

Lymber design values are in accordance with ANSI/TPI 1 section 6.3

RE: 4893994 - HEATHERMAN RES.

MiTek, Inc.

16023 Swingley Ridge Rd. Site Information: Chesterfield, MO 63017

Customer Info: GIEBEIG CONST. Project Name: Heatherman Res. Model: Customer 114.434.1200

Subdivision: N/A Lot/Block: N/A

Address: TBD, TBD

City: Columbia Cty State: FL

Name Address and License # of Structural Engineer of Record, If there is one, for the building.

Name: License #:

Address:

City: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special **Loading Conditions):**

Design Code: FBC2023/TPI2014 Design Program: MiTek 20/20 8.8

Wind Code: ASCE 7-22 Wind Speed: 130 mph Roof Load: 40.0 psf Floor Load: N/A psf

This package includes 20 individual, Truss Design Drawings and 0 Additional Drawings. With my seal affixed to this sheet, I hereby certify that I am the Truss Design Engineer and this index sheet conforms to 61G15-31.003, section 5 of the Florida Board of Professional Engineers Rules.

T38803913

T38803914

T38803915

T38803916

T38803917

T12 T13

Seal# T38803912 Truss Name Date

10/10/25

10/10/25

10/10/25

10/10/25

10/10/25

No.	Seal#	Truss Name	Date	No.
1	T38803898	T01	10/10/25	15
2	T38803899	T01G	10/10/25	16
3	T38803900	T02	10/10/25	17
2 3 4 5 6 7	T38803901	T03	10/10/25	18
5	T38803902	<u>T</u> 03G	10/10/25	19
6	T38803903	<u>T04</u>	10/10/25	20
7	T38803904	T05	10/10/25	
8 9	T38803905	<u>T</u> 05G	10/10/25	
9	T38803906	T06	10/10/25	
10	T38803907	T07	10/10/25	
11	T38803908	T07G	10/10/25	
12	T38803909	T08	10/10/25	
13	T38803910	T09	10/10/25	
14	T38803911	T09G	10/10/25	

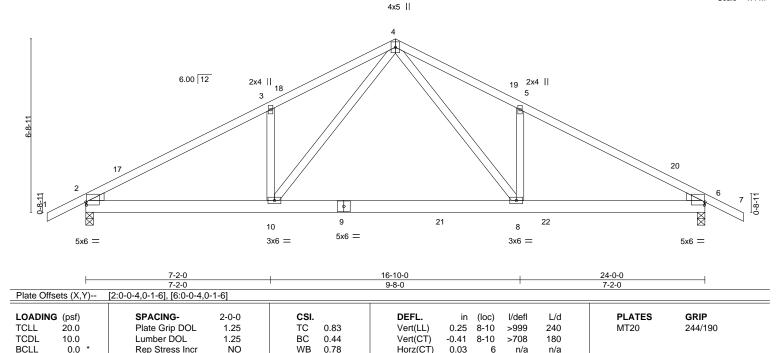
This item has been digitally signed and sealed by Velez, Joaquin, PE on the date adjacent to the seal. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Builders FirstSource-Lake City, FL.

Truss Design Engineer's Name: Velez, Joaquin

My license renewal date for the state of Florida is February 28, 2027.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.



MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

October 10,2025

Scale = 1:44.7

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

0.03

6

n/a

n/a

Rigid ceiling directly applied or 9-11-14 oc bracing.

Structural wood sheathing directly applied or 2-11-12 oc purlins.

Weight: 136 lb

FT = 20%

LUMBER-

BCLL

BCDL

TOP CHORD 2x4 SP No.2

BOT CHORD 2x6 SP 2400F 2.0E or 2x6 SP M 26

2x4 SP No 3 WFBS

0.0

10.0

WEDGE

Left: 2x4 SP No.3, Right: 2x4 SP No.3

REACTIONS. (size) 2=0-3-8, 6=0-3-8

Max Horz 2=-113(LC 13) Max Uplift 2=-405(LC 9), 6=-414(LC 8)

Max Grav 2=1392(LC 2), 6=1414(LC 2)

Rep Stress Incr

Code FBC2023/TPI2014

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD $2-3=-2304/1123,\ 3-4=-2271/1218,\ 4-5=-2311/1247,\ 5-6=-2344/1153$

BOT CHORD 2-10=-905/1979, 8-10=-549/1319, 6-8=-949/2015

WEBS 4-8=-659/1165, 5-8=-353/250, 4-10=-615/1106, 3-10=-353/250

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 -1-6-0 to 1-6-0, Zone1 1-6-0 to 12-0-0, Zone2 12-0-0 to 16-2-15, Zone1 16-2-15 to 25-6-0 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

NO

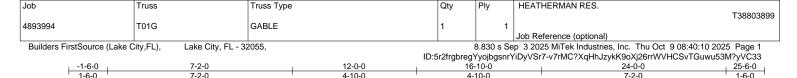
Matrix-MS

- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 405 lb uplift at joint 2 and 414 lb uplift at
- 7) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

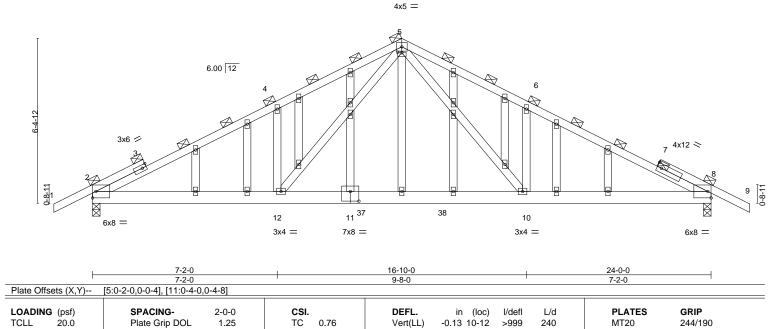
LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)

Vert: 1-4=-60, 4-7=-60, 10-11=-20, 10-22=-80(F=-60), 14-22=-20


This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017


October 10.2025

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

Scale = 1:44.7

Vert(CT)

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

-0.23 10-12

8

0.02

>999

n/a

2-0-0 oc purlins (4-1-3 max.).

180

n/a

Rigid ceiling directly applied or 8-1-10 oc bracing.

Weight: 182 lb

FT = 20%

LUMBER-

TCDL

BCLL

BCDL

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x6 SP No.2

2x4 SP No.3 WFBS **OTHERS** 2x4 SP No.3

10.0

0.0

10.0

REACTIONS.

