00
- Uniform Loads (lb/ft)

Vert: 16-29=-.7, 1-15=-.67

Concentrated Loads (lb)

Vert: 4=-450 (F)

Julius Lee PE No. 34869
MiTek Inc DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date

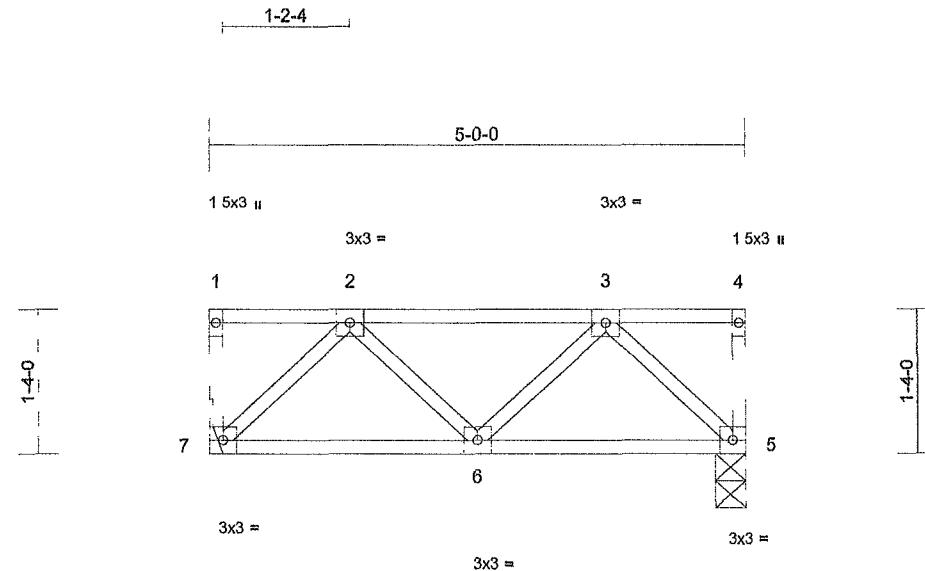
October 23, 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown and is for an individual building component, not a truss system. Before use the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpiinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	
1025-005	F11	Floor	3	1	Job Reference (optional)


Mayo Truss Company Inc. Mayo, FL 32066,

Run. 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 22 11:42:25

T38942981

Page 1

ID:solY7ylbkfe|jka0TK8oHyTVsA-RfC?PsB70Hq3NSgPqnL8w3uITxbGKWrCDol7J4zJC?

Scale = 1 21.4

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.21	Vert(LL)	0.00	6	>999	360	MT20
TCDL	10.0	Lumber DOL	1.00	BC	0.09	Vert(CT)	0.00	6-7	>999	240	
BCLL	0.0	Rep Stress Incr	YES	WB	0.05	Horz(CT)	0.00	5	n/a	n/a	
BCDL	5.0	Code	FBC2023/TPI2014	Matrix-P						Weight 28 lb	FT = 20%F, 11%E

LUMBER

TOP CHORD 2x4 SP No.2(flat)
BOT CHORD 2x4 SP No 2(flat)
WEBS 2x4 SP No 2(flat)

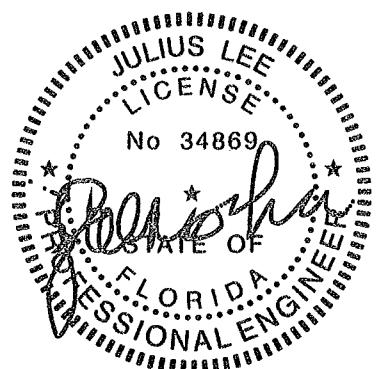
BRACING

TOP CHORD Structural wood sheathing directly applied or 5-0-0 oc purlins, except end verticals
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing

REACTIONS (size) 5=0-3-8, 7= Mechanical
Max Grav 5=268 (LC 1), 7=268 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1 7=-31/0, 4-5=-31/0, 1-2=0/0, 2-3=-249/0, 3-4=0/0


BOT CHORD 6-7=0/235, 5-6=0/235

WEBS 2-7=-327/0, 2-6=0/21, 3-6=0/21, 3-5=-327/0

NOTES

- 1) Refer to girder(s) for truss to truss connections
- 2) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0 131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

Julius Lee PE No. 34869
MiTek Inc DBA MiTek USA F1 Cert 6634
16023 Swingley Ridge Rd Chesterfield, MO 63017
Date

October 23, 2025

WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpiinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®

16023 Swingley Ridge Rd
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	
1025-005	F12	Floor Supported Gable	1	1	Job Reference (optional)

T38942982

Mayo Truss Company Inc. Mayo FL 32066,

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 22 11:42:25

Page: 1

ID:99gCbLo_4pXj?onwwRynamyTVs3-RIC?PsB70Hq3NSgPqrL8w3ulTXbGKw/CDol7J4zJC?

Scale = 1 33 7

Loading	(psf)	Spacing	1-4-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.05	Vert(LL)	n/a	-	n/a	999	MT20
TCDL	10.0	Lumber DOL	1.00	BC	0.01	Vert(TL)	n/a	-	n/a	999	
BCLL	0.0	Rep Stress Incr	YES	WB	0.01	Horiz(TL)	0.00	17	n/a	n/a	
BCDL	5.0	Code	FBC2023/TPI2014	Matrix-R						Weight: 78 lb	FT = 20%F, 11%E

LUMBER

TOP CHORD 2x4 SP No 2(flat)
BOT CHORD 2x4 SP No.2(flat)
WEBS 2x4 SP No.2(flat)
OTHERS 2x4 SP No 2(flat)

WEBS

2-31=-93/0, 3-30=-88/0, 4-28=-89/0,
5-27=-89/0, 6-26=-89/0, 7-25=-89/0,
8-24=-89/0, 9-23=-89/0, 10-22=-89/0,
11-21=-89/0, 12-20=-88/0, 14-19=-92/0,
15-18=-76/0

BRACING

TOP CHORD Structural wood sheathing directly applied or
6-0-0 oc purlins, except end verticals
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc
bracing

NOTES

- All plates are 1 5x3 (||) MT20 unless otherwise indicated
- Gable requires continuous bottom chord bearing
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- Gable studs spaced at 1-4-0 oc.
- Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0 131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard**REACTIONS (size)**

17=18-2-12, 18=18-2-12,
19=18-2-12, 20=18-2-12,
21=18-2-12, 22=18-2-12,
23=18-2-12, 24=18-2-12,
25=18-2-12, 26=18-2-12,
27=18-2-12, 28=18-2-12,
30=18-2-12, 31=18-2-12,
32=18-2-12

Max Grav 17=26 (LC 1), 18=82 (LC 1),
19=101 (LC 1), 20=97 (LC 1),
21=98 (LC 1), 22=98 (LC 1), 23=98
(LC 1) 24=98 (LC 1), 25=98 (LC
1), 26=98 (LC 1), 27=98 (LC 1),
28=98 (LC 1), 30=97 (LC 1),
31=103 (LC 1) 32=40 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension

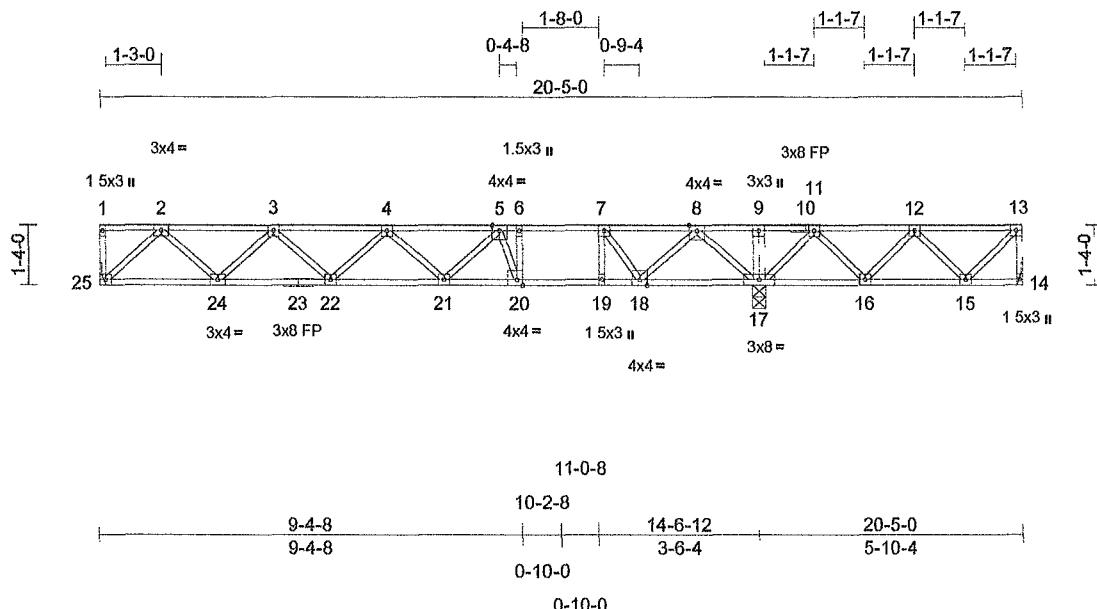
TOP CHORD 1-32=-37/0, 16-17=-21/0, 1-2=-3/0, 2-3=-3/0,
3-4=-3/0, 4-5=-3/0 5-6=-3/0, 6-7=-3/0,
7-8=-3/0, 8-9=-3/0, 9-10=-3/0, 10-11=-3/0,
11-12=-3/0, 12-14=-3/0, 14-15=-3/0,
15-16=-3/0
BOT CHORD 31-32=0/3, 30-31=0/3, 28-30=0/3, 27-28=0/3
26-27=0/3, 25-26=0/3, 24-25=0/3, 23-24=0/3,
22-23=0/3, 21-22=0/3, 20-21=0/3, 19-20=0/3,
18-19=0/3, 17-18=0/3

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date

October 23, 2025

 WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown and is for an individual building component, not a truss system. Before use the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpiinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcsccomponents.com)


16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply		
1025-005	F13	Floor	1	1		T38942983

Mayo Truss Company Inc. Mayo, FL 32066,

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 22 11:42:25
ID:Gfy6Kny80oc913oGQBghqcVTVrs-RFC?PsB70Hq3NSgPqnLBw3uTXbGKwFcDolJ4zJc?f

Page, 1

Scale = 1 50.6

Plate Offsets (X, Y) [20 0-1-8,Edge]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	In	(loc)	I/defl	L/d	PLATES	GRIP	
TCLL	40 0	Plate Grip DOL	1 00	TC	0 80	Vert(LL)	-0 18	20-21	>985	360	MT20	244/190
TCDL	10 0	Lumber DOL	1 00	BC	0 73	Vert(CT)	-0 24	20-21	>719	240		
BCLL	0 0	Rep Stress Incr	YES	WB	0.27	Horz(CT)	0 02	17	n/a	n/a		
BCDL	5 0	Code	FBC2023/TPI2014	Matrix-S							Weight: 108 lb	FT = 20%F, 11%E

LUMBER

TOP CHORD 2x4 SP No 1(flat) *Except* 10-13 2x4 SP
No 2(flat)

BOT CHORD 2x4 SP No.2(flat) *Except* 23-14.2x4 SP
2400F 2 0E(flat)

WEBS 2x4 SP No.2(flat)

BRACING TOP CHORD Structural wood sheathing directly applied or
6-0-0 oc purlins, except end verticals

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc
bracing, Except:
6-0-0 oc bracing 17-18,16-17,15-16

REACTIONS (size) 14= Mechanical, 17=0-3-8, 25= Mechanical

Max Uplift 14=67 (LC 3)

Max Grav 14=260 (LC 4), 17=1351 (LC 1),
25=736 (LC 3)

FORCES (lb) - Maximum Compression/Maximum
Tension

TOP CHORD 1-25=-37/0, 13-14=-256/69, 1-2=0/0,
2-3=-1238/0, 3-4=-1885/0, 4-5=-2003/0,
5-6=-1466/0, 6-7=-1466/0, 7-8=-825/0,
8-9=0/766, 9-11=0/766, 11-12=-186/338,
12-13=-162/85

BOT CHORD 24-25=0/748, 22-24=0/1694, 21-22=0/2072,
20-21=0/1775, 19-20=0/1466, 18-19=0/1466,
17-18=-43/131, 16-17=-504/57,
15-16=-186/297, 14-15=0/0

WEBS 6-20=0/576, 7-19=0/511, 9-17=-162/0,
2-25=-1017/0, 2-24=0/682, 3-24=-634/0,
3-22=0/265, 4-22=-261/0, 4-21=-119/46,
5-21=0/356, 5-20=-958/0, 8-17=-1115/0,
8-18=0/974, 7-18=-1142/0, 11-17=-578/0,
11-16=0/334, 12-16=-315/0, 12-15=-199/148,
13-15=-122/231

NOTES

1) Unbalanced floor live loads have been considered for
this design

- 2) All plates are 3x3 (=) MT20 unless otherwise indicated.
- 3) Refer to girder(s) for truss to truss connections
- 4) Provide mechanical connection (by others) of truss to
bearing plate capable of withstanding 67 lb uplift at joint
14
- 5) Recommend 2x6 strongbacks, on edge, spaced at
10-00-00 oc and fastened to each truss with 3-10d
(0 131" X 3") nails. Strongbacks to be attached to walls
at their outer ends or restrained by other means
- 6) CAUTION, Do not erect truss backwards.

