

RE: 2926648 - LIPSCOMB - BRUNO RES.

MiTek USA, Inc. 6904 Parke East Blvd. Tampa, FL 33610-4115

Site Information:

Customer Info: Lipscomb Eagle Project Name: Bruno Res. Model: Custom

Lot/Block: N/A Subdivision: N/A

Address: 669 NW Bert Ave., N/A

City: Columbia Cty State: FL

Name Address and License # of Structural Engineer of Record, If there is one, for the building.

Name: License #:

Address:

City: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: FBC2020/TPI2014 Design Program: MiTek 20/20 8.4

Wind Code: ASCE 7-16 Wind Speed: 130 mph Roof Load: 37.0 psf Floor Load: N/A psf

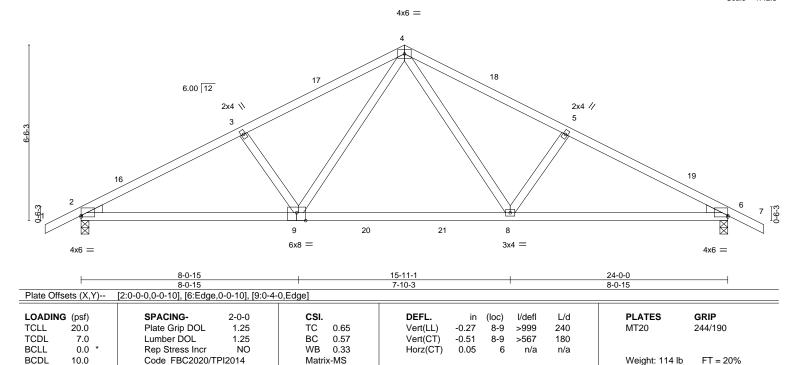
This package includes 12 individual, Truss Design Drawings and 0 Additional Drawings. With my seal affixed to this sheet, I hereby certify that I am the Truss Design Engineer and this index sheet conforms to 61G15-31.003, section 5 of the Florida Board of Professional Engineers Rules.


No.	Seal#	Truss Name	Date
1 2 3 4 5 6 7 8 9 10 11 12	T25257354 T25257355 T25257356 T25257357 T25257357 T25257359 T25257360 T25257361 T25257362 T25257363 T25257364 T25257364 T25257365	T01 T01G T02 T03 T03G T04 T04G T05 T05G T06 T07 T07G	9/7/21 9/7/21 9/7/21 9/7/21 9/7/21 9/7/21 9/7/21 9/7/21 9/7/21 9/7/21 9/7/21

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Builders FirstSource-Lake City, FL.

Truss Design Engineer's Name: ORegan, Philip

My license renewal date for the state of Florida is February 28, 2023.


IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

September 7,2021

Job Truss Truss Type Qty Ply LIPSCOMB - BRUNO RES. T25257354 T01 11 2926648 Common Job Reference (optional) Builders FirstSource (Lake City,FL), Lake City, FL - 32055, 8.430 s Aug 16 2021 MiTek Industries, Inc. Sun Sep 5 16:27:46 2021 Page 1 ID:krMvx1mH9U?wf6?cKU0X49yy8lb-CRksJ2jcKsRQAnqCt3o7hZv?32oJAqm8fED3mTygdUh 12-0-0 17-11-11 24-0-0 25-4-0 5-11-11 6-0-5

Scale = 1:42.8

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP M 31 2x4 SP No 3 WFBS

WEDGE

Left: 2x4 SP No.3, Right: 2x4 SP No.3

REACTIONS. (size) 2=0-3-8, 6=0-3-8

Max Horz 2=99(LC 12)

Max Uplift 2=-277(LC 12), 6=-276(LC 13)

Max Grav 2=1234(LC 2), 6=1233(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 $2\hbox{-}3\hbox{--}2086/536, 3\hbox{-}4\hbox{--}1949/540, 4\hbox{-}5\hbox{--}1940/537, 5\hbox{-}6\hbox{--}2081/535}$ TOP CHORD

BOT CHORD 2-9=-425/1831, 8-9=-206/1244, 6-8=-404/1804

WEBS 4-8=-217/860, 5-8=-285/193, 4-9=-220/864, 3-9=-284/192

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-4-0 to 1-8-0, Interior(1) 1-8-0 to 12-0-0, Exterior(2R) 12-0-0 to 15-0-0, Interior(1) 15-0-0 to 25-4-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate arip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 277 lb uplift at joint 2 and 276 lb uplift at
- 7) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)

Vert: 1-4=-54, 4-7=-54, 9-10=-20, 8-9=-80(F=-60), 8-13=-20

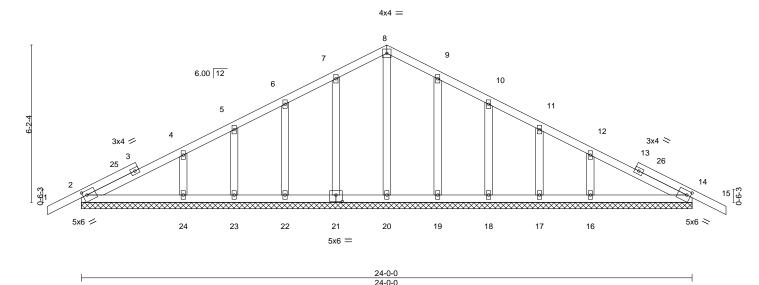
Structural wood sheathing directly applied or 3-5-8 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

September 7,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply LIPSCOMB - BRUNO RES. T25257355 2926648 T01G Common Supported Gable Job Reference (optional) Builders FirstSource (Lake City,FL), Lake City, FL - 32055, 8.430 s Aug 16 2021 MiTek Industries, Inc. Sun Sep 5 16:27:48 2021 Page 1 ID:krMvx1mH9U?wf6?cKU0X49yy8lb-8prdkklssTh8P5zb_Uqbm_?TXsa1eoDR7YiArLygdUf

Scale = 1:45.3

[2:0-1-13,0-2-0], [14:0-1-13,0-2-0], [21:0-3-0,0-3-0] Plate Offsets (X,Y)--LOADING (psf) SPACING-2-0-0 CSI. DEFL. (loc) I/defI L/d **PLATES** GRIP **TCLL** 20.0 Plate Grip DOL 1.25 TC 0.14 Vert(LL) 0.00 14 n/r 120 MT20 244/190 TCDL 1.25 вс 7.0 Lumber DOL 0.10 Vert(CT) 0.00 15 n/r 120 0.0 WB 0.07 **BCLL** Rep Stress Incr YES Horz(CT) 0.00 14 n/a n/a BCDL 10.0 Code FBC2020/TPI2014 Matrix-S Weight: 132 lb FT = 20%

LUMBER-

OTHERS

TOP CHORD 2x4 SP No 2 2x4 SP No 2

BOT CHORD 2x4 SP No 3 **BRACING-**

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 6-0-0 oc bracing.