(size) 2=0-3-8, 8=0-3-8 Max Horz 2=-107(LC 17) Max Uplift 2=-298(LC 9), 8=-298(LC 8) Max Grav 2=1114(LC 2), 8=1114(LC 2)

Lumber DOL

Rep Stress Incr

Code FBC2023/TPI2014

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-1754/990, 4-5=-1771/1133, 5-6=-1771/1133, 6-8=-1754/990

BOT CHORD 2-12=-771/1527, 10-12=-425/994, 8-10=-776/1527

WEBS 5-10=-560/862, 6-10=-371/279, 5-12=-560/862, 4-12=-371/279

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

1.25

YES

вс

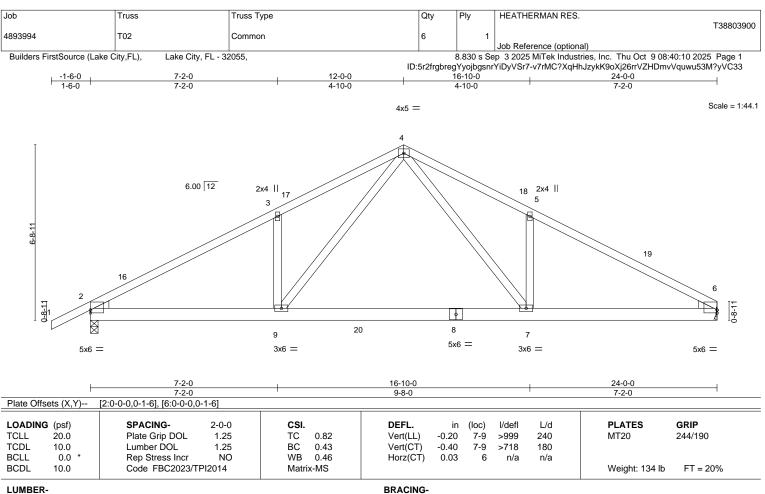
WB

Matrix-MS

0.45

0.62

- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 298 lb uplift at joint 2 and 298 lb uplift at joint 8.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

October 10.2025

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2

BOT CHORD 2x6 SP 2400F 2.0E or 2x6 SP M 26

WFBS 2x4 SP No 3

WEDGE

Left: 2x4 SP No.3, Right: 2x4 SP No.3

REACTIONS. (size) 6=Mechanical, 2=0-3-8

Max Horz 2=125(LC 12)

Max Uplift 6=-314(LC 13), 2=-353(LC 12) Max Grav 6=1300(LC 2), 2=1379(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 $2\hbox{-}3\hbox{--}2277/538,\ 3\hbox{-}4\hbox{--}2245/663,\ 4\hbox{-}5\hbox{--}2258/670,\ 5\hbox{-}6\hbox{--}2289/558}$ TOP CHORD

BOT CHORD 2-9=-491/1976, 7-9=-262/1301, 6-7=-414/1967

WEBS 4-7=-385/1129, 5-7=-357/252, 4-9=-377/1112, 3-9=-354/250

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 -1-6-0 to 1-6-0, Zone1 1-6-0 to 12-0-0, Zone2 12-0-0 to 16-2-15, Zone1 16-2-15 to 24-0-0 zone:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 314 lb uplift at joint 6 and 353 lb uplift at
- 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)

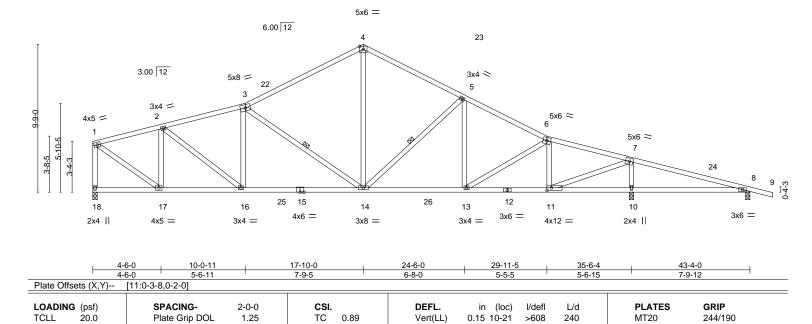
Vert: 1-4=-60, 4-6=-60, 9-13=-20, 7-9=-80(F=-60), 7-10=-20

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Structural wood sheathing directly applied or 3-0-14 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Joaquin Velez PE No.68182 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017


October 10.2025

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

Job Truss Truss Type Qty Ply HEATHERMAN RES T38803901 4893994 T03 5 Roof Special Job Reference (optional) Builders FirstSource (Lake City,FL), Lake City, FL - 32055, 8.830 s Sep 3 2025 MiTek Industries, Inc. Thu Oct 9 08:40:11 2025 Page 1 ID:5r2frgbregYyojbgsnrYiDyVSr7-NJPkPLYS2?RqauvMMEEHf2OfJhSNerf19YqcuSyVC32 10-0-11 17-10-0 24-6-0 29-11-5 35-6-4 43-4-0 44-10-0 1-6-0 5-6-11 7-9-5 6-8-0 5-5-5 5-6-15 7-9-12

Scale = 1:76.0

Vert(CT)

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

WFBS

-0.35 14-16

10

1 Row at midpt

0.07

>999

n/a

180

n/a

Rigid ceiling directly applied or 6-0-0 oc bracing.

Structural wood sheathing directly applied, except end verticals.

3-14 5-14

Weight: 245 lb

FT = 20%

LUMBER-

TCDL

BCLL

BCDL

TOP CHORD 2x4 SP No.2 *Except* 3-4: 2x4 SP No.1

BOT CHORD 2x4 SP No.2

WEBS 2x4 SP No.3

10.0

0.0

10.0

REACTIONS.

(size) 18=0-3-8, 10=0-3-8, 8=0-3-8

Lumber DOL

Rep Stress Incr

Code FBC2023/TPI2014

Max Horz 18=-236(LC 13)

Max Uplift 18=-331(LC 12), 10=-473(LC 13), 8=-221(LC 9) Max Grav 18=1491(LC 2), 10=2145(LC 2), 8=240(LC 26)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-1463/338, 2-3=-2040/452, 3-4=-1643/418, 4-5=-1635/409, 5-6=-2035/454,

6-7=-1770/405, 7-8=-116/714, 1-18=-1418/374

BOT CHORD 16-17=-331/1398, 14-16=-401/1951, 13-14=-250/1779, 11-13=-275/1703, 10-11=-624/135, 8-10=-624/135

1.25

YES

BC

WB

Matrix-MS

0.79

0.93

2-17=-823/237, 2-16=-127/693, 3-14=-704/277, 4-14=-188/1033, 5-14=-563/272, 5-13=-6/252, 6-11=-714/191, 7-11=-427/2448, 7-10=-1833/485, 1-17=-358/1689

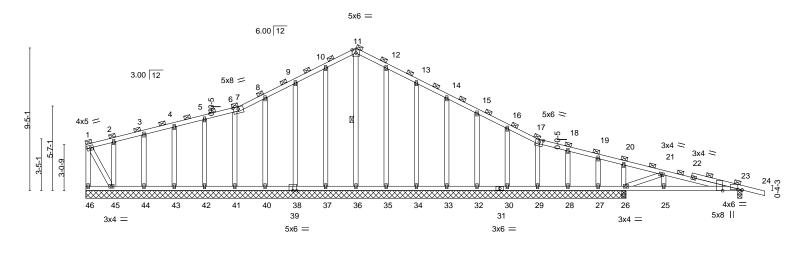
NOTES-

WEBS

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II: Exp B; Encl.. GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 0-1-12 to 4-6-0, Zone1 4-6-0 to 17-10-0, Zone2 17-10-0 to 23-11-9, Zone1 23-11-9 to 44-10-0 zone; porch right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 331 lb uplift at joint 18, 473 lb uplift at joint 10 and 221 lb uplift at joint 8.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017


October 10.2025

M WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

Job Truss Truss Type Qty Ply HEATHERMAN RES T38803902 4893994 T03G **GABLE** Job Reference (optional) Builders FirstSource (Lake City,FL), Lake City, FL - 32055, 8.830 s Sep 3 2025 MiTek Industries, Inc. Thu Oct 9 08:40:12 2025 Page 1 ID:5r2frgbregYyojbgsnrYiDyVSr7-sWz6chY4pIZhB2UYwylWCGxyJ4wqNUtBOCaAQuyVC31 10-0-11 17-10-0 29-11-5 44-10-0 1-6-0 10-0-11 7-9-5 12-1-5

