

RE: 1552-A - Deen Residence

Site Information:

Customer Info: Parrish Builders Group Project Name: Deen Residence Model: . Lot/Block: Subdivision: . Address: 2938 SW County Road 778, . City: Fort White State: FL

MiTek, Inc. 16023 Swinalev Ridae Rd. Chesterfield, MO 63017 314.434.1200

Name Address and License # of Structural Engineer of Record, If there is one, for the building. Name: License #: Address:

City:

State:

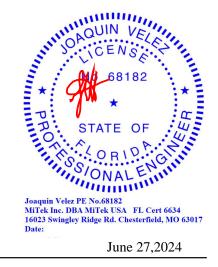
General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: FBC2023/TPI2014 Wind Code: ASCE 7-22 Roof Load: 40.0 psf

Design Program: MiTek 20/20 8.7 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 6 individual, Truss Design Drawings and 0 Additional Drawings. With my seal affixed to this sheet, I hereby certify that I am the Truss Design Engineer and this index sheet conforms to 61G15-31.003, section 5 of the Florida Board of Professional Engineers Rules.

No.	Seal#	Truss Name	Date
1	T34287602	G1	6/27/24
2	T34287603	G2	6/27/24
3	T34287604	T1	6/27/24
4	T34287605	T2	6/27/24
5	T34287606	Т3	6/27/24
6	T34287607	T4	6/27/24


Review for Code Compliance Universal Engineering Science

Ludence Pernell 07/15/2024 PX2707

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by 19 Lumber, Inc..

Truss Design Engineer's Name: Velez, Joaquin My license renewal date for the state of Florida is February 28, 2025.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Velez, Joaquin

Job	Truss	Truss Type	Qty	Ply	Deen Residence	
1552-A	G1	Common Supported Gable	2	1	Job Reference (optional)	T34287602

Run: 8.73 S Jun 13 2024 Print: 8.730 S Jun 13 2024 MiTek Industries, Inc. Wed Jun 26 11:51:31 ID:2TRiT6fftejwtP6rg7TC6yz9yg1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

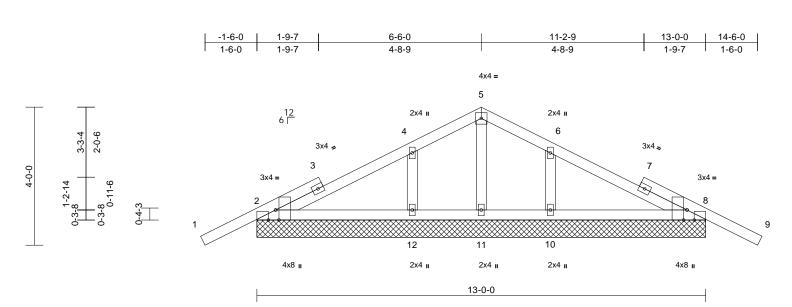
Page: 1

19

|<u>-1-6-0</u>| <u>1-9-7</u> |1-6-0 <u>1-9-7</u> 15-0-0 30-0-0 31-6-0 1-9-7 1-6-0 6-0-10 23-11-6 28-2-9 4-3-3 8-11-6 8-11-6 4-3-3 4x4 = 10 9 11 8 12 7 13 7-6-4 6-3-6 3x4 ਫ਼ 3x4 👟 6 14 12 6Г 5 15 4 D. 16 5 3x4 👟 3x4 ≠ 3 17 3x4 = 3x4 = 0-3-8 0-11-6 2 6 18 ų ω ကု ****** 31 30 29 28 27 26 25 23 22 21 20 24 4x8 II 4x8 II 3x4= 30-0-0 -

