

RE: 4768181 - HUMPHREY RES.

MiTek, Inc.

16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200

Site Information:

Customer Info: IC CONSTRUCTION Project Name: Humphrey Res. Model: Custom
Lot/Block: N/A Subdivision: N/A
Address: TBD, TBD
City: Columbia Cty State: FL

Name Address and License # of Structural Engineer of Record, If there is one, for the building.

Name: License #:
Address:
City: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: FBC2023/TPI2014

Design Program: MiTek 20/20 8.8

Wind Code: ASCE 7-22

Wind Speed: 130 mph

Roof Load: 40.0 psf

Floor Load: N/A psf

This package includes 51 individual, Truss Design Drawings and 0 Additional Drawings.

With my seal affixed to this sheet, I hereby certify that I am the Truss Design Engineer and this index sheet conforms to 61G15-31.003, section 5 of the Florida Board of Professional Engineers Rules.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	T38101176	CJ01	8/4/25	15	T38101190	T02G	8/4/25
2	T38101177	CJ03	8/4/25	16	T38101191	T03	8/4/25
3	T38101178	CJ05	8/4/25	17	T38101192	T04	8/4/25
4	T38101179	EJ01	8/4/25	18	T38101193	T05	8/4/25
5	T38101180	EJ02	8/4/25	19	T38101194	T06G	8/4/25
6	T38101181	EJ03	8/4/25	20	T38101195	T07	8/4/25
7	T38101182	EJ04	8/4/25	21	T38101196	T07G	8/4/25
8	T38101183	HJ04	8/4/25	22	T38101197	T08	8/4/25
9	T38101184	HJ10	8/4/25	23	T38101198	T09	8/4/25
10	T38101185	PB01	8/4/25	24	T38101199	T10	8/4/25
11	T38101186	PB01G	8/4/25	25	T38101200	T12	8/4/25
12	T38101187	T01	8/4/25	26	T38101201	T13	8/4/25
13	T38101188	T01G	8/4/25	27	T38101202	T14	8/4/25
14	T38101189	T02	8/4/25	28	T38101203	T15	8/4/25

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date adjacent to the seal.

Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Builders FirstSource-Lake City, FL.

Truss Design Engineer's Name: Velez, Joaquin

My license renewal date for the state of Florida is February 28, 2027.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENSCO. Any project specific information included is for MiTek's or TRENSCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENSCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

August 4,2025

RE: 4768181 - HUMPHREY RES.

MiTek, Inc.

16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200

Site Information:

Customer Info: IC CONSTRUCTION Project Name: Humphrey Res. Model: Custom

Lot/Block: N/A

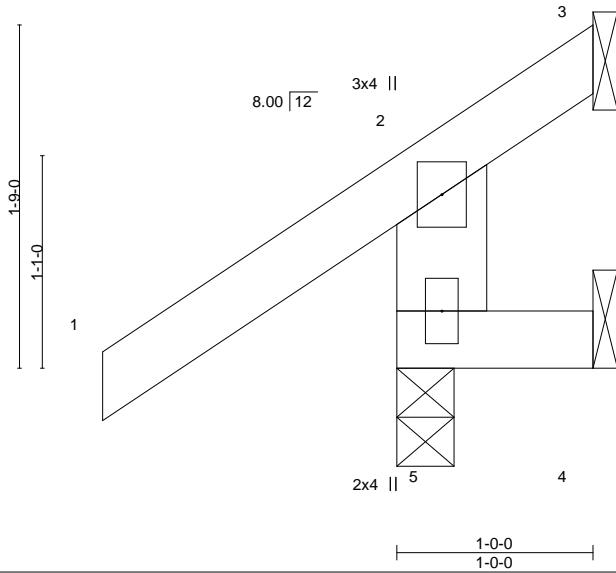
Subdivision: N/A

Address: TBD, TBD

City: Columbia Cty

State: FL

No.	Seal#	Truss Name	Date
29	T38101204	T16	8/4/25
30	T38101205	T17	8/4/25
31	T38101206	T18	8/4/25
32	T38101207	T19	8/4/25
33	T38101208	T20	8/4/25
34	T38101209	T21	8/4/25
35	T38101210	T21G	8/4/25
36	T38101211	T22	8/4/25
37	T38101212	T22G	8/4/25
38	T38101213	T23	8/4/25
39	T38101214	T24	8/4/25
40	T38101215	T25	8/4/25
41	T38101216	T25G	8/4/25
42	T38101217	T26	8/4/25
43	T38101218	T27	8/4/25
44	T38101219	T27G	8/4/25
45	T38101220	TG01	8/4/25
46	T38101221	V01	8/4/25
47	T38101222	V02	8/4/25
48	T38101223	V03	8/4/25
49	T38101224	V04	8/4/25
50	T38101225	V05	8/4/25
51	T38101226	V06	8/4/25


Job 4768181	Truss CJ01	Truss Type Jack-Open	Qty 6	Ply 1	HUMPHREY RES.	T38101176
----------------	---------------	-------------------------	----------	----------	---------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Fri Aug 1 13:41:07 2025 Page 1
ID:7WKr8toudn35dxwKwBAfQtytHta-RztaXTFJNfbNEsXsGKh0MFE0ibt1fFS8B9ysCCw

-1-6-0 1-0-0 1-0-0
1-6-0

Scale = 1:11.7

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.28	Vert(LL)	0.00	5	>999	240	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.07	Vert(CT)	0.00	5	>999	180		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.00	Horz(CT)	-0.00	3	n/a	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MR						Weight: 8 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x6 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 1-0-0 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
(size) 5=0-3-8, 3=Mechanical, 4=Mechanical
Max Horz 5=49(LC 9)
Max Uplift 5=61(LC 12), 3=50(LC 1), 4=38(LC 1)
Max Grav 5=252(LC 1), 3=10(LC 8), 4=6(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCPi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3, 4.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

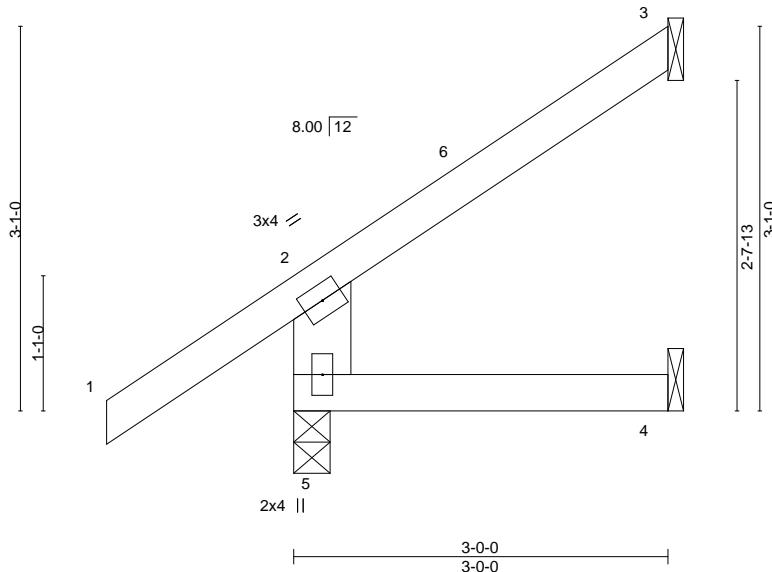
Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 4,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from Truss Plate Institute ([www.tpinst.org](#)) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association ([www.sbcsccomponents.com](#))

MiTek
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / [MiTek-US.com](#)


Job 4768181	Truss CJ03	Truss Type Jack-Open	Qty 4	Ply 1	HUMPHREY RES.	T38101177
----------------	---------------	-------------------------	----------	----------	---------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Fri Aug 1 13:41:07 2025 Page 1
ID:7WKr8toudn35dxwKwBAfQytHta-RztaXTFJNfbNEsXsGKh0MFEdNib8t1fFS8B9ysCCw

-1-6-0 1-6-0 3-0-0 3-0-0

Scale = 1:18.5

LOADING (psf)	SPACING-	CSI.	DEFL.	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.25	TC 0.28	Vert(LL) 0.01 in (loc) 4-5 l/defl >999 L/d 240	MT20	244/190
TCDL 10.0	Lumber DOL 1.25	BC 0.13	Vert(CT) -0.01 4-5 >999 180		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) -0.01 3 n/a n/a		
BCDL 10.0	Code FBC2023/TPI2014	Matrix-MR		Weight: 15 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x6 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 3-0-0 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 -1-6-0 to 1-6-0, Zone1 1-6-0 to 2-11-4 zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3, 4.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

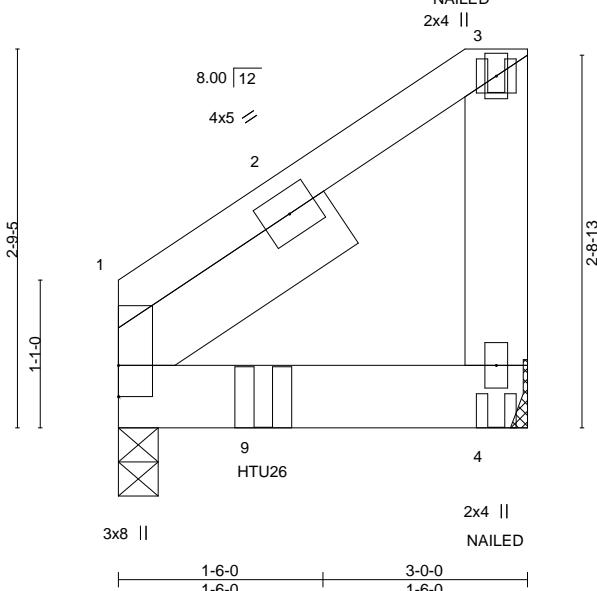
Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 4,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from Truss Plate Institute (www.tpiinst.org) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association (www.sbcsccomponents.com)

Job 4768181	Truss EJ02	Truss Type Half Hip Girder	Qty 1	Ply 1	HUMPHREY RES.	T38101180
----------------	---------------	-------------------------------	----------	----------	---------------	-----------


Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Fri Aug 1 13:41:09 2025 Page 1

ID:7WKR8toudn35dxwKwBAfQtytHta-OL_e?DUWr_vJcY0vzhMlhRRcKQ?o32NK7ZxFG1ysCCu

2-6-8 3-0-0
2-6-8 0-5-8

Scale = 1:16.9

LOADING (psf)	SPACING-	CSI.	DEFL.	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.25	TC 0.24	Vert(LL)	-0.01	4-7	>999	240	MT20	244/190
TCDL 10.0	Lumber DOL 1.25	BC 0.41	Vert(CT)	-0.02	4-7	>999	180		
BCLL 0.0 *	Rep Stress Incr NO	WB 0.00	Horz(CT)	0.01	1	n/a	n/a		
BCDL 10.0	Code FBC2023/TPI2014	Matrix-MP						Weight: 22 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x6 SP No.2
WEBS 2x6 SP No.2
SLIDER Left 2x6 SP No.2 1-11-8

BRACING-

TOP CHORD Structural wood sheathing directly applied or 3-0-0 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 1=0-3-8, 4=Mechanical

Max Horz 1=71(LC 8)
Max Uplift 1=-91(LC 8), 4=-180(LC 8)
Max Grav 1=526(LC 1), 4=352(LC 43)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-3=324/78

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 4=180.
- 8) Use Simpson Strong-Tie HTU26 (20-10d Girder, 11-10dx1 1/2 Truss) or equivalent at 1-0-12 from the left end to connect truss(es) to front face of bottom chord.
- 9) Fill all nail holes where hanger is in contact with lumber.
- 10) "NAILED" indicates 3-10d (0.148"x3") or 2-12d (0.148"x3.25") toe-nails per NDS guidelines.
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25
Uniform Loads (plf)
Vert: 1-3=60, 4-5=20
Concentrated Loads (lb)
Vert: 3=32(B) 9=673(F)

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

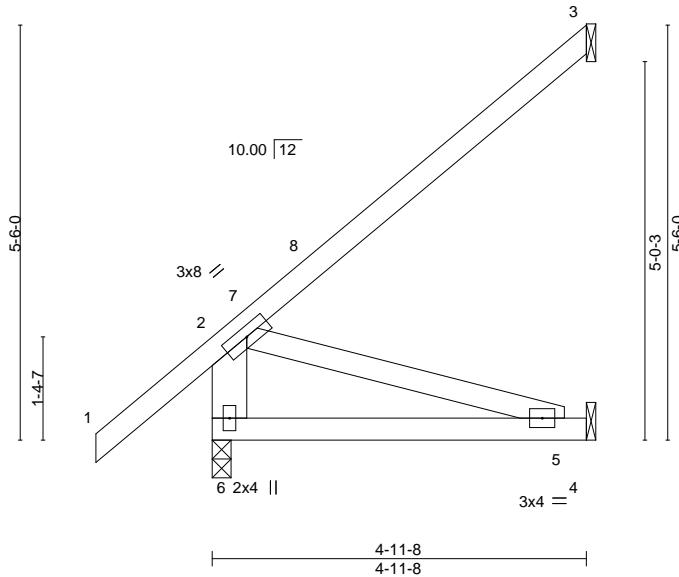
August 4,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from the Truss Plate Institute ([www.tpinst.org](#)) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association ([www.sbcsccomponents.com](#))

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com

Job 4768181	Truss EJ03	Truss Type Jack-Open	Qty 2	Ply 1	HUMPHREY RES.	T38101181
----------------	---------------	-------------------------	----------	----------	---------------	-----------


Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Fri Aug 1 13:41:09 2025 Page 1
ID:7Wkr8toudn35dxwKwBAfQtyHta-OL_e?DUWr_vJcY0vhMhRRZrQ1531sK7ZxFG1ysCCu

-1-6-8
1-6-8

4-11-8
4-11-8

Scale = 1:30.5

LOADING (psf)	SPACING-	CSI.	DEFL.	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.25	TC 0.40	Vert(LL) -0.03	MT20	244/190
TCDL 10.0	Lumber DOL 1.25	BC 0.27	Vert(CT) -0.06		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.10	Horz(CT) -0.00		
BCDL 10.0	Code FBC2023/TPI2014	Matrix-MP	(loc) 5-6 >999		
			L/d 240		
			5-6 >983		
			3 n/a		
				Weight: 29 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x6 SP No.2 *Except*
2-5: 2x4 SP No.3

BRACING-

TOP CHORD Structural wood sheathing directly applied or 4-11-8 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

(size) 6=0-3-0, 3=Mechanical, 4=Mechanical
Max Horz 6=183(LC 12)
Max Uplift 6=4(LC 12), 3=-117(LC 12), 4=-36(LC 12)
Max Grav 6=313(LC 1), 3=138(LC 19), 4=93(LC 3)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
TOP CHORD 2-6--266/139
BOT CHORD 5-6--317/106
WEBS 2-5--110/329

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 1-6-8 to 1-5-8, Zone1 1-5-8 to 4-10-12 zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 4 except (jt=lb) 3=117.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

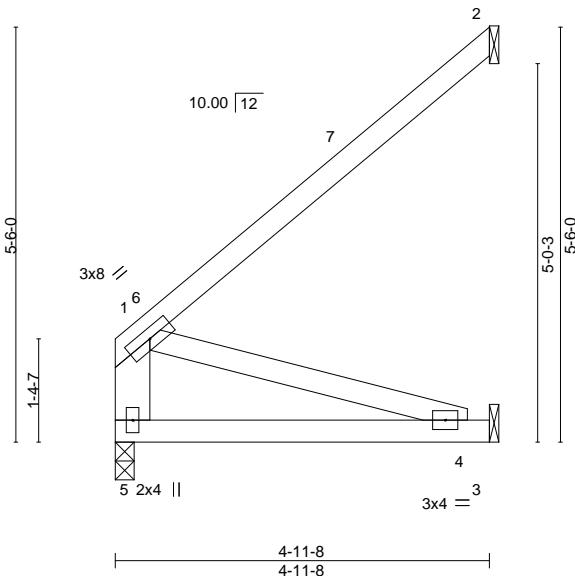
August 4,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from Truss Plate Institute ([www.tpinst.org](#)) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association ([www.sbcscscomponents.com](#))

MiTek
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / [MiTek-US.com](#)

Job 4768181	Truss EJ04	Truss Type Jack-Open	Qty 2	Ply 1	HUMPHREY RES.	T38101182
----------------	---------------	-------------------------	----------	----------	---------------	-----------


Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Fri Aug 1 13:41:10 2025 Page 1

ID:7WKR8toudn35dxwKwBafQtytHta-sYY0CZV8cl1AEhb5XOt_Ee_hpqNLoUVULDg0oUysCCt

4-11-8
4-11-8

Scale = 1:30.5

4-11-8
4-11-8

LOADING (psf)	SPACING-	CSI.	DEFL.	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.25	TC 0.51	Vert(LL)	-0.03	4-5	>999	240	MT20	244/190
TCDL 10.0	Lumber DOL 1.25	BC 0.27	Vert(CT)	-0.06	4-5	>984	180		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.07	Horz(CT)	-0.00	2	n/a	n/a		
BCDL 10.0	Code FBC2023/TPI2014	Matrix-MP						Weight: 26 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x6 SP No.2 *Except*
1-4: 2x4 SP No.3

BRACING-

TOP CHORD Structural wood sheathing directly applied or 4-11-8 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 5=0-3-0, 2=Mechanical, 3=Mechanical
Max Horz 5=134(LC 12)
Max Uplift 2=-133(LC 12), 3=-23(LC 12)
Max Grav 5=187(LC 1), 2=158(LC 19), 3=93(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 0-2-12 to 3-2-12, Zone1 3-2-12 to 4-10-12 zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3 except (jt=lb) 2=133.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

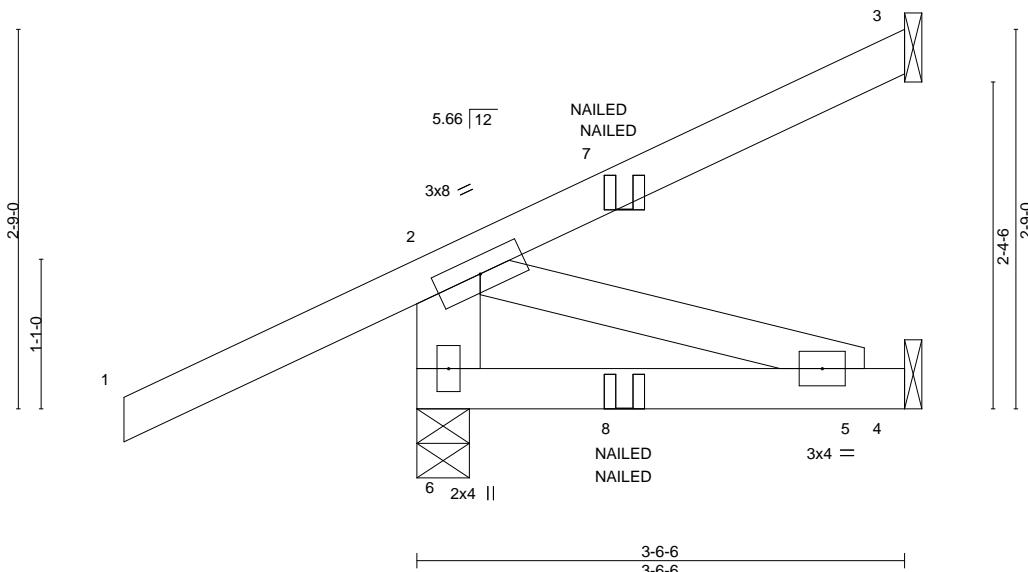
Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 4,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from Truss Plate Institute (www.tpiinst.org) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com


Job 4768181	Truss HJ04	Truss Type Diagonal Hip Girder	Qty 1	Ply 1	HUMPHREY RES.	T38101183
----------------	---------------	-----------------------------------	----------	----------	---------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Fri Aug 1 13:41:10 2025 Page 1
ID:7WKR8toudn35dxwKwBAfQytHta-sYY0CZV8cl1AEhb5XOt_Ee_gDqPWoVCULDg0oUysCCt

-2-1-7 3-6-6
2-1-7 3-6-6

Scale = 1:16.7

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.62	Vert(LL)	0.01	5-6	>999	240	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.19	Vert(CT)	0.01	5-6	>999	180		
BCLL 0.0 *	Rep Stress Incr	NO	WB 0.03	Horz(CT)	-0.00	3	n/a	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MP						Weight: 21 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x6 SP No.2 *Except*
2-5: 2x4 SP No.3

BRACING-

TOP CHORD Structural wood sheathing directly applied or 3-6-6 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 6=0-4-9, 3=Mechanical, 4=Mechanical

Max Horz 6=84(LC 8)
Max Uplift 6=-100(LC 4), 3=-60(LC 25), 4=-34(LC 8)
Max Grav 6=225(LC 1), 3=36(LC 45), 4=37(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 3, 4.
- 8) "NAILED" indicates 3-10d (0.148"x3") or 2-12d (0.148"x3.25") toe-nails per NDS guidelines.
- 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25
Uniform Loads (plf)
Vert: 1-2=-60, 2-3=-60, 4-6=-20
Concentrated Loads (lb)
Vert: 7=89(F=44, B=44) 8=70(F=35, B=35)

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 4,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from Truss Plate Institute (www.tpiinst.org) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com

Job 4768181	Truss HJ10	Truss Type Diagonal Hip Girder	Qty 2	Ply 1	HUMPHREY RES.	T38101184
----------------	---------------	-----------------------------------	----------	----------	---------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Fri Aug 1 13:41:11 2025 Page 1

ID:7WKr8toudn35dxwKwBAfQtytHta-Kk6OQvWmNb91rrAl56PDmsWqqEkkXtqdatQMKwysCCs

-2-1-7 4-6-0 9-10-1
2-1-7 4-6-0 5-4-1

Scale = 1:35.9

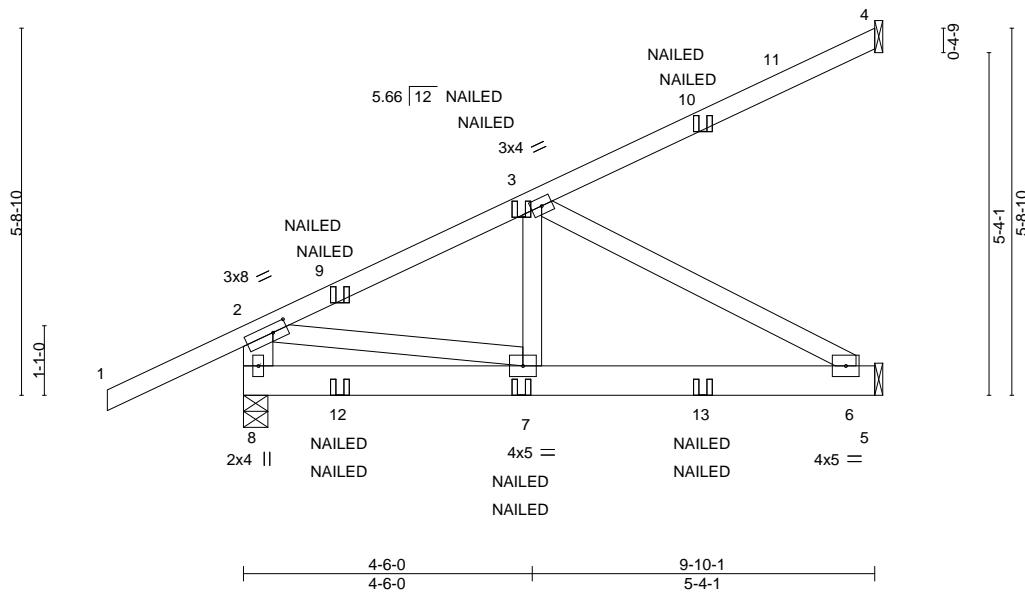


Plate Offsets (X,Y)-- [2:0-2-12,0-1-8]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.69	Vert(LL)	0.02	6-7	>999	240	
TCDL 10.0	Lumber DOL	1.25	BC 0.25	Vert(CT)	-0.03	6-7	>999	180	
BCLL 0.0 *	Rep Stress Incr	NO	WB 0.32	Horz(CT)	-0.01	4	n/a	n/a	
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS					Weight: 62 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x6 SP No.2
WEBS 2x4 SP No.3 *Except*
2-8: 2x6 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. (size) 8=0-4-9, 4=Mechanical, 5=Mechanical