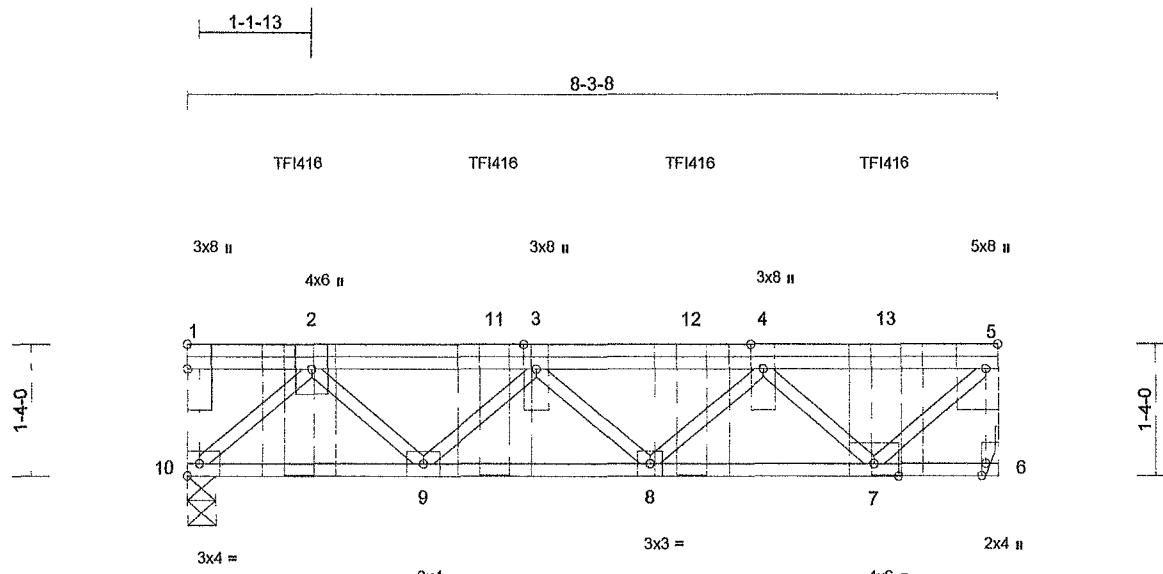
LOAD CASE(S) Standard

Julius Lee PE No. 34869
MiTek Inc DBA MiTek USA PE Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date

October 23, 2025

WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev 1/2/2023 BEFORE USE
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown and is for an individual building component, not a truss system. Before use the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpiinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com


Job	Truss	Truss Type	Qty	Ply	
1025-005	F14	Floor Girder	1	1	Job Reference (optional)

T38942984

Mayo Truss Company Inc. Mayo, FL - 32066

Run: 8.83 S Sep 3 2025 Print: 8 830 S Sep 3 2025 MiTek Industries Inc. Wed Oct 22 11:42:25
ID:SOPJ7HwIZvO8Go7KJrrCBoTV45-RfC?PsB70Hq3NSgPqnL8w3uTXbGKwvCDol7J4zJC?f

Page 1

Scale = 1:23.4

Plate Offsets (X, Y) [5 0-3-0,Edge], [6 0-1-8,Edge]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	In	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.52	Vert(LL)	-0.03	8-9	>999	360	MT20
TCDL	10.0	Lumber DOL	1.00	BC	0.70	Vert(CT)	-0.05	8-9	>999	240	
BCLL	0.0	Rep Stress Incr	NO	WB	0.40	Horz(CT)	0.02	6	n/a	n/a	
BCDL	5.0	Code	FBC2023/TPI2014	Matrix-P						Weight. 55 lb	FT = 20%F, 11%E

LUMBER

TOP CHORD 2x4 SP No 2 (flat)
BOT CHORD 2x4 SP No.2 (flat)
WEBS 2x4 SP No.2 (flat)

Concentrated Loads (lb)

Vert: 2=-385 (F), 11=-385 (F), 12=-385 (F), 13=-385 (F)

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing

REACTIONS (size) 6= Mechanical, 10=0-3-8

Max Grav 6=1226 (LC 1), 10=1214 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-10=-28/0, 5-6=-1219/0, 1-2=0/0,

2-3=-1780/0, 3-4=-2145/0, 4-5=-1022/0

BOT CHORD 9-10=0/1242, 8-9=0/2294, 7-8=0/1974,

6-7=0/0

WEBS 2-10=-1709/0, 2-9=0/760, 3-8=-726/0,

3-8=-210/0, 4-8=0/241, 4-7=-1345/0,

5-7=0/1407

NOTES

- 1) Refer to girder(s) for truss to truss connections
- 2) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 3) Use MiTek TFI416 (With 10d nails into Girder & 2-10d x 1-1/2 nails into Truss) or equivalent spaced at 2-0-0 oc max. starting at 1-1-12 from the left end to 7-1-12 to connect truss(es) to front face of top chord
- 4) Fill all nail holes where hanger is in contact with lumber
- 5) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B)

LOAD CASE(S) Standard

- 1) Dead + Floor Live (balanced) Lumber Increase=1.00, Plate Increase=1.00
Uniform Loads (lb/ft)
Vert: 6-10=-10, 1-5=-100

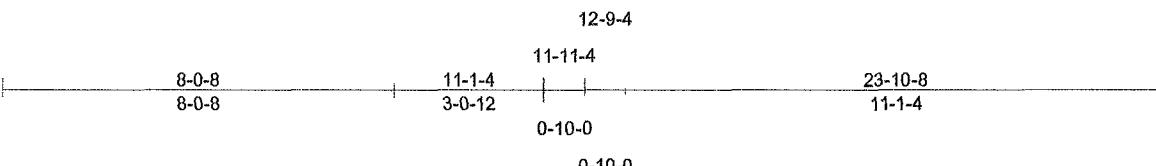
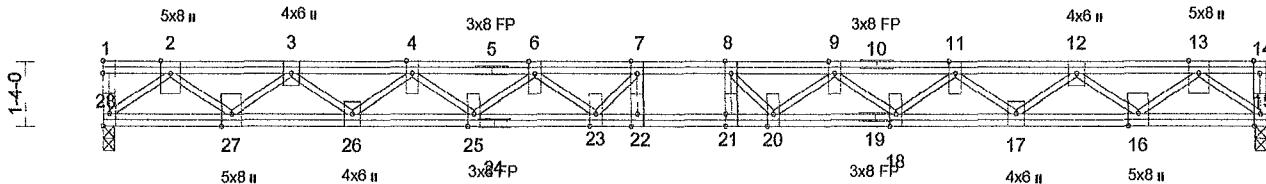
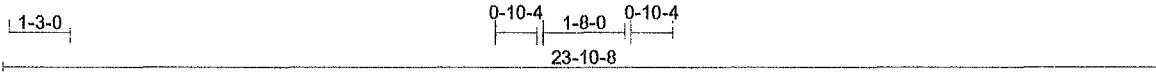
Julius Lee PE No. 34869
MiTek Inc DBA MiTek USA PE Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date

October 23, 2025

WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpiinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	T38942986
1025-005	F16	Floor	5	1	Job Reference (optional)

Mayo Truss Company Inc. Mayo, FL 32066,

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 22 11:42:26
ID:cA09GA9!!KwJ2yzWa17clyTVuA-Rfc?PsB70Hq3NsPqnL8w3uTXbGKWrCDol7J4zJC?!

Page: 1

Scale = 1:47

Plate Offsets (X, Y). [21 0-3-0, Edge], [28 Edge, 0-1-8]

Loading	(psf)	Spacing	1-4-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.17	Vert(LL)	-0.32	21-22	>879	360	MT20
TCDL	10.0	Lumber DOL	1.00	BC	0.68	Vert(CT)	-0.45	21-22	>639	240	
BCLL	0.0	Rep Stress Incr	YES	WB	0.30	Horz(CT)	0.06	15	n/a	n/a	
BCDL	5.0	Code	FBC2023/TPI2014	Matrix-S						Weight: 186 lb	FT = 20%F, 11%E

LUMBER

TOP CHORD 2x4 SP No 2(flat)
BOT CHORD 2x4 SP No 2(flat)
WEBS 2x4 SP No.2(flat)

LOAD CASE(S) Standard

- 4) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0 131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing

REACTIONS (size) 15=0-2-12, 28=0-2-12
Max Grav 15=871 (LC 1), 28=871 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-28=-29/0, 14-15=-29/0, 1-2=0/0,
2-3=-1800/0, 3-4=-3153/0, 4-6=-4083/0,
6-7=-4600/0, 7-8=-4712/0, 8-9=-4600/0,
9-11=-4063/0, 11-12=-3153/0, 12-13=-1800/0,
13-14=0/0

BOT CHORD 27-28=0/1005, 26-27=0/2575, 25-26=0/3714,
23-25=0/4433, 22-23=0/4712, 21-22=0/4712,
20-21=0/4712, 18-20=0/4433, 17-18=0/3714,
16-17=0/2575, 15-16=0/1005

WEBS 7-22=-170/182, 8-21=-170/182,
2-28=-1303/0, 2-27=0/1052, 3-27=-1026/0,
3-26=0/765, 4-26=-742/0, 4-25=0/488,
6-25=-463/0, 6-23=-18/387, 7-23=-441/158,
13-15=-1303/0, 13-16=0/1052,
12-16=-1026/0, 12-17=0/765, 11-17=-742/0,
11-18=0/488, 9-18=-463/0, 9-20=-18/387,
8-20=-441/158

NOTES

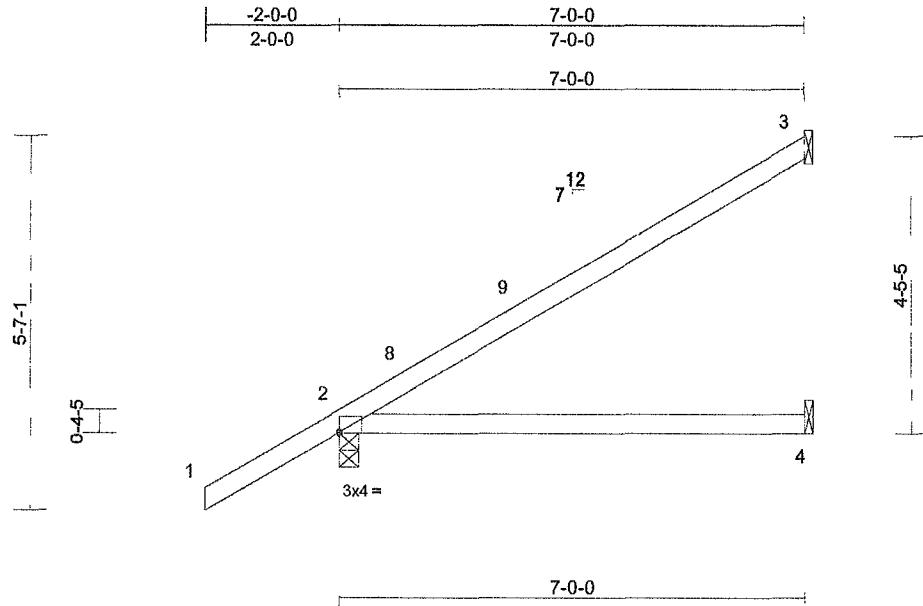
- 1) Unbalanced floor live loads have been considered for this design
- 2) All plates are 3x8 (||) MT20 unless otherwise indicated
- 3) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 28, 15

Julius Lee PE No. 34869
MiTek Inc DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd Chesterfield, MO 63017
Date

October 23, 2025

 WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from the Truss Plate Institute (www.tpiinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcsccomponents.com)


Job	Truss	Truss Type	Qty	Ply	
1025-005	J01	Jack-Open	28	1	Job Reference (optional)

T38942988

Mayo Truss Company Inc. Mayo, FL - 32066,

Run: 8.83 S Sep 3 2025 Print: 8 830 S Sep 3 2025 MiTek Industries Inc. Wed Oct 22 11 42:26
ID keAnJ36HFBNcJV_LnCLG?qyTvMvRIC?PsB70Hq3N8gPqnL8w3uTXbGKwCDol7J4zJC?f

Page: 1

Scale = 1 34.4

Plate Offsets (X, Y) [2 Edge,0-0-4]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	In	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20 0	Plate Grip DOL	1 25	TC	0 57	Vert(LL)	0 09	4-7	>939	240	MT20
TCDL	10 0	Lumber DOL	1 25	BC	0 50	Vert(CT)	-0 21	4-7	>403	180	
BCLL	0 0*	Rep Stress Incr	YES	WB	0 00	Horz(CT)	0 00	3	n/a	n/a	
BCDL	10 0	Code	FBC2023/TPI2014	Matrix-AS							Weight: 26 lb FT = 20%

LUMBERTOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2**BRACING**TOP CHORD Structural wood sheathing directly applied
BOT CHORD Rigid ceiling directly applied

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord

LOAD CASE(S) Standard

REACTIONS (size) 2=0-3-8, 3= Mechanical, 4= MechanicalMax Horiz 2=165 (LC 12)
Max Uplift 2=-56 (LC 12), 3=-65 (LC 12)
Max Grav 2=415 (LC 1), 3=183 (LC 17),
4=124 (LC 3)**FORCES** (lb) - Maximum Compression/Maximum TensionTOP CHORD 1-2=0/60, 2-3=-312/76
BOT CHORD 2-4=-56/153**NOTES**

- Wind ASCE 7-22, Vult=130mph (3-second gust)
Vasd=101mph, TCDL=6.0psf; BCDL=6.0psf; h=25ft;
B=45ft; L=24ft; eave=4ft; Cat. II, Exp B, Enclosed,
MWFRS (directional) and C-C Zone3 -2-0-0 to 1-0-0,
Zone1 1-0-0 to 6-11-4 zone, cantilever left and right
exposed, end vertical left and right exposed, C-C for
members and forces & MWFRS for reactions shown,
Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for
verifying applied roof live load shown covers rain loading
requirements specific to the use of this truss component
- This truss has been designed for a 10 0 psf bottom
chord live load nonconcurrent with any other live loads
- * This truss has been designed for a live load of 20 0psf
on the bottom chord in all areas where a rectangle
3-06-00 tall by 2-00-00 wide will fit between the bottom
chord and any other members.
- Refer to girder(s) for truss to truss connections
- Provide mechanical connection (by others) of truss to
bearing plate capable of withstanding 65 lb uplift at joint
3 and 56 lb uplift at joint 2.