Scale = 1:60.3

8-3-0


Plate Offsets (X, Y): [2:0-3-8,Edge]	, [2:0-2-8,Edge], [18:0	0-3-8,Edge	e], [18:0-2-8,E	Edge]									
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES FBC202	3/TPI2014	CSI TC BC WB Matrix-MS	0.21 0.15 0.17	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 18	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 173 lb	GRIP 244/190 FT = 20	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD REACTIONS FORCES TOP CHORD	2x4 SP No.2 2x4 SP No.2 Structural wood she 10-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=30-0-0 24=30-0- 24=30-0- 31=30-0- Max Horiz 2=-133 (L 20=-113 i 22=-62 (L 24=-56 (L 30=-34 (L 30=-34 (L 32=-28 (L) 22=-185 (I 24=172 (I 29=185 (I 24=172 (I 29=185 (I 24=172 (I 29=185 (I) 31=374 (I 35=258 (I) (b) - Maximum Con Tension 1-2=0/42, 2-4=-144/ 6-7=-32/141, 7-8=-1 9-10=-49/212, 10-1	, 18=30-0-0, 20=30-0, 0, 22=30-0-0, 23=30-0, 0, 25=30-0-0, 30=30-0, 0, 25=30-0-0, 35=30-0-0-0, 35=30-0-0-0, 35=30-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-	BC d or WI -0, 0-0, NC 0-0, NC 0-0, 1) 0-0 13) 2) 1, 13), 2) 1, 12), 2), 22), 2), 22), 2), 23), 3) 3), 3), 22), 2), 25), 5) 60, 7) 8) 9) 1/162, 7/3,	DT CHORD EBS Unbalanced this design. Wind: ASCI Vasd=101m II; Exp B; Ei zone and C exposed ; e members an Lumber DO Truss desig only. For si see Standa or consult q Building De verifying ap requiremen All plates ar Gable requi Gable studs This truss h chord live lo * This truss on the botto 3-06-00 tall chord and a	2-31=-85/168, 30- 29-30=-85/168, 28 27-28=-85/168, 25 24-25=-85/168, 25 24-25=-85/168, 25 22-23=-85/168, 21 20-21=-85/168, 18 10-25=-183/0, 9-2 7-29=-134/101, 6- 11-24=-131/92, 12 13-22=-134/101, 1 16-20=-250/165 d roof live loads have	3-29=-85 5-27=-85 3-24=-85 3-24=-85 3-22=-85 3-20=-85 7=-131/\$ 30=-63/\$ 2-23=-11 4-21=-6 we been bh (3-see BCDL=5 envelopy ntilever I right exp S for rea by OL=1.60 in the p hd (norm in the p) hd (norm) hd (norm) hd (norm) hd (norm) hd (norm) hd (norm)	/168, /168, /168, /168, /168, /168, /168, /168 02, 8-28=-115// 99, 4-31=-250/ 5/96, 3/69, considence for cond-gust) 5.058/ h=28f(c) 2) exterior (2) eft and right posed;C-C for rections shown; 0) lane of the trus all to the face) ils as applicab s per ANSI/TP sponsible for overs rain load truss compon se indicated. d bearing. 0) psf bottom other live load re load of 20.0 a rectangle veen the botto	166, RU SS SS , ole, 11. ding ent. ds. psf	beau 2, 44 at jo 107 at jo 113 uplif LOAD C Review	ring plat 8 lb uplift 18 uplift 19 uplift 14 at joint 23, 6 19 uplift 14 at joint 24 SE(S) 2 for 5 al E 16 cense N	te capa fr at join 52 lb u at join 52 lb u at join 118.) Sta COd ngir bo.	al connection (by able of withstandi int 18, 58 lb uplift plift at joint 29, 34 tt 31, 56 lb uplift a plift at joint 22, 37 tt 20, 28 lb uplift a ndard le Complia neering Sc PX2707	others) of market shares of the second second second second second second second second second secon	truss to polift at joint , 56 lb uplift t joint 30, 57 lb uplift t joint 21, nd 48 lb
				Ū						D	ate:	June	27,202	24

w.tpinst.org) Mittek-US.com

Job	Truss	Truss Type	Qty	Ply	Deen Residence	
1552-A	G2	Common Supported Gable	1	1	Job Reference (optional)	T34287603

Run: 8,73 S Jun 13 2024 Print: 8,730 S Jun 13 2024 MiTek Industries, Inc. Wed Jun 26 11:51:32 ID:6drsi8jFzApyk9UPUQF761z2U17-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:33.4