Scale = 1:76.1

Plate Off	sets (X,Y)	[7:0-4-0,0-1-10], [17:0-3-	0,0-1-10], [23:0	0-0-9,Edge], [23:0-3-4,0-0	0-5]					
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.Ó	Plate Grip DOL	1.25	TC	0.36	Vert(LL)	0.03 23-25	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.25	ВС	0.27	Vert(CT)	-0.05 23-25	>999	180		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.17	Horz(CT)	0.01 26	n/a	n/a		
BCDL	10.0	Code FBC2023/T	PI2014	Matri	x-S	, ,				Weight: 282 lb	FT = 20%

35-8-0

35-8-0

LUMBER-TOP CHORD 2x4 SP No 2

BOT CHORD 2x4 SP No.2 WFBS

2x4 SP No.3 2x4 SP No.3 **BRACING-**

WEBS

TOP CHORD 2-0-0 oc purlins (6-0-0 max.), except end verticals. **BOT CHORD** Rigid ceiling directly applied or 6-0-0 oc bracing, Except:

10-0-0 oc bracing: 45-46,25-26,23-25. 11-36 1 Row at midpt

REACTIONS. All bearings 35-8-0 except (jt=length) 23=0-3-8.

(lb) -Max Horz 46=-224(LC 13)

Max Uplift All uplift 100 lb or less at joint(s) 37, 38, 40, 41, 42, 43, 44, 35, 34, 33, 32, 30, 29, 28, 27

except 46=-134(LC 17), 23=-225(LC 9), 45=-195(LC 12), 26=-209(LC 9)

Max Grav All reactions 250 lb or less at joint(s) 46, 36, 37, 38, 40, 41, 42, 43, 44, 35, 34, 33, 32, 30, 29, 28, 27 except 23=394(LC 1), 45=269(LC 22), 26=411(LC 1), 26=411(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

10-11=-96/289, 11-12=-96/289, 21-23=-498/281 TOP CHORD

BOT CHORD 25-26=-232/461, 23-25=-232/461

WEBS 21-26=-553/492

OTHERS

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 zone; porch right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 37, 38, 40, 41, 42, 43, 44, 35, 34, 33, 32, 30, 29, 28, 27 except (jt=lb) 46=134, 23=225, 45=195, 26=209.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

43-4-0

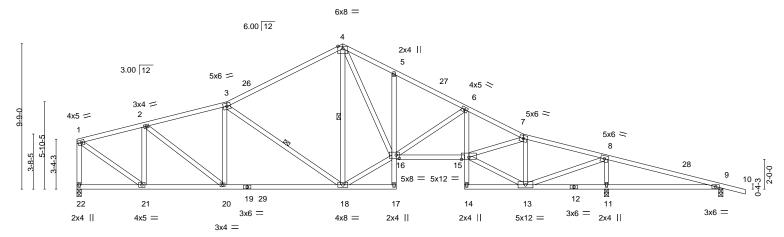
5-2-0

2-6-0

Joaquin Velez PE No.68182 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

October 10.2025

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE



Job Truss Truss Type Qty Ply HEATHERMAN RES T38803903 4893994 T04 Roof Special Job Reference (optional) 8.830 s Sep 3 2025 MiTek Industries, Inc. Thu Oct 9 08:40:13 2025 Page 1

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

ID:5r2frgbregYyojbgsnrYiDyVSr7-KiXVq1ZiZchYpC3kUfHlkTT_LU9O6p1KcsJjyKyVC30 10-0-11 17-10-0 21-4-15 26-0-0 35-6-4 43-4-0 5-6-11 7-9-5 3-6-15 3-11-5 5-6-15 7-9-12

Scale = 1:77.3

	4-6-0	10-0-11	17-10-0	21-5-0	26-0-0	29-11-5	35-6-4	43-4-0	
	4-6-0	5-6-11	7-9-5	3-7-0	4-7-0	3-11-5	5-6-15	7-9-12	1
Plate Offsets (X,Y) [16:0-2-	8,0-2-12]							

LOADIN	· /	SPACING-	2-0-0	CSI.		DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.92	Vert(LL)	0.15 11-25	>611	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.25	BC	0.76	Vert(CT)	-0.41 18-20	>999	180		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.62	Horz(CT)	0.15 11	n/a	n/a		
BCDL	10.0	Code FBC2023/TPI	I2014	Matri	x-MS					Weight: 269 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

WEBS

LUMBER-TOP CHORD

2x4 SP No.2 *Except*

3-4: 2x4 SP No.1 **BOT CHORD**

2x4 SP No.2 *Except*

5-17,6-14: 2x4 SP No.3 2x4 SP No.3 *Except*

WEBS 8-13: 2x4 SP No.2

REACTIONS. (size) 22=0-3-8, 11=0-3-8, 9=0-3-8

Max Horz 22=-236(LC 13)

Max Uplift 22=-325(LC 12), 11=-506(LC 13), 9=-221(LC 9) Max Grav 22=1442(LC 2), 11=2319(LC 2), 9=109(LC 26)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD $1-2 = -1410/331, \ 2-3 = -1952/442, \ 3-4 = -1538/405, \ 4-5 = -2198/555, \ 5-6 = -2248/477,$

6-7=-2915/584, 7-8=-1390/349, 8-9=-214/1332, 1-22=-1369/368

BOT CHORD 20-21=-325/1347, 18-20=-391/1865, 15-16=-369/2614, 6-15=-63/508, 11-13=-1238/233,

WEBS 2-21=-788/233, 2-20=-122/651, 3-18=-710/276, 16-18=-182/1493, 4-16=-305/1536,

6-16=-785/260, 13-15=-245/1504, 7-15=-191/1286, 7-13=-1541/324, 8-13=-475/2708,

8-11=-1995/516, 1-21=-352/1626

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 0-1-12 to 4-6-0, Zone1 4-6-0 to 17-10-0, Zone2 17-10-0 to 23-11-9, Zone1 23-11-9 to 44-10-0 zone; porch right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 22=325, 11=506, 9=221.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Structural wood sheathing directly applied or 2-1-0 oc purlins,

3-18, 4-18

Rigid ceiling directly applied or 4-5-5 oc bracing.

except end verticals.

1 Row at midpt

Joaquin Velez PE No.68182 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

October 10.2025

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

6-8-0

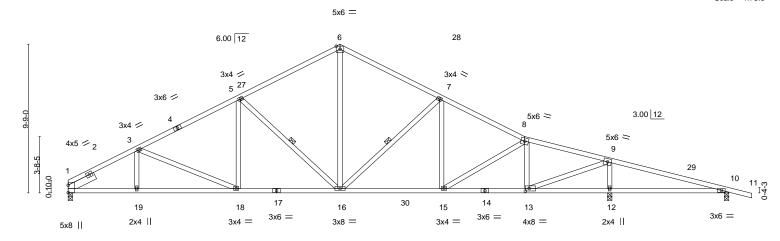
5-5-5

29-11-5

1 Row at midpt

5-6-15

35-6-4


Structural wood sheathing directly applied or 2-1-8 oc purlins.

5-16 7-16

Rigid ceiling directly applied or 5-11-9 oc bracing.