Max Horz 8=193(LC 8)
Max Uplift 8=-232(LC 4), 4=-116(LC 8), 5=-175(LC 8)
Max Grav 8=475(LC 46), 4=158(LC 1), 5=306(LC 43)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-8=464/205, 2-3=-578/254
BOT CHORD 7-8=-327/0, 6-7=-322/439
WEBS 2-7=-274/609, 3-6=-502/369

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCPi=0.18; MWFRS (envelope) gable end zone; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (j=lb) 8=232, 4=116, 5=175.
- 8) "NAILED" indicates 3-10d (0.148"x3") or 2-12d (0.148"x3.25") toe-nails per NDS guidelines.
- 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25
Uniform Loads (plf)
Vert: 1-2=60, 2-4=60, 5-8=20
Concentrated Loads (lb)
Vert: 7=6(F=3, B=3) 9=89(F=44, B=44) 10=68(F=34, B=34) 12=70(F=35, B=35) 13=44(F=22, B=22)

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

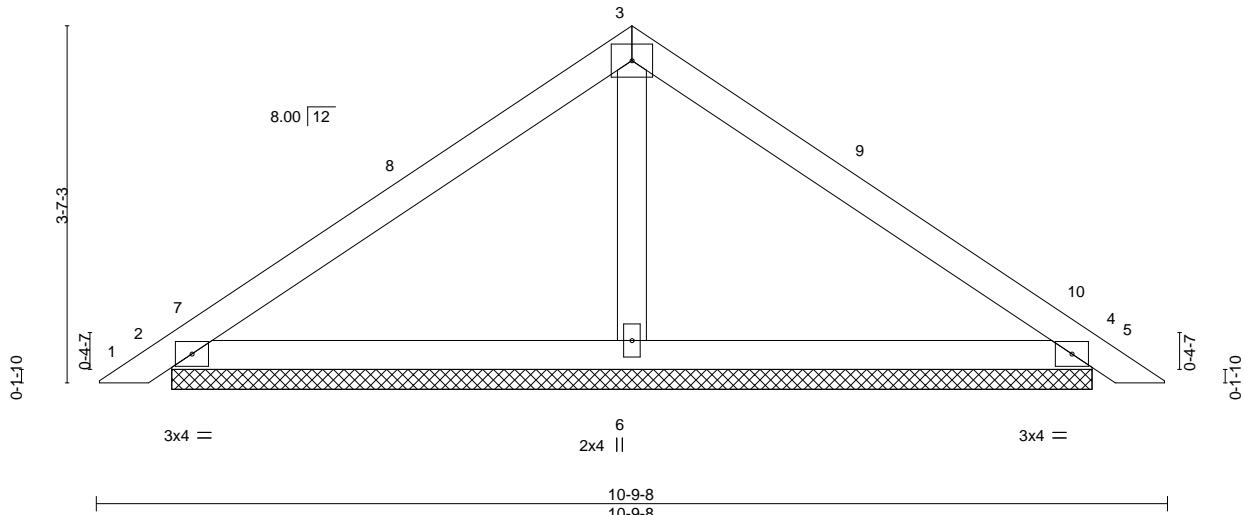
August 4,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from the Truss Plate Institute (www.tpiinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com

Job 4768181	Truss PB01	Truss Type Piggyback	Qty 16	Ply 1	HUMPHREY RES.	T38101185
----------------	---------------	-------------------------	-----------	----------	---------------	-----------


Builders FirstSource (Lake City,FL), Lake City, FL - 32055, 8.830 s Jul 24 2025 MiTek Industries, Inc. Fri Aug 1 13:41:11 2025 Page 1 ID:7WKr8toudn35dxwKwBafQtytHta-Kk6OQvWmNb91rrAI56PDmsWwREkNxY_datQMKwysCCs

5-4-12
5-4-12

10-9-8
5-4-12

Scale = 1:23.2

4x5 =

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.27	Vert(LL)	0.01	5	n/r	120	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.21	Vert(CT)	0.01	5	n/r	120		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.06	Horz(CT)	0.00	4	n/a	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-S						Weight: 37 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
OTHERS 2x4 SP No.3

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 0-3-5 to 3-3-5, Zone1 3-3-5 to 5-4-12, Zone2 5-4-12 to 9-7-11, Zone1 9-7-11 to 10-6-3 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4, 6.
- 8) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 4,2025

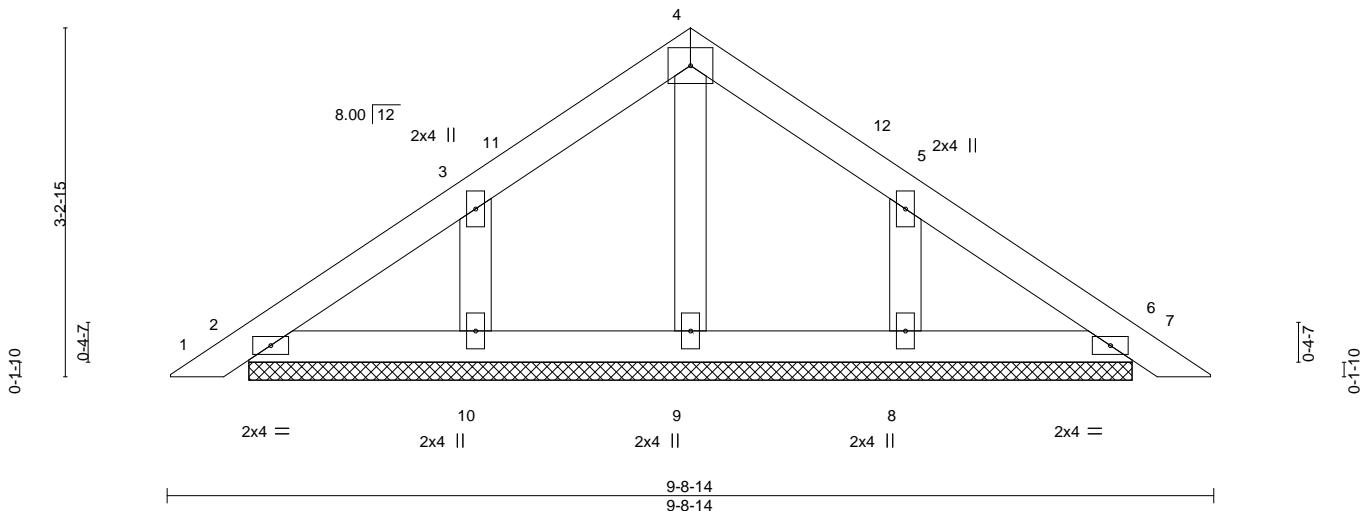
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from Truss Plate Institute (www.tpinst.org) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association (www.sbcsccomponents.com)

Job 4768181	Truss PB01G	Truss Type GABLE	Qty 2	Ply 1	HUMPHREY RES.	T38101186
----------------	----------------	---------------------	----------	----------	---------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Fri Aug 1 13:41:12 2025 Page 1


ID:7WKR8toudn35dxwKwBafQtytHta-owgmdFWO8vHuT?kUepwSJ339Te7NGPNmpX9vsMysCCr

4-10-7
4-10-7

9-8-14
4-10-7

Scale = 1:21.4

4x5 =

LOADING (psf)	SPACING-	CSI.	DEFL.	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.25	TC 0.06	Vert(LL) 0.00	MT20	244/190
TCDL 10.0	Lumber DOL 1.25	BC 0.04	Vert(CT) 0.00		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.05	Horz(CT) 0.00		
BCDL 10.0	Code FBC2023/TPI2014	Matrix-S			
				Weight: 37 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
OTHERS 2x4 SP No.3

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

All bearings 8-2-10.
(lb) - Max Horz 2=76(LC 10)
Max Uplift All uplift 100 lb or less at joint(s) 2, 6 except 10=-101(LC 12), 8=-101(LC 13)
Max Grav All reactions 250 lb or less at joint(s) 2, 6, 9, 10, 8

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 0-3-5 to 3-3-5, Zone1 3-3-5 to 4-10-7, Zone2 4-10-7 to 8-11-12, Zone1 8-11-12 to 9-5-9 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6 except (jt=lb) 10=101, 8=101.
- 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 4,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from Truss Plate Institute (www.tpiinst.org) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com

Job 4768181	Truss T01	Truss Type Common	Qty 16	Ply 1	HUMPHREY RES.	T38101187
----------------	--------------	----------------------	-----------	----------	---------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Fri Aug 1 13:41:12 2025 Page 1

ID:7WKr8toudn35dxwKwBAfQytHta-owgmdFWO8vHuT?kUepwSJ334Ee0GGNsmpX9vsMysCCr

-1-6-0 5-1-7 10-0-0 14-10-9 20-0-0 21-6-0
1-6-0 5-1-7 4-10-9 4-10-9 5-1-7 1-6-0

Scale = 1:36.9

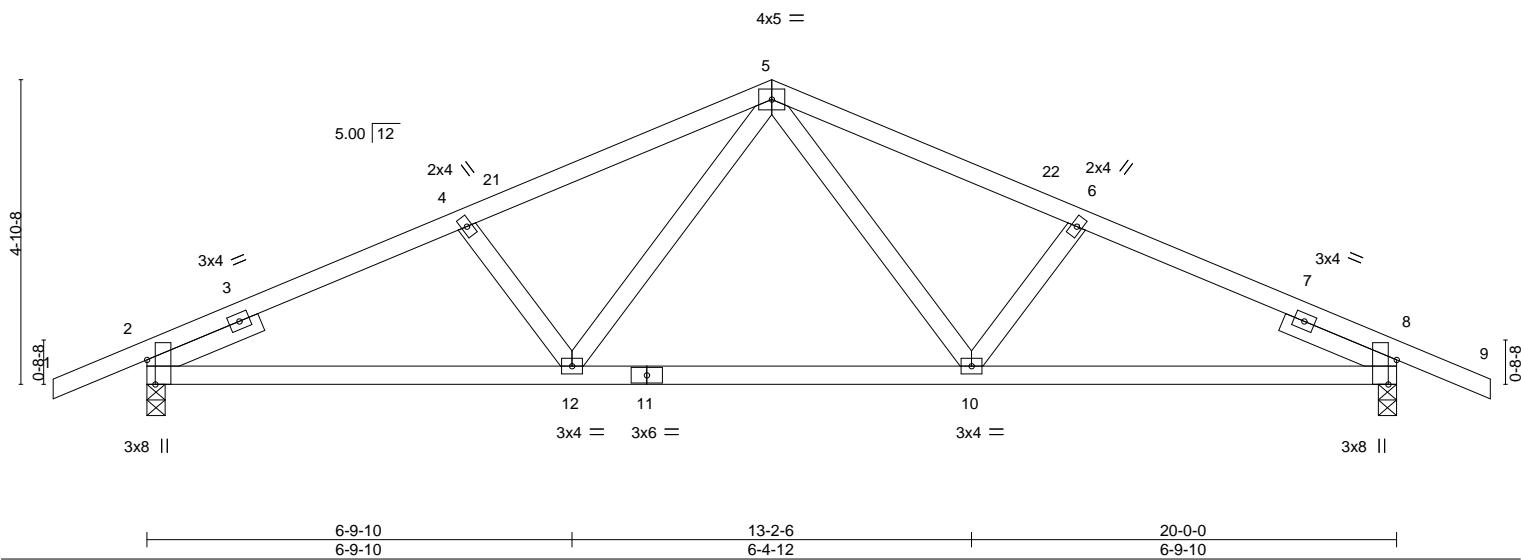


Plate Offsets (X,Y)-- [2:0-4-11,Edge], [8:0-4-11,Edge]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.33	Vert(LL)	0.08 10-12	>999	240	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.49	Vert(CT)	-0.15 10-12	>999	180		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.15	Horz(CT)	0.04 8	n/a	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS					Weight: 97 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3
SLIDER Left 2x4 SP No.3 1-11-8, Right 2x4 SP No.3 1-11-8

BRACING-

TOP CHORD Structural wood sheathing directly applied or 4-7-5 oc purlins.
BOT CHORD Rigid ceiling directly applied or 7-10-3 oc bracing.

REACTIONS. (size) 2=0-3-8, 8=0-3-8

Max Horz 2=80(LC 13)
Max Uplift 2=361(LC 8), 8=361(LC 9)
Max Grav 2=890(LC 1), 8=890(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=1341/667, 4-5=1214/656, 5-6=1214/656, 6-8=1341/667

BOT CHORD 2-12=538/1195, 10-12=-350/867, 8-10=-555/1195

WEBS 5-10=237/383, 5-12=237/383

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCPi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 1-6-0 to 1-6-0, Zone1 1-6-0 to 10-0-0, Zone2 10-0-0 to 14-2-15, Zone1 14-2-15 to 21-6-0 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=361, 8=361.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

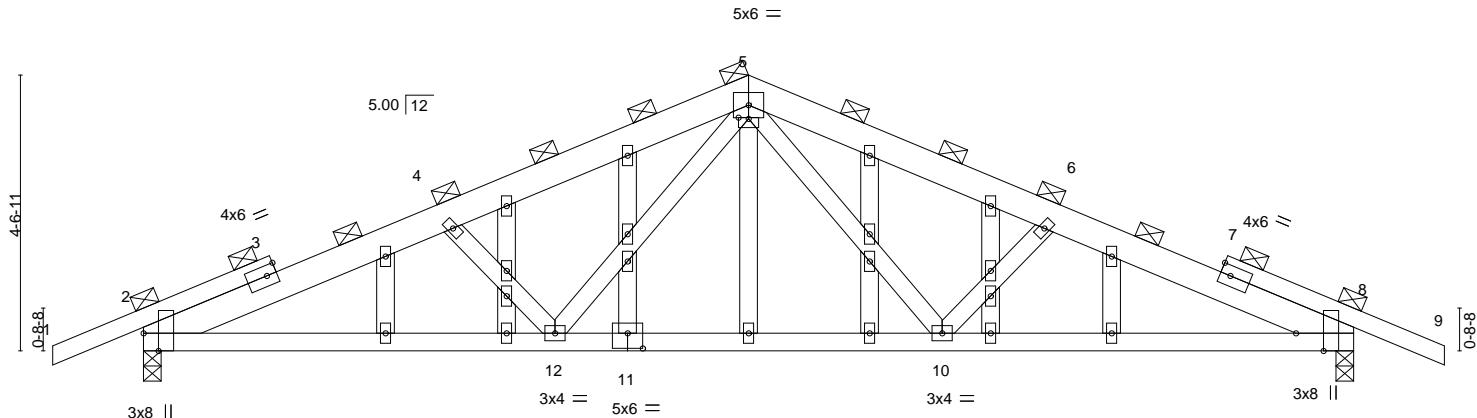
Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 4,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from the Truss Plate Institute (www.tpiinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com


Job 4768181	Truss T01G	Truss Type GABLE	Qty 1	Ply 1	HUMPHREY RES.	T38101188
----------------	---------------	---------------------	----------	----------	---------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Fri Aug 1 13:41:13 2025 Page 1
ID:7WKr8toudn35dxwKwBAfQtytHta-G7E9qbX0vDPI59JgCWRhsHc8s1Mc?pfw2BvSPoysCCq

-1-6-0 5-1-6 10-0-0 14-10-10 20-0-0 21-6-0
1-6-0 5-1-6 4-10-10 4-10-10 5-1-6 1-6-0

Scale = 1:38.1

6-9-10 13-2-6 20-0-0
6-9-10 6-4-12 6-9-10

Plate Offsets (X,Y)-- [2:0-3-8,Edge], [5:0-2-0,0-0-4], [8:0-3-8,Edge], [11:0-3-0,0-3-0]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.78	Vert(LL)	0.10 10-12	>999	240	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.48	Vert(CT)	-0.18 10-12	>999	180		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.17	Horz(CT)	0.04 8	n/a	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS					Weight: 138 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 *Except*

2-5-5-8: 2x6 SP No.2

BOT CHORD 2x4 SP No.2

WEBS 2x4 SP No.3

OTHERS 2x4 SP No.3

REACTIONS. (size) 2=0-3-8, 8=0-3-8

Max Horz 2=73(LC 12)

Max Uplift 2=361(LC 8), 8=361(LC 9)

Max Grav 2=890(LC 1), 8=890(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=1533/981, 4-5=1358/922, 5-6=1358/922, 6-8=1533/981

BOT CHORD 2-12=848/1421, 10-12=506/953, 8-10=856/1421

WEBS 4-12=322/225, 5-12=328/444, 5-10=328/444, 6-10=322/225

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl.,
GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 zone; porch left and right exposed; C-C for members and forces &
MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry
Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific
to the use of this truss component.

5) All plates are 2x4 MT20 unless otherwise indicated.

6) Gable studs spaced at 2-0-0 oc.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
will fit between the bottom chord and any other members.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb)
2=361, 8=361.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

This item has been
digitally signed and
sealed by Velez, Joaquin, PE
on the date indicated here.
Printed copies of this
document are not considered
signed and sealed and the
signature must be verified
on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 4,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from the Truss Plate Institute (www.tpiinst.org)
and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association (www.sbcsccomponents.com)

Job 4768181	Truss T02	Truss Type Attic	Qty 10	Ply 1	HUMPHREY RES.	T38101189
----------------	--------------	---------------------	-----------	----------	---------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055, 8.830 s Jul 24 2025 MiTek Industries, Inc. Fri Aug 1 13:41:14 2025 Page 1 ID:7WKr8toudn35dxwKwBAfQtytHta-kJoX2xYegWXciJutmEywOU8J8Rgrk8A3Gre0xFysCCp

3-3-0 5-8-12 9-0-9 9-8-4 12-3-8 14-10-12 15-6-7 18-10-4 21-4-0 24-7-0 26-1-8
3-3-0 2-5-12 3-3-13 0-7-11 2-7-4 2-7-4 0-7-11 3-3-13 2-5-12 3-3-0 1-6-8

Scale = 1:71.5

5x8 =

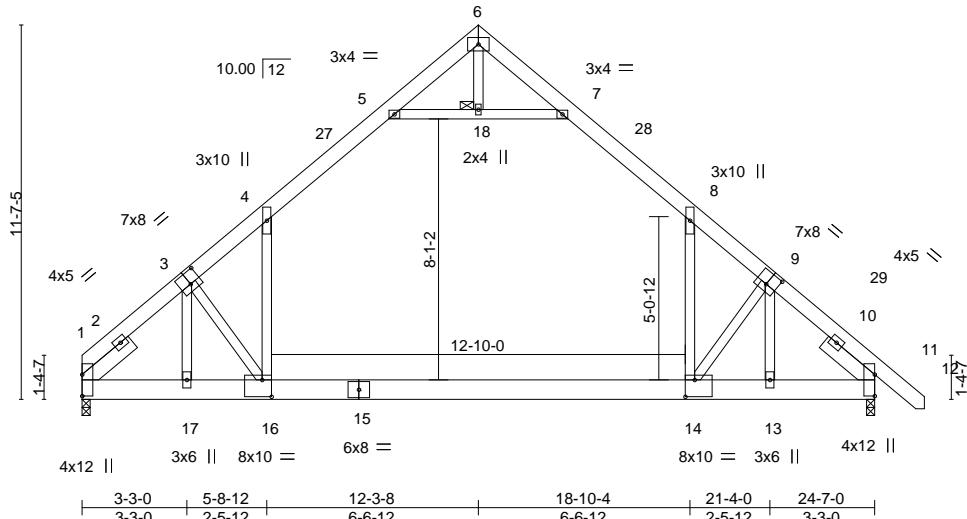


Plate Offsets (X,Y)-- [3:0-4-0,0-4-8], [9:0-4-0,0-4-8], [14:0-3-8,0-6-4], [16:0-3-8,0-6-4]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.81	Vert(LL)	-0.43	14-16	>689	240	
TCDL 10.0	Lumber DOL	1.25	BC 0.55	Vert(CT)	-0.72	14-16	>408	180	
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.67	Horz(CT)	0.04	1	n/a	n/a	
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS	Attic	-0.25	14-16	632	360	Weight: 212 lb FT = 20%

LUMBER-

TOP CHORD 2x6 SP 2400F 2.0E or 2x6 SP M 26 *Except*
1-3,9-12: 2x6 SP No.2
BOT CHORD 2x8 SP 2400F 2.0E
WEBS 2x4 SP No.3
SLIDER Left 2x6 SP No.2 1-11-8, Right 2x6 SP No.2 1-11-8

REACTIONS. (size) 1=0-3-0, 11=0-3-0

Max Horz 1=-272(LC 10)
Max Uplift 1=-32(LC 12), 11=-67(LC 13)
Max Grav 1=1531(LC 20), 11=1614(LC 21)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-3=-1661/54, 3-4=-2158/50, 4-5=-1254/155, 5-6=-1/400, 6-7=-1/400, 7-8=-1256/156,

8-9=-2157/51, 9-11=-1646/50

BOT CHORD 1-17=-132/1439, 16-17=-134/1433, 14-16=0/1355, 13-14=0/1228, 11-13=0/1236

WEBS 5-18=-1741/127, 7-18=-1741/127, 8-14=0/1401, 9-14=-235/306, 4-16=0/1404,

3-16=-244/312, 3-17=-961/47, 9-13=-981/50

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 0-0-0 to 3-2-10, Zone1 3-2-10 to 12-3-8, Zone2 12-3-8 to 16-6-7, Zone1 16-6-7 to 25-11-14 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Ceiling dead load (5.0 psf) on member(s). 4-5, 7-8, 5-18, 7-18; Wall dead load (5.0psf) on member(s).8-14, 4-16
- 7) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 14-16
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 11.
- 9) Attic room checked for L/360 deflection.

This item has been
digitally signed and
sealed by Velez, Joaquin, PE
on the date indicated here.
Printed copies of this
document are not considered
signed and sealed and the
signature must be verified
on any electronic copies.

