

59 mods 15 bars 1 p/s **₩ (E4)**-5 columns

X" dia. Main Steel Support	
Saddle 2" x 2" x 3/16"	<u> </u>

to pipe

- 3M SCOTO

ALUMINU.

SADDLE DETAIL

2"x 2" x 3/16"

Alum, angle framing

bolted to Steel Angle

NTS

LED Layout

3.4 mods/ft (3.5" mod spacing)

BILL OF MATERIALS Part Number Description Qty Unit w/unit Unit/PS 59 PRIME24V REBEL Bright White 6500K OTSR-X2-BW65 mods 0.6 136 ASU-100-24U 96W-24V Power Supply pcs NΑ NΑ 75 L3G-LD10U15-24VBW65-230 L3G DS 100mm-150mm BW, 230mm bars 3.36 26 ASU-100-24U 96W-24V Power Supply N/A N/A pcs

TOTAL SQFT =45.00 Ø

PART # LCH-MN72I-32

ESTIMATE # 187494

MATERIALS FOR FREE STANDING SIGN

XT. FILLER:	.090"ALUMINUM
RAMING:	2"X 2"X 3/16" ALUM ANGLE
ACES:	.125 ALUMINUM
ETAINER:	1" ALUMINUM "F" RETAINER (SEE DETAIL A)
GHTING:	PRIME24V REBEL BRIGHT WHITE
ASE:	.125"ALUMINUM
UPPORTS:	DIRECT-BURIED 3"DIAMETER STEEL PIPE

COLORS FOR FREE STANDING SIGN

FABRICATION NOTES

) CLEAR POLY.

1) TRANSLUCENT: 3M 3630-124 BURNT ORANGE VINYL / SECOND SURFACE 2) OPAQUE: DIGITALLY PRINTED ON 3M SCOTCHCAL 7725-20 MATTE WHITE COMPLETE WITH 3M MATTE OVERLAMINATE TO MATCH ORANGE 10% TO 15% DARKER THAN 3M 3630-124 BURNT ORANGE VINYL/FIRST SURFACE Lake City, FL

1) MATHEWS PAINT COLOR TO MATCH PANTONE 289 C UV RESISTANT CLEAR SATIN TOP COAT. 2) MATTHEWS WHITE WONDER MP-32071 / LIV RESISTANT CLEAR SATIN TOP COAT.

3) MATHEWS PAINT COLOR TO MATCH PANTONE 424 C/

L	ED MODULES= 133	110 VOL	T INPUT		
	BITRO	SECONE	DARY	AM	
TRANSFORMER		VOLTS WATT		INPL	
4	ASU-100-24U	24	96	1.0	

Design Loads

PER FL BLDG CODE, 7TH ED (2020)				
BASIC WIND SPEED, V 136	MPH			
RISK CATEGORY IV				
EXPOSURE CATEGORY B				
DESIGN WIND PRESSURE 28.0	PSF			

FILLER:	MATTHEWS WHITE WONDER MP-32071-W/ UV RESISTANT CLEAR SA
FACE BKGND:	MATTHEWS WHITE WONDER MP-32071-W/ UV RESISTANT CLEAR SA
BASE:	TO MATCH PANTONE 424C SLATE GRAY - W/ UV RESISTANT CLEAR SA
REVEAL:	TO MATCH PANTONE 289C NAVY BLUE - W/ UV RESISTANT CLEAR SA

1) ROUTED ALUMINUM FACE BACKED W/. 177" ACRYLIC

PAINT COLOR

ELECTRICAL NOTES

3) SIGN IS WIRED AS IS ON SCHEMATIC FOR POWER SUPPLY 4) 10 FT MIN. WHIP / ELEC. PRIMARY

L	ED MODULES= 133	110 VOL	TINPUT	
BITRO TRANSFORMER		SECONDARY		AMP.
		VOLTS	WATTS	INPUT
4	ASU-100-24U	24	96	1.0
TO	OTAL			4.0