Scale = 1:75.6

7-9-12

	+-0	0-0-0		0-0-0		0-0-0	3-3-3		3-0-13	1-3-1	_
Plate Off	sets (X,Y)	[1:0-5-13,0-0-1], [13:0-3-	0,0-2-0]								
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.89	Vert(LL)	0.15 12-26	>609	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.25	BC	0.90	Vert(CT)	-0.32 18-19	>999	180		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.95	Horz(CT)	0.08 12	n/a	n/a		
BCDL	10.0	Code FBC2023/T	PI2014	Matri	x-MS					Weight: 237 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

WFBS

24-6-0

LUMBER-

TOP CHORD 2x4 SP No 2

2x4 SP No.1 *Except* BOT CHORD

10-14: 2x4 SP No.2 2x4 SP No.3

WEBS SLIDER Left 2x6 SP No.2 1-11-8

REACTIONS.

(size) 1=0-3-8, 12=0-3-8, 10=0-3-8

Max Horz 1=-179(LC 13)

Max Uplift 1=-327(LC 12), 12=-481(LC 13), 10=-219(LC 9) Max Grav 1=1492(LC 2), 12=2180(LC 2), 10=228(LC 26)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

11-2-0

6-8-0

6-8-0

17-10-0

TOP CHORD $1\hbox{-}3\hbox{--}2428/553,\ 3\hbox{-}5\hbox{--}2198/490,\ 5\hbox{-}6\hbox{--}1637/435,\ 6\hbox{-}7\hbox{--}1634/416,\ 7\hbox{-}8\hbox{--}2033/459,}$ 8-9=-1736/404, 9-10=-140/794

BOT CHORD 1-19=-553/2111, 18-19=-553/2111, 16-18=-410/1927, 15-16=-257/1778, 13-15=-275/1671,

12-13=-707/158, 10-12=-707/158

WEBS 5-18=-24/384, 5-16=-744/309, 6-16=-219/1092, 7-16=-567/271, 7-15=-2/251,

8-13=-738/195, 9-13=-440/2502, 9-12=-1866/493

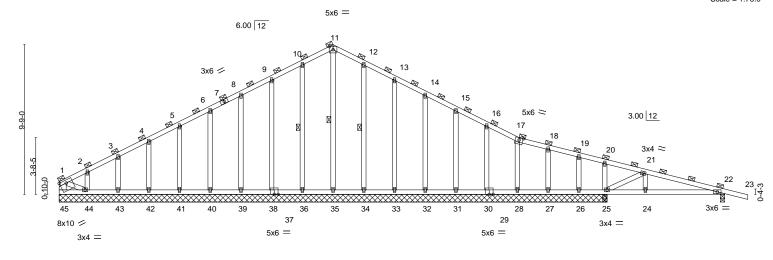
NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 0-0-0 to 4-6-0, Zone1 4-6-0 to 17-10-0, Zone2 17-10-0 to 23-11-9, Zone1 23-11-9 to 44-10-0 zone; porch right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=327, 12=481, 10=219.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

October 10.2025



MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Job Truss Truss Type Qty Ply HEATHERMAN RES T38803905 4893994 T05G **GABLE** 1 Job Reference (optional) Builders FirstSource (Lake City,FL), Lake City, FL - 32055, 8.830 s Sep 3 2025 MiTek Industries, Inc. Thu Oct 9 08:40:15 2025 Page 1 ID:5r2frgbregYyojbgsnrYiDyVSr7-G5eFFjby5DxF2VC7b4JDpuYU7lydaq4d4Aoq1DyVC3_ 17-10-0 29-11-5 43-4-0 44-10-0 1-6-0 17-10-0 12-1-5

Scale = 1:75.0

1	35-8-0	38-2-0	43-4-0
	35-8-0	2-6-0	5-2-0
Plate Offsets (X,Y)-	[45:Edge,0-2-4]		

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.25	TC 0.26	Vert(LL) 0.03 22-24 >999 240	MT20 244/190
TCDL 10.0	Lumber DOL 1.25	BC 0.26	Vert(CT) -0.05 22-24 >999 180	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.14	Horz(CT) 0.01 25 n/a n/a	
BCDL 10.0	Code FBC2023/TPI2014	Matrix-S		Weight: 276 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP No 2 **BOT CHORD** 2x4 SP No.2 **WEBS**

2x4 SP No.3 *Except* 1-45: 2x6 SP No.2

OTHERS 2x4 SP No.3 **BRACING-**

TOP CHORD 2-0-0 oc purlins (6-0-0 max.), except end verticals. **BOT CHORD** Rigid ceiling directly applied or 6-0-0 oc bracing, Except:

10-0-0 oc bracing: 44-45,24-25,22-24. WEBS 1 Row at midpt 11-35, 10-36, 12-34

REACTIONS. All bearings 35-8-0 except (jt=length) 22=0-3-8.

Max Horz 45=-182(LC 13) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 45, 36, 38, 39, 40, 41, 42, 43, 34, 33, 32, 31, 30, 28, 27, 26

except 44=-143(LC 12), 22=-225(LC 9), 25=-200(LC 9)

All reactions 250 lb or less at joint(s) 45, 35, 36, 38, 39, 40, 41, 42, 43, 44, 34, 33, 32, 31, 30, 28, 27, 26 except 22=399(LC 1), 25=387(LC 1), 25=387(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 9-10=-87/259, 10-11=-104/315, 11-12=-104/315, 12-13=-87/259, 21-22=-459/256

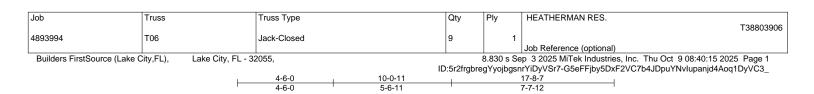
BOT CHORD 24-25=-191/406, 22-24=-191/406

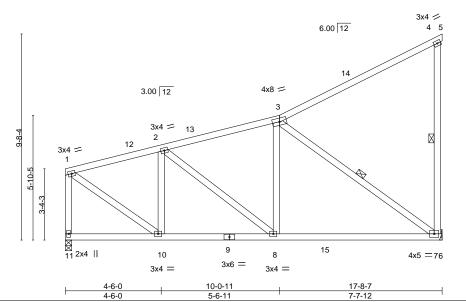
WEBS 21-25=-502/460

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II: Exp B; Encl.. GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 zone; porch right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 45, 36, 38, 39, 40, 41, 42, 43, 34, 33, 32, 31, 30, 28, 27, 26 except (jt=lb) 44=143, 22=225, 25=200.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.