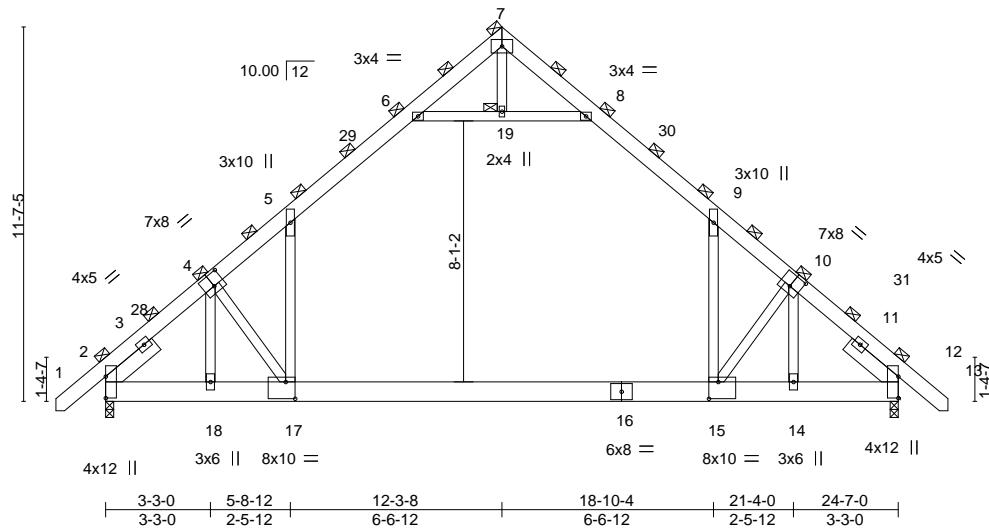
Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 4,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from the Truss Plate Institute (www.tpiinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com


Job 4768181	Truss T03	Truss Type ATTIC	Qty 2	Ply 3	HUMPHREY RES.	T38101191
----------------	--------------	---------------------	----------	----------	---------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055, 8.830 s Jul 24 2025 MiTek Industries, Inc. Fri Aug 1 13:41:15 2025 Page 1 ID:7WKr8toudn35dxwKwBAfQtytHta-CVMvFGZHRqgTKTT3KxT9xihTcr?bTb0DVVOZThysCCo

-1-6-8 | 3-3-0 | 5-8-12 | 9-0-9 | 9-8-4 | 12-3-8 | 14-10-12 | 15-6-7 | 18-10-4 | 21-4-0 | 24-7-0 | 26-1-8
1-6-8 | 3-3-0 | 2-5-12 | 3-3-13 | 0-7-11 | 2-7-4 | 2-7-4 | 0-7-11 | 3-3-13 | 2-5-12 | 3-3-0 | 1-6-8

5x8 =

Scale = 1:71.5

Job 4768181	Truss T04	Truss Type Attic	Qty 5	Ply 1	HUMPHREY RES.	T38101192
----------------	--------------	---------------------	----------	----------	---------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055, 8.830 s Jul 24 2025 MiTek Industries, Inc. Fri Aug 1 13:41:16 2025 Page 1 ID:7WKr8toudn35dxwKwBAfQttyHta-ghwHTcZvC7oKyc2Ftf_OTvEfeFMJC2gMk976?7ysCCn

|-1-6-8 | 3-3-0 | 5-8-12 | 9-0-9 | 9-8-4 | 12-3-8 | 14-10-12 | 15-6-7 | 18-10-4 | 21-4-0 | 24-7-0
| 1-6-8 | 3-3-0 | 2-5-12 | 3-3-13 | 0-7-11 | 2-7-4 | 2-7-4 | 0-7-11 | 3-3-13 | 2-5-12 | 3-3-0

5x8 =

Scale = 1:71.5

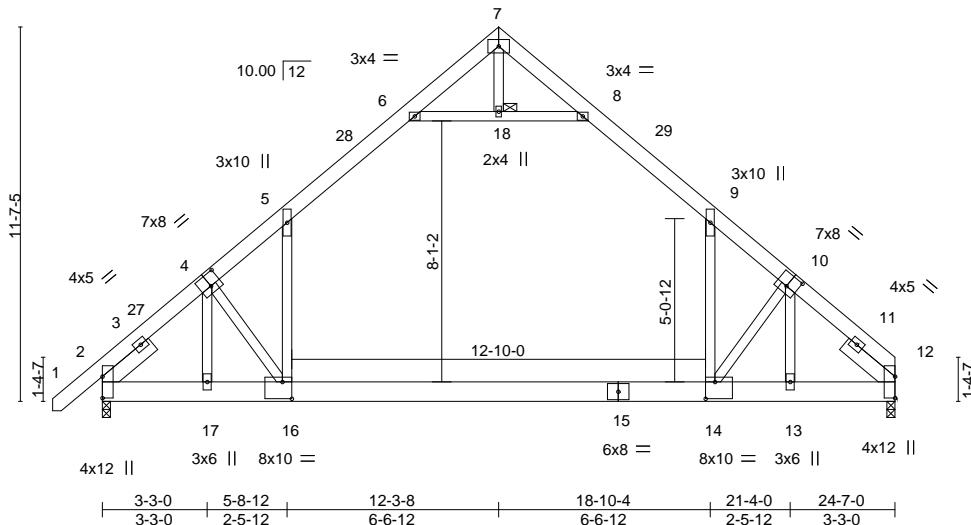


Plate Offsets (X,Y)-- [4:0-4-0,0-4-8], [10:0-4-0,0-4-8], [14:0-3-8,0-6-4], [16:0-3-8,0-6-4]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.81	Vert(LL)	-0.43	14-16	>689	240	
TCDL 10.0	Lumber DOL	1.25	BC 0.55	Vert(CT)	-0.72	14-16	>408	180	
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.67	Horz(CT)	0.04	2	n/a	n/a	
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS	Attic	-0.25	14-16	632	360	Weight: 212 lb FT = 20%

LUMBER-

TOP CHORD 2x6 SP 2400F 2.0E or 2x6 SP M 26 *Except*
1-4,10-12: 2x6 SP No.2
BOT CHORD 2x8 SP 2400F 2.0E
WEBS 2x4 SP No.3
SLIDER Left 2x6 SP No.2 1-11-8, Right 2x6 SP No.2 1-11-8

REACTIONS. (size) 2=0-3-0, 12=0-3-0

Max Horz 2=272(LC 9)
Max Uplift 2=67(LC 12), 12=-32(LC 13)
Max Grav 2=1614(LC 20), 12=1531(LC 21)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

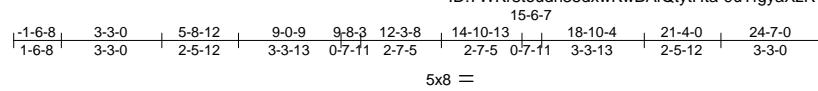
TOP CHORD 2-4=1645/49, 4-5=2157/51, 5-6=1256/156, 6-7=1/400, 7-8=-2/400, 8-9=-1254/155,
9-10=2158/50, 10-12=-1662/55
BOT CHORD 2-17=-146/1408, 16-17=-148/1402, 14-16=0/1340, 13-14=0/1230, 12-13=0/1236
WEBS 6-18=-1741/127, 8-18=-1741/127, 9-14=0/1404, 10-14=-247/314, 10-13=-964/50,
5-16=0/1401, 4-16=-232/304, 4-17=-979/47

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 1-4-14 to 1-7-2, Zone1 1-7-2 to 12-3-8, Zone2 12-3-8 to 16-6-7, Zone1 16-6-7 to 24-7-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Ceiling dead load (5.0 psf) on member(s). 5-6, 8-9, 6-18, 8-18; Wall dead load (5.0psf) on member(s).9-14, 5-16
- 7) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 14-16
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 12.
- 9) Attic room checked for L/360 deflection.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:


August 4,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from the Truss Plate Institute (www.tpiinst.org) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association (www.sbcsccomponents.com)

Job 4768181	Truss T05	Truss Type ATTIC GIRDER	Qty 1	Ply 3	HUMPHREY RES.	T38101193
----------------	--------------	----------------------------	----------	----------	---------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055, 8.830 s Jul 24 2025 MiTek Industries, Inc. Fri Aug 1 13:41:17 2025 Page 1 ID:7WKR8toudh35dxwKwBafQtyHta-9uTfgyaXzRwAZmdSRMwd07mr6fiuxXkWyptgYaysCCm

Scale = 1:74.5

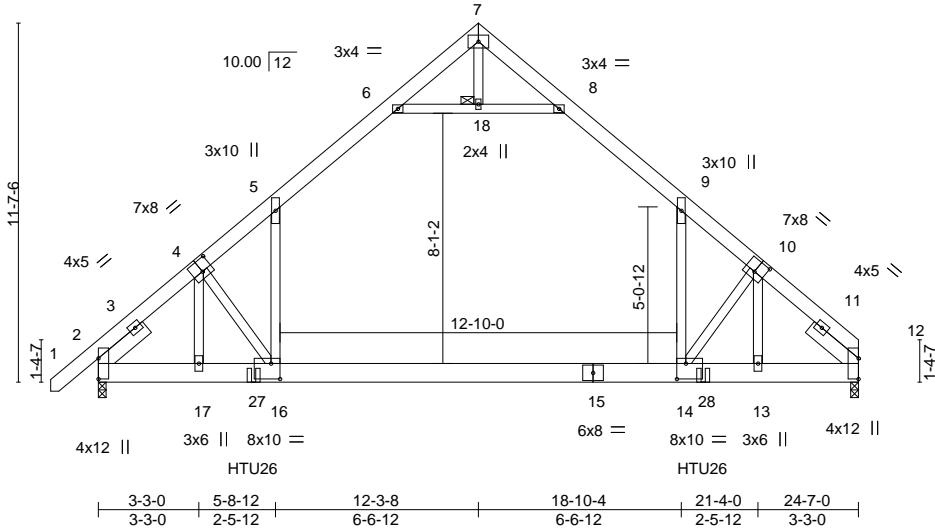


Plate Offsets (X,Y)-- [4:0-4-0,0-4-8], [10:0-4-0,0-4-8], [14:0-3-8,0-6-0], [16:0-3-8,0-6-0]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.77	Vert(LL)	-0.41	14-16	>726	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.53	Vert(CT)	-0.65	14-16	>454		180
BCLL 0.0 *	Rep Stress Incr	NO	WB 0.55	Horz(CT)	0.03	2	n/a		n/a
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS	Attic	-0.22	14-16	709	360	Weight: 636 lb FT = 20%

LUMBER-

TOP CHORD 2x6 SP 2400F 2.0E or 2x6 SP M 26 *Except*
1-4,10-12: 2x6 SP No.2
BOT CHORD 2x8 SP 2400F 2.0E
WEBS 2x4 SP No.3
SLIDER Left 2x6 SP No.2 1-11-9, Right 2x6 SP No.2 1-11-9

REACTIONS. (size) 2=0-3-0, 12=0-3-0

Max Horz 2=272(LC 7)
Max Uplift 2=-715(LC 8), 12=-680(LC 9)
Max Grav 2=4468(LC 36), 12=4385(LC 37)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-4894/797, 4-5=-6507/986, 5-6=-3937/697, 6-7=-533/319, 7-8=-532/320,
8-9=-3936/696, 9-10=-6517/985, 10-12=-4910/802
BOT CHORD 2-17=-703/3801, 16-17=-702/3778, 14-16=-548/4099, 13-14=-538/3607, 12-13=-538/3629
WEBS 9-14=-553/3901, 10-14=-353/1099, 10-13=-2854/383, 5-16=-554/3897, 4-16=-350/1118,
4-17=-2867/383, 6-18=-4562/784, 8-18=-4562/784

NOTES-

1) 3-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Bottom chords connected as follows: 2x8 - 2 rows staggered at 0-9-0 oc.

webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Unbalanced roof live loads have been considered for this design.

4) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCPi=0.18; MWFRs (envelope) gable end zone; Lumber DOL=1.60 plate grip DOL=1.60

5) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) Ceiling dead load (5.0 psf) on member(s), 5-6, 8-9, 6-18, 8-18; Wall dead load (5.0psf) on member(s), 9-14, 5-16

9) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 14-16

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb)
2=715, 12=680.

11) Use Simpson Strong-Tie HTU26 (20-10d Girder, 11-10dx1 1/2 Truss) or equivalent spaced at 14-6-8 oc max. starting at 5-0-4 from the left end to 19-6-12 to connect truss(es) to back face of bottom chord.

12) Fill all nail holes where hanger is in contact with lumber.

Continued on page 2

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DS8-22** available from the Truss Plate Institute (www.tpiinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 4,2025

MiTek
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com

Job 4768181	Truss T05	Truss Type ATTIC GIRDER	Qty 1	Ply 3	HUMPHREY RES.	T38101193
----------------	--------------	----------------------------	----------	-----------------	---------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Fri Aug 1 13:41:17 2025 Page 2
ID:7WKr8toudh35dxwKwBAfQtyHta-9uTfgyaXzRwAZmdSRMwd07mr6fiuxXkWyptgYaysCCm

NOTES-

13) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1755 lb down and 303 lb up at 12-3-8 on top chord. The design/selection of such connection device(s) is the responsibility of others.

14) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

Vert: 1-5=-60, 5-6=-70, 6-7=-60, 7-8=-60, 8-9=-70, 9-12=-60, 16-19=-20, 14-16=-170(B=-130), 14-23=-20, 6-8=-10

Drag: 9-14=-10, 5-16=-10

Concentrated Loads (lb)

Vert: 7=-1000 27=-528(B) 28=-528(B)

This item has been
digitally signed and
sealed by Velez, Joaquin, PE
on the date indicated here.
Printed copies of this
document are not considered
signed and sealed and the
signature must be verified
on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 4,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TP11 Quality Criteria and DSB-22](#) available from Truss Plate Institute (www.tpinst.org) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association (www.sbcscocomponents.com)

Job 4768181	Truss T06G	Truss Type Common Supported Gable	Qty 1	Ply 1	HUMPHREY RES.	T38101194
----------------	---------------	--------------------------------------	----------	----------	---------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Fri Aug 1 13:41:18 2025 Page 1
ID:7Wkr8toudn35dxwKwBAfQtytHta-d412ulb9kl21BwCe?41sZKJ822Ang5nfBTcD40ysCCI

-1-6-8 | 7-3-8 | 14-7-0 | 16-1-8
1-6-8 | 7-3-8 | 7-3-8 | 1-6-8

Scale = 1:43.6

4x5 =

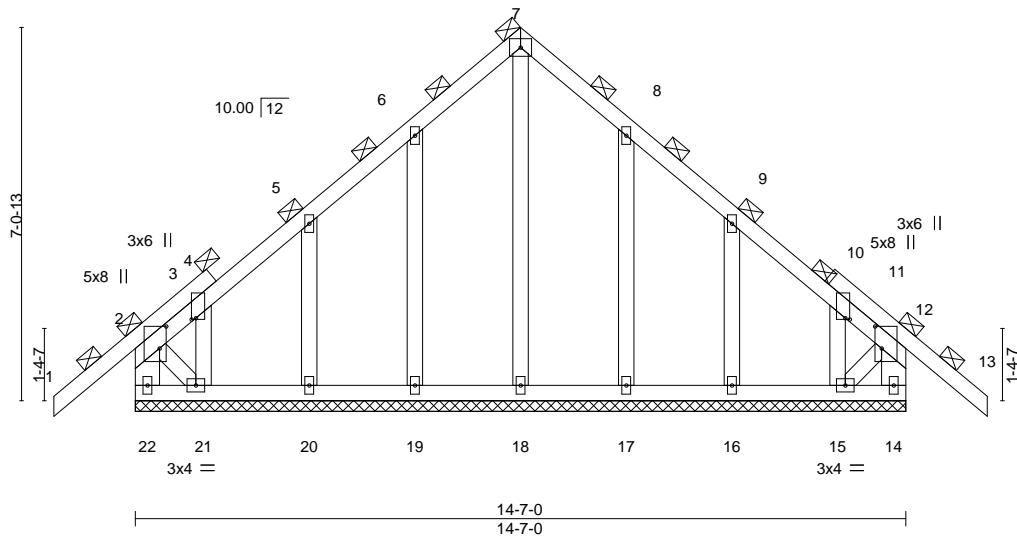


Plate Offsets (X,Y)-- [2:0-5-0,0-1-8], [3:0-0-5,0-1-0], [11:0-0-5,0-1-0], [12:0-5-0,0-1-8]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	I/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.24	Vert(LL)	-0.01	13	n/r	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.04	Vert(CT)	-0.02	13	n/r		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.12	Horz(CT)	0.00	14	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-S					Weight: 107 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x6 SP No.2 *Except*
2-21,12-15: 2x4 SP No.3
OTHERS 2x4 SP No.3

REACTIONS.

All bearings 14-7-0.
(lb) - Max Horz 22=210(LC 10)
Max Uplift All uplift 100 lb or less at joint(s) 14, 20, 16 except 22=116(LC 8), 19=106(LC 12), 21=174(LC 12),
17=105(LC 13), 15=161(LC 13)
Max Grav All reactions 250 lb or less at joint(s) 14, 18, 19, 20, 21, 17, 16, 15 except 22=262(LC 20)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-22=250/112

NOTES-

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCPi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14, 20, 16 except (jt=lb) 22=116, 19=106, 21=174, 17=105, 15=161.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 4,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from the Truss Plate Institute (www.tpiinst.org) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association (www.sbcsccomponents.com)

Job 4768181	Truss T07	Truss Type Common	Qty 1	Ply 1	HUMPHREY RES.	T38101195
----------------	--------------	----------------------	----------	----------	---------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Fri Aug 1 13:41:18 2025 Page 1
ID:7WKr8toudn35dxwKwBAfQtytHta-d412ulb9kl21BwCe?41sZKJ4c2?WgyXfBTcD40ysCCI

-1-6-8 6-0-0 12-3-8 18-7-0 24-7-0 26-1-8
1-6-8 6-0-0 6-3-8 6-3-8 6-0-0 1-6-8

4x5 ||

Scale = 1:69.0

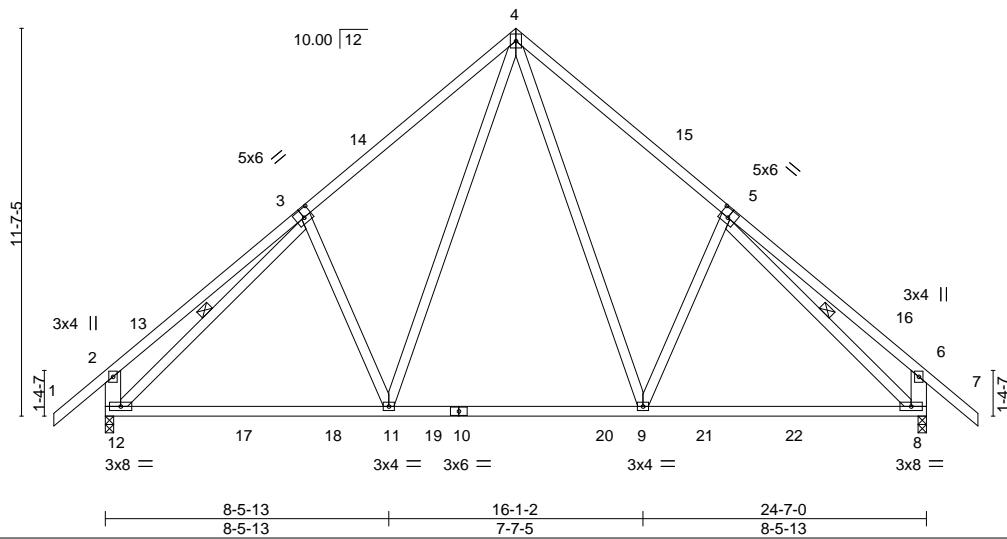


Plate Offsets (X,Y)-- [3:0-3-0,0-3-0], [5:0-3-0,0-3-0]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.46	Vert(LL)	-0.15	11-12	>999	240	
TCDL 10.0	Lumber DOL	1.25	BC 0.76	Vert(CT)	-0.26	11-12	>999	180	
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.65	Horz(CT)	0.03	8	n/a	n/a	
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS					Weight: 172 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3 *Except*
2-12,6-8: 2x6 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 4-11-12 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.
WEBS 1 Row at midpt 3-12, 5-8

REACTIONS. (size) 12=0-3-0, 8=0-3-0

Max Horz 12=-329(LC 10)
Max Uplift 12=-244(LC 12), 8=-244(LC 13)
Max Grav 12=1225(LC 19), 8=1225(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-360/194, 3-4=-1130/356, 4-5=-1131/356, 5-6=-359/194, 2-12=-435/233, 6-8=-435/233
BOT CHORD 11-12=-208/1015, 9-11=-57/720, 8-9=-87/876
WEBS 4-9=-236/612, 5-9=-245/299, 4-11=-236/611, 3-11=-245/299, 3-12=-1021/124, 5-8=-1021/123

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 -1-6-8 to 1-5-8, Zone1 1-5-8 to 12-3-8, Zone2 12-3-8 to 16-6-7, Zone1 16-6-7 to 26-1-8 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 12=244, 8=244.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 4,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from the Truss Plate Institute (www.tpiinst.org) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com

Job 4768181	Truss T07G	Truss Type Common Structural Gable	Qty 1	Ply 1	HUMPHREY RES.	T38101196
----------------	---------------	---------------------------------------	----------	----------	---------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Fri Aug 1 13:41:19 2025 Page 1

ID:7WKR8toudn35dxwKwAfQtytHta-5GbQ5ecnU2Aup4nqZnY55YsFySMJOQFoQ7MncSysCCK

1-6-8 | 6-0-0 | 12-3-8 | 18-7-0 | 24-7-0 | 26-1-8 |
1-6-8 | 6-0-0 | 6-3-8 | 6-0-0 | 6-0-0 | 1-6-8 |

Scale = 1:73.0

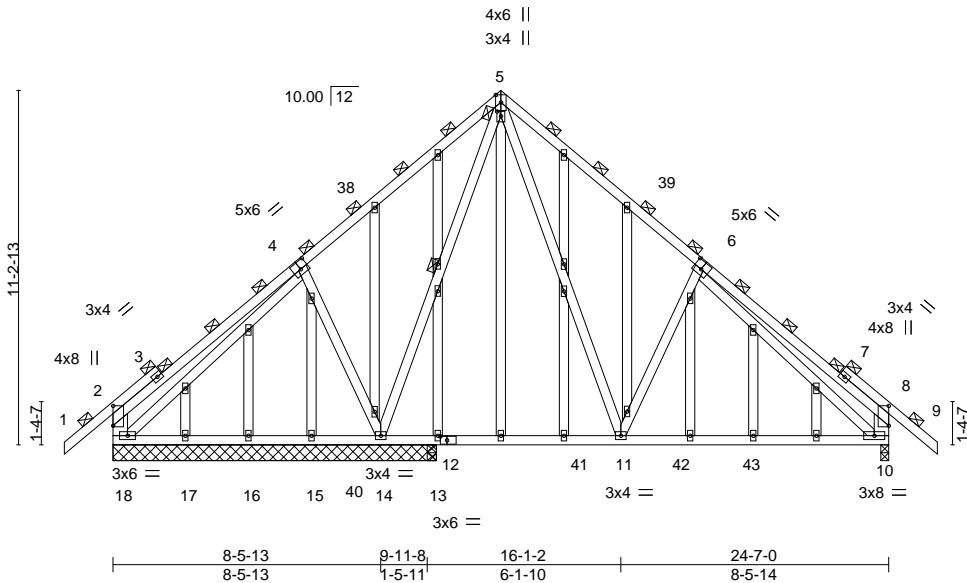


Plate Offsets (X,Y)-- [2:0-7-9,0-0-0], [4:0-3-0,0-3-0], [5:0-1-12,0-1-8], [6:0-3-0,0-3-0], [8:0-7-9,0-0-0], [12:0-2-8,0-1-8]

LOADING (psf)	SPACING-Plate Grip DOL	2-0-0	CSI.	DEFL.	in (loc)	I/defl	L/d	PLATES	GRIP
TCLL 20.0	Lumber DOL	1.25	TC 0.49	Vert(LL)	-0.15	10-11	>999	240	
TCDL 10.0		1.25	BC 0.66	Vert(CT)	-0.26	10-11	>642	180	
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.61	Horz(CT)	0.01	10	n/a	n/a	
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS					Weight: 265 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3 *Except*
2-18,8-10: 2x6 SP No.2
OTHERS 2x4 SP No.3

REACTIONS. All bearings 10-3-0 except (jt=length) 10=0-3-0, 13=0-3-8, 13=0-3-8.