12-0-0

REACTIONS. All bearings 24-0-0.

Max Horz 2=94(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 2, 14, 21, 22, 23, 24, 19, 18, 17, 16

12-0-0 12-0-0

Max Grav All reactions 250 lb or less at joint(s) 2, 14, 20, 21, 22, 23, 19, 18, 17 except 24=265(LC 1),

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Corner(3E) -1-4-0 to 1-8-0, Exterior(2N) 1-8-0 to 12-0-0, Corner(3R) 12-0-0 to 15-0-0, Exterior(2N) 15-0-0 to 25-4-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 14, 21, 22, 23, 24, 19, 18, 17, 16.

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

September 7,2021

Truss Type Qty Ply T25257356 T02 6 2926648 Common Job Reference (optional) Builders FirstSource (Lake City,FL), Lake City, FL - 32055, 8.430 s Aug 16 2021 MiTek Industries, Inc. Sun Sep 5 16:27:49 2021 Page 1 ID:krMvx1mH9U?wf6?cKU0X49yy8lb-d0P?x4mUdnp?1FYnYBLqJCXWHGp1NBUaLCSjNoygdUe 12-0-0 17-11-11 24-0-0

4x6 =

5-11-11

LIPSCOMB - BRUNO RES.

Scale = 1:41.4

6-0-5

8-0-15

Structural wood sheathing directly applied or 3-5-6 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

16 6.00 12 2x4 \\ 2x4 // 3 18 8 6x8 = 3x4 = 4x6 = 4x6 =

Plate Offsets (X, Y)	[2:Eage,0-0-10], [6:0-0-0,0-0-10], [8	:0-4-0,⊑agej						
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. ii	n (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.25	TC 0.65	Vert(LL) -0.27	7 7-8	>999	240	MT20	244/190
TCDL 7.0	Lumber DOL 1.25	BC 0.57	Vert(CT) -0.50	7-8	>571	180		
BCLL 0.0 *	Rep Stress Incr NO	WB 0.33	Horz(CT) 0.05	5 6	n/a	n/a		
BCDL 10.0	Code FBC2020/TPI2014	Matrix-MS					Weight: 112 lb	FT = 20%

7-10-3

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

Job

Truss

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP M 31 2x4 SP No 3 WFBS

WEDGE

Left: 2x4 SP No.3, Right: 2x4 SP No.3

REACTIONS. (size) 6=0-3-8, 2=0-3-8

Max Horz 2=109(LC 12)

Max Uplift 6=-248(LC 13), 2=-277(LC 12) Max Grav 6=1173(LC 2), 2=1236(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

8-0-15

8-0-15

TOP CHORD 2-3=-2090/540, 3-4=-1952/545, 4-5=-1950/550, 5-6=-2091/548

BOT CHORD 2-8=-435/1825, 7-8=-235/1238, 6-7=-429/1815

WEBS 4-7=-222/868, 5-7=-290/195, 4-8=-220/863, 3-8=-284/192

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-4-0 to 1-8-0, Interior(1) 1-8-0 to 12-0-0, Exterior(2R) 12-0-0 to 15-0-0, Interior(1) 15-0-0 to 24-0-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate arip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=248, 2=277.
- 7) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)

Vert: 1-4=-54, 4-6=-54, 8-12=-20, 7-8=-80(F=-60), 7-9=-20

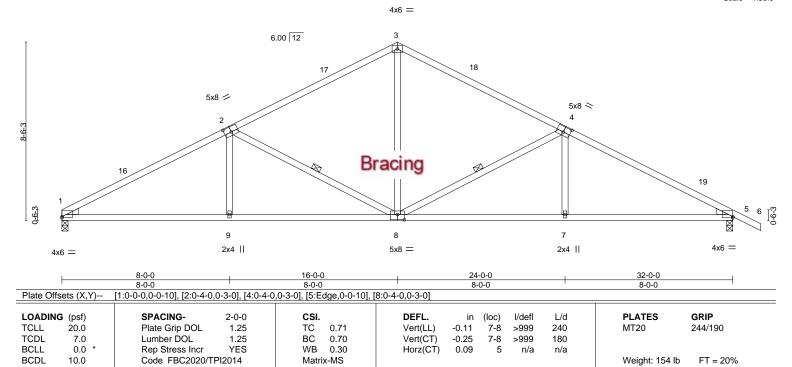
Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

September 7,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Job Truss Truss Type Qty Ply LIPSCOMB - BRUNO RES. T25257357 2926648 T03 9 Common Job Reference (optional) Builders FirstSource (Lake City,FL), Lake City, FL - 32055, 8.430 s Aug 16 2021 MiTek Industries, Inc. Sun Sep 5 16:27:50 2021 Page 1 ID:krMvx1mH9U?wf6?cKU0X49yy8lb-5CzN9Qn6O4xseP7z6ut3sP4g2f7A6f8kasBHvEygdUd 8-0-0 16-0-0 24-0-0 32-0-0 33-4-0 8-0-0

8-0-0

1-4-0 Scale = 1:55.0

8-0-0

BRACING-

TOP CHORD

BOT CHORD

WFBS

LUMBER-

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No 2 2x4 SP No 3 WFBS

WEDGE

Left: 2x4 SP No.3, Right: 2x4 SP No.3

REACTIONS. (size) 1=0-3-8, 5=0-3-8

Max Horz 1=-139(LC 17) Max Uplift 1=-245(LC 12), 5=-274(LC 13)

Max Grav 1=1183(LC 1), 5=1258(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. $1\hbox{-}2\hbox{--}2081/419, 2\hbox{-}3\hbox{--}1429/354, 3\hbox{-}4\hbox{--}1429/350, 4\hbox{-}5\hbox{--}2072/413}$ TOP CHORD **BOT CHORD** $1-9{=}-404/1781,\, 8-9{=}-404/1780,\, 7-8{=}-282/1772,\, 5-7{=}-282/1772$

WEBS 3-8=-135/790, 4-8=-690/289, 4-7=0/315, 2-8=-700/293, 2-9=0/317

NOTES-

1) Unbalanced roof live loads have been considered for this design.