Joaquin Velez PE No.68182 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017


October 10.2025

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

GRIP LOADING (psf) SPACING-2-0-0 CSI. **DEFL** in (loc) I/defl L/d **PLATES TCLL** 20.0 Plate Grip DOL 1.25 TC 0.72 Vert(LL) -0.11 7-8 >999 240 MT20 244/190 TCDL Lumber DOL 1.25 вс 0.57 Vert(CT) -0.21 >988 180 WB 0.35 **BCLL** 0.0 Rep Stress Incr YES Horz(CT) 0.01 n/a n/a Code FBC2023/TPI2014 BCDL 10.0 Matrix-MS Weight: 116 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

WFBS

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

2x4 SP No.3 WFBS

REACTIONS. (size) 11=0-3-8, 7=Mechanical

Max Horz 11=186(LC 12)

Max Uplift 11=-124(LC 8), 7=-186(LC 12) Max Grav 11=749(LC 2), 7=770(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1-11=-677/143, 1-2=-667/113, 2-3=-694/67 TOP CHORD **BOT CHORD** 8-10=-282/626 7-8=-205/634

WFBS 1-10=-105/746, 2-10=-312/89, 3-8=-32/322, 3-7=-768/244

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 0-1-12 to 3-1-12, Zone1 3-1-12 to 17-8-7 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 11=124, 7=186.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Structural wood sheathing directly applied or 6-0-0 oc purlins,

4-7. 3-7

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

1 Row at midpt

Scale = 1:54.1

Joaquin Velez PE No.68182 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

October 10.2025

👠 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

ID:5r2frgbregYyojbgsnrYiDyVSr7-kHCdS3basX36gfnJ9oqSM65coiG1J8xmlqYNYfyVC2z

Sgale + 1:22.3 4 3.00 12 3x4 = 3 6 2x4 ||

	<u> </u>	6-4-0 6-4-0	12-3-8 5-11-8
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.25 Lumber DOL 1.25 Rep Stress Incr YES Code FBC2023/TPI2014	CSI. DEFL. TC 0.39 Vert(LL) BC 0.44 Vert(CT) WB 0.74 Horz(CT) Matrix-MS Horz(CT)	in (loc) I/defl L/d 0.08 6-9 >999 240 -0.11 6-9 >999 180 0.02 5 n/a n/a MT20 244/190 MT20 244/190 Weight: 54 lb FT = 20%

BRACING-TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

2x4 SP No.3 WFBS

REACTIONS. (size) 2=0-3-8, 5=0-3-8 Max Horz 2=137(LC 8)

Max Uplift 2=-312(LC 8), 5=-270(LC 8) Max Grav 2=581(LC 1), 5=480(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1100/656

BOT CHORD 2-6=-745/1045 5-6=-745/1045 **WEBS** 3-6=-124/268, 3-5=-1055/745

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 -1-6-0 to 1-6-0, Zone1 1-6-0 to 12-1-12 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=312, 5=270.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

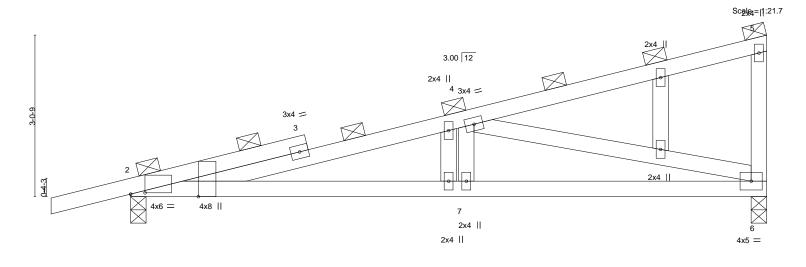
Structural wood sheathing directly applied or 5-2-7 oc purlins,

Rigid ceiling directly applied or 6-7-13 oc bracing.

except end verticals.

Joaquin Velez PE No.68182 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

October 10,2025



MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

ID:5r2frgbregYyojbgsnrYiDyVSr7-kHCdS3basX36gfnJ9oqSM65ZHiEcJ85mlqYNYfyVC2z 12-0-0 6-4-0 6-4-0 5-8-0

Plate Off	late Offsets (X,Y) [2:0-3-4,0-0-5], [2:0-0-9,Edge]			6-4-0							5-8-0	· · · · · · · · · · · · · · · · · · ·
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.61	Vert(LL)	0.12	7-14	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.25	BC	0.53	Vert(CT)	-0.14	7-14	>999	180		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.73	Horz(CT)	0.02	6	n/a	n/a		
BCDL	10.0	Code FBC2023/T	PI2014	Matri	x-MS						Weight: 59 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No 2 2x4 SP No.2

BOT CHORD 2x4 SP No.3 WFBS **OTHERS** 2x4 SP No.3

REACTIONS.

(size) 2=0-3-8, 6=0-3-8 Max Horz 2=123(LC 8) Max Uplift 2=-313(LC 8), 6=-256(LC 8) Max Grav 2=574(LC 1), 6=461(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-1206/1100

BOT CHORD 2-7=-1220/1179. 6-7=-1220/1179 **WEBS** 4-7=-134/253, 4-6=-1181/1221

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

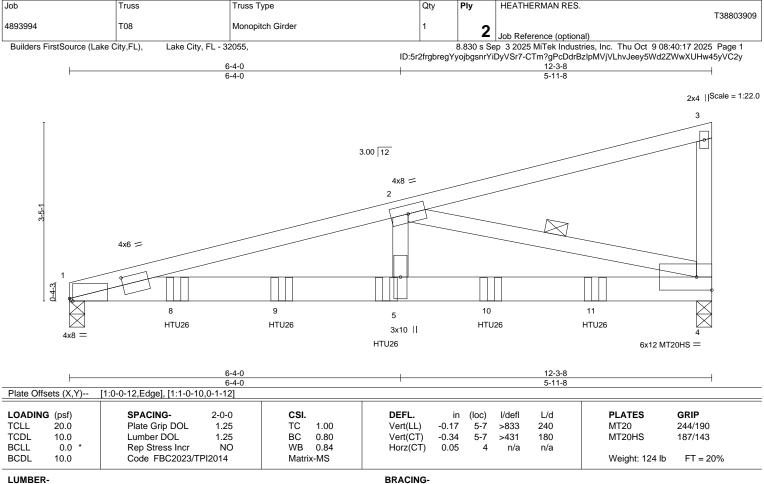
6-4-0

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=313, 6=256,
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

12-0-0

2-0-0 oc purlins (4-1-14 max.), except end verticals.


Rigid ceiling directly applied or 5-0-1 oc bracing.

Joaquin Velez PE No.68182 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

October 10.2025

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

BOT CHORD

WFBS

LUMBER-TOP CHORD BOT CHORD

2x4 SP No.2

2x6 SP 2400F 2.0E or 2x6 SP M 26

WEBS 2x4 SP No.3 *Except*

2-4: 2x4 SP No.2

REACTIONS. (size) 1=0-3-8, 4=0-3-8

Max Horz 1=118(LC 25)

Max Uplift 1=-993(LC 4), 4=-1033(LC 4)

Max Grav 1=3601(LC 2), 4=3648(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-9693/2599

BOT CHORD 1-5=-2604/9403, 4-5=-2604/9403 WEBS 2-5=-1110/4432, 2-4=-9576/2647

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-7-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-6-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone; porch left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 5) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 6) All plates are MT20 plates unless otherwise indicated.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=993, 4=1033.
- 10) Use Simpson Strong-Tie HTU26 (20-10d Girder, 11-10dx1 1/2 Truss) or equivalent spaced at 2-0-0 oc max. starting at 2-0-12 from the left end to 10-0-12 to connect truss(es) to front face of bottom chord.
- 11) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S) Standard