(lb) - Max Horz 18=-313(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 17 except 14=-286(LC 12), 18=-115(LC 13), 10=-200(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 15, 16, 17, 13, 13 except 14=804(LC 19), 18=410(LC 1),

10=858(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 5-6=-664/292, 6-8=-449/229, 2-18=-349/239, 8-10=-501/257

BOT CHORD 17-18=-143/265, 16-17=-143/265, 15-16=-143/265, 14-15=-143/265, 13-14=-42/284,
11-13=-42/284, 10-11=-26/500

WEBS 5-11=-239/659, 6-11=-323/304, 5-14=-549/57, 4-14=-358/318, 6-10=-374/13

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 1-6-8 to 1-5-8, Zone1 1-5-8 to 12-3-8, Zone2 12-3-8 to 16-6-7, Zone1 16-6-7 to 26-1-8 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 17 except (jt=lb) 14=-286, 18=-115, 10=-200.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

This item has been
digitally signed and
sealed by Velez, Joaquin, PE
on the date indicated here.
Printed copies of this
document are not considered
signed and sealed and the
signature must be verified
on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 4,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DS8-22** available from the Truss Plate Institute (www.tpiinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com

Job 4768181	Truss T08	Truss Type Common	Qty 13	Ply 1	HUMPHREY RES.	T38101197
----------------	--------------	----------------------	-----------	----------	---------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Fri Aug 1 13:41:20 2025 Page 1
ID:7Wkr8toudn35dxwKwBaFQtytHta-ZT9ol_dPFMIIQEM06V3KeI0Qtsgz7spyn5K8uysCCj

|-1-6-8| 6-0-0 | 12-3-8 | 18-7-0 | 24-7-0 |
1-6-8 6-0-0 6-3-8 6-3-8 6-0-0

4x5 //

Scale = 1:69.0

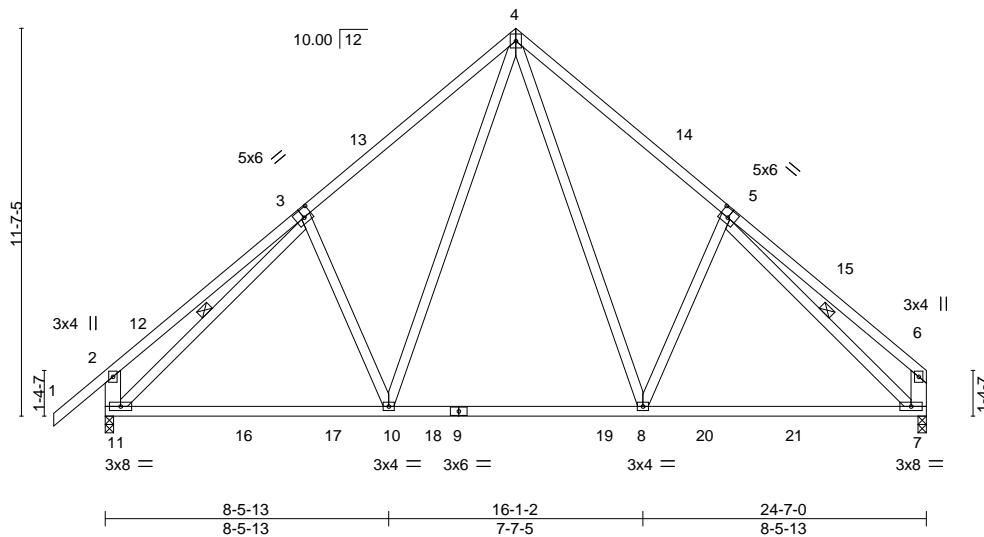


Plate Offsets (X,Y)-- [3:0-3-0,0-3-0], [5:0-3-0,0-3-0]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.48	Vert(LL)	-0.15	10-11	>999	240	
TCDL 10.0	Lumber DOL	1.25	BC 0.76	Vert(CT)	-0.26	7-8	>999	180	
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.66	Horz(CT)	0.03	7	n/a	n/a	
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS					Weight: 169 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3 *Except*
2-11,6-7: 2x6 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 4-11-8 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.
WEBS 1 Row at midpt 3-11, 5-7

REACTIONS. (size) 11=0-3-0, 7=0-3-0

Max Horz 11=317(LC 9)
Max Uplift 11=-244(LC 12), 7=-199(LC 13)
Max Grav 11=1228(LC 19), 7=1122(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-359/194, 3-4=-1134/356, 4-5=-1143/360, 5-6=-356/150, 2-11=-435/233,

6-7=-323/154

BOT CHORD 10-11=-232/1000, 8-10=-72/705, 7-8=-122/869

WEBS 4-8=-240/626, 5-8=-260/304, 4-10=-236/611, 3-10=-245/299, 3-11=-1026/125,

5-7=-1019/157

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 -1-6-8 to 1-5-8, Zone1 1-5-8 to 12-3-8, Zone2 12-3-8 to 16-6-7, Zone1 16-6-7 to 24-4-4 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 11=244, 7=199.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 4,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from the Truss Plate Institute (www.tpiinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com

Job 4768181	Truss T10	Truss Type Monopitch	Qty 2	Ply 1	HUMPHREY RES.	T38101199
----------------	--------------	-------------------------	----------	----------	---------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Fri Aug 1 13:41:21 2025 Page 1
ID:7WKr8toudn35dxwKwBAfQytHta-1fjAWKd10gQc2OwDgCaZAxdrG7qsNj5tRthLysCCi

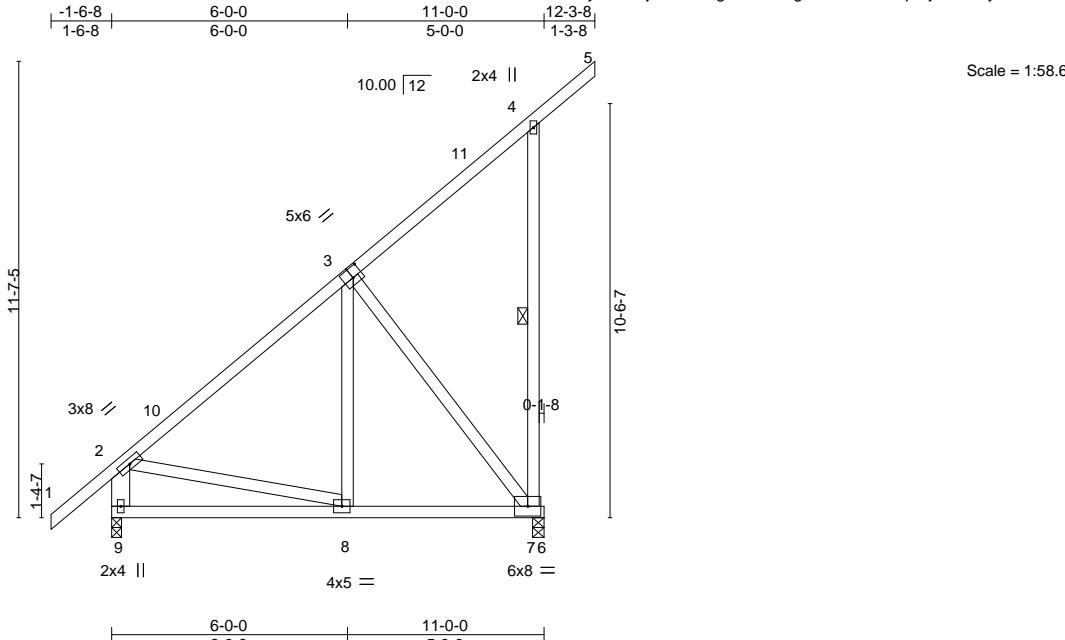


Plate Offsets (X,Y)-- [3:0-3-0,0-0-3-0]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	I/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.33	Vert(LL)	-0.03	8-9	>999	240	
TCDL 10.0	Lumber DOL	1.25	BC 0.27	Vert(CT)	-0.05	8-9	>999	180	
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.42	Horz(CT)	-0.01	7	n/a	n/a	
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS					Weight: 88 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3 *Except*
2-9: 2x6 SP No.2

REACTIONS.

(size) 9=0-3-0, 7=0-3-8
Max Horz 9=413(LC 12)
Max Uplift 7=388(LC 12)
Max Grav 9=528(LC 1), 7=573(LC 19)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
TOP CHORD 2-3=399/0, 4-7=233/270, 2-9=-475/21
BOT CHORD 8-9=526/357
WEBS 3-7=381/267, 2-8=-123/370

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 1-6-8 to 1-5-8, Zone1 1-5-8 to 12-3-8 zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 7=388.

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 8-2-4 oc bracing.
WEBS 1 Row at midpt 4-7

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 4,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from Truss Plate Institute (www.tpiinst.org) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-Us.com

Job 4768181	Truss T12	Truss Type Hip Girder	Qty 1	Ply 1	HUMPHREY RES.
Job Reference (optional)					T38101200

Builders FirstSource (Lake City,FL), Lake City, FL - 32055, 8.830 s Jul 24 2025 MiTek Industries, Inc. Fri Aug 1 13:41:22 2025 Page 1 ID:7WKr8toudn35dxwKwBAfQytyHta-VrHYjgegnzYTgXVPEv5ojAUhTgMlbsJF65aRDnysCCh

-1-6-0 3-7-12 7-0-0 10-0-0 13-0-0 16-4-4 20-0-0 21-6-0
1-6-0 3-7-12 3-4-4 3-0-0 3-0-0 3-4-4 3-7-12 1-6-0

Scale = 1:49.7

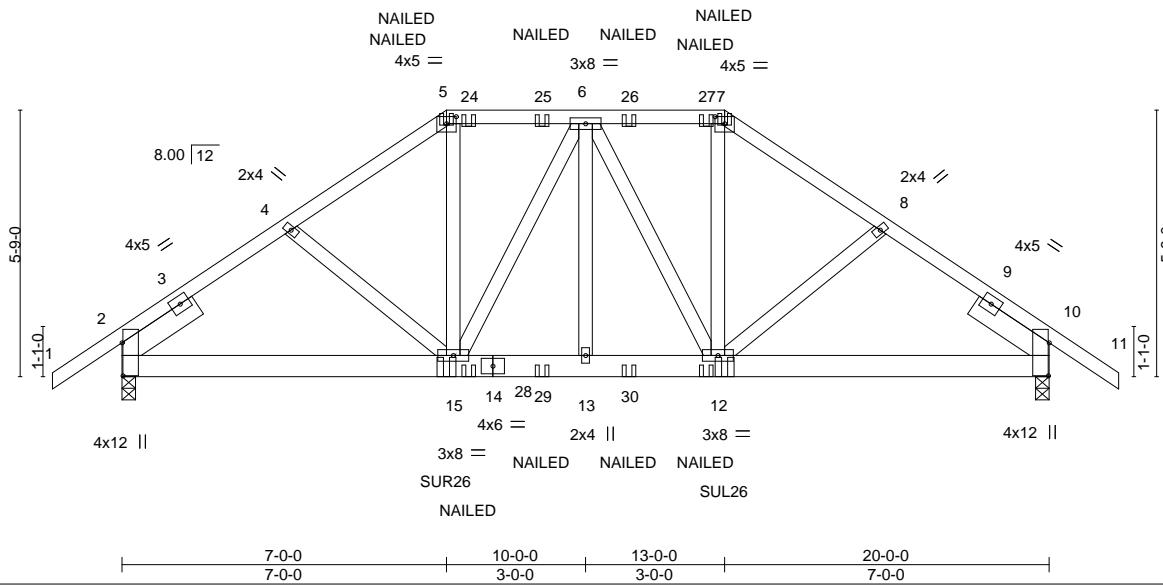


Plate Offsets (X,Y)-- [2:0-8-9,0-0-4], [5:0-2-8,0-1-13], [7:0-2-8,0-1-13], [10:0-8-9,0-0-4]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.79	Vert(LL)	0.08	13-15	>999	240	
TCDL 10.0	Lumber DOL	1.25	BC 0.74	Vert(CT)	-0.12	13-15	>999	180	
BCLL 0.0 *	Rep Stress Incr	NO	WB 0.27	Horz(CT)	0.05	10	n/a	n/a	
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS					Weight: 148 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x6 SP No.2
WEBS 2x4 SP No.3
SLIDER Left 2x6 SP No.2 1-11-8, Right 2x6 SP No.2 1-11-8

BRACING-

TOP CHORD Structural wood sheathing directly applied or 2-11-6 oc purlins.
BOT CHORD Rigid ceiling directly applied or 7-8-13 oc bracing.

REACTIONS. (size) 2=0-3-8, 10=0-3-8

Max Horz 2=-141(LC 6)
Max Uplift 2=-740(LC 8), 10=-743(LC 9)
Max Grav 2=1546(LC 1), 10=1551(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=1928/1012, 4-5=1846/1017, 5-6=1536/900, 6-7=1540/903, 7-8=1851/1021,

8-10=1933/1015

BOT CHORD 2-15=802/1575, 13-15=877/1730, 12-13=877/1730, 10-12=-717/1505

WEBS 4-15=220/275, 5-15=344/677, 6-15=-402/268, 6-13=-252/424, 6-12=-392/261,

7-12=-344/679, 8-12=-220/274

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCPi=0.18; MWFRS (envelope) gable end zone; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

4) Provide adequate drainage to prevent water ponding.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=740, 10=743.

8) Use Simpson Strong-Tie SUR26 (6-10dx1 1/2 Girder, 6-10dx1 1/2 Truss, Single Ply Girder) or equivalent at 7-0-0 from the left end to connect truss(es) to back face of bottom chord, skewed 45.0 deg.to the right, sloping 0.0 deg. down.

9) Use Simpson Strong-Tie SUL26 (6-16d Girder, 6-10dx1 1/2 Truss) or equivalent at 13-0-0 from the left end to connect truss(es) to back face of bottom chord, skewed 45.0 deg.to the left, sloping 0.0 deg. down.

10) Fill all nail holes where hanger is in contact with lumber.

11) *NAILED" indicates 3-10d (0.148"x3") or 2-12d (0.148"x3.25") toe-nails per NDS guidelines.

12) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 4,2025

Continued on page 2

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from the Truss Plate Institute (www.tpiinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com

Job 4768181	Truss T12	Truss Type Hip Girder	Qty 1	Ply 1	HUMPHREY RES.	T38101200
----------------	--------------	--------------------------	----------	----------	---------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Fri Aug 1 13:41:22 2025 Page 2
ID:7WKR8toudn35dxwKwBAfQtytHta-VrHYjgegnzYTgXVPEv5ojAUhTgMlbsJF65aRDnysCCh

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

Vert: 1-5=-60, 5-7=-60, 7-11=-60, 16-20=-20

Concentrated Loads (lb)

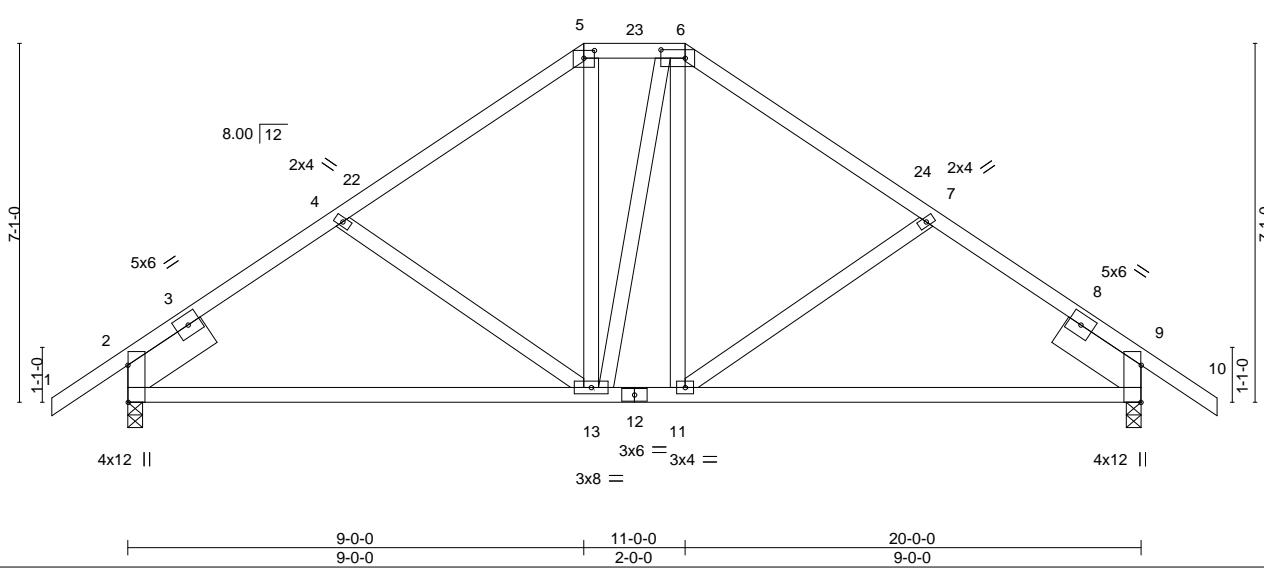
Vert: 5=-73(B) 7=-73(B) 15=-236(B) 12=-375(B) 24=-35(B) 25=-35(B) 26=-35(B) 27=-35(B) 28=-140(B) 29=-140(B) 30=-140(B)

This item has been
digitally signed and
sealed by Velez, Joaquin, PE
on the date indicated here.
Printed copies of this
document are not considered
signed and sealed and the
signature must be verified
on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 4,2025

⚠ WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TP1 Quality Criteria and DSB-22](#) available from Truss Plate Institute (www.tpinst.org) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association (www.sbcsccomponents.com)

Job 4768181	Truss T13	Truss Type Hip	Qty 2	Ply 1	HUMPHREY RES.	T38101201
----------------	--------------	-------------------	----------	----------	---------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055, 8.830 s Jul 24 2025 MiTek Industries, Inc. Fri Aug 1 13:41:22 2025 Page 1 ID:7WKR8toudn35dxwKwBAfQtytHta-VrHYjgegnzYTgXVPEv5ojAU6gNpbuEF65aRDnysCCh

-1-6-0 4-2-14 9-0-0 11-0-0 15-9-2 20-0-0 21-6-0
1-6-0 4-2-14 4-9-1 2-0-0 4-9-1 4-2-14 1-6-0

Scale = 1:45.5

9-0-0 11-0-0 20-0-0
9-0-0 2-0-0 9-0-0

Plate Offsets (X,Y)-- [2:0-8-13,Edge], [5:0-2-8,0-1-13], [6:0-5-12,0-2-0], [9:0-8-13,Edge]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.43	Vert(LL)	-0.11 11-20	>999	240	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.67	Vert(CT)	-0.21 11-20	>999	180		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.15	Horz(CT)	0.04 9	n/a	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS					Weight: 129 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3
SLIDER Left 2x8 SP 2400F 2.0E 1-11-8, Right 2x8 SP 2400F 2.0E 1-11-8

BRACING-

TOP CHORD Structural wood sheathing directly applied or 5-2-0 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 2=0-3-8, 9=0-3-8

Max Horz 2=-174(LC 10)
Max Uplift 2=-219(LC 12), 9=-219(LC 13)
Max Grav 2=890(LC 1), 9=890(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-946/249, 4-5=-789/215, 5-6=-593/223, 6-7=-788/214, 7-9=-945/249

BOT CHORD 2-13=-221/747, 11-13=-56/592, 9-11=-114/726

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCPi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 -1-6-0 to 1-6-0, Zone1 1-6-0 to 9-0-0, Zone3 9-0-0 to 11-0-0, Zone2 11-0-0 to 15-2-15, Zone1 15-2-15 to 21-6-0 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=219, 9=219.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 4,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DS-B-22** available from Truss Plate Institute (www.tpiinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com

Job 4768181	Truss T14	Truss Type Common	Qty 5	Ply 1	HUMPHREY RES.	T38101202
----------------	--------------	----------------------	----------	----------	---------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Fri Aug 1 13:41:23 2025 Page 1
ID:7Wkr8toudn35dxwKwBAfQtyHta-z2rxx?flYHgKh4bodc1FO0yE3ikKKmOLIK_IDysCCg

-1-6-0 5-1-0 10-0-0 14-11-0 20-0-0 21-6-0
1-6-0 5-1-0 4-11-0 5-1-0 1-6-0

Scale = 1:46.6

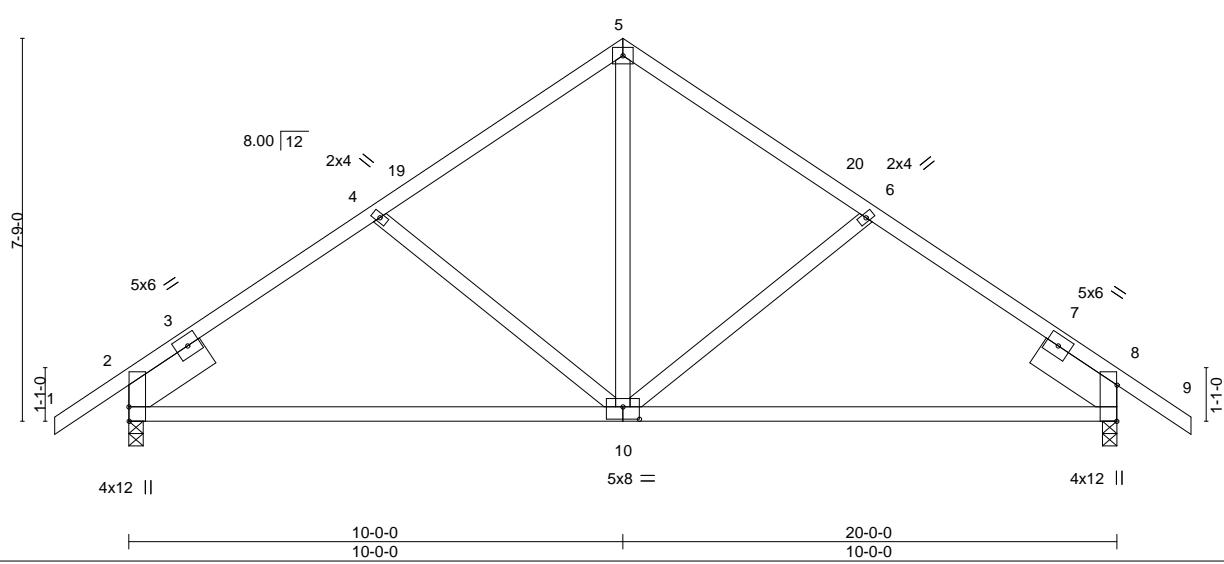


Plate Offsets (X,Y)-- [2:0-3-8,Edge], [8:0-8-13,Edge], [10:0-4-0,0-3-0]

LOADING (psf)	SPACING-	CSI.	DEFL.	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	2-0-0	TC 0.41	Vert(LL) -0.12 10-17 >999	240
TCDL 10.0	Lumber DOL	1.25	BC 0.75	Vert(CT) -0.24 10-17 >999	180
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.20	Horz(CT) 0.04 8 n/a	n/a
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS		Weight: 112 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3
SLIDER Left 2x8 SP 2400F 2.0E 1-11-8, Right 2x8 SP 2400F 2.0E 1-11-8

BRACING-

TOP CHORD Structural wood sheathing directly applied or 5-3-2 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 2=0-3-8, 8=0-3-8

Max Horz 2=189(LC 11)
Max Uplift 2=-215(LC 12), 8=-215(LC 13)
Max Grav 2=890(LC 1), 8=890(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=937/236, 4-5=-751/224, 5-6=-751/224, 6-8=-937/236

BOT CHORD 2-10=-212/764, 8-10=-113/717

WEBS 5-10=-115/501, 6-10=-251/205, 4-10=-250/204

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl.,
GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 1-6-0 to 1-6-0, Zone1 1-6-0 to 10-0-0, Zone2 10-0-0 to 14-2-15,
Zone1 14-2-15 to 21-6-0 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown;
Lumber DOL=1.60 plate grip DOL=1.60

3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific
to the use of this truss component.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb)
2=215, 8=215.