Plate Offsets ((X, Y): [2:0-3-8,Edge],	[2:0-2-8,Edge], [8:0-	3-8,Edge]	, [8:0-2-8,Edge	9]								
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES FBC202	3/TPI2014	CSI TC BC WB Matrix-MS	0.17 0.11 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 60 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 Structural wood she 10-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=13-0-0, 11=13-0-0 (16=13-0-0) Max Horiz 2=62 (LC Max Uplift 2=-59 (LC 10=-105 (13=-59 (LC Max Grav 2=233 (LC 10=330 (L	8=13-0-0, 10=13-0-0 0, 12=13-0-0, 13=13-0 12), 13=62 (LC 12) 12), 8=-68 (LC 13), LC 13), 12=-102 (LC C 12), 16=-68 (LC 13) C 25), 8=233 (LC 26). C 26), 11=123 (LC 1 LC 25), 13=233 (LC 2	5) 6) 0-0, 8) 12), 9) 3) 10	only. For stu see Standarr or consult qu Building Des verifying app requirements Gable requir Gable studs This truss ha chord live loa * This truss ha chord live loa * This truss the on the bottor 3-06-00 tall b chord and ar All bearings s) Provide mec 2, 68 lb uplift	hed for wind load: dis exposed to wi d Industry Gable I alified building de igner / Project en lied roof live load s specific to the us es continuous bol spaced at 2-0-0 c s been designed ad nonconcurrent nas been designed n chord in all area by 2-00-00 wide w by other members are assumed to b hanical connectio capable of withs at joint 8, 102 lb 10, 59 lb uplift at	nd (norm End Deta esigner as gineer res shown c se of this ttom chor oc. for a 10.0 with any d for a liv as where vill fit betw s. e SP No. n (by oth tanding 5 uplift at jo	al to the face ls as applica s per ANSI/TI sponsible for overs rain loa truss compoid d bearing. 0 psf bottom other live loa e load of 20.0 a rectangle veen the botti 2. ers) of truss 1 9 lb uplift at j bint 12, 105 ll	e), ble, PI 1. ading nent. ads. Opsf om to joint b				SAQUIN SALICEA No 68	
FORCES	(lb) - Maximum Com Tension 1-2=0/42, 2-4=-85/10	•		DAD CASE(S)	Standard						A. S.	SOLICEN	SE
this design 2) Wind: AS(Vasd=101 II; Exp B; zone and exposed ;	10-11=-107/153, 8-1 5-11=-141/4, 4-12=- ed roof live loads have	2=-107/153, 0=-107/153 223/200, 6-10=-2 been considered for (3-second gust) CDL=5.0psf; h=25ft; (velope) exterior (2) lever left and right ght exposed;C-C for	well	Univers	for Code C al Enginee A		cience	7/15/2024			* PROY	NO 68	

16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

June 27,2024

Job	Truss	Truss Type	Qty	Ply	Deen Residence	
1552-A	T1	Common	32	1	Job Reference (optional)	T34287604

Run: 8,73 S Jun 13 2024 Print: 8,730 S Jun 13 2024 MiTek Industries, Inc. Wed Jun 26 11:51:32 ID:2TRiT6fftejwtP6rg7TC6yz9yg1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

<u>-1-6-0</u> 1-6-0 7-7-0 15-0-0 22-5-0 30-0-0 ₁31-6-0 7-7-0 7-5-0 7-5-0 7-7-0 1-6-0 4x5= 5 1<u>2</u> 61 20 21 5x10 🞜 5x10 👟 34 67 7-10-3 8-6-15 19 22 8 0-4-3 ∏ 9 Ì 12 11 10 2x4 II 5x8= 2x4 II 3x4= 3x4= 7-7-0 15-0-0 22-5-0 30-0-0 4 7-7-0 7-7-0 7-5-0 7-5-0

Scale = 1:58.3

Plate Offsets (X, Y): [3:0-3-8,0-3-0], [7:0-3-8,0-3-0], [11:0-4-0,0-3-0]