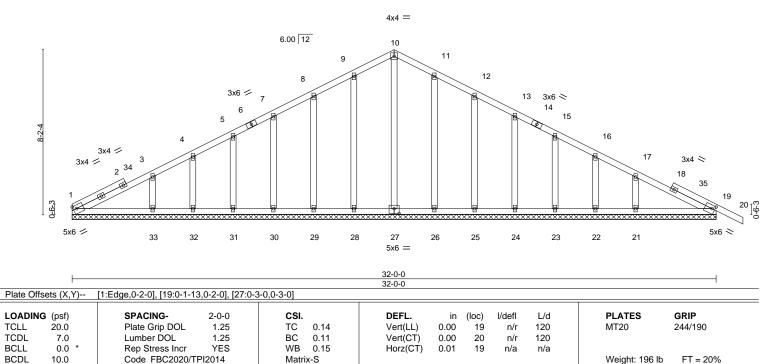
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-0-0 to 3-2-6, Interior(1) 3-2-6 to 16-0-0, Exterior(2R) 16-0-0 to 19-2-6, Interior(1) 19-2-6 to 33-4-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate arip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=245, 5=274.

Structural wood sheathing directly applied or 2-2-0 oc purlins.

4-8 2-8

Rigid ceiling directly applied or 9-1-3 oc bracing.

1 Row at midpt


Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

September 7,2021

Job Truss Truss Type Qty Ply LIPSCOMB - BRUNO RES. T25257358 2926648 T03G Common Supported Gable Job Reference (optional) Builders FirstSource (Lake City,FL), Lake City, FL - 32055, 8.430 s Aug 16 2021 MiTek Industries, Inc. Sun Sep 5 16:27:51 2021 Page 1 ID:krMvx1mH9U?wf6?cKU0X49yy8lb-ZOXIMmnk9O3jGYiAgcOlOdd_k3cir8itpWxqSgygdUc 16-0-0 32-0-0

Scale = 1:57.2

LUMBER-TOP CHORD BOT CHORD

OTHERS

2x4 SP No 2 2x4 SP No 2 2x4 SP No 3 **BRACING-**

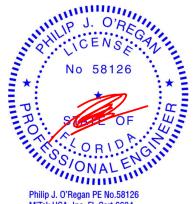
TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

16-0-0

REACTIONS. All bearings 32-0-0.

Max Horz 1=-131(LC 17)


Max Uplift All uplift 100 lb or less at joint(s) 1, 28, 29, 30, 31, 32, 33, 26, 25, 24, 23, 22, 21, 19 Max Grav All reactions 250 lb or less at joint(s) 1, 27, 28, 29, 30, 31, 32, 26, 25, 24, 23, 22, 19 except 33=278(LC 1), 21=265(LC 1)

16-0-0

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

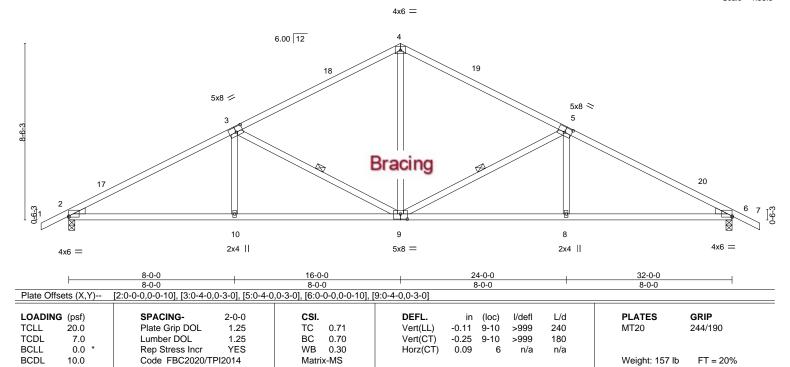
NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl. GCpi=0.18; MWFRS (envelope) gable end zone and C-C Corner(3E) 0-0-0 to 3-2-6, Exterior(2N) 3-2-6 to 16-0-0, Corner(3R) 16-0-0 to 19-2-6, Exterior(2N) 19-2-6 to 33-4-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 28, 29, 30, 31, 32, 33, 26, 25, 24, 23, 22, 21, 19.

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

September 7,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply LIPSCOMB - BRUNO RES. T25257359 2926648 T04 Common Job Reference (optional) Builders FirstSource (Lake City,FL), Lake City, FL - 32055, 8.430 s Aug 16 2021 MiTek Industries, Inc. Sun Sep 5 16:27:52 2021 Page 1 ID:krMvx1mH9U?wf6?cKU0X49yy8lb-1b57Z6oMwiBauiHMDJvXxq90aTpdaZh11AgN_7ygdUb -1-4-0 1-4-0 16-0-0 32-0-0 24-0-0 8-0-0 8-0-0 8-0-0 8-0-0 1-4-0

Scale = 1:55.6

BRACING-

TOP CHORD

BOT CHORD

WFBS

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No 2 2x4 SP No 3 WFBS

WEDGE

Left: 2x4 SP No.3, Right: 2x4 SP No.3

REACTIONS. (size) 2=0-3-8, 6=0-3-8

Max Horz 2=-129(LC 13)