(1) 20 AMP-120 VOLT CIRCUIT REQUIRED

PER FL BLDG CODE, 7TH ED	(2020)
BASIC WIND SPEED, V	136 MPH
RISK CATEGORY	IV
EXPOSURE CATEGORY	В
DESIGN WIND PRESSURE	28.0 PSF
FL CERTIFICATE OF AUTHORIZATION NO	31751

Underwriters Laboratories. Inc. LISTING E89514 **ELECTRIC SIGN** COMPLIES TO UL 48

SIGN & AWNING CO INC

4590 118TH Avenue North

Clearwater, Florida 33762

800-526-3325

www.thomassign.com

CLIENT

97209

32055

96070

Designer:

Project Updates: 09.12.22 JB - Revisions

HCA Florida

Lake City Hospital

Installation Address:

Project Identity Number:

Sales Associate: | Project Team

Date:

3239 NW York DR

Design Number:

3M™ MCS™ Warranty

☐ Approved

■ Approved as noted

☐ Revise & Re-Submit DATE:

The designs, concepts, drawings and specifications provided are the exclusive property of Thomas Sign & Awning Company and may not be reproduced in any way, shape or fashion without the express written permiss

fThomas Sign & Awning Cor

1 of 1

12"O.C

Sign & Awning Company, Inc. 4590 118th Avenue North Clearwater, Florida 33762 Florida Certificate of Authorization No. 31751

Installation Location: 3239 NW York Dr, Lake City, FL

Description: 6' OAH Monument Signs; Sign Locations 32 & 33

Engineering Calculations
Table of Contents

Structural Engineering Calculations

Prepared by: John F. Dougherty, P.E. Florida P.E. No. 80640

Code: Florida Building Code, 7th Edition (2020) - Building

ulations

Structural Calculations

Project Identity No.: 96070

Design No.: 97209

Client: HCA Florida Lake City Hospital

Pages 1 - 7

Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies

Sign & Awning Company, Inc. 4590 118th Avenue North

Clearwater, Florida 33762 Florida Certificate of Authorization No. 31751

Structural Calculations

Client: HCA Florida Lake City Hospital

Project Identity No.: 96070

Design No.: 97209

Prepared by: John F. Dougherty Florida P.E. License No. 80640

Installation Location: 3239 NW York Dr, Lake City, FL

Sign geometry:

Sign Height, s 6.00 feet Sign Width, B 7.50 feet

Sign Face Area, As 45.00 square feet

Height from grade to top of sign, h = s = 6.00 feet

Say sign weighs 5 psf Then total weight = 225 lbs

Thickness of sign, t 1 feet

Lateral wind area, Alat = t s = 6.00 square feet

Florida Building Code 7th Edition (2020) Building (FBC 7th)

Table 1604.5; Risk Category

Fig. 1609.3; Ultimate Wind Speed, Vult 133 mph, interpolated

Use Vult 136 mph

1609.4.2; Surface Roughness B Suburban

1609.4.3; Exposure Category B

Sign & Awning Company, Inc. 4590 118th Avenue North Clearwater, Florida 33762 Florida Certificate of Authorization No. 31751

Structural Calculations

Client: HCA Florida Lake City Hospital

Project Identity No.: 96070

Design No.: 97209

Prepared by: John F. Dougherty Florida P.E. License No. 80640

Installation Location: 3239 NW York Dr, Lake City, FL For free-standing solid signs, apply ASCE 7 provisions.