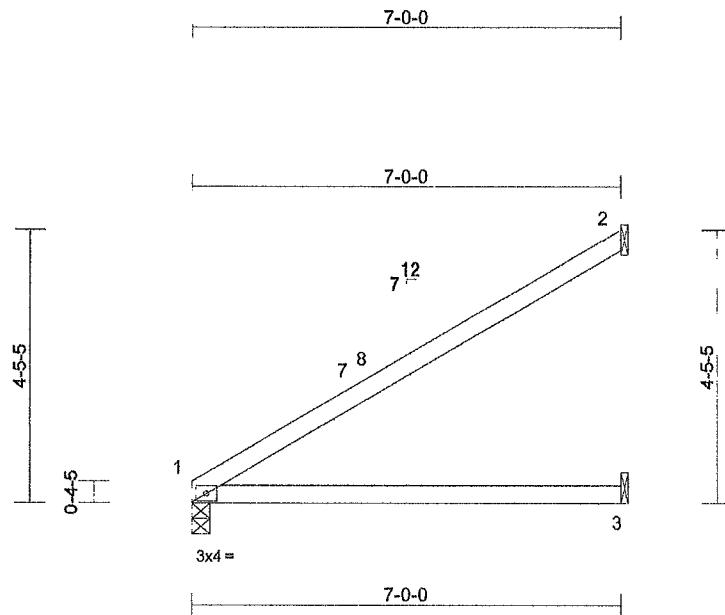
Julius Lee PE No. 34869
MiTek Inc DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date

October 23,2025

WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpiinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®16023 Swingley Ridge Rd
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com


Job	Truss	Truss Type	Qty	Ply	
1025-005	J01A	Jack-Open	11	1	Job Reference (optional)

T38942989

Mayo Truss Company Inc. Mayo FL - 32056,

Run: 8.83 S Sep 3 2025 Print: 8 830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 22 11:42:27
ID:keAnJ36HFBNCJV_LnCLG?qyTVmV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWiCDol7J4zJC?f

Page: 1

Scale = 1 37 4

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP	
TCLL (roof)	20 0	Plate Grip DOL	1 25	TC	0.63	Vert(LL)	0 11	3-6	>750	240	MT20	244/190
TCDL	10 0	Lumber DOL	1 25	BC	0.52	Vert(CT)	-0 22	3-6	>375	180		
BCLL	0 0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0 01	1	n/a	n/a		
BCDL	10 0	Code	FBC2023/TPI2014	Matrix-AS							Weight: 23 lb	FT = 20%

LUMBERTOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No 2**BRACING**TOP CHORD Structural wood sheathing directly applied
BOT CHORD Rigid ceiling directly applied**REACTIONS** (size) 1=0-3-8, 2= Mechanical, 3= Mechanical

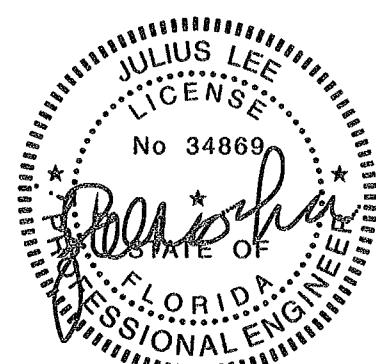
Max Horiz 1=115 (LC 12)

Max Uplift 2=-72 (LC 12)

Max Grav 1=278 (LC 1), 2=191 (LC 17),

3=126 (LC 3)

FORCES (lb) - Maximum Compression/Maximum Tension


TOP CHORD 1-2=-128/80

BOT CHORD 1-3=-105/102

NOTES

- Wind ASCE 7-22, Vult=130mph (3-second gust)
Vasd=101mph, TCDL=6 0psf; BCDL=6 0psf; h=25ft;
B=45ft, L=24ft, eave=4ft; Cat. II, Exp B, Enclosed,
MWFRS (directional) and C-C Zone3 0-0-0 to 3-0-0,
Zone1 3-0-0 to 6-11-4 zone, cantilever left and right
exposed, end vertical left and right exposed,C-C for
members and forces & MWFRS for reactions shown,
Lumber DOL=1 60 plate grip DOL=1 60
- Building Designer / Project engineer responsible for
verifying applied roof live load shown covers rain loading
requirements specific to the use of this truss component.
- This truss has been designed for a 10 0 psf bottom
chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20 0psf
on the bottom chord in all areas where a rectangle
3-06-00 tall by 2-00-00 wide will fit between the bottom
chord and any other members
- Refer to girder(s) for truss to truss connections
- Provide mechanical connection (by others) of truss to
bearing plate capable of withstanding 72 lb uplift at joint

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord

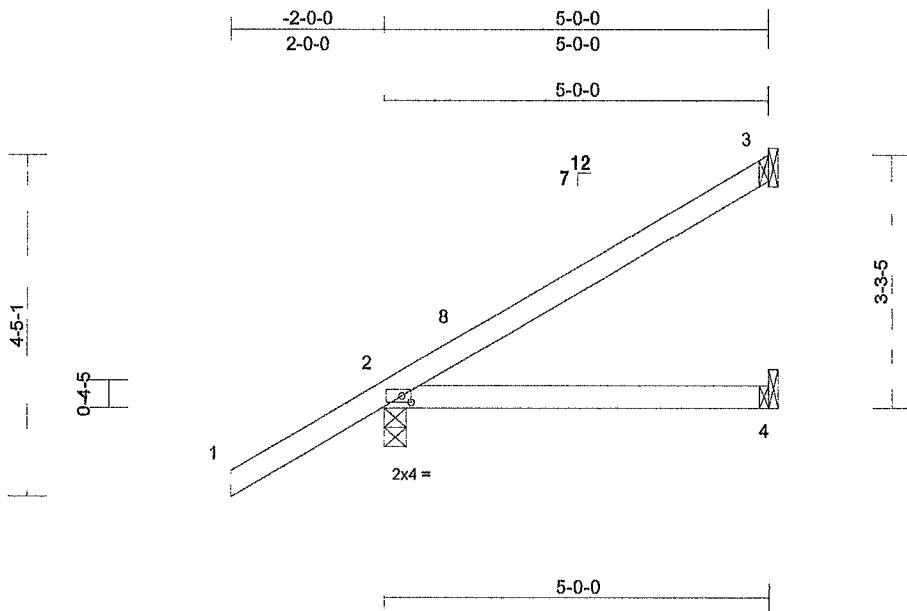
LOAD CASE(S) Standard

Julius Lee PE No 34869
MiTek Inc DBA MiTek USA PE Cert 6634
16023 Swingley Ridge Rd Chesterfield, MO 63017
Date

October 23, 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MH-7473 rev 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpiinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcsccomponents.com)


MiTek
16023 Swingley Ridge Rd
Chesterfield MO 63017
314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	T38942990
1025-005	J02	Jack-Open	6	1	Job Reference (optional)

Mayo Truss Company Inc. Mayo, FL 32066,

Run 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries Inc. Wed Oct 22 11:42:27
ID:Cqk9XP6w0VV3LZXKvsVY2yTvmlU-RfC?PsB70Hq3NSgPqnL8w3uLTxbGKw/CDol7J4zJC?f

Page: 1

Scale = 1 29 8

Plate Offsets (X, Y) [2 0-1-7,0-1-0]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.34	Vert(LL)	0.03	4.7	>999	240	MT20
TCDL	10.0	Lumber DOL	1.25	BC	0.23	Vert(CT)	-0.05	4.7	>999	180	
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a	
BCDL	10.0	Code	FBC2023/TPI2014	Matrix-AS						Weight: 20 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2
BOT CHORD 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied
BOT CHORD Rigid ceiling directly applied

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord

LOAD CASE(S) Standard

REACTIONS (size) 2=0-3-8, 3=Mechanical, 4= Mechanical

Max Horiz 2=132 (LC 12)
Max Uplift 2=-66 (LC 12), 3=-41 (LC 12)
Max Grav 2=342 (LC 1), 3=122 (LC 17), 4=87 (LC 3)

FORCES (lb) Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/60, 2-3=-290/87

BOT CHORD 2-4=-84/195

NOTES

- Wind ASCE 7-22 Vult=130mph (3-second gust)
Vasd=101mph TCDL=6 0psf BCDL=6 0psf; h=25ft;
B=45ft; L=24ft; eave=4ft; Cat II, Exp B, Enclosed,
MWFRS (directional) and C-C Zone3 -2-0-0 to 1-0-0,
Zone1 1-0-0 to 4-11-4 zone, cantilever left and right
exposed, end vertical left and right exposed, C-C for
members and forces & MWFRS for reactions shown,
Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for
verifying applied roof live load shown covers rain loading
requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom
chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0 psf
on the bottom chord in all areas where a rectangle
3-06-00 tall by 2-00-00 wide will fit between the bottom
chord and any other members
- Refer to girder(s) for truss to truss connections
- Provide mechanical connection (by others) of truss to
bearing plate capable of withstanding 41 lb uplift at joint
3 and 66 lb uplift at joint 2.

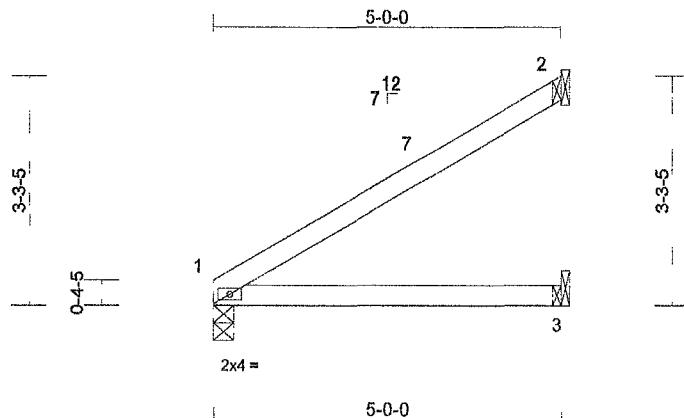
Julius Lee PE No. 34869
MiTek Inc DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd Chesterfield, MO 63017
Date

October 23, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown and is for an individual building component, not a truss system. Before use the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpiinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-U.S.com


Job	Truss	Truss Type	Qty	Ply	
1025-005	J02A	Jack-Open	2	1	T38942991

Mayo Truss Company Inc. Mayo, FL 32066,

Run. 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries Inc. Wed Oct 22 11:42:27
ID: Cqk9XP6w0VV3LfZXKVsVY2yTVmU-RfC?PsB70Hq3NSgPqnL8w3uITxbGKwCDol7J4zJC?f

Page: 1

5-0-0

Scale = 1 33

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.31	Vert(LL)	0.04	3-6	>999	240	MT20
TCDL	10.0	Lumber DOL	1.25	BC	0.25	Vert(CT)	-0.06	3-6	>969	180	
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a	
BCDL	10.0	Code	FBC2023/TPI2014	Matrix-AS						Weight 16 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2
BOT CHORD 2x4 SP No 2

BRACING

TOP CHORD Structural wood sheathing directly applied
BOT CHORD Rigid ceiling directly applied

REACTIONS (size) 1=0-3-8, 2= Mechanical, 3=

Mechanical

Max Horiz 1=82 (LC 12)

Max Uplift 2=-50 (LC 12)

Max Grav 1=198 (LC 1), 2=134 (LC 17), 3=91
(LC 3)

FORCES (lb) - Maximum Compression/Maximum
Tension

TOP CHORD 1-2=-100/57

BOT CHORD 1-3=-84/71

NOTES

- Wind ASCE 7-22, Vult=130mph (3-second gust)
Vasd=101mph, TCDL=6 0psf; BCDL=6 0psf; h=25ft;
B=45ft, L=24ft; eave=4ft, Cat. II, Exp B, Enclosed,
MWFRS (directional) and C-C Zone3 0-0-0 to 3-0-0,
Zone1 3-0-0 to 4-11-4 zone, cantilever left and right
exposed, end vertical left and right exposed, C-C for
members and forces & MWFRS for reactions shown,
Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for
verifying applied roof live load shown covers rain loading
requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom
chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0 psf
on the bottom chord in all areas where a rectangle
3-06-00 tall by 2-00-00 wide will fit between the bottom
chord and any other members.
- Refer to girder(s) for truss to truss connections
- Provide mechanical connection (by others) of truss to
bearing plate capable of withstanding 50 lb uplift at joint

7) This truss design requires that a minimum of 7/16"
structural wood sheathing be applied directly to the top
chord and 1/2" gypsum sheetrock be applied directly to
the bottom chord

LOAD CASE(S) Standard

Julius Lee PE No. 34869
MiTek Inc DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd Chesterfield, MO 63017
Date