This item has been
digitally signed and
sealed by Velez, Joaquin, PE
on the date indicated here.
Printed copies of this
document are not considered
signed and sealed and the
signature must be verified
on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 4,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DS-B-22](#) available from Truss Plate Institute (www.tpiinst.org)
and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association (www.sbcsccomponents.com)

Job 4768181	Truss T15	Truss Type Roof Special	Qty 1	Ply 1	HUMPHREY RES.	T38101203
----------------	--------------	----------------------------	----------	----------	---------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055, 8.830 s Jul 24 2025 MiTek Industries, Inc. Fri Aug 1 13:41:23 2025 Page 1 ID:7WKr8toudn35dxwKwBAfQtytHta-z2rxx?flYHgKHh4bodc1FO0we3j4KJIOlik_IDysCCg

-1-6-0 7-0-0 9-8-0 11-4-0 15-10-14 20-0-0
1-6-0 7-0-0 2-8-0 1-8-0 4-6-14 4-1-2

Scale = 1:42.9

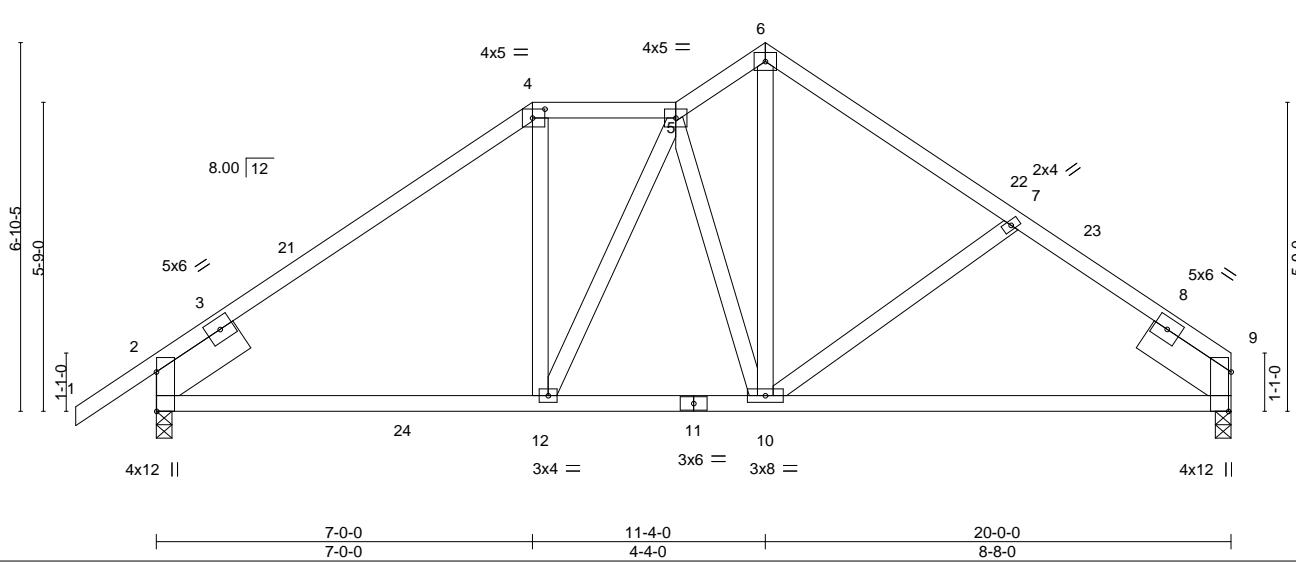


Plate Offsets (X,Y)-- [2:0-8-13,Edge], [4:0-2-12,0-2-0], [9:0-8-13,Edge]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.57	Vert(LL)	-0.09	10-15	>999	240	
TCDL 10.0	Lumber DOL	1.25	BC 0.67	Vert(CT)	-0.18	10-15	>999	180	
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.26	Horz(CT)	0.03	9	n/a	n/a	
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS					Weight: 122 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3
SLIDER Left 2x8 SP 2400F 2.0E 1-11-8, Right 2x8 SP 2400F 2.0E 1-11-8

BRACING-

TOP CHORD Structural wood sheathing directly applied or 4-8-4 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 9=0-3-8, 2=0-3-8

Max Horz 2=159(LC 11)
Max Uplift 9=171(LC 13), 2=-231(LC 12)
Max Grav 9=884(LC 20), 2=966(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-996/234, 4-5=-760/261, 5-6=-818/243, 6-7=-875/231, 7-9=-1016/243

BOT CHORD 2-12=-177/804, 10-12=-150/816, 9-10=-145/789

WEBS 4-12=-27/325, 5-10=-423/200, 6-10=-168/679

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 1-6-0 to 1-6-0, Zone1 1-6-0 to 7-0-0, Zone3 7-0-0 to 9-8-0, Zone1 9-8-0 to 11-4-0, Zone2 11-4-0 to 15-6-15, Zone1 15-6-15 to 20-0-0 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 9=171, 2=231.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 4,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from the Truss Plate Institute (www.tpiinst.org) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association (www.sbcsccomponents.com)

Job 4768181	Truss T16	Truss Type Roof Special	Qty 1	Ply 1	HUMPHREY RES.	T38101204
----------------	--------------	----------------------------	----------	----------	---------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055, 8.830 s Jul 24 2025 MiTek Industries, Inc. Fri Aug 1 13:41:24 2025 Page 1 ID:7WKR8toudn35dxwKwBAfQtytHta-REOJ8LgwJboBvrfoLK8GobZ6YT4b3nFXZP3YHgysCCf

-1-6-0 5-0-0 7-8-0 11-4-0 15-10-14 20-0-0
1-6-0 5-0-0 2-8-0 3-8-0 4-6-14 4-1-2

Scale = 1:42.2

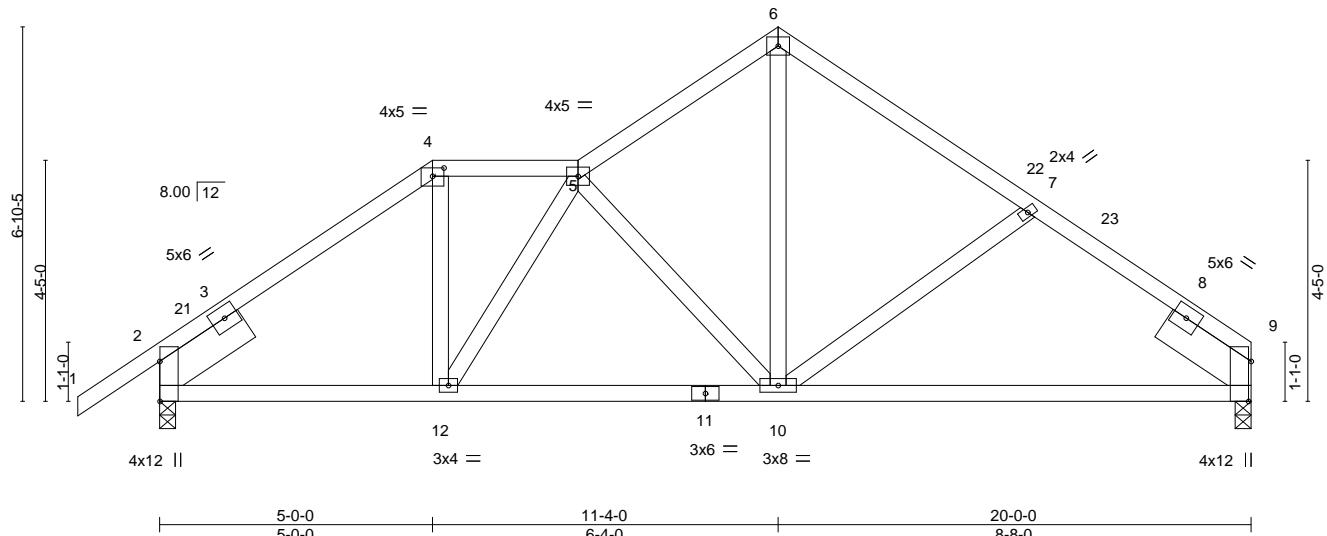


Plate Offsets (X,Y)-- [2:0-8-13,Edge], [4:0-2-8,0-1-13], [9:0-8-13,Edge]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.50	Vert(LL)	-0.08	10-15	>999	240	
TCDL 10.0	Lumber DOL	1.25	BC 0.59	Vert(CT)	-0.16	10-15	>999	180	
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.25	Horz(CT)	0.04	9	n/a	n/a	
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS					Weight: 118 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3
SLIDER Left 2x8 SP 2400F 2.0E 1-11-8, Right 2x8 SP 2400F 2.0E 1-11-8

BRACING-

TOP CHORD Structural wood sheathing directly applied or 4-11-0 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size)

9=0-3-8, 2=0-3-8
Max Horz 2=159(LC 11)
Max Uplift 9=171(LC 13), 2=-231(LC 12)
Max Grav 9=797(LC 1), 2=893(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=954/240, 4-5=728/243, 5-6=-795/234, 6-7=-818/234, 7-9=-962/251

BOT CHORD 2-12=-209/715, 10-12=-235/900, 9-10=-142/742

WEBS 4-12=-53/351, 5-12=-330/96, 5-10=-422/214, 6-10=-147/550

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl.,
GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 1-6-0 to 1-6-0, Zone1 1-6-0 to 5-0-0, Zone3 5-0-0 to 7-8-0, Zone1
7-8-0 to 11-4-0, Zone2 11-4-0 to 15-6-15, Zone1 15-6-15 to 20-0-0 zone; end vertical left and right exposed; C-C for members and
forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific
to the use of this truss component.

4) Provide adequate drainage to prevent water ponding.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb)
9=171, 2=231.

This item has been
digitally signed and
sealed by Velez, Joaquin, PE
on the date indicated here.
Printed copies of this
document are not considered
signed and sealed and the
signature must be verified
on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 4,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from the Truss Plate Institute (www.tpiinst.org)
and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com

Job 4768181	Truss T17	Truss Type Roof Special Girder	Qty 1	Ply 1	HUMPHREY RES.	T38101205
----------------	--------------	-----------------------------------	----------	----------	---------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055, 8.830 s Jul 24 2025 MiTek Industries, Inc. Fri Aug 1 13:41:25 2025 Page 1 ID:7WKR8toudn35dxwKwBAfQtyHta-wQyhMhgY4uw2X?E_v2fVlp6GqtT6o8Yho3p5q6ysCCe

-1-6-0 3-0-0 5-8-0 11-4-0 15-10-14 20-0-0
1-6-0 3-0-0 2-8-0 5-8-0 4-6-14 4-1-2

Scale = 1:45.2

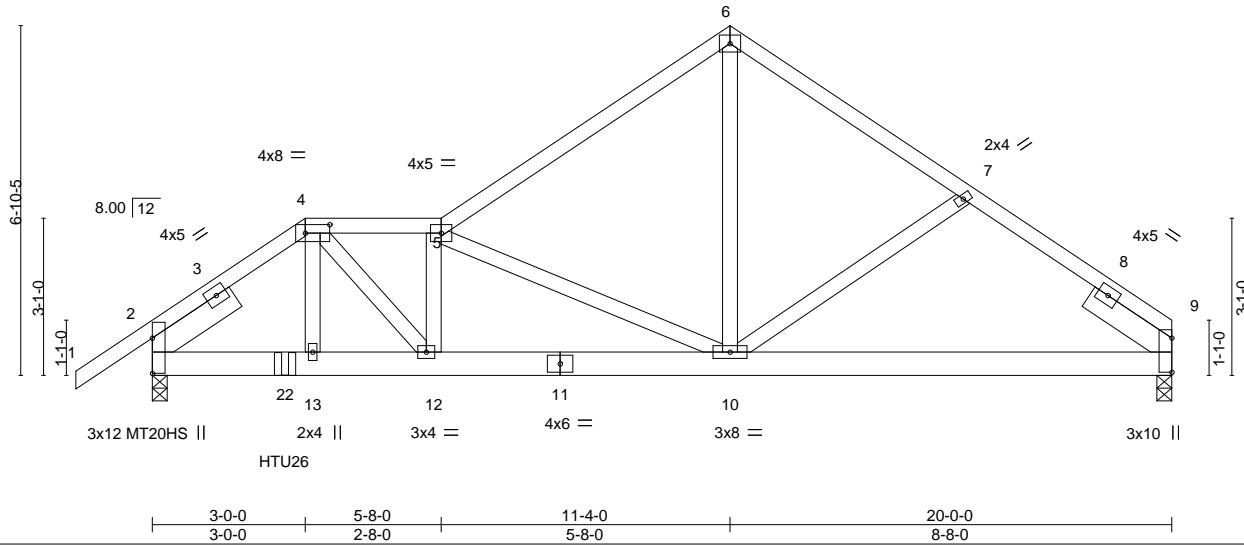


Plate Offsets (X,Y)-- [4:0-5-12,0-2-0], [9:Edge,0-0-0]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.53	Vert(LL)	-0.04	10-12	>999	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.44	Vert(CT)	-0.08	10-12	>999	MT20HS	187/143
BCLL 0.0 *	Rep Stress Incr	NO	WB 0.63	Horz(CT)	0.03	9	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS					Weight: 132 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x6 SP No.2
WEBS 2x4 SP No.3
SLIDER Left 2x6 SP No.2 1-11-8, Right 2x6 SP No.2 1-11-8

BRACING-

TOP CHORD Structural wood sheathing directly applied or 4-10-11 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 9=0-3-8, 2=0-3-8

Max Horz 2=159(LC 5)
Max Uplift 9=195(LC 9), 2=-394(LC 8)
Max Grav 9=838(LC 1), 2=1169(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=1224/422, 4-5=1402/443, 5-6=-909/256, 6-7=-891/271, 7-9=-1040/277
BOT CHORD 2-13=-380/954, 12-13=-387/963, 10-12=-467/1423, 9-10=-176/818
WEBS 4-12=-201/657, 5-12=-379/166, 5-10=-821/375, 6-10=-150/587

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are MT20 plates unless otherwise indicated.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 9=195, 2=394.
- 9) Use Simpson Strong-Tie HTU26 (20-10d Girder, 11-10dx1 1/2 Truss) or equivalent at 2-7-4 from the left end to connect truss(es) to front face of bottom chord.
- 10) Fill all nail holes where hanger is in contact with lumber.
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25
Uniform Loads (plf)
Vert: 1-4=-60, 4-5=-60, 5-6=-60, 6-9=-60, 14-18=-20
Concentrated Loads (lb)
Vert: 22=-317(F)

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 4,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from the Truss Plate Institute (www.tpiinst.org) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 4,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscscomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com

Job 4768181	Truss T18	Truss Type Common	Qty 2	Ply 1	HUMPHREY RES.	T38101206
----------------	--------------	----------------------	----------	----------	---------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Fri Aug 1 13:41:25 2025 Page 1
ID:7WKR8toudh35dxwKwBAfQtytHta-wQyhMhgY4uw2X?E_v2fLp6KktRLoFsho3p5q6ysCCe

4-1-2 8-8-0 13-2-14 17-4-0
4-1-2 4-6-14 4-6-14 4-1-2

Scale = 1:40.4

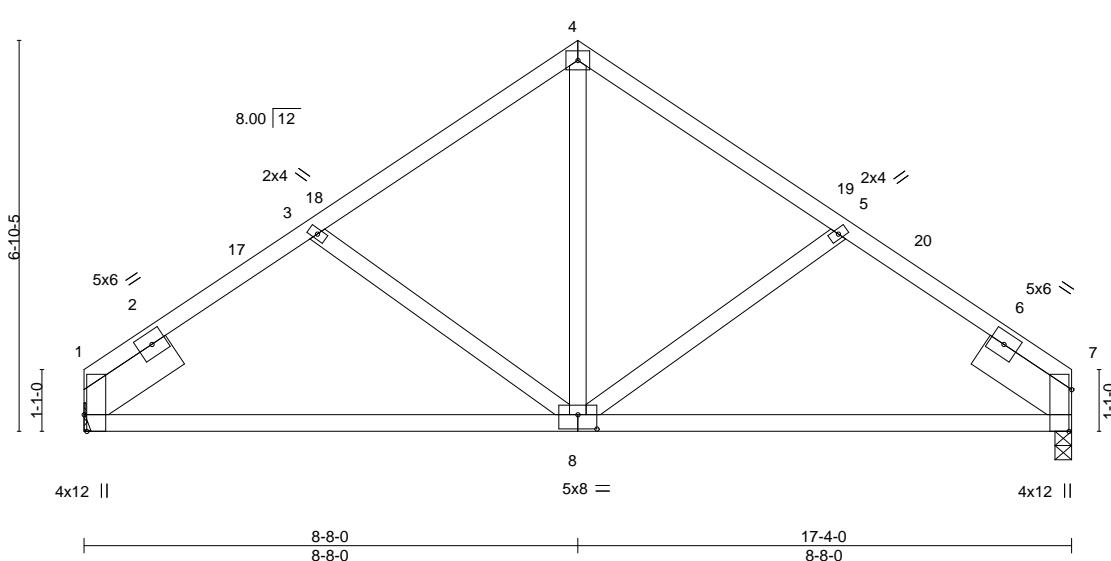


Plate Offsets (X,Y)-- [1:0-3-8,Edge], [7:0-8-13,Edge], [8:0-4-0,0-3-0]

LOADING (psf)	SPACING-	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	TC 0.28	Vert(LL)	-0.07	8-11	>999	240	
TCDL 10.0	Lumber DOL	BC 0.55	Vert(CT)	-0.13	8-11	>999	180	
BCLL 0.0 *	Rep Stress Incr	WB 0.16	Horz(CT)	0.03	7	n/a	n/a	
BCDL 10.0	Code FBC2023/TPI2014	Matrix-MS					Weight: 95 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3
SLIDER Left 2x8 SP 2400F 2.0E 1-11-8, Right 2x8 SP 2400F 2.0E 1-11-8

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

(size) 1=Mechanical, 7=0-3-8
Max Horz 1=-143(LC 10)
Max Uplift 1=-153(LC 12), 7=-153(LC 13)
Max Grav 1=693(LC 1), 7=693(LC 1)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-3=-809/227, 3-4=-657/207, 4-5=-657/207, 5-7=-809/227

BOT CHORD 1-8=-206/657, 7-8=-125/624

WEBS 4-8=-94/418

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl.,
GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 0-0-0 to 3-0-0, Zone1 3-0-0 to 8-8-0, Zone2 8-8-0 to 12-10-15,
Zone1 12-10-15 to 17-4-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip
DOL=1.60

3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific
to the use of this truss component.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb)
1=153, 7=153.

This item has been
digitally signed and
sealed by Velez, Joaquin, PE
on the date indicated here.
Printed copies of this
document are not considered
signed and sealed and the
signature must be verified
on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 4,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpiinst.org)
and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-Us.com

Job 4768181	Truss T19	Truss Type Common	Qty 3	Ply 1	HUMPHREY RES.	T38101207
----------------	--------------	----------------------	----------	----------	---------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Fri Aug 1 13:41:26 2025 Page 1
ID:7WKR8toudn35dxwKwBAfQtytHta-OdW3Z1hArC2v89pATIAkt0eTTHmcXi7q1jYeMYysCCd

-1-6-0 4-1-2 8-8-0 13-2-14 17-4-0
1-6-0 4-1-2 4-6-14 4-6-14 4-1-2

Scale = 1:40.4

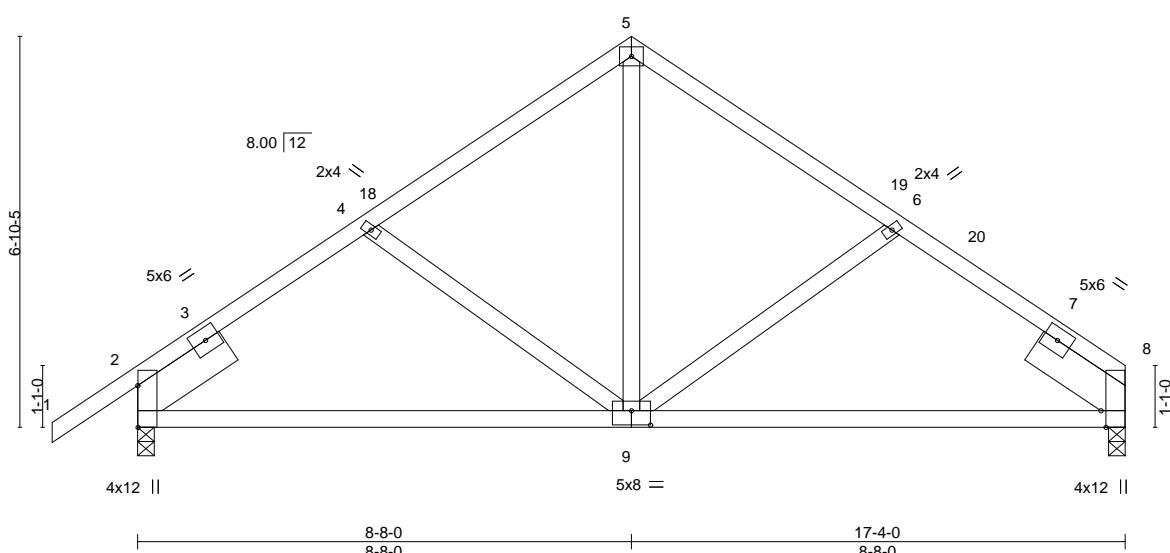


Plate Offsets (X,Y)-- [2:0-8-13,Edge], [8:0-3-8,Edge], [9:0-4-0,0-3-0]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.34	Vert(LL)	-0.07	9-12	>999	240	
TCDL 10.0	Lumber DOL	1.25	BC 0.55	Vert(CT)	-0.14	9-12	>999	180	
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.16	Horz(CT)	0.02	8	n/a	n/a	
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS					Weight: 98 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3
SLIDER Left 2x8 SP 2400F 2.0E 1-11-8, Right 2x8 SP 2400F 2.0E 1-11-8

BRACING-

TOP CHORD Structural wood sheathing directly applied or 5-10-10 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 8=0-3-8, 2=0-3-8

Max Horz 2=159(LC 9)
Max Uplift 8=153(LC 13), 2=-191(LC 12)
Max Grav 8=689(LC 1), 2=787(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=796/209, 4-5=649/193, 5-6=651/206, 6-8=802/226
BOT CHORD 2-9=202/642, 8-9=-117/620
WEBS 5-9=-92/415

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCPi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 1-6-0 to 1-6-0, Zone1 1-6-0 to 8-8-0, Zone2 8-8-0 to 12-10-15, Zone1 12-10-15 to 17-4-0 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8=153, 2=191.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 4,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com

Job 4768181	Truss T20	Truss Type COMMON GIRDER	Qty 1	Ply 3	HUMPHREY RES.	T38101208
----------------	--------------	-----------------------------	----------	----------	---------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055, 8.830 s Jul 24 2025 MiTek Industries, Inc. Fri Aug 1 13:41:27 2025 Page 1 ID:7WKr8toudn35dxwKwBAfQtytHta-sp4RmNiocWAmMjON1ThzQEsh8NG_u_GNICu?ysCCc

4-0-0 8-8-0 13-4-0 17-4-0
4-0-0 4-8-0 4-8-0 4-0-0

Scale = 1:45.3

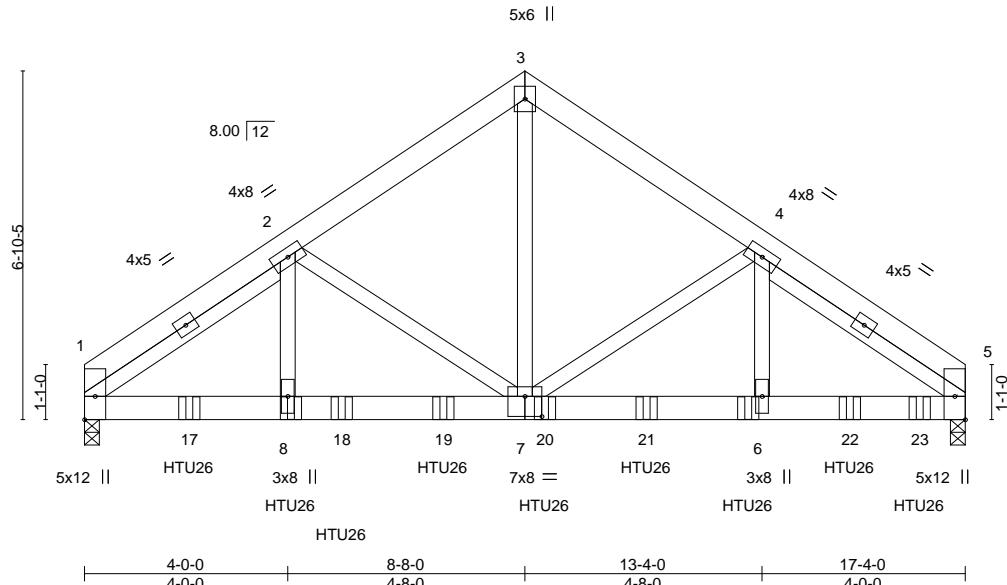


Plate Offsets (X,Y)-- [1:Edge,0-2-8], [5:Edge,0-2-8], [7:0-4-0,0-4-12]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	I/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.36	Vert(LL)	-0.07	7-8 >999	240	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.39	Vert(CT)	-0.13	7-8 >999	180		
BCLL 0.0 *	Rep Stress Incr	NO	WB 0.89	Horz(CT)	0.03	5 n/a	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS					Weight: 411 lb	FT = 20%

LUMBER-

TOP CHORD 2x6 SP No.2
BOT CHORD 2x6 SP 2400F 2.0E or 2x6 SP M 26
WEBS 2x4 SP No.3
SLIDER Left 2x4 SP No.3 4-8-1, Right 2x4 SP No.3 4-8-1

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 1=0-3-8, 5=0-3-8

Max Horz 1=143(LC 28)
Max Uplift 1=-1496(LC 8), 5=-1755(LC 9)
Max Grav 1=6857(LC 2), 5=7958(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=6550/1454, 2-3=6586/1508, 3-4=6598/1511, 4-5=6734/1507
BOT CHORD 1-8=1664/7352, 7-8=1652/7289, 6-7=1556/7229, 5-6=1568/7287
WEBS 3-7=1505/6782, 4-7=2137/589, 4-6=607/2909, 2-7=-2210/591, 2-8=-645/3152

NOTES-

- 3-ply truss to be connected together with 10d (0.131"x3") nails as follows:
Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.
Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-4-0 oc.
Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.
- All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCPi=0.18; MWFRS (envelope) gable end zone; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=1496, 5=1755.
- Use Simpson Strong-Tie HTU26 (20-10d Girder, 11-10dx1 1/2 Truss) or equivalent spaced at 2-0-0 oc max. starting at 2-0-12 from the left end to 16-5-4 to connect truss(es) to front face of bottom chord.
- Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S) Standard

- Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 4,2025

Continued on page 2

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from the Truss Plate Institute (www.tpiinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