ASCE 7-16 Chapter 29 Wind Loads on Building Appurtenances and Other Structures...

```
Figure 29.3-1 Clearance ratio, s/h = 1.00
Aspect ratio, B/s = 1.25 <2; Case C doesn't apply
Cf for Case A or B 1.44
Cfc1 for Case C, 0 to s 0.00
Cfc2 for Case C, s to 2s 0.00
Cfc3 for Case C, 2s to 3s 0.00
```

Cfc4 for Case C, 3s to 4s 0.00

Table 26.10-1; Kh = 0.57

Table 26.6-1, Directionality Factor, Kd 0.85 for free standing signs

Section 26.8.2, Topographic factor, Kzt 1.00

Velocity pressure,

 $qz = qh = 0.00256 \text{ Kz Kzt Kd Vasd}^2 = 22.9 \text{ psf}$

Section 26.11 gust effect factor, G 0.85

Design wind pressure (Case A) = qz G Cf = 28.0 psf

Eq. 29.3-1, F = qh G Cf As

Case A and Case B, F_{AB} = 1261 lb

Case C , F1 = qh G Cfc1 s^2 =	0 lb applied $s/2 =$	3.00 feet from end of sign
Case C , F2 = qh G Cfc2 s^2 =	0 lb applied $3s/2 =$	9.00 feet from end of sign
Case C , F3 = qh G Cfc3 s^2 =	0 lb applied $5s/2 =$	15.00 feet from end of sign
Case C, F4 = qh G Cfc4 s^2 =	0 lb applied 7s/2 =	21.00 feet from end of sign
Total force, $\Sigma F_c =$	O lb	

Lateral load, Flat = say gh G Cf Alat = 168.19 lb (assumes Cf = 1.00)

To be shown on construction documents:

ULTIMATE DESIGN WIND SPEED, Vult (3-SECOND GUST): 136 mph

RISK CATEGORY: IV
EXPOSURE CATEGORY: B
DESIGN WIND PRESSURE: 28.0 psf

Sign & Awning Company, Inc.

4590 118th Avenue North Clearwater, Florida 33762

Florida Certificate of Authorization No. 31751

Structural Calculations

Client: HCA Florida Lake City Hospital

Project Identity No.: 96070

Design No.: 97209

Prepared by: John F. Dougherty Florida P.E. License No. 80640

Installation Location: 3239 NW York Dr, Lake City, FL

For One Support Pole:

Torsion =
$$F_{AB}$$
 (0.2B) = 1,892 ft-lb

Pole base moment,
$$Mx_B = F_{AB}(0.55)h = 4,163 \text{ ft-lb*}$$

$$Vx_B = F_{AB} = 1261 \text{ lb}$$

$$Vy_{B} = Flat = 168.2 lb$$

Pole base moment,
$$My_B = Vy_B (0.55h) = 555.0 \text{ ft-lb*}$$

Case C Total load,
$$Vx_C = F_{AB} = 0$$
 lb

Pole base moment,
$$Mx_c = Vx_c (0.55)h = 0$$
 ft-lb*

Torsion, T = F1 (B/2-s/2) + F2 (B/2-3s/2) + F3 (B/2-5s/2) + F4 (B/2-7s/2)

$$\Gamma = 0 \text{ ft-lb}$$

$$Vy_B = Flat = 168.2 lb$$

Pole base moment, $My_B = Vy_B (0.55h) = 555.0 \text{ ft-lb*}$

	Case B	Case C	Maximum	
Vx =	1,261	0	1,261	lb
Mx =	4,163	0	4,163	ft-lb at grade*
Torsion	1,892	0	1,892	ft-lb
My =	555.0	555.0	555	ft-lb at grade*
Vy =	168.2	168.2	168	lb
** Resultant $V=(Vx^2+Vy^2)^{1/2} =$	1273	168	1,273	lb
** Resultant $M=(Mx^2+My^2)^{1/2} =$	4199	555	4,199	ft-lb at grade*

^{*} Moment is greater below grade; see drilled pier design

For load combination 1.0 DL + 0.6 Wind

Mx = 2,498 ft-lb at grade*

Torsion 1,135 ft-lb

My = 333 ft-lb at grade*

Vy = 101 lb

** Resultant $V=(Vx^2+Vy^2)^{1/2} = 764$ lb

** Resultant $M = (Mx^2 + My^2)^{1/2} = 2,520$ ft-lb at grade*

^{**} Use resultant base shear and moment for drilled pier design

Sign & Awning Company, Inc.