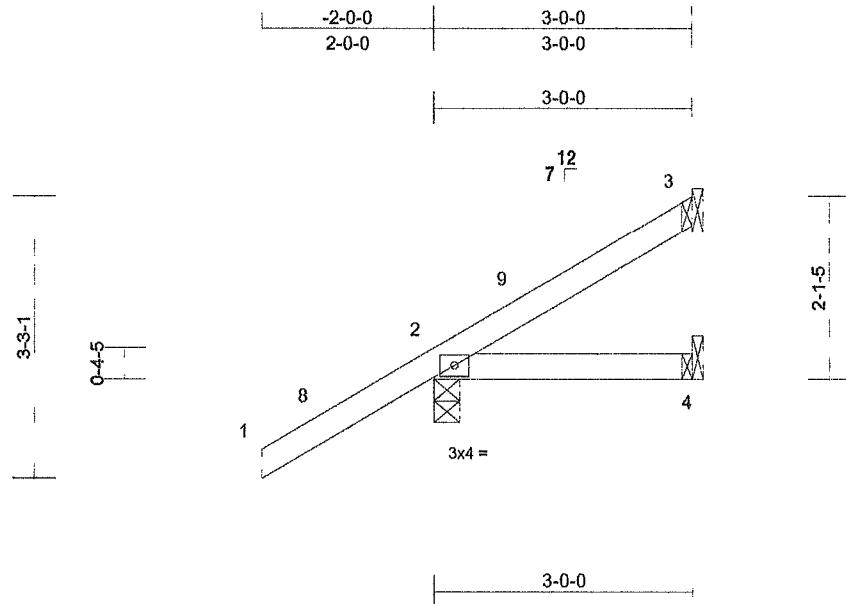
October 23, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpiinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®

16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com


Job	Truss	Truss Type	Qty	Ply	
1025-005	J03	Jack-Open	7	1	Job Reference (optional)

T38942992

Mayo Truss Company Inc. Mayo, FL - 32066,

Run: 8.83 S Sep. 3 2025 Print: 8.830 S Sep. 3 2025 MiTek Industries, Inc. Wed Oct 22 11:42:27
ID:Cqk0XP6w0VV3LfZXKvsVY2yTVmU-RfC?PsB70Hq3NSgPqnL8w3uTxGKWrCdol7J4zJC?f

Page: 1

Scale = 1 26.6

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.35	Vert(LL)	-0.01	4.7	>999	240	MT20
TCDL	10.0	Lumber DOL	1.25	BC	0.09	Vert(CT)	-0.01	4.7	>999	180	
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a	
BCDL	10.0	Code	FBC2023/TPI2014	Matrix-MP							Weight: 13 lb FT = 20%

LUMBERTOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No 2**BRACING**TOP CHORD Structural wood sheathing directly applied or
3-0-0 oc purlinsBOT CHORD Rigid ceiling directly applied or 10-0-0 oc
bracing**REACTIONS** (size) 2=0-3-8, 3= Mechanical 4= Mechanical

Max Horiz 2=99 (LC 12)

Max Uplift 2=84 (LC 12), 3=15 (LC 12)

Max Grav 2=278 (LC 1), 3=59 (LC 17), 4=47
(LC 3)**FORCES** (lb) - Maximum Compression/Maximum
Tension

TOP CHORD 1-2=0/60, 2-3=-245/99

BOT CHORD 2-4=-109/215

NOTES

1) Wind ASCE 7-22, Vult=130mph (3-second gust)

Vasd=101mph, TCDL=6 0psf; BCDL=6 0psf; h=25ft;
B=45ft, L=24ft; eave=4ft; Cat. II, Exp B, Enclosed,
MWFRS (directional) and C-C Zone3 2-0-0 to 1-0-0,
Zone1 1-0-0 to 2-11-4 zone; cantilever left and right
exposed, end vertical left and right exposed; C-C for
members and forces & MWFRS for reactions shown,
Lumber DOL=1.60 plate grip DOL=1.602) Building Designer / Project engineer responsible for
verifying applied roof live load shown covers rain loading
requirements specific to the use of this truss component.3) This truss has been designed for a 10.0 psf bottom
chord live load nonconcurrent with any other live loads4) * This truss has been designed for a live load of 20.0 psf
on the bottom chord in all areas where a rectangle
3-0-0 tall by 2-0-0 wide will fit between the bottom
chord and any other members

5) Refer to girder(s) for truss to truss connections

6) Provide mechanical connection (by others) of truss to
bearing plate capable of withstanding 15 lb uplift at joint
3 and 84 lb uplift at joint 2.**LOAD CASE(S)** Standard

Julius Lee PE No. 34869
MiTek Inc DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd Chesterfield, MO 63017
Date

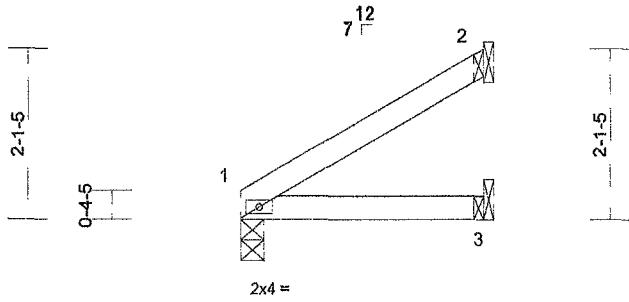
October 23, 2025

 WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpiinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcsccomponents.com).

16023 Swingley Ridge Rd.
Chesterfield MO 63017
314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	
1025-005	J03R	Jack-Open	1	1	T38942993


Mayo Truss Company Inc. Mayo FL - 32066,

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 22 11:42:27
ID:Cqk9XP6w0VV3LfxKvsVY2yTVmU-RfC?PsB70Hq3NSgPqnL8w3uLTxbGKWrCDoi7J4zJC?f

Page: 1

3-0-0

3-0-0

Scale = 1 28.5

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.10	Vert(LL)	0.01	3-6	>999	240	MT20
TCDL	10.0	Lumber DOL	1.25	BC	0.09	Vert(CT)	-0.01	3-6	>999	180	
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a	
BCDL	10.0	Code	FBC2023/TPI2014	Matrix-MP						Weight: 10 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No 2

BRACING

TOP CHORD Structural wood sheathing directly applied or 3-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing

REACTIONS (size) 1=0-3-8, 2= Mechanical, 3= Mechanical

Max Horiz 1=49 (LC 12)

Max Uplift 2=29 (LC 12)

Max Grav 1=118 (LC 1), 2=76 (LC 17), 3=55 (LC 3)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=59/33

BOT CHORD 1-3=-49/39

NOTES

1) Wind ASCE 7-22, Vult=130mph (3-second gust)
Vasd=101mph, TCDL=6 0psf; BCDL=6.0psf; h=25ft;
B=45ft, L=24ft; eave=4ft, Cat. II, Exp B, Enclosed,
MWFRS (directional) and C-C Zone3 zone, cantilever
left and right exposed, end vertical left and right
exposed, C-C for members and forces & MWFRS for
reactions shown, Lumber DOL=1.60 plate grip
DOL=1.60

2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-0-0 tall by 2-0-0 wide will fit between the bottom chord and any other members

5) Refer to girder(s) for truss to truss connections

Julius Lee PE No. 34869
MiTek Inc DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date

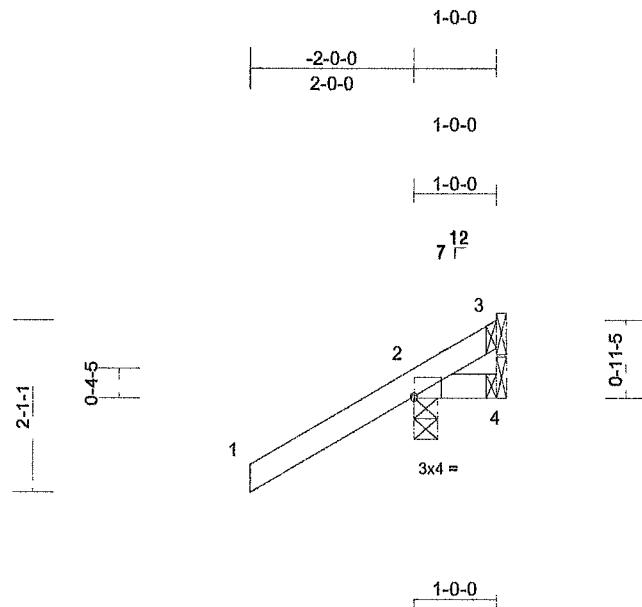
October 23, 2025

 WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Quality Criteria and DBE-22 available from Truss Plate Institute (www.tpiinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®

16023 Swingley Ridge Rd
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com


Job	Truss	Truss Type	Qty	Ply	
1025-005	J04	Jack-Open	1	1	Job Reference (optional)

T38942994

Mayo Truss Company Inc. Mayo, FL 32066,

Run: 8 83 S Sep 3 2025 Print: 8 830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 22 11:42:27
ID: Cqk9XP6w0VV3LZXKvsVY2yTvMuU-RFC?P=B70Hq3NSgPqnL8w3uITxbGKwfCDol7J4zJC?F

Page 1

Scale = 1 28.1

Plate Offsets (X, Y) [2.Edge,0-0-4]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20 0	Plate Grip DOL	1 25	TC	0 35	Vert(LL)	0 00	7	>999	240	MT20
TCDL	10 0	Lumber DOL	1 25	BC	0 09	Vert(CT)	0 00	7	>999	180	
BCLL	0 0*	Rep Stress Incr	YES	WB	0 00	Horz(CT)	0 00	2	n/a	n/a	
BCDL	10 0	Code	FBC2023/TPI2014	Matrix-MP							Weight: 7 lb
											FT = 20%

LUMBERTOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No 2**BRACING**TOP CHORD Structural wood sheathing directly applied or
1-0-0 oc purlinsBOT CHORD Rigid ceiling directly applied or 10-0-0 oc
bracing**REACTIONS** (size) 2=0-3-8, 3= Mechanical, 4= Mechanical

Max Horiz 2=67 (LC 12)

Max Uplift 2=-149 (LC 12), 3=-29 (LC 1)

4=-53 (LC 1)

Max Grav 2=281 (LC 1), 3=31 (LC 12), 4=51 (LC 12)

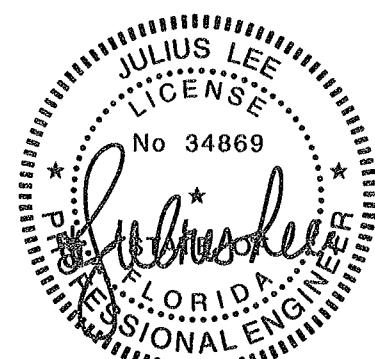
FORCES (lb) - Maximum Compression/Maximum
Tension

TOP CHORD 1-2=0/60, 2-3=-171/92

BOT CHORD 2-4=-111/198

NOTES

1) Wind ASCE 7-22, Vult=130mph (3-second gust)
Vasd=101mph, TCDL=6 0psf; BCDL=6 0psf; h=25ft;
B=45ft, L=24ft; eave=4ft; Cat. II, Exp B, Enclosed,
MWFRS (directional) and C-C Zone3 zone, cantilever
left and right exposed, end vertical left and right
exposed, C-C for members and forces & MWFRS for
reactions shown, Lumber DOL=1 60 plate grip
DOL=1 60


2) Building Designer / Project engineer responsible for
verifying applied roof live load shown covers rain loading
requirements specific to the use of this truss component.

3) This truss has been designed for a 10 0 psf bottom
chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20 0psf
on the bottom chord in all areas where a rectangle
3-06-00 tall by 2-00-00 wide will fit between the bottom
chord and any other members.

5) Refer to girder(s) for truss to truss connections

6) Provide mechanical connection (by others) of truss to
bearing plate capable of withstanding 149 lb uplift at joint
2, 53 lb uplift at joint 4 and 29 lb uplift at joint 3

LOAD CASE(S) Standard

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd Chesterfield, MO 63017
Date

October 23,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpiinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

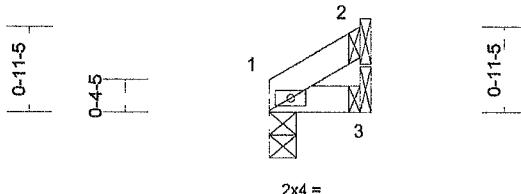
MiTek®

16023 Swingley Ridge Rd
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	
1025-005	J04A	Jack-Open	1	1	Job Reference (optional)

T38942995

Mayo Truss Company Inc. Mayo FL - 32066,


Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 22 11:42 27
ID:Cqk9XP6w0V3lZXKvsYY2yTVmU-RfC?PsB70Hq3NSgPqnL8w3u1TXbGKWrCDa7J4zJC7f

Page: 1

1-0-0

1-0-0

7 12

2x4 =

1-0-0

Scale = 1.25.4

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20 0	Plate Grip DOL	1 25	TC	0 01	Vert(LL)	0 00	6	>999	240	MT20
TCDL	10 0	Lumber DOL	1 25	BC	0 01	Vert(CT)	0 00	6	>999	180	
BCLL	0 0*	Rep Stress Incr	YES	WB	0 00	Horz(CT)	0 00	2	n/a	n/a	
BCDL	10 0	Code	FBC2023/TPI2014	Matrix-MP						Weight. 3 lb	FT = 20%

LUMBERTOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No 2**BRACING**TOP CHORD Structural wood sheathing directly applied or
1-0-0 oc purlinsBOT CHORD Rigid ceiling directly applied or 10-0-0 oc
bracing

REACTIONS (size) 1=0-3-8, 2= Mechanical, 3= Mechanical

Max Horiz 1=16 (LC 12)

Max Uplift 2=8 (LC 12)

Max Grav 1=40 (LC 1), 2=23 (LC 17), 3=18 (LC 3)

FORCES (lb) - Maximum Compression/Maximum
Tension

TOP CHORD 1-2=-16/10

BOT CHORD 1-3=-12/10

NOTES

1) Wind ASCE 7-22, Vult=130mph (3-second gust)

Vasd=101mph, TCDL=6 0psf; BCDL=6 0psf; h=25ft;
B=45ft; L=24ft; eave=4ft; Cat. II, Exp B, Enclosed
MWFRS (directional) and C-C Zone3 zone, cantilever
left and right exposed , end vertical left and right
exposed,C-C for members and forces & MWFRS for
reactions shown, Lumber DOL=1 60 plate grip
DOL=1 602) Building Designer / Project engineer responsible for
verifying applied roof live load shown covers rain loading
requirements specific to the use of this truss component.3) This truss has been designed for a 10 0 psf bottom
chord live load nonconcurrent with any other live loads.4) * This truss has been designed for a live load of 20 0psf
on the bottom chord in all areas where a rectangle
3-06-00 tall by 2-00-00 wide will fit between the bottom
chord and any other members.