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

1 Row at midpt

Joaquin Velez PE No.68182 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

October 10,2025

Continued on page 2

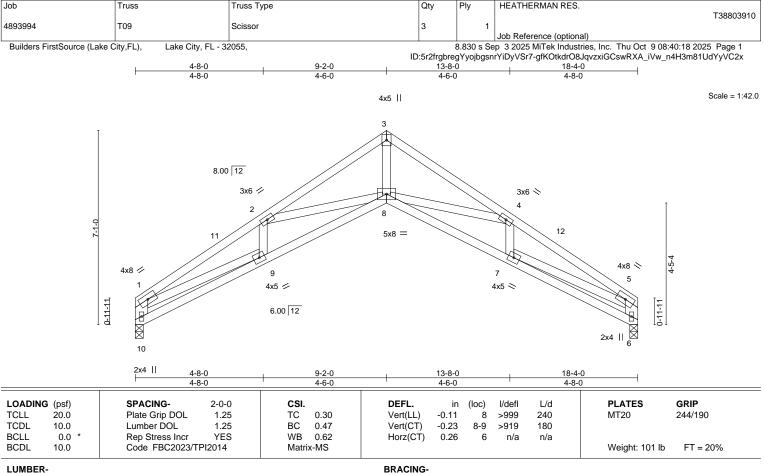
🛕 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Job	Truss	Truss Type	Qty	Ply	HEATHERMAN RES.
					T38803909
4893994	T08	Monopitch Girder	1	2	
					Job Reference (optional)

Builders FirstSource (Lake City,FL),

Lake City, FL - 32055,

8.830 s Sep 3 2025 MiTek Industries, Inc. Thu Oct 9 08:40:17 2025 Page 2 ID:5r2frgbregYyojbgsnrYiDyVSr7-CTm?gPcDdrBzIpMVjVLhvJeey5Wd2ZWwXUHw45yVC2y


LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)
Vert: 1-3=-60, 1-4=-20

Concentrated Loads (lb)

Vert: 5=-1227(F) 8=-1227(F) 9=-1227(F) 10=-1227(F) 11=-1227(F)

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

2x4 SP No.3 *Except* WFBS

1-10.5-6: 2x6 SP No.2

REACTIONS. (size) 10=0-3-8, 6=0-3-8 Max Horz 10=147(LC 11)

Max Uplift 10=-158(LC 12), 6=-158(LC 13) Max Grav 10=715(LC 1), 6=715(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-1984/523, 2-3=-1778/345, 3-4=-1778/369, 4-5=-1984/387, 1-10=-735/242,

5-6=-735/209

BOT CHORD 9-10=-184/307. 8-9=-531/1865. 7-8=-308/1785

WEBS 3-8=-295/1625, 4-8=-302/327, 2-8=-277/271, 1-9=-337/1504, 5-7=-254/1504

NOTES-

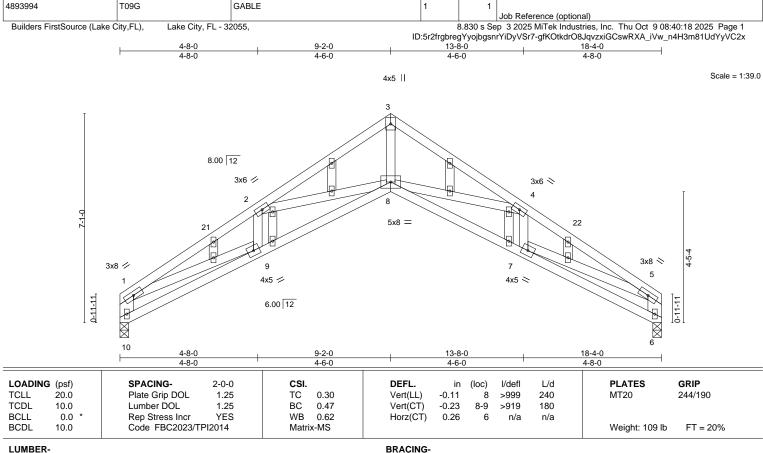
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 0-2-12 to 3-2-12, Zone1 3-2-12 to 9-2-0, Zone2 9-2-0 to 13-8-0, Zone1 13-8-0 to 18-1-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Bearing at joint(s) 10, 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 10=158, 6=158.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Structural wood sheathing directly applied or 3-11-7 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

except end verticals


8-1-5 oc bracing: 8-9.

Joaquin Velez PE No.68182 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

October 10.2025

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

BOT CHORD

Qty

Ply

HEATHERMAN RES

Structural wood sheathing directly applied or 3-11-7 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

except end verticals

8-1-5 oc bracing: 8-9.

T38803911

LUMBER-

Job

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

WFBS 2x4 SP No.3 *Except* 1-10,5-6: 2x6 SP No.2

OTHERS 2x4 SP No.3

REACTIONS. (size) 10=0-3-8, 6=0-3-8

Max Horz 10=-147(LC 8)

Truss

Truss Type

Max Uplift 10=-158(LC 12), 6=-158(LC 13) Max Grav 10=715(LC 1), 6=715(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-1984/523, 2-3=-1778/345, 3-4=-1778/369, 4-5=-1984/387, 1-10=-735/242,

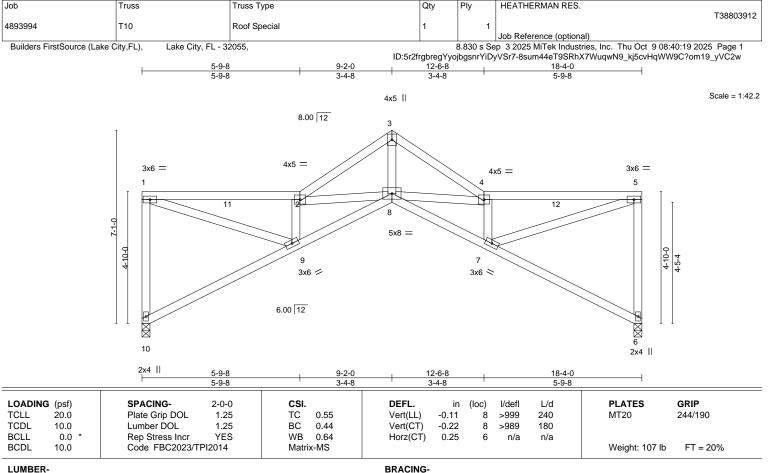
5-6=-735/209

BOT CHORD 9-10=-184/307, 8-9=-531/1865, 7-8=-308/1785

WEBS 3-8=-295/1625, 4-8=-302/327, 2-8=-277/271, 1-9=-337/1503, 5-7=-254/1503

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 0-2-12 to 3-2-12, Zone1 3-2-12 to 9-2-0, Zone2 9-2-0 to 13-8-0, Zone1 13-8-0 to 18-1-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Bearing at joint(s) 10, 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 10=158, 6=158.


This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

October 10.2025

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

BOT CHORD

LUMBER-TOP CHORD

REACTIONS.