	(,,, ,). [ele e eje e ej,	[1:0 0 0;0 0 0]; [1:1:	0 : 0,0 0 0]									
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES FBC2023/TPI2014	CSI TC BC WB Matrix-MS	0.68 0.71 0.24	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.10 -0.23 0.09	(loc) 12-15 12-15 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 145 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 Structural wood she 3-3-10 oc purlins. Rigid ceiling directly bracing.	applied or 9-11-1 oc 7-11, 3-11 3=0-4-0 C 13) C 12), 8=-238 (LC 1	chord liv 5) * This tru on the b 3.06-00 chord ar 6) All beari 7) Provide bearing 2 and 22 LOAD CASE	s has been designed e load nonconcurrer iss has been design bottom chord in all are tall by 2-00-00 wide d any other member ings are assumed to mechanical connecti- blate capable of with 8 lb uplift at joint 8. c(S) Standard	nt with any ed for a liv eas where will fit betw rs. be SP No. ion (by oth	other live loa e load of 20.0 a rectangle veen the botto 2. ers) of truss t	Opsf om o					
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
BOT CHORD	5-7=-1467/277, 7-8= 2-12=-336/1870, 10- 8-10=-198/1870 5-11=-81/817, 7-11=	-12=-336/1870,									AQUIN	VELE
WEBS	3-11=-753/277, 3-12		10,							3	SCEN	Spit
this design 2) Wind: ASC Vasd=101 II; Exp B; zone and 15-0-0, Zc 31-6-13 zc vertical lef forces & M DOL=1.6C	ed roof live loads have n. CE 7-22; Vult=130mph mph; TCDL=5.0psf; Bi Enclosed; MWFRS (er C-C Zone3 -1-6-13 to one2 15-0-0 to 19-2-15 one; cantilever left and ft and right exposed;C- MWFRS for reactions s 0 plate grip DOL=1.60	been considered for (3-second gust) CDL=5.0psf; b=254; ivelope) extraction 1-5-3, Zone , Zone1 19-2-15 to right exposed pend C for members and hown; Lumber	^{Cat.} Review f ^o Universa)24			OKUII	SSIONA	OF HU
	Designer / Project engir applied roof live load sh		ding								Velez PE No.68182 nc. DBA MiTek USA	FL Cert 6634

requirements specific to the use of this truss component.

16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

June 27,2024

Page: 1

Job	Truss	Truss Type	Qty	Ply	Deen Residence	
1552-A	T2	Common	7	1	Job Reference (optional)	T34287605

Run: 8,73 S Jun 13 2024 Print: 8,730 S Jun 13 2024 MiTek Industries, Inc. Wed Jun 26 11:51:32 ID:2TRiT6fttejwtP6rg7TC6yz9yg1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

|<u>31-6-0</u> | 1-6-0 7-7-0 15-0-0 22-5-0 30-0-0 7-7-0 7-7-0 7-5-0 7-5-0 4x5 = 4 12 61 19 20 5x10 ≠ 5x10👟 2³ 56 7-10-3 8-6-15 18 21 7 0-4-3 ⊤ Ì 8 11 10 9 2x4 II 5x8 = 2x4 II 3x4= 3x4= 7-7-0 15-0-0 22-5-0 30-0-0 7-7-0 7-5-0 7-5-0 7-7-0

Scale = 1:56

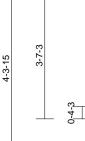
Plate Offsets (X, Y): [2:0-3-4,0-3-0], [6:0-3-8,0-3-0], [10:0-4-0,0-3-0]

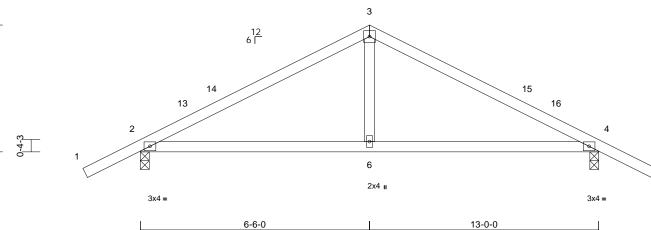
- 1410 0110010 ((;;;;): [=:0 0 :;0 0 0];			-1	-								
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES FBC202	23/TPI2014	CSI TC BC WB Matrix-MS	0.70 0.76 0.25	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.12 -0.26 0.09	(loc) 11-14 11-14 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 143 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 Structural wood she 3-1-11 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt	applied or 9-8-5 oc 6-10, 2-10 7=0-4-0 .C 13) .C 12), 7=-238 (LC 1	6) 7) L(chord live lo. * This truss l on the bottoo 3-06-00 tall l chord and au All bearings Provide med bearing plate	as been designed for ad nonconcurrent w has been designed m chord in all areas by 2-00-00 wide wil ny other members. are assumed to be chanical connection e capable of withsta o uplift at joint 7. Standard	vith any for a liv where I fit betw SP No. (by oth	other live load e load of 20.0 a rectangle veen the botto 2. ers) of truss to)psf om o					
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=-2170/355, 2-4= 4-6=-1472/279, 6-7=	-2175/347, 7-8=0/4	2									No 68	un.
BOT CHORD	1-11=-345/1889, 9-1 7-9=-199/1875	11=-345/1889,										AQUIN	VEI
WEBS	4-10=-84/822, 6-10= 2-10=-769/286, 2-11		8,		Review for C						S. S	SUCEN	SE
NOTES				- U	Iniversal Eng	ginee	ering Sci	ence			2	· · · · · ·	1 1 1
	ed roof live loads have	been considered fo	r	_		-	-				S	• No 68	182
this design)	6 00		DV0707		07/15/20:		*:		:*=
	 CE 7-22; Vult=130mph	(3-second gust)	Q.	autence	Pernet.		PX2707		07/15/20	24		~ M	
,	Imph; TCDL=5.0psf; B	· · · · ·	Cat.	E	xaminer-License No.					-	70:		· : or =