5) Refer to girder(s) for truss to truss connections

6) Provide mechanical connection (by others) of truss to
bearing plate capable of withstanding 8 lb uplift at joint 2

LOAD CASE(S) Standard

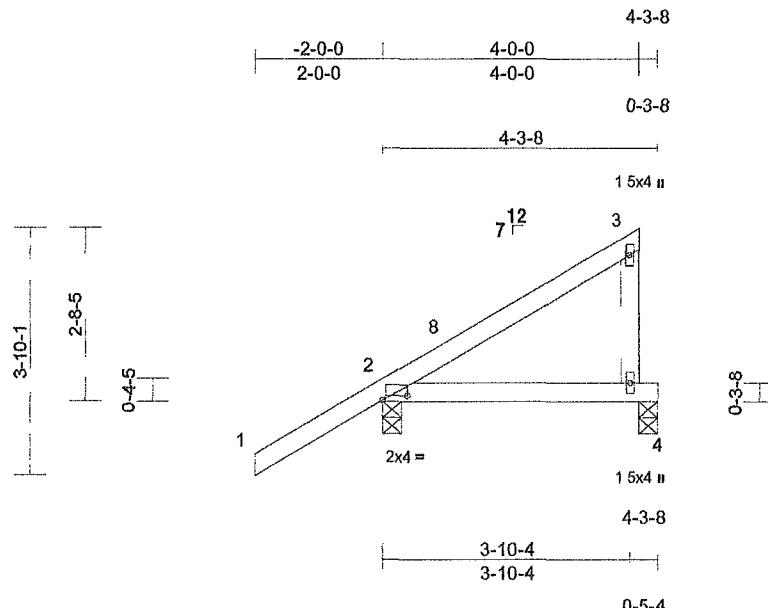
Julius Lee PE No. 34869
MiTek Inc DBA MiTek USA FI Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date

October 23, 2025

WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpiinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®


16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply		
1025-005	M01	Monopitch	8	1		T38942996

Mayo Truss Company Inc. Mayo, FL 32066,

Run. 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 22 11:42:28
ID:5PZy3DnQ3ORGR6G62zLOHeyTVld-RFC?PsB70Hq3NSgPqnL8w3u1TXbGKWrCDolJ4zJC?f

Page: 1

Scale = 1 35.8

Plate Offsets (X, Y) [2.0-4-8,0-0-14]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/deff	L/d	PLATES	GRIP
TCLL (roof)	20 0	Plate Grip DOL	1 25	TC	0 39	Vert(LL)	-0 01	4-7	>999	240	MT20
TCDL	10 0	Lumber DOL	1 25	BC	0 13	Vert(CT)	-0 02	4-7	>999	180	
BCLL	0 0 *	Rep Stress Incr	YES	WB	0 00	Horz(CT)	0 00	2	n/a	n/a	
BCDL	10 0	Code	FBC2023/TPI2014	Matrlx-AS							Weight: 20 lb FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied, except end verticals

BOT CHORD Rigid ceiling directly applied

REACTIONS (size) 2=0-3-8, 4=0-3-8

Max Horiz 2=138 (LC 12)

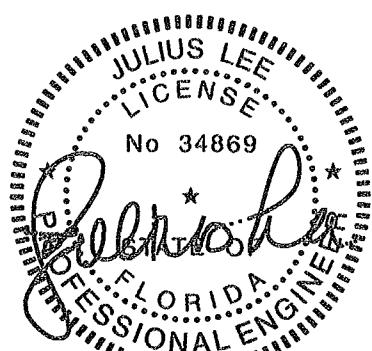
Max Uplift 2=-88 (LC 12), 4=-33 (LC 12)

Max Grav 2=305 (LC 1), 4=147 (LC 17)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/60, 2-3=-309/109, 3-4=-125/152

BOT CHORD 2-4=-98/220


NOTES

- 1) Unbalanced roof live loads have been considered for this design
- 2) Wind ASCE 7-22, Vult=130mph (3-second gust)
Vasd=101mph, TCDL=6 0psf; BCDL=6 0psf; h=25ft;
B=45ft; L=24ft; eave=4ft; Cat. II, Exp B, Partially Enclosed, MWFRS (directional) and C-C Zone3 -2-0-0 to 1-0-0, Zone1 1-0-0 to 3-10-4 zone; cantilever left and right exposed, end vertical left exposed, C-C for members and forces & MWFRS for reactions shown, Lumber DOL=1 60 plate grip DOL=1 60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10 0 psf bottom chord live load nonconcurrent with any other live loads
- 5) * This truss has been designed for a live load of 20 0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 33 lb uplift at joint 4 and 88 lb uplift at joint 2

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord

LOAD CASE(S) Standard

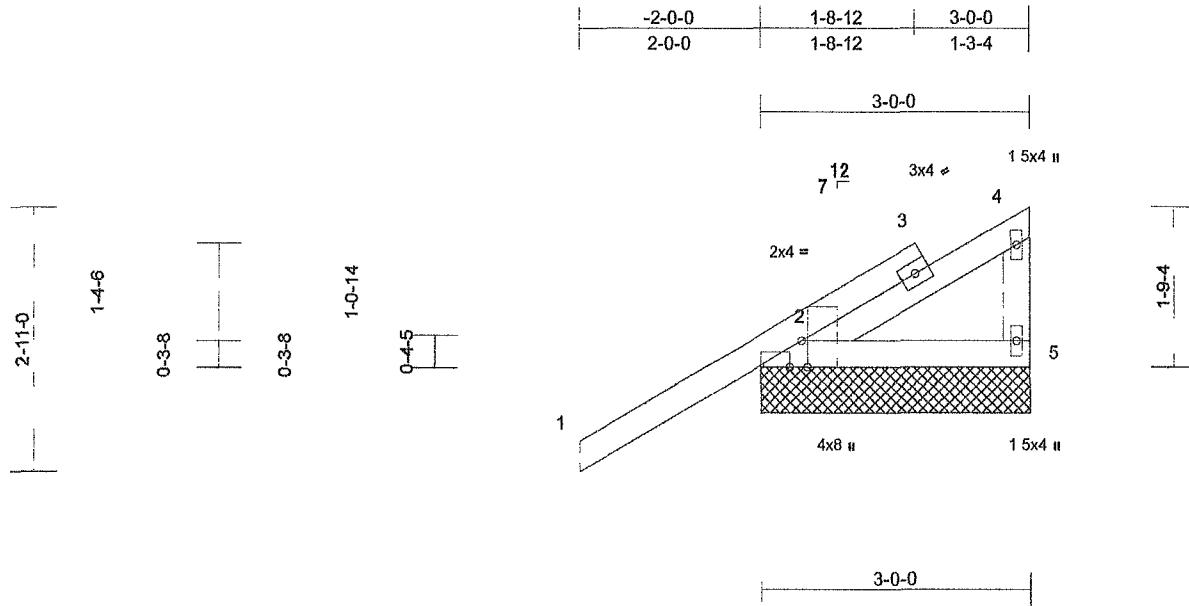
Julius Lee PE No. 34869
MiTek Inc DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd Chesterfield, MO 63017
Date

October 23, 2025

WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpiinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®


16023 Swingley Ridge Rd
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	
1025-005	M02	Monopitch Supported Gable	1	1	T38942997

Mayo Truss Company Inc. Mayo, FL 32066,

Run 8.83 S Sep 3 2025 Print: 8 830 S Sep 3 2025 MiTek Industries Inc. Wed Oct 22 11:42:28
ID:KEj3EYjw3BLAyfv3dESulyTVkQ-RfC?PsB70Hq3NSgPqnL8w3ulTxBGKw/CDol7J4zJC?f

Page: 1

Scale = 1 25.5

Plate Offsets (X, Y) [2 0-3-8,Edge], [2,0-1-9,Edge]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20 0	Plate Grip DOL	1 25	TC	0 59	Vert(LL)	n/a	-	n/a	999	MT20
TCDL	10 0	Lumber DOL	1 25	BC	0 06	Vert(CT)	n/a	-	n/a	999	
BCLL	0 0*	Rep Stress Incr	YES	WB	0 00	Horz(CT)	0 00	5	n/a	n/a	
BCDL	10 0	Code	FBC2023/TPI2014	Matrix-MP						Weight: 17 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No 2
WEBS 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 3-0-0 oc purlins except end verticals
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing

REACTIONS (size) 2=3-0-0, 5=3-0-0

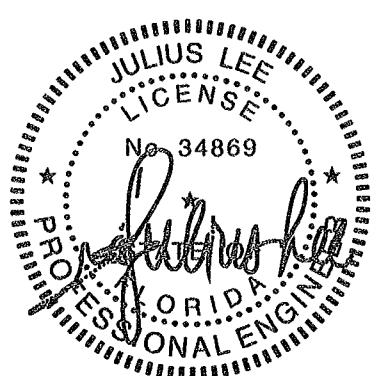
Max Horiz 2=65 (LC 11)

Max Uplift 2=-131 (LC 12)

Max Grav 2=317 (LC 1), 5=48 (LC 3)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/67, 2-4=-64/54, 4-5=-64/14


BOT CHORD 2-5=-25/32

NOTES

- 1) Unbalanced roof live loads have been considered for this design
- 2) Wind ASCE 7-22, Vult=130mph (3-second gust)
Vasd=101mph, TCDL=6 0psf; BCDL=6 0psf; h=25ft; B=45ft; L=24ft; eave=2ft; Cat. II, Exp B, Enclosed, MWFRS (directional) and C-C Zone3 zone, cantilever left and right exposed, end vertical left and right exposed, C-C for members and forces & MWFRS for reactions shown, Lumber DOL=1 60 plate grip DOL=1 60
- 3) Truss designed for wind loads in the plane of the truss only For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) Gable requires continuous bottom chord bearing
- 6) Gable studs spaced at 2-0-0 oc.

- 7) This truss has been designed for a 10 0 psf bottom chord live load nonconcurrent with any other live loads
- 8) * This truss has been designed for a live load of 20 0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 131 lb uplift at joint 2

LOAD CASE(S) Standard

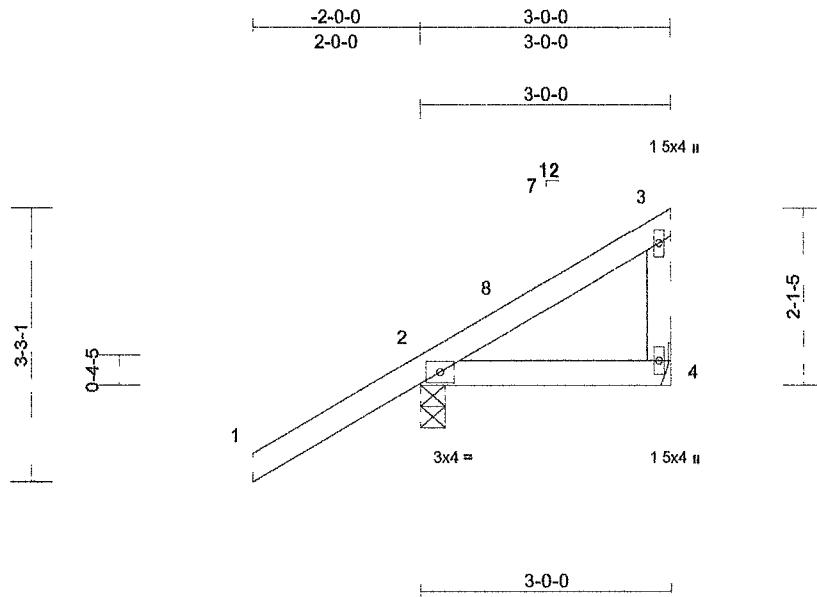
Julius Lee PE No. 34869
MiTek Inc DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd Chesterfield, MO 63017
Date.

October 23,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown and is for an individual building component, not a truss system. Before use the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpiinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcsccomponents.com).