2x4 SP No.2 2x4 SP No.2

BOT CHORD 2x4 SP No.3 WFBS

(size) 10=0-3-8, 6=0-3-8

Max Horz 10=55(LC 9) Max Uplift 10=-169(LC 12), 6=-169(LC 13)

Max Grav 10=722(LC 1), 6=722(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-10=-675/203, 1-2=-1524/363, 2-3=-1759/389, 3-4=-1759/407, 4-5=-1524/319,

5-6=-675/186

BOT CHORD 8-9=-486/1820, 7-8=-391/1820

WFBS 1-9=-376/1584, 2-9=-1212/351, 2-8=-275/119, 3-8=-359/1686, 4-8=-275/133,

4-7=-1212/312, 5-7=-330/1584

NOTES-

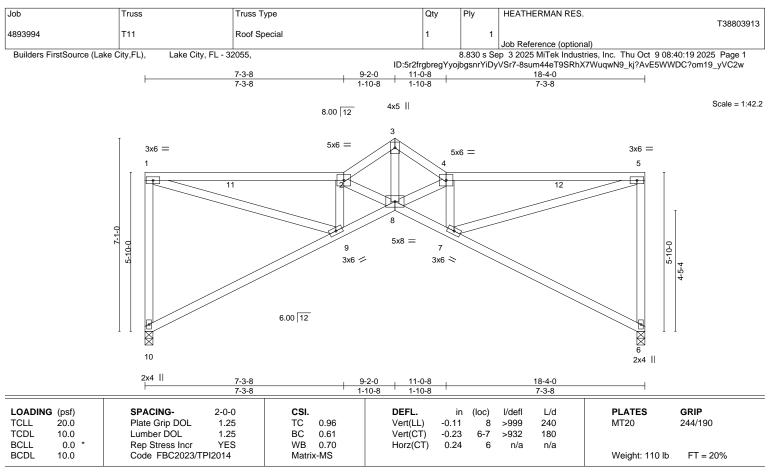
1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 0-1-12 to 3-1-12, Zone1 3-1-12 to 9-2-0, Zone3 9-2-0 to 12-6-8, Zone1 12-6-8 to 18-2-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Bearing at joint(s) 10, 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 10=169, 6=169.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Structural wood sheathing directly applied or 3-9-8 oc purlins,

Rigid ceiling directly applied or 8-5-10 oc bracing.


except end verticals

Joaquin Velez PE No.68182 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

October 10.2025

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 WFBS

BRACING-

TOP CHORD BOT CHORD Structural wood sheathing directly applied, except end verticals. Rigid ceiling directly applied or 8-9-15 oc bracing.

REACTIONS. (size) 10=0-3-8, 6=0-3-8

Max Horz 10=-30(LC 10)

Max Uplift 10=-174(LC 12), 6=-174(LC 13) Max Grav 10=722(LC 1), 6=722(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-10=-667/204, 1-2=-1545/340, 2-3=-1726/386, 3-4=-1726/386, 4-5=-1545/307,

5-6=-667/194

BOT CHORD 8-9=-440/1802. 7-8=-377/1802

 $1-9 = -346/1585, \ 2-9 = -1116/328, \ 2-8 = -313/98, \ 3-8 = -417/1843, \ 4-8 = -313/103,$ WFBS

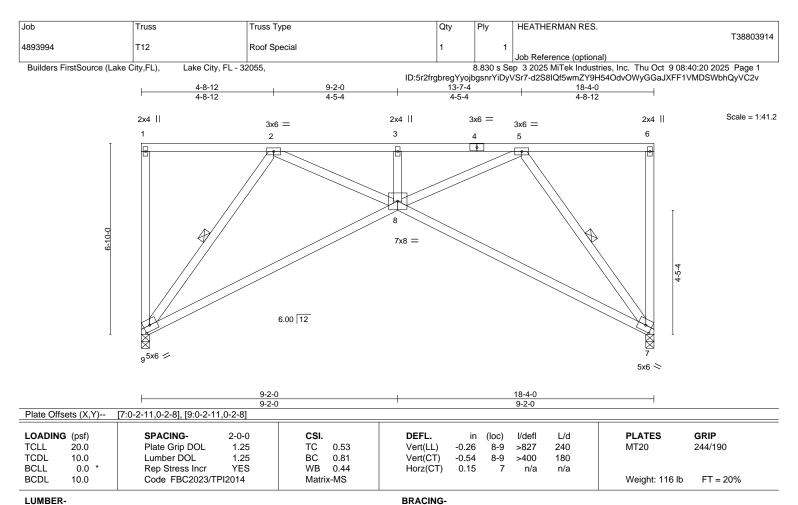
4-7=-1116/300, 5-7=-311/1585

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 0-1-12 to 3-1-12, Zone1 3-1-12 to 9-2-0, Zone3 9-2-0 to 11-0-8, Zone1 11-0-8 to 18-2-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Bearing at joint(s) 10, 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 10=174, 6=174.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.


Joaquin Velez PE No.68182 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

October 10.2025

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

BOT CHORD

WEBS

LUMBER-TOP CHORD

2x4 SP No 2 BOT CHORD 2x4 SP No 2

WFBS 2x4 SP No.3

REACTIONS. 9=0-3-8, 7=0-3-8

Max Uplift 9=-218(LC 8), 7=-218(LC 8) Max Grav 9=722(LC 1), 7=722(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1628/936, 3-5=-1628/936 **BOT CHORD** 8-9=-430/681 7-8=-430/681

2-9=-978/655, 2-8=-620/1167, 5-8=-620/1167, 5-7=-978/655 **WEBS**

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Bearing at joint(s) 9, 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 9=218, 7=218.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

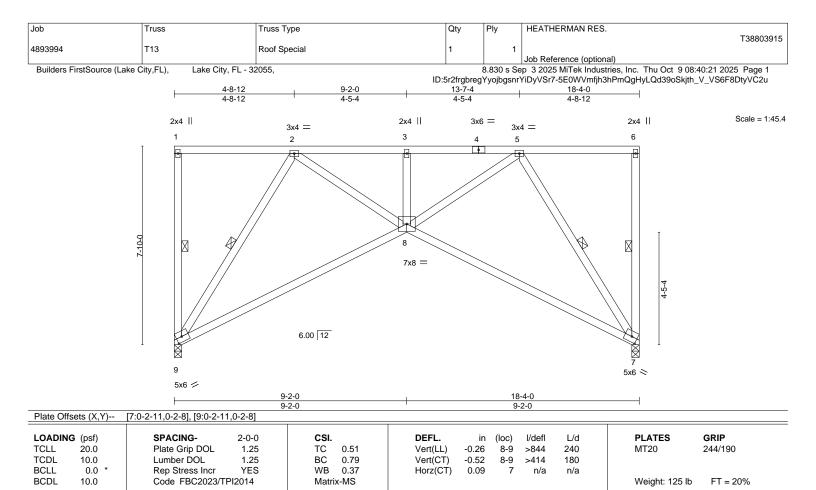
Structural wood sheathing directly applied or 4-5-12 oc purlins,

2-9, 5-7

Rigid ceiling directly applied or 8-9-10 oc bracing.

except end verticals.

1 Row at midpt


Joaquin Velez PE No.68182 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

October 10.2025

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

BRACING-

TOP CHORD

BOT CHORD

WEBS

LUMBER-

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No 2

WFBS 2x4 SP No.3

REACTIONS. 9=0-3-8, 7=0-3-8 Max Uplift 9=-218(LC 8), 7=-218(LC 8) Max Grav 9=722(LC 1), 7=722(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1108/636, 3-5=-1108/636 **BOT CHORD** 8-9=-351/561 7-8=-351/561

2-9=-876/588, 2-8=-405/785, 5-8=-405/785, 5-7=-876/588 **WEBS**

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Bearing at joint(s) 9, 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 9=218, 7=218.