- II; Exp B; Enclosed; MWFRS (envelope) exterior (2) zone and C-C Zone3 0-0-0 to 3-0-0, Zone1 3-0-0 to 15-0-0, Zone2 15-0-0 to 19-2-15, Zone1 19-2-15 to 31-6-13 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

Joaquin Velez PE No.68182 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

June 27,2024




႔ WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only using the matter one to the other of the intervence of the

Job	Truss	Truss Type	Qty	Ply	Deen Residence	
1552-A	ТЗ	Common	3	1	Job Reference (optional)	T34287606

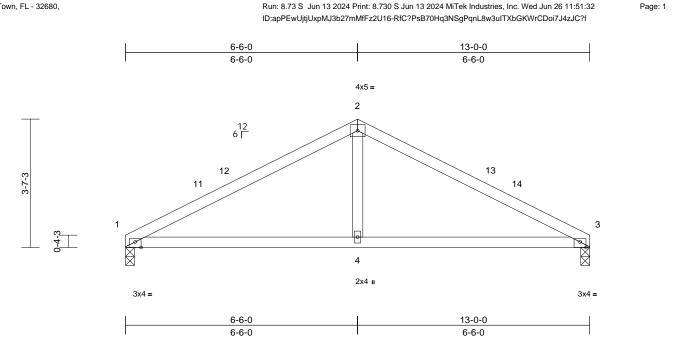
Run: 8.73 S Jun 13 2024 Print: 8.730 S Jun 13 2024 MiTek Industries, Inc. Wed Jun 26 11:51:32 Page: 1 ID:HTUbS5eUNK2p0E1F898jtmz2U1D-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -1-6-0 6-6-0 13-0-0 14-6-0 1-6-0 6-6-0 6-6-0 1-6-0 4x4 = 3 12 6 Г 14 15 13 16 2 4