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com


Job	Truss	Truss Type	Qty	Ply	
1025-005	M03	Monopitch	8	1	Job Reference (optional)

T38942998

Mayo Truss Company Inc. Mayo, FL - 32066,

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 Mitek Industries Inc. Wed Oct 22 11:42:28
ID:loOBsalbD_Ww1POUkmn9WWyTVkN-RfC?PsB70Hq3NSgPqnL8w3uLTXbGKWrCDol7J4zJC?f

Page: 1

Scale = 1 27 4

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.41	Vert(LL)	-0.01	4-7	>999	240	MT20
TCDL	10.0	Lumber DOL	1.25	BC	0.10	Vert(CT)	-0.01	4-7	>999	180	
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a	
BCDL	10.0	Code	FBC2023/TPI2014	Matrix-MP							Weight: 16 lb FT = 20%

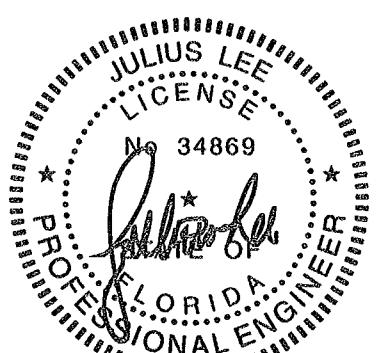
LUMBER

TOP CHORD 2x4 SP No 2
 BOT CHORD 2x4 SP No.2
 WEBS 2x4 SP No 2

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 85 lb uplift at joint
 2
 LOAD CASE(S) Standard

BRACING

TOP CHORD Structural wood sheathing directly applied or 3-0-0 oc purlins, except end verticals
 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing


REACTIONS (size) 2=0-3-8 4= Mechanical
 Max Horiz 2=98 (LC 12)
 Max Uplift 2=85 (LC 12)
 Max Grav 2=276 (LC 1), 4=76 (LC 17)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/60, 2-3=-280/103, 3-4=-71/86
 BOT CHORD 2-4=-110/244

NOTES

- 1) Unbalanced roof live loads have been considered for this design
- 2) Wind ASCE 7-22, Vult=130mph (3-second gust)
 $V_{sd}=101\text{ mph}$, $TCDL=6\text{ Opsf}$; $BCDL=6\text{ Opsf}$; $h=25\text{ ft}$;
 $B=45\text{ ft}$; $L=24\text{ ft}$; $eave=4\text{ ft}$, Cat. II, Exp B, Enclosed,
 MWFRS (directional) and C-C Zone 3 -2-0-0 to 1-0-0,
 Zone 1 1-0-0 to 2-10-4 zone, cantilever left and right exposed, end vertical left exposed, C-C for members and forces & MWFRS for reactions shown, Lumber DOL=1 60 plate grip DOL=1 60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0 psf on the bottom chord in all areas where a rectangle 3-0-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections

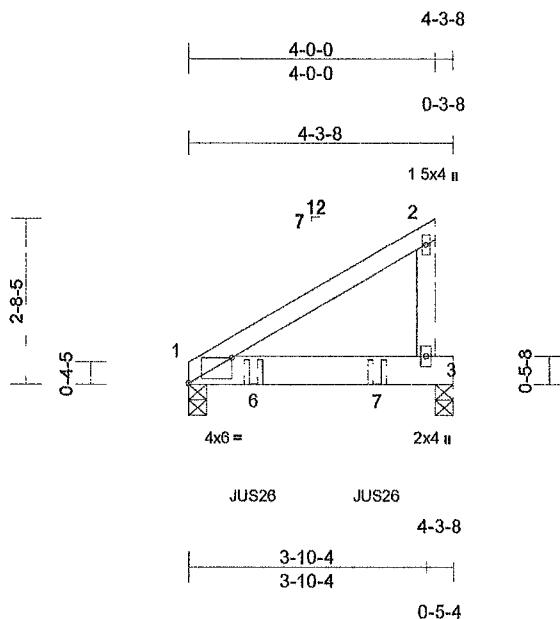
Julius Lee PE No. 34869
 MiTek Inc DBA MiTek USA FL Cert 6634
 16023 Swingley Ridge Rd. Chesterfield, MO 63017
 Date

October 23, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpiinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®


16023 Swingley Ridge Rd.
 Chesterfield MO 63017
 314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	Job Reference (optional)
1025-005	MG01	Monopitch Girder	1	1	T38942999

Mayo Truss Company Inc. Mayo, FL 32066,

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries Inc. Wed Oct 22 11:42:28
ID:ue1uKMc?M8d0r1pv?nJyTUpU-RfC?PsB70Hq3NSgPqnL8w3uTXbGKWrCDol7J4zJC?F

Page: 1

Scale = 1 37.4

Plate Offsets (X, Y) [1 0-8-8, Edge]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	In	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.32	Vert(LL)	0.03	3.5	>999	240	MT20
TCDL	10.0	Lumber DOL	1.25	BC	0.56	Vert(CT)	-0.05	3.5	>896	180	
BCLL	0.0*	Rep Stress Incr	NO	WB	0.00	Horz(CT)	0.00	3	n/a	n/a	
BCDL	10.0	Code	FBC2023/TPI2014	Matrix-MP							Weight: 20 lb FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x6 SP No 2
WEBS 2x4 SP No 2

BRACING

TOP CHORD Structural wood sheathing directly applied or 4-0-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing

REACTIONS (size) 1=0-3-8, 3=0-3-8

Max Horiz 1=88 (LC 25)

Max Uplift 1=-112 (LC 8), 3=-177 (LC 8)

Max Grav 1=655 (LC 13), 3=736 (LC 13)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-166/61, 2-3=-137/62

BOT CHORD 1 3=-28/8

NOTES

- Unbalanced roof live loads have been considered for this design
- Wind ASCE 7-22, Vult=130mph (3-second gust)
Vasd=101mph, TCDL=6 0psf; BCDL=6 0psf; h=25ft;
B=45ft; L=24ft; eave=4ft, Cat. II, Exp B, Partially
Enclosed, MWFRS (directional), cantilever left and right
exposed, end vertical left exposed, Lumber DOL=1.60
plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0 psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 112 lb uplift at joint 1 and 177 lb uplift at joint 3

7) Use MiTek JUS26 (With 4-10d nails into Girder & 4-10d nails into Truss) or equivalent spaced at 2-0-0 oc max. starting at 1-0-12 from the left end to 3-0-12 to connect truss(es) to back face of bottom chord

8) Fill all nail holes where hanger is in contact with lumber
9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B)

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced) Lumber Increase=1.25

Plate Increase=1.25

Uniform Loads (lb/ft)

Vert: 1-2=-60, 1-3=-20

Concentrated Loads (lb)

Vert: 6=-540 (B), 7=-510 (B)

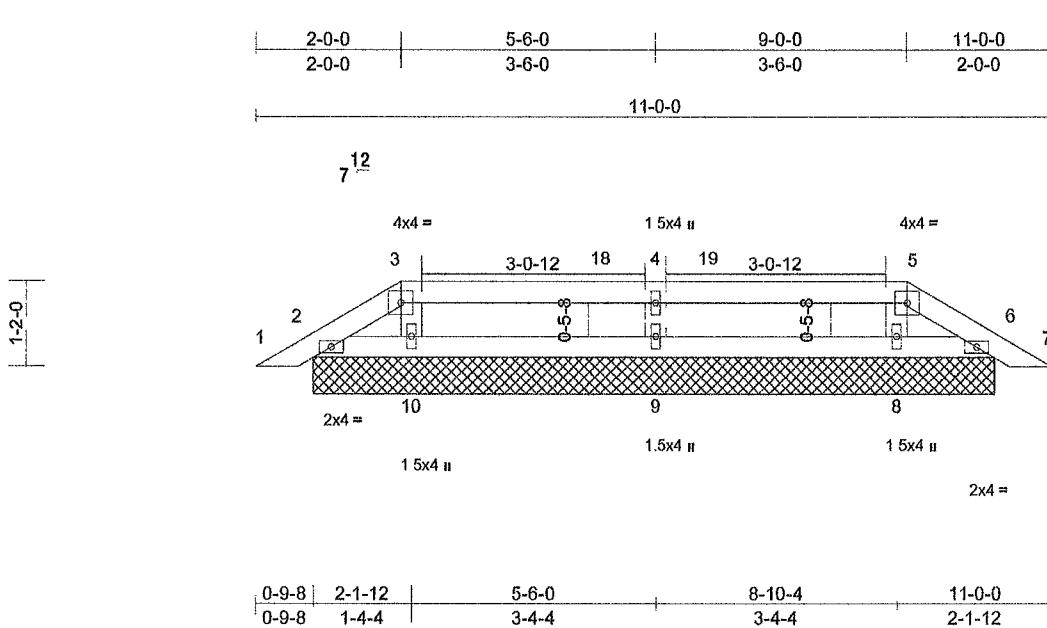
Julius Lee PE No. 34869
MiTek Inc DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date

October 23, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22, available from Truss Plate Institute (www.tpiinst.org) and BCSI Building Component Safety Information, available from the Structural Building Component Association (www.sbcsccomponents.com).

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com


Job	Truss	Truss Type	Qty	Ply	
1025-005	PB01	Piggyback	2	1	Job Reference (optional)

T38943000

Mayo Truss Company, Inc. Mayo, FL - 32086

Run. 8.83 S Sep 3 2025 Print: 8 830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 22 11:42:28
ID:k3?dVuTohcJD_kxgnSJO?TyTVIZ-RFC?PsB70Hq3NSgPqnl8w3uITXbGKw/CDol7J4zJC?f

Page. 1

Scale = 1 31 7

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	In	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.14	Vert(LL)	n/a	-	n/a	999	MT20
TCDL	10.0	Lumber DOL	1.25	BC	0.08	Vert(CT)	n/a	-	n/a	999	
BCLL	0.0*	Rep Stress Incr	YES	WB	0.02	Horz(CT)	0.00	15	n/a	n/a	
BCDL	10.0	Code	FBC2023/TPI2014	Matrix-AS						Weight. 33 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No 2
WEBS 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied
BOT CHORD Rigid ceiling directly applied
REACTIONS (size) 2=9-4-15, 6=9-4-15, 8=9-4-15,
9=9-4-15, 10=9-4-15
Max Horiz 2=20 (LC 10)
Max Uplift 2=.29 (LC 12), 6=.29 (LC 12),
8=.12 (LC 8), 9=.57 (LC 9), 10=.12
(LC 9)
Max Grav 2=68 (LC 1), 6=68 (LC 1), 8=185
(LC 24), 9=308 (LC 23), 10=185
(LC 23)

FORCES (lb) - Maximum Compression/Maximum
Tension
TOP CHORD 1-2=0/15, 2-3=-23/25, 3-4=-10/29,
4-5=-10/29, 5-6=-22/25, 6-7=0/15
BOT CHORD 2-10=-4/30, 9-10=-7/25, 8-9=-7/25, 6-8=-3/29
WEBS 3-10=-138/77, 5-8=-138/75, 4-9=-236/115

NOTES

1) Unbalanced roof live loads have been considered for
this design
2) Wind ASCE 7-22, Vult=130mph (3-second gust)
Vasd=101mph, TCDL=6 0psf; BCDL=6 0psf; h=25ft;
B=45ft, L=24ft; eave=4ft, Cat. II, Exp B, Enclosed,
MWFRS (directional) and C-C Zone3 0-3-8 to 2-0-0,
Zone2 2-0-0 to 6-2-15, Zone1 6-2-15 to 9-0-0, Zone3
9-0-0 to 10-8-8 zone, cantilever left and right exposed,
end vertical left and right exposed, C-C for members and
forces & MWFRS for reactions shown, Lumber
DOL=1 60 plate grip DOL=1 60

3) Truss designed for wind loads in the plane of the truss
only For studs exposed to wind (normal to the face),
see Standard Industry Gable End Details as applicable,
or consult qualified building designer as per ANSI/TPI 1

- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding
- Gable requires continuous bottom chord bearing
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads
- * This truss has been designed for a live load of 20.0 psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 29 lb uplift at joint 2, 29 lb uplift at joint 6, 12 lb uplift at joint 10, 12 lb uplift at joint 8, 57 lb uplift at joint 9, 29 lb uplift at joint 2 and 29 lb uplift at joint 6
- This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord
- See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer

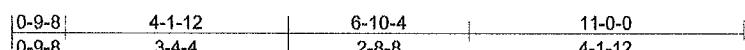
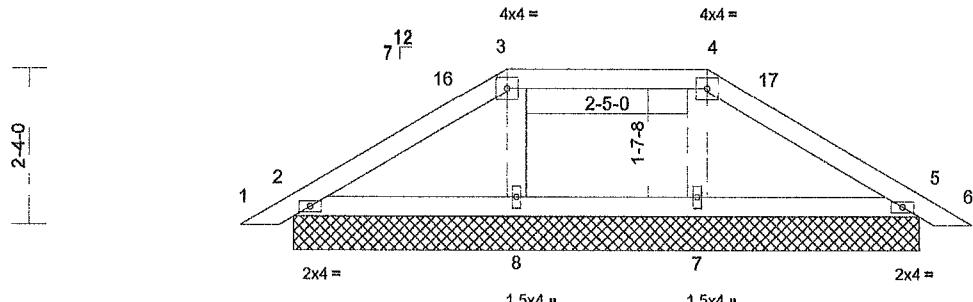
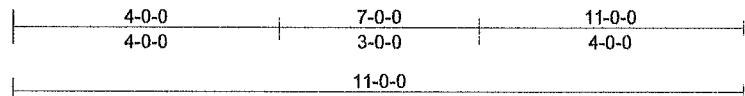
LOAD CASE(S) Standard

Julius Lee PE No. 34869
MiTek Inc DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd Chesterfield, MO 63017
Date

October 23,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown and is for an individual building component, not a truss system. Before use the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22, available from Truss Plate Institute (www.ipinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcsccomponents.com)




MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	T38943001
1025-005	PB02	Piggyback	2	1	Job Reference (optional)

Mayo Truss Company Inc. Mayo, FL - 32066

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MITek Industries, Inc. Wed Oct 22 11.42.29
ID:G8zgsMgqwXKxvC9ljpb8frTyVfJ-RFc?PsB70Hq3NSgPqnL8w3u1TXbGKwRcDol7J4zJC?F

Page: 1

Scale = 1 34 4

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20 0	Plate Grip DOL	1.25	TC	0.08	Vert(LL)	n/a	n/a	999	MT20	244/190
TCDL	10 0	Lumber DOL	1.25	BC	0.09	Vert(CT)	n/a	-	n/a	999	
BCLL	0 0*	Rep Stress Incr	YES	WB	0.02	Horz(CT)	0 00	13	n/a	n/a	
BCDL	10 0	Code	FBC2023/TPI2014	Matrlx-AS						Weight: 37 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2
BOT CHORD 2x4 SP No 2
WERS 2x4 SP No 2

WEDO BRACING

BRACING
TOP CHORD Structural wood sheathing directly applied
BOT CHORD Rigid ceiling directly applied