Job 4768181	Truss T20	Truss Type COMMON GIRDER	Qty 1	Ply 3	HUMPHREY RES.	T38101208
----------------	--------------	-----------------------------	----------	-----------------	---------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055, 8.830 s Jul 24 2025 MiTek Industries, Inc. Fri Aug 1 13:41:27 2025 Page 2
ID:7WKr8toudn35dxwKwBAfQtytHta-sp4RmNiocWAmMJO1ThzQEsh8NG_u_GNICu?ysCCc

LOAD CASE(S) Standard

Uniform Loads (plf)

Vert: 1-3=-60, 3-5=-60, 9-13=-20

Concentrated Loads (lb)

Vert: 6=-1340(F) 8=-1241(F) 17=-1241(F) 18=-1314(F) 19=-1340(F) 20=-1340(F) 21=-1340(F) 22=-1340(F) 23=-1341(F)

This item has been
digitally signed and
sealed by Velez, Joaquin, PE
on the date indicated here.
Printed copies of this
document are not considered
signed and sealed and the
signature must be verified
on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

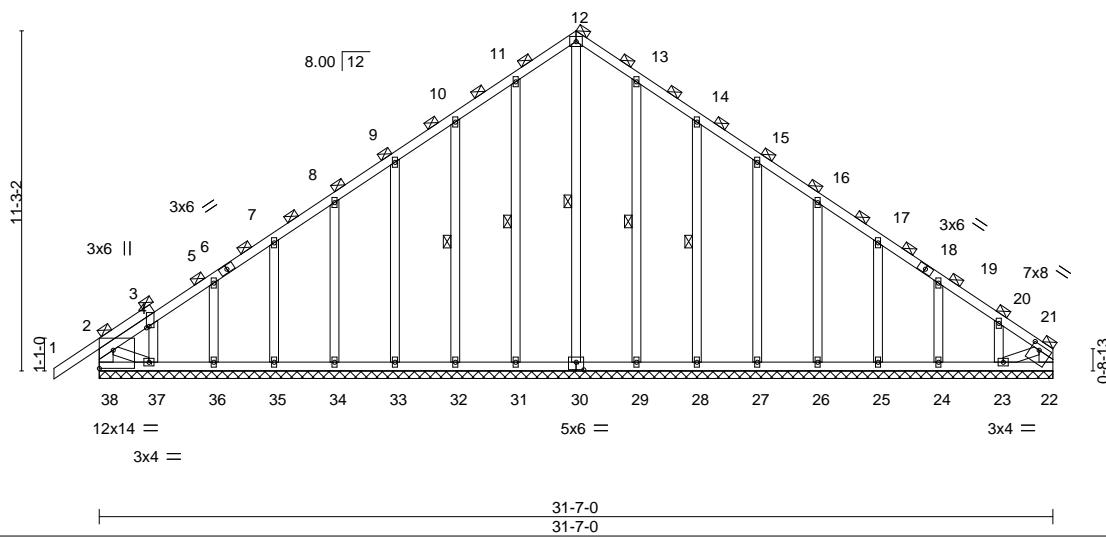
August 4,2025

⚠ WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TP11 Quality Criteria and DSB-22](#) available from Truss Plate Institute (www.tpinst.org) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association (www.sbcscocomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com

Job 4768181	Truss T21G	Truss Type Common Supported Gable	Qty 1	Ply 1	HUMPHREY RES.	T38101210
----------------	---------------	--------------------------------------	----------	----------	---------------	-----------


Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Fri Aug 1 13:41:28 2025 Page 1
ID:7WKR8toudn35dxwKwBAfQtyHta-K?ep_jjQNpldOSzZaACCyRkr84ax?d7U11IRRysCCb

1-6-0 15-9-8 31-7-0
1-6-0 15-9-8 15-9-8

4x5 =

Scale = 1:76.3

31-7-0
31-7-0

Plate Offsets (X,Y)-- [3:0-0-9,0-1-0], [21:0-3-4,0-2-0], [30:0-3-0,0-3-0], [38:Edge,0-7-4]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.20	Vert(LL)	-0.00	1	n/r	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.05	Vert(CT)	-0.01	1	n/r		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.12	Horz(CT)	0.01	22	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-S					Weight: 243 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x6 SP No.2 *Except*
2-37,21-23: 2x4 SP No.3
OTHERS 2x4 SP No.3

BRACING-

TOP CHORD 2-0-0 oc purlins (6-0-0 max.), except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing, Except:
6-0-0 oc bracing: 37-38.

WEBS 1 Row at midpt 12-30, 11-31, 10-32, 13-29, 14-28

REACTIONS.

All bearings 31-7-0.
(lb) - Max Horz 38-293(LC 9)
Max Uplift All uplift 100 lb or less at joint(s) 22, 31, 32, 33, 34, 35, 36, 29, 28, 27, 26, 25, 24 except
38-128(LC 8), 37-157(LC 12), 23-151(LC 13)
Max Grav All reactions 250 lb or less at joint(s) 22, 30, 31, 32, 33, 34, 35, 36, 37, 29, 28, 27, 26, 25, 24,
23 except 38-279(LC 20)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-38-261/126

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 8) Gable studs spaced at 2-0-0 oc.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 22, 31, 32, 33, 34, 35, 36, 29, 28, 27, 26, 25, 24 except (jt=lb) 38=128, 37=157, 23=151.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

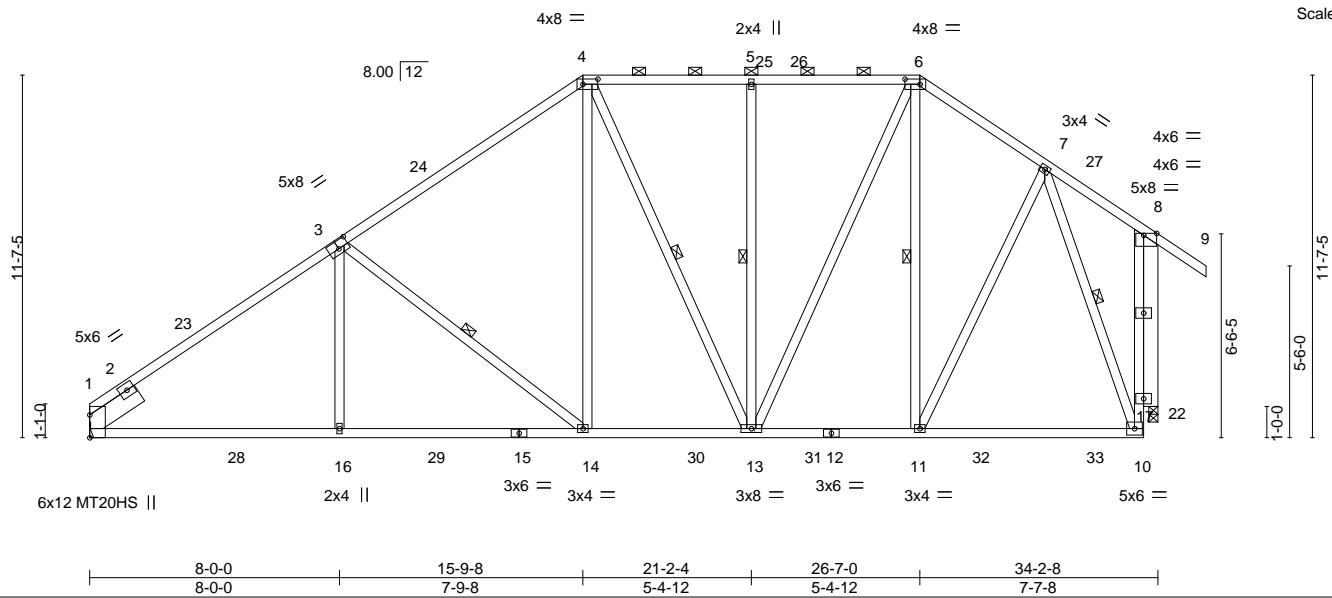
August 4,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from the Truss Plate Institute (www.tpiinst.org) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com

Job 4768181	Truss T22	Truss Type Piggyback Base	Qty 6	Ply 1	HUMPHREY RES.	T38101211
----------------	--------------	------------------------------	----------	----------	---------------	-----------


Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Fri Aug 1 13:41:29 2025 Page 1

ID:7WKr8toudn35dxwKwBaQtytHta-oCCCB3k387QT?cYI8tjRVfGwVUjEkhJhnltzysCCa

8-0-0 15-9-8 21-2-4 26-7-0 30-7-0 34-2-8 35-9-0
8-0-0 7-9-8 5-4-12 5-4-12 4-0-0 3-7-8 1-6-8

Scale = 1:73.8

8-0-0 15-9-8 21-2-4 26-7-0 34-2-8
8-0-0 7-9-8 5-4-12 5-4-12 7-7-8

Plate Offsets (X,Y)-- [3:0-4-0,0-0-3-0], [4:0-5-12,0-2-0], [6:0-5-12,0-2-0], [8:0-5-0,0-0-12]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.61	Vert(LL)	-0.20	14-16	>999	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.88	Vert(CT)	-0.36	14-16	>999	MT20HS	187/143
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.65	Horz(CT)	-0.07	1	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS					Weight: 275 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP 2700F 2.2E or 2x4 SP 2850F 2.0E or 2x4 SP M 31 *Except*
4-6,6-9: 2x4 SP No.2
BOT CHORD 2x4 SP No.2 *Except*
1-15: 2x4 SP No.1
WEBS 2x4 SP No.3 *Except*
4-13,6-13,8-10: 2x4 SP No.2
OTHERS 2x6 SP No.2
SLIDER Left 2x8 SP 2400F 2.0E 1-11-8

REACTIONS.

(size) 1=Mechanical, 22=0-3-8
Max Horz 1=265(LC 12)
Max Uplift 1=-331(LC 12), 22=-330(LC 13)
Max Grav 1=1567(LC 19), 22=1652(LC 2)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
TOP CHORD 1-3=-2087/454, 3-4=-1556/409, 4-5=-1128/360, 5-6=-1128/360, 6-7=-1064/306,
10-17=-213/1358, 8-17=-213/1358
BOT CHORD 1-16=-526/1761, 14-16=-526/1766, 13-14=-275/1219, 11-13=-128/836, 10-11=-91/554
WEBS 3-16=0/379, 3-14=-696/315, 4-14=-146/719, 4-13=-316/135, 5-13=-361/195,
6-13=-236/709, 6-11=-353/172, 7-11=-143/666, 7-10=-1287/246, 8-22=-1657/331

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 0-0-0 to 3-5-1, Zone1 3-5-1 to 15-9-8, Zone2 15-9-8 to 20-7-9, Zone1 20-7-9 to 26-7-0, Zone2 26-7-0 to 31-5-1, Zone1 31-5-1 to 35-9-0 zone; end vertical right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are MT20 plates unless otherwise indicated.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Bearing at joint(s) 22 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb)
1=331, 22=330.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 4,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from the Truss Plate Institute (www.tpiinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com

Job 4768181	Truss T22G	Truss Type GABLE	Qty 1	Ply 1	HUMPHREY RES.	T38101212
----------------	---------------	---------------------	----------	----------	---------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Fri Aug 1 13:41:30 2025 Page 1

ID:7WKr8toudn35dxwKwBafQtyHta-GOMaPPkhvRYKdm6xibEg2sp5ru3wTPuQyKWsVJysCCZ

8-0-0 15-9-8 21-2-4 26-0-11 30-0-11 34-2-8 35-9-0
8-0-0 7-9-8 5-4-12 4-10-7 4-0-0 4-1-13 1-6-8

Scale = 1:74.0

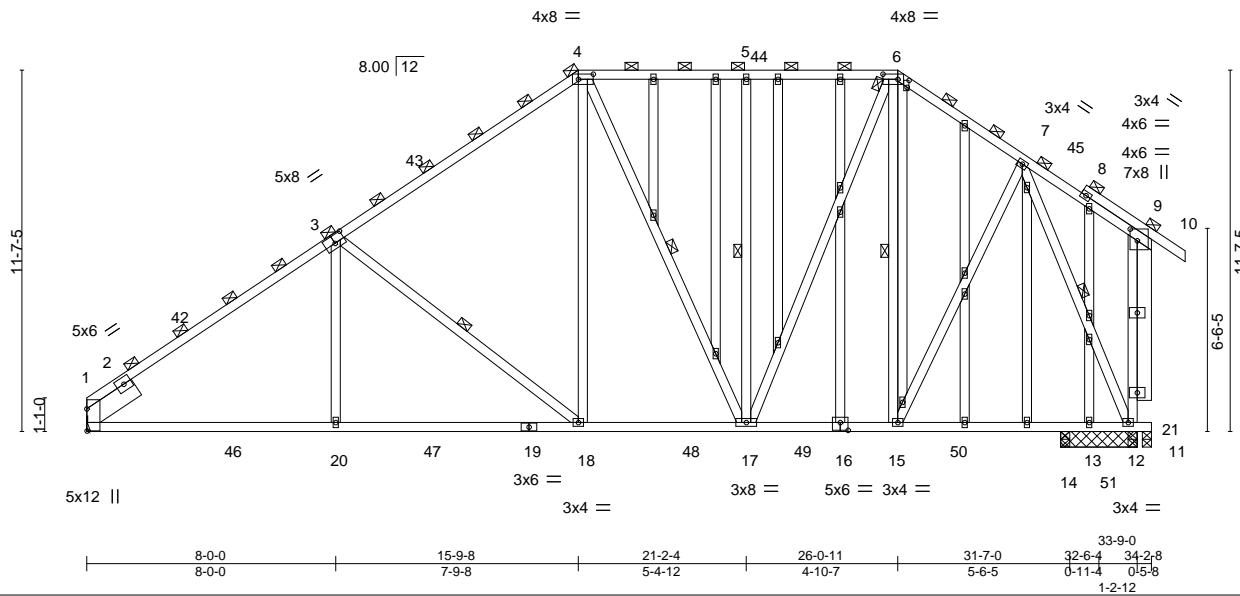


Plate Offsets (X,Y)-- [1:0-8-8,0-0-1], [3:0-4-0,0-3-0], [4:0-5-12,0-2-0], [6:0-2-11,0-0-12], [6:0-5-12,0-2-0], [9:0-4-8,0-2-12], [16:0-3-0,0-3-0]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.64	Vert(LL)	-0.19	18-20	>999	240	
TCDL 10.0	Lumber DOL	1.25	BC 0.85	Vert(CT)	-0.35	18-20	>999	180	
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.62	Horz(CT)	-0.06	1	n/a	n/a	
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS					Weight: 379 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 *Except*
3-4,1-3: 2x4 SP 2700F 2.2E or 2x4 SP 2850F 2.0E or 2x4 SP M 31
BOT CHORD 2x4 SP No.2 *Except*
1-19: 2x4 SP No.1
WEBS 2x4 SP No.3 *Except*
4-17,6-17,9-12: 2x4 SP No.2
OTHERS 2x4 SP No.3 *Except*
9-21: 2x6 SP No.2
SLIDER Left 2x8 SP 2400F 2.0E 1-11-8

REACTIONS.

All bearings 2-5-8 except (jt=length) 1=Mechanical, 11=0-3-8, 14=0-3-8.
(lb) - Max Horz 1=361(LC 11)
Max Uplift All uplift 100 lb or less at joint(s) 11 except 1=-339(LC 12), 12=-340(LC 13), 13=-230(LC 18)
Max Grav All reactions 250 lb or less at joint(s) 11 except 1=1530(LC 19), 12=1542(LC 2), 12=1407(LC 1), 14=433(LC 18)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
TOP CHORD 1-3=-2028/467, 3-4=-1493/423, 4-5=-1058/375, 5-6=-1058/375, 6-7=-1000/325, 9-12=-268/157
BOT CHORD 1-20=-437/1746, 18-20=-436/1752, 17-18=-314/1199, 15-17=-199/779, 14-15=-163/518, 13-14=-163/518, 12-13=-163/518
WEBS 3-20=0/382, 3-18=-702/314, 4-18=-145/719, 4-17=-356/127, 5-17=-343/186, 6-17=-223/735, 6-15=-366/183, 7-15=-167/621, 7-12=-1353/274

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 0-0-0 to 3-5-1, Zone1 3-5-1 to 15-9-8, Zone2 15-9-8 to 20-7-9, Zone1 20-7-9 to 26-0-11, Zone2 26-0-11 to 30-10-12, Zone1 30-10-12 to 35-3-8 zone; end vertical right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) Provide adequate drainage to prevent water ponding.
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

Continued on page 2

WARNING: Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from the Truss Plate Institute (www.tpiinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 4,2025

Job 4768181	Truss T22G	Truss Type GABLE	Qty 1	Ply 1	HUMPHREY RES.	T38101212
----------------	---------------	---------------------	----------	----------	---------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Fri Aug 1 13:41:30 2025 Page 2
ID:7WKR8toudn35dxwKwBAfQtytHta-GOmaPPkhvRYKdm6xibEg2sp5ru3wTPuQyKWsVJysCCZ

NOTES-

- 10) Refer to girder(s) for truss to truss connections.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11 except (jt=lb) 1=339, 12=340, 13=230.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

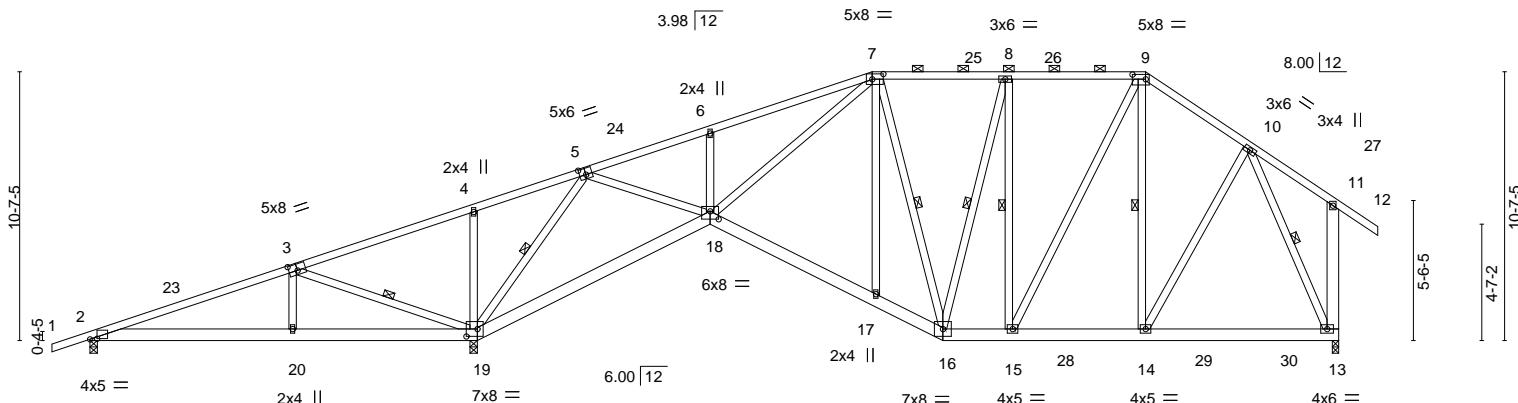
This item has been
digitally signed and
sealed by Velez, Joaquin, PE
on the date indicated here.
Printed copies of this
document are not considered
signed and sealed and the
signature must be verified
on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 4,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TP1 Quality Criteria and DSB-22](#) available from Truss Plate Institute (www.tpinst.org) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association (www.sbcscocomponents.com)


MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com

Job 4768181	Truss T23	Truss Type Piggyback Base	Qty 6	Ply 1	HUMPHREY RES.	T38101213
----------------	--------------	------------------------------	----------	----------	---------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055, 8.830 s Jul 24 2025 MiTek Industries, Inc. Fri Aug 1 13:41:31 2025 Page 1 ID:7Wkr8toudn35dxwKwBAfQtyHta-kaKyclJgkhBFwh8GImva4LCMIX5Cq7ZA_GP1mysCCY

1-6-0 8-0-0 15-3-8 19-7-0 24-5-12 30-10-8 36-3-4 41-8-0 45-8-0 49-3-8 50-10-0
1-6-0 8-0-0 7-3-8 4-3-8 4-10-12 6-4-12 5-4-12 5-4-12 4-0-0 3-7-8 1-6-8

Scale = 1:90.9

8-0-0 15-1-12 15-3-8 24-5-12 30-10-8 33-8-0 36-3-4 41-8-0 49-3-8
8-0-0 7-1-12 0-1-12 9-2-4 6-4-12 2-9-8 2-7-4 5-4-12 7-7-8

Plate Offsets (X,Y)-- [2:0-3.5,0-0-5], [3:0-4-0,0-3-0], [5:0-3-0,0-3-0], [7:0-5-4,0-2-8], [9:0-6-4,0-2-4], [18:0-4-0,0-3-12], [19:0-5-4,0-3-8]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	I/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.84	Vert(LL)	-0.10	18-19	>999	240	
TCDL 10.0	Lumber DOL	1.25	BC 0.34	Vert(CT)	-0.21	18-19	>999	180	
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.69	Horz(CT)	0.10	13	n/a	n/a	
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS					Weight: 385 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x6 SP No.2
WEBS 2x4 SP No.3 *Except*
11-13: 2x6 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 4-5-2 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 7-9.
BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.
WEBS 1 Row at midpt 3-19, 5-19, 7-16, 8-16, 8-15, 9-14, 10-13

REACTIONS. (size) 2=0-3-8, 19=0-3-8, 13=0-3-0

Max Horz 2=387(LC 11)
Max Uplift 2=-206(LC 8), 19=-966(LC 8), 13=-303(LC 13)
Max Grav 2=235(LC 25), 19=2848(LC 2), 13=1372(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=168/543, 3-4=547/1626, 4-5=494/1609, 5-6=1321/292, 6-7=1344/379, 7-8=847/374, 8-9=871/392, 9-10=904/370, 11-13=-266/182
BOT CHORD 2-20=563/79, 19-20=-574/77, 18-19=-533/353, 17-18=-273/1091, 16-17=-266/1078, 15-16=-216/871, 14-15=-144/702, 13-14=-144/477
WEBS 3-20=-185/358, 3-19=-1095/615, 4-19=-357/204, 5-19=-2021/532, 5-18=-400/1725, 6-18=-385/223, 7-18=-113/392, 7-16=-335/103, 8-15=-308/160, 9-15=-156/417, 10-14=-116/474, 10-13=-1136/234

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101psf; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 -1-6-0 to 3-5-2, Zone1 3-5-2 to 30-10-8, Zone2 30-10-8 to 37-10-3, Zone1 37-10-3 to 41-8-0, Zone2 41-8-0 to 48-7-11, Zone1 48-7-11 to 50-10-0 zone; end vertical right exposed; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=206, 19=966, 13=303.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

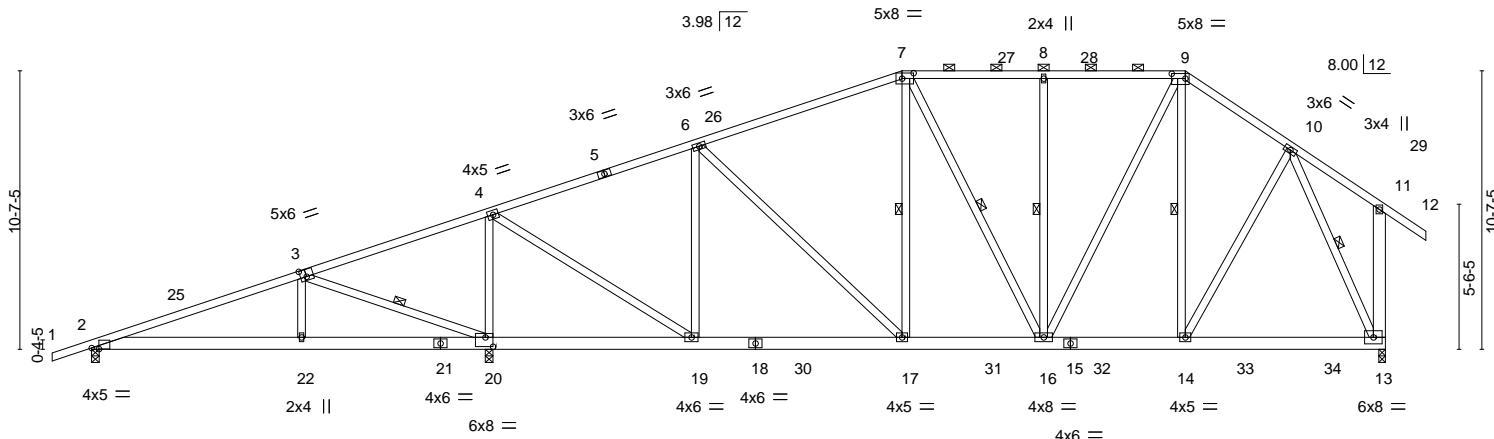
Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 4,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from the Truss Plate Institute (www.tpiinst.org) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association (www.sbcsccomponents.com)

Job 4768181	Truss T25	Truss Type Piggyback Base	Qty 1	Ply 1	HUMPHREY RES.	T38101215
----------------	--------------	------------------------------	----------	----------	---------------	-----------


Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Fri Aug 1 13:41:32 2025 Page 1

ID:7WKR8toudh35dxwKwBAfQytIHa-CmtKq4mxR2p2t4GKp0H87HuPxis2xD3jPe?zaCysCCX

1-6-0 8-0-0 15-1-12 23-0-0 30-10-8 36-3-4 41-8-0 45-8-0 49-3-8 50-10-0
1-6-0 8-0-0 7-1-12 7-10-4 7-10-8 5-4-12 5-4-12 4-0-0 3-7-8 1-6-8

Scale = 1:87.8

8-0-0 15-1-12 23-0-0 30-10-8 36-3-4 41-8-0 45-3-8
8-0-0 7-1-12 7-10-4 7-10-8 5-4-12 5-4-12 7-7-8

Plate Offsets (X,Y)-- [2:0-3-5,0-0-7], [3:0-2-12,0-3-4], [7:0-5-4,0-2-8], [9:0-6-4,0-2-4], [20:0-3-8,0-4-4]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.73	Vert(LL)	0.09	22-24	>999	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.42	Vert(CT)	-0.14	17-19	>999		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.90	Horz(CT)	0.03	13	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS					Weight: 372 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x6 SP No.2
WEBS 2x4 SP No.3 *Except*
11-13: 2x6 SP No.2

REACTIONS.