Max Uplift 2=-274(LC 12), 6=-274(LC 13)

Max Grav 2=1256(LC 1), 6=1256(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 2-3=-2069/412, 3-4=-1426/349, 4-5=-1426/349, 5-6=-2069/413 TOP CHORD BOT CHORD

2-10=-399/1769, 9-10=-399/1769, 8-9=-277/1769, 6-8=-277/1769 WEBS 4-9=-130/787, 5-9=-690/289, 5-8=0/315, 3-9=-690/289, 3-10=0/315

NOTES-

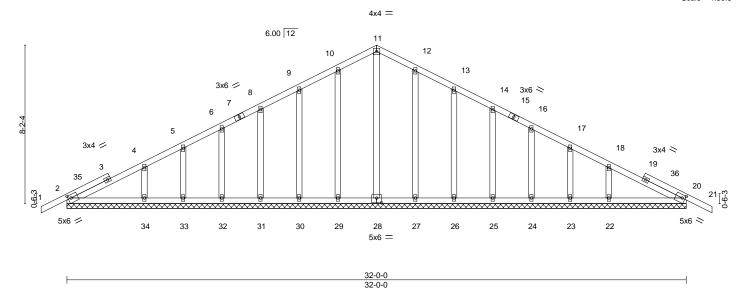
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-4-0 to 1-10-6, Interior(1) 1-10-6 to 16-0-0, Exterior(2R) 16-0-0 to 19-2-6, Interior(1) 19-2-6 to 33-4-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=274, 6=274.

Structural wood sheathing directly applied or 2-2-0 oc purlins.

5-9 3-9

Rigid ceiling directly applied or 9-2-7 oc bracing.

1 Row at midpt


MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

September 7,2021

Job Truss Truss Type Qty Ply LIPSCOMB - BRUNO RES. T25257360 2926648 T04G Common Supported Gable Job Reference (optional) Builders FirstSource (Lake City,FL), Lake City, FL - 32055, 8.430 s Aug 16 2021 MiTek Industries, Inc. Sun Sep 5 16:27:54 2021 Page 1 ID:krMvx1mH9U?wf6?cKU0X49yy8lb-zzDu_nqdSJRH70RlLkx?0FFV0HeR2VSJVU9U2?ygdUZ 32-0-0

Scale = 1:59.5

1 late of	13013 (71, 17	[2.0 1 10,0 2 0], [20.0 1 1	10,0 2 0], [20.0	0 0,0 0 0								
LOADIN	IG (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.14	Vert(LL)	0.00	20	n/r	120	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.10	Vert(CT)	0.00	21	n/r	120		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.15	Horz(CT)	0.01	20	n/a	n/a		
BCDL	10.0	Code FBC2020/TF	PI2014	Matri	x-S						Weight: 197 lb	FT = 20%

LUMBER-TOP CHORD

Plate Offsets (X Y)--

2x4 SP No 2 2x4 SP No 2

BOT CHORD 2x4 SP No 3 OTHERS

BRACING-

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 6-0-0 oc bracing.

16-0-0

REACTIONS. All bearings 32-0-0.

(lb) -Max Horz 2=124(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 2, 29, 30, 31, 32, 33, 34, 27, 26, 25, 24, 23, 22, 20 Max Grav All reactions 250 lb or less at joint(s) 2, 28, 29, 30, 31, 32, 33, 27, 26, 25, 24, 23, 20 except 34=265(LC 1), 22=265(LC 1)

16-0-0

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

[2:0-1-13 0-2-0] [20:0-1-13 0-2-0] [28:0-3-0 0-3-0]

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Corner(3E) -1-4-0 to 1-10-6, Exterior(2N) 1-10-6 to 16-0-0, Corner(3R) 16-0-0 to 19-2-6, Exterior(2N) 19-2-6 to 33-4-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 29, 30, 31, 32, 33, 34, 27, 26, 25, 24, 23, 22, 20.
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2.

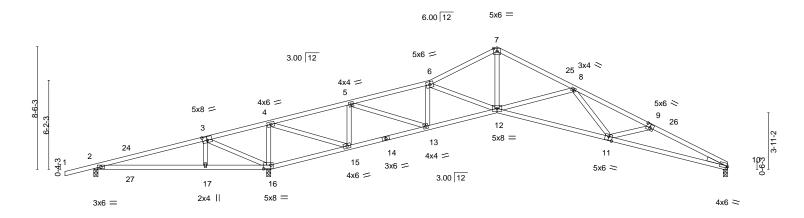
MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

September 7,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Job Truss Truss Type Qty Ply LIPSCOMB - BRUNO RES. T25257361 2926648 T05 11 Roof Special Job Reference (optional) 8.430 s Aug 16 2021 MiTek Industries, Inc. Sun Sep 5 16:27:55 2021 Page 1

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

ID:krMvx1mH9U?wf6?cKU0X49yy8lb-RAmGC7qFDdZ8lA0xvSSEZTnVygpQnntTk8v1bRygdUY 7-9-0 12-3-8 17-8-12 28-0-0 33-3-11 38-6-15 44-0-0 7-9-0 5-5-4 4-8-0 5-3-5 5-5-1

Scale = 1:80.0

	7-9-0	4-4-12 0-1 ⁻¹ 12	5-5-4	5-7-4	4-8-0	7-10-0	8-2-0	
Plate Offsets (X,Y)	[3:0-4-0,0-3-0], [9:0-3-0,0-3	3-0], [10:0-0-10	,0-1-7], [11:0-3-0,0)-3-4], [16:0-6-0,0-3-	0]			
LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)) I/defl L/d	PLATES GRIP	
TCLL 20.0	Plate Grip DOL	1.25	TC 0.89	Vert(LL	0.19 17-20	>762 240	MT20 244/190	
TCDL 7.0	Lumber DOL	1.25	BC 0.76	Vert(C1) -0.57 11-12	2 >669 180		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.85	Horz(C	r) 0.24 10) n/a n/a		
BCDL 10.0	Code FBC2020/TPI	I2014	Matrix-MS	,	•		Weight: 212 lb FT = 20%	

BRACING-

TOP CHORD

BOT CHORD

23-4-0

28-0-0

35-10-0

Structural wood sheathing directly applied or 2-2-0 oc purlins.