6-6-0

6-6-0

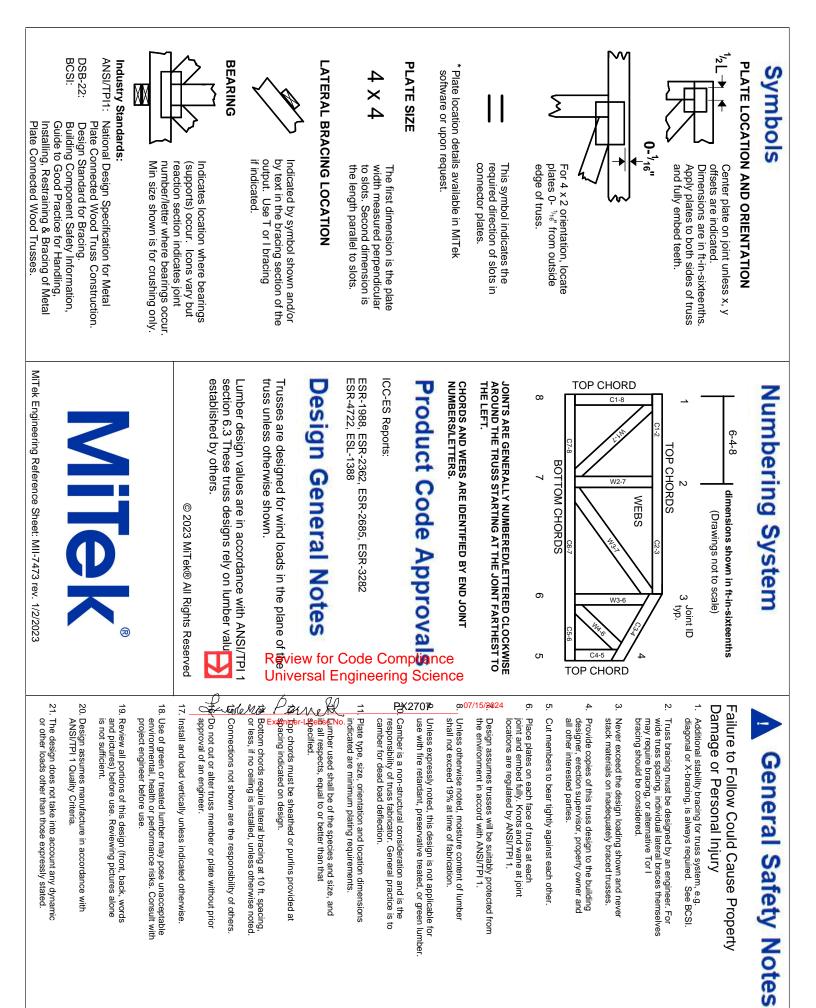
Scale	= 1:32.7

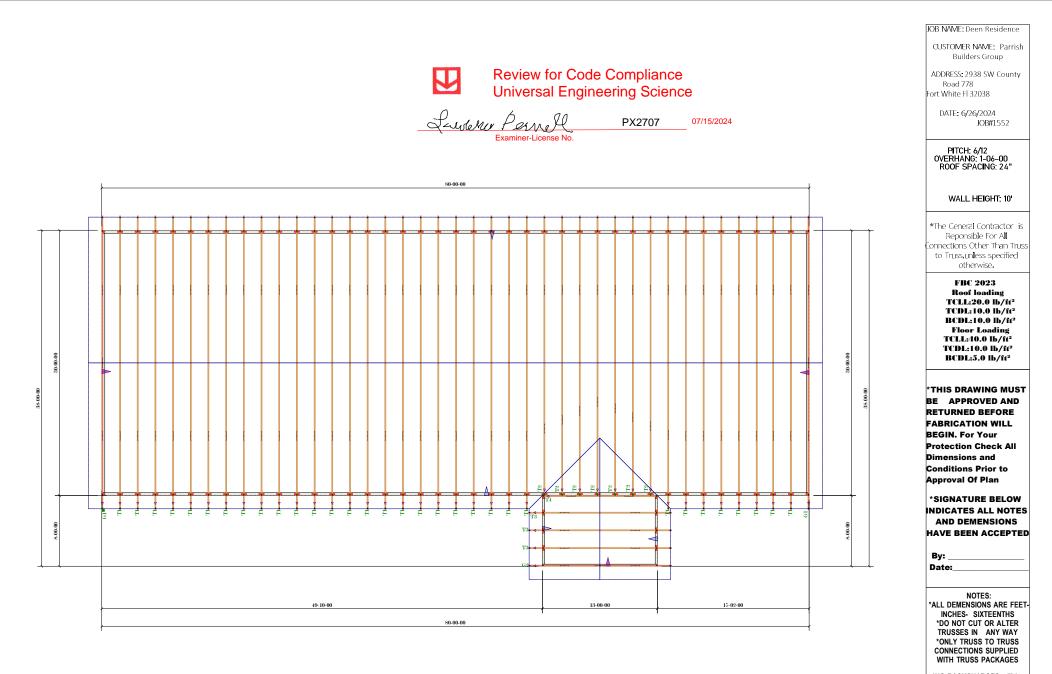
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.48	Vert(LL)	0.05	6-9	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.25	BC	0.46	Vert(CT)	-0.10	6-9	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.07	Horz(CT)	0.01	4	n/a	n/a		
BCDL	10.0	Code	FBC2023/TPI2014	Matrix-MS							Weight: 51 lb	FT = 20%
LUMBER			5) * This truss	has been designe	d for a liv	e load of 20.0	0psf					
TOP CHORD	2x4 SP No.2			om chord in all area								
BOT CHORD			3-06-00 tall	by 2-00-00 wide w	vill fit betv	veen the bott	om					
WEBS	2x4 SP No.2		chord and a	any other members	3.							
BRACING			All bearings	are assumed to b	e SP No.	.2 .						
TOP CHORD	Structural wood she	athing directly appli		chanical connectio								
	6-0-0 oc purlins.		bearing pla	te capable of withs	tanding 1	25 lb uplift at	t joint					
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	6	b uplift at joint 4.								
	bracing.		LOAD CASE(S) Standard								
REACTIONS	· · · ·											
	Max Horiz 2=67 (LC											
	Max Uplift 2=-125 (L		3)									
	Max Grav 2=614 (L0											
FORCES	(lb) - Maximum Com	pression/Maximum										
TOP CHORD	Tension	201 2 4 710/201										
TOP CHORD	1-2=0/42, 2-3=-719/3 4-5=0/42	201, 3-4=-7 19/201,										
BOT CHORD		1/575										
WEBS	3-6=0/304			view for Coo		mnlianc	6					
NOTES											No 68	
1) Unbalance	ed roof live loads have	been considered for	, 🛏 Uni	versal Engi	neerir	ng Scien	ice				AQUIN	VEI
this desig	n.		0							A.	OF	122
	CE 7-22; Vult=130mph		Lawterer P	a. 80	F	PX2707	07/15	5/2024		3		SE
	1mph; TCDL=5.0psf; B			iner-License No.		,	_			-	· N- 00	100 1 3
	Enclosed; MWFRS (er			iner-License No.						1	NO 68	182
	C-C Zone3 -1-6-13 to									*:		:* =
	ne2 6-6-0 to 10-8-15, Z tilever left and right exp									:	(M)	
	exposed;C-C for memb		leit						-	D		<u>с</u>
	for reactions shown; Lu		ate							D	STATE	OF :45
grip DOL=										20	·	
	Designer / Project engir	eer responsible for								1	A OB	D
verifying a	applied roof live load sh	own covers rain loa	ding							1	Se	NON
	ents specific to the use		nent.							1.1	ONA	LEIN
	has been designed for										in min	mm.
chord live	load nonconcurrent wi	th any other live loa	ds.						J	oaquin '	Velez PE No.68182	
									M	liTek In	ic. DBA MiTek US.	A FL Cert 6634
									10	5023 Sw	vingley Ridge Rd. C	Chesterfield, MO 63017