(size) 2=0-3-8, 20=0-3-8, 13=0-3-0
Max Horz 2=387(LC 11)
Max Uplift 2=-271(LC 8), 20=-865(LC 8), 13=-322(LC 13)
Max Grav 2=501(LC 25), 20=2488(LC 2), 13=1553(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=483/314, 3-4=328/684, 4-6=-1056/270, 6-7=-1259/374, 7-8=-1098/402,
8-9=-1098/402, 9-10=-1062/379, 11-13=-272/185
BOT CHORD 2-22=-356/403, 20-22=-349/391, 19-20=-597/364, 17-19=-220/947, 16-17=-261/1130,
14-16=-170/833, 13-14=-161/564
WEBS 3-22=-179/343, 3-20=-1043/587, 4-20=-1858/637, 4-19=-475/1831, 6-19=-709/316,
6-17=-67/292, 8-16=-367/185, 9-16=-188/596, 9-14=-258/163, 10-14=-135/575,
10-13=-1332/271

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl.,
GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 -1-6-0 to 3-5-2, Zone1 3-5-2 to 30-10-8, Zone2 30-10-8 to 37-10-3,
Zone1 37-10-3 to 41-8-0, Zone2 41-8-0 to 48-7-11, Zone1 48-7-11 to 50-10-0 zone; end vertical right exposed; porch left
exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific
to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb)
2=271, 20=865, 13=322.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

This item has been
digitally signed and
sealed by Velez, Joaquin, PE
on the date indicated here.
Printed copies of this
document are not considered
signed and sealed and the
signature must be verified
on any electronic copies.

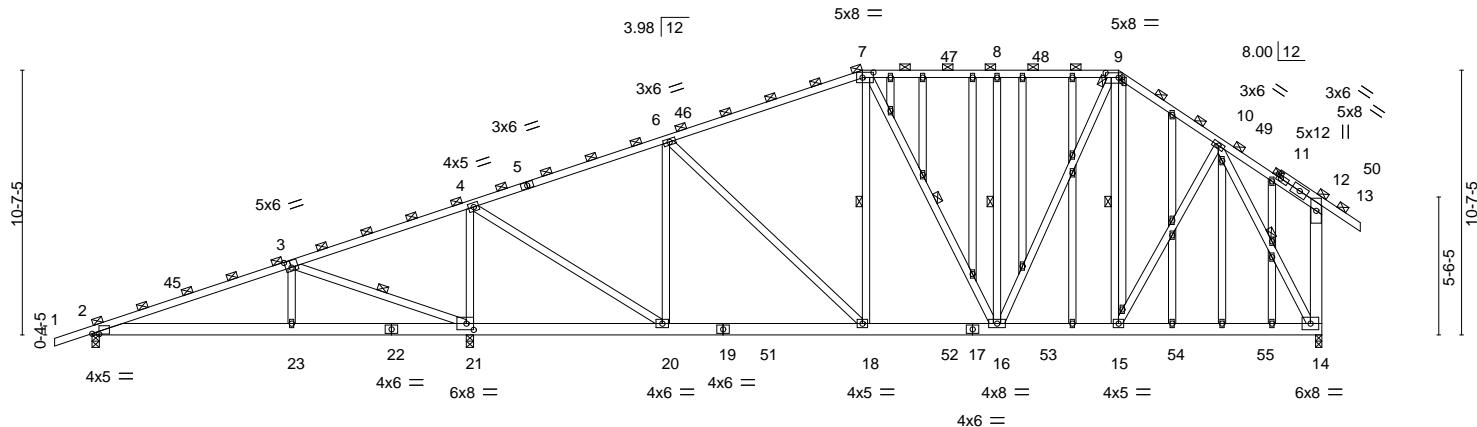
Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 4,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DS-B22** available from the Truss Plate Institute (www.tpiinst.org)
and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

Job 4768181	Truss T25G	Truss Type GABLE	Qty 1	Ply 1	HUMPHREY RES.	T38101216
----------------	---------------	---------------------	----------	----------	---------------	-----------


Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

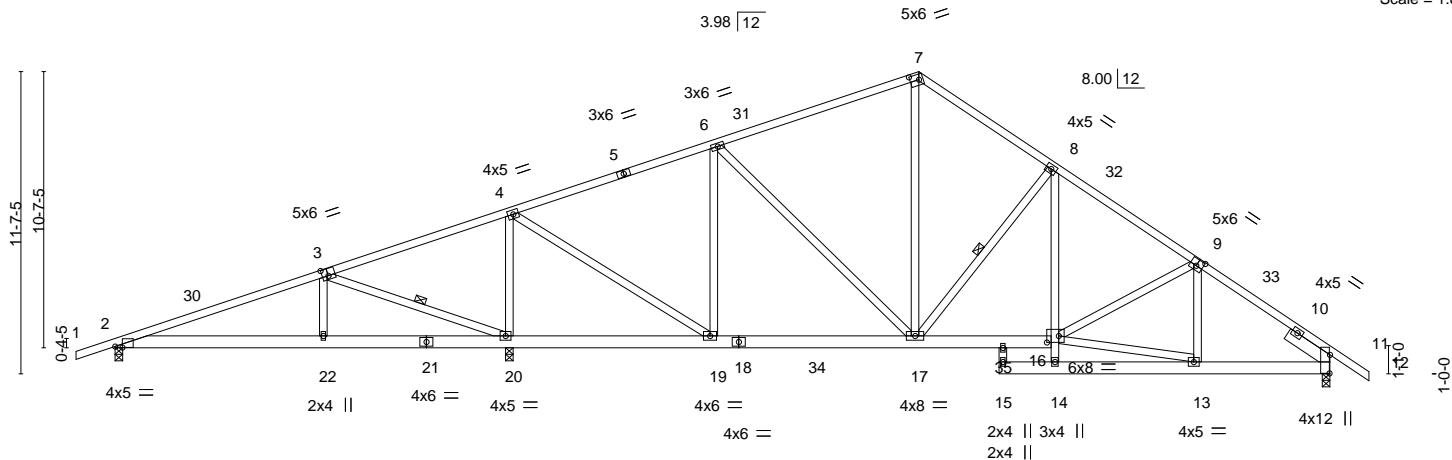
8.830 s Jul 24 2025 MiTek Industries, Inc. Fri Aug 1 13:41:33 2025 Page 1

ID:7WKr8toudn35dxwKwBafQtyHta-hzr1QnZBMxvUerWNjoNfVRa95BuggHselIW6eysCCW

1-6-0 8-0-0 15-1-12 23-0-0 30-10-8 36-3-4 41-1-11 45-1-11 49-3-8 50-10-0
1-6-0 8-0-0 7-1-12 7-10-4 7-10-8 5-4-12 4-10-7 4-0-0 4-1-13 1-6-8

Scale = 1:92.3

Job 4768181	Truss T26	Truss Type Roof Special	Qty 4	Ply 1	HUMPHREY RES.	T38101217
----------------	--------------	----------------------------	----------	----------	---------------	-----------


Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Fri Aug 1 13:41:34 2025 Page 1

ID:7WKr8toudn35dxwKwBAfQytHta-99?5EmnByf3m6OQjxRJcCizIEV79P8d0tyU3e5ysCCV

1-6-0 8-0-0 15-1-12 23-0-0 30-10-8 35-11-8 41-7-0 46-8-0 48-2-0
1-6-0 8-0-0 7-1-12 7-10-4 7-10-8 5-1-0 5-7-8 5-1-0 1-6-0

Scale = 1:88.5

8-0-0 15-1-12 23-0-0 30-10-8 33-11-8 35-11-8 41-7-0 46-8-0
8-0-0 7-1-12 7-10-4 7-10-8 3-1-0 2-0-0 5-7-8 5-1-0

Plate Offsets (X,Y)-- [2:0-3-5,0-0-7], [3:0-2-12,0-0-3-4], [7:0-4-1,0-2-8], [9:0-3-0,0-0-3-0], [11:0-8-9,0-0-4], [16:0-5-8,0-3-0]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.74	Vert(LL)	-0.10	15	>999	240	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.70	Vert(CT)	-0.17	15	>999	180		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.89	Horz(CT)	0.05	11	n/a	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MS						Weight: 322 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x6 SP No.2 *Except*
8-14: 2x4 SP No.3
WEBS 2x4 SP No.3
SLIDER Right 2x6 SP No.2 1-11-8

BRACING-

TOP CHORD Structural wood sheathing directly applied or 3-9-10 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing, Except:
6-0-0 oc bracing: 19-20.
10-0-0 oc bracing: 14-16
WEBS 1 Row at midpt 3-20, 8-17

REACTIONS. (size) 2=0-3-8, 11=0-3-8, 20=0-3-8

Max Horz 2=322(LC 11)
Max Uplift 2=-272(LC 8), 11=-317(LC 13), 20=-777(LC 8)
Max Grav 2=482(LC 25), 11=1478(LC 20), 20=2482(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-424/276, 3-4=-297/856, 4-6=-947/259, 6-7=-1142/336, 7-8=-1258/341,
8-9=-1817/375, 9-11=-1767/372
BOT CHORD 2-22=-371/347, 20-22=-364/335, 19-20=-761/369, 17-19=-89/807, 16-17=-100/1401,
14-16=0/288, 8-16=-62/606, 11-13=-195/1386
WEBS 3-22=-184/343, 3-20=-1044/588, 4-20=-1849/551, 4-19=-370/1820, 6-19=-713/258,
6-17=-54/299, 7-17=-170/717, 8-17=-834/286, 13-16=-170/1256, 9-13=-274/80

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 -1-6-0 to 3-2-0, Zone1 3-2-0 to 30-10-8, Zone2 30-10-8 to 37-5-11, Zone1 37-5-11 to 48-2-0 zone; end vertical right exposed; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb). 2=272, 11=317, 20=777.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

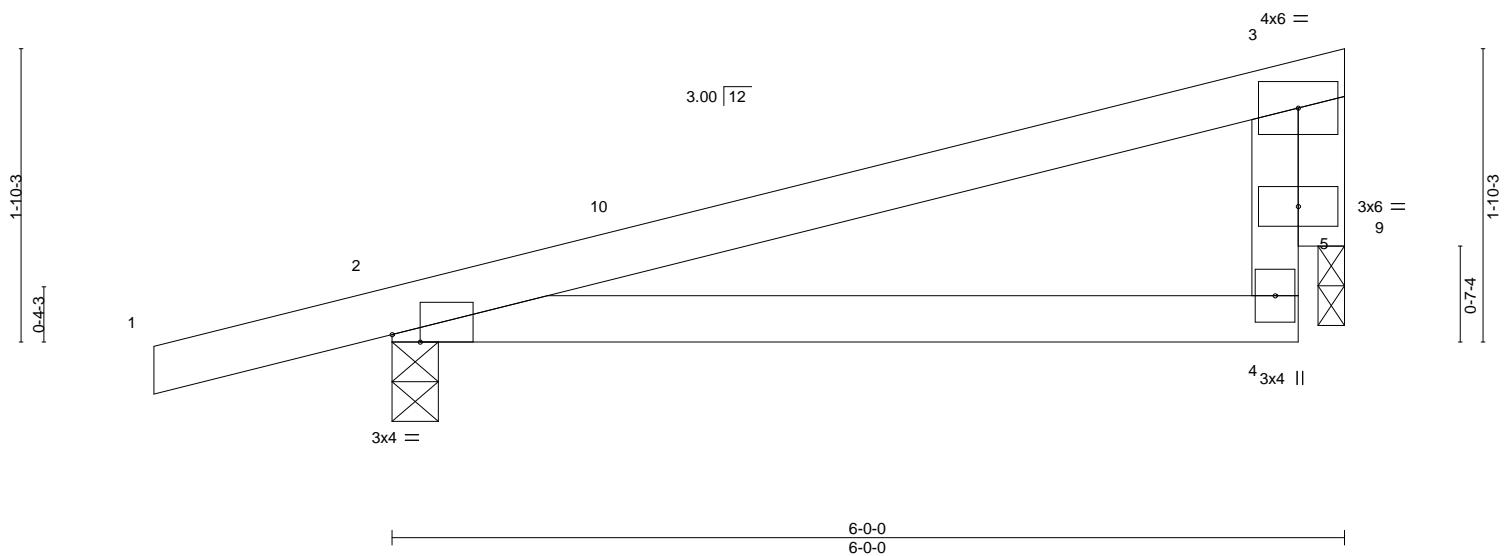
August 4,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from the Truss Plate Institute (www.tpiinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com

Job 4768181	Truss T27	Truss Type MONO TRUSS	Qty 15	Ply 1	HUMPHREY RES.	T38101218
----------------	--------------	--------------------------	-----------	----------	---------------	-----------


Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Fri Aug 1 13:41:34 2025 Page 1

ID:7WKR8toudh35dxwKwBAfQtyHta-99?5EmnByf3m6OQjxRJcCizqjVaLPHE0tyU3e5ysCCV

-1-6-0 6-0-0 6-0-0

Scale = 1:14.5

Plate Offsets (X,Y)-- [2:0-2-2,Edge]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	I/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.39	Vert(LL)	0.03	4-8 >999	240	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.24	Vert(CT)	-0.04	4-8 >999	180		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.28	Horz(CT)	0.00	2 n/a	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MR					Weight: 23 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3
OTHERS 2x4 SP No.3

REACTIONS. (size) 2=0-3-8, 9=0-2-0

Max Horz 2=73(LC 8)
Max Uplift 2=192(LC 8), 9=110(LC 8)
Max Grav 2=337(LC 1), 9=198(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 -1-6-0 to 1-6-0, Zone1 1-6-0 to 5-6-12 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Bearing at joint(s) 9 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 9.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=192, 9=110.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

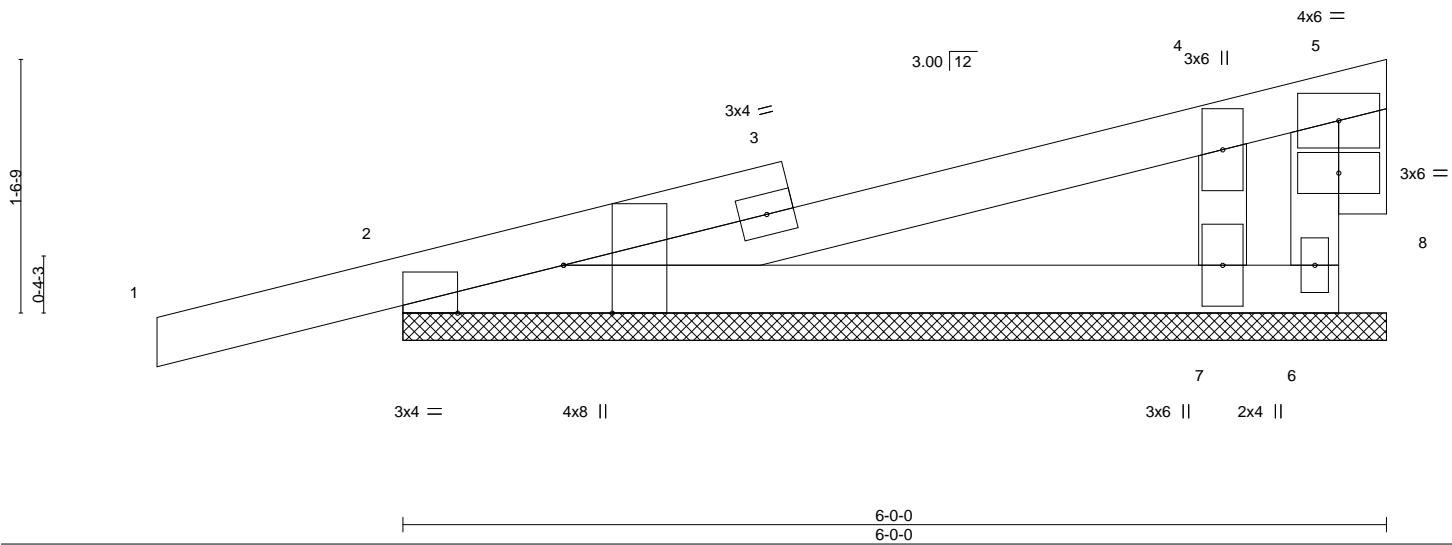
August 4,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from Truss Plate Institute (www.tpiinst.org) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com

Job 4768181	Truss T27G	Truss Type Monopitch Supported Gable	Qty 2	Ply 1	HUMPHREY RES.	T38101219
----------------	---------------	---	----------	----------	---------------	-----------


Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Fri Aug 1 13:41:35 2025 Page 1

ID:7WKR8toudn35dxwKwBAfQtytHta-dLZTS6opjzBdkX?v8qrwlw12vwp8mJ95cEdAxysCCU

-1-6-0 6-0-0 6-0-0
1-6-0

Scale = 1:14.1

6-0-0
6-0-0

Plate Offsets (X,Y)-- [2:0-3-8,Edge], [2:0-7-12,Edge]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.29	Vert(LL)	0.01	1	n/r	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.23	Vert(CT)	0.00	1	n/r		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.16	Horz(CT)	-0.00	6	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-P					Weight: 25 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3
OTHERS 2x4 SP No.3

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 2=6-0-0, 6=6-0-0, 7=6-0-0

Max Horz 2=62(LC 8)
Max Uplift 2=124(LC 8), 6=239(LC 1), 7=-134(LC 12)
Max Grav 2=273(LC 1), 6=49(LC 12), 7=510(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
WEBS 4-7=343/540

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCPi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=124, 6=239, 7=134.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

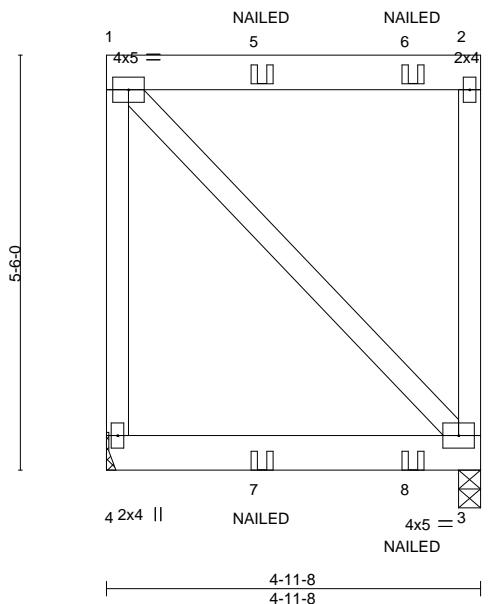
August 4,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpiinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com

Job 4768181	Truss TG01	Truss Type Flat Girder	Qty 2	Ply 1	HUMPHREY RES.	T38101220
----------------	---------------	---------------------------	----------	----------	---------------	-----------


Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Fri Aug 1 13:41:35 2025 Page 1

ID:7WKR8toudn35dxwKwBAfQytHta-dLZTS6opjzBdkX?V8qrIwWx2vw78op95cEdAXysCCU

4-11-8
4-11-8

Scale = 1:30.5

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.67	Vert(LL)	-0.01	3-4	>999	240	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.21	Vert(CT)	-0.02	3-4	>999	180		
BCLL 0.0 *	Rep Stress Incr	NO	WB 0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-MP						Weight: 46 lb	FT = 20%

LUMBER-

TOP CHORD 2x6 SP No.2
BOT CHORD 2x6 SP No.2
WEBS 2x4 SP No.3

BRACING-

TOP CHORD Structural wood sheathing directly applied or 4-11-8 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 4=Mechanical, 3=0-3-8
Max Uplift 4=232(LC 4), 3=301(LC 4)
Max Grav 4=548(LC 1), 3=627(LC 35)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-4=481/225, 2-3=528/279

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCPi=0.18; MWFRS (envelope) gable end zone; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 4=232, 3=301.
- 9) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidelines.
- 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25
Uniform Loads (plf)
Vert: 1-2=-180(B=-120), 3-4=-20
Concentrated Loads (lb)
Vert: 5=-80(F) 6=-88(F) 7=-27(F) 8=-29(F)

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 4,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from the Truss Plate Institute ([www.tpiinst.org](#)) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association ([www.sbcsccomponents.com](#))

MiTek
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / [MiTek-US.com](#)

Job 4768181	Truss V01	Truss Type GABLE	Qty 1	Ply 1	HUMPHREY RES.	T38101221
----------------	--------------	---------------------	----------	----------	---------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Fri Aug 1 13:41:36 2025 Page 1
ID:7WKR8toudn35dxwKwBAfQytHta-5Y7rfSpSUHJULha52sL4H73EUJHxtBzlKGzAjzsCCT

15-0-6
15-0-6

26-4-6
11-4-0

Scale = 1:59.8

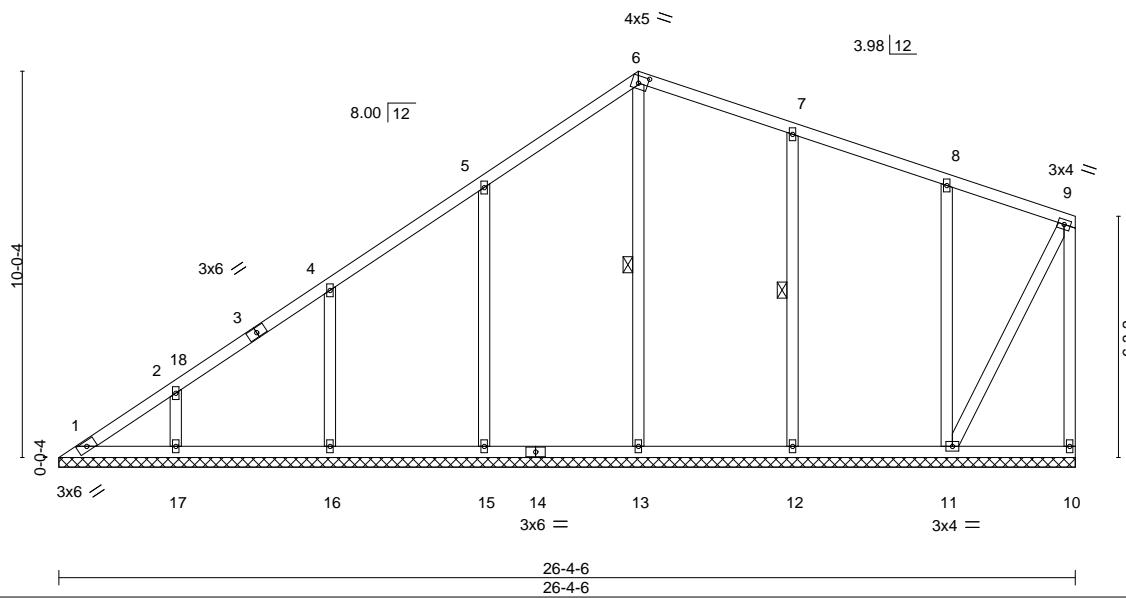


Plate Offsets (X,Y)-- [6:0-2-15,0-2-4]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.18	Vert(LL)	n/a	-	n/a	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.17	Vert(CT)	n/a	-	n/a		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.26	Horz(CT)	0.00	10	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-S					Weight: 156 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3
OTHERS 2x4 SP No.3

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.
WEBS 1 Row at midpt 6-13, 7-12

REACTIONS.