Rigid ceiling directly applied or 4-0-4 oc bracing.

LUMBER-

TOP CHORD 2x4 SP No 2 **BOT CHORD** 2x4 SP No.2 *Except*

10-11: 2x4 SP M 31

WEBS 2x4 SP No.3

WEDGE

Right: 2x4 SP No.3

REACTIONS. (size) 2=0-3-8, 16=0-3-8, 10=0-3-8

Max Horz 2=139(LC 12)

Max Uplift 2=-223(LC 8), 16=-528(LC 8), 10=-225(LC 13) Max Grav 2=191(LC 23), 16=2315(LC 1), 10=979(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-206/1206, 3-4=-665/2009, 4-5=-281/79, 5-6=-1498/307, 6-7=-1703/378,

7-8=-1721/386, 8-9=-2656/624, 9-10=-2968/747 2-17=-1118/263, 16-17=-1127/262, 15-16=-2070/757, 13-15=-74/259, 12-13=-255/1501,

11-12=-408/2223, 10-11=-625/2661 **WEBS**

3-17=-372/296, 3-16=-882/908, 4-16=-1390/393, 4-15=-570/2225, 5-15=-1068/343, 5-13=-333/1349, 6-13=-651/215, 7-12=-198/1218, 8-12=-716/317, 8-11=-69/480,

12-1-12 12₁3-8

17-8-12

9-11=-258/208

NOTES-

BOT CHORD

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -2-0-0 to 2-4-13, Interior(1) 2-4-13 to 28-0-0, Exterior(2R) 28-0-0 to 32-4-13, Interior(1) 32-4-13 to 44-0-0 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Bearing at joint(s) 10 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=223. 16=528. 10=225.

44-0-0

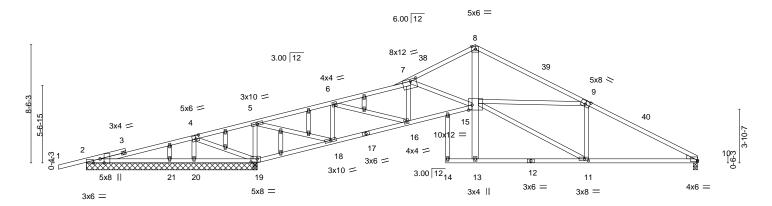
Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

September 7,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not

a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Job Truss Truss Type Qty Ply LIPSCOMB - BRUNO RES. T25257362 T05G **GABLE** 2926648 Job Reference (optional)

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.430 s Aug 16 2021 MiTek Industries, Inc. Sun Sep 5 16:27:57 2021 Page 1 ID:krMvx1mH9U?wf6?cKU0X49yy8lb-OYu0dpsVIEps_T9J0tVieutsnUWWFgImBSO8fKygdUW 12-3-8 17-8-12 28-0-0 36-0-0 44-0-0 7-9-0 4-6-8 5-5-4 4-8-0 8-0-0 8-0-0

Scale = 1:82.9

		7-9-0 7-9-0	12-3-8 4-6-8	17-8- 5-5-		23-4-0 5-7-4	25-10-8 2-6-8	28-0-0 2-1-8		36-0-0 8-0-0	44-0-0 8-0-0	
Plate Offsets	s (X,Y)	[2:0-3-8,Edge], [2:0-5-12,E							11:0-3-8,			2-12]
	(psf) 20.0	SPACING- Plate Grip DOL	2-0-0 1.25	CSI. TC	0.81	DEFL. Vert(LL)	in -0.17	(loc) 14	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190
BCLL	7.0 0.0 * 10.0	Lumber DOL Rep Stress Incr Code FBC2020/TF	1.25 YES PI2014		0.66 0.92 ·MS	Vert(CT) Horz(CT)	-0.32 0.13	14 10	>999 n/a	180 n/a	Weight: 254 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied.

10-0-0 oc bracing: 13-15

Rigid ceiling directly applied or 4-0-6 oc bracing. Except:

LUMBER-

TOP CHORD 2x4 SP No 2

2x4 SP No.2 *Except* **BOT CHORD** 8-13: 2x6 SP No.2

WEBS 2x4 SP No.3 *Except*

14-22: 2x4 SP No.2

2x4 SP No.3

OTHERS

WEDGE

Right: 2x4 SP No.3

REACTIONS. All bearings 12-3-8 except (jt=length) 10=0-3-8.

Max Horz 2=139(LC 12) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 21 except 2=-120(LC 8), 19=-485(LC

12), 20=-528(LC 1), 10=-226(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 2, 20, 21, 2 except 19=2515(LC 1),

19=2515(LC 1), 10=1014(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-234/730, 4-5=-438/2028, 5-6=-395/150, 6-7=-1883/497, 7-8=-1863/458,

8-9=-1871/455, 9-10=-1727/464

BOT CHORD 2-21=-668/190, 20-21=-668/190, 19-20=-697/193, 18-19=-2092/518, 16-18=-107/372,

15-16=-327/1761, 8-15=-233/1292, 10-11=-335/1467

WEBS 4-20=-49/552, 4-19=-1334/305, 5-19=-1422/388, 5-18=-545/2407, 6-18=-1068/303,

6-16=-316/1526, 7-16=-619/182, 7-15=-254/151, 11-15=-375/1585, 9-15=-63/253,

9-11=-526/207

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -2-0-0 to 2-2-3, Interior(1) 2-2-3 to 28-0-0, Exterior(2R) 28-0-0 to 32-4-13, Interior(1) 32-4-13 to 44-0-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

September 7,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MIL-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	LIPSCOMB - BRUNO RES.
					T25257362
2926648	T05G	GABLE	1	1	
					Job Reference (optional)

Builders FirstSource (Lake City,FL),

Lake City, FL - 32055,

8.430 s Aug 16 2021 MiTek Industries, Inc. Sun Sep 5 16:27:57 2021 Page 2 ID:krMvx1mH9U?wf6?cKU0X49yy8lb-OYu0dpsVIEps_T9J0tVieutsnUWWFgImBSO8fKygdUW

NOTES-

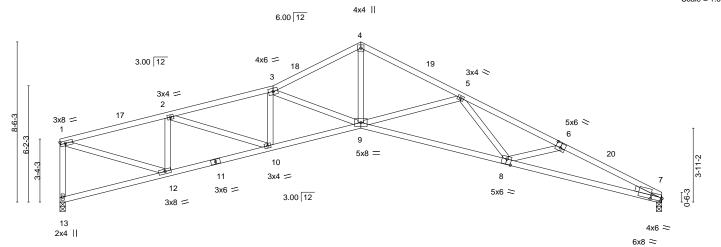
9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 21 except (jt=lb) 2=120, 19=485, 20=528, 10=226, 2=120.