June 27,2024

Date:

5


Job	Truss	Truss Type Q		Ply	Deen Residence	
1552-A	Τ4	Common	1	1	Job Reference (optional)	T34287607



Scale = 1:32.3				
Plate Offsets (X	Y)·	[1:0-2-0 Edge]	[3.0-2-0	Edge

Plate Offsets ()	X, Y): [1:0-2-0,Edge],	[3:0-2-0,Edge]										
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES FBC2023/TPI2014	CSI TC BC WB Matrix-MS	0.51 0.49 0.07	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.07 -0.12 0.01	(loc) 4-7 4-7 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 46 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=101r II; Exp B; E zone and C 6-6-0, Zont and right e MWFRS fc grip DOL= 3) Building De verifying P verifying P verifying P	5-10-10 oc purlins. Rigid ceiling directly bracing. (size) 1=0-3-0,3 Max Horiz 1=54 (LC Max Uplift 1=-87 (LC Max Uplift 1=-87 (LC (lb) - Maximum Com Tension 1-2=-751/246, 2-3=-7 1-4=-123/606, 3-4=-7 2-4=0/310 ed roof live loads have b. ET 7-22; Vult=130mph mph; TCDL=5.0psf; BC Enclosed; MWFRS (en C-C Zone3 0-0-0 to 3-C e2 6-6-0 to 10-8-15, Z/ illever left and right exp suposed; C-C for memb or reactions shown; Lu	B=0-3-0 12) 12), 3=-87 (LC 13) C 1), 3=520 (LC 1) pression/Maximum 751/246 123/606 been considered f (3-second gust) CDL=5.0psf; h=25ft; 1 welope) exterior (2) 0-0, Zone1 3-0-0 to one1 10-8-15 to 13-0 osed ; end vertical le beers and forces & mber DOL=1.60 plate neer responsible for iown covers rain load of this truss componential rain 10.0 psf bottom	on the bo 3-06-00 t chord and 6) All bearing 1 and 87 LOAD CASE Revie Unive Sat. -0 oft e ing ent.	ew for Code ersal Engine two Lange No.	as where vill fit betv s. be SP No. on (by oth standing &	a rectangle veen the bott 2 . ers) of truss 7 lb uplift at bliance Science	to joint	ł	J M 1	liTek In	No 68 STORA Velez PE No.68182 c. DBA MiTek US, ringley Ridge Rd. C	VE 8 182 OF LENG LENG 4 FL Cert 6634 thesterfield, MO 63017 27,2024

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

*NO BACKCHARGES will be accepted

HANGER LIST

25221 SE Hwy 19 Old Town,FL 32680 P:(352)469-5008 19Lumberinc@gmail.com