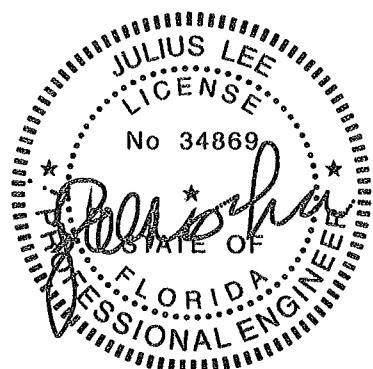
**BUT CHO
REACTION**

REACTIONS (size)	2=9-4-15, 5=9-4-15, 7=9-4-15, 8=9-4-15
Max Horiz	2=-43 (LC 10)
Max Uplift	2=-32 (LC 12), 5=-32 (LC 12), 7=-13 (LC 8), 8=-15 (LC 9)
Max Grav	2=161 (LC 1), 5=161 (LC 1), 7=258 (I C 24), 8=258 (I C 23)

FORCES

FORCES (N) - Maximum Compression/Maximum Tension

BOT CHORD 4-5=-60/51, 5-6=0/15
2-8=-2/41, 7-8=-6/36, 5-7=-2/35


WEBS 3-8=-179/76, 4-7=-179/83

NOTES

- 1) Unbalanced roof live loads have been considered for this design
- 2) Wind ASCE 7-22, Vult=130mph (3-second gust)
Vasd=101mph, TCDL=6 0psf; BCDL=6 0psf, h=25ft; B=45ft; L=24ft; eave=4ft, Cat. II, Exp B, Enclosed, MWFRS (directional) and C-C Zone3 0-3-8 to 3-3-8, Zone1 3-3-8 to 4-0-0, Zone3 4-0-0 to 10-8-8 zone; cantilever left and right exposed, end vertical left and right exposed, C-C for members and forces & MWFRS for reactions shown, Lumber DOL=1 60 plate grip DOL=1 60
- 3) Truss designed for wind loads in the plane of the truss only For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component

- 5) Provide adequate drainage to prevent water ponding
- 6) Gable requires continuous bottom chord bearing
- 7) Gable studs spaced at 4-0-0 oc.
- 8) This truss has been designed for a 10 0 psf bottom chord live load nonconcurrent with any other live loads
- 9) * This truss has been designed for a live load of 20 0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 32 lb uplift at joint 2, 32 lb uplift at joint 5, 15 lb uplift at joint 8, 13 lb uplift at joint 7, 32 lb uplift at joint 2 and 32 lb uplift at joint 5
- 11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord
- 12) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer

LOAD CASE(S) Standard

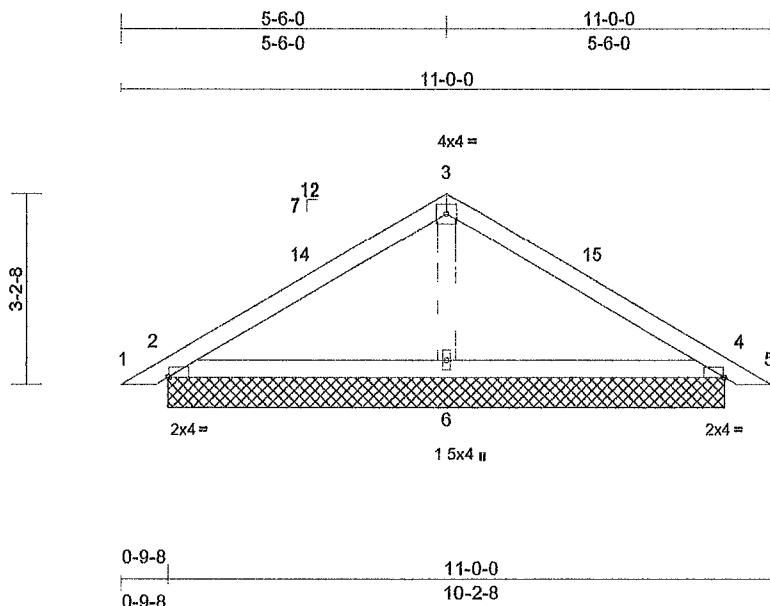
Julius Lee PE No. 34869
MiTek Inc DBA MiTek USA FI Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date

October 23, 2025

 WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev 1/2/2023 BEFORE USE.

Design valid for use only with MITEK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP1 Quality Criteria** and **DSE-22**, available from Truss Plate Institute (www.tpiinst.org) and **EBCSI Building Component Safety Information**, available from the Structural Building Component Association (www.sbscomponents.com).

The MiTek logo is a stylized, blocky, uppercase word "MiTek" with a registered trademark symbol (®) at the top right. Below the main word, the address "16023 Swingley Ridge Rd" and "Chesterfield, MO 63017" is printed in a smaller, sans-serif font. At the bottom, the phone number "314.434.1200" and the website "MiTek-US.com" are listed in a smaller font.


Job	Truss	Truss Type	Qty	Ply	
1025-005	PB03	Piggyback	5	1	Job Reference (optional)

T38943002

Mayo Truss Company Inc. Mayo, FL - 32066,

Run: 8.83 S Sep 3 2025 Print: 8 830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 22 11:42:29
ID:gjfpUOjCSIWmfuKOx9rGTyTVfG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDol7J4zJC?!

Page. 1

Scale = 1 38.7

Plate Offsets (X, Y) [2 0-0-4,Edge], [4 0-0-4 Edge]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20 0	Plate Grip DOL	1 25	TC	0 20	Vert(LL)	n/a	-	n/a	999	MT20
TCDL	10 0	Lumber DOL	1 25	BC	0 23	Vert(CT)	n/a	-	n/a	999	
BCLL	0 0*	Rep Stress Incr	YES	WB	0 04	Horz(CT)	0 00	11	n/a	n/a	
BCDL	10 0	Code	FBC2023/TPI2014	Matrix-AS							Weight: 37 lb FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2
 BOT CHORD 2x4 SP No 2
 OTHERS 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied
 BOT CHORD Rigid ceiling directly applied
REACTIONS (size) 2=9-4-15, 4=9-4-15, 6=9-4-15
 Max Horiz 2=60 (LC 10)
 Max Uplift 2=38 (LC 12), 4=38 (LC 12)
 Max Grav 2=216 (LC 1), 4=216 (LC 1), 6=381 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension
 TOP CHORD 1-2=0/15, 2-3=-111/86, 3-4=-110/92, 4-5=0/15
 BOT CHORD 2-6=-13/69, 4-6=-17/67
 WEBS 3-6=-224/88

NOTES

- Unbalanced roof live loads have been considered for this design
- Wind ASCE 7-22, Vult=130mph (3-second gust)
 $V_{sd}=101\text{ mph}$, $TCDL=6\text{ 0psf}$ $BCDL=6\text{ 0psf}$, $h=25\text{ ft}$, $B=45\text{ ft}$, $L=24\text{ ft}$, eave=4ft, Cat. II, Exp B, Enclosed, MWFRS (directional) and C-C Zone3 0-3-8 to 3-3-8, Zone1 3-3-8 to 5-6-0, Zone2 5-6-0 to 9-8-8, Zone1 9-8-8 to 10-8-8 zone cantilever left and right exposed, end vertical left and right exposed, C-C for members and forces & MWFRS for reactions shown, Lumber DOL=1 60 plate grip DOL=1 60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- Gable requires continuous bottom chord bearing
- Gable studs spaced at 4-0-0 oc.

- This truss has been designed for a 10 0 psf bottom chord live load nonconcurrent with any other live loads
- * This truss has been designed for a live load of 20 0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 38 lb uplift at joint 2, 38 lb uplift at joint 4, 38 lb uplift at joint 2 and 38 lb uplift at joint 4
- This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord
- See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer

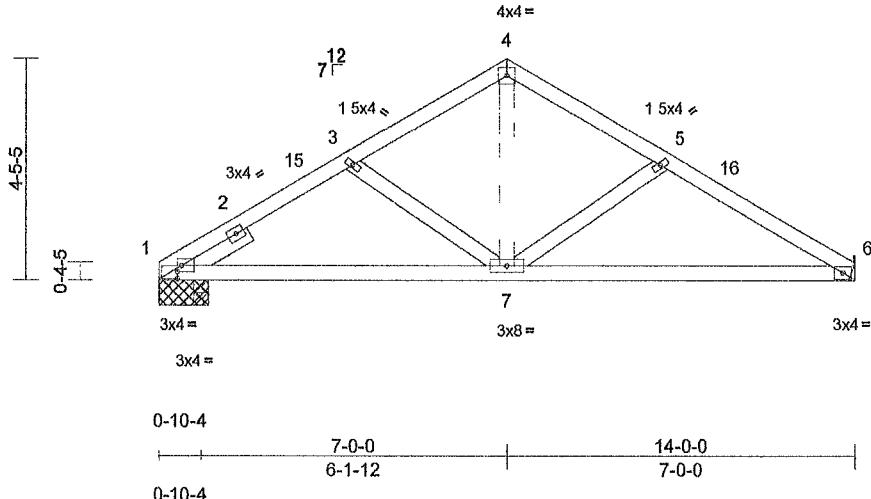
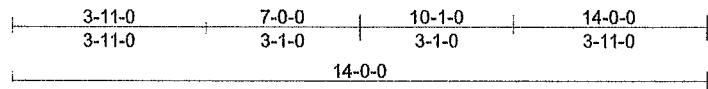
LOAD CASE(S) Standard

Julius Lee PE No 34869
 MiTek Inc DBA MiTek USA FL Cert 6634
 16023 Swingley Ridge Rd Chesterfield, MO 63017
 Date:

October 23, 2025

WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpiinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcsccomponents.com)



16023 Swingley Ridge Rd
 Chesterfield, MO 63017
 314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	T38943003
1025-005	T01	Common	1	1	Job Reference (optional)

Mayo Truss Company Inc. Mayo FL 32066,

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries Inc. Wed Oct 22 11:42:29
ID:377Xav5HXayOJDDm6VGfNQyTVhL-RFc?PsB70Hq3NSgFqrnL8w3uITxbGKWrCDol7J4zJC?f

Page: 1

Scale = 1 46.1

Plate Offsets (X, Y) [1 0-1-0,0-1-8], [1 0-1-0,0-3-2]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	In	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20 0	Plate Grip DOL	1 25	TC	0.22	Vert(LL)	-0 04	7-14	>999	240	MT20
TCDL	10 0	Lumber DOL	1 25	BC	0.43	Vert(CT)	-0 09	7-14	>999	180	
BCLL	0 0*	Rep Stress Incr	YES	WB	0 10	Horz(CT)	0 01	6	n/a	n/a	
BCDL	10 0	Code	FBC2023/TP12014	Matrix-AS						Weight: 64 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.2
SLIDER Left 2x4 SP No 2 -- 1-6-0

BRACING

TOP CHORD Structural wood sheathing directly applied
BOT CHORD Rigid ceiling directly applied

REACTIONS (size) 1=1-0-0, 6= Mechanical

Max Horiz 1=80 (LC 11)

Max Uplift 1=106 (LC 12), 6=106 (LC 12)

Max Grav 1=565 (LC 17), 6=565 (LC 18)

FORCES (lb) - Maximum Compression/Maximum Tension

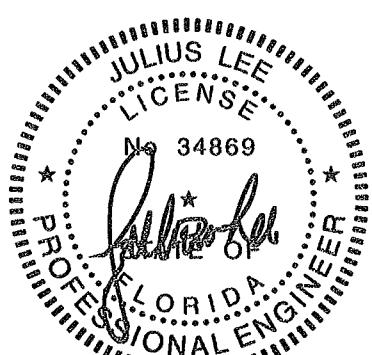
TOP CHORD 1-3=-919/324, 3-4=-641/269, 4-5=-641/266, 5-6=-829/320

BOT CHORD 1-7=-204/736, 6-7=-212/696

WEBS 3-7=-278/185, 4-7=-141/455, 5-7=-277/193

NOTES

- 1) Unbalanced roof live loads have been considered for this design
- 2) Wind ASCE 7-22, Vult=130mph (3-second gust)
Vasd=101mph, TCDL=6 0psf; BCDL=6 0psf; h=25ft;
B=45ft; L=24ft; eave=4ft; Cat. II, Exp B, Partially
Enclosed, MWFRS (directional) and C-C Zone3 0-0-0 to
3-0-0, Zone1 3-0-0 to 7-0-0, Zone2 7-0-0 to 11-2-15,
Zone1 11-2-15 to 14-0-0 zone; cantilever left and right
exposed, end vertical left and right exposed C-C for
members and forces & MWFRS for reactions shown,
Lumber DOL=1 60 plate grip DOL=1 60
- 3) Building Designer / Project engineer responsible for
verifying applied roof live load shown covers rain loading
requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10 0 psf bottom
chord live load nonconcurrent with any other live loads.