Job Truss Truss Type Qty Ply LIPSCOMB - BRUNO RES. T25257363 T06 3 2926648 Roof Special Job Reference (optional) Builders FirstSource (Lake City,FL), Lake City, FL - 32055, 8.430 s Aug 16 2021 MiTek Industries, Inc. Sun Sep 5 16:27:58 2021 Page 1 ID:krMvx1mH9U?wf6?cKU0X49yy8lb-sISPq9t7VYyjcdkWaa0xA5P4IuoX_AAvQ67iCmygdUV 26-7-0

21-3-11

16-0-0

4-8-0


11-4-0

5-8-12

Scale = 1:61.3

32-0-0

5-5-0

1	5-8-12	₁ 11-4-0	16-0-0	₁ 23-10-0	32-0-0	1
Г	5-8-12	5-7-4	4-8-0	7-10-0	8-2-0	1
Plate Offsets (X,Y)	[6:0-3-0,0-3-0], [7:0-0-1	0,0-1-15], [7:0-7-5,0-1-14],	[8:0-3-0,0-3-4]			

LOADING	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.63	Vert(LL)	-0.35	8-9	>999	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.93	Vert(CT)	-0.72	8-9	>532	180		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.75	Horz(CT)	0.40	7	n/a	n/a		
BCDL	10.0	Code FBC2020/TF	PI2014	Matri	x-MS						Weight: 164 lb	FT = 20%

BRACING-TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 *Except* 6-7: 2x4 SP M 31 **BOT CHORD**

2x4 SP No.2 *Except* 11-13,7-8: 2x4 SP M 31

WEBS 2x4 SP No.3

WEDGE

Right: 2x4 SP No.3

REACTIONS.

(size) 13=0-3-8, 7=0-3-8

Max Horz 13=-175(LC 13)

Max Uplift 13=-248(LC 12), 7=-241(LC 13) Max Grav 13=1179(LC 1), 7=1179(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-13=-1132/304, 1-2=-1896/468, 2-3=-2867/712, 3-4=-2538/624, 4-5=-2557/633,

5-6=-3426/847, 6-7=-3699/956

BOT CHORD 10-12=-400/1876, 9-10=-557/2860, 8-9=-622/2967, 7-8=-814/3316

WEBS 1-12=-439/1864, 2-12=-876/273, 2-10=-198/980, 3-10=-449/141, 3-9=-618/239,

4-9=-420/1963, 5-9=-697/315, 5-8=-65/440

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-1-12 to 3-4-2, Interior(1) 3-4-2 to 16-0-0, Exterior(2R) 16-0-0 to 19-2-6, Interior(1) 19-2-6 to 32-0-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Bearing at joint(s) 13, 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 13=248, 7=241,

Structural wood sheathing directly applied or 2-5-7 oc purlins,

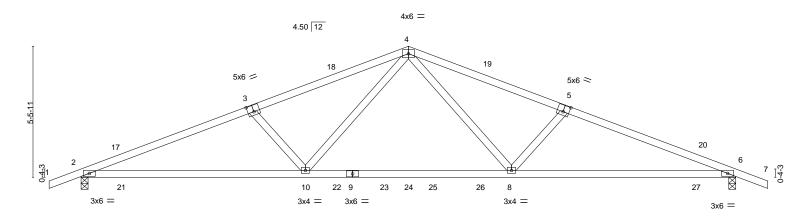
Rigid ceiling directly applied or 2-2-0 oc bracing.

except end verticals.

Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

September 7,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	LIPSCOMB - BRUNO RES		
							T25257364
2926648	T07	Common	2	1			
					Job Reference (optional)		
Builders FirstSource (Lake	City,FL), Lake City, FL - 3	2055,	8	.430 s Aug	16 2021 MiTek Industries, Ir	nc. Sun Sep 5 16:27:59 20	021 Page 1
			ID:krMvx1ml	-19U?wf6?d	cKU0X49yy8lb-Kx0n1VulGr4	aDnJi8HXAjJyEelGjjel3em	tFkDygdUU
1-4-0 _	7-2-1	13-8-0	2	0-1-15	1	27-4-0	28-8-0
1-4-0	7-2-1	6-5-15	-	3-5-15	1	7-2-1	1-4-0

Scale: 1/4"=1

	9-4-6	1	17-11-10	1	27-4-0
	9-4-6	ı	8-7-4	1	9-4-6
Plate Offsets (X,Y)	[3:0-3-0,0-3-4], [5:0-3-0,0-3-4]				
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc)	I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.25	TC 0.59	Vert(LL) 0.31 10-13	>999 240	MT20 244/190
TCDL 7.0	Lumber DOL 1.25	BC 0.42	Vert(CT) -0.37 8-16	>892 180	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.69	Horz(CT) 0.06 6	n/a n/a	
BCDL 10.0	Code FBC2020/TPI2014	Matrix-MS			Weight: 118 lb FT = 20%
					_

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP M 31 WFBS

2x4 SP No.3

REACTIONS. (size) 2=0-3-8, 6=0-3-8

Max Horz 2=84(LC 16)

Max Uplift 2=-484(LC 8), 6=-484(LC 9) Max Grav 2=1154(LC 2), 6=1154(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-2347/1920, 3-4=-2150/1871, 4-5=-2150/1871, 5-6=-2347/1920