All bearings 26-4-6.
(lb) - Max Horz 1=294(LC 12)
Max Uplift All uplift 100 lb or less at joint(s) 10, 1 except 15=180(LC 12), 16=165(LC 12), 17=152(LC 12), 12=124(LC 9), 11=149(LC 9)
Max Grav All reactions 250 lb or less at joint(s) 10, 1 except 13=393(LC 19), 15=482(LC 19), 16=434(LC 19), 17=361(LC 19), 12=423(LC 28), 11=355(LC 28)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
TOP CHORD 1-2=310/196
WEBS 5-15=278/204, 4-16=261/190, 7-12=262/148

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 0-5-12 to 3-5-12, Zone1 3-5-12 to 15-0-6, Zone2 15-0-6 to 19-0-6, Zone1 19-0-6 to 26-2-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10, 1 except (jt=lb) 15=180, 16=165, 17=152, 12=124, 11=149.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 4,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](http://www.tpinst.org) available from Truss Plate Institute (www.tpinst.org) and [BCSI Building Component Safety Information](http://www.sbcsc.com) available from the Structural Building Component Association (www.sbcsc.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / [MiTek-Us.com](http://www.MiTek-Us.com)

Job 4768181	Truss V02	Truss Type GABLE	Qty 1	Ply 1	HUMPHREY RES.	T38101222
----------------	--------------	---------------------	----------	----------	---------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Fri Aug 1 13:41:36 2025 Page 1
ID:7WKr8toudn35dxwKwBAfQytHta-5Y7rfSpSUHJULha52sL4H73DFJHytC8IKGzAjzsCCT

12-6-6
12-6

23-10-6
11-4-0

Scale = 1:50.3

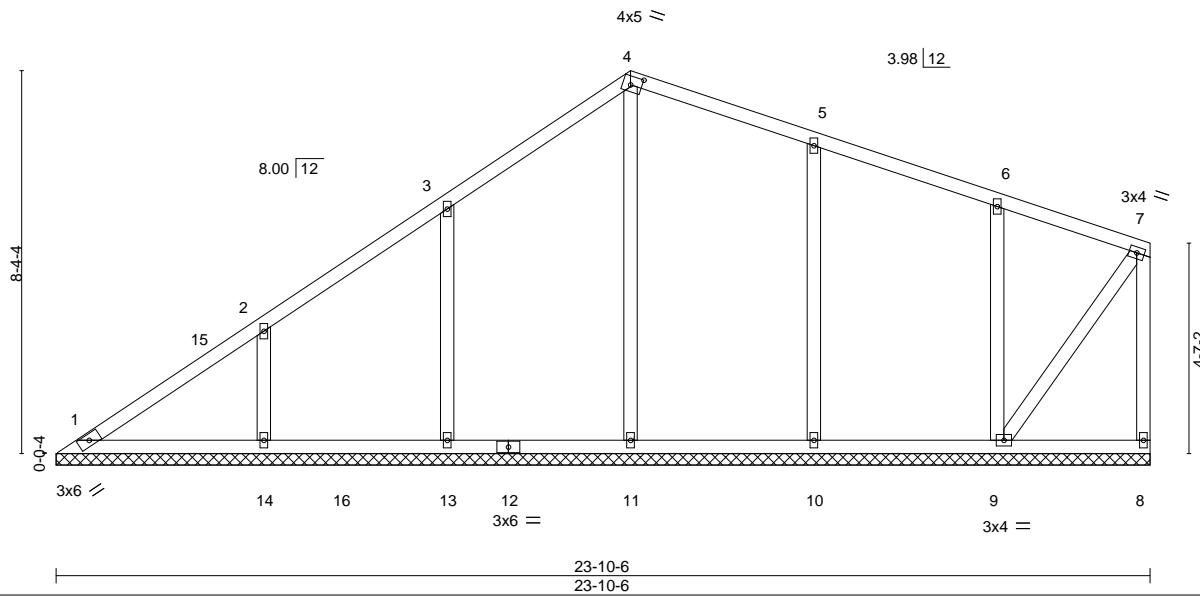


Plate Offsets (X,Y)-- [4:0-2-15,0-2-4]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.19	Vert(LL)	n/a	-	n/a	999	
TCDL 10.0	Lumber DOL	1.25	BC 0.17	Vert(CT)	n/a	-	n/a	999	
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.25	Horz(CT)	0.00	8	n/a	n/a	
BCDL 10.0	Code FBC2023/TPI2014		Matrix-S					Weight: 129 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3
OTHERS 2x4 SP No.3

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

All bearings 23-10-6.
(lb) - Max Horz 1=229(LC 12)
Max Uplift All uplift 100 lb or less at joint(s) 1, 8 except 13=-175(LC 12), 14=-185(LC 12), 10=-124(LC 9), 9=-150(LC 9)
Max Grav All reactions 250 lb or less at joint(s) 1, 8 except 11=389(LC 19), 13=463(LC 19), 14=460(LC 19), 10=422(LC 28), 9=352(LC 28)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 3-13=272/200, 2-14=286/204, 5-10=262/148

NOTES-

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCPi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 0-5-12 to 3-5-12, Zone1 3-5-12 to 12-6-6, Zone2 12-6-6 to 16-6-6, Zone1 16-6-6 to 23-8-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 8 except (j=lb) 13=175, 14=185, 10=124, 9=150.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 4,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from Truss Plate Institute (www.tpiinst.org) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com

Job 4768181	Truss V03	Truss Type GABLE	Qty 1	Ply 1	HUMPHREY RES.	T38101223
----------------	--------------	---------------------	----------	----------	---------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Fri Aug 1 13:41:37 2025 Page 1

ID:7WKr8toudn35dxwKwBAfQtytHta-ZkhDtoq4FaRLzr9lcZsJqLbMGjcqgCSZwjFPysCCS

10-0-6
10-0-6

21-4-6
11-4-0

Scale = 1:41.6

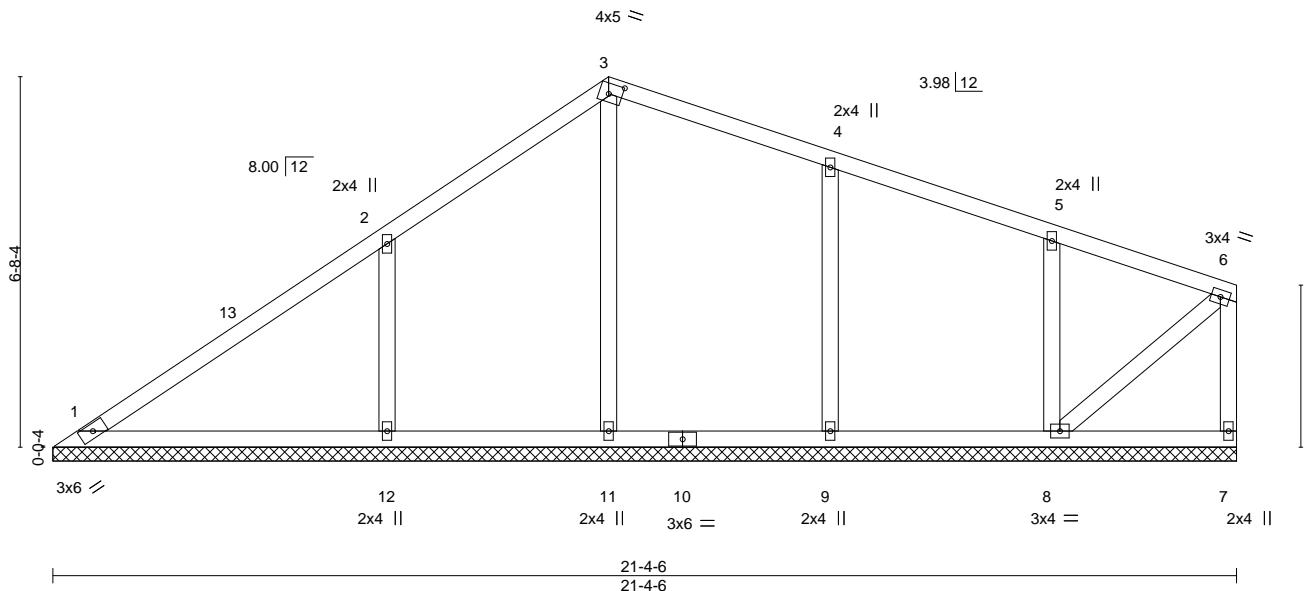


Plate Offsets (X,Y)-- [3:0-2-15,0-2-4]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.37	Vert(LL)	n/a	-	n/a	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.25	Vert(CT)	n/a	-	n/a		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.14	Horz(CT)	0.00	8	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-S					Weight: 102 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3
OTHERS 2x4 SP No.3

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

All bearings 21-4-6.
(lb) - Max Horz 1=165(LC 12)
Max Uplift All uplift 100 lb or less at joint(s) 1, 7 except 12=-250(LC 12), 9=-126(LC 9), 8=-143(LC 9)
Max Grav All reactions 250 lb or less at joint(s) 1, 7 except 11=334(LC 19), 12=619(LC 19), 9=430(LC 28), 8=352(LC 28)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 2-12=379/271, 4-9=-265/150

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 0-5-12 to 3-5-12, Zone1 3-5-12 to 10-0-6, Zone2 10-0-6 to 14-0-6, Zone1 14-0-6 to 21-2-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7 except (jt=lb) 12=250, 9=126, 8=143.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 4,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from the Truss Plate Institute (www.tpiinst.org) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com

Job 4768181	Truss V04	Truss Type GABLE	Qty 1	Ply 1	HUMPHREY RES.	T38101224
----------------	--------------	---------------------	----------	----------	---------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Fri Aug 1 13:41:37 2025 Page 1
ID:7WKR8toudn35dxwKwBAfQtytHta-ZkhDtoq4FaRLzr9lcZsJqLbPCjdech_SzwjkFPysCCS

7-6-6 18-10-6
7-6-6 11-4-0

Scale = 1:36.5

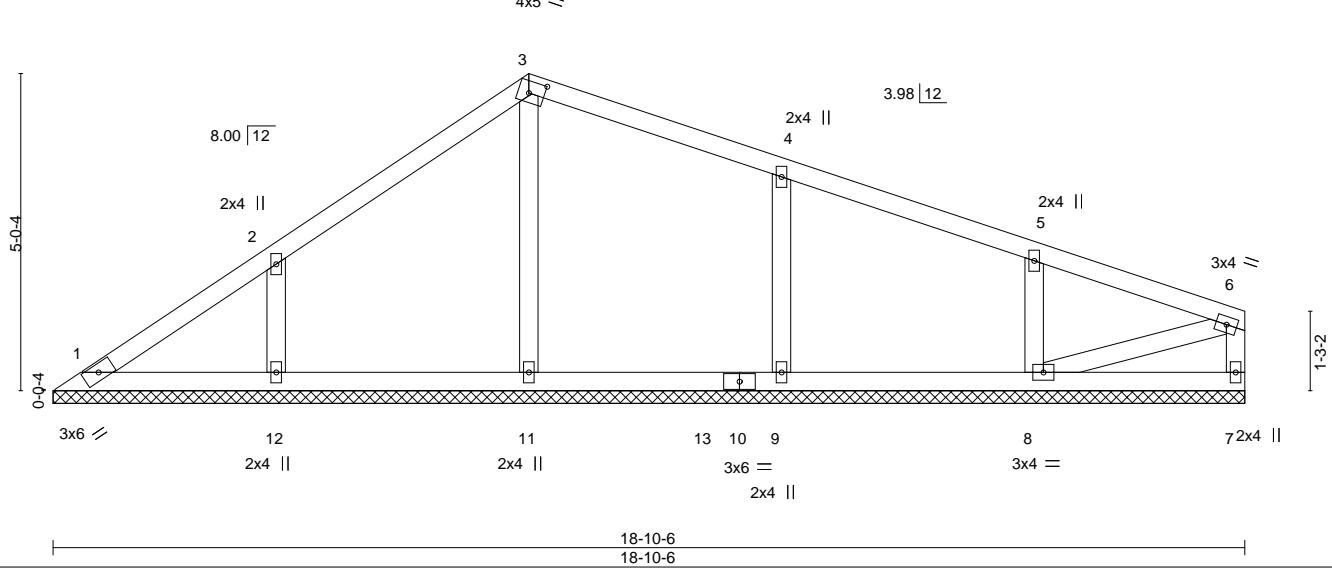


Plate Offsets (X,Y)-- [3:0-2-15,0-2-4]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.18	Vert(LL)	n/a	-	n/a	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.14	Vert(CT)	n/a	-	n/a		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.09	Horz(CT)	0.00	8	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-S					Weight: 81 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3
OTHERS 2x4 SP No.3

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

All bearings 18-10-6.
(lb) - Max Horz 1=-122(LC 10)
Max Uplift All uplift 100 lb or less at joint(s) 1, 7, 11 except 12=-178(LC 12), 9=-124(LC 9), 8=-124(LC 9)
Max Grav All reactions 250 lb or less at joint(s) 1, 7 except 11=353(LC 19), 12=408(LC 19), 9=377(LC 28), 8=323(LC 28)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 2-12=-273/206, 4-9=-263/151

NOTES-

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 0-5-12 to 3-6-6, Zone1 3-6-6 to 7-6-6, Zone2 7-6-6 to 11-6-6, Zone1 11-6-6 to 18-8-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- Gable requires continuous bottom chord bearing.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7, 11 except (jt=lb) 12=178, 9=124, 8=124.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 4,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from the Truss Plate Institute (www.tpiinst.org) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-Us.com

Job 4768181	Truss V05	Truss Type Valley	Qty 1	Ply 1	HUMPHREY RES.	T38101225
----------------	--------------	----------------------	----------	----------	---------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Fri Aug 1 13:41:38 2025 Page 1

ID:7WKR8toudn35dxwKwBAfQtytHta-1wFb48ri0uZCb?kUAGOYMY8Y_6yl9bbnaSHnsysCCR

5-0-6
5-0-6

9-0-6
4-0-0

15-1-10
6-1-4

Scale = 1:24.6

4x5 ≈

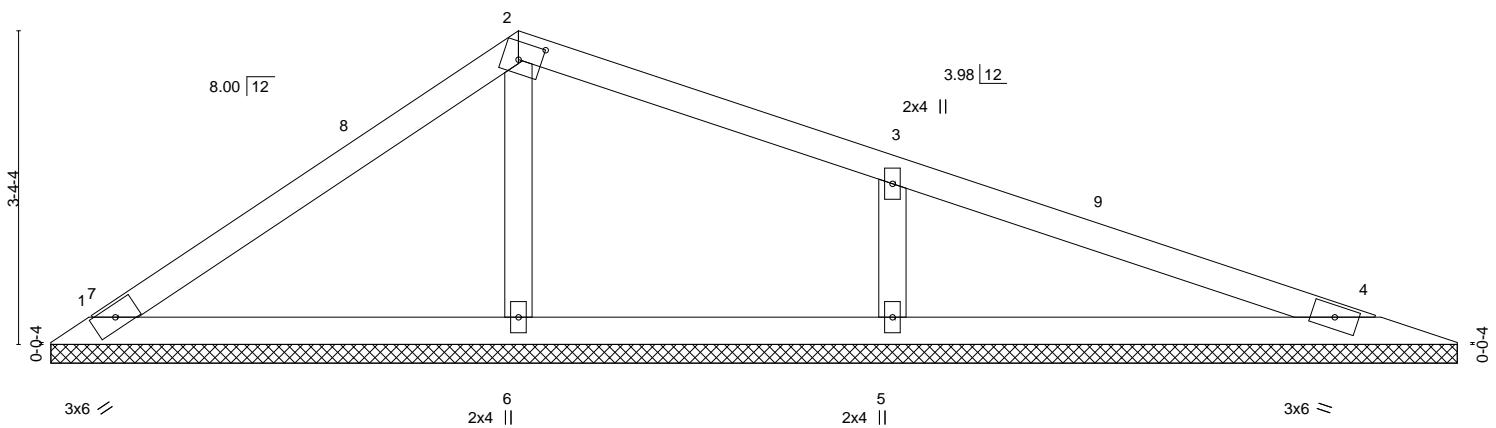


Plate Offsets (X,Y)-- [2:0-2-15,0-2-4]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.31	Vert(LL)	n/a	-	n/a	999	
TCDL 10.0	Lumber DOL	1.25	BC 0.21	Vert(CT)	n/a	-	n/a	999	
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.06	Horz(CT)	0.00	4	n/a	n/a	
BCDL 10.0	Code FBC2023/TPI2014		Matrix-S					Weight: 51 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
OTHERS 2x4 SP No.3

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

All bearings 15-0-8.
(lb) - Max Horz 1=-89(LC 8)
Max Uplift All uplift 100 lb or less at joint(s) 1, 4, 6 except 5=-159(LC 9)
Max Grav All reactions 250 lb or less at joint(s) 1, 4 except 6=316(LC 1), 5=442(LC 26)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
WEBS 3-5=-330/190

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 0-5-12 to 3-5-12, Zone1 3-5-12 to 5-0-6, Zone2 5-0-6 to 9-0-6, Zone1 9-0-6 to 14-2-5 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 4, 6 except (jt-lb) 5=159.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 4,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from the Truss Plate Institute (www.tpiinst.org) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-Us.com

Job 4768181	Truss V06	Truss Type Valley	Qty 1	Ply 1	HUMPHREY RES.	T38101226
----------------	--------------	----------------------	----------	----------	---------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.830 s Jul 24 2025 MiTek Industries, Inc. Fri Aug 1 13:41:38 2025 Page 1

ID:7WKr8toudn35dxwKwBAfQtytHta-1wFb48ri0uZCb?kUAGOYMY8Zt6zyL8UbnaSHnsysCCR

2-6-6
2-6-6

7-7-6
5-1-0

Scale = 1:14.1

4x5 ≈

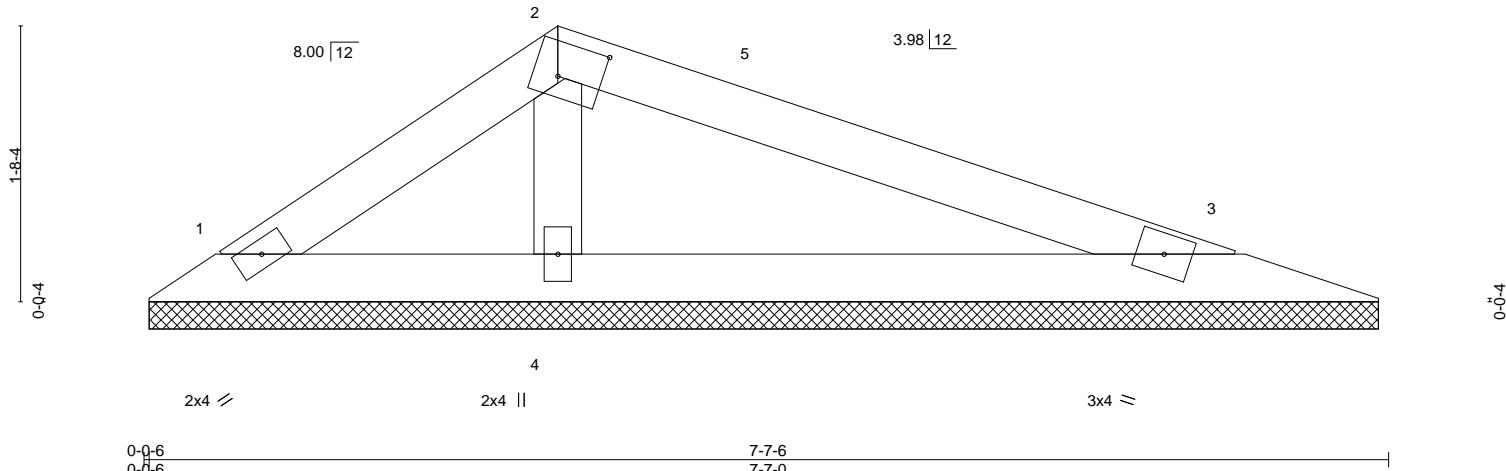


Plate Offsets (X,Y)-- [2:0-3-3,0-2-8]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.25	Vert(LL)	n/a	-	n/a	999	
TCDL 10.0	Lumber DOL	1.25	BC 0.13	Vert(CT)	n/a	-	n/a	999	
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.07	Horz(CT)	0.00	3	n/a	n/a	
BCDL 10.0	Code FBC2023/TPI2014		Matrix-S					Weight: 23 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
OTHERS 2x4 SP No.3

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 1=7-6-4, 3=7-6-4, 4=7-6-4

Max Horz 1=40(LC 8)

Max Uplift 1=23(LC 12), 3=50(LC 9), 4=50(LC 9)

Max Grav 1=63(LC 25), 3=151(LC 1), 4=290(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

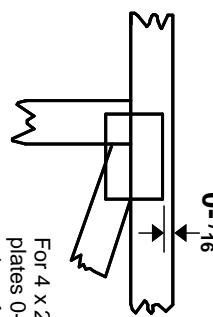
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
Date:

August 4,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from Truss Plate Institute (www.tpiinst.org) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com

Symbols

PLATE LOCATION AND ORIENTATION

Center plate on joint unless X, Y offsets are indicated.
Dimensions are in ft-in-sixteenths.
Apply plates to both sides of truss and fully embed teeth.

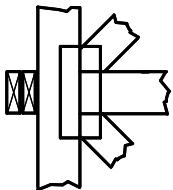
For 4 x 2 orientation, locate plates 0-1/16" from outside edge of truss.

This symbol indicates the required direction of slots in connector plates.

* Plate location details available in MiTek software or upon request.

PLATE SIZE

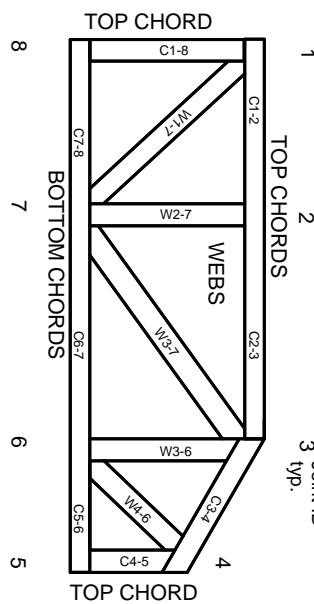
4 x 4


The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section or the output. Use T or I bracing if indicated.

BEARING


Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number/letter where bearings occur. Min size shown is for crushing only.

Industry Standards:

ANSI/TP1: National Design Specification for Metal Plate Connected Wood Truss Construction.
DSB-22: Design Standard for Bracing.
BCSI: Building Component Safety Information, Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses.

Numbering System

6-4-8 dimensions shown in ft-in-sixteenths
(Drawings not to scale)

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282
ESR-4722, ESL-1388

Design General Notes

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.
Lumber design values are in accordance with ANSI/TP1 section 6.3. These truss designs rely on lumber values established by others.

© 2023 MiTek® All Rights Reserved

Failure to Follow Could Cause Property Damage or Personal Injury

General Safety Notes

1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.

2. Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor! bracing should be considered.

3. Never exceed the design loading shown and never stack materials on inadequately braced trusses.

4. Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.

5. Cut members to bear tightly against each other.

6. Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TP1.

7. Design assumes trusses will be suitably protected from the environment in accord with ANSI/TP1.

8. Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.

9. Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.

10. Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.

11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.

12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.

13. Top chords must be sheathed or purlins provided at spacing indicated on design.

14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.

15. Connections not shown are the responsibility of others.

16. Do not cut or alter truss member or plate without prior approval of an engineer.

17. Install and load vertically unless indicated otherwise.

18. Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.

19. Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.

20. Design assumes manufacture in accordance with ANSI/TP1 Quality Criteria.

21. The design does not take into account any dynamic or other loads other than those expressly stated.

MiTek®