5) * This truss has been designed for a live load of 20 0psf
on the bottom chord in all areas where a rectangle
3-06-00 tall by 2-00-00 wide will fit between the bottom
chord and any other members

6) Refer to girder(s) for truss to truss connections

7) Provide mechanical connection (by others) of truss to
bearing plate capable of withstanding 106 lb uplift at joint
1 and 106 lb uplift at joint 6

8) This truss design requires that a minimum of 7/16"
structural wood sheathing be applied directly to the top
chord and 1/2" gypsum sheetrock be applied directly to
the bottom chord

LOAD CASE(S) Standard

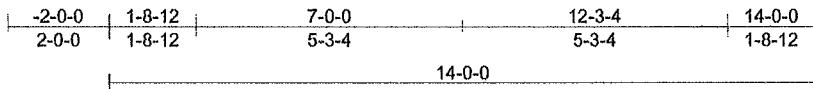
Julius Lee PE. No. 34869
MiTek Inc DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd Chesterfield, MO 63017
Date

October 23, 2025

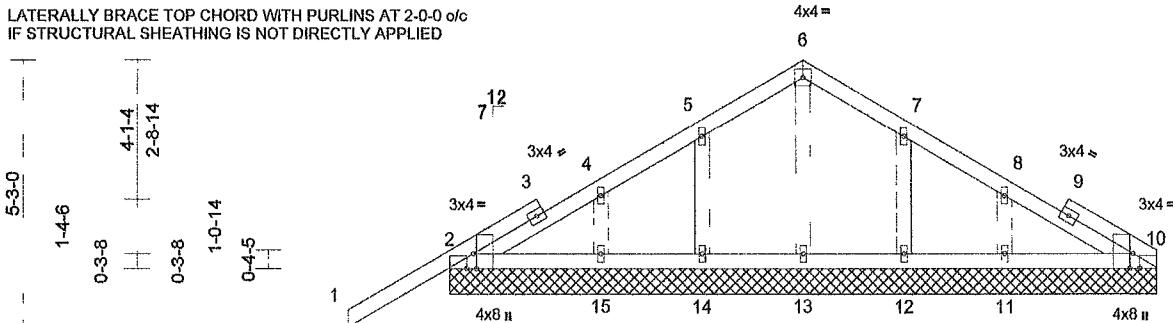
WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown and is for an individual building component, not a truss system. Before use the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpiinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com


Job	Truss	Truss Type	Qty	Ply	
1025-005	T01GE	Common Supported Gable	1	1	Job Reference (optional)

T38943004


Mayo Truss Company Inc. Mayo, FL 32066,

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MiTek Industries, Inc. Wed Oct 22 11:42:29
ID:u0yNG8zO7CzUXlfzIz4R6yTVhW-RfC?PsB70Hq3NSgPqnL8w3uITxbGKwCDol7J4zJC?f

Page. 1

LATERALLY BRACE TOP CHORD WITH PURLLINS AT 2-0-0 o/c
IF STRUCTURAL SHEATHING IS NOT DIRECTLY APPLIED

Scale = 1 45.4

Plate Offsets (X Y) [2 0-3-8,Edge], [2 0-1-9 Edge], [10 0-3-8,Edge], [10 0-1-9,Edge]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20 0	Plate Grip DOL	1.25	TC	0.26	Ver(LL)	n/a	-	n/a	999	MT20
TCDL	10 0	Lumber DOL	1.25	BC	0 07	Vert(CT)	n/a	-	n/a	999	
BCLL	0 0*	Rep Stress Incr	YES	WB	0 03	Horz(CT)	0 00	10	n/a	n/a	
BCDL	10 0	Code	FBC2023/TPI2014	Matrix-AS							Weight: 69 lb FT = 20%

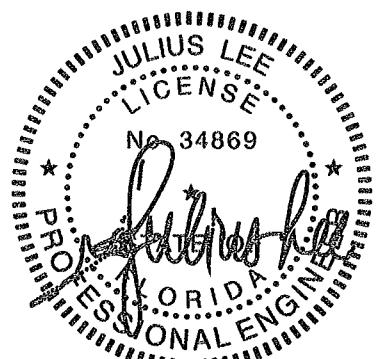
LUMBER

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
OTHERS 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied
BOT CHORD Rigid ceiling directly applied
REACTIONS (size) 2=14-0-0, 10=14-0-0, 11=14-0-0,
12=14-0-0, 13=14-0-0, 14=14-0-0,
15=14-0-0
Max Horiz 2=91 (LC 11)
Max Uplift 2=94 (LC 12), 11=36 (LC 12),
12=26 (LC 12) 14=43 (LC 12)
Max Grav 2=273 (LC 1), 10=103 (LC 1),
11=238 (LC 1), 12=143 (LC 24),
13=153 (LC 1), 14=166 (LC 23),
15=170 (LC 17)

FORCES (lb) - Maximum Compression/Maximum Tension


TOP CHORD 1-2=0/60, 2-4=-100/61, 4-5=-56/47,
5-6=-61/115, 6-7=-61/114, 7-8=-40/48,
8-10=-38/51
BOT CHORD 2-15=-53/116, 14-15=-34/68 13-14=-34/68,
12-13=-34/68, 11-12=-34/68, 10-11=-34/68
WEBS 6-13=-110/0, 5-14=-127/120, 4-15=-131/101,
7-12=-117/108, 8-11=-160/126

NOTES

- Unbalanced roof live loads have been considered for this design
- Wind ASCE 7-22, Vult=130mph (3-second gust)
Vasd=101mph, TCDL=6 0psf; BCDL=6 0psf; h=25ft;
B=45ft; L=24ft; eave=2ft, Cat. II, Exp B, Enclosed,
MWFRS (directional) and C-C Zone3 zone, cantilever
left and right exposed, end vertical left and right
exposed, C-C for members and forces & MWFRS for
reactions shown, Lumber DOL=1 60 plate grip
DOL=1 60

- Truss designed for wind loads in the plane of the truss only For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- All plates are 1 5x4 (||) MT20 unless otherwise indicated
- Gable requires continuous bottom chord bearing
- Gable studs spaced at 2-0-0 oc
- This truss has been designed for a 10 0 psf bottom chord live load nonconcurrent with any other live loads
- * This truss has been designed for a live load of 20 0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 94 lb uplift at joint 2, 43 lb uplift at joint 14, 26 lb uplift at joint 12, 36 lb uplift at joint 11 and 94 lb uplift at joint 2
- This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord

LOAD CASE(S) Standard

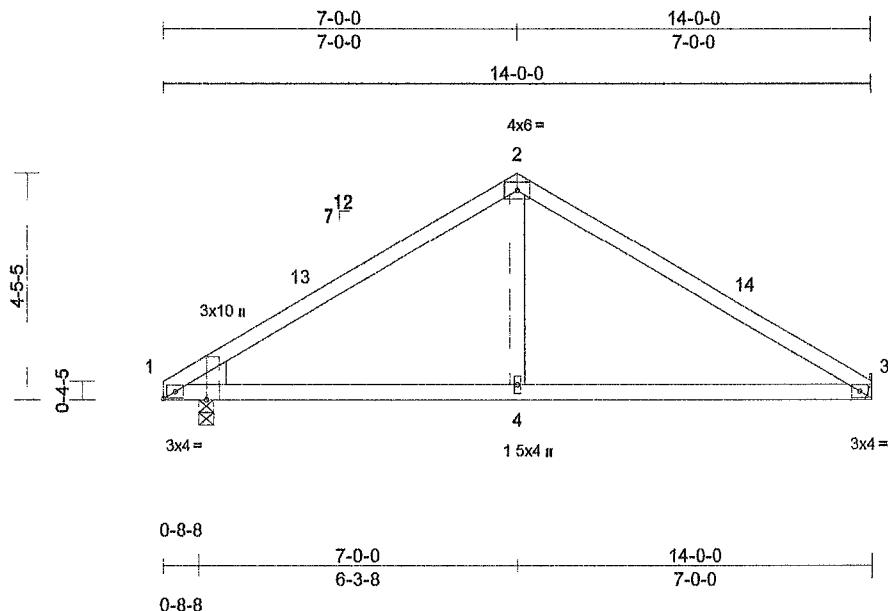
Julius Lee PE No. 34869
MiTek Inc DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

October 23, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from the Truss Plate Institute (www.tpiinst.org) and BCS Building Component Safety Information available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com


Job	Truss	Truss Type	Qty	Ply	
1025-005	T02	Common	1	1	Job Reference (optional)

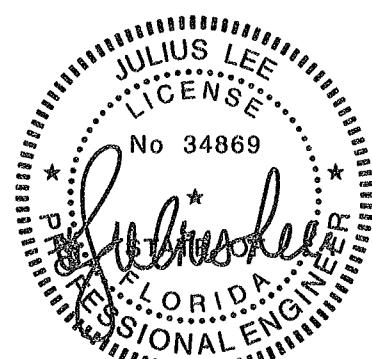
T38943005

Mayo Truss Company Inc. Mayo FL - 32066,

Run: 8.83 S Sep 3 2025 Print: 8.830 S Sep 3 2025 MITek Industries, Inc. Wed Oct 22 11 42.30
ID:RA17ut_4L091ZRloL4mepyTVgC-RfC?PsB70Hq3NSgPqnL8w3uTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1 45.2


Plate Offsets (X, Y) [1 0-0-13,0-0-2], [1 0-0-4 Edge]

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	In	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20 0	Plate Grip DOL	1 25	TC	0 52	Vert(LL)	-0 08	4-7	>999	240	MT20
TCDL	10 0	Lumber DOL	1.25	BC	0.46	Vert(CT)	-0 16	4-7	>999	180	
BCLL	0 0*	Rep Stress Incr	YES	WB	0 07	Horz(CT)	0 01	3	n/a	n/a	
BCDL	10 0	Code	FBC2023/TPI2014	Matrix-AS							Weight: 53 lb FT = 20%

LUMBER											
TOP CHORD	2x4 SP No 2										
BOT CHORD	2x4 SP No 2										
WEBS	2x4 SP No.2										
WEDGE	Left: 2x6 SP No 2										
BRACING											
TOP CHORD	Structural wood sheathing directly applied										
BOT CHORD	Rigid ceiling directly applied										
REACTIONS	(size) 1=0-3-8, 3= Mechanical										
	Max Horiz 1=80 (LC 11)										
	Max Uplift 1=-112 (LC 12), 3=-101 (LC 12)										
	Max Grav 1=595 (LC 17), 3=536 (LC 18)										
FORCES	(lb) - Maximum Compression/Maximum Tension										
TOP CHORD	1-2=-659/254, 2-3=-645/246										
BOT CHORD	1-4=-99/503, 3-4=-90/503										
WEBS	2-4=0/289										

NOTES

- 1) Unbalanced roof live loads have been considered for this design
- 2) Wind ASCE 7-22, Vult=130mph (3-second gust)
Vasd=101mph TCDL=6 0psf; BCDL=6 0psf; h=25ft;
B=45ft; L=24ft; eave=4ft; Cat. II, Exp B, Partially
Enclosed, MWFRS (directional) and C-C Zone3 0-0-0 to
3-0-0, Zone1 3-0-0 to 7-0-0, Zone2 7-0-0 to 11-2-15,
Zone1 11-2-15 to 14-0-0 zone, cantilever left and right
exposed, end vertical left and right exposed,C-C for
members and forces & MWFRS for reactions shown,
Lumber DOL=1 60 plate grip DOL=1 60
- 3) Building Designer / Project engineer responsible for
verifying applied roof live load shown covers rain loading
requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10 0 psf bottom
chord live load nonconcurrent with any other live loads
- 5) * This truss has been designed for a live load of 20 0psf
on the bottom chord in all areas where a rectangle
3-06-00 tall by 2-00-00 wide will fit between the bottom
chord and any other members

Julius Lee PE No 34869
MITek Inc DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date

October 23, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.ipinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek
16023 Swingley Ridge Rd
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com

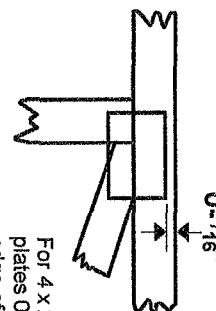
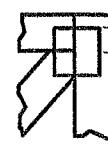


Symbols

PLATE LOCATION AND ORIENTATION

$\frac{1}{2}L$ →
Center plate on joint unless x, y offsets are indicated

Dimensions are in ft-in-sixteenths.

Apply plates to both sides of truss and fully embed teeth

For 4 x 2 orientation, locate plates 0- $\frac{1}{16}$ " from outside edge of truss

This symbol indicates the required direction of slots in connector plates

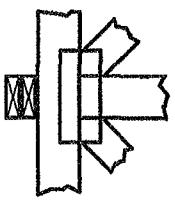
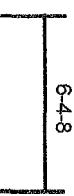

* Plate location details available in MiTek software or upon request

PLATE SIZE

4 X 4
The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots

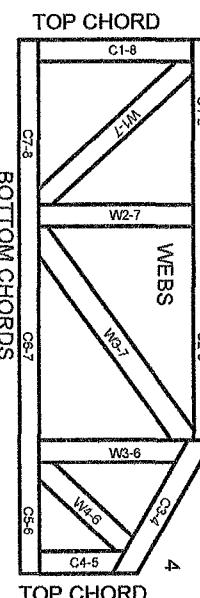
LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated



BEARING

Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number/letter where bearings occur. Min size shown is for crushing only


ANSI/TPI-1 National Design Specification for Metal Plate Connected Wood Truss Construction DSB-22 Design Standard for Bracing Building Component Safety Information, Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses

Numbering System

dimensions shown in ft-in-sixteenths
(Drawing not to scale)

1 Joint ID
2
3
4

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

Product Code Approvals

ICC-ES Reports

ESR-1988, ESR-2362, ESR-2685, ESR-3282
ESR-4722, ESL-1388

Design General Notes

Trusses are designed for wind loads in the plane of the truss unless otherwise shown

Lumber design values are in accordance with ANSI/TPI 1 Section 6.3. These truss designs rely on lumber values established by others

© 2023 MiTek® All Rights Reserved

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

1 Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI

2 Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative TorI bracing should be considered.

3 Never exceed the design loading shown and never stack materials on inadequately braced trusses.

4 Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.

5 Cut members to bear tightly against each other joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI-1.

6 Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI-1.

7 Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI-1.

8 Unless otherwise noted, moisture content of lumber shall not exceed 15% at time of fabrication

9 Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber

10 Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.

11 Plate type, size, orientation and location dimensions indicated are minimum plating requirements.

12 Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.

13 Top chords must be sheathed or purflins provided at spacing indicated on design.

14 Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.

15 Connections not shown are the responsibility of others.

16 Do not cut or alter truss member or plate without prior approval of an engineer.

17 Install and load vertically unless indicated otherwise.

18 Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.

19 Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.

20 Design assumes manufacture in accordance with ANSI/TPI-1 Quality Criteria.

21 The design does not take into account any dynamic or other loads other than those expressly stated.

MiTek®