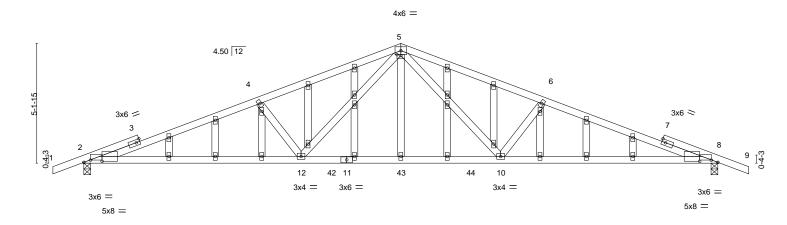
BOT CHORD 2-10=-1741/2173, 8-10=-1113/1450, 6-8=-1748/2173 WFBS 4-8=-781/809, 5-8=-413/222, 4-10=-781/809, 3-10=-413/222

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-4-0 to 1-8-0, Interior(1) 1-8-0 to 13-8-0, Exterior(2R) 13-8-0 to 16-8-0, Interior(1) 16-8-0 to 28-8-0 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=484, 6=484.

Structural wood sheathing directly applied or 3-2-4 oc purlins.

Rigid ceiling directly applied or 5-7-4 oc bracing.


MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

September 7,2021

Job Truss Truss Type Qty Ply LIPSCOMB - BRUNO RES. T25257365 2926648 T07G **GABLE** Job Reference (optional) Builders FirstSource (Lake City,FL), Lake City, FL - 32055, 8.430 s Aug 16 2021 MiTek Industries, Inc. Sun Sep 5 16:28:00 2021 Page 1 ID:krMvx1mH9U?wf6?cKU0X49yy8lb-o7a9FruO19CRrxuuh?2PGWVOQhUsS1KCtQcoGfygdUT 13-8-0 19-8-15 27-4-0 6-0-15 1-4-0

Scale = 1:49.7

		9-4-6		1		17-11-10		1		27-4-0	
		9-4-6				8-7-4		1		9-4-6	1
Plate Offsets (>	(,Y)	[2:0-3-7,0-1-3], [2:0-9-6,0	-0-9], [5:0-2-0,	,0-0-8], [8:0-	-3-7,0-1-3], [8	8:0-9-6,0-0-9]					
LOADING (psf	,	SPACING-	2-0-0	CSI		DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0 TCDL 7.0 BCLL 0.0		Plate Grip DOL Lumber DOL Rep Stress Incr	1.25 1.25 YES	TC BC WB	0.65 0.94 0.90	Vert(LL) Vert(CT) Horz(CT)	0.53 10-41 -0.46 10-41 0.07 8	>617 >704 n/a	240 180 n/a	MT20	244/190
BCDL 10.0	0	Code FBC2020/TF	PI2014	Mat	rix-MS	,				Weight: 161 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 *Except*

2-5.5-8: 2x4 SP M 31 **BOT CHORD** 2x4 SP No.2

WEBS 2x4 SP No.3 **OTHERS** 2x4 SP No.3

REACTIONS.

(size) 2=0-3-8, 8=0-3-8

Max Horz 2=-79(LC 13) Max Uplift 2=-485(LC 8), 8=-485(LC 9)

Max Grav 2=1080(LC 1), 8=1080(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-2340/2546, 4-5=-2113/2452, 5-6=-2113/2452, 6-8=-2340/2546

BOT CHORD 2-12=-2358/2196, 10-12=-1399/1384, 8-10=-2347/2196

WEBS 4-12=-485/408, 5-12=-1086/792, 5-10=-1086/792, 6-10=-485/408

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Corner(3E) -1-4-0 to 1-6-2, Exterior(2N) 1-6-2 to 13-8-0, Corner(3R) 13-8-0 to 16-8-0, Exterior(2N) 16-8-0 to 28-8-0 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=485, 8=485.

Structural wood sheathing directly applied or 4-1-7 oc purlins.

Rigid ceiling directly applied or 2-2-0 oc bracing.

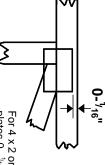
Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

September 7,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Symbols

PLATE LOCATION AND ORIENTATION

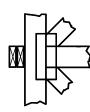
Center plate on joint unless x, y offsets are indicated.
Dimensions are in ft-in-sixteenths.
Apply plates to both sides of truss and fully embed teeth.

For 4 x 2 orientation, locate plates 0- ¹/16" from outside edge of truss.

This symbol indicates the required direction of slots in connector plates.

* Plate location details available in MiTek 20/20 software or upon request.

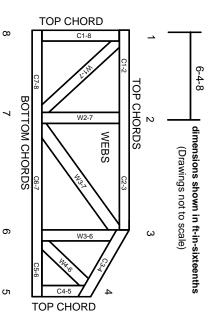
PLATE SIZE


The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated.

BEARING


Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number where bearings occur. Min size shown is for crushing only

Industry Standards:

National Design Specification for Metal Plate Connected Wood Truss Construction. Design Standard for Bracing.
Building Component Safety Information, Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses.

ANSI/TPI1: DSB-89:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

PRODUCT CODE APPROVALS

ICC-ES Reports:

ESR-1311, ESR-1352, ESR1988 ER-3907, ESR-2362, ESR-1397, ESR-3282

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2012 MiTek® All Rights Reserved