4590 118th Avenue North Clearwater, Florida 33762

Florida Certificate of Authorization No. 31751

Structural Calculations

Client: HCA Florida Lake City Hospital

Project Identity No.: 96070

Design No.: 97209

Prepared by: John F. Dougherty Florida P.E. License No. 80640

Installation Location: 3239 NW York Dr, Lake City, FL

For short, free-head pier in cohesionless soil

Lateral load applied to pile at grade, Pa = 764 lb Torsion, T= 1135 ft-lb

Moment applied to pile at grade, Ma = 2,520 ft-lb Resolve Pa and Ma into a load applied at a height e above grade

e = M/P = 3.3 feet

Diameter of the pier, b = 18 inches = 1.5 feet

Note: Thomas Sign's standard truck-mounted augers are 18, 30 and 36 inches diameter X 14' max depth,

48" diameter x 6' max depth

and the hand-held power auger has 6", 8" and 12" diameter bits.

Embedded length below grade, L = 4.5 feet

Assume angle of friction, $\phi = 30$ degrees

Rankine coefficient of passive pressure, Kp =

 $\tan^2(45+\phi/2) = 3.00$

Unit weight of soil, $\gamma = 110.0$ pcf

Using Brom's method:

The load that will cause soil failure,

Pt = $\gamma bL^3 Kp/2/(e+L) = 2891.5$ lb Pt >= Pa; OK

Distance from grade down to the point of

zero shear (max moment),

 $f = {2Pa/(3 \gamma b Kp)}^{1/2} = 1.01 feet$

Mmax = Pa (e+f) - Pa f /3 = 3,036 ft-lb

Moment magnification = Mgrade/Mmax = 1.205

Check stresses in the sign pole embedded in concrete pier.

Perimeter area of pier, Ap = $2\pi(b/2)(12L)$ = 3054 sq in

Shear on soil-concrete interface = 12T/(b/2)/Ap = 0.50 psi x144 = 71 psf

average soil pressure = 110 pcf(L/2) = 247.5 psfsay friction coeficient, fr = 0.3

friction force = 74.25 psf

Factor of Safety against turning = 74.3 / 71 = 1.04 > 1.00; OK

The auger-drilled pier spreads support reactions from the main steel support onto the supporting soil, but does not directly carry structural shear or bending moments. Those forces remain in the main support, embedded in the pier. So the concrete does not need to be reinforced to carry the loads.

Sign & Awning Company, Inc.

4590 118th Avenue North Clearwater, Florida 33762

Florida Certificate of Authorization No. 31751

Structural Calculations

Client: HCA Florida Lake City Hospital

Project Identity No.: 96070

Design No.: 97209

Prepared by: John F. Dougherty Florida P.E. License No. 80640

Check: ASTM A53 Type E or S, Grade B

Pipe3STD

Fy = 35 ksi

W (lb/ft)	Α	OD	ID	t nom	t des	D/t	I _x
7.58	2.07	3.5	3.07	0.216	0.201	17.4	2.85
Z _x	Sx	r _x	I _y	Z _y	Sy	r _y	J
2.19	1.63	1.17	2.85	2.19	1.63	1.17	5.69