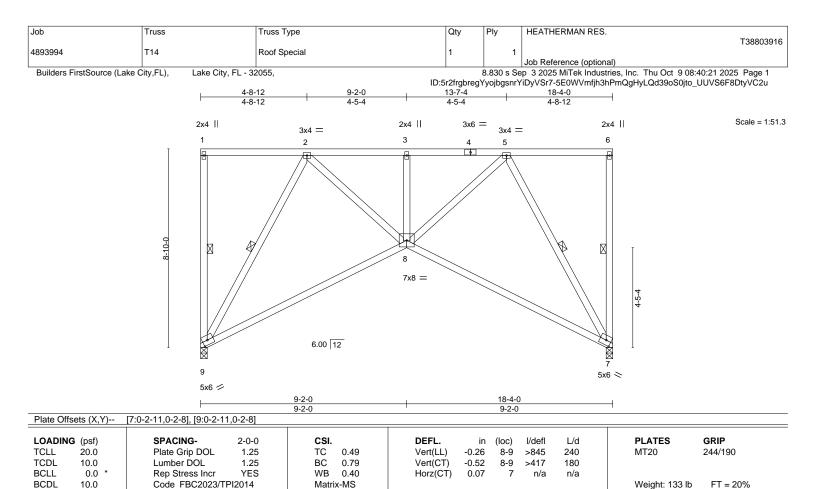
This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Structural wood sheathing directly applied or 5-5-5 oc purlins,

1-9, 6-7, 2-9, 5-7

Rigid ceiling directly applied or 9-8-7 oc bracing.

except end verticals.


1 Row at midpt

Joaquin Velez PE No.68182 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

October 10.2025

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

BRACING-

TOP CHORD

BOT CHORD

WEBS

LUMBER-

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No 2

WFBS 2x4 SP No.3

REACTIONS. 9=0-3-8, 7=0-3-8

Max Uplift 9=-218(LC 8), 7=-218(LC 8) Max Grav 9=722(LC 1), 7=722(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-839/481, 3-5=-839/481 BOT CHORD 8-9=-297/479 7-8=-297/479

WEBS $2\text{-}9\text{=-}809/543,\ 2\text{-}8\text{=-}306/610,\ 5\text{-}8\text{=-}306/610,\ 5\text{-}7\text{=-}809/543}$

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Bearing at joint(s) 9, 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 9=218, 7=218,

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Structural wood sheathing directly applied or 6-0-0 oc purlins,

1-9, 6-7, 2-9, 5-7

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

1 Row at midpt

Joaquin Velez PE No.68182 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

October 10.2025

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Job Truss Truss Type Qty Ply HEATHERMAN RES T38803917 4893994 T15 FLAT GIRDER 2 Job Reference (optional) Builders FirstSource (Lake City,FL), Lake City, FL - 32055, 8.830 s Sep 3 2025 MiTek Industries, Inc. Thu Oct 9 08:40:22 2025 Page 1 ID:5r2frgbregYyojbgsnrYiDyVSr7-ZRZuj6gLSNpGOaFTV2xtcNLig6HajtLfhm?hmJyVC2t 4-8-14 18-4-0 4-8-14 4-8-14 Scale = 1:58.3 5x6 = 2x4 || 3x8 = 3x6 = 2x4 | 15x6 = 3 6 2 4 П × 8 ²⁰ 11 ¹⁶ 22 13 15 17 10 18 19 21 9 12 7x8 = HTU26HTU26 4x6 = HTU26 3x6 II 7x8 = 3x10 || 3x6 || HTU26 HTU26 HTU26 HTU26 4-8-14 9-2-0 18-4-0 4-5-2 4-8-14 4-8-14

Plate Offsets (X,Y)-- [8:0-4-0,0-4-0], [11:0-4-0,0-4-0]

LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.17	Vert(LL)	-0.05	9-11	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.25	BC	0.56	Vert(CT)	-0.09	9-11	>999	180		
BCLL	0.0 *	Rep Stress Incr	NO	WB	0.68	Horz(CT)	0.01	7	n/a	n/a		
BCDL	10.0	Code FBC2023/T	PI2014	Matri	x-MS						Weight: 420 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

WEBS

LUMBER-TOP CHORD 2x4 SP No 2

BOT CHORD 2x6 SP No 2

2x4 SP No.3 *Except* WFBS

1-12,6-7: 2x6 SP No.2

REACTIONS. (size) 12=0-3-8, 7=0-3-8

Max Uplift 12=-1075(LC 4), 7=-1094(LC 4) Max Grav 12=4084(LC 2), 7=4162(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-12=-3319/905, 1-2=-1584/417, 2-3=-1584/417, 3-5=-1582/416, 5-6=-1582/416,

6-7=-3313/903

BOT CHORD 9-11=-537/2040, 8-9=-537/2040

WEBS $1-11 = -935/3563, \ 2-11 = -270/153, \ 3-11 = -1058/280, \ 3-9 = -375/1691, \ 3-8 = -1064/282, \ 3-9 = -375/1691, \ 3-9 = -37$

5-8=-270/153, 6-8=-933/3556

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc, 2x4 - 1 row at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone; Lumber DOL=1.60 plate grip DOL=1.60
- 5) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 6) Provide adequate drainage to prevent water ponding.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 12=1075, 7=1094.
- 10) Use Simpson Strong-Tie HTU26 (10-10d Girder, 14-10dx1 1/2 Truss) or equivalent spaced at 2-0-0 oc max. starting at 1-3-4 from the left end to 17-3-4 to connect truss(es) to back face of bottom chord.
- 11) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S) Standard

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Structural wood sheathing directly applied or 6-0-0 oc purlins,

1-12, 6-7

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

1 Row at midpt

Joaquin Velez PE No.68182 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

October 10.2025

Job	Truss	Truss Type	Qty	Ply	HEATHERMAN RES.
					T38803917
4893994	T15	FLAT GIRDER	1	2	Job Reference (optional)

Builders FirstSource (Lake City,FL),

Lake City, FL - 32055,

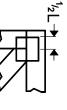
8.830 s Sep 3 2025 MiTek Industries, Inc. Thu Oct 9 08:40:22 2025 Page 2 ID:5r2frgbregYyojbgsnrYiDyVSr7-ZRZuj6gLSNpGOaFTV2xtcNLig6HajtLfhm?hmJyVC2t

LOAD CASE(S) Standard

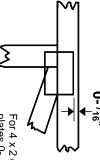
1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

Vert: 1-6=-60, 7-12=-20


Concentrated Loads (lb)

Vert: 10=-687(B) 9=-687(B) 13=-687(B) 15=-687(B) 16=-687(B) 18=-687(B) 20=-687(B) 21=-687(B) 22=-689(B)



Symbols

PLATE LOCATION AND ORIENTATION

Center plate on joint unless x, y offsets are indicated.
Dimensions are in ft-in-sixteenths.
Apply plates to both sides of truss and fully embed teeth.

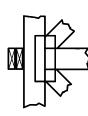
For 4 x 2 orientation, locate plates 0- $\frac{1}{16}$ from outside edge of truss.

This symbol indicates the required direction of slots in connector plates.

* Plate location details available in MiTek software or upon request.

PLATE SIZE

4 × 4

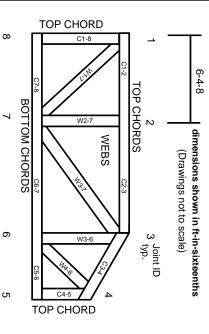

The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated.

BEARING

Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number/letter where bearings occur Min size shown is for crushing only.


Industry Standards:

National Design Specification for Metal Plate Connected Wood Truss Construction Design Standard for Bracing.

Building Component Safety Information, Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses.

ANSI/TPI1: DSB-22:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282 ESR-4722, ESL-1388

Design General Notes

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2023 MiTek® All Rights Reserved

MiTek Engineering Reference Sheet: MII-7473 rev. 1/2/2023

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.

Ņ

Never exceed the design loading shown and never stack materials on inadequately braced trusses.

ω

- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other.
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.

œ

- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.