MiTek Engineering Reference Sheet: MII-7473 rev. 5/19/2020

General Safety Notes

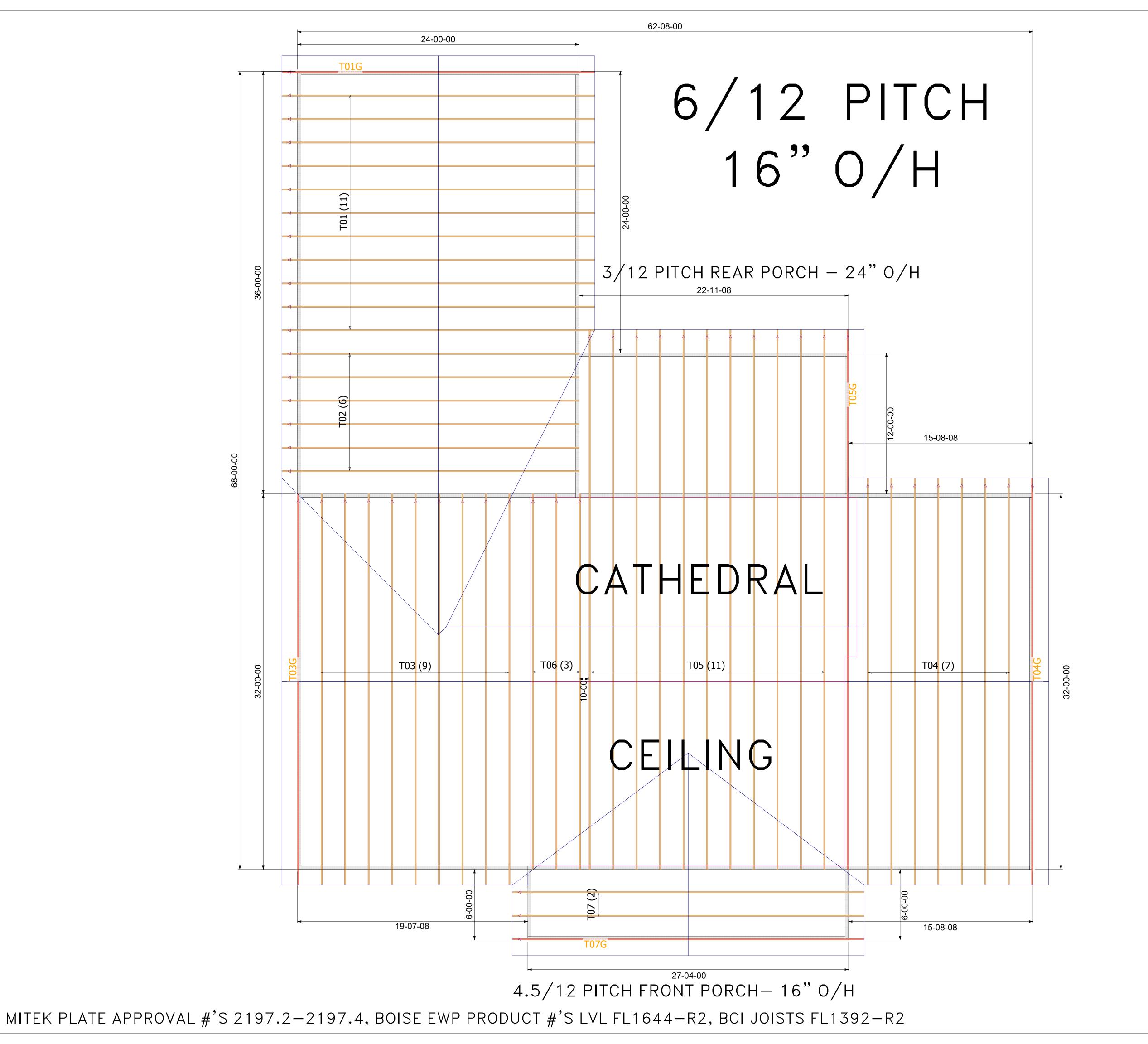
Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.

ω

- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other.

Ģ


- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.

œ

Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber

9

- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.

THE ARROW HEAD AT THE END OF THE TRUSS ON THE TRUSS PLACEMENT PLAN (LAYOUT) CORRESPONDS WITH THE LEFT SIDE OF THE INDIVIDUAL TRUSS DRAWING. USE THIS AS AN ORIENTATION GUIDE WHEN SETTING THE TRUSSES ON THE STRUCTURE.

General Notes:

Per ANSI/TPI 1-2002 all "Truss to Wall" connections re the responsibility of the Building Designer, not the Yruss Manufacturer.

- Use Manufacturer's specifications for all hanger onnections unless noted otherwise.

- Trusses are to be 24" o.c. U.N.O.

- All hangers are to be Simpson or equivalent U.N.O.-Use 10d x 1 1/2" Nails in hanger connections to single ply

- Trusses are not designed to support brick U.N.O. - Dimensions are Feet-Inches- Sixteenths

Notes:

FirstSource.

No back charges will be accepted by Builders FirstSource unless approved in writing first. 850-835-4541

ACQ lumber is corrisive to truss plates. Any ACQ lumber that comes in contact with truss plates (i.e. scabbed on tails) must have an approved barrier applied first.

Refer to BCSI-B1 Summary Sheet-Guide for handling, Installing and Bracing of Metal Plate Connected Wood Truss prior to and during truss installation.

It is the responsibility of the Contractor to ensure of the proper orientation of the truss placement plans as to the construction documents and field conditions of the structure orientation. If a reversed or flipped layout is required, it will be supplied at no extra cost by Builders

It is the responsibility of the Contractor to make sure the placement of trusses are adjusted for plumbing drops, can lights, ect..., so the trusses do not interfere with these type of items.

All common framed roof or floor systems must be designed as to NOT impose any loads on the floor trusses below. The floor trusses have not been designed to carry any additional loads from above.

engineer, but rather by the Builders FirstSource staff and is solely to be used as an installation guide and does not require a seal. Complete truss engineering and analysis can be found on the truss design drawings which may be sealed by the truss design engineer.

This truss placement plan was not created by an

Gable end trusses require continuous bottom chord bearing. Refer to local codes for wall framing

Although all attempts have been made to do so, trusses may not be designed symmetrically. Please refer to the individual truss drawings and truss placement plans for proper orientation and placement.

Lake City PHONE: 386-755-6894 FAX: 386-755-7973

Jacksonville PHONE: 904-772-6100 FAX: 904-772-1973

Tallahassee PHONE: 850-576-5177

LIPSCOMB EAGLE

Legal Address:

Bruno Res.

Custom 9-5-21

Original Ref#: Drawn By: KLH 2926648

Floor 2 Job#: Roof Job #: N/A 2926648

Floor 1 Job#