From drilled pier design, Max Resultant Moment, M = 3,036 ft-lb

Resultant Lateral load on pole, Rb = 764 lb

Torsion, T = 1,135 ft-lb

Free length of cantilever, h = 6.00 feet

Center of load applied above grade, H = 0.55 h = 3.30 feet

Weight of sign = 225 lb

AISC Table B4.1, sect 15 D/t = 17.40

In compression; $\lambda r = 0.11 E / Fy = 91.14 > D/t$; non-slender element

In flexure; $\lambda p = 0.07 \text{ E/Fy} = 58.00$

 $\lambda r = 0.31 E/Fy = 256.86$ compact section

AISC Chapter E; Compression

AISC Section E1 $\Omega c = 1.67$

AISC Section E2 Effective length factor, K = 2.10 for cantilever

KI/r = K(12H)/rx = 71.08

AISC Section E3 $4.71 (E/Fy)^{1/2} = 136 >= KI/r$

AISC Eq. E3-4; Fe = 56.7 ksi

AISC Eq. E3-2; Fcr = 27.0 ksi

AISC Eq. E3-1; Pn = Fcr Ag = 56 kips

Allowable compression strength, $Pc = Pn/\Omega c = 33$ kips

Pole weight 7.58 lb/ft

H 3.30 feet

Weight of pole = 25.0 lb

Weight of sign = 225 lb

Required compression, Pr = 250.0 lb = 0.25 kips

0.25 <= 33; OK

Sign & Awning Company, Inc.

4590 118th Avenue North Clearwater, Florida 33762

Florida Certificate of Authorization No. 31751

Structural Calculations

Client: HCA Florida Lake City Hospital

Project Identity No.: 96070

Design No.: 97209

Prepared by: John F. Dougherty Florida P.E. License No. 80640

AISC Chapter F; Flexure $\Omega b = 1.67$

AISC Section F8 0.45 E/Fy = 372.9 D/t < 0.45 E/Fy; Sect F8 Applies

Section F8.1; Yielding

Eq. F8-1; Mn = Mp = FyZ = 77 kip-in

Section F8.2; Local Buckling

For compact sections Section F8.2 does not apply

For non-compact sections; Eq. F8 2; Mn = 114 kip-in For slender walled sections; Eq. F8-3; Mn = 897 kip-in

Mn = 77 kip-in

Allowable moment, $Mc = Mn/\Omega b = 46$ kip-in Required moment, Mr = 3,036 ft-lb = 36 inch-kip

36 <= 46; OK

AISC Chapter G; Shear $\Omega v = 1.67$

Section G6; Lv is undefined since transverse shear is constant

Section G6; Eq. G6-2a; Fcr = N/A

Eq. G6-2b; Fcr = 312 ksi

 $\mbox{Vn = Fcr Area / 2 =} \qquad \qquad 323 \ \mbox{kips}$ Allowable transverse shear, $\mbox{Vc} = \mbox{Vn/}\Omega\mbox{v} = \qquad \qquad 193 \ \mbox{kips}$

Required transverse shear, Vr = 764 lb = 0.76 kips

inch-kip

0.76 <= 193; OK

Sign & Awning Company, Inc.

4590 118th Avenue North Clearwater, Florida 33762

Florida Certificate of Authorization No. 31751

Structural Calculations

Client: HCA Florida Lake City Hospital

Project Identity No.: 96070

Design No.: 97209

Prepared by: John F. Dougherty Florida P.E. License No. 80640

AISC Chapter H; Combined Forces

Section H3.1
$$\Omega t = 1.67$$

HSS torsional constant, $C = \pi (OD-t)^2 t/2 = 3.44$

Fcr is largest of eq. H3-2a and eq. H3-2b but shall not exceed 0.6Fy

eq H3-1; Tn = Fcr C = 72.2 in-kip Allowable torsion, Tc =
$$Tn/\Omega t$$
 = 43.2 in-kip Required torsion, Tr = 1,135.3 ft-lb = 13.62 inch-kip 13.62 <= 43; OK

AISC Section H3.2; eq. H3-6

 $(Pr/Pc)+(Mr/Mc)+{(Vr/Vc)+(Tr/Tc)}^2 <=1.00$

0.90 <= 1.00; OK

Deflection

Deflection due to load Rb, $\Delta = \text{Rb } (12\text{H})^3/(3\text{Elx}) = 0.19$ inches 2(12H)/120 = 0.66 inches* OK

^{*} Uses span = 2H in accordance with building code for cantilevers